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A Wavelet-Based Continuous Classification Scheme
for Multifunction Myoelectric Control
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Abstract—This work represents an ongoing investigation of dex-
terous and natural control of powered upper limbs using the myo-
electric signal. When approached as a pattern recognition problem,
the success of a myoelectric control scheme depends largely on the
classification accuracy. A novel approach is described that demon-
strates greater accuracy than in previous work. Fundamental to
the success of this method is the use of a wavelet-based feature
set, reduced in dimension by principal components analysis. Fur-
ther, it is shown that four channels of myoelectric data greatly im-
prove the classification accuracy, as compared to one or two chan-
nels. It is demonstrated that exceptionally accurate performance is
possible using the steady-state myoelectric signal. Exploiting these
successes, a robust online classifier is constructed, which produces
class decisions on a continuous stream of data. Although in its pre-
liminary stages of development, this scheme promises a more nat-
ural and efficient means of myoelectric control than one based on
discrete, transient bursts of activity.

Index Terms—EMG, myoelectric, pattern recognition, principal
components analysis, prosthesis, Wavelet, wavelet packet.

I. INTRODUCTION

T HE myoelectric signal (MES), recorded at the surface of
the skin, has been used for many diverse applications, in-

cluding clinical diagnosis, and as a source of control of assistive
devices and schemes of functional electrical stimulation. This
work seeks to improve the functionality and ease of control of
powered upper-limb prostheses using the myoelectric signal.

Many myoelectric control systems are currently available that
are capable of controlling a single device in a prosthetic limb,
such as a hand, an elbow, or a wrist. These systems extract con-
trol information from the MES based on an estimate of the am-
plitude [1] or the rate of change [2] of the MES. Although these
systems have been very successful, they do not provide suffi-
cient information to reliably control more than one function (or
device) [3]; the extension to controlling multiple functions, is
a much more difficult problem. Unfortunately, these are the re-
quirements of those with high-level (above the elbow) limb defi-
ciencies, and these are the individuals who could stand to benefit
most from a functional replacement of their absent limbs.
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II. BACKGROUND

A. Pattern Recognition-Based Control

In an attempt to increase the information extracted from the
MES, investigators have proposed a variety of feature sets,
and have utilized pattern recognition methods to discriminate
amongst desired classes of limb activation. Most work in MES
classification has considered the steady-state MES: that col-
lected during a maintained (usually constant-force) contraction.
Hudginset al. [4] were the first to consider the information
content of the transient bursts of myoelectric activity that ac-
company the onset of contraction. These data were acquired in
a single MES channel, using a widely spaced bipolar electrode
pair placed on the biceps and triceps. The data were acquired
by triggering on an amplitude threshold of a moving average
of the absolute value of the transient waveforms. The structure
inherent in the early portion of these transient bursts (roughly
the first 100 ms) suggested a promising means of MES classi-
fication. Hudgins developed a control scheme based upon a set
of simple time domain statistics and a multilayer perceptron
artificial neural network classifier, capable of classifying four
types of upper limb motion from the MES acquired from the
biceps and triceps. This control scheme demonstrated greater
discriminant ability than any other at the time, and allowed a
user to evoke control using muscular contractions that resemble
those normally used to produce motion in an intact limb. This
system has been implemented as an embedded controller [5],
and is currently undergoing clinical trials.

Although the accuracy of Hudgins’ controller is good,
(roughly 10% error, averaged over a set of ten subjects) there is
an obvious motivation to reduce the error as much as possible.
This would enhance the usability of the system as perceived by
the user, and allow greater dexterity of control. A number of
approaches have appeared in the literature that have used the
transient signal as prescribed by Hudgins, seeking to improve
the accuracy of the approach using dynamic artificial neural
networks [6], genetic algorithms [7], fuzzy logic classifiers [8],
and self-organizing neural networks [9]. Absent from this work
however, was a direct comparison with Hudgins’ method, and
none has suggested a clearly superior method.

B. Signal Representation

Instead of focusing upon the classifier, the authors have
demonstrated in previous work that the classification perfor-
mance is more profoundly affected by the choice of feature
set [10]. Specifically, a wavelet-based approach is described
that, in direct comparison to Hudgins’ time domain approach,
exhibits superior performance. The performance of Hudgins’
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time domain feature set (TD), and those based upon the
short-time Fourier transform (STFT), the wavelet transform
(WT), and the wavelet packet transform (WPT) were compared
using a new data set. This work is briefly described here to
provide the context of the current investigation.

