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Abstract

The general problem of data clustering is concerned with thediscovery of a group-

ing structure within a finite number of data points. Fuzzy Clustering algorithms pro-

vide a fuzzy description of the discovered structure. The main advantage of this de-

scription is that it captures the imprecision encountered when describing real-life data.

Thus, the user is provided with more information about the structure in the data com-

pared to a crisp, non-fuzzy scheme.

During the early part of our research, we investigated the popular Fuzzy c-Means

(FCM) algorithm and in particular its problem of being unable to correctly identify

clusters with grossly different populations. We devised a suite of benchmark data

sets to investigate the reasons for this shortcoming. We found that the shortcoming

originates from the formulation of the objective function of FCM which allows clusters

with relatively large population and extent to dominate thesolution. This led to a

search for a new objective function, which we have indeed formulated. Subsequently,

we derived a new so-called Population Diameter Independent(PDI) algorithm. PDI

was tested on the same benchmark data used to study FCM and wasfound to perform

better than FCM. We have also analysed PDI’s behaviour and identified how it can be

further improved.

Since image segmentation is fundamentally a clustering problem, the next step was

to investigate the use of fuzzy clustering techniques for image segmentation. We have

identified the main decision points in this process. Furthermore, we have used fuzzy

clustering to detect the left ventricular blood pool in cardiac cine images. Specifically,

the images were of the Magnetic Resonance (MR) modality, containing blood velocity

data as well as tissue density data. We have analysed the relative impact of the velocity

data in the goal of achieving better accuracy. Our work wouldbe typically used for

qualitative analysis of anatomical structures and quantitative analysis of anatomical

measures.
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CHAPTER 1

Introduction

This dissertation contributes to the subject area of Data Clustering, and also to the

application of Clustering to Image Analysis. Data clustering acts as an intelligent

tool, a method that allows the user to handle large volumes ofdata effectively. The

basic function of clustering is to transform data of any origin into a more compact

form, one that represents accurately the original data. Thecompact representation

should allow the user to deal with and utilise more effectively the original volume of

data. The accuracy of the clustering is vital because it would be counter-productive if

the compact form of the data does not accurately represent the original data. One of

our main contributions is addressing the accuracy of an established fuzzy clustering

algorithm.

In this introductory Chapter, we provide brief descriptions of the subjects of our re-

search, and establish the motivations and aims of the research we conducted. Section

1.5 provides a summary of the main research contributions presented in this disserta-

tion. The Chapter concludes with an outline of the remainderof the dissertation.

17



1.1. CLUSTERING 18

1.1 Clustering

Research on Clustering is well-established; it dates back to the 1950s and is widely re-

ported in various current journals. The research problem isconcerned with discovering

a grouping structure within a number of objects.

Typically, a set of numeric observations, or features, are collected of each object.1

The collected feature-sets are aggregated into a list whichthen acts as the input to a

chosen computational clustering algorithm. This algorithm then provides a description

of the grouping structure which it has discovered within theobjects. The description

typically consists of a list containing, for every object, the cluster to which it has been

assigned. The clusters would be identified by labels usuallysupplied by the user. In

this way, a large number of seemingly disparate objects, once a number of features are

extracted of them, can be organised into groups of approximately shared features.

Data clusteringgained initial formal treatment as a sub-field of statistics. System-

atic methods of clustering were required to be developed because the data may be large

in size and therefore cumbersome to analyse and visualise. The computing revolution

of the sixties and seventies gave momentum to this new field because, for the first time,

computers enabled the processing of large amounts of data and took the burden of the

very large amounts of computation generally involved. The field can, however, trace

its origins to further back in time.

The Swedish botanist Carolus Linnaeus, who was concerned with classification

in the plant and animal kingdom, wrote in his seminal 1737 work Genera Plantarum

[Everitt, 1974]:

All the real knowledge which we possess, depends on methods by which
we distinguish the similar from the dissimilar. The greaternumber of nat-

1This is calledfeature selectionand is studied in its own right, separately from clustering.Naturally,
the selection of features strongly influences the effectiveness of whatever process takes place after the
extraction of the features, be it clustering or otherwise.

18



1.1. CLUSTERING 19

ural distinctions this method comprehends the clearer becomes our idea
of things. The more numerous the objects which employ our attention the
more difficult it becomes to form such a method and the more necessary.

For we must not join in the same genus the horse and the swine, tho’ both
species had been one hoof’d nor separate in different generathe goat, the
reindeer, and the elk, tho’ they differ in the form of their horns. We ought
therefore by attentive and diligent observation to determine the limits of
the genera, since they cannot be determineda priori. This is the great
work, the important labour, for should the Genera be confused, all would
be confusion.

If translated to modern formalisms, Linnaeus’s quotation is very relevant to the

clustering problem. Linnaeus uses the termnatural distinction; this is the much sought

after goal of clustering — finding an “intrinsic classification” or an “inherent struc-

ture” in data. He states that the better we are at finding an inherent structure in data,

the more knowledge we shall therefore possess about it. Furthermore, he states that

the bigger the volume of data is (more numerous objects), themore necessary it is to

develop better clustering methods. He mentions a key aspectof all clustering methods:

little information is availablea priori. Interestingly, the quotation emphasises the im-

portance offeature selection, e.g., being one-hoofed doesn’t put the horse and swine

in the same genera. However, feature selection is considered to be out of the scope of

the clustering problem in all modern studies.2

1.1.1 Clustering Applications

The explosion of sensory and textual information availableto us today has caused

many data analysts to turn to clustering algorithms to make sense of the data (thereby

heeding Linnaeus’s warning on “confusion”). It has become aprimary tool for so-

called knowledge discovery [Fayyadet al., 1996a; Fayyadet al., 1996b], data mining,

2There is a case though for its inclusion back into the clustering domain especially in concept-
forming and machine learning applications, [Mirkin, 1999]. Our research, however, has followed the
established distinction betweenfeature selectionandclustering.

19



1.1. CLUSTERING 20

and intelligent data analysis [Liu, 2000]. In fact, the massively-sized data sets of these

applications have placed high demands on the performance ofthe computationally

expensive clustering algorithms.

Clustering is used in various applications. In general, it can assist in [Backer,

1995]:

1. Formulating hypotheses concerning the origin of the data(e.g., evolution stud-

ies).

Investigating clustering behaviour at various scales of measurement provides a

hierarchical description of the data. The hierarchical description captures the

early formation of clusters and how they break down to smaller ones and so

on. This can aid in formulating hypotheses about the system generating the data,

particularly in biological taxonomy applications. (See Chapter 2 for more details

of hierarchical clustering.)

2. Describing the data in terms of a typology (e.g., market analysis).

Profiles of consumers, including their purchasing behaviour, may cluster around

a small number of “consumer types”, this is then used to improve marketing

performance.

3. Predicting the future behaviour of types of this data (e.g., modelling economic

processes).

If the temporal data tends to cluster, the predictive process can be simplified by

identifying patterns of temporal behaviour based on clusters. This can be then

generalised to similar types of data.

4. Optimising a functional process (e.g., information retrieval).

Identifying clustering behaviour in demand-driven environments can help in op-

timising access to the resources under demand so that improved responsiveness

is achieved.

20



1.1. CLUSTERING 21

1.1.2 Clustering Paradigms

Above, we mentioned one way of describing clustering structures within a number of

objects, which is: assign a cluster label for every object. We can then, perhaps, do

a search on a specific label to find out which objects belong to it. However, there

are other ways of describing the discovered structure and this depends on the cluster-

ing paradigm being followed. These paradigms reflect the different assumptions and

approaches taken by researchers in the field.

In Table 1.1 we list the five main clustering paradigms. We describe the main

feature of each paradigm and give recent examples from the literature. Each of these

paradigms is not exclusive and considerable overlap existsbetween them. In Chapter

2, we will concentrate on only the hierarchical and partitional paradigms.

1.1.3 Fuzzy Clustering

Our research has used the paradigm of fuzzy clustering whichis based on the elements

of fuzzy set theory. Fuzzy set theory employs the notion thatfor a given universe of

discourse, every element in the universe belongs to a varying degree to all sets defined

in the universe. Infuzzy clustering, the universe of discourse is all the objects and the

sets defined on the universe are the clusters. Objects are notclassified as belonging

to one and only one cluster, but instead, they all possess a degree of membership with

each of the clusters.

The most widely used fuzzy clustering algorithm is called fuzzy
-means, or FCM.

In the five years between January 1995 to December 1999 there were 124 journal

papers containing “fuzzy c-means” in their titles or abstracts. The subject areas of

the journals were many and included Process Monitoring, Soil Science, and Protein

Engineering. The papers were split between those reportingon an application of FCM

and those reporting on improving its performance in some way. Being so widely used,

21



1.1. CLUSTERING 22

Paradigm Description and Recent Literature

Hierarchical Produces a tree-like description of the clustering structure.
The tree is constructed by recursively merging similar ob-
jects to form clusters, then merging the clusters to form new
super-clusters, this ends when all clusters have merged into
one super-cluster. Cutting the tree at any level provides a par-
tition of the objects.

[Bajcsy & Ahuja, 1998], [ElSonbaty & Ismail, 1998]
Graph-theoretic Views the objects as nodes in a weighted network, or graph.

This is very helpful for two-dimensional dot patterns. The
weight between one node and another is the distance between
them using an appropriate metric. The problem, thus, becomes
a graph-theoretic one where, for example, a minimal spanning
tree is constructed on the dot pattern. This can help illustrate
the clustering structure.

[Brito et al., 1997], [Pacheco, 1998], [Shapiro, 1995]
Mixture Models Assumes the objects were generated by a mixture of proba-

bility distributions. Determination of the parameters of each
distribution defines the clusters.

[McLachlan & Basford, 1988], [Fraley & Raftery, 1998],
[Banfield & Raftery, 1993]

Partitional Clusters are disjoint partition of objects. An object belongs to
only one cluster; crisp membership. Usually employs notion
of prototypes around which objects cluster, and an objective
function to assess a given partition.

[Lin & Lin, 1996], [AlSultan & Khan, 1996]
Fuzzy An object possesses varying degrees of membership with

more than one cluster. Extends partitional paradigm, but ex-
tensions for all other paradigms are being proposed.

[Bezdek, 1981], [Hoppneret al., 1999], this dissertation

Table 1.1: Clustering Paradigms with examples of recent literature.
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FCM is known to have certain shortcomings. We will be discussing these shortcomings

and proposing our own solution to a particular but importantshortcoming later in this

thesis.

1.2 Image Analysis

Today, imagingplays an important role in medical diagnosis, and in planning, exe-

cuting, and evaluating surgical and radiotherapeutical procedures. The information

extracted from images may include functional descriptionsof anatomical structures,

geometric models of anatomical structures, or diagnostic assessment.

Most medical imaging modalities provide data in two spatialdimensions (2D) as

well as in time (2D+ time cine sequence). Data in three spatial dimensions (3D)

as well as in time (3D+ time, so-called 4D) are also becoming common. The large

amount of data involved necessitates the identification orsegmentationof the objects

of interest before further analysis can be made. The result of this segmentation process

is the grouping or labelling of pixels into meaningful regions or objects. Currently,

segmentation is often carried out manually by experienced clinicians or radiologists.

There is a very strong intuitive similarity between clustering and segmentation;

both processes share the goal of finding accurate classification of their input. Fuzzy

clustering, therefore, has been used for image segmentation for the past twenty years

[Pal & Pal, 1993; Bezdeket al., 1993; Bezdeket al., 1997]. The process of using

clustering in image analysis is generally flexible and therefore a lot of decisions are

taken ad-hoc. We will explore this process in Chapter 5 of this thesis. Also, in Chapter

6, we describe a specific application of fuzzy clustering to cardiac MR image analysis.
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1.3 General Framework and Motivation

The ability to learn is an outstanding human faculty. This faculty allows us to interact

and deal successfully with new situations and to improve ourperformance at whatever

task we are performing. A simplified model of learning is thatit is a process over

time that uses its percepts, or perceptive input from sensors, to add continuously to

and refine knowledge about its environment [Rumelhartet al., 1986; Russel & Norvig,

1995].

The discipline of science concerned with designing computer programs that learn,

so-called Machine Learning, concentrates on supervised learning methods [Niyogi,

1995; Mitchell, 1997]. These methods must be presented withprior training examples

so that they can perform in a successful manner when dealing with new data. The

training examples consist of a finite number of input-outputpairs. From this training

set, the learning agent must discover the learning functionso that when it is presented

with unencountered data, it produces a “reasonable” output. The learning function

represents the knowledge gained by the learning agent. Supervised methods, thus,

assume the existence of a training set for the percepts of thelearning agent. What

about when there is no training set, as is often the case in early learning experiences?

Here, unsupervised learning methods must be used. These methods operate on only

the input percepts because no training examples are available. They must work on the

basis of minimal assumptions about the data. Thus, it is these methods that capture

the formative part of learning most [Michalski & Stepp, 1983; Stepp & Michalski,

1986]. Unsupervised learning acts as an exploratory tool, atool by means of which a

preliminary model may be generated.

One of the primary unsupervised learning methods is clustering. Thus, the research

we carried out was motivated by the desire to improve and develop clustering methods

further so that better learning agents may be built.

Our research was also motivated by another interest. Human beings can by seeing
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a picture recognise things in it as well as learn new things about the scene. Studies of

the human visual sytem suggest that one of the primary operations carried out is clus-

tering of visual sensory data [Ahuja & Tuceryan, 1989; Mohan, 1992; Li, 1997]. The

research we undertook, particularly in the application of clustering to image analysis,

was motivated by the similarities between clustering and perceptual grouping in the

human visual system.

1.4 Research Aims

The aims of our research are:-

1. To investigate the main fuzzy clustering algorithms and to identify their stengths

and weaknesses.

2. To study the process of using clustering for image segmentation and analysis.

3. To apply the results of our research in a medical image analysis problem.

1.5 Main Research Contributions

Our main research contributions can be summarised as:-

1. We studied and investigated the FCM algorithm thoroughlyand identified its

main strengths and weaknesses.

2. We developed a systematic method for analysing FCM’s classification accuracy

when it is used to cluster data sets that contain clusters of very different sizes

and populations.
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3. We proposed a new algorithm, based on FCM, which performs far more accu-

rately than FCM on data sets like those described above. We also investigated

performance properties of our new algorithm.

4. We identified the main decision points encountered when applying clustering

methods to image analysis.

5. We carried out a case study in which we applied fuzzy clustering as the main

image analysis tool for a novel type of image in cardiac Magnetic Resonance

Imaging (MRI).

We believe these contributions provide new understanding and methods in regard

to our Research Aims.

1.6 Outline of this Dissertation

This dissertation can be viewed as constituting two parts: the first part is concerned

with the clustering of data of any type, whereas the second part is concerned with the

clustering of data extracted from images. Chapters 2, 3, and4 focus on the first part,

and Chapters 5 and 6 focus on the second part.

Chapter 2,The Basics of Data Clustering, furnishes the reader with the general

framework of the data clustering problem. The nomenclaturethat we used throughout

the dissertation is presented. Examples of data typically used in clustering papers are

shown. Hierarchical and Partitional clustering are described. A brief outline of two

well-established clustering algorithms is given in order to familiarise the reader with

the approaches used in solving the clustering problem. Finally, a brief commentary on

new ideas in the clustering literature is presented.

Chapter 3,Fuzzy Clustering, presents a critical review of the fuzzy clustering field,

but particularly algorithms based on an objective functionmodel and relating to FCM.
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First, the FCM algorithm is examined in detail. Second, extensions and developments

on FCM are briefly reviewed. The Chapter concludes with an overview of the weak-

nesses of FCM.

Chapter 4,A New Algorithm for Fuzzy Clustering, presents the Population Diame-

ter Independent (PDI) algorithm. This is an algorithm we propose that alleviates one of

the important weaknesses of the FCM algorithm which is its tendency to mis-classify

a data set containing smaller clusters located close to larger ones. An experiment is

presented to analyse FCM’s shortcoming and to motivate the new algorithm, PDI. The

name Population-Diameter Independent is given to the algorithm because its perfor-

mance remains more accurate than FCM and independently fromthe populations and

diameters of clusters involved. The Chapter concludes witha review of some of PDI’s

performance parameters.

Chapter 5,Clustering of Medical Images, discusses the application of fuzzy clus-

tering algorithms to image analysis, particularly segmentation. We break the analysis

process into feature extraction, clustering, and post-processing, giving our experiences

with the decisions involved in each stage. Within this framework, we give examples of

successful applications of this process. We also carry out acomparison between FCM

and PDI on synthetic medical images and demonstrate PDI’s strength in this regard.

Chapter 6,Application to Medical Image Analysis, presents the results of our work

to analyse Magnetic Resonance cardiac images. The work aimsto track the left ven-

tricle in cine images of the heart. The types of image we used contain velocity data

as well as tissue density data. We followed the framework we outlined previously and

conclude by reporting our results on this novel application.

Chapter 7,Conclusions and Further Work, summarises the conclusions of our re-

search and outlines several ideas for further work based on the results we achieved.
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CHAPTER 2

The Basics of Data Clustering

Stated simply, the clustering problem is:

Given a collection ofN objects, each of which is measured on each ofp
features, devise a grouping scheme for grouping the objectsinto 
 classes.

The number of classes and the characteristics of the classesare unknown

and should be determined.

In this Chapter, we expand on this definition and provide an introduction to the field.

We defer the subject of Fuzzy Clustering to the next Chapter.Definitions of the nomen-

clature used for the remainder of the dissertation are provided in Section 2.1, and ex-

amples of dot patterns encountered in clustering literature are presented in Section 2.2.

Classically, clustering algorithms have been divided intoPartitional and Hierar-

chical. In Section 2.3, hierarchical and partitional algorithms are described with the

specific examples of the Single Link hierarchical algorithmand the Hard
-Means par-

titional (HCM) algorithm. The Chapter concludes with a brief review of new directions

in clustering.
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Figure 2.1: An example of a data set.

2.1 Notation and Terminology

In general, we seek to clusterN objects, or observations. An observation may consist

of a set ofp numeric attributes or features. If that is the case, we name the collection

of N � p values thedata set. Figure 2.1 illustrates this concept.

Let the data set to be clustered be defined asX . The setX consists ofN feature

vectorsor data points, x. Eachx consists ofp features such thatx 2 Rp.X = fx1;x2; : : : ;xNg:
Assume we wanted to find
 clusters inX , where2 � 
 < N . In crisp cluster-

ing, the goal would be to partitionX into the disjoint non-empty partitionsS1; � � � ; S

defined by: X = S1 [ S2 [ : : : [ S

where Si \ Sj = � i; j 2 f1; : : : ; 
g; i 6= j
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and Si 6= � i 2 f1; : : : ; 
g
In fuzzyclustering (described in detail in Chapter 3), the goal would be to find

the partition matrix , U . The partition matrix is a realN � 
 matrix that defines

membership degrees for each feature vector.U is defined by:U 2 RN�
 = [uik℄ i 2 f1; : : : ; 
g; k 2 f1; : : : ; Ng
whereuik is thedegree of membershipof xk in clusteri,uik 2 [0; 1℄ 8i; k:

Clusters should contain feature vectors relatively similar to one another. In the

general case, therefore, the results of a given clustering method very much depend on

the similarity measure used. The similarity measure will provide an indication of

proximity, likeness, affinity, or association. The more twodata objects resemble one

another, the larger a similarity index and, conversely, thesmaller a dissimilarity index.

