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A Wavelet-Based Continuous Classification Scheme
for Multifunction Myoelectric Control
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Abstract—This work represents an ongoing investigation of dex- Il. BACKGROUND
terous and natural control of powered upper limbs using the myo- .
electric signal. When approached as a pattern recognition problem, A- Pattern Recognition-Based Control

the success of a myoelectric control scheme depends largely onthe | gan attempt to increase the information extracted from the

classification accuracy.AnoveI_approach is described that demon- MES, investigators have proposed a variety of feature sets,
strates greater accuracy than in previous work. Fundamental to

the success of this method is the use of a wavelet-based featuréNd have utilized pattern recognition methods to discriminate
set, reduced in dimension by principal components analysis. Fur- amongst desired classes of limb activation. Most work in MES

ther, itis shown that four channels of myoelectric data greatly im-  classification has considered the steady-state MES: that col-
prove the classification accuracy, as compared to one or two chan- |ected during a maintained (usually constant-force) contraction.

nels. Itis demonstrated that exceptionally accurate performance is , \yqinget al. [4] were the first to consider the information
possible using the steady-state myoelectric signal. Exploiting these

successes, a robust online classifier is constructed, which producescontent of the transient bursts of myoelectric activity that ac-
class decisions on a continuous stream of data. Although in its pre- company the onset of contraction. These data were acquired in

liminary stages of development, this scheme promises a more nat-a single MES channel, using a widely spaced bipolar electrode

ural and efficient means of myoelectric control than one based on pair placed on the biceps and triceps. The data were acquired

discrete, transient bursts of activity. by triggering on an amplitude threshold of a moving average
Index Terms—EMG, myoelectric, pattern recognition, principal  of the absolute value of the transient waveforms. The structure

components analysis, prosthesis, Wavelet, wavelet packet. inherent in the early portion of these transient bursts (roughly
the first 100 ms) suggested a promising means of MES classi-
I. INTRODUCTION fication. Hudgins developed a control scheme based upon a set

. of simple time domain statistics and a multilayer perceptron

T HE myoelectric signal (MES), recorded at the surface gfiificial neural network classifier, capable of classifying four

the skin, has been used for many diverse applications, {4res of upper limb motion from the MES acquired from the
cluding clinical diagnosis, and as a source of control of aSS'St'Mﬁ:eps and triceps. This control scheme demonstrated greater

devices and schemes of functional electrical stimulation. Thisriminant ability than any other at the time, and allowed a
work seeks to improve the functionality and ease of control ger 15 evoke control using muscular contractions that resemble

powered upper-limb prostheses using the myoelectric signaly,se normally used to produce motion in an intact limb. This

Many myoelectric control systems are currently availablethgl}t,Stem has been implemented as an embedded controller [5],
are capable of controlling a single device in a prosthetic limg,4 is currently undergoing clinical trials.

such as a hand, an elbow, or a wrist. These systems extract Co'klthough the accuracy of Hudgins' controller is good

trql information from the MES based on an estimate of the aMroughly 10% error, averaged over a set of ten subjects) there is
plitude [1] or the rate of change [2] of the MES. Although thesgy, oyious motivation to reduce the error as much as possible.
systems have been very successful, they do not provide SUfiljis would enhance the usability of the system as perceived by
cient information to reliably control more than one function (of, o user, and allow greater dexterity of control. A number of
device) [3]; the extension to controlling multiple functions, ig,nnroaches have appeared in the literature that have used the

a much more difficult problem. Unfortunately, these are the rgznsient signal as prescribed by Hudgins, seeking to improve

quirements of those with high-level (above the elbow) limb defipe accuracy of the approach using dynamic artificial neural

ciencies, and the;e are the individuals Who.could star_1d to bengfitorks [6], genetic algorithms [7], fuzzy logic classifiers [8],

most from a functional replacement of their absent limbs. 5§ self-organizing neural networks [9]. Absent from this work
however, was a direct comparison with Hudgins’ method, and
none has suggested a clearly superior method.
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time domain feature set (TD), and those based upon t 147
short-time Fourier transform (STFT), the wavelet transfor
(WT), and the wavelet packet transform (WPT) were compart 12t
using a new data set. This work is briefly described here
provide the context of the current investigation.

A roster of 16 healthy subjects participated in the stud
Four classes of myoelectric signal patterns were collecte
corresponding to flexion/extension of the elbow, and pron
tion/supination of the forearm. The data were acquired fro
two channels, located at the biceps and triceps, each patt
consisting of two channels of 256 points, sampled at 1000 F 4
The data were divided into a training set (100 patterns) anc

_L
<

[e)

Error (%)

2]

test set (150 patterns). 2y

The fundamental difference between the STFT, the WT, a . . . .
the WPT is in the manner in which they partition the time-fre T%ALL TDeca STFTrca WTrca WPTeca
guency plane. The STFT hadizedtiling; once specified, each Feature Set

cell has an identical aspect ratio. The tiling of the WWisi- o

able—the aspectraio of the cells varies suich that the frequerffr L. e, (e st lasifcton accuray of i fourclass propie
resolution is proportlonal to the center frequency. This tlllng haSscriminant analysis (LDA) and a multiplayer perceptron (MLP).

been shown to be more appropriate for many physical signals,

but the partition is nonetheless still fixed. The WPT provides an
adaptivetiling—an overcomplete set of tilings are provided aﬁﬂ|
alternatives, and the best for a given application is selected.