A roster of 16 healthy subjects participated in the study.
Four classes of myoelectric signal patterns were collected,
corresponding to flexion/extension of the elbow, and prona-
tion/supination of the forearm. The data were acquired from
two channels, located at the biceps and triceps, each pattern
consisting of two channels of 256 points, sampled at 1000 Hz.
The data were divided into a training set (100 patterns) and a
test set (150 patterns).

The fundamental difference between the STFT, the WT, and
the WPT is in the manner in which they partition the time-fre-
quency plane. The STFT has afixedtiling; once specified, each
cell has an identical aspect ratio. The tiling of the WT isvari-
able—the aspect ratio of the cells varies such that the frequency
resolution is proportional to the center frequency. This tiling has
been shown to be more appropriate for many physical signals,
but the partition is nonetheless still fixed. The WPT provides an
adaptivetiling—an overcomplete set of tilings are provided as
alternatives, and the best for a given application is selected.

Each of the STFT, WT, and WPT implementations were
empirically optimized to yield the best possible classification
performance from the ensemble of 16 normally limbed sub-
jects. For the STFT, it was determined that (from a number of
taper windows) a Hamming window of length 64 points with
an overlap of 50% gave the best performance. When using the
WT, a Coiflet mother wavelet (of order four) yielded better
accuracy than a host of other wavelet families of varying order
[11]. The WPT experienced the best performance when using a
Symmlet mother wavelet (of order five). A number of methods
were considered as candidates to determine the best tiling of the
WPT. The most common approach to specifying the WPT tiling
is by selecting that which minimizes the reconstruction error,
using an entropy cost function [12]. This may be considered
optimal for signal compression, but may be inappropriate for
signal classification. A modified form of this algorithm has
been proposed that seeks to maximize the discriminant ability
of the WPT by using a class separability cost function [13]. It
is established in [10] that this discriminant cost function does
indeed produce the best classification performance. A detailed
description of the signal representation is given in an Appendix
to this paper.

From each subject, the TD, STFT, WT, and WPT feature sets
were computed. Subsequently, each feature set was subject to
dimensionality reduction using principal components analysis
(PCA), so as not to overwhelm the classifier with high-dimen-
sional data. It is shown in [10] that the application of PCA is
critical to the success of the time-frequency-based feature sets,
and that PCA is clearly superior to other forms of dimension-
ality reduction. Although the classification performance is not
sensitive to the dimensionality of the PCA-reduced feature set, it
was demonstrated that at least five PCA features are needed, and
more than thirty unnecessarily burdens the classifier. Twenty
PCA coefficients are used in the analyses described here.

Fig. 1. The test set classification accuracy of the four-class problem
demonstrated in [10]. The results of two classifiers are shown: a linear
discriminant analysis (LDA) and a multiplayer perceptron (MLP).

Fig. 1 depicts the test set classification error, averaged over
the ensemble of 16 subjects.

In this figure, the subscript (ALL) indicates that the entire
TD feature set was used (as done by Hudgins). The subscript
PCA indicates that PCA was used to reduce the feature set. The
figure indicates that the performance improves in the progres-
sion , indicating the relative
efficacy of the feature sets. Another important observation is
that the LDA classifier performs as well as or better than that
MLP classifier for the time-frequency-based features sets. This,
presumably, is due to the fact that the PCA dimensionality re-
duction has the effect of linearizing the discrimination task of
the classifier.

These results are encouraging, in that a more powerful fea-
ture set has been realized in the form of the PCA-reduced WPT.
This investigation seeks to extend this promising approach in the
following ways: to consider the benefit gained by using more
channels of MES activity, to compare the performance of tran-
sient versus steady-state data, and to demonstrate the feasibility
of continuous myoelectric control of a multifunction prosthesis.

III. M ETHODOLOGY

Two experiments are described in this work to elucidate these
factors. The first experiment compares the performance of a
two-channel configuration to that of a four-channel system, and
compares the performance when using transient and steady-
state data. It is shown that exceptionally good performance is
achieved using four-channel steady-state data with as many as
six classes. The second experiment, bolstered by these results,
demonstrates the capabilities of the four-channel system acting
on a continuous stream of data.