In this sense, the Euclidean distance between two data vectors is a dissimilarity index,

whereas the correlation is a similarity index.

Data sets may not always contain only numeric data. Many feature observations,

especially data collected from humans, are binary. These would require an appropri-

ate similarity measure like:matching coefficients. In some cases, feature observa-

tions would have been obtained from a time-series. An appropriate similarity measure

should then take account of the temporal nature of these data. Furthermore, there are

situations where the features would be of mixed types, or when data observations are

missing. We refer the reader to [Backer, 1995] for an introduction to common ways of

extracting similarity measures for binary, mixed, and missing data.

In some applications dissimilarity data are collected directly in the form of adis-
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similarity matrix . The dissimilarity matrix occurs as anN �N matrix whose entries

measure dissimilarity between all pairs ofN observations. It is also sometimes called

the proximity data. This type of data set is commonly used as input to hierarchical

clustering algorithms (described in the next Section). Thedissimilarity matrix can in

general be derived from the feature-vector data set by using, for example, Euclidean

distance. The reverse transformation is not always possible and requires special ordi-

nation techniques [Everitt, 1978]. We do not use dissimilarity data in this dissertation.

Researchers inPattern Recognitionusually make a distinction betweenclustering

andclassification. This distinction is that clustering is an unsupervised process where

no, or little, prior information is given on the classes in the data. On the other hand, the

classification problem [Bishop, 1995; Mitchell, 1997] utilises pre-classified training

data which is then used to deal with previously encountered data. For the rest of the

dissertation, we will not consider classification, only clustering, but we will use the

wordsclusterandclassinterchangeably.

Most partitional clustering methods utilise the concept that: for a given clusteri, there exists an ideal pointpi, such thatpi 2 Rp, which best represents clusteri’s members. This point is called theprototype of the cluster. Thus, the clustering

problem becomes that of finding a set of
 prototypes,P = fp1;p2; : : : ;p
g where pi 2 Rp 8i 2 f1; : : : ; 
g
that best represent the clustering structure inX .

We note that in the general case, prototypes are not restricted to points. This is so

that they can better represent any possible cluster shape. For example, a ring-shaped

cluster would be best represented with a circle-prototype.Further, a prototype may be

composed of a set of points instead of a single point. However, choosing non-single-

point prototypes renders the clustering problem harder. Wedo not delve into this in

this dissertation. For now, we assume a set of single-point-prototypes as defined above.
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The clustering algorithms we investigate in this thesis work on entirely numerical

data and employ adistance metricto measure similarities between points, or between

points and prototypes. For a given pointxk and a given prototypepi, by far the most

common of all metrics is the Euclidean, or squared error one:kxk � pik = q(xk1 � pi1)2 + � � �+ (xkp � pip)2 (2.1)

Another common, computationally simple, metric is the Manhattan (or taxicab)

one. kxk � pik = j(xk1 � pi1)j+ � � �+ j(xkp � pip)j (2.2)

The Mahalanobis metric is sometimes preferred to the Euclidean one because it is

invariant to linear transformation of the data:kxk � pik = (xk � pi)TC�1x (xk � pi) (2.3)

whereCx is the covariance matrix ofX . The price to pay for the scale-invariance of the

Mahalanobis metric is the determination of covariance matrix and added computational

complexity.

Clustering methods often employ anobjective function to provide a numeric eval-

uation of a tentative clustering of the data set. Usually, this is employed within an

iterative scheme where tentative solutions are evaluated to obtain progressively bet-

ter partitions. This type of clustering methods is known as:objective-functional, or

objective-function-based, and is strongly related to optimisation theory. Objective

functions are usually formulated on the basis of distances.So, for example, the fa-

miliar “sum of squared errors” criterion may be translated to the clustering framework.

More detail will be provided on this in the following Chapters.
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2.2 Examples of Data Sets

(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Sample dot patterns of two clusters of varying densities and separation —
reproduced from [Zahn, 1971].

In 1971, Charles Zahn wrote an influential paper on clustering using minimum

spanning tree techniques, [Zahn, 1971]. In Figures 2.2-2.6, we show the same scat-

ter plots of the examples of two-dimensional data sets that he presented in his paper.

These data sets continue to present a challenge to researchers in clustering. In almost

thirty years, no single clustering algorithm has been developed capable of identifying

successfully the same clusters humans perceive inall of these plots.

The six dot patterns of Figures 2.2(a),(b), (c), (d), (e), and (f) show a pair of clus-

ters but with different varying point densities and varyingdegrees of separation. In
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(a), the two clusters have approximately the same density. In (b), they have unequal

densities. In (c), the densities vary proportionally to thedistance from the mean. In

(d), the clusters have smoothly varying densities, and the separation appears nearest

the points of highest densities of the two classes. In (e) and(f), the separation between

clusters becomes almost non-existent, as the clusters touch each other. These six dot

patterns should not pose a problem to a lot of the establishedalgorithms available to-

day. However, in certain situations the accuracy of detected clustering structure may

be compromised. Our research has examined this issue in detail and we shall describe

our results in Chapter 4.

Figure 2.3: Sample dot pattern of linear, branch-like clusters.

Figure 2.3 shows a plot of clusters of linear fragments with abranch-like structure.

Here, humans might themselves be unable to agree on whether there is any clustering

and if so, what it is. However, given the information that plots of this kind consist

of linear fragments, most of us would not have problems identifying the clustering

structure. On the other hand, clustering algorithms that are specifically designed to

detect linear cluster structures might fail.

Figure 2.4 shows a plot of two well defined clusters, but in a different type of pat-

tern than that of Figures 2.2(a), (b), or (c). Here, the performance of many algorithms

would be ad-hoc, depending on the length of each “string” of points and how far the

strings are apart.

Figure 2.5 shows a plot of clusters with one class enclosed bythe other, but both

34



2.2. EXAMPLES OF DATA SETS 35

Figure 2.4: Sample dot pattern of linear, string-like clusters.

Figure 2.5: Sample dot pattern of ring-like and circular clusters.

well-defined. With the exception of the shell clustering algorithms, no other algo-

rithms would be capable of handling ring-like patterns likethis. Shell clustering is a

recent development in cluster analysis and suffers from thefact that it looks for only

shells. The non-ring shaped cluster within the shell in Figure 2.5 may confuse such

algorithms.

Figure 2.6 shows a point pattern that may have been extractedfrom an image pro-

cessing application. Region- or edge-based operators may have been applied to the

original image and the resulting image then thresholded. Most clustering algorithms

we know would fail with this point pattern because of the containment of one group of

points within another.

Having realised the limited success achieved in Clusteringso far, we should hasten

to add that with regards to the point patterns of Figure 2.6 our expectations are mainly
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Figure 2.6: Sample dot pattern possibly extracted from an image after some image-
processing stages.

dictated by human perception, rather than machine learningor knowledge discovery.

It is debatable whether identifying the structure with a pattern like that of Figure 2.6

could be of use within such contexts.

2.3 Hierarchical and Partitional Clustering

Clustering methods tend to be divided in the literature intohierarchicalandpartitional

methods. In hierarchical clustering (the older of the two),a tree-structured partitioning

of the data set is produced. The tree is either constructed top-down or bottom-up, with

an all-inclusive cluster at the top of it and the individual data points at the bottom of it.

Different partitions may be suggested according to where we“cut” the tree.

In partitional clustering, only one suggested partition isproduced. Partitional meth-

ods also usually produce prototypes, or typical representatives, of the clusters. These

methods have become prevalent mainly due to their low computational cost.

2.3.1 Hierarchical Clustering

Hierarchical clustering algorithms transform a proximitydata set into a tree-like struc-

ture which for historical reasons is called adendogram[Jardine & Sibson, 1971]. The
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Figure 2.7: An example of the dendogram that might be produced by a hierarchical al-
gorithm from the data shown on the right. The dotted lines indicate different partitions
at different levels of dissimilarity.

dendogram is constructed as a sequence of partitions such that its root is a cluster cov-

ering all the points and the leaves are clusters containing only one point. In the middle,

child clusters partition the points assigned to their common parent according to a dis-

similarity level. This is illustrated in Figure 2.7. (We remark that the dendogram is not

a binary tree.) The dendogram is most useful up to a few levelsdeep, as the clustering

becomes more trivial as the tree depth increases.

Agglomerativeclustering is a bottom-up way of constructing the dendogram. The

hierarchical structure begins withN clusters, one per point, and grows a sequence of

clusterings until allN observations are in a single cluster.Divisiveclustering on the

other hand is a top-down way of constructing the dendogram. The structure begins with

one cluster containing allN points and successively divides clusters untilN clusters

are achieved.

Agglomerative hierarchical clustering is computationally less complex and, for this

reason, it is more commonly used than divisive hierarchicalclustering. A generic

agglomerative hierarchical clustering technique would consist of the steps shown in

Figure 2.8. Various algorithms can be constructed depending on the way in which the
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1 Assign each data vector to a cluster

2 Find the smallest entry in the dissimilarity matrix and merge the corresponding
two clusters

3 Update the dissimilarities between the new cluster and other clusters

4 Return to step (2) until all vectors are in one cluster

Figure 2.8: A generic agglomerative hierarchical algorithm.

dissimilarities are updated in step (3). In Section 2.3.2 wedescribe one such way.

Both agglomerative and divisive techniques suffer from thefact that if, say, at one

point during the construction of the dendogram, a misclassification is made, it is built

on until the end of the process. At some point of the dendogram’s growth an observa-

tion may be designated as belonging to a cluster in the hierarchy. It remains associated

with the successors of that cluster till the dendogram is finished. It is impossible to

correct this misclassification while the clustering process is still on. Optimization of

clusterings is then called for [Fisher, 1996].

After the tree has been produced, a multitude of possible clustering interpretations

are available. A practical problem with hierarchical clustering, thus, is: at which value

of dissimilarity should the dendogram be cut, or in other words, at which level should

the tree be cut. One heuristic commonly used is to choose thatvalue of dissimilarity

where there is a large “gap” in the dendogram. This assumes that a cluster that merges

at a much higher value of dissimilarity than that at which it was formed is more “mean-

ingful”. However, this heuristic does not work all the time [Jain, 1986].

2.3.2 Example: Single link algorithm

The Single Link Algorithm is an instantiation of the genericagglomerative clustering

procedure and is one of many possible agglomerative algorithms. Its steps are outlined
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1 The dissimilarity matrix, if unavailable, is calculated at first.

2 The smallest entry in the matrix is chosen, and the two points,a andb are fused
together as one group.

3 The dissimilarity matrix is updated by reducing its size byone and recalculating
the distances using the nearest neighbour rule. Thus for observationk and the
newly formed(ab) cluster: d(ab)k = min(dak; dbk)

4 Go back to step (2) until the matrix is 1x1.

Figure 2.9: The Single Link Algorithm

in Figure 2.9. For a description of other possible algorithms see [Everitt, 1974].

2.3.3 Partitional Clustering

Most partitional clustering algorithms assumea priori a number of clusters,
, and

partition the data set into
 clusters. Obviously, there can be many partitions of a given

data set, but there will be only a few which identify the clustering in the data set.

To arrive at a correct partition, an objective function can be formulated that measures

how good a partition with respect to the data set is. If a givenpartition minimises

the objective function (or maximises, depending on the formulation of the objective

function), we assume that the optimal partition has been found. A generic partitional

clustering technique would probably operate as in Figure 2.10.

Most objective function-based algorithms use
 cluster prototypes to facilitate the

evaluation of a given partition. Each prototype is assumed to be a typical representa-

tive of the group of points in that cluster. In the ideal case,each prototype will take the

general shape of its cluster. In practice, however, most algorithms assume point proto-

types because this simplifies the mathematics. Since objective functions are typically
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1 Fix 
, 2 � 
 < N , choose the objective function you wish to minimise, and
initialise the partition matrix

2 Evaluate the objective function, and modify the partitionmatrix accordingly

3 If consecutive partitions have not changed by a fixed threshold, stop, otherwise,
return to step (2)

Figure 2.10: A generic partitional clustering algorithm.

non-linear, the optimal partition will usually have to be searched for algorithmically.

The initial placement of the prototypes, thus, is importantsince there can be many

suboptimal solutions that will trap the prototypes and terminate the algorithm.

Objective functions are specified using the data set,X , a distance metric,d, the

partition matrix,U , and the set of cluster prototypesP. The data setX and the metricd are fixed and act as input.U andP are variables whose optimal values are being

sought. This can be represented mathematically as:min [J(P;U ;X ; d; : : :)℄
whereJ is a generic objective function whose minimum value is beingsought. The

dots afterD indicate that a given formulation of the objective functioncan use its

own set of parameters. The squared error criterion, which minimises offsets between

a prototype and its nearest points, is the most common formulation of the objective

function.

2.3.4 Example: Hard
-Means (HCM)

The HCM algorithm has appeared in different equivalent versions over the years since

its first appearance in the sixties. It was given the nameHard because it produces a

crisp, or hard, partition (as opposed to fuzzy, or soft, partition, as described before).

40



2.3. HIERARCHICAL AND PARTITIONAL CLUSTERING 41

Further, HCM shares the
-meanspart of its name with many prototype-based parti-

tional algorithms. The reason is because they search for
 prototypes, which intuitively

are the means, or centroids, of the clusters they represent.The objective function min-

imised in this algorithm is:J = 
Xi=10� Xk;xk2Si d2ik1A = 
Xi=10� Xk;xk2Si kxk � pik21A
whereSi is the partition ofX corresponding to clusteri, andd2ik is a norm metric,

usually the Euclidean distance, measuring the distances between the cluster prototypes

and those data vectors belonging to it:xk 2 Si. In this way,J is the overall or

total within-cluster sum of squared errors, and thus, carries a geometrically appealing

rationale. The equation for determination of the prototypes is given by:pi = NXk=1uikxk= NXk=1 uik (2.4)

whereuik is either0 or 1 depending on membership ofxk in Si. From the equation we

can see that the prototypes are the geometrical centroids oftheir respective cluster’s

data members. Equation 2.4 is arrived at by setting the gradient ofJ with respect to

eachpi equal to zero. The derivation is similar to the one in Appendix C which is

explained in detail later.

Most versions of HCM operate in the same way as the oldest and frequently cited

algorithm of Forgy [Forgy, 1965] which is given in Figure 2.11. Its intuitive proce-

dure is: guess
 hard clusters, find their centroids, reallocate cluster memberships to

minimise squared errors between the data and current prototypes; stop when looping

ceases to lowerJ . Since the memberships are discrete, either0 or 1, the notion of local

minimum is not defined forJ , and likewise convergence would be undefined.

There are probably hundreds of papers detailing the theory and applications of

HCM (other names like ISODATA,k-means, etc, have also been used); [Duda & Hart,
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1 
 cluster prototypes (centroids), or equivalently, an initial partition is randomly
generated

2 Each feature vector is assigned to the cluster of the nearest prototype

3 If no change of cluster memberships for all feature vectors, stop. Otherwise,
calculate the centroids for the c new clusters according to equation 2.4, and go
to (2)

Figure 2.11: The Hard
-Means Algorithm.

1973] surveys some of this literature. HCM suffers from the weakness of producing

spurious solutions because the algorithm’s iterative steps may not converge [Bezdek,

1980; Selim & Kamel, 1992]. It also does not provide the wealth of information fuzzy

clustering provides.

2.4 Remarks

In this Chapter, we reviewed Clustering terminology and described our nomenclature.

We also described some hierarchical and partitional clustering algorithms. In applying

any clustering method, some issues need to be addressed — these include:

1 studying the raw data in terms of processing it, dealing with missing values in it,

or deciding on the features to use,

2 determining the similarity measure that will be incorporated in the clustering

process,

3 studying the parameter list of the algorithm and setting the parameters to appro-

priate values, perhaps revisting this step a number of timesto experiment with

different values,
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4 for algorithms that require iteration, or consist of an optimisation procedure, re-

runs may be required to discover if different solutions willsurface,

5 finally, some form of validation, or quantified cross-checking, of different solu-

tions may be used to decide on the best solution.

Before moving to the main theme of our research, fuzzy clustering, we conclude

this Chapter with examples of recent novel clustering approaches.

As was mentioned before, most partitional algorithms utilise a cluster prototype

in their calculations. In general, it is not effective to describe a cluster using a single

prototype if the cluster has an elongated or nonconvex shape. Examples of recent work

to tackle this problem include [Chaudhuri & Chaudhuri, 1997] where more than one

seed was used to describe a cluster if it passes a nonconvexity test, and [Tyree & Long,

1999] where linked line segments based on density linkage were used.

The notion of scale space was used for hierarchical clustering in [Roberts, 1996],

producing good results. However, the problem of where to cutthe resulting tree still

persists. Scale space was also used in [Kothari & Pitts, 1999] to find and validate

clustering results.

In conclusion, as was discussed in this Chapter, hierarchical methods are compu-

tationally costly and always suffer from the problem of not knowing where to cut the

generated tree. Crisp partitional methods, while computationally inexpensive are no-

torious for getting trapped in spurious solutions. But bothparadigms possess a further

underlying shortcoming; this is their inability to describe effectively data sets with a

clustering structure that is not crisp. It was this shortcoming that motivated the intro-

duction of fuzzy clustering methods. Naturally, these opennew research problems, as

we see in the next two Chapters.
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CHAPTER 3

Fuzzy Clustering

In the previous Chapter we described the general clusteringproblem and gave exam-

ples of crisp hierarchical and partitional algorithms.

In this Chapter, we describe fuzzy clustering algorithms particularly those related

to the fuzzy
-means (FCM) algorithm. FCM’s objective function has been generalised

and extended as well as changed in several ways. For this reason, FCM is sometimes

described as a model for fuzzy clustering. Our aim in this Chapter will be to define and

describe the FCM model. We then describe several algorithmsthat are based on this

model. We also highlight the strengths and shortcomings that these various algorithms

have. In the next Chapter, we propose our own modification to FCM.

The concept of “fuzziness” underpins fuzzy clustering. By fuzziness is meant im-

precision as to the exact class of an object. When we “fuzzy cluster” a data set we allow

for data points to belong with varying degrees to more than one cluster. We briefly in-

troduce Fuzzy Set Theory in the first Section of this Chapter in order to familiarise the

reader with it.
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3.1 Fuzzy Set Theory

Fuzzy Set Theory was developed by Lotfi Zadeh [Zadeh, 1965] inorder to describe

mathematically the imprecision or vagueness that is present in our everyday language.

Imprecisely defined classes play an important role when humans communicate and

learn. Despite this imprecision, humans still carry out sensible decisions. In order to

deal with these classes, Zadeh introduced the concept of afuzzy set. Fuzzy sets parallel

ordinary mathematical sets but are more general than them inhaving a continuum of

grades, or degrees, of membership.

Let X be a space of points, or objects. Let us denote any element ofX by x. A

fuzzy setA inX is now defined by amembership function, fA(), which associates with

each point inX a real number in the interval[0; 1℄, with the value offA(x) representing

the “degree of membership” ofx in A. The nearer the value offA(x) to unity, the

higher the degreee of membership ofx in A.

Based on the above definition for the fuzzy set, extensions for definitions involving

ordinary sets likeempty, equal, containment, complement, union, andintersectionhave

been proposed. We refer the reader here to the wide literature available on this matter

[Kosko, 1993; Zadeh & Klir, 1996; Kliret al., 1997; Cox, 1998].

