
 

 

 

  

Abstract— Information extracted from signals recorded 

from multi-channel surface myoelectric signal (MES) recording 

sites can be used as inputs to control systems for powered 

prostheses.  For small, closely spaced muscles, such as the 

muscles in the forearm, the detected MES often contains 

contributions from more than one muscle; the contribution 

from each specific muscle being modified by a tissue filter 

between the muscle and the detection points.  In this work, the 

measured raw MES signals are rotated by class specific 

rotation matrices to spatially decorrelate the measured data 

prior to feature extraction.  This tunes the pattern recognition 

classifier to better discriminate the test motions.  Using this 

preprocessing step, MES analysis windows may be cut from 

256 ms to 128 ms without affecting the classification accuracy. 

I. INTRODUCTION 

he myoelectric signal (MES) has proven to be an  

effective control input to powered prostheses for over 40 

years [1].  Conventional myoelectric control strategies are 

control strategies which have found widespread clinical use.  

They are often used in conjunction with body powered 

harnesses, mechanical switches, and force sensitive resistors 

as part of a conventional prosthesis control strategy.  The 

three-state amplitude controller [2], three-state rate sensitive 

controller [3], direct control [4], and myo-pulse controller 

[5] are all examples of conventional myoelectric control 

strategies.  These systems work well and are intuitive to use 

provided a portion of a physiologically appropriate muscle 

remains on the residual limb from which the MES can be 

measured.  Generally, this type of control system is capable 

of controlling only one or two degrees of freedom due to a 

limited number of independent control sites remaining on 

the residual limb.  Information extracted from patterns 

contained in the myoelectric signal can also be used for 

control purposes provided repeatable patterns can be 
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generated by the patient at the control site locations.  A 

robust state-of-the-art continuous pattern recognition based 

myoelectric control system capable of providing real-time 

sequential multifunction control was described in [6].  

Briefly, this control system consists of signal detection, 

feature extraction, dimensionality reduction, classification, 

and post-processing in the form of majority voting.   

The surface MES is an electrophysiological signal 

generated by a muscular contraction which propagates along 

the length of skeletal muscle to detection points on the skin’s 

surface.  For small, closely spaced muscles like those in the 

forearm, the detected MES often contains contributions from 

more than one muscle; the contribution from each specific 

muscle being modified by a tissue filter between the muscle 

and the detection points.  In some cases the contributions 

from very small/deep muscles are masked by those from 

larger/superficial muscles and it is possible for these subtle 

changes in muscle activation, associated with varying 

movements, to go undetected.  Because pattern recognition 

based myoelectric control systems rely on repeatable, 

distinct patterns being identified in the MES at the electrode 

locations, it is desirable to distinguish even the most subtle 

changes.  This work introduces an additional pre-processing 

step to a pattern recognition based myoelectric controller 

which acts as a “tuner” for each specific class in order to 

extract the most pertinent information and reduce 

classification errors.   

II. METHODOLOGY 

A. Experimental Protocol 

MES data corresponding to twelve classes of motion were 

collected from 4 healthy subjects using an assistive brace 

developed by Hargrove et al [7] for performing static 

contractions.  All experiments were approved by the 

University of New Brunswick’s Research Ethics Board.  

Five or six electrodes were placed around the forearm, 

depending on forearm size; chosen to optimally encompass 

the circumference of the arm.   

Subjects were prompted to perform eight repetitions of the 

following 11 types of contraction: wrist 

pronation/supination, wrist flexion/ extension, wrist 

abduction/adduction, hand open, key grip, chuck grip, power 

grip, pinch grip and a no movement/rest class.  Each 

contraction was held for 4 seconds. The first four repetitions 

were used as training data, the next two were used as a 

validation set, and the final two were used for a test set.  

Data were collected using a custom built pre-amplification 
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system, a 16-bit DAQ and custom data acquisition software, 

sampling at 1 kHz per channel.     

   

B. Data Processing 

The pattern recognition control system described in [6] 

with the additional data pre-processing block is shown in 

Figure 1.  The focus of this paper is on the improvement 

gained by the addition of the pre-processing block and the 

reader is referred to [6] for a thorough description of the 

remainder of the system. 
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Figure 1: The basic steps of pattern recognition based 

myoelectric control. 

 

Previous work for similar data sets has shown that time-

domain (TD) features as inputs to a linear discriminant 

analysis (LDA) classifier results in high classification 

accuracy for the motions under investigation [7].  

Furthermore, this system is also computationally efficient, 

facilitating embedded systems implementations which make 

class decisions with a processing delay of less than 10 ms.  

