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A Real-Time EMG Pattern Recognition System
Based on Linear-Nonlinear Feature Projection for a
Multifunction Myoelectric Hand

Jun-Uk Chu, Member, IEEE, Inhyuk Moon*, Member, IEEE, and Mu-Seong Mun

Abstract—This paper proposes a novel real-time electromyo-
gram (EMG) pattern recognition for the control of a multifunction
myoelectric hand from four channel EMG signals. To extract a
feature vector from the EMG signal, we use a wavelet packet
transform that is a generalized version of wavelet transform. For
dimensionality reduction and nonlinear mapping of the features,
we also propose a linear-nonlinear feature projection composed
of principal components analysis (PCA) and a self-organizing
feature map (SOFM). The dimensionality reduction by PCA
simplifies the structure of the classifier and reduces processing
time for the pattern recognition. The nonlinear mapping by
SOFM transforms the PCA-reduced features into a new feature
space with high class separability. Finally, a multilayer percep-
tron (MLP) is used as the classifier. Using an analysis of class
separability by feature projections, we show that the recognition
accuracy depends more on the class separability of the projected
features than on the MLP’s class separation ability. Consequently,
the proposed linear-nonlinear projection method improves class
separability and recognition accuracy. We implement a real-time
control system for a multifunction virtual hand. Our experimental
results show that all processes, including virtual hand control, are
completed within 125 ms, and the proposed method is applicable
to real-time myoelectric hand control without an operational time
delay.

Index Terms—EMG, linear-nonlinear feature projection, pat-
tern recognition, principal components analysis, self-organizing
feature map, wavelet packet transform.

1. INTRODUCTION

myoelectric hand is an upper-limb prosthesis controlled

by electromyogram (EMG) signals taken from residual
muscles of a limb-deficient individual. In recent years, several
multifunction myoelectric hands have been developed [1]-[3].
These hands have a number of degrees of freedom and dexterous
hand functions. Such a multifunction myoelectric hand requires
a robust and computationally efficient control strategy. As one
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means of accomplishing this, pattern recognition based control
schemes have been suggested [4]-[7]. These studies have tried
to extract a feature vector composed of separable and repeat-
able features from the EMG signal by using time and frequency
analysis. For example, the EMG amplitude, the zero-crossing
rate [4], autoregressive coefficients [5], Fourier transform coef-
ficients [6], and cepstrum coefficients [7] have been used as the
components of the feature vector.

Recently, time-frequency analysis, such as short-time Fourier
transform, wavelet transform, and wavelet packet transform
have received considerable attention in the analysis of nonsta-
tionary signals. Time-frequency analysis offers a map of the
temporal localization of a signal’s spectral characteristics in
the time-frequency domain, but it yields a high-dimensional
feature vector. Generally, the high dimensionality of a feature
vector causes an increase in the learning parameters of a clas-
sifier. Thus, it requires dimensionality reduction of the feature
vector without loss of classification accuracy. Dimensionality
reduction increases classifier speed and reduces its memory
requirements [8]. In time-frequency analysis, feature projection
for dimensionality reduction is essential before applying the
feature vector to a classifier. Englehart et al. [9], [10] extracted
a time-frequency feature vector through wavelet packet trans-
form and used principal components analysis (PCA), a linear
feature projection method for dimensionality reduction. The
PCA-reduced features can approximate the distribution of the
original features, but a defect still exists in that the clusters for
different classes are not exactly separated in the reduced feature
space. The reason is that PCA learning merely produces a
well-described coordinate system for the distribution of all fea-
tures, without consideration of the class separation. It is known
that features with high class separability improve recognition
accuracy. In this work, an additional nonlinear mapping of the
linear-projected feature vector yields a new feature vector with
improved class separability.

We propose a new linear-nonlinear feature projection method
composed of PCA and a self-organizing feature map (SOFM),
which includes two functions: dimensionality reduction and
nonlinear mapping. Dimensionality reduction by PCA sim-
plifies the structure of the classifier and reduces processing
time for pattern recognition. Nonlinear mapping by SOFM
transforms the PCA-reduced features to a new feature space
with improved class separability. As a result, the classifier can
find a hyperplane with an enhanced separation margin. This
scheme improves the recognition accuracy compared to using
only PCA. In addition, it is applicable to real-time pattern
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Fig. 1. Block diagram for EMG pattern recognition.

recognition because it has a shorter processing time than that
of directly applying time-frequency features to SOFM.