In the fuzzy clustering setting, a cluster is viewed as a fuzzy set in the data set,X .

Thus each feature vector in the data set will have membershipvalues with all clusters

— membership indicating a degree of belonging to the clusterunder consideration.

The goal of a given fuzzy clustering method will be to define each cluster by finding

its membership function.

In the general case, the fuzzy sets framework provides a way of dealing with prob-

lems in which the source of imprecision is the absence of sharply defined criteria of

class membership rather than the presence of random variables. Fuzzy clustering fits

well with the rest of the fuzzy sets and systems applications. It has been used with

success in, for example, optimising membership functions for forming fuzzy inference
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rules, [Chiet al., 1996; Chen & Wang, 1999].

Fuzzy set theory is widely used as a modeling tool in various Pattern Recognition

and Image Analysis problems, [Rosenfeld, 1979; Philipet al., 1994] for example, be-

cause of the relative ease with which it can be applied to a problem and the robustness

of the resulting solution.

For a discussion of the future directions of fuzzy logic as seen by its founder see

[Zadeh, 1995; Zadeh, 1996; Zadeh, 1999]. Fuzzy logic is seenultimately as a method-

ology for computing with words(CW) in which words are used in place of numbers

for computing and reasoning. The rationale for CW is that words become a necessity

when the available information is too imprecise to justify the use of numbers. And also

when there is a tolerance for imprecision which can be exploited to achieve tractability,

robustness, low solution cost, and better human-computer interaction.

3.2 The Fuzzy
-Means Algorithm

The FCM algorithm took several names before FCM. These include Fuzzy ISODATA

and Fuzzyk-Means. The idea of using fuzzy set theory for clustering is credited to

Ruspini [Ruspini, 1969; Ruspini, 1970]. Dunn is credited with the first specific for-

mulation of FCM, [Dunn, 1973], but its generalisation and current framing is credited

to Bezdek, [Bezdek, 1981]. A collection of influential papers in the development of

fuzzy clustering methods can be found in [Bezdek & Pal, 1992]. The FCM objective

function and its generalisations are the most heavily studied fuzzy model in Pattern

Recognition.

As mentioned in Section 2.1, we expect FCM to be a clustering algorithm that

provides a fuzzy partition of the input data set. However, there is an infinite range

of possible fuzzy partitions. Therefore, an optimisation model or objective function

must be devised to search for the optimal partition according to the chosen objective
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function. FCM is, thus, first and foremost an objective function. The way that most

researchers have solved the optimisation problem has been through an iterative locally-

optimal technique, called the FCM algorithm. This is not theonly way to solve the

FCM objective function, for example, in [AlSultan & Selim, 1993] it is solved by the

Simulated Annealing optimisation technique; in [Hathaway& Bezdek, 1995] the prob-

lem is reformulated and general optimisation methods are suggested for its solution;

in [Al-Sultan & Fedjki, 1997] it is solved by a combinatorialoptimisation technique

called Tabu Search; in [Hallet al., 1999] it is solved by thegenetic algorithmwhich

is an optimisation technique based on evolutionary computation; and in [Runkler &

Bezdek, 1999] it is solved within an alternate optimisationframework. In fact, it is not

impossible that an exact solution to the problem may be formulated.

3.2.1 FCM Optimisation Model

The formulation of the FCM optimisation model is :-

MinimiseJFCM(P;U ;X ; 
;m) = 
Xi=1 NXk=1(uik)md2ik(xk;pi) (3.1)

subject to the constraint

Xi=1 uik = 1 8k 2 f1 : : : Ng; (3.2)

whereP andU are the variables whose optimal values are being sought.X , 
, andm
are input parameters ofJFCM , where :-� 
 is the number of clusters assumed to exist inX .� m � 1 is a fuzzification exponent that controls how fuzzy the result will be.

The larger the value ofm the fuzzier the solution. Atm = 1 FCM collapses to

HCM, giving crisp results. At very large values ofm, all the points will have

equal memberships with all the clusters.
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represented bypi. U = [uik℄ is the
 � N fuzzy partition matrix satisfying the

constraint stated in Equation 3.2.� N is the total number of feature vectors.� d2ik is the distance between feature vectorxk and prototypepi. The original

formulation of FCM uses point prototypes and an inner-product induced-norm

metric ford2ik given byd2ik(xk;pi) = k xk � pi k2A = (xk � pi)TA(xk � pi):A is any positive definite matrix which in the case of Euclideandistance is the

identity matrix.

3.2.2 Conditions for Optimality

Let the minimisers ofJFCM(P;U) be called(P�;U�). The necessary conditions for(P�;U�) are defined below. These conditions are derived in [Bezdek, 1981] and are

similarly derived for the PDI algorithm in Appendix C.p�i = PNk=1 umikxkPNk=1 umik (3.3)

and u�ik = 1P
j=1 ( d2ikd2jk )1=(m�1) (3.4)

The FCM algorithm is a sequence of iterations1 through the equations above,

which are referred to as the update equations. When the iteration converges, a fuzzy

1This is referred to as Picard iteration in [Bezdek, 1981]; Picard iteration [Greenberg, 1998] is
a successive approximation scheme commonly used to solve differential equations, which starts with
initial guesses of the variables and by means of successive substitution arrives at a solution.
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-partition matrix and the pattern prototypes are obtained.A proof of the convergence

of the iterations to a local minimum can be found in [Bezdek, 1980; Selim & Kamel,

1992].

3.2.3 The Algorithm

See Figure 3.1.

1. Fix 
, 2 � 
 < N ; choose any inner product norm; fixm, 1 � m <1; initialize
the fuzzy membership matrix,U .

2. Calculate
 fuzzy cluster centersP as per Equation 3.3

3. Update membershipsU as per Equation 3.4

4. Compare the change in the membership values using a appropriate norm; if the
change is small, stop. Else return to 2.

Figure 3.1: The FCM algorithm

3.2.4 An Example

Let us give an example of FCM in action. Figure 3.2 shows the data set that we used as

input to FCM (
 = 2). The table on the right of Figure 3.2 tabulates the found partition

matrix.

Whereas the solution is an approximately correct one, the locations of the found

prototypes are not satisfactory since they should be at the centres of the diamond-

like patterns. It is clear that the points located away from the diamond patterns have

influenced FCM’s solution in that they have “pulled” the prototypes away from the

ideal locations. We note that, as expected, the membership values per each point add

up to one.

49



3.2. THE FUZZY C-MEANS ALGORITHM 50

1

2

3

4

1 2 3 4 5 6 7 8 9 10

Data Membershipsx y Cluster 1 Cluster 2

1.8 2 0.997 0.003
2.0 2.2 1.000 0.000
2.0 1.8 0.995 0.005
2.2 2 0.997 0.003
2.0 3.5 0.968 0.032
8.8 3 0.000 1.000
9.0 3.2 0.003 0.997
9.0 2.8 0.003 0.997
9.2 3 0.006 0.994
7 2.8 0.100 0.900

Figure 3.2: A 10-point data set with two clusters and two outlying points. Input data
points are marked with a + and the prototypes found by FCM are marked with x.
Membership values provided by FCM are tabulated on the righthand side. The found
prototypes are at(2:0; 2:2) and(8:7; 3:0) instead of ideal placement at(2:0; 2:0) and(9:0; 3:0).
Outliers and Noise Points

We remark here on our definition of outlier and noise points. There is a lot of literature

on outlier detection and rejection (see [Millar & Hamilton,1999] for a recent review).

In this dissertation, we took the view that every outlier point can be associated with one

cluster in the data in the sense that it would be lying close tothat cluster. Also, we took

the view that the few points in a data set that cannot be said tobe close to any cluster,

be considered noise points. We recognise that a dense collection of outliers could

become, at some scale, a “small” cluster of its own, but we operate on the assumption

that the number of outliers is insignificant and that we already know the correct number

of clusters.

In general, we perceive that outliers should be recognised as “satellite” points to a

given cluster and given an appropriately high degree of membership with that cluster.

However, their presence should not affect the accuracy of determining the location

of the clusters. For noise points, we perceive that they should not receive significant
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memberships with any of the clusters.

3.2.5 Analysis of FCM Model

Let us first start by describing the HCM (hard
-means) model. The optimisation

approach to the clustering problem uses an objective function to measure how good

a suggested partition is compared to an ideal, generalised one. This is facilitated by

using the concept of cluster prototypes; by introducing them, the formulation of the

objective function is made easier. In the ideal scenario, the prototypes are located

within very tightly packed clusters of points so that the distances between every cluster

of points and its prototype would be almost zero. Deviationsfrom this model can then

be formulated, in squared-error fashion, as:
Xi=1 Xk;xk2Si d2ik(xk;pi)
whereSi would be the cluster of points belonging to prototypei. To decide on the

membership of a point with a prototype, a crisp decision is made; it belongs to the

prototype it is closest to.

FCM generalised the notion of membership to emulate the fuzzy clustering struc-

tures found in the real-world. The FCM objective function weighted the distance be-

tween a given data point and a given prototype by the corresponding degree of mem-

bership between the two (the respective entry in the fuzzy partition matrix). Thus,

partitions that minimise this function are those that weight small distances by high

membership values and large distances by low membership values. This was formu-

lated as per Equation 3.1. To visualise this, consider Figure 3.3. If point 6 is given a

high membership value with prototype B as compared to points2 and 3, the overall

objective function score will be minimal compared to any other membership scheme

involving those three points and that prototype.
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Figure 3.3: The distances between points1 � � �8 and prototypes A and B are weighted
by the degrees of memberships. Here, the distances and memberships concerning only
prototype B are shown.
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Figure 3.4: Fixingdax at 1,uax is plotted versusdbx for m = 1:1; 2:0 and5:0. This
clearly illustrates thatuax changes in value depending on the location of the prototypeb. Note that asm approaches 1 the membership decision becomes a crisp one.

However, if things were left at the objective function formulation, without the con-

straint of Equation 3.2, all theuik’s would take the value of zero as this would setJ
to the absolute minimal value of zero, which is a trivial solution. In order to force theuik’s to take values greater than zero, the constraint was imposed. This way, degrees

of membership must take non-trivial values.

Looking now at the minimisers of the objective function, Equations 3.3 and 3.4,

we see that the prototypes are the fuzzy centroids, or means,of their respective mem-

bership function. This is an intuitively-pleasing result.

Further, we see that a point’s membership with a given prototype is affected by how
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far that same point is to the other prototypes. This is illustrated in Figure 3.4, whereuax = 11 + (d2axd2bx )(1=m�1) :
This may cause counter-intuitive behaviour in real-world data. For example, in

the case of a “noise” point lying far outside of two clusters but equi-distantly to both

centroids, such a point would be given a membership of0:5 with each cluster (see

Figure 3.4: all curves pass through0:5 for dbx = 1). The intuitive solution would be

to award such points equal but small membership degrees witheach cluster. However,

such a solution would violate the constraint of equation 3.2(memberships must add

to 1). If we observe Figure 3.4, we notice that a point’s membership degree is not a

function of anything but its relative distances to each prototype. The presence of many

points close to one prototype which is our (human) cue to the “noiseness” of a point,

is not included. Later in this Chapter, we will present briefsummaries of some ideas

proposed to alleviate this counter-intuitive behaviour.

3.2.6 Notes on Using FCM

Several investigations have been made on the best value to choose for the fuzzification

exponent,m, which is chosen a priori. A recent study [Pal & Bezdek, 1995]con-

cludes empirically thatm = 2:0 is a “good” value. This value form has the further

advantage of simplifying the update equations and can therefore speed up computer

implementations of the algorithm.

Many investigations have been made on the convergence properties of FCM, for

example, [Bezdek, 1980; Selim & Kamel, 1992]. The conclusion is that the constraint

of Equation 3.2 is a necessary condition for the proof of convergence to a local mini-

mum of the FCM algorithm.

Investigations have also been made on speeding up the implementation of FCM

53



3.2. THE FUZZY C-MEANS ALGORITHM 54

[Cannonet al., 1986]. Recent examples of such studies are geared towards image

analysis applications [Chenget al., 1998; Smith, 1998], and report orders of magnitude

speed-ups.

3.2.7 Strengths and Weaknesses

The FCM algorithm has proven a very popular method of clustering for many reasons.

In terms of programming implementation, it is relatively straightforward. It employs an

objective function that is intuitive and easy-to-grasp . For data sets composed of hyper-

spherically-shaped well-separated clusters, FCM discovers these clusters accurately.

Furthermore, because of its fuzzy basis, it performs robustly: it always converges to a

solution, and it provides consistent membership values.

The shortcomings of FCM, as we have assessed them independently, are:

1. It requires the number of clusters to look for to be known a priori.

2. Initialisation

(a) It requires initialisation for the prototypes, good initialisation positions are

difficult to assess.

(b) If the iterative algorithm commonly employed for findingsolutions of the

FCM objective function is used, it may find more than one solution de-

pending on the initialisation. This relates to the general problem of local

and global optimisation.

3. It looks for clusters of the same shape (hyper-spheres if using the Euclidean

metric); different cluster shapes cannot be mixed.

4. Its objective function is not a good clustering criterionwhen clusters are close to

one another but are not equal in size or population. This is studied comprehen-

sively in Chapter 4.
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0 2 4 6 8 10 12 14 16 18 20 22 24

Data Membershipsx y Cluster 1 Cluster 2

12.0 3.0 0.975 0.025
12.0 4.0 0.983 0.017
11.5 3.5 0.989 0.011
12.5 3.5 0.967 0.033
21.0 10.0 0.028 0.972
21.0 11.0 0.009 0.991
20.5 10.5 0.014 0.986
21.5 10.5 0.021 0.979
2.0 4.0 0.845 0.155
19.0 20.0 0.174 0.826
11.0 12.0 0.588 0.412

Figure 3.5: A data set containing noise points. The prototypes found by FCM are
also plotted. Membership values provided as output are shown on the right hand side.
The presence of noise points strongly affected the positions of the found prototypes,
furthermore, the noise points’ membership values may be consistent but they are not
intuitive.

5. Its accuracy is sensitive to noise and outlier points (as demonstrated in Figure 3.2

and also again in Figure 3.5 where the placement of the prototypes was affected

by the outlying points). This is so because it squares the “error” between a

prototype and a point, thus, the effect of outlier and noise points is emphasised.

6. It gives counter-intuitive membership values for noise points. Noise points are

those that do not belong to any cluster, thus, their type of memberships should

not necessarily sum to one. In Figure 3.5, for example, the far points to the top

and bottom of the plot should have low memberships with both clusters. How-

ever, FCM gives each of them a membership value of more than0:8 with their

respective nearest cluster. The probabilistic constraintof Equation 3.2 causes

this behaviour.
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3.3 Extensions of FCM

Despite its weaknesses, the strengths of FCM have led researchers to generalise and

extend it further. In fuzzy covariance clustering, coveredin Section 3.3.1, hyper-

ellipsoids can be detected instead of only hyperspheres. Inelliptotype clustering, cov-

ered in Section 3.3.2, lines or planes can be detected by means of looking for hyper-

ellipsoids with a flat thickness. In shell clustering, covered in 3.3.3, boundaries of

spheres and ellipsoids are detected. All these extensions cannot mix cluster shapes,

i.e., they cannot look for a line and a circular shell simultaneously. Furthermore, they

are all very sensitive to initialisation and much more computationally expensive than

FCM. However, they must be considered as necessary evolutionary steps in the devel-

opment of better fuzzy clustering algorithms. This view also underlies our own work

in Chapter 4.

A generalisation was made by Bobrowski and Bezdek [Bobrowski & Bezdek,

1991] of the distance metric norm. For generalisations and extensions relating to han-

dling non-numeric data see [Hathawayet al., 1996; Huang, 1998]. For generalisations

and comparisons with switching regression models see [Hathaway & Bezdek, 1993],

and linear vector quantisation models see [Bezdek, 1992; Karayianniset al., 1996].

3.3.1 Fuzzy Covariance Clustering

Gustafson and Kessel [Gustafson & Kessel, 1979] introduceda new variation on the

FCM functional given by Equation 3.1 by allowing the inner product inducing matrixA used in the distance metric to vary per each cluster. In otherwords, they allowed

each cluster to have its own A-norm with which to measure distances from its proto-

type. This allows different clusters to have differing ellipsoidal shapes. Thus, their

56



3.3. EXTENSIONS OF FCM 57

modified objective function becomes:J(P;U ;A;X ; 
;m) = NXk=1 
Xi=1 umikk xk � pi k2Ai = 
Xi=1 umik �(xk � pi)TAi(xk � pi)�
(3.5)

whereAi is a positive definite symmetric matrix. An additional constraint to the con-

straint of equation 3.2 was imposed. This is:kAik = �i = 
onstant (3.6)

1. Fix 
. Fixm. Initialise allpi. Initialise allAi.
2. Calculate fuzzy partition matrixU by uik = 1P
j=1 ( dikdjk )2=(m�1)
3. Update prototypesP bypi = PNk=1 umikxkPNk=1 umik
4. CalculateA’s by Ai�1 = ( 1�ijCij)1=pCi

whereCi, the fuzzy covariance matrix, is given by:Ci = PNk=1 umik(xk � pi)(xk � pi)TPNk=1 umik
5. If termination condition not achieved, return to step 2.

Figure 3.6: The Gustafson-Kessel Algorithm

The resulting optimality conditions remain the same with the addition of an update

equation for theAi’s. The modified algorithm is described in Figure 3.6. AllowingAi to vary for each cluster enables the detection of ellipsoidal-shaped clusters each

with a differing orientation. The new constraint above limits the volume within which

an A-norm metric can have influence. The new constraint may have been placed to

simplify deriving update equations that would allow implementation of the method
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as an algorithm. Adding this constraint, however, causes the G-K algorithm, as it

is commonly referred to, to look for hyper-ellipsoids of equal volume and this may

limit its accuracy, [Krishnapuram & Kim, 1999]. Note that unlike FCM there is no

proof of convergence for this algorithm. Furthermore, the algorithm is very sensitive

to initialisation.

3.3.2 Fuzzy
-Elliptotypes Clustering

The Fuzzy
-Elliptotypes (FCE) algorithm was proposed by Bezdeket al. to detect

clusters that have the shape of lines or planes [Bezdek, 1981]. Its main idea is to

discount Euclidean distances for points lying along the main eigenvector directions

of a cluster (like those lying on a line) while taking the Euclidean distance in full

for other points. This is achieved by means of using a distance measure which is a

weighted combination of two distance measures:d2(xk;pi) = �d2V ik + (1� �)d2Eik: (3.7)

Here,d2Eik is the Euclidean distance andd2V ik is defined as:d2V ik =k xi � pi k2 � rXj=1((xk � pi) � eij)
wherer 2 [1; p℄, andeij is thejth eigenvector of the covariance matrixCi of clusteri. (The � operator denotes the dot product of the two vectors.) The eigenvectors are

assumed to be arranged in descending order of the corresponding eigenvalues. Thus,

the first eigenvector describes the direction of the longestaxis of the cluster. Whenr =1, d2V ik can be used to detect lines, and whenr = 2 it can be used to detect planes. The

value of� in Equation 3.7 varies from 0 to 1 and needs to be specified a priori, but there

is a dynamic method commonly used in the algorithm’s implementations (see [Davé,

1992]). It has been shown [Krishnapuram & Kim, 1999] that by allowing this dynamic
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variation the FCE algorithm avoids the G-K algorithm’s shortcoming of looking for

clusters of equal volumes. However, since it looks for only linear structures, it would

therefore fit these structures onto data that may not containthem. The update equations

for this algorithm can be shown to be equivalent to those of fuzzy covariance clustering.