In the first experiment, data were acquired1 from 11 normally
limbed individuals, recording four channels of MES from elec-

1These data were acquired during the course of an M.Sc.E. thesis by Sentiono
Leowinata.
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Fig. 2. The electrode placement used in the four-channel MES acquisition. Four bipolar electrode pairs (Red Dot—3M Corp.) were used with a reference at the
wrist. Although difficult to show on the figure, the top and bottom electrode pairs are at the same level of the forearm.

Fig. 3. The six classes of motion used in the four channel experiments.

trodes placed on the medial side, top, lateral side and bottom of
the forearm, as depicted in Fig. 2.

Each subject generated six different classes of motion: hand
close/open, flexion/extension of the wrist, and ulnar/radial de-
viation of the wrist,2 as shown in Fig. 3.

Each subject produced two sets of data: one comprising tran-
sient bursts, and another consisting of steady-state signals. Be-
cause this is a prosthetic control problem, the contraction levels
are arbitrary as long as they are reasonably consistent, and com-
fortable enough for the subject to reproduce in daily use without
fatigue. Each bipolar channel was acquired used Ag-AgCl elec-
trodes spaced at 2 cm. Each record was 256 ms in duration (256
points, sampled at 1000 Hz, prefiltered between 10 and 500 Hz).
In each dataset, 80 patterns were generated in each class, re-
sulting in a total of 480 patterns. These data were evenly divided
into training and test sets of 240 patterns, and then subject to
classification by the time-frequency methods described in the
previous section.

In the second experiment, steady-state MES data were ac-
quired using the same four-channel configuration as described
in Experiment 1. The subject was asked to produce constant-
force contractions from each of the six classes for 5-s intervals,
and then repeat the pattern, generating 60 s of data. The first 30-s
set of six classes was used as a training dataset, and the second
30-s set was used as a test dataset. These data were divided
into discrete 256-sample records, and presented to the system in
the same manner as in Experiment 1 to train the system. After
training, the continuous stream of steady-state data was subject

2The rationale for recording from the forearm is that the underlying muscu-
lature directly contributes to each of the six types pf contraction; it would be
difficult to contrive six distinct classes of motion directly actuated by the bi-
ceps/triceps pair.

to classification using a sliding window that progressed across
the entire record.

IV. EXPERIMENT 1—RESULTS

Each feature set was again used in the analysis, as well as an-
other proposed by Leowinata, which comprises the normalized
auto-correlation and cross-correlation functions of the channels
[14]. Here, this feature set will be denoted AC. The following
results depict the classification performance of the test set of
data, averaged across the 11 subjects. Each feature set has been
subject to PCA dimensionality reduction, and classified using
the LDA (the MLP, having shown no advantage in Fig. 1, has
been omitted in this and subsequent analyses).

Consider first a four-class problem (using wrist flexion/ex-
tension and hand open/close). Fig. 4 shows the results for each
feature set when using transient data for two channels (top and
bottom electrodes) and for four channels. It is clear that four
MES channels offers improved accuracy, as compared to two
channels. It is also evident that the WT and WPT feature sets
offer the best performance, corroborating the results in the pre-
vious experiment. Note that the AC feature performs poorly, rel-
ative to the others. This is consistent throughout each compara-
tive analysis.

Now consider the same set of four classes elicited as steady-
state contractions. Fig. 5 shows the same improvement when
progressing from two to four channels, and the relative efficacy
of the WPT feature set.

Having concluded that four channels offer a distinct advan-
tage to two channels, we will use the four-channel configuration
for the remainder of the analysis. A direct comparison of the ac-
curacy when using four-channel transient and steady-state data
is shown in Fig. 6. The results indicate that the steady-state data
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Fig. 4. The classification accuracy using four classes of transient MES data.
All feature sets have been subject to PCA and hence, the subscript PCA has been
dropped.

Fig. 5. The classification accuracy using four classes of steady-state MES data.

contains greater discriminating information than the transient
data. A justification for these results is described in the next sec-
tion. One can observe that the error rate is approaching zero for
the WT and WPT feature sets for the steady-state data; indeed,
a majority of the subjects achieve an error rate of zero. This de-
gree of accuracy is unprecedented for this problem.