Fig. 1 depicts the test set classification error, averaged over
e ensemble of 16 subjects.
i . In this figure, the subscript (ALL) indicates that the entire
Each of the STFT, WT, and WPT implementations Werep feature set was used (as done by Hudgins). The subscript
empirically optimized to yield the best possible classificatiopca indicates that PCA was used to reduce the feature set. The
performance from the ensemble of 16 normally limbed sulyre indicates that the performance improves in the progres-
jects. For the STFT, it was determined that (from a number 9?on TD — STFT — WT — WPT, indicating the relative
taper windows) a Hamming window of length 64 points withyficacy of the feature sets. Another important observation is
an overlap of 50% gave the best performance. When using g the LDA classifier performs as well as or better than that
WT, a Coiflet mother wavelet (of order four) yielded bettef, p classifier for the time-frequency-based features sets. This,
accuracy than a host of other wavelet families of varying OrdBFesumably, is due to the fact that the PCA dimensionality re-

[11]. The WPT experienced the best performance when usinggction has the effect of linearizing the discrimination task of
Symmlet mother wavelet (of order five). A number of methodg,q ¢|assifier.

were considered as candidates to determine the best tiling of thgnese results are encouraging, in that a more powerful fea-

WPT. The most common approach to specifying the WPT tilingre set has been realized in the form of the PCA-reduced WPT.
is by selecting that which minimizes the reconstruction errofys jnvestigation seeks to extend this promising approach in the
using an entropy cost function [12]. This may be considerggowing ways: to consider the benefit gained by using more
optimal for signal compression, but may be inappropriate f@hannels of MES activity, to compare the performance of tran-
signal classification. A modified form of this algorithm has;ient versus steady-state data, and to demonstrate the feasibility

been proposed that seeks to maximize the discriminant abilifyontinuous myoelectric control of a multifunction prosthesis.
of the WPT by using a class separability cost function [13]. It

is established in [10] that this discriminant cost function does
indeed produce the best classification performance. A detailed

description of the signal representation is given in an Appendix TwWo experiments are described in this work to elucidate these
to this paper. factors. The first experiment compares the performance of a

From each subject, the TD, STFT, WT, and WPT feature SE(\{g’o—channel configuration to that of a four-channel system, and
were computed. Subsequently, each feature set was subje&%pﬁres tlhg per:format?ce when_usw;lg tran(sjlent fand steady-
dimensionality reduction using principal components analys%""t_e ata. t IS shown that exceptionally goo pertormance 1s
(PCA), s0 as not to overwhelm the classifier with high-dimercli€ved using four-channel steady-state data with as many as
sional data. It is shown in [10] that the application of PCA iSix classes. The second experiment, bolstered by these results,

critical to the success of the time-frequency-based feature Sggr’nonstrates the capabilities of the four-channel system acting

and that PCA is clearly superior to other forms of dimensio! @ continuous stream of data.

ality reduction. Although the classification performance is n?_t IE tgg fL;_stzxp(Ianment,(;i_atafwere scquwlénb:cn’\jég?rmall)q
sensitive to the dimensionality of the PCA-reduced feature se Iipoed individuals, recording four channels o rom elec-
was demonstrated that at least five PCA features are needed, and

more than_ t_h'rty unnecess_arlly burdens the Cla_SS|f|er. Twentyirhese data were acquired during the course of an M.Sc.E. thesis by Sentiono
PCA coefficients are used in the analyses described here. Leowinata.

lll. M ETHODOLOGY
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Fig. 2. The electrode placement used in the four-channel MES acquisition. Four bipolar electrode pairs (Red Dot—3M Corp.) were used with & thference a
wrist. Although difficult to show on the figure, the top and bottom electrode pairs are at the same level of the forearm.
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Fig. 3. The six classes of motion used in the four channel experiments.

trodes placed on the medial side, top, lateral side and bottomefclassification using a sliding window that progressed across

the forearm, as depicted in Fig. 2. the entire record.
Each subject generated six different classes of motion: hand
close/open, flexion/extension of the wrist, and ulnar/radial de- IV. EXPERIMENT 1—RESULTS

viation of the wrist2 as shown in Fig. 3.
Each subject produced two sets of data: one comprising tr
sient bursts, and another consisting of steady-state signals.

Each feature set was again used in the analysis, as well as an-

her proposed by Leowinata, which comprises the normalized
I . ; to-correlation and cross-correlation functions of the channels

cause t.hIS is a prosthetic control problem, the cor_1tract|on lev ﬁ]. Here, this feature set will be denoted AC. The following

are arbitrary as long as they are reasonably consistent, an_d CPuits depict the classification performance of the test set of

H(Iita, averaged across the 11 subjects. Each feature set has been

. ; Ibject to PCA dimensionality reduction, and classified using
trodes spaced at 2 cm. Each record was 256 ms in duration (408" (the MLP, having shown no advantage in Fig. 1, has

points, sampled at 1000 Hz, prefiltered between 10 and 500 HE en omitted in this and subsequent analyses)
In each dataset, 80 patterns were generated in each class, e« qjqer first a four-class problem (using wrist flexion/ex-