3.3.3 Shell Clustering

The main application of shell clustering algorithms is in image processing. Images are

pre-processed for edge detection and the edge pixels are then fed to these algorithms

for boundary detection. There are several variants of shellclustering algorithms and a

full review of them can be found in [Hoppneret al., 1999].

The main innovation behind every shell clustering algorithm is the distance mea-

sure it uses. In the Fuzzy c-shells algorithm by Davé, the prototype for a circular shell

cluster is described by its centre point and radius,pi andri, respectively. The distance

measure is: d2(xk; (pi; ri)) = (k xk � pi k �ri)2
In the fuzzy c-spherical shells algorithm the distance measure used instead is:d2(xk; (pi; ri)) = (k xk � pi k2 �r2i )2
This distance measure is more sensitive to points on the outside of the shell than on

the inside but has the advantage of simplifying the update equations. In the adaptive

fuzzy c-shells algorithm, shells in the shapes of ellipses are detected by means of the

distance measure:d2(xk; (pi; A)) = (q(xk � pi)TA(xk � pi)� 1)2
whereA is a positive definite matrix that contains the axes and orientations of the

ellipse. A more complex distance measure for shell ellipsoids is described in [Frigui
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& Krishnapuram, 1996].

Shell clustering algorithms are computationally expensive because their update

equations require solving a system of non-linear equationswhich require iteration.

Thus, within each clustering iteration, several iterations take place. Data set sizes of

more than two dimensions or of lengths more than a few thousand are impractical.

3.4 Modifications to the FCM Model

Several attempts have been made to remedy one or more of the shortcomings we men-

tioned in Section 3.2.7. In Possibilistic Clustering, covered in Section 3.4.1, the mem-

bership value of a point with a cluster does not depend on the location of other cluster

prototypes. In High Contrast Clustering, covered in 3.4.2,mixtures of the hard and

fuzzy c-means algorithms will be formulated. In Competitive Agglomeration, covered

in 3.4.3, the requirement for specifying
 is overcome by means of starting with a large

value for it and subsequently letting bigger clusters compete for the smaller ones. In

Credibilistic Clustering, covered in 3.4.4, noise points are identified first as not credi-

ble representatives of the data set and awarded membership values that do not sum up

to 1.

3.4.1 PossibilisticC-Means (PCM) Clustering

Krishnapuram and Keller [Krishnapuram & Keller, 1993a] removed what they termed

the probabilistic constraint of Equation 3.2 by allowing the degrees of membership,uij,
to take on any value within the[0 � 1℄ range. Their argument for the removal of the

constraint was:the membership function of a set should not depend on the membership

functions of other fuzzy sets defined in the same domain of discourse. Theuij ’s were

therefore allowed to take on any value within the[0 � 1℄ range, but in order to avoid
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the trivial solution, the followingpossibilisticconstraint was added:maxi uij > 0 8j (3.8)

Thus, the memberships values generated are taken as absolute, not relative, and denote

degrees of belonging or typicality of the cluster in question.

The new objective function proposed was:J(U; v;X ) = 
Xi=1 NXk=1umikd2ik + 
Xi=1 �i NXk=1 (1� uik)m (3.9)

where�i are positive numbers. The first term is the normal FCM objective function

which is minimised for compact and well-separated clusters, whereas the second term

forces theuik’s to be as large as possible, thus avoiding the trivial solution. This

formulation of the objective function leads to the update equation ofuik to be modified

to uik = 11 + (d2ik�i ) 1m�1 (3.10)

The value of�i determines the distance at which the membership value of a point

in a cluster becomes 0.5. If all clusters are expected to be similar in size, this value

could be the same for all of them. In the objective function wenotice that the value

of �i determines the relative importance of the second term and the authors observe

that it should therefore be of the same range asd2ik if equal weighting to both terms is

desired.

This definition of possibilistic clustering can be applied to the other fuzzy cluster-

ing algorithms. So, if we use the FCM algorithm but updateuik according to Equa-

tion 3.10 above (plugging in the suitable values for the�i’s), the algorithm becomes

the Possibilistic
-Means algorithm (PCM). Likewise we may have the Possibilistic

Gustafson-Kessel algorithm, Possiblistic
-Spherical Shells algorithm, and so on.
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The success of PCM is very much dependent on the initialisation, as it may not

converge or the prototypes may even conincide [Barniet al., 1996; Krishnapuram

& Keller, 1996]. The values of�i to use are probably the most difficult choice to

make when using this algorithm. The authors themselves recommend running FCM

once and estimating�i from its output, then running PCM and adjusting�i in its first

few iterations in order to provide the most meaningful values of uik while bypassing

the danger of not converging to a stationary point. The main advantage of PCM is

that it is more resilient to noise by comparison to FCM, and after taking the above

guidelines into consideration, the membership values it finds are more intuitive by

human perception standards.

3.4.2 High Contrast

Except in the case where a data point coincides with the location of a prototype, degrees

of membership found by FCM are never either 0 or 1. This is so even when a point is

very close to a prototype. The reason for this is the “sharing” constraint of Equation 3.2

imposed on the FCM optimisation problem. This constraint leads to update Equation

3.4 from which we can see that a membership value will never bezero, since it is a ratio

of distances. This peculiarity causes core points of a cluster to receive membership

values of less than one, even though we would clearly see themas being typical of the

cluster.

Approaches of the “High Contrast” kind, though not developed fully in [Rousseeuw

et al., 1995; Peiet al., 1996], aim to classify clear-cut, core, points in a crisp manner,

while leaving other points to still be classified in a fuzzy manner.

In [Rousseeuwet al., 1995], theu2ik term in the objective function is replaced byf(uik) = 
uik + (1� 
)u2ik where0 < 
 < 1 is termed a contrast factor. When
 = 0,f(uik) = u2ik which gives a fuzzy solution identical to standard FCM. When
 = 1,f(uik) = uik which gives a crisp solution identical to standard HCM. Varying 
 be-
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tween0 and1 changes the “contrast” of the clustering results from none whatsover

(fuzzy) to full (crisp). Rousseeuwet al. conclude empirically that
 = 0:3 is a good

value to set the contrast factor. However, the general case of m 6= 2:0 was not men-

tioned in the paper, nor were the differences between their approach and dynamically

varyingm stated.

3.4.3 Competitive Agglomeration

The CA algorithm [Frigui & Krishnapuram, 1997] was proposedas a robust successor

to FCM attempting to remedy several of its shortcomings. First, it requires only a

maximum number of clusters as input rather than the exact number, it will then find

the “correct” number of clusters itself. It does so by first partitioning the data set

into the given (large) number of small clusters. As the algorithm progresses, adjacent

clusters compete for data points and the clusters that lose the competition gradually

become depleted and vanish.

The CA algorithm minimises the following objective function, noting that
 is dy-

namically updated by the algorithm:J(P;U) = 
Xi=1 NXk=1 u2ikk xk � pi k2A � � 
Xi=1[ NXk=1uik℄2 (3.11)

subject to 
Xi=1 uik = 1 8k 2 f1; : : : ; Ng (3.12)

The objective function has two components. The first component is similar to the

FCM objective function (m = 2:0) while the second component is the sum of squares

of the fuzzy cardinalities2 of the clusters. The global minimum of the first component

is achieved when the number of clusters
 is equal to the number of samplesN , i.e.,

2The cardinality of a cluster is the number of points belonging to it; the fuzzy cardinality of a cluster
is the sum of the memberships of all points with it.
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each cluster contains a single point. The global minimum of the second component

is achieved when all points are grouped into one cluster, andall other clusters are

empty. Based on the premise that� is chosen properly the final partition resulting from

this algorithm will find compact clusters while at the same time finding the smallest

possible number of clusters.

3.4.4 Credibilistic Clustering

Noise points,i.e., points that do not lie close to any particular cluster are not distin-

guished as such by FCM. They share memberships with all clusters just like all points

even though we may clearly identify them as not belonging to any cluster. Noise points

affect the accuracy of the FCM algorithm.

The credibilistic fuzzy c-means algorithm was proposed by Chintalapudi and Kam

[Chintalapudi & Kam, 1998] to combat FCM’s sensitivity to noise points. Their re-

quirement was to assign to noise points low membership values with all clusters. In

this way, noise points will not affect the location of the prototypes.

The probabilistic constraint of Equation 3.2 was replaced by:
Xi=1 uik =  k 8k
where k is thecredibility of point xk. It represents the typicality ofxk to the entire

data set and not to any specific cluster. Thus, if k >  j, thenxk is more typical toX thanxj. Two alternative formulations for the credibility of a point are given, both

are measures of the relative isolation of the point. The firstformulation compares the

point’s average distance to its� nearest neighbours to the average intra-point distance

of X , while the second formulation compares it to the harmonic second moment ofX .

After estimating the k’s, their values are plugged into the slightly modified update

equations of the algorithm. This approach has also introduced its own share of param-
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eters. However, the authors suggest that their algorithm performs well in most cases

using the default values for the parameters.

3.5 Remarks

In this Chapter, we reviewed in detail the Fuzzy c-Means clustering model, and we

also briefly reviewed some of its extensions and modifications. We explained that a

lot of the algorithms mentioned in this Chapter were motivated by one or more of the

shortcomings we listed in Section 3.2.7. In the next Chapter, we will focus only on

FCM’s inability to perform accurately on data sets containing clusters close to one

another but not equal in size or population. Since we have only mentioned a few of the

large body of algorithms based on FCM, we conclude with a quick look at two threads

of fuzzy clustering research we did not include in our review.

The first thread of research is concerned with finding the optimal number of clusters

in the data. This problem is continually being addressed in the literature. The first

approach is to validate fuzzy partitions obtained at different values of
 by means of

an index, and then selecting the value of
 corresponding to the partition that scored

best on the index. In comparison to many indices, the Xie-Beni index [Xie & Beni,

1991] performs best (as studied in [Pal & Bezdek, 1995]), though there are some new

competitors [Kwon, 1998; Rezaeeet al., 1998]. Further, there have been attempts

to integrate the validation step into the FCM clustering process such as the validity-

guided clustering method of Bensaid [Bensaidet al., 1996]. The second approach is

to fuse an agglomeration process with the clustering process, starting at a reasonably

high value for
. Section 3.4.3 already described an algorithm of this type.Another

recent algorithm is that of [Geva, 1999] which fuses hierarchial clustering with fuzzy

clustering.

The second thread of research is concerned with making FCM more robust by

enhancing its response to noise points. We have already discussed one such algorithm
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in Section 3.4.4 which addressed that point, however the recent and still developing

work by [Davé & Krishnapuram, 1997; Frigui & Krishnapuram,1999] should also be

highlighted. These aim to use statistical methods such as the M estimator and weighted

least-squares technique to supplement the objective function.

66



CHAPTER 4

A New Algorithm for Fuzzy Clustering

In the previous Chapter we described the FCM algorithm and detailed several algo-

rithms based on it.

In this Chapter, we investigate a well-known behavioural shortcoming of FCM,

namely that it mis-classifies a small cluster of data lying close to a large one. We

formulate a new objective function (OF), based on FCM’s, that redresses this short-

coming. We will accordingly derive a new algorithm, that we named the Population

Diameter Independent (PDI) algorithm. We will evaluate PDI’s effectiveness by com-

paring its results with those of FCM.

We first start by describing a framework to evaluate the behavioural performance

of objective-function-based clustering algorithms. Focusing only on the small-cluster

shortcoming, we identify the factors that cause it. In correspondence to the factors we

identified, we will then generate a suite of benchmarks consisting of two-dimensional

data sets of incrementally varying properties. Tabulatingthe output of the FCM algo-

rithm, we will demonstrate the extent of the shortcoming andanalyse how to overcome

it. We will then develop PDI and evaluate its behaviour on ourchosen benchmark.
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Figure 4.1: In this two-clusters example, the inputs to the dot pattern generator are:
the populations,p1 andp2, the diameters,d1 andd2, of each cluster, and the central
locations of each cluster,(x1; y1) and (x2; y2). A clustering algorithm should now
attempt to match this description of the clusters by examining only the dot pattern.

4.1 The Experimental Framework

Assume that we have a dot pattern generator that generates clusters of points in a givenp-dimensional feature space,Rp. Assume, further, that the points of every cluster are

distributed uniformly around that cluster’s centre-point. This assumed generator will

require as input a number of parameters. First, the number ofclusters we want to have

in the dot pattern. Second, the central location of each cluster. Finally, for each cluster

its population and diameter. We define thediameterof a cluster as the diameter of a

hyper-sphere (or a circle in 2D) that contains the entire population of the cluster. This

is illustrated in Figure 4.1.

The test for any clustering algorithm would be to produce an accurate description

of the clusters present in the dot pattern, given only the dotpattern and no other in-

formation. Since the clustering structure of the dot pattern is already known, accuracy

of the clustering can be computed by comparing the known description to the one dis-

covered by the clustering algorithm. This is illustrated inFigure 4.2. Thus, for the

example in Figure 4.1, we would ideally like any clustering algorithm to output the in-
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Figure 4.2: A block diagram of our framework.

formation: number of clusters is two; the locations of the prototypes of the two clusters

are(x1; y1) and(x2; y2); the diameters of the two clusters ared1 andd2 respectively;

as well as a classification of the points from which we can calculate the populationsp1
andp2.

The generator we have described above is ideal for objective-function (OF) meth-

ods that minimise the aggregate distances between data points and suggested proto-

types. This type of methods, as discussed earlier, search for hyper-spherical clusters

of points (assuming the Euclidean distance metric). Prototype-based, sum-of-squared-

error objective function methods like FCM should perform with maximum accuracy

because the generated data consists of hyper-spherical clusters.

In general, clustering algorithms provide different typesof results, e.g., fuzzy,

crisp, or hierarchical. These different ways of providing adescription of the clustering

structure will necessitate different types of accuracy measures for evaluation. Algo-

rithms like FCM produce their results in the form of prototype locations and the fuzzy

partition matrix. To evaluate this output, one accuracy measure could be the average

offsets of the FCM-found prototypes from the known central locations. Another ac-

curacy measure could be to use the FCM-found partition matrix to calculate the fuzzy

cardinalities of the clusters1 and then to compare these values with the known popu-

lation values. In a similar manner, accuracy measures for the diameters of the found

clusters can be devised.

1the fuzzy cardinality of a cluster is the sum of all its membership values
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A further test for any clustering algorithm is to find the correct solution every time it

is run. Since the results of some clustering algorithms may depend on the initialisation,

the correct solution should be found irrespective of the initialisation. Otherwise, the

algorithm would not be suitable for non-expert use. This challenge, however, can be

assumed to be of less priority than the other challenges since it depends also on the

optimisation scheme used.

4.1.1 Tests for Clustering Algorithms

Within our framework, a clustering algorithm is required tofind reliably:-

I the correct number of clusters,

II the correct locations of the prototypes, and

III populations of the clusters, and also

IV diameters of the clusters,

Realistically, we know that most clustering algorithms will not be able to pass

all these tests successfully. For example, most objective-function-based algorithms

require the number of clusters,
, as an input parameter beforehand. They thus fail test

I. This shortcoming is not addressed in this dissertation, as instead we assume that the

correct number of clusters has been estimated beforehand. If no such estimate exists,

the common way of handling this shortcoming is validating the solutions resulting

from different values of
 and choosing the best one [Windham, 1982; Gath & Geva,

1989; Pal & Bezdek, 1995].

Objective-function-based methods can deliver on tests II,III, and IV. Their perfor-

mance on these tests, however, may seem ad-hoc, for they can find the correct solution

in one run but fail to do so in another. The reason is that OF-based algorithms are
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iterative and locally optimal, and therefore produce results that depend on their initial-

isation. Unless an exhaustive or an (as-yet undiscovered) analytical solving method is

used, different solutions may be found. Therefore, short ofinitialising these algorithms

identically each time they are run, obtaining the same correct solution should not be

expected. Thus, in order to measure an algorithm’s accuracyon any of the three tests

above, we need to use identical initialisation. This initialisation should be favourable

to finding the correct solution by being close to it. If an algorithm now fails a test, we

will know that it cannot ever find the correct solution starting from a near-correct one.

Turning our attention now to tests II, III, and IV, we observethat within our dot

pattern generator framework, we can vary three sets of variables:

1. the centre-points of the clusters,

2. the populations of the clusters, and

3. the diameters of the clusters.

In the next Section we will describe how we used these three variables in a two-

dimensional two-cluster setting to generate a suite of synthetic data sets. Our aim is to

construct a benchmark covering many of the data sets that could be encountered within

this setting and then to see if an OF algorithm like FCM will pass tests II, III, and IV

on each of the data sets in the benchmark suite. We should notehere that while the

framework as described above is ideal for squared-error-type prototype-based methods,

its basic structure is valid for other types of methods.

4.1.2 Designing the Synthetic Data

We now use our dot pattern generator to generate a suite of two-dimensional two-

cluster data sets. Thus, 6 variables must be set: the two centre-points at(x1; y1) and(x2; y2), the diameter and population of cluster 1 (the lhs cluster)d1 andp1, and the
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diameter and population of cluster 2 (the rhs cluster)d2 andp2. If we do not consider

overlapping clusters and sample the range of possibilites,a suite of data sets that covers

many cluster configurations can be generated.

The Centre-Points

We first fix the two centre-points at(0; 0) and(1; 0). This is a valid assumption not

only because it reduces the number of possible data sets but also because we can al-

ways transform any two given locations in 2-D space to the designated coordinates of(0; 0) and (1; 0). The transformations will consist of translation, rotation, and scal-

ing transformations applied sequentially. By fixing the central locations, we can now

concentrate on varying the remaining variables.

The Populations

We now have to consider thatp1 and p2 can vary. Our approach has been to fix a

minimum value for the population of any cluster in any of the data sets:pmin. Then, to

use configurations where clusters have populations that arewhole number multiples ofpmin. Using this new scale, we renamep1 andp2 to P1 andP2 respectively. We chose

to limit the range of bothP1 andP2 to 1 to 20. A configuration withP1 : P2 = 1 : 20
indicates that the lhs cluster has the minimum population while the rhs cluster has

twenty times that population. To reduce the number of data sets generated, we sampled

the range ofP1 andP2 at 1, 10, and 20 only. Thus, there will be32 = 9 population

configurations. These are (in the form ofP1 : P2): 1 : 1, 1 : 10, 1 : 20, 10 : 1, 10 : 10,10 : 20, 20 : 1, 20 : 10, and20 : 20.

The Diameters

With regards tod1 andd2, both can have values from zero to infinity — a range that

has to be sampled. Let us choose to sample the distance between (0; 0) and(1; 0) 20
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times and to restrict the diameters to those 20 levels. Thus,a cluster with diameter-

level 10 will touch the point(0:5; 0) and one with diameter-level 20, will touch the

other’s centre-point. Using this normalised scale,d1 andd2 are renamed toD1 andD2
respectively, where the latter set has discrete-level units.

In order to not lose focus of our goals, we leave further details of the generation

of the data suite to Appendix A. We will say at this juncture that all in all 900 data

sets were generated in correspondence to the various combinations of populations and

diameters available.