In this paper, we recognize nine kinds of hand motion from
four channel EMG signals on the forearm using the proposed
feature projection method, and control a virtual hand using the
recognized results. We first extract a feature vector by wavelet
packet transform (see Fig. 1). The dimension of the wavelet
packet feature is then reduced by PCA. Subsequently, SOFM
transforms PCA outputs into a node of the lattice to build the
clusters of feature sets. Finally, a multilayer perceptron (MLP)
is used as the classifier to recognize the hand motions.

The MLP has abilities of both a nonlinear discriminant anal-
ysis (NLDA) and a nonlinear classifier [11]. Although MLP has
the ability of NLDA for nonlinear mapping, the recognition ac-
curacy highly depends on class separability of the input feature.
In Section IV, we clarify that the additional nonlinear mapping
by SOFM affects the recognition accuracy, in a manner than
complements the MLP’s class separation ability.

The ultimate objective of EMG pattern recognition in this
paper is to discriminate the user’s intention in controlling the
multifunction myoelectric hand. Therefore, the response time
of a myoelectric hand control system should be less than 300
ms, so that the user operates the hand without perceiving a time
delay [12]. In experiments, we compare the proposed method
with PCA and SOFM projection with regard to the classification
success rate and the processing time, and we implement a real-
time control system for a virtual hand based on the proposed
method. Our experimental results show that the virtual hand is
actuated within 300 ms and that the proposed method is suitable
for the purposes of controlling a myoelectric hand in real time.

II. EXPERIMENTS AND DATA ACQUISITION

In this paper, we try to recognize nine kinds of hand motion:
flexion and extension of the wrist, radial and ulnar flexion of
the wrist, pronation and supination of the wrist, opening and
grasping of the fingers, and relaxation. Because hand motions
result from contraction of the muscles in the forearm, we use
four surface electrodes for measuring EMG signals from the
extensor digitorum, the extensor carpi radialis, the palmaris
longus, and the flexor carpi ulnaris, which are the muscles
concerned with hand motions.

Generally, the frequency range of EMG is within 0-1000 Hz,
but the dominant energy is concentrated in the range of
20-500 Hz, and its amplitude is limited to 0-10 mV [13].
Therefore, we used an active surface electrode (DE-2.1,
DELSYS) with a bandpass filter of 10- to 450-Hz bandwidth
and an amplifier with 100-dB gain.! The EMG signals were
digitized by an analog-to-digital board (6052E, NI).2 The
sampling frequency was 1024 Hz.

! Available online at http://www.delsys.com.

2Available online at http://www.ni.com.

In experiment, EMG data were collected from ten normally
subjects (six males and four females, 31 &= 4.3 yrs.). Each sub-
ject performed nine hand motions including relaxation and con-
ducted 20 sessions. The first ten sessions were used for the
learning procedures, and the remaining ten sessions were used
for the evaluation of recognition performance. In each session,
each motion was performed once for a duration of about 4 s and
switched between relaxation and static contraction.

The response time of a myoelectric hand control system
should be less than 300 ms, so that the user operates the hand
without perceiving a time delay [12]. We apply a moving
window scheme with a window increment to recognize a
steady-state motion. Although a small window increment im-
proves the response time of the myoelectric hand, the window
increment is determined by considering the processing time of
the pattern recognition algorithm. For real-time implementa-
tion, all processes, including hand control, must be completed
within the window increment. In this paper, we set the length
of the moving window to 250 ms (256 samples) with a 125 ms
(128 samples) window increment. Consequently, this scheme
generates two decisions within 300 ms. This guarantees that the
user can control a directed myoelectric hand function within
250 ms from the instant when the user’s intention is given.