.S“'“”g i_n_a total of 480 patterns. These data were evenly di_Vid?é?wsion and hand open/close). Fig. 4 shows the results for each
Into t_rglnlr}g and test _sets of 240 patterns, and ther_1 sub!ec &ture set when using transient data for two channels (top and
classification by the time-frequency methods described in t

previous section Bttom electrodes) and for four channels. It is clear that four

In th q . ¢ steadv-state MES dat MES channels offers improved accuracy, as compared to two
n the second experiment, steady-state ala Were gfannels. It is also evident that the WT and WPT feature sets

guired uging the same foqr-channel configuration as descril r the best performance, corroborating the results in the pre-
in Experiment 1. The subject was asked to produce constaij, s exneriment. Note that the AC feature performs poorly, rel-

force contractions from each of the six classes for 5-s intervals, ;0 tha others. This is consistent throughout each compara-
and then repeat the pattern, generating 60 s of data. The firstf:‘t S nalysis '

set of six classes was used as a training dataset, and the seCOpMl\ - n<ider the same set of four classes elicited as steady-

.30'5 set was used as a test dataset. These data were div &f& contractions. Fig. 5 shows the same improvement when
into discrete 256-sample records, and presented to the Sys'[egﬂbressing from two to four channels, and the relative efficacy

fatigue. Each bipolar channel was acquired used Ag-AgCl el

the same manner as in Experiment 1 to train the system. Af the WPT feature set.

training, the continuous stream of steady-state data was SUbJe(i—tlaving concluded that four channels offer a distinct advan-
tage to two channels, we will use the four-channel configuration
2The rationale for recording from the forearm is that the underlying MUsClyr the remainder of the analysis. A direct comparison ofthe ac-
lature directly contributes to each of the six types pf contraction; it would be h ing f h | . d d d
difficult to contrive six distinct classes of motion directly actuated by the bi€Ur@Cy when using four-channel transient and steady-state data

ceps/triceps pair. is shown in Fig. 6. The results indicate that the steady-state data
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Fig. 4. The classification accuracy using four classes of transient MES ddfég. 6. Four classes, four channels: the relative performance of transient versus
All feature sets have been subject to PCA and hence, the subscript PCA has Iséemdy-state data.
dropped.
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Fig. 7. Six classes, four channels: the relative performance of transient versus
Fig.5. The classification accuracy using four classes of steady-state MES dateady-state data.

contains greater discriminating information than the transietwto percent, which is still exceptional given the difficulty of the
data. A justification for these results is described in the next sqroblem.
tion. One can observe that the error rate is approaching zero foAnother advantage that the steady-state data has over the tran-
the WT and WPT feature sets for the steady-state data; indesidnt data pertains to the effect of record length. The analyses de-
a majority of the subjects achieve an error rate of zero. This dseribed previously used a record length of 256 points (256 ms).
gree of accuracy is unprecedented for this problem. This may be considered the maximum record length, dictated
The exceptional accuracy with four channels of steady-stdig the allowable response time of the classifier (it is generally
data suggests one might make the problem a bit more difficidgreed that 300 ms is the longest acceptable delay in a pros-
It may be desired to classify a greater number of classes,thetic control system). The classification performance degrades
provide more functionality to a prosthetic system. Consider nawpidly as the record length of the transient data is decreased
a six-class problem, including all wrist and hand motions. THeom 256 to 128 to 64 to 32 samples, as shown in Fig. 8. The
classification results for the transient and steady-state data WET feature set has been chosen to demonstrate the effect of
shown in Fig. 7. record length; the other feature sets experience essentially the
Again, the steady-state data exhibits distinct superiority to tkame effect with record length.
transient data, and the WPT feature set demonstrates the begYhen using the steady-state data however, this degradation is
performance. Although the performance is not as good as in thet as profound, as shown the figure. Indeed, the performance
four-class problem, the WPT feature set yields an error rateafffers very little when reducing to 128 ms. This suggests that
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electrophysiological determinism, or due other phenomena such
as skin stretch potentials, or the motion of the electrodes relative
to the underlying musculature. Regardless, this structure was
presumed to contribute significantly to discrimination amongst
contraction types. Kurugardt al.[15] verified that the accuracy
of Hudgins’ method could be improved by using two bipolar
channels with a localized pickup region over each of the biceps
and triceps, instead of a single channel with a large pickup re-
gion. In a multiple channel configuration, it appears that this
fine structure plays a lesser role to the gross activity of the con-
stituent muscle activity. The more localized bipolar electrodes
in a multichannel configuration appear to degrade the incidence
of fine structure in the waveforms. These localized channels do,
however, communicate more information about the relative ac-
tivity of spatially separated muscle groups, which is conveyed
32 64 128 256 by the gross activity of the steady-state signal.

Record Length (ms) At face value, these analyses describe a method that discrim-

Fig. 8. Six classes, four channels: the effect of record length upcl)ﬂa‘teS the surface MES with greater accuracy than any previous

classification performance, using a WPT feature set upon transient aN@rK. Another, perhaps more important implication of these re-
steady-state MES data. sults, is that one may abandon the need to detect and frame tran-

sient bursts of MES activity. Instead of requiring an individual

shorter records of steady-state data may be used, if a faé?ﬁ?l'c't a cont_ractlon from rest (a rather awkvya_lrd |_mposmon
en performing a sequence of tasks), classification may be

system response is desired. w X
performed on a continuous stream of steady-state data, as one

switches from one contraction type to another. Tduatinuous

classifiercould produce classification results as often as the fea-
The following observations can be made from the precedingre extraction processing delay would allow (a factor of the fea-

analyses. ture set, the record length, and the processing power).