Samples of the Benchmark Data Suite

Table 4.1 shows the values we used in our actual generated suite of data sets. Figure

4.3 illustrates some examples of the 900 data sets generated.x1 y1 pmin dmin
0 0 300 2� 0:05x2 y2 pmax dmax
1 0 6000 2� 0:95

Table 4.1: Parameters used to generate the suite of data sets.

The data points of each cluster were generated within a circle centred at the points

stated above. The area of each circle is divided into 10 shells of equal areas. The

population of a shell,i.e., the number of points inside it, is the result of dividing the

total population of the cluster by the number of shells. For each point, two polar co-

ordinates(r; �) were picked from a random number generator of uniform distribution.

These coordinates were then transformed to Cartesian coordinates.
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Figure 4.3: Samples of the benchmark data suite. The population and diameter settings
for a pattern are located at the top of its plot.
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4.2 The Behaviour of FCM

Having established a framework and designed our suite of benchmark data we will

now examine the behaviour of the FCM algorithm. We will first present the results

of FCM clustering of the benchmark data, then, we will discuss the performance of

FCM and its behaviour. In Section 4.3, we will present our newPopulation Diameter

Independent (PDI) algorithm and its results on the same benchmark data.

4.2.1 FCM’s Results on the Synthetic Data

FCM was run on the full 900 data sets described in Section 4.1.2. In Figures 4.4 and

4.5 samples of the 900 clustered sets are shown. The prototypes found by FCM are

marked out with arrows. Also, the points are classified according to the max rule which

specifies that a point is classified according to its maximum degree of membership.

FCM was run withm set at 2.0 and the initial prototypes placed at(�0:05; 0:05) and(1:05; 0:05), i.e., at positions which are very close to the ideal positions. Itis not our

aim here to test FCM’s shortcoming of getting entrapped in local solutions. Our aim is

to see if the ideal solution can indeed be an FCM solution.

We can clearly see from Figures 4.4 and 4.5 that FCM’s performanceis affected by

the relative widths of the clusters and by their relative populations. We can also see that

in some cases gross misclassification has occured. Since theprototype initialisation

was very favourable (by being very close to the correct locations), we can deduce that

in these cases placing the prototypes at the correct locations is not a minimal solution

for the OF of FCM.

Let us first provide a summary of the FCM results. To achieve this, we need to

decide on our accuracy measures. There are potentially three different measures of a

given clustering algorithm’s accuracy within our framework. They are:-

1. how well it performs in finding the correct centre-points of the clusters,

75



4.2. THE BEHAVIOUR OF FCM 76

0

-0.5 0 0.5 1

0

0 0.5 1 1.5

FCM results for P1 : P2 = 10 : 10  and  D1 : D2 = 5 : 9

0

-0.5 0 0.5 1

0

0 0.5 1 1.5

FCM results for P1 : P2 = 10 : 10  and  D1 : D2 = 8 : 8

(a) (d)

0

-0.5 0 0.5 1

0

0 0.5 1 1.5

FCM results for P1 : P2 = 10 : 10  and  D1 : D2 = 5 : 11

0

-0.5 0 0.5 1

0

0 0.5 1 1.5

FCM results for P1 : P2 = 10 : 10  and  D1 : D2 = 8 : 10

(b) (e)

0

-0.5 0 0.5 1

0

0 0.5 1 1.5

FCM results for P1 : P2 = 10 : 10  and  D1 : D2 = 5 : 13

0

-0.5 0 0.5 1

0

0 0.5 1 1.5

FCM results for P1 : P2 = 10 : 10  and  D1 : D2 = 8 : 12

(c) (f)

Figure 4.4: FCM clustering of synthetic dot patterns with two colours representing the
two found clusters. Prototypes are marked out by the dotted blue lines. P1:P2 ratio
fixed at 10:10. D2 is varied while D1=5 for column (a), (b), and(c), and D1=8 for
column (d), (e), and (f).
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Figure 4.5: FCM clustering results. D1:D2 fixed at 10:10 for column (a), (b), and (c),
and 5:10 for column (d), (e), and (f). The P1:P2 ratio is varied.
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2. how well it performs in finding the correct diameters of theclusters,

3. and, also how well it performs in finding the correct populations of the clusters.

In FCM’s case and with this type of symmetrical cluster, the three measures are not

all required. If FCM fails in finding the centre-point, the other two measures become

misleading. So, our first priority will be, for every data set, to see how far off each of

the found prototypes is from its correct location. We decided that, for a given data set,

the maximum of the two prototype offsets will be our measure of accuracy.

Defininge1 as the distance betweenp1 and(x1; y1) (wherep1 is the closest found-

prototype to(x1; y1)), ande2 similarly, we can define the maximum prototype offset,e, as: e = max(e1; e2)
wheree1 =k p1 � (x1; y1) k and e2 =k p2 � (x2; y2) k

In Figure 4.6 we plottede againstD2 for all nine population configurations, while

fixingD1 at 1. Each curve represents a constant ratio of proportions.We note that apart

from population configurations where P1:P2 = 1:10 and 1:20, the curve proceeds in a

somewhat uniform upward trend. However, for the aforementioned configurations, the

curve takes a very steep upward climb and then slowly falls afterwards. In both these

configurations cluster 2 becomes very large by comparison tocluster 1. This largeness

is twofold: both in diameter and in population. Thus, cluster 1’s prototype moved

toward cluster 2 while cluster 2’s prototype moved towards the right side of its own

cluster. This is illustrated in Figure 4.7.

As cluster 2 became larger,p1 was “drawn” towards it and took large steps in that

direction. This explains the steep climb. However, after a certain point, the diameter of

cluster 2 extended into the middle region between the two clusters, towards cluster 1,

thus,p1 moved back again towards the left side of the graph, causing the decline ine.
AsD2 went through and past the middle towards cluster 1,p1 followed it progressively
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Figure 4.7: An illustration of the positions of the found prototypes asD2 increases
from (a) 7, (b) 9, (c) 11, to (d) 13.D1 is fixed at 1. This is forP1 : P2 = 1 : 20.

back towards the left hand side, albeit with a large margin oferror.

The upward-trend curve of the other population configurations (i.e., those exclud-

ing 1 : 10 and1 : 20) can be explained that in these configurations, cluster 2 never be-

came as large or “dominant” as the two other cases in terms of population. Thus, there

was less requirement forp1 to move into cluster 2’s territory. However, asD2=D1 got

bigger, the error worsened proportionally.

We examined results for a somewhat larger diameter for cluster 1, atD1 = 5. In

Figure 4.8, we plottede againstD2 while fixing D1 for all nine population configu-

rations. The results are quite similar to those of Figure 4.6. The two “sudden rise”
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curves ofP1 : P2 = 1 : 10 andP1 : P2 = 1 : 20 are there as well as the “upward

trend” curves for the rest of the population configurations.This time, because cluster

1 is fixed at a bigger diameter than in Figure 4.8, the degree oferror is generally lower

than that of figure (0.18 compared to 0.28, for example).

We found FCM’s results on theP1 : P2 = 1 : 20 data sets very interesting, so we

analysed them all in a separate plot. In Figure 4.9 we plottedthe results for all 100e’s
resulting from FCM’s clustering of the data sets. The almosthorizontal curves of the

plot illustrate something important: that the effect of thevariation ofD1 is negligible,

it is D2 that decides the degree of the error. Furthermore, as was observed before,

the worst clustering results are those of whenD2 reaches to within the middle region

between the two clusters(D2 = 7 : : : 13), instead of whenD2 is close to 19.

Next, we studied configurations where the population ratio is in favour of cluster

1 (i.e., cluster 1 is more populous than 2), likeP1 : P2 = 20 : 1. The results are

plotted in Figure 4.10. Here, we note that beforeD1 = 7, e is proportional toD2, such

that the worst error is atD2 = 19. Then, atD1 = 7, a sudden jump ine is observed

(see Figure 4.11). As of that point, the effect of the variation ofD2 is negligible, as

the plots coincide. This can be explained in a way similar to theP1 : P2 = 1 : 20
configuration above. Cluster 1, the more populous and largercluster dominated the

FCM solution. It drewp2 towards it. However, as cluster 1 expanded (D1 increased),p2 has moved back towards the left thus reducinge progressively.

4.2.2 Discussion of FCM’s Results

From the results above, we can deduce preliminarily that as long as the separation

between clusters is high, FCM will not have a problem in identifying the output of the

pattern generator. Once one of the clusters extends into themiddle region between the

two centre-points, FCM will produce very bad results. The question of the ratio of

the populations of the clusters plays a role in these diameter configurations and makes

82



4.2.
T

H
E

B
E

H
AV

IO
U

R
O

F
F

C
M

83

P1 : P2 = 1 : 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

D1

M
ax

 P
ro

to
ty

p
e 

O
ff

se
t

D2=1

D2=2

D2=3

D2=4

D2=5

D2=6

D2=7

D2=8

D2=9

D2=10

D2=11

D2=12

D2=13

D2=14

D2=15

D2=16

D2=17

D2=18

D2=19

F
ig

u
re

4
.9

:
P

lo
to

fe
ag

ain
stD1

fo
rP1:P2=1:20.

E
ach

cu
rve

h
as

a
co

n
stan

t
D2.

8
3



4.2.
T

H
E

B
E

H
AV

IO
U

R
O

F
F

C
M

84

P1 : P2 = 20 : 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

D1

M
ax

 P
ro

to
ty

p
e 

O
ff

se
t

D2=1

D2=2

D2=3

D2=4

D2=5

D2=6

D2=7

D2=8

D2=9

D2=10

D2=11

D2=12

D2=13

D2=14

D2=15

D2=16

D2=17

D2=18

D2=19

F
ig

u
re

4
.1

0
:

P
lo

to
fe

ag
ain

stD1
fo

rP1:P2=20:1.
E

ach
cu

rve
h

as
a

co
n

stan
t

D2.
8

4



4.2. THE BEHAVIOUR OF FCM 85

0

-0.5 0 0.5 1

0

0 0.5 1 1.5

FCM results for P1 : P2 = 20 : 1  and  D1 : D2 = 6 : 10
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Figure 4.11: An illustration of the positions of the found prototypes asD1 increases
from (a) 6 to (b) 7.D2 is fixed at 10. This is forP1 : P2 = 20 : 1.

the error severer. FCM, effectively, lets clusters with larger populations and larger

diameters dominate its solution.

To explain this, let us consider the OF of FCM:

MinimiseJFCM(P;U ;X ; 
;m) = 
Xi=1 NXk=1(uik)md2ik(xk;pi)
subject to the constraint
Xi=1 uik = 1 8kjk 2 f1; : : : ; Ng:
This is a separating-distance-based function that accumulates the weighted distances

between the prototypes and the data points. A large cluster (in terms of diameter) will

contribute more to the OF than a small one because its distances are higher. Thus, the

relative diameters of clusters play a role in determining each cluster’s contribution to

the OF. In general, a large cluster contributes more than a small one.

The constraint forces a point’s membership with a prototypeto take into account
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the point’s distances from the other prototypes:u�ik = 1P
j=1 ( d2ikd2jk )1=(m�1) k 2 f1; : : : ; Ng; i 2 f1; : : : ; 
g:
Therefore, points that lie very close to a prototype take memberships of almost zero

with the other prototypes. However, points lying in the middle between two proto-

types will take membership degrees that are close to 0.5. In this way they add to

both prototypes’s OF contributions. If one prototype can bemoved to a position that

will “neutralise” these midway points without incurring much penalty from its former

neighbourhood, it will be moved. This is because the new location would be close to

the optimal solution of the OF.

We also see that the OF is a summation overN . If there is a disparity in the

relative diameters of the clusters such that their relativecontributions are not equal, the

populations play a determining factor. For if the smaller cluster has more points, the

small contributions can add up to balance the large cluster’s contribution. On the other

hand, if a large cluster is more populous, its contribution will dominate the OF. In such

a case the accuracy of FCM is further compromised.

In the next Section we will attempt to visualise the shape of the OF of FCM. This

will help us to explain the sensitivity of FCM to the middle region between the two pro-

totypes. As we observed in the previous Section, when one of the clusters approaches

the diameter level of 7, FCM’s accuracy deteriorates significantly.

4.2.3 Shape of FCM Objective Function

We now wish to visualise the shape of the OF of FCM. As before, we assume that there

are two cluster prototypes in a two-dimensional feature space. The left-hand prototype

is placed at the origin of the coordinate system,(0; 0). The right-hand prototype is

placed at coordinate(1; 0). Assuming now that a given data point is placed anywhere
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Figure 4.12: FCM (m = 2): Plot of pointxk’s OF contribution,Jk, againstxk’s
position.xk is constrained to move along thex-axis only. The prototypes are located
at (0; 0) and(1; 0).
in this 2D feature space, and given an OF, we can calculate thecontribution of this

point to the OF.

Let us assume that we denote the OF contribution value for a data point,xk, byJk. First, let us constrainxk to be located along thex-axis. In Figure 4.12, we plotxk’s contribution to the FCM OF versus its location along thex-axis. We left the

mathematical derivations of the equation for the curve to Appendix B. From Figure

4.12 we observe each prototype has appropriated symmetrically a region of low cost

around it. In the middle between the two prototypes, there isa local peak. A point

placed at exactly half-way between both prototypes costs the most amongst points

lying between the prototypes. Furthermore, as a point headsaway from the prototypes,

its cost rises steeply.

Now we allow the location ofxk to move freely in the 2D space. Thus, we can

plot contour lines around the prototypes; points lying on these contour lines contribute

identical values towards the OF. Such a contour plot is illustrated in Figure 4.13. We

observe again that FCM creates symmetrical contours aroundthe prototypes. As a

generalisation of Figure 4.12 in 2D, we observe that the rateat which contributions

change in the “valleys” around each prototype is less than further afield. Once again,
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Figure 4.13: FCM (m = 2): Contour plot ofJk, representingxk’s OF contribution;Jk’s value depends onxk’s location in the 2D space.

we left the mathematical derivations to Appendix B. Based onthe contour plot we can

see the shape of ideal clusters for FCM, and we can guage how well it will perform

given any particular constellation of points.

A point of note is that if we were to integrate the area under the curve between(0; 0) and (1; 0) in Figure 4.12, what would that represent? It would represent the

total contribution of a continuous line of data points alongthex-axis between the two

prototypes. Let us now work out the bounds of a region centered around the mid-point

which would cover only half of the computed area under the curve. The significance

of this computation would be to find the region, along the linebetween the prototypes,

that contributes as much as the remaining parts of the line. The bounds, as worked out

in Appendix B, are the points(0:38; 0) and(0:62; 0). In our benchmark data suite, these

approximate to values for eitherD1 orD2 of between 7 and 8. This is confirmed by our
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results as previously presented. This calculation also shows that there is a relatively

narrow region of width 0.24 centred around the half-way point which “costs” FCM

twice as much as either region to the side of it.

4.3 Population-Diameter Independent Algorithm

When we first investigated FCM, we focused on its inability tocluster accurately when

the data set contains one cluster which is highly populated in comparison to the other

(in a two-cluster case). Thus, we thought of dividing each cluster’s contribution to

the objective function by its population. This way, the new ratio of one cluster’s con-

tribution to another would not be as disproportionate as theold one. In other words,

the lightly-populated cluster’s contribution would be increased, and that of the highly-

populated one decreased.

However, upon further study, as evidenced above, we concluded that as well as the

populations problem, there is also another problem. This occurs when there is a sharp

difference in the spans of the clusters (represented by diameters in our experiments)

and the larger cluster’s span reaches into the middle region between the two. The

diameters problem can either be compounded or alleviated bythe populations problem

depending on the populations-ratio and which cluster it favours. Thus, we concluded

that the effects of population and diameter are correlated and it would not be easy to

compensate for their effects separately. We found it is moreprecise to talk about the

“relative contributions” of clusters

Obviously, FCM’s objective function does not account for these effects. This is

why we introduced the Population-Diameter Independent (PDI) Algorithm. The main

idea behind our new algorithm is to normalise the cluster contributions found in the

FCM objective function. Thus, in PDI’s objective function,we divide each cluster’s

(FCM) contribution by a number that should represent the strength of the contribution.

The result of the division would give the cluster’s new (PDI)contribution.
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If we were to set no constraints on these “normalisers” they would take infinite

values because the OF is being minimised. Therefore, we constrained the sum of the

normalisers to 1. This means if one normaliser increases in value, at least one other

normaliser must decrease in value. A minimal solution wouldassign lower-valued

normalisers to clusters with small contributions and, correspondingly, higher-valued

normalisers to clusters with big contributions. If clusters contribute roughly equally

to the OF then the normalisers should take the value1=
, where
 is the number of

clusters.

We named the normaliser variables�. Thus,�i is the normaliser for clusteri. In

order to allow the user to vary the influence of the�’s, we raised them to the exponentr; r � 0. We now formally state our formulation of the optimisation problem.

4.3.1 The New Objective Function

MinimiseJPDI(P;U ; �;X ; 
;m; r) = 
Xi=1 1�ri NXk=1(uik)md2ik(xk;pi) (4.1)

subject to the constraints: 
Xi=1 uik = 1 (4.2)

and 
Xi=1 �i = 1 (4.3)

From the above formulation we can derive an algorithm to achieve a minimal so-

lution. This is effected by means of using the Lagrange multiplier method, setting

the differentials to zero, obtaining the update equations for each variable, and then us-

ing the Picard successive substitution strategy, as was used with FCM. We leave the

derivation of the update equations to Appendix C and now onlystate them.
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4.3.2 Conditions for Optimality

Let the minimisers ofJPDI(P;U ; �) be called(P�;U�; ��). The necessary conditions

for (P�;U�; ��) are :- u�ik = (�ri=d2ik)1=m�1P
i=1(�ri=d2ik)1=m�1 ; (4.4)

and p�i = PNk=1 umikxkPNk=1 umik ; (4.5)

and ��i = [PNk=1(uik)md2ik℄ 1r+1P
i=1 [PNk=1(uik)md2ik℄ 1r+1 : (4.6)

We note that the optimality condition for�i has intuitive meaning; it is a ratio of

clusteri’s contribution to the sum of all the clusters’ contributions. The equations also

confirm that, as with the OF, settingr = 0 collapses PDI to FCM.

4.3.3 PDI’s Improvement on FCM

We now present a summary of PDI’s performance on the benchmark suite. As with

FCM, we used the max rule to the de-fuzzify the clustering results. We also used the

same initialisation as we did with FCM. Based on our experience (described in the next

Section), we empirically setr = 1:0. Similarly to FCM’s plots, PDI’s plots display

both classification results as well as location of found prototypes.

We start with Figure 4.14, the plots can be compared directlyto those of FCM

shown in Figure 4.4. Through visual assessment, we can observe a great overall im-

provement in clustering accuracy. The data sets of Figures 4.14(a),(b),(d), and (e) were

clustered perfectly. Figures 4.14(c) and 4.14(e) were not,however, compared to FCM,

PDI’s performance is a great improvement.
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Figure 4.14: PDI clustering of synthetic dot patterns with two colours representing the
two found clusters. Prototypes are marked out by the dotted blue lines. Compare with
the results in Figure 4.4.
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Figure 4.15: PDI results asD2 increases from (a) 9, (b) 11, (c) 13, (d) 15, (e) 17, to (f)
19.D1 is fixed at 1. This is forP1 : P2 = 1 : 20.
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Figure 4.15 shows more PDI results. Here, fixingP1 : P2 = 1 : 20 andD1 = 1,

we observe how PDI copes extremely well with increasingD2 incrementally. It is only

in the difficult case ofD2 = 19 that PDI’s accuracy is compromised.

