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Abstract

The general problem of data clustering is concerned withliheovery of a group-
ing structure within a finite number of data points. FuzzysBdwing algorithms pro-
vide a fuzzy description of the discovered structure. Thénradvantage of this de-
scription is that it captures the imprecision encounteredmdescribing real-life data.
Thus, the user is provided with more information about thecstire in the data com-

pared to a crisp, non-fuzzy scheme.

During the early part of our research, we investigated thmufa Fuzzy c-Means
(FCM) algorithm and in particular its problem of being uraald correctly identify
clusters with grossly different populations. We devisedudesof benchmark data
sets to investigate the reasons for this shortcoming. Weddhbat the shortcoming
originates from the formulation of the objective functidri=C€M which allows clusters
with relatively large population and extent to dominate simdution. This led to a
search for a new objective function, which we have indeeohtdated. Subsequently,
we derived a new so-called Population Diameter Indepen@dt) algorithm. PDI
was tested on the same benchmark data used to study FCM aridumdgto perform
better than FCM. We have also analysed PDI’s behaviour adtifted how it can be

further improved.

Since image segmentation is fundamentally a clusteringleno, the next step was
to investigate the use of fuzzy clustering techniques fagemsegmentation. We have
identified the main decision points in this process. Furtieee, we have used fuzzy
clustering to detect the left ventricular blood pool in gaodcine images. Specifically,
the images were of the Magnetic Resonance (MR) modalityatming blood velocity
data as well as tissue density data. We have analysed thige@tapact of the velocity
data in the goal of achieving better accuracy. Our work wdagdypically used for
qualitative analysis of anatomical structures and quatinté analysis of anatomical

measures.
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CHAPTER 1

Introduction

This dissertation contributes to the subject area of Datest€fing, and also to the
application of Clustering to Image Analysis. Data clustigracts as an intelligent
tool, a method that allows the user to handle large volumetatd effectively. The
basic function of clustering is to transform data of any wrigppto a more compact
form, one that represents accurately the original data. cimepact representation
should allow the user to deal with and utilise more effedyitke original volume of
data. The accuracy of the clustering is vital because it dibel counter-productive if
the compact form of the data does not accurately represerdrtginal data. One of
our main contributions is addressing the accuracy of arbksteed fuzzy clustering

algorithm.

In this introductory Chapter, we provide brief descripsaf the subjects of our re-
search, and establish the motivations and aims of the @sear conducted. Section
1.5 provides a summary of the main research contributioasgoted in this disserta-

tion. The Chapter concludes with an outline of the remaimdéne dissertation.

17



1.1. CLUSTERING 18

1.1 Clustering

Research on Clustering is well-established; it dates bathket 1950s and is widely re-
ported in various current journals. The research problerangserned with discovering

a grouping structure within a number of objects.

Typically, a set of numeric observations, or features, atkected of each objedt.
The collected feature-sets are aggregated into a list wthieh acts as the input to a
chosen computational clustering algorithm. This algonithen provides a description
of the grouping structure which it has discovered within dligects. The description
typically consists of a list containing, for every objettetcluster to which it has been
assigned. The clusters would be identified by labels ussaipplied by the user. In
this way, a large number of seemingly disparate objectss amumber of features are

extracted of them, can be organised into groups of apprdrigshared features.

Data clusteringgained initial formal treatment as a sub-field of statistiegstem-
atic methods of clustering were required to be developedusecthe data may be large
in size and therefore cumbersome to analyse and visualisecdmputing revolution
of the sixties and seventies gave momentum to this new fieduse, for the first time,
computers enabled the processing of large amounts of ddtepak the burden of the
very large amounts of computation generally involved. Thélfcan, however, trace

its origins to further back in time.

The Swedish botanist Carolus Linnaeus, who was concernéidalassification
in the plant and animal kingdom, wrote in his seminal 1737kn&enera Plantarum

[Everitt, 1974]:

All the real knowledge which we possess, depends on methoddich
we distinguish the similar from the dissimilar. The greatember of nat-

1This is calledfeature selectiomnd is studied in its own right, separately from clusteriNgturally,
the selection of features strongly influences the effentigs of whatever process takes place after the
extraction of the features, be it clustering or otherwise.

18



1.1. CLUSTERING 19

ural distinctions this method comprehends the clearerrhesoour idea
of things. The more numerous the objects which employ oenttin the
more difficult it becomes to form such a method and the moresszry.