The exceptional accuracy with four channels of steady-state
data suggests one might make the problem a bit more difficult.
It may be desired to classify a greater number of classes, to
provide more functionality to a prosthetic system. Consider now
a six-class problem, including all wrist and hand motions. The
classification results for the transient and steady-state data are
shown in Fig. 7.

Again, the steady-state data exhibits distinct superiority to the
transient data, and the WPT feature set demonstrates the best
performance. Although the performance is not as good as in the
four-class problem, the WPT feature set yields an error rate of

Fig. 6. Four classes, four channels: the relative performance of transient versus
steady-state data.

Fig. 7. Six classes, four channels: the relative performance of transient versus
steady-state data.

two percent, which is still exceptional given the difficulty of the
problem.

Another advantage that the steady-state data has over the tran-
sient data pertains to the effect of record length. The analyses de-
scribed previously used a record length of 256 points (256 ms).
This may be considered the maximum record length, dictated
by the allowable response time of the classifier (it is generally
agreed that 300 ms is the longest acceptable delay in a pros-
thetic control system). The classification performance degrades
rapidly as the record length of the transient data is decreased
from 256 to 128 to 64 to 32 samples, as shown in Fig. 8. The
WPT feature set has been chosen to demonstrate the effect of
record length; the other feature sets experience essentially the
same effect with record length.

When using the steady-state data however, this degradation is
not as profound, as shown the figure. Indeed, the performance
suffers very little when reducing to 128 ms. This suggests that
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Fig. 8. Six classes, four channels: the effect of record length upon
classification performance, using a WPT feature set upon transient and
steady-state MES data.

shorter records of steady-state data may be used, if a faster
system response is desired.3

V. EXPERIMENT I—DISCUSSION

The following observations can be made from the preceding
analyses.

• Four channels of MES are clearly preferable to two. This
suggests an investigation into the benefits that may be
gained by further increasing the number of channels.
Whereas the number of channels was practically limited
in the past by the sheer bulk of the instrumentation and
the difficulty in maintaining good contact, advances in
electrode array miniaturization, fabrication, and inter-
facing techniques have made multichannel systems more
feasible.

• For the same set of subjects, the steady-state data was clas-
sified more accurately than the transient data. As well,
the steady-state data suffers less degradation with shorter
record lengths.

• The wavelet and wavelet packet-based feature sets outper-
form the others in every scenario.

• A four-channel steady-state system, using a WPT feature
set performs exceptionally well, yielding 0.5% error when
discriminating four classes, and 2% error with six classes.

The basis for the improvement when adding channels is ob-
vious: the MES activity recorded from the side electrodes (chan-
nels 1 and 3) contribute additional information about the articu-
lated contraction. The superiority of the steady-state data to the
transient data however, was somewhat unexpected. In [4], Hud-
ginset al.demonstrated that a single MES channel (with widely
spaced electrodes placed on the biceps and triceps) exhibits sig-
nificant structure in the first 100 ms preceding initiation of a
contraction. It is uncertain as to whether this structure is due to

3Of course, the system is also subject to the response time and damping factor
of the prosthesis. A faster control system response would offer no benefit to a
slower prosthetic system.

electrophysiological determinism, or due other phenomena such
as skin stretch potentials, or the motion of the electrodes relative
to the underlying musculature. Regardless, this structure was
presumed to contribute significantly to discrimination amongst
contraction types. Kurugantiet al.[15] verified that the accuracy
of Hudgins’ method could be improved by using two bipolar
channels with a localized pickup region over each of the biceps
and triceps, instead of a single channel with a large pickup re-
gion. In a multiple channel configuration, it appears that this
fine structure plays a lesser role to the gross activity of the con-
stituent muscle activity. The more localized bipolar electrodes
in a multichannel configuration appear to degrade the incidence
of fine structure in the waveforms. These localized channels do,
however, communicate more information about the relative ac-
tivity of spatially separated muscle groups, which is conveyed
by the gross activity of the steady-state signal.