Figure 4.16 continues with more PDI results, the plots can becompared to those

of FCM shown in Figure 4.5. In column (a), (b), and (c) of Figure 4.16, the case

of two equal-sized, touching clusters (D1 : D2 = 10 : 10) is tested with changing

population ratios. Here we observe an interesting behaviour of PDI: it finds a cluster

within a cluster. This behaviour is also observed in Figure 4.16(f) where population

ratios are varied while the diameters remain fixed atD1 : D2 = 5 : 10. This anomaly

of finding a cluster within a cluster is due to the light density of one of the clusters as

compared to the other. Because of the light density, the contribution is weak and thus

the corresponding cluster-normaliser takes a low value. This in turn marks a smaller

region of influence for the cluster prototype. We explain this in more detail in Section

4.4.

We now plot the improvement of PDI over FCM in a summarised manner, as cor-

responds Figures 4.6—4.10. In these plots, we useeFCM � ePDI as our measure of

PDI’s improvement on FCM.

We start with all data sets with aD1 = 1 configuration and plot the improvement

in Figure 4.17. The plot resembles almost exactly that ofeFCM in Figure 4.6. Thus,

it confirms that PDI effectively equalises disproportionate objective-function contribu-

tions for configurations ofD1 = 1.

We now compare Figure 4.18 to Figure 4.8 whereD1 = 5. We observe effective

correction of FCM - except for configurationsP1 : P2 = 10 : 1 andP1 : P2 =20 : 1. Here due to the behaviour mentioned above, namely, identifying a cluster

within a cluster, FCM actually performs better than PDI. Nevertheless, FCM’s margin

of improvement is not a big one - not exceeding 0.15.

Comparing Figure 4.19 to Figure 4.9, where we fix the population ratio atP1 :
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Figure 4.16: PDI clustering: D1:D2 fixed at 10:10 for column (a), (b), and (c), and
5:10 for column (d), (e), and (f). The P1:P2 ratio is varied. Compare with the results
in Figure 4.5.
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Figure 4.17: Plot ofeFCM � ePDI againstD2. D1 = 1. All nine population configu-
rations are shown. Each curve has a constant population ratio.
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4.3. POPULATION-DIAMETER INDEPENDENT ALGORITHM 99P2 = 1 : 20, we observe that whereas PDI effectively corrects FCM for values ofD1
less than 6, its performance declines afterwards. However,PDI still retains a margin

of improvement over FCM for values ofD1 > 6. The decline in performance is due to

the fact that atD1 > 6 the LHS cluster becomes of such light contribution that correct

placement of its prototypes would necessitate a small valuefor the corresponding nor-

maliser, thus the prototype moves towards the left and PDI identifies only a subsection

of the cluster.

Finally, comparing Figure 4.20 to Figure 4.10, where we fix the population ratio atP1 : P2 = 20 : 1, we observe that the plot follows the same trend as FCM’s except

that it ventures below zero for values of3 � D1 � 6. This is the same behaviour as

mentioned above. Once again, we note that the margin of erroris not great and that for

most cases PDI effectively corrects for FCM shortcomings.
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4.4. OBSERVATIONS ON PDI 101

4.4 Observations on PDI

The avenues of enquiry that PDI opens are quite numerous. In this Section we observe

the shape of the OF of PDI and compare it to that of FCM. We also touch on our

experience with ther exponent, and with PDI’s resilience to different initialisations.

4.4.1 Shape of Objective Function

In Figure 4.21, we show PDI’s point-contribution contour plot which corresponds to

that of FCM in Figure 4.13. Recall that the contours around each prototype indi-

cate progressively more expensive point-locations. We observe that setting�0 = 0:2
has caused contraction around that cluster’s prototype, and a corresponding expansion

around the other prototype, compared to the symmetrical contours of FCM.

If we move along only thex-axis and plot theJk curve, Figures 4.22—4.25 show

the variations caused by different values of� andr. These can be compared to that of

FCM in Figure 4.12.

In Figure 4.22,r = 1 and�0 = �1 = 0:5. The shape of the curve is exactly the

same as for FCM: two symmetrical valleys around each prototype. The OF magnitudes

are not, however, directly comparable.

In Figure 4.23, maintainingr = 1:0, we emphasise the LHS prototype by setting�0 = 0:1. We observe that this causes a thinner valley around the LHS prototype as

compared to that of the RHS prototype.

In Figure 4.24, we maintain�0 = 0:1, but increase ther exponent tor = 1:5. We

observe this causes a sharper, thinner valley around the LHSprototype and increases

the scope of the RHS prototype. Thus,r can be increased when searching for tiny

clusters.

In Figure4.25, wherer = 0 and�0 = 0:1, we observe this causes an exact same
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Figure 4.21: PDI (m = 2; r = 1; �1 = 0:2): Contour plot ofJk, representingxk’s
OF contribution;Jk’s value depends onxk’s location in the 2D space. Compare with
Figure 4.13.
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Figure 4.22: PDI (r = 1, �0 = 0:5): Plot of a point’s OF contribution against its
position with respect to two prototypes given that both prototypes have equal�’s of 0.5
each.
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Figure 4.23: PDI (r = 1, �0 = 0:1): The plot forms a thin valley around the LHS
prototype, thereby giving a wider “scope” to the RHS prototype.
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Figure 4.24: PDI (r = 1:5, �0 = 0:1): Raisingr’s value causes even stronger emphasis
around the LHS prototype, and a much wider scope around the RHS prototype.
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Figure 4.25: PDI (r = 0, �0 = 0:1): Despite the low value of�0 PDI’s OF collapses
to FCM’s symmetrically-shaped one becauser was set to 0. This plot is equal in
magnitude to that of Figure 4.12.

curve to that of FCM’s sincer = 0 collapses PDI to FCM.

4.4.2 Varying ther-Exponent

The exponent of the normalisers� plays an important role in how PDI performs. The

higher its value, the sharper the emphasis of the normalisers. The lower its value the

more PDI resembles FCM. In Figure 4.26 we demonstrate the results of applying PDI

at various values ofr to a data set similar to those in our suite.

At r = 0, the results are identical to FCM. Atr = 0:5, the boundary between

both classes becomes slightly curved, indicating that the normalisers have begun to

have some effect. Beginning atr = 2:4, we see that PDI classified a subset of the

small cluster as a cluster of its own. Atr = 3:0 only one point in the small cluster

is identified! The small-cluster prototype is placed at the ideal location. This result

indicates that PDI “spotted” the small cluster. However, this result is very sensitive to

the initialisation. Our experience is that if the initialisation is far away from the ideal
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Figure 4.26: Results on varyingr in PDI. r’s value is labelled at the top of each graph.r = 0 renders PDI to be FCM. An interesting behaviour happens atr = 2:4.
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4.4. OBSERVATIONS ON PDI 106r �1 �2
0.0 0.468998 0.531002
0.5 0.444052 0.555948
1.0 0.032148 0.967852
1.2 0.031990 0.968010
1.4 0.037311 0.962689
1.8 0.050938 0.949062
2.0 0.057516 0.942484
2.2 0.063063 0.936937
2.4 0.066393 0.933607
2.6 0.061108 0.938892
2.8 0.000000 1.000000
3.0 0.000000 1.000000
4.0 0.000000 1.000000

Table 4.2: The effect of varyingr on�1 and�2 in the data set of Figure 4.26.

locations, different solutions will be found.

In Table 4.2, the different values ofr we used are tabulated against the correspond-

ing values for the normalisers�1 and�2. �1 represents the small cluster. Atr = 0,

the normalisers are approximately balanced. Atr = 1:0, a steep descent in the value

of �1 is clearly observed and the solution found is the correct one. The ratio of�2=�1
here is about 30. Atr = 2:4, the “aperture” of the small cluster begins to narrow and

by r = 2:8 it has become only wide enough for a very small number of points. The

points are located around the ideal location for the prototype. The solution is there-

fore technically correct! However, as mentioned above, this solution is sensitive to

initialisation.

We further observe that at values ofr, r � 2:8, the results became of doubtful use.

It is clear some form of divergence has occurred. In algorithmic implementations of

PDI such behaviour can be prevented by checking if one of the normalisers is heading

towards an infinitesimally small value.

On inspecting Table 4.2, we can speculate that atr = 1:2 the best “tuning” of
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4.5. SUMMARY AND CONCLUSIONS 107

PDI’s performance was achieved. This we can justify on the basis that the normaliser�1 is at a local minimum with respect to its other values asr is varied. So, it would

be interesting to conduct a study on tuning the value ofr based on the variation of the

normalisers and finding out if the tuned value correlates with better clustering accuracy.

4.4.3 Resilience to Initialisation

We investigated PDI’s sensitivity to initialisation. Though we do not include the re-

sults here, our conclusion is that for values ofr, 0:5 � r � 1:5, PDI’s solution (as

found by our iterative implementation) is usually a stable one and is quiet resilient to

the different initialisations. Higher values ofr cause turbulence in the shape of the ob-

jective function. Iterative implementations like ours getentrapped in locally-optimal

solutions.

4.5 Summary and Conclusions

In the early parts of this Chapter, we established a shortcoming of FCM: its clustering

accuracy drops sharply in situations where there are small clusters lying close to large

ones. We rectified this shortcoming by introducing cluster-strength variables, one per

each cluster, to normalise cluster contributions. In this way, solutions that identify the

clustering structure correctly become optimal - in the eyesof the PDI OF.

The OF of FCM weights each point-to-prototype distance witha membership de-

gree. This way, points close to a prototype get high degrees of membership because

they contribute little to the OF’s value. The OF of PDI goes further by weighting each

cluster’s (FCM) contribution to the OF with normalisers. This way, clusters that con-

tribute more acquire large normalisers to minimise their impact, and small normaliser

values must be allocated to the other clusters, thus allowing them to be represented.

The rationale for the weighting mechanism in FCM is to place one prototype in
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4.5. SUMMARY AND CONCLUSIONS 108

the middle of each group of points in the data set. The rationale for PDI’s additional

weighting mechanism is to allow small clusters to be represented. For FCM, prototype

locations determine membership values and, therefore, thevalue of the OF. For PDI,

prototype locations are matched with normaliser values andtogether they determine

the membership values and, therefore, the value of the OF. Thus, normalisers grant a

scope to each prototype that matches the prototype’s relative contribution.

To fully assess this new algorithm, we reported in full its results on a variety of

data sets. We also proved that PDI remedies FCM’s shortcoming. Our new OF has

on the other hand shown a shortcoming of its own. This shortcoming is that it may

over-emphasise small, compact clusters. It is also very sensitive to the value ofr.
Our approach in this Chapter has been a fundamental one. We set up an idealised

framework and accordingly designed data sets to test specific hypotheses. We believe

new clustering algorithms, particularly ones derived fromor similar to FCM, should

be tested on the specific behavioural properties we raised inthis Chapter using our data

sets.

In the next Chapter, we present our experience with the use ofclustering for image

analysis.
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CHAPTER 5

Clustering of Medical Images

Fuzzy clustering provides a good framework for medical image analysis. The main

advantages of this framework are that it provides a way to represent and manipulate

the fuzzy data contained in medical images, and that it provides flexibility in presenting

extracted knowledge to clinicians and radiologists.

This Chapter discusses the issues involved in the analysis of images in general,

but with particular attention to medical images, using fuzzy clustering methods. Since

segmentation is often considered the main step in the image analysis process, we will

mainly be discussing the segmentation of medical images using clustering.

We first give a brief background on medical imaging and the main medical imag-

ing modalities involved. In Section 5.2, a segmentation framework based on clustering

will be outlined; the decision points within this framework: feature extraction, method,

and post-processing, will be discussed. Continuing on our work in the previous Chap-

ter, in Section 5.3, we describe a synthetic 2D model of cardiac images on which we

compared the performances of FCM and PDI.
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5.1. MEDICAL IMAGE ANALYSIS 110

5.1 Medical Image Analysis

Medical imaging has developed exponentially in the past fewyears in terms of techno-

logical advance and wide-spread use. High-resolution, three-dimensional anatomical

information can now be obtained in a routine manner with magnetic resonance imag-

ing (MRI) and X-ray computer-aided tomography (CT). These two modalities provide

complementary information; CT shows detail of bony structures and some contrast

between hard and soft tissues while MRI shows detail of soft tissue structures, with

almost no detail of bony structures. CT imaging, like all X-ray techniques, exposes the

patient to a dose of X-rays, thus, incurring some health risks. MRI does not expose the

patient to radiation, but uses the magnetic properties of the patient’s tissues to provide

contrast in the image, and as far as we know at present it is completely harmless.

In our research, we focused on cardiac MR images. In common with much medi-

cal image analysis work, our images may be used to gain anatomical knowledge of the

patient being studied so that diagnostic decisions may be taken. To aid in this, quan-

titative measures may be calculated or a qualitative analysis may be reported. Thus,

segmentation of this type of images is a necessary step.

5.2 Segmentation as a Process Involving Clustering

There is strong similarity between “clustering a data set” and “segmenting an image”.

Both these processes share the goal of finding “true” classification of the input. “True”

here depends very much on the application at hand. In general, however, there is a

stronger requirement for accuracy placed on the segmentation process. This is mainly

because while the data processed by clustering methods may not represent a physical

reality, medical images represent physical anatomy.

The general clustering process, because of its exploratorynature, has license to

interpret and may be imprecise. Its main strength is that it is unsupervised,i.e., it does
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Figure 5.1: The process of clustering image data for the purposes of segmentation.

not require any training data, and is automatic (requires minimal user interaction).

Segmentation methods on the other hand are not generally required to interpret, but

instead have to be accurate. While many segmentation methods require training data

and are only semiautomatic, automatic methods are welcome since they require no

training effort, or human resources.

Segmenting images using clustering defines three decision points for the process,

as shown in Figure 5.1. The first decision point that arises is: how will we present the

image data to the clustering algorithm? This we have named feature extraction and

we address below. The next decision point is: what algorithmdo we choose to run

on the data, and of course, how do we set it up? In response to this, we have already

discussed a variety of algorithms in Chapters 2 and 3 and so wewill not discuss this

further in this Chapter. Embedded in any algorithm chosen, will be the question of

choice of distance metric by which to measure the similaritybetween two constituent

points in the extracted data set. The last decision point is:how do we use the output

of the clustering method? In some cases, all that may be needed is a suitable colouring

scheme or similar human-computer-interaction device so that clinicians (experts) can

use the results easily. In Section 5.2.2, we discuss some of the methods to post-process

the output of fuzzy clustering methods.

Arguably, workers in the field of image analysis have dealt with the above three

questions with increasing sophistication over the past twodecades. About twenty

years ago, most researchers made straightforward choices when clustering image data

[Schachteret al., 1979; Mui et al., 1977]. Recent works have delved deeper into
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the workings of a clustering algorithm, in some cases modifying it specifically for

the application. For example, in [Kottke, 1992] a feature-weighting mechanism that

utilises variance estimates is incorporated into the clustering process. In [Tolias &

Panas, 1998b; Tolias & Panas, 1998a] an iterative scheme that adapts to the local im-

age characteristics by imposing spatial constraints on thefuzzy partition matrix is used

during the clustering process. In [Pham & Prince, 1999] multiplicative intensity inho-

mogeneities are compensated for by allowing the prototypesfor each cluster to vary

across the image.

Also, new metrics specifically designed for image data have been proposed. For

example, in [Udupa & Samarasekera, 1996] the notion of “fuzzy connectedness” is in-

troduced as a natural, but computationally complex, measure of distance best-suited to

images. Also, in [Gathet al., 1997] a data-induced measure of distance was introduced

for the purpose of extracting non-convex patterns in images.

The pragmatic idea of carrying out the three steps of Figure 5.1 and then repeating

them in order to produce better results has also been considered in the literature. For

example, in [Bensaidet al., 1996] an automatic evaluation of the segmentation result

is formulated so that based on this evaluation, the process is repeated with a new set of

parameters beginning at the second step.

5.2.1 Feature Extraction

We now address three ways in which image data may be presentedto a clustering

algorithm. These are: using only the voxel intensities, using the voxel intensities and

spatial coordinates, and extracting locality measures from the image data. We have

called this step feature extraction because, in the data analysis framework, clustering

methods work on “feature vectors”.

In general, image data arrive in the form of one or more 2-D, 3-D, or even 4-D

(including time) data lattices containing the image measurements, or intensities. Every
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Figure 5.2: An example of three different images obtained bymeasuring three differ-
ent properties in MR brain imaging. These are, from left to right: PD, T1, and T2
respectively.

cell in the image lattice is called a voxel (or pixel if the image is 2D). In the cases where

there is more than one lattice, each image provides a specifictype of measurement.

For example, in MR brain imaging there are usually three images acquired at different

times: T1 and T2 weighted, and proton density PD. This is illustrated in Figure 5.2.

To illustrate how data are organised, assume two equally-sized 3D image latticesM1 andM2. The voxels in each of these lattices are accessed via the spatial cartesian

coordinates(x; y; z). So, if at voxel coordinates(xk; yk; zk), the intensity as measured

onM1 ism1k, thenm1k = M1[xk℄[yk℄[zk℄.
Voxel Intensities

The simplest way to extract image data into a clustering algorithm is to define the

feature-set as the available image measurements. Every spatial location in every image

lattice provides a feature element. These feature vectors are then constructed to serve

asX , the input data set. For example, we construct data setX consisting of two
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Figure 5.3: An original tissue density MR image is shown on the left, while its PDI-
clustered segmented version is shown on the right. (
 = 4) Only the intensity data was
used. The max rule was used for defuzzification.

features that correspond toM1 andM2 as follows:xk = (m1k; m2k) 8k 2 f1; : : : ; Ng;
whereN is the size of either of the image lattices.

The simplicity of this approach and its sometimes quite accurate results are its main

strengths. Its most common application is when there are several feature images of the

same scene as in MR brain images or CT images [Clarket al., 1994; Clarket al.,

1998; Mansfieldet al., 1998]. In such cases, the feature set consists of a given voxel’s

intensity in each image.

Figure 5.3 shows a cardiac MR image of the type we use in our research. Using

pixel intensity as the only feature of the data set, a segmentation of the image into

four regions using PDI (randomly initialised) is shown. Thehistogram of the image is

shown in Figure 5.4. The placements of the prototypes by PDI is also shown.

By using this feature extraction technique, voxel neighbourhood information is

dispensed with and not represented in the feature-set. Two different (spatially-distinct)

objects which share the same approximate intensity levels will be clustered into one
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Figure 5.4: The histogram of the MR image of Figure 5.3 for different bin sizes. The
vertical lines mark the locations of the found prototypes byPDI.
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level. A simple way of addressing this problem is to append toeach feature vector inX (which corresponds to a voxel location) additional features containing that voxel’s

spatial coordinates.

Spatial Coordinates and Intensities

Clustering voxel intensities only, as described above, does not utilise the proximity

relationships that exist between neighbouring voxels. Thedirect way of taking this

into account is to add features for the spatial coordinates of the voxel.

For example, we construct data setX consisting of five features that correspond toM1,M2, and three spatial cartestian coordinates as follows:xk = (m1k; m2k; xk; yk; zk) 8k 2 f1; : : : ; Ng;
whereN is the size of either of the image lattices. Note that we may use a different

coordinate system, like polar or cylindrical, instead of the cartesian one.