III. ALGORITHM DESCRIPTION

A. Feature Extraction

To extract a feature vector from EMG signals, we use a
wavelet packet transform that is a generalized version of
wavelet transform. The complete basis of the time-frequency
plane may take many forms according to the selected partitions
of the frequency axis. For the pattern recognition task, if we
introduce a proper discriminant measure, the best basis can
be chosen to maximize the class separability specified by the
discriminant measure. To determine the best basis, we use
the local discriminant basis (LDB) algorithm proposed by
Saito and Coifman [14]. We first calculate the time-frequency
energy maps of class ¢, I'.(j, k,n), where j and k denote the
scale and the subband index within the scale, respectively and
n=0,...,2"077 — 1, where ng = logéV and N is the number
of points in the data window. To measure class separability,
we use the energy maps as inputs to the symmetric relative
entropy. The symmetric relative entropy of the subspace (7, k)
for K classes is written as

D({Fc<j7k7.) g{: ): z_: Z D<Fa(j7k7n>7rb(j7k7n))
a=1 b=a+1

ey
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The LDB is then constructed by the pruning method. A detailed
description of the LDB algorithm was given in [10]. To increase
the class separability, we independently construct the LDB for
each channel. Based on four sets of the LDB, the WPT coef-
ficients are obtained, and their absolute values are extracted as
features in the pattern recognition procedure.

It is noted that EMG signals are stationary when the subjects
perform static contractions, and the majority of the windows in-
clude static contractions. This means that, in steady-state mo-
tion, WPT coefficients do not have the temporal information of
the time-frequency plane. Nevertheless, WPT features are supe-
rior to time and frequency features, such as EMG amplitude and
Fourier transform coefficients because the wavelet functions re-
semble the motor unit action potentials that constitute the gross
EMG signal [10], and the wavelet transform represents the EMG
signal by the sum of the scaled and shifted versions of wavelet
function.

B. Feature Projection

Once the absolute values of the WPT coefficients are ex-
tracted as features, PCA performs the dimensionality reduction
for each channel. The recognition performance is sensitive to
the dimensionality reduction of the feature vector, but it is not
affected by the dimensionality reduction if the PCA-reduced di-
mension is more than twenty orders [10]. Because we take a
feature vector with five orders from each of the four channels,
the feature vector becomes 20 orders in total. The learning pro-
cedure of the PCA is a process for establishing a well-described
coordinate system for the distribution of input features. Further-
more, PCA has the advantages of a closed-form solution and
automatically ranking the importance of the features in the pro-
jection space [15].

The SOFM nonlinearly transforms the PCA-reduced features
into a new feature space with high class separability. In this
paper, the SOFM is prepared independently for each channel.
The input layer of each SOFM is composed of five outputs from
the PCA, and its output layer forms a 40 x 40 two-dimensional
(2-D) lattice in consideration of processing time and feature map
resolution. In the learning procedure of the SOFM, the synaptic
weight vectors are adjusted based on their similarity to the input
feature and the topological neighborhood of the winning neuron.
To train feature vectors within the same class to cluster, the
weight vectors for the SOFM are initialized from the set of input
features in a random manner, and all features in each class are
fairly selected in the sampling process. The learning procedure
for the SOFM applied in this paper is as follows [16].

1) Select the initial weight vectors w;(0) from the avail-

able set of input features in a random manner, where
7 =1,...,1 and [ is the number of neurons in the lattice.
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2) Choose a feature x from each class with a certain
probability.

3) Find the best-matching (winning) neuron i(x) at time step
n by using the minimum-distance Euclidean criterion

i(x) = argmin ||x(n) — wj||, 7 =1,...,1. 2)
J

4) Adjust the synaptic weight vectors of all neurons by using
the update formula

=w;(n) +n(n)h;ix)(n)(x(n)

where 7)(n) is the learning rate and h ;(x)(n) is the neigh-
borhood function centered around the winning neuron
i(x); for best results, both (1) and h; ;(x)(n) are varied
dynamically during learning.

5) Continue with Step 2 until no noticeable changes in the
feature map are observed.