At face value, these analyses describe a method that discrim-
inates the surface MES with greater accuracy than any previous
work. Another, perhaps more important implication of these re-
sults, is that one may abandon the need to detect and frame tran-
sient bursts of MES activity. Instead of requiring an individual
to elicit a contraction from rest (a rather awkward imposition
when performing a sequence of tasks), classification may be
performed on a continuous stream of steady-state data, as one
switches from one contraction type to another. Thiscontinuous
classifiercould produce classification results as often as the fea-
ture extraction processing delay would allow (a factor of the fea-
ture set, the record length, and the processing power).

VI. EXPERIMENT II—RESULTS

A second experiment was carried out to provide a demon-
stration of the capabilities of such a classifier. The system was
trained using disjoint 256-sample frames of data extracted from
the continuous training data. For 256-sample records, each 5-s
interval (for each class) yields 19 patterns, resulting in
114 patterns in the training dataset. A set of test patterns was
generated in the same way. These discrete records were clas-
sified in the same manner as in Experiment 1, to provide an
indication as to what type of performance might be expected
of the continuous classifier. Classification results when using
these data were very typical of those obtained in Experiment 1:
the test set error for the six-class problem using WT and WPT
features sets was 4.3% and 3.5%, respectively.

Having determined the PCA, LDA and WPT tiling co-
efficients from the training session (storing them for later
reference), a continuous classifier could then be constructed.
Instead of acting on an ensemble of disjoint records of MES
data, the continuous classifier produces a series of decisions
using a sliding window of MES activity. This illustrated in
Fig. 9, which depicts one (of the four) MES channels, and
the sliding window of activity used to generate classification
decisions.

In addition to the type of feature set to be used, the parame-
ters which affect the classifier’s performance include the record
length (which will be denoted ), and the window increment
(denoted ). We have seen from the results of Experiment 1
that significantly affects the classification rate, so it is likely
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Fig. 9. The sliding window used in continuous classification. Here, a sequence
of 256 ms records (R1, R2, and R3) are used to make decisions at times D1, D2,
and D3. In this example, the window index increments byM ; the processing
delay� must be less thanM .

that 256 samples is preferable here. It is not clear, however,
what is the best choice for . The window increment affects the
rate at which class decisions will be made, and consequently, it
determines the real-time constraint of the system (the processor
must compute the feature set and generate a decision before the
next batch of data arrives). A small value ofproduces a dense
stream of class decisions with respect to time, which may im-
prove the response time of the classifier and, by utilizing this
redundant information, improve the classification accuracy.

A sample session of continuous classification is shown in
Fig. 10. Here, a WT feature set4 was used with 256 and

128, yielding 466 decisions over the 60-s interval of data.
The first 30 s of data represent the training data, and the latter
30 s, the test data. The class targets are represented by the stair-
case, with the level indicating the class number (and labeled at
the top of the graph). The open circles superimposed on the tar-
gets represent errors made by the classifier, plotted at the level
of the predicted class. Clearly, most of the errors are clustered
about the zones of transition between classes, which are to be
expected, since the muscle activity is in a state of flux.

In this analysis, the test set error is 7.8%. Recall that when
training the system (using disjoint 256-sample records), the test
set error when using this WT feature set was 4.3%. This is a fa-
vorable comparison, with the observation that most of the errors
appear to occur at the transition regions in Fig. 10. When using
the WPT feature set, the error is 6.8% as compared to 3.5% in
the batch training session.

The dependency of the accuracy at different window incre-
ments was investigated. The classification accuracy at values of

32, 64, 128, and 256 samples was found to be essentially
the same. This is true for both the WT and the WPT feature set.
Although at smaller values of more errors were made, the
ratio of error to decisions remains fairly constant.

4The WT was chosen for this example due to its computational efficiency.
Although the WPT exhibits greater accuracy in Experiment 1, its advantage over
the WT is marginal in most cases.

Fig. 10. A session of continuous classification using a WT feature set. In this
analysis,N = 256 andM = 128. One minute of four-channel MES data
is shown, with the class targets (the staircase in the upper portion) and the
classification errors (the open circles superimposed on the staircase). The errors
made using a majority vote of decisions made in the past 500 ms are shown as
filled circles.