The values of the coordinates can be plotted as an image in their own right. Thus,

using the same framework as above, we have the original imagelattices plus one or

more lattices containing coordinate information. By visualising things in this manner

we can see that the data set will contain a lot of regularity. Assuming a 2D image,

then we have anx � y coordinate system with a single intensity feature, the dataset

would be regularised on the grid ofx� y coordinates and would look like a 3D rugged

terrain. This has influenced the design of special clustering algorithms that have no

general utility beyond this type of data,e.g., mountain clustering [Velthuizenet al.,

1997].

Intensity and spatial coordinate data will almost certainly not share the same units

and range. Thus, it is important to determine the weighting to give to each feature. This

is however a largely empirical exercise. In the image of Figure 5.3, the intensity (tissue
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Figure 5.5: An original tissue density MR image is shown on the left, and different
FCM-clustered segmented versions are shown on the right. (
 = 3; q = 1:5) The first
segmentation was produced with zero weighting given to thex� y coordinates, then a
weighting of 10 was given tox andy, then 20, then 40, and finally a weighting of 60
was used. In the final image the clusters divide thex� y space equally between them.
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density) values range from 0 to approximately 3700, while the x andy coordinates

range from 0 to 77 only.

One approach to overcome this is to dynamically weight the spatial features and

then choose the value of the weight that minimises a suitableclustering validity crite-

rion [Boudraaet al., 1993]. In this case, the usual clustering validity measures may

not be suitable to make a judgement which is grounded in physical anatomy. However,

they may be useful in guiding the user to choose between different clustering results.

But a further problem lies in the fact that the objects in the image may not cluster in

shapes recognisable by the algorithm,e.g., spheres or ellipsoids.

Locality Measures

In this feature extraction approach, voxel intensity values are supplemented with other

“locality” features. A data point inX will therefore be composed of the intensity values

at the corresponding voxel and other numeric indicators that may be edge- or region-

based. These are usually measured over a small window centered around the voxel.

The histogram of this window region will have such features as mean, mean square

value (average energy), dispersion, skew, and so on. Results from this approach are

empirical and vary from one application to another [Tuceryan & Jain, 1993; Marchette

et al., 1997].

As we have not conducted much research into this approach we can say that whereas

this approach may provide very accurate results, it requires much more experimen-

tation than the above two approaches. There are a lot of studies on novel locality

measures, and while these may be effectively applied to images containing textures,

most medical imaging modalities produce pictures that may not be aptly described by

mixtures of textures.
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5.2.2 Post Processing

We now address three ways in which the output of a fuzzy clustering algorithm may

be processed for the purposes of obtaining a segmentation. First, the fuzzy member-

ship images provided by the algorithm can be thresholded to obtain crisp, segmented

images. Second, the fuzzy membership images can be combinedto provide image en-

hancement or used for segmentation display. Or, a small knowledge-base can used to

supplement the fuzzy output of the algorithm.

Crisp Segmentation

From the outset, we should say that obtaining crisp membership values from fuzzy

ones involves throwing away information. This is one of the conundrums of fuzzy

logic applications. However, the argument of fuzzy logic proponents is: it is better to

have more information, which may be pared down at some point,than less information,

which may be wrong. Obtaining a fuzzy partition of the image gives us the option

of assessing the fuzziness of the solution before applying the “de-fuzzification” step.

Furthermore, the fuzzy partition provides more information than a crisp one, in case

high-level processing were conducted.

One of the most common ways of obtaining a crisp partition or segmentation is to

use the max rule which stipulates that a point be allocated tothe cluster with which it

has highest membership.

Another common way of obtaining crisp segmentation is by means of identifying

the cluster of interest and setting a threshold for its membership values. This is also

called obtaining an�-cut of the cluster’s fuzzy set. Determining an optimum value for�, the threshold, remains a largely empirical exercise. (0.75 seems a popular value.)

Both post-processing methods must be addressed carefully especially when a ma-

jority of points have nontrivial membership values with more than one cluster. In this
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Figure 5.6: Three clusters’ membership images. PDI used (
 = 3; m = 2:0).

case, the solution is very fuzzy and de-fuzzification may lead to tentative (inaccurate)

results.

Membership Images and Contrast Enhancement

Provided a cluster of interest is determined, the memberships with that cluster can be

plotted as a gray-level image. In such a case, maximum membership, 1, may be shown

as white and all other membership values scaled accordingly. Gray-level membership

images can provide good enhancement of an object of interest. Like standard contrast

enhancement techniques which give a bigger dynamic range toa particular section of

the intensity histogram, a fuzzy membership image will emphasise those pixels that
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Figure 5.7: The image on the left is a colour-coded segmentation obtained using FCM
(
 = 3), while the image on the right is its PDI counterpart.

most belong to a cluster. This is seen in Figure 5.6.

Also, in cases of a small number of clusters (ideally three orfour), the member-

ship values of all clusters can be plotted as a colour image. Acolour is selected to

represent a cluster and a given membership value is allocated a proportional strength

of that colour. The resulting colour image provides at the very least a neat summary

of the fuzzy output. This is shown in Figure 5.7 where we show both FCM and PDI’s

combined membership image using a colour coding. In these images, the pixels are la-

belled with varying strengths of red, green, blue, depending on their respective cluster

memberships. The dark pixels are, therefore, those whose membership values are not

strongly in favour of any one cluster.

High-level Rule-based Reasoning

Clustering provides an initial approximation to the real classification of objects in the

image. If high accuracy and reliability is required the fuzzy output can then be fed

into a high-level reasoning “unit”. Often such units are fuzzy rule bases. Depending

on the application at hand, the rule base may seek to combine fuzzy regions (clusters)

together, determine certain properties of them, or establish spatial relations between
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them [Rosenfeld, 1984; Krishnapuram & Keller, 1993b; Chiet al., 1996]. Often,

this is done with the purpose of designing an automatic classifier; [Clark et al., 1998]

provides a good example of this type of work.
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5.3 Comparison Between FCM and PDI on Synthetic

Medical Images

Having explained how clustering is used in image analysis, in this Section, we provide

a comparison between the performance of FCM and PDI on synthetic images that have

some similarity to the medical images we used in our research. We first describe our

synthetic model, then we present the results of both algorithms.

5.3.1 Synthetic Model

Class 2
Class 0

Class 1

Figure 5.8: A synthetic image withw = 5. Class 0 is the background, class 1 is the
shell, and class 2 is the inside of the shell.

The images were designed to be77 � 77 with a structure resembling the one we

have in our medical images. This consists of three objects: abackground, a circular

shell and the inside of a shell. The classes of the objects were chosen so that: class 0

stands for the background, class 1 for the shell, and class 2 for the inside of the shell.
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The shell was given a width,w, which we varied in our experiments. Figure 5.8 shows

an example of one such image withw = 5.

The three classes consisted of pixel intensities describedby uniform distributions.

The parameters of Class 0 (background) were:a, representing the average intensity

level, and�, representing the width of the distribution. Class 1 (shell) was given

average intensityb and width�. Class 2 (inside) was given average intensity
 and

width 
.

Our methodology will now be to varyw and see its effect on the quality of both

FCM and PDI’s clustering. We measure the quality by countingthe number of mis-

classified pixels.

In all our experiments below, we usem = 2, and for PDIr = 1:5. These values

were selected in accordance with our experiences from the previous Chapter. We chose

the values0, 45, and80 for a, b, and
 respectively, and the values45, 35, and4 for�, �, and
 respectively. These values were arbitrary but selected to test the familiar

problem of close clusters of different sizes (Classes 0 and 1) but this time there is a

third cluster present (Class 2). Class 2 is a relatively compact and well-sepearated

cluster in comparison to the other two. This is evident in Figure 5.9 which shows the

histogram distributions of the synthetic images corresponding tow = 3; 5; 7; 9; and11
respectively.
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Figure 5.9: Plots (a), (b), (c), (d), and (e) are the histogram distributions of the synthetic
images corresponding tow=3,5,7,9, and 11 respectively. The columns in each plot
correspond, from left to right, to classes 0, 1, and 2 respectively (background, shell,
and inside of the shell). The height of a column depicts the number of pixels in the
class it represents. The width of a column depicts the intensity distribution of the class.
The background and shell contain a varying number of pixels according tow and have
a wide almost-touching range, but the inside of the shell hasa narrow range.
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Width % misclassified pixelsw FCM PDI

3 24.57 (1547 pixels) 2.44 (145 pixels)
5 19.90 (1180 pixels) 2.46 (146 pixels)
7 6.04 (358 pixels) 0.89 (35 pixels)
9 3.88 (230 pixels) 0
11 2.41 (143 pixels) 1.62 (64 pixels)

Table 5.1: Comparison of accuracy of FCM vs. PDI in classification of the synthetic
images.

5.3.2 Results

PDI’s segmentation results were a great improvement over FCM’s. This is confirmed

by Table 5.1 which is a comparison between FCM and PDI in termsof classification

accuracy. The visual segmentation results obtained for both FCM and PDI are shown

in Figures 5.10 and 5.11. We observe that FCM performs ratherbadly at smaller values

of w.

For example, atw = 3, where class 0 is seven times the population of class 1,

FCM splits class 0 into two (bahaviour seen in Chapter 4) and therefore misclassifies

large chunks of it. Class 1 thus is divided between class 0 andclass 2. This is so

even though class 2 is very focussed in terms of intensity range (see Figure 5.9). PDI

does not have any problems in identifying class 2 accurately. However, PDI does fail

to classify correctly a small number of pixels belonging to class 1 and assigns them

instead to class 0. Those mis-classified pixels have an intensity level close to class 0’s

range.

At w = 7, most of the pixels in class 1 are correctly classified by PDI and near-

perfect results are attained atw = 9. FCM continues to struggle. We note that whereas

PDI misclassifies a small section of class 1’s pixels at smaller values ofw, byw = 11
(where class 1 is now more populous than class 0), it extends class 1 to cover some of

the noiser points in class 0.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 5.10: The left side column shows FCM results and the right side column shows
PDI results. The top row shows results forw = 3, next isw = 5, and bottom-most isw = 7.
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(d1) (d2)

(e1) (e2)

Figure 5.11: The left side column shows FCM results and the right side column shows
PDI results. The top row shows results forw = 9 and the bottom row is forw = 11.
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This study shows how the effects of the population and diameter of a cluster affect

clustering algorithms’ performance. FCM would have coped well with this problem if

there was large separation between the intensity ranges of each class. PDI performs

much better at this type of problems because of the inequity between cluster sizes and

populations.

5.4 Conclusions

This Chapter provided a summary of our experience with clustering images for the

purpose of segmentation. We have divided the segmentation-by-clustering process into

three decision phases: feature extraction, clustering, and post-processing. Within the

clustering phase itself there are also decisions to be made about algorithm and distance

metric. We also demonstrated the advantage of PDI over FCM for some synthetic

images. Furthermore, we briefly reviewed the image clustering literature.

Since most clustering algorithms suffer from shortcomingsthat may affect accu-

racy, it is essential for the user to be aware of the shortcomings of their preferred

algorithm. Some segmentations are impossible to produce using clustering, unless the

right features are extracted to act as input to the clustering algorithm. Thus, empirical

feature extraction plays an important role as will be seen inthe next Chapter.
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CHAPTER 6

Application to Medical Image Analysis

This Chapter presents the results of our published work on using fuzzy clustering in a

cardiac imaging application. The aim was to segment and track the volume of the left

ventricle during a complete cardiac cycle. The images used are MR images containing

tissue density and velocity data. Since there is no other published work on analysing

this type of image using fuzzy clustering, our application is a novel one. Our results

may be viewed to be an investigation into the feasibility of this type of research.

The Chapter proceeds as follows. Section 6.1 presents a brief review of the anatomy

and physiology of the cardiovascular system. Section 6.2 describes the type of velocity

(or flow) images we used in this research. Section 6.3 gives the specifics of our appli-

cation and Section 6.4 describes our results in full. The research presented here uses

PDI for clustering.
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6.1 The Cardiovascular System

For a detailed introduction to cardiovascular anatomy and physiology see [Davson

& Segal, 1975; Wilson, 1990], and for a more detailed review of the imaging of the

cardiovascular system see [Underwood & Firmin, 1991; van der Wall & de Ross, 1991;

Pettigrewet al., 1999].

The Heart is a Pump

The cardiovascular system is responsible for blood circulation in the human body. It

supplies blood to cells throughout the body. Blood acts as a transport medium, where

it transports oxygen from the lungs to the cells and carbon dioxide from the cells back

to the lungs. This circulation of the blood is achieved by a pump — the heart — which

forces the blood through elastic tubes — the blood vessels.

Blood Vessels

The main function of the blood vessels is to carry the blood throughout the body. If

the blood flows away from the heart the blood vessels are called arteries. If the blood

flows to the heart the blood vessels are called veins. The largest artery is the aorta

which is characterised by a number of bifurcations. A third type of blood vessels

called capillaries connect the arteries to veins.

Heart Structure

A schematic diagram of the heart is shown in Figure 6.1. The heart consists of two pairs

of chambers: the left and right ventricles and the left rightatria. The ventricles act as

pumps while the atria act as reservoirs. Blood enters the heart from its long journey

around the body through the superior and inferior vena cava into the right atrium. This

blood has very little if any oxygen. Then it passes by the tricuspid valve into the right
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Figure 6.1: A simplified diagram of the heart.

ventricle. After the right ventricle contracts, the blood is forced through the pulmonary

semilunar valve and into the pulmonary artery. The pulmonary artery splits into the

right and left pulmonary artery where the still oxygen-deficient blood travels through

the lungs. The blood becomes enriched with oxygen and travels back toward the heart.

The blood enters the heart via the right and left pulmonary vein which come directly

from the lungs. The blood then enters the left atrium. The bicuspid valve opens up

and the blood falls into the left ventricle. The ventricle contracts and the blood goes

rushing passed the aortic semilunar valve and into the aortawhich is the largest artery
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in the body. Now the blood is on its way back to the body.

The Myocardium and Systole and Diastole

The walls of the ventricles are composed of muscular tissue and form what is known as

the myocardium. During the cardiac cycle, the myocardium contracts, pumping blood

out of the ventricular chambers and through the semilunar valves. The myocardium’s

inner surface is called endocardium while the outer surfaceis called epicardium.

In normal conditions the human heart beats between 65 and 75 times per minute.

Each heart beat corresponds to an entire cardiac cycle whichcan be characterised by a

contraction phase (systole) and a relaxation phase (diastole) of the atria and ventricles.

The systole can be divided into two phases. In the first phase the atrioventricular valves

close, the ventricular muscle starts to contract, and the ventricular pressure increases

due to the closed artery valves. At this stage the volume doesnot change and the phase

is referred to as iso-volumetric contraction. In normal conditions this phase lasts for

60ms. In the second phase, the artery valves open due to the increased pressure, the

ventricular muscles contract and the ejection starts. Normally, the left ventricle ejects

only half of its volume of ca. 130ml as stroke volume into the aorta. At the end of this

phase a rest volume of ca. 70 ml remains in the ventricle, and the arteries valves close.

Similarly to systole, diastole can also be divided into two phases. During the first

phase of the relaxation all valves are closed and the relaxation is iso-volumetric. The

ventricular pressure drops rapidly. During the second phase the valves separating atria

and ventricles open and the ventricles are filled first rapidly and then more slowly. The

ventricular pressure increases slightly. Then the cardiaccycle starts again.

Quantitative Measurements

There are a number of quantitative measurements which can provide valuable clinical

information for the assessment of the heart [Mohiaddin & Longmore, 1993]. Myco-
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radial functionality can be assessed by measuring the ventricular volume, the stroke

volume and the rest volume. Based on these quantities it is possible to calculate the

ejection fraction of the ventricles which measures the ratio between stroke and rest vol-

ume. Other indicators of myocardial functionality are the muscle thickness and mass

as well as wall motion and thickening during the cardiac cycle. Arterial functionality

can be assessed by measuring the distensibility or elasticity of arteries in terms ofcom-

plianceand is defined as change in volume per change in pressure during the cardiac

cycle.

6.2 MR imaging and Velocity Quantification

Magnetic Resonance images picture anatomic detail by measuring tissue density in the

plane of imaging. Every pixel in an MR image carries a value that is proportional to the

average tissue density registered by the MR scanner at the corresponding approximate

location in the plane of imaging.

The magnetic resonance signals are caused by Hydrogen nuclei present in the tis-

sue. The nuclei spin on their axes generating magnetic moments making them become

magnetic dipoles. When these nuclei are placed in the magnetic field of the scanner,

the axes of spin precess about the direction of the applied magnetic field. The fre-

quency of precession is directly proportional to the strength of the magnetic field each

nucleus experiences.

Flow velocity quantification [Rueckert, 1997; Yang, 1998] is based on the observa-

tion that as spins move along an imaging magnetic field gradient, they acquire a shift

in their angular position relative to those spins that are stationary. This is called a spin

phase shift, and it is proportional to the velocity with which a spin moves. This shift

in the phase angle of the spins is a parameter contained within the detected MR signal

and can be readily measured.
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The composite MR signal provides two images. The first one is the conventional

image, called the modulus of the magnitude image, in which the image signal intensity

is simply related to the magnitude of the MR signal. The second image is the phase

image in which the signal intensity is proportional to the shift in spin phase relative to

the stationary spins. This phase image, therefore, provides a pixel-by-pixel mapping of

spin velocities, given that both the strength of the magnetic field gradient and the time

during which the spins are exposed to the gradient are known.Since these features of

the sequence can be explicitly determined, it is possible for the user to define a desired

amount of spin phase shift per unit velocity and consequently determine flow rates

from the phase image.

To display flow in two opposite directions, a gray scale for displaying the spin

phases is chosen so that zero phase shift is medium gray. Spins that move into the

scanner will typically acquire positive phase shifts of 0 to180 degrees. These are as-

signed a proportional intensity from midgray to white. Spins that move in the opposite

direction will acquire negative phase shifts of 0 to 180 degrees. These are assigned

a proportional intensity from medium gray to black. This is similar to color Doppler

echocardiography, in which the flow toward and away from the transducer is displayed

with two different colors, red and blue.

6.3 Novel Application to Velocity Images

We now detail the results of our work [Shihab & Burger, 1998a;Shihab & Burger,

1998b] using cardiac velocity MR images. We describe the feature extraction, clus-

tering, and post-processing decisions we made in this specific application. Our appli-

cation consists of analysing MR image cine sequences acquired at the mid-ventricular

plane of the heart. The images are conventional MR tissue density images as well as

velocity images. Our objective is to segment and track the Left Ventricle (LV).

The cine sequences of images are aligned with the short-axisof the left ventricle
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Figure 6.2: A plane of imaging that provides a short-axis view of the heart would be
parallel to the plane shown.c
Auckland Cardiac MRI Unit
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Figure 6.3: Examples of tissue density images: frames 0, 2, 4, 6, 8, 10, 12, and 14 in
an image sequence.

(illustrated in Figure 6.2). The velocity data is rendered as 3 images,vx, vy andvz, cor-

responding to the cartesian components of the velocity vector fieldV at each pixel. The

reference coordinate system has thex-y plane lying on the plane of imaging (aligned

with the short-axis of the left ventricle) and thez axis perpendicular to it (aligned with

the LV long-axis).

