
 
 

 

  

Abstract—The integration of multiple input sources within a 
control strategy for powered upper limb prostheses could 
provide smoother, more intuitive multi-joint reaching 
movements based on the user’s intended motion. The work 
presented in this paper presents the results of using myoelectric 
signals (MES) of the shoulder area in combination with the 
position of the shoulder as input sources to multiple linear 
discriminant analysis classifiers.  Such an approach may 
provide users with control signals capable of controlling three 
degrees of freedom (DOF).  This work is another important 
step in the development of hybrid systems that will enable 
simultaneous control of multiple degrees of freedom used for 
reaching tasks in a prosthetic limb.   

I. INTRODUCTION 
he use of shoulder movement as a control source has 
been well documented for the past several decades.  

Several studies have evaluated its ability to provide reliable 
command inputs to functional neuromuscular stimulation 
(FNS) systems [1,2].  The use of shoulder EMG has also 
been used in various FNS studies [3,4,5] as well as 
prosthetic applications [6].  Fewer studies, however, have 
focused on the possible use of shoulder movement and EMG 
as combined input sources for the control of prosthetic 
limbs. 

 
The conventional approach to controlling a prosthetic 

limb using myoelectric signals may be termed direct control. 
This approach uses the amplitude from MES control sites on 
the agonist and antagonist muscles to actuate the prosthetic 
device [7,8]. It provides a proportional means of controlling 
the desired velocity for a given DOF.  Clinically 
implemented control systems are typically a variation of this 
control scheme while more advanced strategies are only 
recently being evaluated within a clinical setting [9].  Such 
sophisticated strategies often consist of classifiers that 
recognize the contraction patterns within the MES [10].  
These classifiers are trained using feature sets extracted from 
a user’s MES thus allowing the system to be adapted 
specifically to the user.  Various characteristics of this 
control scheme, including a variety of feature sets and 
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classifiers, have been investigated [10]. Previous work has 
demonstrated that high classification accuracy can be 
achieved by using time-domain (TD) features sets as inputs 
to linear discriminant analysis (LDA) classifiers [11].   

 
Previous work [12] seems to indicate that it may be 

possible to reliably acquire input sources, to control a 
prosthetic limb, from the MES resulting from shoulder 
movements. This work illustrates how synergistic muscle 
contractions and residual movement from the shoulder 
complex combined with a classification scheme can be 
exploited and used to develop several useful classifiers for 
the control of prosthetic limbs. 

II. METHODOLOGY 
Two separate experiments were performed to investigate 

the use of linear discriminant analysis classifiers for both 
shoulder motion and humeral rotation classification.  The 
experimental protocol and data processing for both 
experiments are first described prior to presenting the 
results. 

 
The Research Ethics Board of the University of New 

Brunswick approved the experimental procedure used for 
this research and each subject provided informed consent 
prior to participating in the experiment. 

   

A. Shoulder Motion Experiment Protocol 
Data corresponding to nine classes of shoulder motion 

were collected from six healthy subjects. Scapular 
movement was recorded using a two-degree-of-freedom 
joystick mounted to an experimental apparatus setup and 
attached to a reference electrode located on the acromium 
bone landmark of the shoulder (Figure 1). 

 
Subjects were instructed to complete the following nine 

shoulder motion combinations: elevation, elevation/ 
protraction, protraction, depression/protraction, depression, 
depression/retraction, retraction, elevation/retraction and a 
no movement/rest class.  Each motion was started from the 
rest position and lasted four seconds. The entire set was 
repeated eight times. The first four repetitions were used as 
training data while the remaining data were used for testing. 
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Figure 1: Experimental Apparatus used for Shoulder Motion 
Data Collection 

B. Humeral Rotation Experiment Protocol 
MES data corresponding to nine classes of shoulder 

motion were also collected from six healthy subjects. Eight 
Ag-AgCl Duotrode electrodes (Myotronics, 6140) were 
placed at physiologically relevant locations for shoulder 
girdle motions and humeral rotation (Figure 2). 

 
Subjects were instructed to complete the same shoulder 

motion combinations as in the shoulder motion experiment 
protocol. In addition, subjects were asked to perform two 
isometric contractions: medial and lateral rotation of the 
humerus.  Each motion or contraction was held at a constant 
position for four seconds and the entire set was repeated six 
times. 

 
Additional data sets were collected where subjects were 

asked to perform one of the two isometric contractions while 
holding the constant position for one of the nine shoulder 
movements.  Again, each motion/contraction was held for 
four seconds and the entire set was repeated six times. 

 
The first three repetitions were used as training data, and 

the remaining data were used for testing.  The data were 
amplified using a gain of 20, high pass filtered at 5 Hz, low 
pass filtered at 500 Hz, and acquired at 1 kHz using a 16-bit 
analog-to-digital converter.  

C. Shoulder Motion Experiment Data Processing 
The data obtained from the joystick apparatus were not 

altered prior to being used as classifier inputs.  The classifier 
consisted of all nine shoulder motion classes. 