With a denser stream of class decisions however, one may
combine adjacent decisions in an attempt to improve classifi-
cation accuracy. A simple approach to post-processing the se-
quence of class decisions is to take a majority vote of recent de-
cisions. A majority vote was performed using the current deci-
sion and each decision made in the previous 500 ms. In Fig. 10,
the positions where the majority vote scheme produces errors
are indicated by filled circles. These errors are almost exclu-
sively restricted to the transition regions of the activity, essen-
tially eliminating errors in the midst of an interval of steady-
state contraction. The error rate using a majority vote scheme is
roughly half that of the unprocessed stream of class decisions,
regardless of the feature set (WT or WPT) or window increment.

The improvement due to using a majority vote scheme may
reduce to an academic exercise however, since the inertia of a
prosthetic device will serve to smooth the stream of class deci-
sions, and forgive spurious errors. The important observation to
be made, however, is that the continuous classifier produces a
very reliable decision stream for this six-class problem.

The remaining issue to be discussed is whether the classifica-
tion scheme can meet the real-time constraints of the problem.
The system must perform feature extraction (either WT or
WPT), PCA, and LDA in the window increment time, .
Fortunately, in the feedforward path, each of these operations
are computationally efficient. The complexity of the WT is
on the order (for the Coiflet mother wavelet) [11] and
the complexity of the WPT is [12]. The PCA is the
product of a by an matrix, and the LDA is the
product of a by matrix (where 20 features
and six classes).

The processing delays were empirically evaluated using a
450-MHz Pentium III-based workstation. The computation was
performed in Matlab (The Mathworks, Natick, MA); the matrix
multiplications were built-in functions, and the WT and WPT
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Fig. 11. The processing delays associated with the WT, PCA, and LDA stages
of the system at various record lengths.

Fig. 12. The processing delays associated with the WPT PCA, and LDA stages
of the system at various record lengths.

routines were compiled C code. Fig. 11 shows the processing
delays using various record lengths,, when using the WT fea-
ture set.

As the record length increases, the bulk of the processing
delay is associated with the PCA stage. The WT is extremely
computationally efficient, increasing linearly with and never
exceeding 2 ms of processing time. To meet the real-time con-
straints imposed on the system, the delay must be less than the
window increment; it is clear that this constraint is easily met
for window increments greater than 12 ms. Fig. 12 shows the
same delays when using a WPT feature set. The WPT demands
substantially greater computation (it represents the bulk of the
delay); with a record length of 256 ms, the real-time constraint
will be met only if the window increment is greater than 200
ms. These delays are relative to the capacity of the chosen com-
puting platform; presumably, an embedded system with dedi-
cated signal processing hardware could meet or exceed these
processing requirements.

VII. EXPERIMENT II—DISCUSSION

This experiment has demonstrated the viability of a contin-
uous classification scheme that is impressively accurate. Almost
all misclassifications seem to be clustered about the regions of
transition between classes. These errors may be forgiven in ac-
tual use as long as the region in which errors are registered is
short compared to the desired dynamic response time of the
system. That is, if one wishes to manipulate a prosthetic device
and be capable of establishing control of a device (or switching
control between devices) within 300 ms of the intent actuated by
a contraction, the errors produced between states must be lim-
ited to this interval. This is achieved at each transition in Fig. 10,
where 128 and no more than one error is encountered at
any transition (even two errors would fall within 256 ms). It is
likely that the inertia associated with actuation of the prosthetic
device will forgive any spurious misclassifications upon transi-
tion, until the steady-state activity has been established.

Although some insight as to the capabilities of such a system
has been illustrated here, there are some issues yet to be resolved
that are currently under investigation.

1) The system must know when to actuate the prosthetic de-
vices, and when to suppress actuation. With a constant
stream of decisions being produced, the actuation must
be gated by some means. This might be accomplished by
including an additional “inactive” class in the training ses-
sion, by imposing a lower threshold of MES activity, or
a combination of both. The development of this strategy
is as important as classification accuracy in terms of us-
ability.

2) The steady-state data in this investigation comprises con-
tractions that are of roughly the same intensity (although
subjects were not instructed to maintain a consistent level
of effort). The performance of the system when using con-
tractions of varying intensity must be investigated. This is
essential if one is to implement proportional control of the
devices (where the velocity is proportional to the intensity
of the muscular effort). Otherwise, only ON/OFF control
(one speed) may be used.

3) The system has been shown to be very accurate in
discriminating six classes of motion. Is it possible
that combined motions (for example, hand close/wrist
flexion) might be classified? This would enable si-
multaneous control of devices, which would enhance
the anthropomorphism of control, offering benefits of
functionality and dynamic cosmesis.