« Four channels of MES are clearly preferable to two. This
suggests an investigation into the benefits that may be
gained by further increasing the number of channels.
Whereas the number of channels was practically limited A second experiment was carried out to provide a demon-
in the past by the sheer bulk of the instrumentation argfration of the capabilities of such a classifier. The system was
the difficulty in maintaining good contact, advances itrained using disjoint 256-sample frames of data extracted from
electrode array miniaturization, fabrication, and intethe continuous training data. For 256-sample records, each 5-s
facing techniques have made multichannel systems manéerval (for each class) yields 19 patterns, resultintiix 6 =
feasible. 114 patterns in the training dataset. A set of test patterns was

« For the same set of subjects, the steady-state data was digeserated in the same way. These discrete records were clas-
sified more accurately than the transient data. As wedified in the same manner as in Experiment 1, to provide an
the steady-state data suffers less degradation with shoitetication as to what type of performance might be expected

—— Transient
— - Steady-state

8 4 & b

n
%))
T

Error (%)

2

15p

V. EXPERIMENT |—DISCUSSION

VI. EXPERIMENT II—RESULTS

record lengths. of the continuous classifier. Classification results when using
» The wavelet and wavelet packet-based feature sets outghese data were very typical of those obtained in Experiment 1:
form the others in every scenario. the test set error for the six-class problem using WT and WPT

A four-channel steady-state system, using a WPT featueatures sets was 4.3% and 3.5%, respectively.
set performs exceptionally well, yielding 0.5% error when Having determined the PCA, LDA and WPT tiling co-
discriminating four classes, and 2% error with six classesfficients from the training session (storing them for later
The basis for the improvement when adding channels is aleference), a continuous classifier could then be constructed.
vious: the MES activity recorded from the side electrodes (chalmstead of acting on an ensemble of disjoint records of MES
nels 1 and 3) contribute additional information about the articdata, the continuous classifier produces a series of decisions
lated contraction. The superiority of the steady-state data to t&ing a sliding window of MES activity. This illustrated in
transient data however, was somewhat unexpected. In [4], Hig. 9, which depicts one (of the four) MES channels, and
ginset al.demonstrated that a single MES channel (with widelghe sliding window of activity used to generate classification
spaced electrodes placed on the biceps and triceps) exhibits diggisions.
nificant structure in the first 100 ms preceding initiation of a In addition to the type of feature set to be used, the parame-
contraction. It is uncertain as to whether this structure is duetirs which affect the classifier’s performance include the record

. . ) __length (which will be denoted&), and the window increment
30f course, the system is also subject to the response time and damping fa

tor .
of the prosthesis. A faster control system response would offer no benefit t§(§9”0tew); We have seen from the re_SU|tS of EXp_e.”m_ent 1
slower prosthetic system. that NV significantly affects the classification rate, so it is likely
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Fig.9. The sliding window used in continuous classification. Here, a sequence
of 256 ms records (R1, R2, and R3) are used to make decisions attimes D1,{8g, 10. A session of continuous classification using a WT feature set. In this
and D3. In this example, the window index incrementsi\lly the processing analysis,N = 256 andM/ = 128. One minute of four-channel MES data
delay™ must be less than{. is shown, with the class targets (the staircase in the upper portion) and the
classification errors (the open circles superimposed on the staircase). The errors
made using a majority vote of decisions made in the past 500 ms are shown as

that NV = 256 samples is preferable here. Itis not clear, howevéled circles.
whatis the best choice fad . The window increment affects the

rate at which class decisions will be made, and consequently, iiyith a denser stream of class decisions however, one may
determines the real-time constraint of the system (the procesggmbine adjacent decisions in an attempt to improve classifi-
must compute the feature set and generate a decision beforestigyn accuracy. A simple approach to post-processing the se-
next batch of data arrives). A small value/dfproduces a dense quence of class decisions is to take a majority vote of recent de-
stream of class decisions with respect to time, which may irgisions. A majority vote was performed using the current deci-
prove the response time of the classifier and, by utilizing thigon and each decision made in the previous 500 ms. In Fig. 10,
redundant information, improve the classification accuracy. the positions where the majority vote scheme produces errors
A sample session of continuous classification is shown §te indicated by filled circles. These errors are almost exclu-
Fig. 10. Here, a WT feature detvas used withV = 256 and sjyely restricted to the transition regions of the activity, essen-
M = 128, yielding 466 decisions over the 60-s interval of datgajly eliminating errors in the midst of an interval of steady-
The first 30 s of data represent the training data, and the latigste contraction. The error rate using a majority vote scheme is
30 s, the test data. The class targets are represented by the $&iighly half that of the unprocessed stream of class decisions,
case, with the level indicating the class number (and labeledrg§ardless of the feature set (WT or WPT) or window increment.
the top of the graph). The open circles superimposed on the tarThe improvement due to using a majority vote scheme may
gets represent errors made by the classifier, plotted at the lexgiuce to an academic exercise however, since the inertia of a
of the predicted class. Clearly, most of the errors are clusterggsthetic device will serve to smooth the stream of class deci-
about the zones of transition between classes, which are toshéhs, and forgive spurious errors. The important observation to
expected, since the muscle activity is in a state of flux. be made, however, is that the continuous classifier produces a
In this analysis, the test set error is 7.8%. Recall that wh¢@ry reliable decision stream for this six-class problem.
training the system (using disjoint 256-sample records), the testrhe remaining issue to be discussed is whether the classifica-
set error when using this WT feature set was 4.3%. This is a ffgn scheme can meet the real-time constraints of the problem.
vorable comparison, with the observation that most of the errofge system must perform feature extraction (either WT or
appear to occur at the transition regions in Fig. 10. When usiggpT), PCA, and LDA in the window increment timé{.
the WPT feature set, the error is 6.8% as compared to 3.5%prtunately, in the feedforward path, each of these operations
the batch training session. are computationally efficient. The complexity of the WT is
The dependency of the accuracy at different window incrgn the orderN (for the Coiflet mother wavelet) [11] and
ments was investigated. The classification accuracy at valuesif complexity of the WPT isV log NV [12]. The PCA is the
M =32, 64,128, and 256 samples was found to be essentigdppduct of aiv x 1 by anN x N matrix, and the LDA is the
the same. This is true for both the WT and the WPT feature Sgfoduct of ak x 1 by K x P matrix (whereK = 20 features
Although at smaller values ot/ more errors were made, thegnd p = six classes).
ratio of error to decisions remains fairly constant. The processing delays were empirically evaluated using a
450-MHz Pentium llI-based workstation. The computation was
ﬁgrformed in Matlab (The Mathworks, Natick, MA); the matrix
multiplications were built-in functions, and the WT and WPT