D. Humeral Rotation Experiment Data Processing 
A feature set consisting of time domain (TD) statistics, 

used previously in real time MES control schemes 
[10,13,14] was used to process the EMG data. Other feature 
sets based on autoregressive coefficients [15] or time-
frequency information [16] were not investigated since 
previous research revealed that there were no significant 
improvements in performance when using other feature sets  

 
 
Figure 2: The electrode placement locations used during the 
humeral rotation experiment: 

1. Upper trapezius/Supraspinatus area 
2. Middle trapezius/Rhomboid area 
3. Lower trapezius 
4. Latissimus dorsi 
5. Infraspinatus/Teres area 
6. Medial deltoid area 
7. Serratus anterior 
8. Pectoralis major area 
 

in the given setting. The humeral rotation classifier included 
the two humeral rotation and no movement/rest classes.  The 
optimal number of channels used to extract the features, 
train and test the classifier was also investigated.  Classifiers 
based on all possible channel combinations were trained and 
evaluated.  

III. RESULTS 
The prediction plot, shown in Figure 3, presents the 

classification performance of a representative subject for the 
shoulder motion classifier.  Presenting the results in this 
format illustrates the classifier’s ability to accurately identify 
each of the desired motions based on the joystick inputs.  
The classifier’s overall accuracy across all subjects was 
found to be 83.28%. Considerable misclassifications to the 
rest state can be observed.  These errors can directly be 
attributed to the transient portions of the data collected 
during the experiment.  Since subjects were asked to start 
any movement from the rest state, a fraction of the data will 
be misclassified before the subject had time to move and 
reach a steady state position for the requested class.  
Removing these misclassifications from the test data set 
provides a more suitable means of evaluating the classifier 
performance.  The classifier’s overall accuracy across all 
subjects was found to be 91.19% when removing the 
mislabeled data points from the test data set. 

 
The decision boundaries of the joystick input space is 

shown in Figure 4.  This plot demonstrates how the LDA 
classifier adapted to the representative’s range of motion 
based on the training data set. 
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Figure 3: Prediction plot of a representative subject showing 
the class decisions for the test data set. 
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Figure 4: Decision boundaries of a representative subject 
showing the class decisions for the joystick input ranges. 

 
Figure 5 shows the multi-channel classification 

performance, averaged across all subjects, using the TD 
feature set for the humeral rotation classifier.  The maximum 
classification accuracy was found to be 96.32% and occurred 
when using six MES channels.  Minimal classification 
performance variance can be seen when using a different 
number of MES channels. 

IV. DISCUSSION 
The performance results of the shoulder motion classifier 

seem to indicate that it is possible to accurately classify 
different shoulder movements.  Misclassifications were often 
present in the depression and retraction movement 
combinations (i.e. bk and dn) that may be explained by the 
subject’s limited range of motion in those areas. 

 
The use of shoulder position based LDA classifiers also 

seem to provide benefits that are often not associated with 
typical shoulder movement control schemes. The classifier 
will adjust the decision boundaries of the system based on 
the user’s range of motion.  The LDA can also provide some 
level of flexibility in terms of misalignment of the shoulder 

 
Figure 5: Classification accuracy of the humeral rotation test 
data set.  The results are averaged across all subjects (n = 6).  
Error bars are shown at plus/minus one standard deviation. 

 
measuring device as the classification algorithm will adapt 
to any input variations during the initial training stage.  

 
The performance of the humeral rotation classifier shows 

its ability to separate the EMG elicited during normal 
shoulder and humeral rotation movements. Decreasing the 
number of channels produced only minor degradations to the 
classifier performance.  Minimizing the required number of 
electrodes needed for accurate classification is an attractive 
benefit of using such a system. 

 
Based on these classification results, it is conceivable that 

implementing both classifiers could result in a system that is 
capable of controlling three DOF.    Further investigation is 
ongoing to evaluate the prosthetic usability when combined 
with various control strategies (e.g. endpoint, joint 
position/velocity, torque-based control schemes).  Previous 
research has shown that usability may vary significantly 
when compared to classifier performance [17].  The 
development and implementation of appropriate qualitative 
and quantitative clinical tests are being investigated to 
further evaluate the efficacy of these control schemes. 

V. CONCLUSION  
Pattern recognition classifiers were implemented using 

both the positional data from residual shoulder movements 
and the resulting MES generated during humeral rotation.  
The classification accuracy was found to be 91.19% and 
96.32%, respectively. The effects of channel reduction were 
also investigated for the humeral rotation classifier.  As few 
as two EMG channels could be used without significantly 
compromising classification accuracy. 

 
Current research is addressing the usability of these 

classifiers in controlling multiple DOF of a prosthetic limb.  
The implementation of these systems must be assessed 
regarding its ability to enhance the prosthetic user’s ability 
to perform tasks of active daily living. 
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