For we must not join in the same genus the horse and the swinidydth

species had been one hoof'd nor separate in different gémeigoat, the
reindeer, and the elk, tho’ they differ in the form of theirhs. We ought
therefore by attentive and diligent observation to deteenthe limits of
the genera, since they cannot be determiaqatiori. This is the great
work, the important labour, for should the Genera be confuak would

be confusion.

If translated to modern formalisms, Linnaeus’s quotat®wery relevant to the
clustering problem. Linnaeus uses the teratural distinction this is the much sought
after goal of clustering — finding an “intrinsic classifiaati’ or an “inherent struc-
ture” in data. He states that the better we are at finding a@rémit structure in data,
the more knowledge we shall therefore possess about ithémunbre, he states that
the bigger the volume of data is (more numerous objects)yihie necessary it is to
develop better clustering methods. He mentions a key aspatticlustering methods:
little information is available priori. Interestingly, the quotation emphasises the im-
portance offeature selectione.g., being one-hoofed doesn’t put the horse and swine
in the same genera. However, feature selection is consideree out of the scope of

the clustering problem in all modern studfes.

1.1.1 Clustering Applications

The explosion of sensory and textual information availgbleis today has caused
many data analysts to turn to clustering algorithms to makse of the data (thereby
heeding Linnaeus’s warning on “confusion”). It has becon@imary tool for so-

called knowledge discovery [Fayyad al., 1996a; Fayyaeét al., 1996b], data mining,

2There is a case though for its inclusion back into the clirsgedomain especially in concept-
forming and machine learning applications, [Mirkin, 199@ur research, however, has followed the
established distinction betweémature selectiomndclustering

19



1.1. CLUSTERING 20

and intelligent data analysis [Liu, 2000]. In fact, the masly-sized data sets of these
applications have placed high demands on the performanteeofomputationally

expensive clustering algorithms.

Clustering is used in various applications. In general,aih @ssist in [Backer,
1995]:

1. Formulating hypotheses concerning the origin of the ¢at, evolution stud-

ies).

Investigating clustering behaviour at various scales chsueement provides a
hierarchical description of the data. The hierarchicalkcdpson captures the
early formation of clusters and how they break down to smallees and so
on. This can aid in formulating hypotheses about the sysememgting the data,
particularly in biological taxonomy applications. (Seeapter 2 for more details

of hierarchical clustering.)

2. Describing the data in terms of a typology (e.g., markatyasis).

Profiles of consumers, including their purchasing behayiomay cluster around
a small number of “consumer types”, this is then used to impnmarketing

performance.
3. Predicting the future behaviour of types of this data.(exgpdelling economic
processes).

If the temporal data tends to cluster, the predictive preces be simplified by
identifying patterns of temporal behaviour based on chgst&his can be then

generalised to similar types of data.

4. Optimising a functional process (e.g., informationiesal).

Identifying clustering behaviour in demand-driven enkimeents can help in op-
timising access to the resources under demand so that ieghregponsiveness

is achieved.

20



1.1. CLUSTERING 21

1.1.2 Clustering Paradigms

Above, we mentioned one way of describing clustering stmas within a number of
objects, which is: assign a cluster label for every objece &&n then, perhaps, do
a search on a specific label to find out which objects belond. t¢iowever, there
are other ways of describing the discovered structure asdlgpends on the cluster-
ing paradigm being followed. These paradigms reflect themiht assumptions and

approaches taken by researchers in the field.

In Table 1.1 we list the five main clustering paradigms. Wecdbs the main
feature of each paradigm and give recent examples fromtératiure. Each of these
paradigms is not exclusive and considerable overlap eedtseen them. In Chapter

2, we will concentrate on only the hierarchical and pamisibparadigms.

1.1.3 Fuzzy Clustering

Our research has used the paradigm of fuzzy clustering vidlzhised on the elements
of fuzzy set theory. Fuzzy set theory employs the notion thiaé given universe of
discourse, every element in the universe belongs to a vqadegree to all sets defined
in the universe. Ifuzzy clusteringthe universe of discourse is all the objects and the
sets defined on the universe are the clusters. Objects adassified as belonging
to one and only one cluster, but instead, they all possesgraelef membership with

each of the clusters.

The most widely used fuzzy clustering algorithm is callerizfge-means, or FCM.
In the five years between January 1995 to December 1999 thenee 124 journal
papers containing “fuzzy c-means” in their titles or abdsa The subject areas of
the journals were many and included Process Monitorind, Sméence, and Protein
Engineering. The papers were split between those repastirap application of FCM

and those reporting on improving its performance in some Bajng so widely used,
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1.1. CLUSTERING
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| Paradigm

Description and Recent Literature

Hierarchical

Produces a tree-like description of the clustering stmectu

The tree is constructed by recursively merging similar

ob-

jects to form clusters, then merging the clusters to form new
super-clusters, this ends when all clusters have merged int

one super-cluster. Cutting the tree at any level providesa
tition of the objects.