4The WT was chosen for this example due to its computational efficienc
AIthough the WPT exhibits greater accuracy in Experiment 1, its advantage o
the WT is marginal in most cases.
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VII. EXPERIMENT II—DISCUSSION

Total Delay
WT Delay

PCA Delay
LDA Delay

tht

This experiment has demonstrated the viability of a contin-
uous classification scheme that is impressively accurate. Almost
all misclassifications seem to be clustered about the regions of
transition between classes. These errors may be forgiven in ac-
tual use as long as the region in which errors are registered is
short compared to the desired dynamic response time of the
system. That is, if one wishes to manipulate a prosthetic device
and be capable of establishing control of a device (or switching
control between devices) within 300 ms of the intent actuated by
a contraction, the errors produced between states must be lim-
ited to this interval. This is achieved at each transition in Fig. 10,
whereA = 128 and no more than one error is encountered at
any transition (even two errors would fall within 256 ms). It is
likely that the inertia associated with actuation of the prosthetic
&gvice will forgive any spurious misclassifications upon transi-
tion, until the steady-state activity has been established.

Although some insight as to the capabilities of such a system
has been illustrated here, there are some issues yet to be resolved
that are currently under investigation.

Processing Delay (ms)

A
£

128 160 192 224 256
Record Length {ms)

96

Fig. 11. The processing delays associated with the WT, PCA, and LDA sta
of the system at various record lengths.

250 |
Total Delay
WPT Delay
PCA Delay
LDA Delay

1) The system must know when to actuate the prosthetic de-
vices, and when to suppress actuation. With a constant
stream of decisions being produced, the actuation must
be gated by some means. This might be accomplished by
including an additional “inactive” class in the training ses-
sion, by imposing a lower threshold of MES activity, or
a combination of both. The development of this strategy
is as important as classification accuracy in terms of us-
ability.
The steady-state data in this investigation comprises con-
tractions that are of roughly the same intensity (although
i subjects were not instructed to maintain a consistent level
P of effort). The performance of the system when using con-
tractions of varying intensity must be investigated. This is
essential if one is to implement proportional control of the
devices (where the velocity is proportional to the intensity
of the muscular effort). Otherwise, only ON/OFF control
(one speed) may be used.
The system has been shown to be very accurate in
discriminating six classes of motion. Is it possible
that combined motions (for example, hand close/wrist
flexion) might be classified? This would enable si-
multaneous control of devices, which would enhance
the anthropomorphism of control, offering benefits of

thet

200

e
m
o

-
o
o

Processing Delay (ms)

2)

50 -

128 160 192 224
Record Length (ms)

96

Fig.12. The processing delays associated with the WPT PCA, and LDA stages
of the system at various record lengths.

routines were compiled C code. Fig. 11 shows the processing3)
delays using various record lengthé, when using the WT fea-
ture set.

As the record lengthV increases, the bulk of the processing
delay is associated with the PCA stage. The WT is extremely
computationally efficient, increasing linearly witdi and never

exceeding 2 ms of processing time. To meet the real-time con-
straints imposed on the system, the delay must be less than thé)

functionality and dynamic cosmesis.
To what extent will additional channels of myoelectric
activity improve the classification performance? Will a

window increment; it is clear that this constraint is easily met
for window increments greater than 12 ms. Fig. 12 shows the
same delays when using a WPT feature set. The WPT demands
substantially greater computation (it represents the bulk of thieshould be noted that, with the motivation of developing a
delay); with a record length of 256 ms, the real-time constraiobntinuous classifier, the time-frequency analysis tools (the
will be met only if the window increment is greater than 20BTFT, WT, and WPT) developed for the transient signals were
ms. These delays are relative to the capacity of the chosen calinectly transferred to the analysis of the steady-state signals.
puting platform; presumably, an embedded system with dedli-is clear from the results presented that the classification
cated signal processing hardware could meet or exceed thpsgormance is superior when using steady-state data, although
processing requirements. one would expect that these nonstationary signal analysis tools

many-channel grid of electrodes offer the discrimination
needed to resolve combined/simultaneous activities?
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Measured Feature Dimensionality Classification Class
Signal —»{ Extraction > Reduction g (LDA) — Labels
(PCA)
¢ TD
o STFT
e WT
o WPT