Consequently, this feature set and classifier will be used to 

assess the relative performance effect of the pre-processing 

block.  Window lengths of 64, 128, and 256 ms will be 

investigated.      

Principal Components Analysis (PCA) is a linear 

transformation which linearly decorrelates multivariate data 

and projects it onto a new coordinate system such that the 

greatest variance in the data lies on the first coordinate while 

the least variance in the data comes to lie on the last 

coordinate [8].  The PCA transformation matrix will be 

different for each motion class if; 1) different degrees of 

muscle crosstalk are present at the electrodes for different 

motions, or 2) the signals detected at the electrodes are 

uncorrelated but are of different relative amplitudes.  The 

first point is a result of the decorrelation property of PCA 

while the second point stems from the ordering of the 

principal components (PCs) from maximum to minimum 

variance.  The PCA tuning algorithm projects data down 

class specific PCA transformation matrices (which are found 

using the training data for each specific class) and then 

extracts features from the rotated data as shown in Figure 2.   
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Figure 2:  A block diagram showing the PCA tuning 

preprocessing block.  This form of signal processing increases 

the dimensionality of the input by a factor of C where C is the 

total number of motion classes.   

 

It is hypothesized that the projection down the appropriate 

PC transformation matrix will enhance or ‘tune’ the data 

while projection down the remaining PC transformation 

matrices will result in less meaningful linear combinations 

of the measured multivariate data.  A similar algorithm has 

been successfully implemented to improve recognition of 

facial patterns in the context of image processing [9]. 

It can be seen in Figure 2 that the PC tuning algorithm 

increases the dimensionality of the inputs by a factor of C 

where C is the total number of classes.  It is very likely that 

some of the output channels from the PCA tuning algorithm 

contain some redundant information and thus the number of 

linearly combined channels can be reduced.  A simple 

iterative sequential backward selection (SBS) algorithm was 

used to reduce the dimensionality of the data [10].  This 

algorithm iteratively discards the least informative linearly 

combined channel, as determined by the empirical 

classification performance of the validation set.  The SBS 

algorithm was used to reduce the number of channels to 25 

as this provided good classification accuracy.  The PCA 

tuning algorithm can easily be implemented in real-time 

using this number of channels.    

III. RESULTS 

 Figure 3 displays the results of the PCA turning 

algorithm using three different window lengths.  It can be 

seen that using PCA tuning either with or without channel 

reduction results in classification error reduction of 

approximately 5-6% for the three different cases.  Table 1 

shows the confusion matrix averaged across subjects using 

128 ms data analysis windows with the number of linearly 

combined channels reduced to 25 using the SBS algorithm.  

The confusion matrix indicates which motions are being 

erroneously classified.  The row indicates the desired class 

and each column represents the percentage of time that 

motion was selected.  Ideally, the table would contain 100 % 

in the diagonal elements and 0 % in the off diagonal 

elements. 
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Figure 3:  A comparison of classification errors resulting from 

processing with and without PCA tuning.  Error bars show 1 

standard deviation of the intersubject variability. 

IV. DISCUSSION 

PCA tuning resulted in classification error improvements 

of approximately 5 % for all investigated window lengths. 

This represents relative improvements of 33%, 40%, and 47 

% for the 64, 128, and 256 ms window length cases.  It 

appears that the 5% improvement remains regardless of 

window length suggesting that the improvement gained by 

PCA tuning is independent of analysis window length.  It 

should be noted that the relationship between classification 

accuracy and myoelectric usability has yet to be clearly 

defined [11] and more work is required to determine how 

improvements to classification accuracy due to PCA tuning 

translate to classifier usability.  Indeed, usability appears to 

be influenced by classification accuracy, controller delay, 

and the mental burden required to affect control.  Each of 

these factors, in turn, are interrelated. 

Figure 3 clearly supports the assertion that longer analysis 

windows result in a more accurate control system; however 

there is a tradeoff between controller delay and prosthesis 

usability.  Ranges of acceptable controller delays vary in 

values from 50 ms [12] up to 400 ms [13].   

 

 

 

 

 

 

 

 

 

 

 

 

 

It has recently been shown that controller delays larger than 

100 ms begin to comprise the usability of a myoelectric 

control system [14].  PCA tuning used with 128 ms analysis 

windows maintains lower classification error when 

compared with no PCA tuning and 256 ms analysis 

windows. Thus the PCA tuning should result in a more 

usable myoelectric control system due solely to the ability to 

use shorter window lengths which in turn reduces the overall 

controller delay. 