[Bajcsy & Ahuja, 1998], [EISonbaty & Ismail, 1998]

Graph-theoretic

Views the objects as nodes in a weighted network, or gr

aph.

This is very helpful for two-dimensional dot patterns. The
weight between one node and another is the distance between
them using an appropriate metric. The problem, thus, besome

a graph-theoretic one where, for example, a minimal span
tree is constructed on the dot pattern. This can help it
the clustering structure.

[Brito et al., 1997], [Pacheco, 1998], [Shapiro, 1995]

nin

=

Mixture Models

Assumes the objects were generated by a mixture of proba-

bility distributions. Determination of the parameters athk
distribution defines the clusters.

[McLachlan & Basford, 1988], [Fraley & Raftery, 199§],

[Banfield & Raftery, 1993]

Partitional

Clusters are disjoint partition of objects. An object begsto
only one cluster; crisp membership. Usually employs no

tion

of prototypes around which objects cluster, and an objectiv

function to assess a given partition.

[Lin & Lin, 1996], [AlSultan & Khan, 1996]

Fuzzy

An object possesses varying degrees of membership

with

more than one cluster. Extends partitional paradigm, but ex

tensions for all other paradigms are being proposed.

[Bezdek, 1981], [Hoppnest al, 1999], this dissertation

Table 1.1: Clustering Paradigms with examples of recesriditire.
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1.2. IMAGE ANALYSIS 23

FCM is known to have certain shortcomings. We will be disowugthese shortcomings
and proposing our own solution to a particular but impor&@rtcoming later in this

thesis.

1.2 Image Analysis

Today, imaging plays an important role in medical diagnosis, and in plagnaxe-
cuting, and evaluating surgical and radiotherapeuticatg@adures. The information
extracted from images may include functional descriptiohanatomical structures,

geometric models of anatomical structures, or diagnossessment.

Most medical imaging modalities provide data in two spafiaiensions (2D) as
well as in time (2D+ time cine sequence). Data in three spatial dimensions (3D)
as well as in time (3Dt time, so-called 4D) are also becoming common. The large
amount of data involved necessitates the identificatiosegmentatiof the objects
of interest before further analysis can be made. The rebtiitsegmentation process
is the grouping or labelling of pixels into meaningful regsoor objects. Currently,

segmentation is often carried out manually by experientiatti@ans or radiologists.

There is a very strong intuitive similarity between clusigrand segmentation;
both processes share the goal of finding accurate classificat their input. Fuzzy
clustering, therefore, has been used for image segmemfatiadhe past twenty years
[Pal & Pal, 1993; Bezdelet al, 1993; Bezdelet al., 1997]. The process of using
clustering in image analysis is generally flexible and tfeesea lot of decisions are
taken ad-hoc. We will explore this process in Chapter 5 aftinesis. Also, in Chapter

6, we describe a specific application of fuzzy clusteringai@imac MR image analysis.

23



1.3. GENERAL FRAMEWORK AND MOTIVATION 24

1.3 General Framework and Motivation

The ability to learn is an outstanding human faculty. Thufty allows us to interact
and deal successfully with new situations and to improvepeuiormance at whatever
task we are performing. A simplified model of learning is thas a process over
time that uses its percepts, or perceptive input from sensoradd continuously to
and refine knowledge about its environment [Rumelbaai., 1986; Russel & Norvig,

1995].

The discipline of science concerned with designing computegrams that learn,
so-called Machine Learning, concentrates on supervisauhilegy methods [Niyogi,
1995; Mitchell, 1997]. These methods must be presentedwid training examples
so that they can perform in a successful manner when dealithgnew data. The
training examples consist of a finite number of input-outpaits. From this training
set, the learning agent must discover the learning funaiotihat when it is presented
with unencountered data, it produces a “reasonable” outpbe learning function
represents the knowledge gained by the learning agent. r8s@e methods, thus,
assume the existence of a training set for the percepts de#lraing agent. What

about when there is no training set, as is often the case lylearning experiences?

Here, unsupervised learning methods must be used. Thekedseiperate on only
the input percepts because no training examples are akailBirey must work on the
basis of minimal assumptions about the data. Thus, it issthesthods that capture
the formative part of learning most [Michalski & Stepp, 19&epp & Michalski,
1986]. Unsupervised learning acts as an exploratory towlobby means of which a

preliminary model may be generated.