Fig. 13. The stages comprising the classification problem, and the methods subject to investigation.

are not required for these data, which are essentially stationary. Q
Indeed, reducing the segmented STFT to a single-window FFT 8,7
produces essentially the same classification results as the STFT Q5
with 64 sample windows, overlapping by 50%. One cannot Q3,6
perform a similar comparison with the WT and WPT, as they - Q1,1 - Q
are inherently time-coherent. It still remains, however, that the 3.5
WT and WPT outperform the other feature sets when using Q,,
the steady-state data. This is not due to their ability to capture Qg4
temporal information, which is absent in the steady-state
data, but to their ability to model the elemental basis of the Qo,o ]
myoelectric signal. The wavelet functions themselves closely — 933
resemble the motor unit action potentials that constitute the Q,, —
gross myoelectric signal. To this end, the optimum wavelet and ’ — Q.
wavelet packet parameters for classifying steady-state signals Q ’
are currently under investigation. o TTo — Q,
Q2,0 ]
VIIl. CONCLUSION — Qg

A wavelet-based approach to MES classification has been de- L , _ .
. L . Fig. 14. A decomposition dR, ¢ into binary tree-structured subspaces using

scribed that exhibits very good accuracy when using two chaps wer with. = 3).
nels of MES activity, and even better accuracy when using four
channels. Steady-state data has been shown to outperform tran-
sient data for the same ensemble of 11 subjects. The WPT/P&aFeature Set Specification
feature set, with four channels of steady-state data allows fourThe reader is referred to [4] for a detailed description of the
classes of motion to be classified with a average of 0.5% errgp feature set. The parameters of the STFT were empirically
and six classes with 2% error. optimized to yield the best classification rate on an ensemble

Given the efficacy of the WT and WPT-based feature setspé transient MES data [16]. These parameters include the
continuous classification scheme has been described. The agper window, the size of the taper window, and the degree of
tinuous classifier represents a promising new mode of contrelerlap. It was determined that, f&f = 256 sample records of
ling prosthetic devices. It represents a more natural and efficierinsient MES, a 64 sample Hamming window with an overlap
means of myoelectric control than one based on discrete, traf50% gave the best performance. The sole parameter of the
sient bursts of activity, promising to reduce the mental burd&iT is the choice of mother wavelet. Various orders of the
of a user, and the dexterity of control. following wavelet families were considered: Symmlet, Coiflet,
Daubechies, Haar, Vaidyanathan, Beylkin, and Biorthogonal.

For the WT, the Coiflet family of order four gave the lowest
classification error. For the WPT, Symmlet mother wavelet of
order five was best.

The problem of signal classification may be thought of as a The WPT may be thought of as a tree of subspaces. The
multistage process as shown in Fig. 13. root node of the tree (the original signal spaceXigo. A

The measured signal (each channel of myoelectric signaljsighspace?; ; is decomposed into two orthogonal subspaces
subject to feature extraction, in this case producing a featg, — Q4121 and €, — Q41 2141. Herej denotes
set consisting of TD, STFT, WT, or WPT coefficients. Thiscale, as before, andindicates the subband index within the
feature set is then subject to dimensionality reduction usisgale> Each subspacg; ;. is spanned bg"™—J basis vectors
PCA, yielding a reduced feature set of five coefficients fronws; ;. .12~ ' ~*, wheren, = log, N. These basis vectors are
each channel. The PCA coefficients from each channels are thiee wavelet packet basis functions. A decomposition to scale
combined to produce an aggregate feature set; for six channglss 3 is shown in Fig. 14.
the LDA classifier would be presented with 30 features. A more
detailed discussion of these stages follows. 5The WT has only two subbands per scale, high and low, iith 0, 1.

APPENDIX
A DETAILED DISCUSSION OFSIGNAL REPRESENTATION
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The set of subspaces in the WPT binary tree is a redundaw are now ready to develop a specification of the LDB algo-
set, that is, the transform yields a binary tree of coefficientgshm. Let B; , denote a set of basis vectors belonging to the
comprising2” possible orthonormal bases, wheke is the subspacé?; x, arranged in matrix form
record length. The power of the WPT is that a “best basis” can -
be chosen for a specific task, if it can be properly identified Bk = [Wik0,Wik1s o Wigam—i—1] " (4)
gom ;he_ e_n_semble of p055|ble| candldztes. To detﬁrm|frf1_e i A, . represent the LDB for the training set restricted to the

est basisit Is necessary to evaluate and compare the & 'Cag¥an ofB; ., and letA; . be a work array containing the dis-
of many bases. To this end,cast functionmust be chosen to criminant measure of the nodg k)
represent the goal of the application. Thest-basis selection The LDB Algorithm [13]: Given a training dataset con-
algorithm has its origins in signal compression [12], [17], an

. : . . , ANd;cing of K classes of signal{x(< 1Y 1K |
the cost functions associated with compression all entail some 9 S

form of entropy measure. This may be considered optimalStelo 0) Choose a time-frequency decomposition method.

for signal compression, but may be inappropriate for signal Thatis, spequg\/_VPT, the depth of decomposition
classification. J, and the dlscrl_mmant measure