The image sequences contain 16 frames. The sequences start at systole and end

at early diastole. The time space between each frame and the next is approximately

40 ms. Figure 6.3 displays example frames from a sequence. Figure 6.4 displays four

frames from each of the three velocity components. We remarkthat each image is

generated out of normally 256 heartbeats and therefore eachimage depicts the average

behaviour of the heart during a large number of heartbeats. However, the information

provided is useful for observing the global dynamics of the heart and we can still refer

in a meaningful manner to a particular time of the cine sequence since it belongs to a

definite phase of the cardiac cycle.
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(a)

(b)

(c)

Figure 6.4: Examples of the velocity images, frames 0, 4, 8, and, 12 ofvx, vy, andvz,
from top to bottom respectively.
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Figure 6.5:� and� define the direction of the velocity vector at a given point.

6.3.1 Feature Extraction

Each frame in a cine sequence contains several types of data.It contains the tissue

density data:I and the velocity data:vx, vy, andvz. Further, we can use thex, y
spatial coordinates for each pixel, assuming a cartesian coordinate system or ther
and� coordinates, assuming a polar coordinate system. The cartesian velocity data

can also be transformed to spherical or cylindrical data values. Thus, with very little

pre-processing, many possible features can be selected foreach pixel.

In all our experiments, we used the two cartesian spatial coordinates,x andy, as

features. However, we did not enter into the issue of finding suitable weighting for the

spatial features. As their range is much smaller than that ofeither the tissue density or

velocity data, they had little effect on the results. However, we left them in since they

are useful in the post-processing stage.

We assessed the impact of velocity features by clustering first without them, and

then with combinations of them. The features for the first experiment consisted ofx, y, andI (tissue density data withoutV ). In the second experiment we addedV
which is the magnitude of the three velocity components at each pixel: vx, vy, andvz
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(V = qvx2 + vy2 + vz2). In the third experiment, we removedV and replaced it with� and�. These angles describe the direction of the velocity field ata given pixel, as

shown in Figure 6.5.

6.3.2 Method

In all experiments we ran the PDI algorithm. Them fuzziness factor was set at1:5,

and ther the normalisers’ exponent was fixed at1:0. Also, 
 was set to four, as this

gave the most intuitive segmentation of the images. As is known, PDI’s output is in

the form of cluster prototypes, membership matrix, and normalisers. In the results we

present here, we utilised the membership matrix.

For each data set belonging to a frame after the first one, we initialised PDI with the

found prototype locations of the previous frame. The first frame’s data was randomly

initialised. An entire patient sequence would take between3—4 minutes on a recent

Pentium PC model.

6.3.3 Post-Processing

Having clustered a patient’s data (in the three ways stated above), we then selected the

cluster corresponding to the LV blood pool area. This could be effected in two ways:

the first is to estimate which of the found prototypes represents the LV, or to plot a

max-rule segmentation of the first frame, from which one can visually determine the

LV-cluster. Membership images of the LV-cluster for the twocases ofwithout-Vand

with-V are shown for a normal patient in Figures 6.6 and 6.7.

Once we have determined the LV cluster, we can now count the pixels in the LV

area. Using thex andy features of the LV cluster’s prototype as a seed, we ran a region

growing routine on the max-rule segmented images. These provided us with a count

of the pixels in the LV area for each of the chosen data sets, for each patient.
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Figure 6.6: First experiment (only tissue density data): membership images of the LV
cluster tracked from frames 0 to 15 (left-to-right, top-to-bottom) for a normal patient.
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Figure 6.7: Second experiment (tissue density andV data): membership images of
the LV cluster tracked from frames 0 to 15 (left-to-right, top-to-bottom) for the same
patient as in Figure 6.6.
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6.3.4 Results

We remark here that we faced difficulties in our investigations due to the unreliable

data values sometimes produced in phase-contrast MRI studies, and due to the length

of time required for a single patient study (to collect this data). Thus, we clarify that

our intention is to illustrate the application of fuzzy clustering to this type of studies,

instead of to present a complete, validated medical investigation.

In Figure 6.8, we compare the calculated areas of the left-ventricle using the three

routes we took with a ’ground truth’ established by a clinician. The cine sequence is

that of a normal patient.
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Figure 6.8: Comparison of calculated LV area for the three data sets used.

The general trend of all the curves as compared to the ground truth is correct.

However, we observe that using the velocity-magnitude feature causes somewhat er-
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ratic estimates of LV area. Furthermore, these estimates were generally greater than

the correct values. In general, it was difficult to distinguish between the results of

density-only and density-and-velocity-direction features. As can be seen in the plot,

the estimates using these two feature sets were consistently less than the correct values.

6.4 Conclusions

In this Chapter, we studied the cardiac system and then investigated the viability of us-

ing fuzzy clustering as the principal method for segmentation and tracking of the LV.

We proceeded along the same steps outlined in the previous Chapter: feature extrac-

tion, clustering, and post-processing. In the feature extraction step, we experimented

with novel feature sets that include velocity data made available through phase con-

trast MR. In the clustering step, we used our novel PDI clustering algorithm. In the

post-processing step, we took a conventional route and usedthe max rule.

We conclude by reviewing our experience. First, our resultswere generally accu-

rate and can be used for quantifying cardiac measures. Clinicians easily understood

the concept of clustering and immediately grasped its application. The strength of the

method lies in its general flexibility and accuracy. Decisions like: setting a value for
, fixing values for the clustering parameters, and identifying the cluster of interest,

allow flexibility for the user. Once these decisions are gonethrough for one patient,

the processing of the other data sets can be automated.

Second, in studying the effect of using extra velocity-related features, we found that

they enhanced accuracy for only one frame out of the 16, as compared to a conven-

tional feature set containing tissue density data. We also found that velocity-directional

features provided more accurate results than velocity-magnitude features.

An interesting problem which should be a fruitful line of future research is to track

the myocardium in the same image sets (containing velocity data). This would proba-
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bly necessitate using polar coordinates instead of cartesian ones and weighting the spa-

tial coordinates suitably. Including velocity features would probably increase the ex-

tent of accurate segmentation because of the relative lack of motion of the myocardium.
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CHAPTER 7

Conclusions and Further Work

7.1 Summary of Main Results

This dissertation investigated the FCM algorithm and devised a new algorithm, PDI,

to address a behavioural shortcoming of FCM. The shortcoming is that FCM does

not classify accurately a data set containing small clusters lying close to big clusters.

We found the reason for this to be that the objective functionwhich is at the heart of

FCM becomes inadequate in situations like those stated above. It does not have the

flexibility of narrowing or widening the scope of a cluster prototype. Byscope of a

cluster prototypewe mean an area around the prototype in which points would add

little cost to the objective function. If the objective function allows a given prototype

to possess a relatively wider scope than other prototypes, points that lie far from the

given prototype, but within its scope, would not be costly. FCM’s objective function

gives an equal amount of scope to each prototype and this causes the correct solution to

be costly when clusters are of unequal sizes, the situation is made worse if the clusters

are of unequal populations as well.

To overcome this shortcoming, we devised a modification of FCM. The new PDI

objective function attempts to equalise cluster contributions and by doing so, it allows
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the smaller clusters to be found. For each prototype, PDI redefines its “cluster contri-

bution” to be the same as FCM’s but divides it by a variable, the cluster normaliser.

This normalisation creates a non-equal distribution of scopes for each prototype. Thus,

small clusters are granted small scopes, because they take small normaliser values, and

they therefore become less costly and have a higher chance ofbeing found.

We demonstrated FCM’s shortcoming through systematic study. We formulated a

framework and generated dot patterns to specifically test this shortcoming. We also

showed, using the same data, that PDI improves quite a lot on FCM’s performance.

Furthermore, we investigated some aspects of PDI’s behaviour.

This dissertation also critically investigated the process of analysing image data by

using fuzzy clustering. We highlighted three decisions points in this process: feature

extraction, algorithm and parameters, and post-processing method. We described ex-

amples of each of these decision points. Furthermore, we compared FCM’s and PDI’s

clustering of medical MR images, and designed synthetic data to test this.

Finally, the thesis presented the results of a novel application of fuzzy clustering

in medical image analysis. We used velocity data obtained byusing a phase-sensitive

MR technique, as well as the usual tissue density data, to track the left ventricle in

image cine sequences. We found the availability of velocitydirectional data increases

the accuracy of the overall clustering.

7.2 Further Research

1. Further Analysis of PDI

(a) PDI requires some investigation from an optimisation perspective. This

may be achieved using some of the global optimisation software libraries.

An assessment may then be made as to how prone the model is to local

solutions. The model itself may require improvements, as itis sensitive
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to initialisation and prone to divergence. If the iterativeimplementation is

used, divergence may be studied by means of tracking the values of the

normalisers,�i, and re-starting the algorithm when a value becomes too

low (indicating divergence).

(b) We have not carried out a computational complexity analysis of PDI as

compared to FCM, in terms of an iterative implementation scheme. Such

an analysis may be useful in finding ways to optimise PDI’s computational

efficiency. This would naturally enhance the feasibility ofusing PDI for

the analysis of very large data sets.

(c) In Chapter 4, we structured our data sets in two-dimensional feature space.

While all indications are that PDI will continue to perform more accurately

than FCM for higher dimensional spaces, it would be useful toquantify the

limit at which PDI no longer provides a substantial advantage over FCM.

(d) In our experiments in Chapter 4, we only tested PDI’s performance on two-

cluster data sets. In Chapter 5, we compared PDI and FCM’s performance

on images containing three clusters. While both experiments showed that

PDI improves over FCM’s accuracy, will PDI’s performance decrease with

increasing numbers of clusters?

(e) It might be useful to extend PDI in some of the ways FCM was extended.

So, for example, how would a PDI-G-K algorithm (see Section 3.3.1) differ

from the plain G-K algorithm? Likewise, we can create a possibilistic (see

Section 3.4.1) version of PDI and compare its performance tothe original.

2. Cardiac Medical Image Analysis

The points we propose below are independent of clustering algorithm used, ex-

cept when mentioned.

(a) In Chapter 6, we only clustered the image data available in one cross-

sectional slice. Even though there is no spatial continuityin multi-slice
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volume data, investigating clustering the entire volume data in 3D spatial

space may provide a good challenge. The question of weighting the spatial

features appropriately will come up. Excluding spatial coordinates from

the data set may well turn out to be an effective approach to initialise a

more precise clustering process operating on each slice.

(b) Similarly to above, investigating clustering the volume data with time peri-

odic information summarised in a phase angle feature per voxel (an exten-

sion of the approach in [Boudraaet al., 1993]) may yield an improvement

to the accuracy of results obtained via point (a) above.

(c) In Chapter 5, we mentioned in passing using clustering for image contrast

enhancement. This can be facilitated by the membership images. Once a

cluster of interest has been identified, it would be useful toevaluate how a

clustering-enhanced membership image compares with traditional contrast

enhancement techniques.

7.3 Final Conclusions

The goal of clustering methods: detecting an inherent clustering in the data set and then

accurately describing it is a complex exploratory process.In two dimensional feature

space, it seems that no method or strategy is as versatile as the human. In practical

applications, therefore, misleading interpretations of cluster structure will have to be

detected and corrected by human expertise.

Humans, however, need clustering methods to automate repetitive clustering tasks

and to deal with the huge volumes of data that exist today. It is necessary that for data

sets that possess cluster structures for which there is little doubt about their correct

interpretation, a clustering method be found to perform accurately on them. It was in

this vein, that we proposed PDI as a better successor to FCM. PDI, like other proposed

successors to FCM, opens many questions about its wide applicability and accuracy.
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Widening our view to beyond our PhD research, we offer the following conclusions

on the subjects of clustering and image analysis :-

1. It is necessary that more research be conducted on the topic of clustering ten-

dency — a topic that is little-studied at present. Tests for clustering tendency

would precede actual clustering and would report on whetherit would be worth-

while to use a clustering algorithm. This would probably involve comparing the

information content of the data to that of randomly distributed data.

The usual logic which consists of applying a clustering algorithm first and then

assessing the clustering tendency from the algorithm’s results assumes perfect

accuracy of the clustering algorithm — which is not guaranteed. Furthermore,

this two-step computational effort ought to be replaced with a simpler one-off

test. The approaches of [Dunn, 1973; Windham, 1982] are interesting and should

be followed on.

2. Graph-theoretic methods have not been combined with objective function meth-

ods. It would seem that this a fruitful research area as objective function methods

rely on distance metrics that do not “see” connectivity or the lack of it, while that

is graph-theoretic methods’ strongest point.
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APPENDIX A

Details of Benchmark Data Suite Generation

If D1 were plotted againstD2 as in Figure A.1, the lineD1 +D2 = 20 would describe

configurations where the clusters touch. Since it is not our aim to test a clustering

algorithm on detection of overlapping clusters, only the 200 configurations under the

line should be considered. If we eliminate, by symmetry, equivalent diameter config-

urations (i.e., D1 = 5 andD2 = 10 is equivalent toD1 = 10 andD2 = 5), then only

100 diameter configurations remain.

In the above, when we cut down the number of possible diameterconfigurations to

100, we said that a configuration ofD1 = 5 andD2 = 10 is equivalent toD1 = 10
andD2 = 5. However, when we take the populations into consideration,this is no

longer case. For example, imagine a1 : 10 population configuration combined with a5 : 10 diameter configuration:(P1 = 1; D1 = 5) and(P2 = 10; D2 = 10). If we keep

the populations as they are but swap the diameters, the resulting configuration,(P1 =1; D1 = 10) and (P2 = 10; D2 = 5), is not equivalent to the former configuration.

This is illustrated in Figure A.2. Thus, it seems we must keepthe second configuration

as it describes a different data set, and we can not discard the “equivalent” region of

Figure A.1.

However, when we arrive at the configuration consisting of10 : 1 population ratio
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Overlapping clusters
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Arrangement

of clusters
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Line of touching clusters

D1
Radius of

LHS cluster

0 D2

Radius of RHS cluster

Figure A.1: Plot of possible diameter configurations. Data sets corresponding to the
black dots in the triangular region were generated. If we eliminate overlapping and
equivalent configurations only 100 data sets remain.

P = 10P = 1

P = 1 P = 10

P = 10

P = 10 P = 1

P = 1

Figure A.2: Each row illustrates equivalent p-d configurations. Only one of each suf-
fices when generating the suite of data sets.
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and5 : 10 diameter ratio we will discover that it is the same as that of the second

configuration above. Therefore, in order to not count the same p � d configurations

twice, we can still consider only the 100 diameter configurations of Figure A.1 for each

of the nine population configurations.
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APPENDIX B

Derivation of 2D 2-Prototype Model

These are the derivations used to plot the shape of FCM and PDIobjective functions

on Mathematica.

B.1 FCM’s derivations

Assume two 1D cluster prototypes located at the origin and(1; 0) respectively. Denote

prototype at the origin bya and the other byb.
Assume a point located at location(x) somewhere on thex-axis. Let’s calculate its

contribution towards the FCM objective function. Assumem = 2.Jx = u2xad2xa + u2xbd2xbuxa = (1=d2xa)(1=d2xa) + (1=d2xb)uxb = (1=d2xb)(1=d2xa) + (1=d2xb)Jx = (1=d2xa) + (1=d2xb)[(1=d2xa) + (1=d2xb)℄2
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B.2. PDI’S DERIVATIONS 165

Since dxa = x anddxb = x� 1) Jx = (1=x2) + (1=(x� 1)2)[(1=x2) + (1=(x� 1)2)℄2
which simplifies to: Jx = 11(x�1)2 + 1x2

For the two dimensional case, where the point is now located anywhere on the

plane and is of coordinates(x; y), we derive the point’s contribution,Jxy:d2xa = x2 + y2 andd2xb = (x� 1)2 + y2) Jxy = ( 1x2+y2 ) + ( 1(x�1)2+y2 )[( 1x2+y2 ) + ( 1(x�1)2+y2 )℄2
which simplifies to: Jxy = 11(x�1)2+y2 + 1x2+y2
B.2 PDI’s derivations

Assume two 2D cluster prototypes located at the origin and(1; 0) respectively. Denote

prototype at the origin bya and the other byb.
Assume a point located at coordinates(x; y) somewhere on thex� y-plane. Let’s

calculate its contribution towards the PDI objective function. Assumem = 2 and the

normalisers of each cluster to have values of�a and�b = (1� �a).Jx = u2xad2xa�ra + u2xbd2xb(1� �a)ruxa = (�ra=d2xa)(�ra=d2xa) + ((1� �a)r=d2xb)
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B.2. PDI’S DERIVATIONS 166uxb = ((1� �a)r=d2xb)(�ra=d2xa) + ((1� �a)r=d2xb)
Since dxa = x anddxb = x� 1) Jx = 1(1��a)r(x�1)2 + �rax2

For the two dimensional case, where the point is now located anywhere on the

plane and is of coordinates(x; y), we derive the point’s contribution,Jxy:d2xa = x2 + y2 andd2xb = (x� 1)2 + y2) Jxy = 1(1��a)r(x�1)2+y2 + �rax2+y2
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APPENDIX C

Derivation of PDI Optimality Conditions

Finding a solution is effected with the Lagrange multipliers method [Bertsekas, 1996].

Since an exact analytical solution can not be obtained, the first order optimality con-

ditions are found and these are used as update equations in Picard iterations. The

algorithm is started with any initial values forU ;P; and� and then these are iteratively

improved until convergence is attained.

We define the Lagranian function as follows:L(U ; �;P) = 
Xi=1 1�ri NXk=1 umikd2ik + �( 
Xi=1 uik � 1) + �( 
Xi=1 �i � 1)
Where� and� are Lagrange multipliers for each of the constraints.� is a vector ofN
elements, and� is a single value.

According to the Lagrange multipliers method, the necessary first order optimality

conditions are: rUL = 0; (C.1)rPL = 0; (C.2)r�L = 0; (C.3)

167



168
Xi=1 uik � 1 = 0 8k = 1::N; (C.4)

and, 
Xi=1 �i � 1 = 0 8i = 1::
: (C.5)

From the optimality condition of equation C.1, we obtain:mum�1ik d2ik�ri � �k = 0: (C.6)) uik = [�k�rimd2ik ℄1=m�1: (C.7)

Substituting the above equation in C.4, we obtain:
Xi=1 [�k�rimd2ik ℄1=m�1 = 1:) �k = m[P
i=1(�ri=d2ik)1=m�1℄1=m�1 : (C.8)

Substituting�k into C.7, we obtain the update equation foruik:uik = (�ri=d2ik)1=m�1P
i=1(�ri=d2ik)1=m�1 : (C.9)

From the optimality condition of equation C.2 and noting that dik is any inner-

product induced norm on the difference betweenxk andvi, we obtain:2=�ri NXk=1umik(xk � pi) = 0:) NXk=1umikxk = NXk=1umikpi
which leads to the following update equation forpi:pi = PNk=1 umikxkPNk=1 umik : (C.10)
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Finally, from the optimality condition of equation C.3, we obtain:�i = (rPNk=1 umikd2ik� )1=r+1: (C.11)

And from the optimality condition of equation C.5, we obtain:
Xi=1(rPNk=1 umikd2ik� )1=r+1 = 1: (C.12)) � = [ 
Xi=1[ NXk=1umikd2ik℄ 1r+1 ℄r+1: (C.13)

Substituting for� in equation C.11, we obtain the update equation for�i:�i = (PNk=1 umikd2ik)1=r+1P
i=1(PNk=1 umikd2ik)1=r+1 : (C.14)
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