4) To what extent will additional channels of myoelectric
activity improve the classification performance? Will a
many-channel grid of electrodes offer the discrimination
needed to resolve combined/simultaneous activities?

It should be noted that, with the motivation of developing a
continuous classifier, the time-frequency analysis tools (the
STFT, WT, and WPT) developed for the transient signals were
directly transferred to the analysis of the steady-state signals.
It is clear from the results presented that the classification
performance is superior when using steady-state data, although
one would expect that these nonstationary signal analysis tools
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Fig. 13. The stages comprising the classification problem, and the methods subject to investigation.

are not required for these data, which are essentially stationary.
Indeed, reducing the segmented STFT to a single-window FFT
produces essentially the same classification results as the STFT
with 64 sample windows, overlapping by 50%. One cannot
perform a similar comparison with the WT and WPT, as they
are inherently time-coherent. It still remains, however, that the
WT and WPT outperform the other feature sets when using
the steady-state data. This is not due to their ability to capture
temporal information, which is absent in the steady-state
data, but to their ability to model the elemental basis of the
myoelectric signal. The wavelet functions themselves closely
resemble the motor unit action potentials that constitute the
gross myoelectric signal. To this end, the optimum wavelet and
wavelet packet parameters for classifying steady-state signals
are currently under investigation.

VIII. C ONCLUSION

A wavelet-based approach to MES classification has been de-
scribed that exhibits very good accuracy when using two chan-
nels of MES activity, and even better accuracy when using four
channels. Steady-state data has been shown to outperform tran-
sient data for the same ensemble of 11 subjects. The WPT/PCA
feature set, with four channels of steady-state data allows four
classes of motion to be classified with a average of 0.5% error,
and six classes with 2% error.

Given the efficacy of the WT and WPT-based feature sets, a
continuous classification scheme has been described. The con-
tinuous classifier represents a promising new mode of control-
ling prosthetic devices. It represents a more natural and efficient
means of myoelectric control than one based on discrete, tran-
sient bursts of activity, promising to reduce the mental burden
of a user, and the dexterity of control.

APPENDIX

A DETAILED DISCUSSION OFSIGNAL REPRESENTATION

The problem of signal classification may be thought of as a
multistage process as shown in Fig. 13.

The measured signal (each channel of myoelectric signal) is
subject to feature extraction, in this case producing a feature
set consisting of TD, STFT, WT, or WPT coefficients. This
feature set is then subject to dimensionality reduction using
PCA, yielding a reduced feature set of five coefficients from
each channel. The PCA coefficients from each channels are then
combined to produce an aggregate feature set; for six channels,
the LDA classifier would be presented with 30 features. A more
detailed discussion of these stages follows.

Fig. 14. A decomposition of
 into binary tree-structured subspaces using
the WPT (withJ = 3).

A. Feature Set Specification

The reader is referred to [4] for a detailed description of the
TD feature set. The parameters of the STFT were empirically
optimized to yield the best classification rate on an ensemble
of transient MES data [16]. These parameters include the
taper window, the size of the taper window, and the degree of
overlap. It was determined that, for 256 sample records of
transient MES, a 64 sample Hamming window with an overlap
of 50% gave the best performance. The sole parameter of the
WT is the choice of mother wavelet. Various orders of the
following wavelet families were considered: Symmlet, Coiflet,
Daubechies, Haar, Vaidyanathan, Beylkin, and Biorthogonal.

For the WT, the Coiflet family of order four gave the lowest
classification error. For the WPT, Symmlet mother wavelet of
order five was best.

The WPT may be thought of as a tree of subspaces. The
root node of the tree (the original signal space) is . A
subspace is decomposed into two orthogonal subspaces

and . Here denotes
scale, as before, andindicates the subband index within the
scale.5 Each subspace is spanned by basis vectors

, where . These basis vectors are
the wavelet packet basis functions. A decomposition to scale

3 is shown in Fig. 14.