The PCA tuning algorithm increases the computational 

load in the feed-forward mode of operation because of two 

factors: 1) the M x CM matrix multiplication (M channels by 

C classes) to rotate the raw data and 2) features must be 

extracted from the resulting CM number of channels.  This 

algorithm would be unable to meet the real-time processing 

delay target of less than 10 ms.  Consequently, it was 

necessary to reduce the number of channels to improve the 

processing speed and reduce the computational load.  Using 

the SBS algorithm, 25 channels were retained from which to 

make a decision.  When channel reduction is used, the PCA 

tuning algorithm requires a (M x 25) matrix multiplication 

resulting in 25 channels from which features need to be 

extracted to classify the 12 motion classes.  Current 

embedded systems under investigation can meet this 

operating requirement.  Figure 3 shows that reducing to 25 

channels using the SBS algorithm does not significantly 

compromise classification error improvement gained 

through PCA tuning.    

Table 1 shows the average error distributions across 

subjects for the 128 ms analysis window.  It is noted that in 

the majority of cases, PCA tuning improves the class 

specific classifications accuracies or it remains the same. 

Furthermore, it is noted that most of the classification errors 

occur in the hand grips.  This is not surprising as there are 

only subtle differences in these motions. 

The PCA tuning algorithm can easily be extended using 

independent components analysis (ICA) as a pre-processor.  

The implementation of the algorithm would mirror that of 

PCA tuning; however an ICA separation matrix would be 

found for each motion from the training data and the test 

data would be projected down these matrices prior to 

classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

V. CONCLUSION 

A novel PCA tuning algorithm implementation was 

introduced for use with existing MES pattern recognition 

 

TABLE 1 
CONFUSION MATRICES FOR TD FEATURE SET WITH 205 MS ANALYSIS WINDOWS AVERAGED OVER THE 4 SUBJECTS 

 

Pronation 92.4 97.1 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.1 0.1 0.0 0.0 1.4 0.0 0.0 1.3 0.2 0.0 1.0 4.1 0.1 0.4 0.2

Supination 0.0 0.0 99.3 99.8 0.0 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0

Flex 0.5 0.3 0.0 0.0 99.3 99.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Extend 0.1 0.0 0.1 0.0 0.0 0.0 90.3 99.1 7.3 0.4 0.0 0.0 1.5 0.4 0.0 0.0 0.6 0.0 0.0 0.0 0.2 0.1 0.0 0.0

Abduction 0.1 0.2 0.1 0.0 0.0 0.0 6.0 0.3 76.0 89.1 0.0 0.0 6.0 6.3 0.0 0.0 11.7 4.0 0.0 0.0 0.2 0.2 0.0 0.0

Adduction 3.5 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 85.9 88.6 2.7 3.5 7.7 1.4 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0

Open 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.9 0.5 2.6 96.5 93.4 0.0 0.1 1.0 1.1 0.0 0.0 1.8 1.7 0.0 0.0

Key 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 99.0 99.4 0.3 0.0 0.7 0.6 0.0 0.0 0.0 0.0

Chuck 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.5 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 76.1 91.9 0.0 0.0 14.8 7.3 1.3 0.2

Power 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 4.7 0.5 0.0 0.0 0.1 0.0 12.8 9.4 2.1 2.2 78.9 87.5 1.2 0.4 0.0 0.0

Pinch 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.2 0.1 0.0 0.0 0.0 0.0 0.8 0.0 0.0 13.4 6.7 0.0 0.0 85.6 92.3 0.0 0.0

Rest 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0 0.7 0.0 99.3 99.6

Adduction Hand Open Key Chuck Power Pinch RestPronation Supination Flex Extend Abduction

 
 
The values in white (left columns) show processing without PCA tuning the values in grey (right columns) show the results with PCA tuning with no data 
reduction.   The results along the main diagonal are correct classifications (accuracy), and those lying outside of the main diagonal are incorrect classifications 

(error rate). 
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based prosthetic control systems.  MES data were projected 

onto class specific PCA transformation matrices for tuning, 

prior to pattern recognition classification.  This pre-

processing was shown to reduce classification errors on 

average by 5%, independent of analysis window size.  This 

translates to relative classification error improvements of 

33%, 40% and 47% when using window lengths of 64 ms, 

128 ms, or 256 ms.   

The SBS channel reduction algorithm was used to 

reduce the dimensionality of the data to 25 channels, 

resulting in a method that can be implemented in an 

embedded system within the requisite 10 ms processing 

time.  Future work will investigate PCA tuning as a 

preprocessor to other classification algorithms and will also 

investigate PCA tuning as a preprocessor for data sets 

containing combined motions. 
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