In Step 4, the topological neighborhood assumes a

time-varying form of its own, as shown by

hjite) = it )
j.i(x) = €XP 202(n)

where d;; is the lateral distance between the winning neuron 4
and the excited neuron j in the 2-D lattice. A popular choice for
the dependence of width o on discrete time 7 is the exponential
decay described by

w;(n+1) —wj(n)) )

a(n) = ogexp (;—?) 5)

where o is the value of o at the initiation of the SOFM al-
gorithm and 7; is a time constant. Also, the learning rate 7(n)
should be time varying. It should start at an initial value 79, and
then decrease exponentially with increasing time n, as shown
by

n(n) = no exp <_T—2n> (6)

where 79 is another time constant of the SOFM algorithm. In
the pattern recognition procedure, the SOFM finds the winning
neuron with the best similarity between its weight vector and the
input feature. Then, the 2-D coordinates of the winning neuron
are the components of the feature vector.

C. Classification

Finally, an MLP is used as the classifier. The number of
hidden layers is two, and each hidden layer has nine neurons.
We determined the network structure by trial and error. The
selection criterion is based on the convergence of learning error.
Using the cascaded architecture of PCA and SOFM as shown
in Fig. 1, a feature vector of each channel with high dimension-
ality is mapped into a node in a 2-D lattice. Consequently, the
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Fig. 2. Two principal components of the PCA-reduced features.

input layer of the MLP is constructed from the eight outputs
of the SOFM for four channels, and its output layer has nine
neurons for the nine hand motions to be recognized. We select
the maximum output of the MLP as the recognized motion.

D. Learning Procedure

In this subsection, we describe the learning procedure of the
proposed method. For the learning procedure, the full dataset
is split into subsets of 256 samples, with the increment of 128
samples. Each subset is labeled as a member of a class corre-
sponding to the hand motion. The parameters to be found in the
learning procedure are summarized as follows:

1) local discriminant basis for WPT;

2) eigenvectors of the covariance matrix for PCA;

3) weight vectors of SOFM;

4) weight vectors of MLP.

In the LDB algorithm, discrete wavelet decomposition was
implemented using the Mallat algorithm [17]. We specified the
depth of decomposition level as four and used the Symmlet
wavelet and scaling function of five orders having ten coeffi-
cients. The filtering and down-sampling operations with these
coefficients produced various dimensions of basis vectors for
decomposition levels. As a result, the LDB algorithm con-
structed an independent time-frequency plane for each channel
to maximize the class separability in contrast to the fixed tiling
of the wavelet transform. According to the set of the LDB, the
WPT coefficients are obtained by wavelet decomposition, and
their absolute values are extracted as features in the pattern
recognition procedure.

In the PCA learning procedure, we first constructed the co-
variance matrix from the absolute values of the WPT coeffi-
cients. Because the PCA-reduced feature vector with 20 orders
can approximate the class distribution of the original features,
we selected five eigenvectors corresponding to the largest eigen-
values from each channel as the PCA projection matrix used for
the dimensionality reduction. Fig. 2 shows, from a typical data
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Fig. 3. Clustered features in the lattice by SOFM.

record, the two selected principal components from the PCA-re-
duced feature vector with five orders. As shown in Fig. 2, the
separability between classes is low because the clusters for dif-
ferent classes overlap due to the effect of signal compression by
the PCA projection.

In the SOFM learning procedure, the initial weight vectors
were randomly selected from the PCA-reduced feature vector.
In (5), the initial width of the neighborhood functions was set to
o¢ = 20 to cover the 40 x 40 lattice space, and the time constant
was set to 73 = 2000. The learning rate and the time constant in
(6) were initialized to ng = 0.9 and 75 = 2000, respectively. In
SOFM learning, the weight vectors converged after 4000 itera-
tions. Fig. 3 depicts nonlinearly clustered features in the lattice
of the SOFM. We can see that the features belonging to the same
class are well clustered, and the class separability is improved
compared to the PCA projection.

In the MLP learning procedure, the inputs of the MLP were
the normalized values of the SOFM outputs, and a bipolar sig-
moid function was used as an activation function. For error
backpropagation learning, we chose the initial weights and bias
from a uniform distribution whose mean and variance were zero
and one, respectively. The learning rate was set to 0.1, and the
learning process was stopped when the absolute rate of change
in the average squared error per iteration was sufficiently small.