5The WT has only two subbands per scale, high and low, withk = 0; 1.
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The set of subspaces in the WPT binary tree is a redundant
set, that is, the transform yields a binary tree of coefficients
comprising possible orthonormal bases, where is the
record length. The power of the WPT is that a “best basis” can
be chosen for a specific task, if it can be properly identified
from the ensemble of possible candidates. To determine the
best basis, it is necessary to evaluate and compare the efficacy
of many bases. To this end, acost functionmust be chosen to
represent the goal of the application. Thebest-basis selection
algorithmhas its origins in signal compression [12], [17], and
the cost functions associated with compression all entail some
form of entropy measure. This may be considered optimal
for signal compression, but may be inappropriate for signal
classification.

A modified form of this algorithm was proposed by N. Saito
in his Ph.D. dissertation [13]. He termed the algorithm the
local discriminant basis(LDB) algorithm, implying that an or-
thonormal basis is selected from the binary wavelet packet tree
which most discriminates data from a given set of classes. The
measure of class separability is conveyed by the discriminant
measure . An -feature discriminant measure can be defined
as , where are measures
used to represent thefeatures from two different classes. Of
several discriminant measures investigated in [16], that which
was found to give the best performance for MES classification
was symmetric relative entropy [18]

(1)

In order to optimize the representation with respect to the
time-frequency localization characteristics of the wavelet
packet basis, the input parameters toare thetime-frequency
energy mapsof each class.

Definition: Let be a set of training signals be-
longing to class, where is the number of patterns in class.
The time-frequency energy mapof class is a table of positive
real values indexed by

(2)

for . That
is, is computed by accumulating the squares of the transform
coefficients for each entry in the binary packet tree , and
normalizing by the total energy of the signal belonging to class
.
Since the algorithm must choose the best set of subspaces

from the binary packet tree, the response from individual tem-
poral locations from within a subspace must be summed. For
classes, the overall discriminant measure for the subspace
is thus

(3)

We are now ready to develop a specification of the LDB algo-
rithm. Let denote a set of basis vectors belonging to the
subspace , arranged in matrix form

(4)

Let represent the LDB for the training set restricted to the
span of , and let be a work array containing the dis-
criminant measure of the node .

The LDB Algorithm [13]: Given a training dataset con-
sisting of classes of signals ,

Step 0) Choose a time-frequency decomposition method.
That is, specify a WPT, the depth of decomposition

, and the discriminant measure.
Step 1) Construct the time-frequency energy mapsfor

.
Step 2) Begin at level : set and

for .
Step 3) Determine the best subspace for

by the following rule:

and

set

Step 4) Order the basis functions in the LDB by their
power of discrimination.

Step 5) Use the most discriminating basis func-
tions in the LDB for classifier features.

When Step 3 has been completed, we are left with , which
is the LDB restricted to the span of : a complete or-
thogonal basis. The chosen LDB consists of a set of disjoint sub-
spaces, which form a cover of the time-frequency plane. Each
subspace contains basis vectors. The total number
of basis functions is always , where is the length
of each signal . The pruning algorithm is fast since
the measure has been chosen to be additive.

Saito’s LDB algorithm, in steps 4 and 5, ranks the features
and chooses a subset of these determined to be most
discriminant. This form of dimensionality reduction can be con-
sidered a form offeature selection. This approach was found to
perform poorly with MES data, due to the high variance of the
signal and consequently, the WPT features. This algorithm was
modified in [16] by replacing steps 4 and 5 with PCA dimen-
sionality reduction.

PCA involves projecting the features onto their eigenvectors
and retaining those which correspond to the largest eigenvalues.
PCA is not designed for class discrimination, rather, it is opti-
mized for signal compression. The inherent assumption in its
use for dimensionality reduction in the context of classifica-
tion is that the signal variance accounts for a significant por-
tion of the discriminant information amongst classes. It is well
known that, for many physical signals, this is true, and certainly
seems to be the case for the MES. Admittedly, higher-order dis-
criminant information may be lost when using PCA, but for
high-dimensional feature sets (such as those considered here),
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this higher-order information seems to contribute little. Other
projection-based methods of dimensionality reduction are avail-
able that are tailored for classification, such as projection pursuit
[19], but these methods have proven unsatisfactory because they
are exploratory methods, tend to be sensitive to outliers, and are
computationally intense.

The efficacy of the method described here is the result of the
ability of PCA to gather the essential discriminant information
from the highly stochastic, high-dimensional feature sets gener-
ated by the STFT, WT, and WPT applied to the MES.
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