A modified form of this algorithm was proposed by N. Saito Step 1) Construct the time-frequency energy mpsor
in his Ph.D. dissertation [13]. He termed the algorithm the c=1,...,K
local discriminant basigLDB) algorithm, implying that an or- Step2) Begin at Ievelis:’ setd;, = Bjx ?nd Ajr =
thonormal basis is selected from the binary wavelet packet tree D({FC(J_’ k,®)}emy) fork =0,...,2 o L.
which most discriminates data from a given set of classes. TheoteP 3) Determine the best/’ subspatg; for j = J =
measure of class separability is conveyed by the discriminant 1,...,0,k=0,...,27 — 1 by the following rule:
measureD. An n-feature discriminant measure can be defined Set A, = D ({T.(j, k, 9)}<))
asD(p,q), wherep = {p;}*,, q = {¢}/-, are measures ) ’
used to represent thefeatures from two different classes. Of AL > A1 ok + Ay 2641,
several discriminant measures investigated in [16], that which then A;; = Bj,
was found to give the best performance for MES classification else A;; = Aji1 01+ Ajp1 2041 and

was symmetric relative entropy [18] SEtA 1k = Ayt ok + At ong
g,k T J sak J sak N

Step 4) Order theV basis functions in the LDB by their
power of discrimination.

Step5) Use thd («N) most discriminating basis func-

In order to optimize the representation with respect to the tions in the LDB for classifier features.

time-frequency localization characteristics of the wavel@yhen Step 3 has been completed, we are left wighy, which

packet basis, the input parameterdiare thetime-frequency is the LDB restricted to the span &k o = R a complete or-

energy map®f each class. thogonal basis. The chosen LDB consists of a set of disjoint sub-
Definition: Let {xgc>}$;l be a set of training signals be-spaces, which form a cover of the time-frequency plane. Each

longing to class, whereN.. is the number of patterns in class subspace?; ;, contains2™~/ basis vectors. The total number

Thetime-frequency energy mayh classc is a table of positive of basis functions is alway®’, whereN = 2™ is the length

: Zn Pi |~ %
D(p, q): pi log (]_ + E q; log ZT (1)
i=1 o=l ¢

real values indexed by, k, n) of each signak'”. The pruning algorithm is fa§O(V')) since
) the measuré has been chosen to be additive.
Zﬁ\;cl (WJTk nxgc)) Saito’s LDB algorithm, in steps 4 and 5, ranks the features
L.(4,k,n)= = 5 (2) and chooses a subskt« N of these determined to be most
DR x§c> discriminant. This form of dimensionality reduction can be con-

sidered a form ofeature selectionThis approach was found to
forj=0,...,J,k=0,...,20—1,n=0,...,27—4—1.That Perform poorly with MES data, due to the high variance of the
is, I, is computed by accumulating the squares of the transfoftgnal and consequently, the WPT features. This algorithm was
coefficients for each entry in the binary packet tfgg:, »), and modified in [16] by replacing steps 4 and 5 with PCA dimen-
normalizing by the total energy of the signal belonging to clagéonality reduction.
c. PCA involves projecting the features onto their eigenvectors
Since the algorithm must choose the best set of subspa@gd retaining those which correspond to the largest eigenvalues.
from the binary packet tree, the response from individual ter?CA is not designed for class discrimination, rather, it is opti-
poral locations from within a subspace must be summediFormized for signal compression. The inherent assumption in its
classes, the overall discriminant measure for the Subgpﬁ‘;e use for dimensionality reduction in the context of classifica-

is thus tion is that the signal variance accounts for a significant por-
tion of the discriminant information amongst classes. It is well

D ({Te(4, k, o) })) known that, for many physical signals, this is true, and certainly

gmo—i_q seems to be the case for the MES. Admittedly, higher-order dis-

- Z DTG, k,n),....,Tr( k,n)) A3) criminant information may be lost when using PCA, but for
high-dimensional feature sets (such as those considered here),

n=0
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this higher-order information seems to contribute little. Other14] S. Leowinata, B. Hudgins, and P. A. Parker, “A multifunction myo-
projection-based methods of dimensionality reduction are avail- electric control strategy using an array of electrodes,” presented at the

able that are tailored for classification, such as projection pursuit

16th Annu. Congress International Society Electrophysiology and Ki-
nesiology, Montreal, PQ, Canada, 1998.

[19], but these methods have proven unsatisfactory because thgg] U. Kuruganti, B. Hudgins, and R. N. Scott, “Two-channel enhancement
are exploratory methods, tend to be sensitive to outliers, and are  ©f @ multifunction control schemelEEE Trans. Biomed. Engvol. 42,

computationally intense. 16

Jan. 1995.
] K. Englehart, “Signal Representation for Classification of the Transient

. ) ) [
The efficacy of the method described here is the result of the ~ Myoelectric Signal,” Ph.D. dissertation, Univ. New Brunswick, Freder-
ability of PCA to gather the essential discriminant information___ icton, NB, Canada, 1998.

17] M. V. WickerhauserAdapted Wavelet Analysis from Theory to Soft-

from the highly stochastic, high-dimensional feature sets geneF— ware Wellesley, MA: AK Peters, Ltd., 1994.
ated by the STFT, WT, and WPT applied to the MES. [18] S. Kullback and R. A. Leibler, “On information and sufficiencpn.

Math. Stat. vol. 22, pp. 79-86, 1951.
[19] P. J. Huber, “Projection pursuit (with discussionj\fin. Stat.vol. 13,
ACKNOWLEDGMENT no. 2, pp. 435-475, 1985.