IV. EXPERIMENTAL RESULTS

A. Evaluation of the Proposed Method

Having determined the parameters of the LDB, PCA, SOFM,
and MLP in the learning procedure, we evaluated the recogni-
tion accuracy of the proposed method using a test session. Fig. 4
shows the test session and the recognized results by the proposed
projection method and PCA projection only. The EMG signals
in Fig. 4(a) are typical data recorded from a typical subject. The
top of Fig. 4(b) shows MLP output values between —1.0 and
1.0. The maximum output is selected as the recognized motion
in every decision. The bottom of Fig. 4(b) shows the recognized
results, in which each motion is assigned to the numbers O to
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Fig. 4. Test session and recognition results: (a) test session; (b) results by the
linear-nonlinear projection; (c) results by the PCA projection only.
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TABLE 1
CLASSIFICATION SUCCESS RATE FOR FEATURE PROJECTION METHODS
Subject PCA + SOFM  SOFM  PCA
1 94.17 95.21 94.12
2 96.55 97.85 95.23
3 97.83 98.58 96.64
4 96.79 96.85 95.07
5 97.88 98.64 95.95
6 96.44 98.12 95.54
7 98.63 98.68 98.08
8 98.34 98.50 97.65
9 94.97 96.58 93.17
10 98.64 98.84 96.14
Mean 97.024 97.785  95.759
TABLE II

PROCESSING TIME FOR FEATURE PROJECTION METHODS

Processes Processing time (msec)
PCA + SOFM 5
SOFM 180
PCA 2

8. The solid line and open circle denote the desired output and
recognized motion, respectively. The results by the proposed
method show high accuracy with the exception of transient-state
motions; the MLP outputs are stable in steady-state motions.
Contrarily, the results by PCA projection have a slightly higher
occurrence of errors in steady-state motion, which is caused by
unstable MLP outputs as shown in Fig. 4(c).

We evaluated the performance of pattern recognition for ten
subjects. Table I lists the averaged classification success rate,
where “PCA+SOFM,” “SOFM,” and “PCA” denote each pro-
jection method used in pattern recognition, respectively. To re-
move the subject effect, we applied the data in Table I to a
two-way analysis of variance test. As a result, we can see that
the classification performance is significantly different when
using each projection method. The “PCA” is inferior to the
“PCA+SOFM” by an average of 1.265% (p = 0.000427) be-
cause the PCA transforms the wavelet packet features into a
new feature space with the maximum variance of all features.
This means that the PCA-reduced features have low class sep-
arability. On the other hand, the “SOFM” is superior to the
“PCA+SOFM” by an average of 0.761% (p = 0.004208) be-
cause the feature vectors are nonlinearly transformed into a new
feature space with an enhanced separation margin. However, the
SOFM needed much more processing time, as shown in Table I,
because the raw feature vector with high dimensionality was di-
rectly used in the nonlinear mapping. To implement a real-time
pattern recognition, the processing time should be less than the
window increment, 125 ms. Accordingly, the SOFM method
is inadequate for real-time processing. These evaluation results
show that the proposed method is suitable for myoelectric hand
control because it can achieve real-time pattern recognition with
high accuracy.

B. Analysis of Class Separability by Projection Methods

In this subsection, we analyze the relationship between class
separability and recognition accuracy. In Section IV-A, the
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Fig. 5. Structure of MLP with bottleneck layer having two neurons.

PCA-reduced features resulted in lower recognition accuracy
caused by unstable MLP outputs. On the other hand, the pro-
posed linear-nonlinear projection method showed stable MLP
outputs and high recognition accuracy. This means that the
recognition accuracy depends more on the feature class sepa-
rability than on the MLP performance. The MLP has abilities
of both an NLDA and a nonlinear classifier [11]. We compared
distributions of the PCA-reduced features and the proposed
linear-nonlinear projected features in the NLDA space. To
visualize feature distribution and decision surface, we inserted
a bottleneck layer with two neurons into the proposed MLP
classifier, as shown in Fig. 5. In this five-layer MLP, the NLDA
network from the input layer to the bottleneck layer maximizes
Tr(SpSF), where SF and Sp are the pseudo-inverse of the
total scatter matrix and the between-class scatter matrix in the
bottleneck layer. The nonlinear classifier from the bottleneck
layer to the output layer then constructs a decision surface.
Accordingly, in the bottleneck layer, we can see how the input
features affect the class separability and classification accuracy
of the MLP.

The bottleneck layer corresponding to the NLDA output
is shown in Fig. 6. Although MLP has the ability of NLDA
for nonlinear mapping, the linear-nonlinear projected features
show high class separability and a decision surface with a large
separation margin compared to the PCA-reduced features (see
Fig. 6). The class separability can be quantitatively expressed
by Fisher’s index [15]. The Fisher’s index is the ratio between
the separation of each class and the scattering within a signle
class. Thus, the larger Fisher’s index signifies a higher class
separability of the projected features. Table III shows the
Fisher’s indexes of the PCA-reduced features, the proposed
linear-nonlinear projected features, and their NLDA outputs.
From these results, we can see that the recognition accuracy
highly depends on the feature class separability. Consequently,
the proposed linear-nonlinear projection method improves the
class separability and the recognition accuracy.

C. Real-Time Virtual Hand Control Using EMG

Using the proposed EMG pattern recognition method, we
implemented a real-time control system for a three-dimensional
(3-D) virtual hand, graphically designed using OpenGL. In this
experiment, the control system was executed on a 1.8-GHz
Pentium IV PC. As an example, we explain the recognition
procedure of wrist extension. When the subject made a wrist
extension, stronger EMG signals were measured in channels
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TABLE III
COMPARISON OF FISHER’S INDEXES

Fisher’s index
1.5554 x 10~212

Features
PCA-reduced features

Linear-nonlinear projected features 3.9277 x 10~°
PCA-reduced features in bottleneck layer 30.0973
Linear-nonlinear projected features in bottleneck layer 169.8097

1 and 4 than in channels 2 and 3. Fig. 7 shows EMG signals
in the transient-state from relaxation to wrist extension. The
recognized results are shown in the lower part of Fig. 7. The
square and circle denote the outputs of the MLP assigned to the
relaxation and the wrist extension, respectively. These outputs
were generated every 125 ms. This interval is the same as the
increment of the data window. First, the subject’s intention to
make wrist extension was given at time 1. The wrist extension,
however, could not be recognized at time ¢, because the pattern
recognition was performed using the data sampled at the pre-
vious step not including time ;. After 125 ms, the data window
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TABLE IV
PROCESSING TIME IN REAL-TIME PATTERN RECOGNITION

Processes Processing time (msec)
WPT 30
PCA + SOFM 5
MLP 5
Virtual hand control 40
Others 20
Total 100

was increased, and the wrist extension was recognized at time
ty correctly. Finally, the virtual hand was controlled. Since we
implemented the virtual hand using OpenGL, the 3-D graphics
needed about 40 ms processing time. Therefore, the virtual
hand control was completed at time ¢,. Table IV shows that
the total processing time was less than the window increment,
125 ms. This result shows that the operation delay is less than
300 ms, and the proposed method is applicable to the control
of a multifunction myoelectric hand in real time.

V. CONCLUSION

This paper proposed a real-time EMG pattern recognition
using linear-nonlinear feature projection for a multifunction
myoelectric hand. The proposed linear-nonlinear feature pro-
jection method was composed of PCA and SOFM, which
performed dimensionality reduction and nonlinear mapping.
To extract a feature vector, the EMG signal was decomposed
by wavelet packet transform. The dimension of the wavelet
packet features was then reduced by PCA. Subsequently,
SOFM nonlinearly transformed the PCA-reduced feature into
a new feature space with improved class separability. As a
result, the MLP could find a hyperplane with an enhanced
separation margin. From analysis of class separability by
projection methods, we showed that the recognition accuracy
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highly depends on the feature class separability, in a manner
that complements the capabilities of the MLP. Consequently,
the proposed linear-nonlinear projection method improved the
class separability and the recognition accuracy. Using the pro-
posed method, nine kinds of motion were recognized from four
EMG channels, and the virtual hand was controlled in real time.
From the experimental results, we showed that all processes,
including hand control, were completed within 125 ms, and
that the proposed method is applicable for real-time myoelec-
tric hand control without a perceived operation time delay. In
the future, we will test the validity by applying the proposed
method to a multifunction myoelectric hand with four degrees
of freedom.
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