The authors would like to acknowledge the contribution of

S. Leowinata for his efforts in compiling the four-channel ME
database.

(1]

(2

(3]

[4]

(5]

(6]

(71

(8]

9]

(10]

(11]

(12]

(13]

Kevin Englehart (S'90-M'99) received the B.Sc.

degree in electrical engineering and the M.Sc.
and Ph.D. degrees from the University of New
Brunswick (UNB), Fredericton, NB, Canada, in
1989, 1992, and 1998, respectively.

He is currently an Assistant Professor of Electrical
and Computer Engineering, and a Research Con-
sultant to the Institute of Biomedical Engineering at
UNB. His research interests include neuromuscular

REFERENCES

D. Dorcas and R. N. Scott, “A three state myoelectric contrblgd.
Biol. Eng, vol. 4, pp. 367-372, 1966.
D. A. Childress, “A myoelectric three state controller using rate sen

tivity,” in Proc. 8th ICMBE Conf.vol. S4-5, Chicago, IL, 1969. 1 . - - - h h

L. Vodovnik, J. Kreifeldt, R. Caldwell, L. Green, E. Silgalis, and P. L modeling and biological signal processing using
Craig, “Some Topics on Myoelectric Control of Orthotic/Prosthetic Sys- . adaptive systems, pattern recognition, and time-fre-
tems,” Case Western Reserve Univ., Cleveland, OH, Rep. EDC 4-67-fi€ncy analysis. ) ) )

1967. Dr. Englehart is a Registered Professional Engineer, and a member of the

B. Hudgins, P. A. Parker, and R. N. Scott, “A new strategy for mu|ti_II_EEE Engineering in‘Medicin_e and Biqlogy‘Society,_ the _IEEE C_omputer So-
function myoelectric control,IEEE Trans. Biomed. Engvol. 40, pp. ciety, and the Canadian Medical and Biological Engineering Society.

82-94, Jan. 1993.

B. Hudgins, K. Englehart, P. A. Parker, and R. N. Scott, “A micropro-

cessor-based multifunction myoelectric control system,” presented ~* Bernard Hudgins (M'97) received the Ph.D. degree
the 23rd Canadian Medical and Biological Engineering Society Con from the University of New Brunswick (UNB), Fred-
Toronto, ON, May 1997. ) ) ) ericton, NB, Canada, in 1991.
K. Farry, I. D. Walker, and R. G. Baraniuk, “Myoelectric teleoperatior o ] He is currently a Senior Research Associate with
of a complex robotic handfEEE Trans. Robot. Automat/ol. 12, pp. I - s the Institute of Biomedical Engineering at UNB
e .
775-788, Oct. 1996. B “_ . - His Primary research interests are in the area of
K. Englehart, B. Hudgins, M. Stevenson, and P. A. Parker, “Classifici myoelectric signal processing for the control of
tion of transient myoelectric signals using a dynamic feedforward neut artificial limbs.
network,” presented at the World Congress Neural Networks, Was |'L. Dr. Hudgins was the recipient of a Whitaker
ington, DC, July 1995. \'.I % Foundation Investigator Award and recently spent

S. Leowinata, B. Hudgins, and P. A. Parker, “A multifunction myo- two years on a NATO workgroup assessing alterna-

electric control strategy using an array of electrodes,” presented at i@, technologies for cockpit applications. He has been the Region 7 (Canada)

16th Annu. Congress International Society Electrophysiology and Kigpresentative on the IEEE EMBS Advisory Committee for the past two years.
nesiology, Montreal, P.Q., Canada, 1998.

P. J. Gallant, “An Approach to Myoelectric Control Using a Self-Orga-
nizing Neural Network for Feature Extraction,” master’s thesis, Queens
Univ., Kingston, ON, Canada, 1993.

K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, “Classif
cation of the myoelectric signal using time-frequency-based represe
tations,” Medical Engineering and Physics (Special Issue: Intelligen
Data Analysis in Electromyography and Electroneurographg). 21,

pp. 431-438, 1999.

I. Daubechies, “Ten lectures on wavelets,” @BMS-NSF Regional
Conference Series in Applied Mathematic®hiladelphia, PA: SIAM,
1992, vol. 61. lowing year he joined the Institute of Biomedical En-

R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms fc gineering, UNB, as a Research Associate. In 1976, he
best basis selectionlEEE Trans. Inform. Theoryol. 38, pp. 713-719, ) was appointed to the Department of Electrical Engi-
Feb. 1992. neering, UNB, and currently holds the rank of Professor in that department. He
N. Saito and R. R. Coifman, “Local discriminant bases and their appiis also a Research Consultant to the Institute of Biomedical Engineering, UNB.
cations,”J. Math. Imag. Vis.vol. 5, no. 4, pp. 337-358, 1995. His research interests are primarily in the area of biological signal processing.

Philip A. Parker (S'70-M’73-SM’86) received the
B.Sc. degree in electrical engineering from the Uni-
versity of New Brunswick (UNB), Fredericton, NB,
Canada, in 1964, the M.Sc. degree from the Univer-
sity of St. Andrews, St. Andrews, U.K., in 1966, and
the Ph.D. degree from the UNB in 1975.

In 1996, he joined the National Research Council
of Canada as a Communications Officer and the fol-

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 15, 2009 at 07:26 from IEEE Xplore. Restrictions apply.