One of the primary unsupervised learning methods is climgtem hus, the research
we carried out was motivated by the desire to improve andldpwwustering methods

further so that better learning agents may be built.

Our research was also motivated by another interest. Humiaig$can by seeing
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1.4. RESEARCH AIMS 25

a picture recognise things in it as well as learn new thingaiathe scene. Studies of
the human visual sytem suggest that one of the primary apasatarried out is clus-
tering of visual sensory data [Ahuja & Tuceryan, 1989; MaHE92; Li, 1997]. The
research we undertook, particularly in the applicationlo$tering to image analysis,
was motivated by the similarities between clustering andegy@ual grouping in the

human visual system.

1.4 Research Aims

The aims of our research are:-

1. To investigate the main fuzzy clustering algorithms anidiéntify their stengths
and weaknesses.

2. To study the process of using clustering for image segatientand analysis.

3. To apply the results of our research in a medical imageyaisgbroblem.

1.5 Main Research Contributions

Our main research contributions can be summarised as:-

1. We studied and investigated the FCM algorithm thorougimrg identified its

main strengths and weaknesses.

2. We developed a systematic method for analysing FCM’siflegtion accuracy
when it is used to cluster data sets that contain clustergigf different sizes

and populations.
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3. We proposed a new algorithm, based on FCM, which perfoammbre accu-
rately than FCM on data sets like those described above. Seeimlestigated

performance properties of our new algorithm.

4. We identified the main decision points encountered wheyay clustering

methods to image analysis.

5. We carried out a case study in which we applied fuzzy clirgjeas the main
image analysis tool for a novel type of image in cardiac Magneesonance

Imaging (MRI).

We believe these contributions provide new understandigignaethods in regard

to our Research Aims.

1.6 Outline of this Dissertation

This dissertation can be viewed as constituting two pahs:first part is concerned
with the clustering of data of any type, whereas the secondgaoncerned with the
clustering of data extracted from images. Chapters 2, 34dodus on the first part,

and Chapters 5 and 6 focus on the second part.

Chapter 2,The Basics of Data Clusteringurnishes the reader with the general
framework of the data clustering problem. The nomenclatumewe used throughout
the dissertation is presented. Examples of data typicakgun clustering papers are
shown. Hierarchical and Partitional clustering are déscti A brief outline of two
well-established clustering algorithms is given in ordefamiliarise the reader with
the approaches used in solving the clustering problem lliigbrief commentary on

new ideas in the clustering literature is presented.

Chapter 3Fuzzy Clusteringpresents a critical review of the fuzzy clustering field,

but particularly algorithms based on an objective functimodel and relating to FCM.
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1.6. OUTLINE OF THIS DISSERTATION 27

First, the FCM algorithm is examined in detail. Second, esiens and developments
on FCM are briefly reviewed. The Chapter concludes with amwee of the weak-

nesses of FCM.

Chapter 4A New Algorithm for Fuzzy Clusteringresents the Population Diame-
ter Independent (PDI) algorithm. This is an algorithm wegamge that alleviates one of
the important weaknesses of the FCM algorithm which is islémcy to mis-classify
a data set containing smaller clusters located close tedames. An experiment is
presented to analyse FCM’s shortcoming and to motivategheatgorithm, PDI. The
name Population-Diameter Independent is given to the @lhgorbecause its perfor-
mance remains more accurate than FCM and independentlyti@mpopulations and
diameters of clusters involved. The Chapter concludes avitview of some of PDI’s

performance parameters.

Chapter 5Clustering of Medical Imagesliscusses the application of fuzzy clus-
tering algorithms to image analysis, particularly segragah. We break the analysis
process into feature extraction, clustering, and postgssing, giving our experiences
with the decisions involved in each stage. Within this fraroek, we give examples of
successful applications of this process. We also carry cahgarison between FCM

and PDI on synthetic medical images and demonstrate PD¢Bgth in this regard.

Chapter 6 Application to Medical Image Analysigresents the results of our work
to analyse Magnetic Resonance cardiac images. The worktaitreck the left ven-
tricle in cine images of the heart. The types of image we usatiamn velocity data
as well as tissue density data. We followed the framework wikned previously and

conclude by reporting our results on this novel application

Chapter 7Conclusions and Further Woyrlsummarises the conclusions of our re-

search and outlines several ideas for further work basetderesults we achieved.
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CHAPTER 2

The Basics of Data Clustering

Stated simply, the clustering problem is:

Given a collection ofV objects, each of which is measured on each of
features, devise a grouping scheme for grouping the ohijects classes.
The number of classes and the characteristics of the classesiknown

and should be determined.

In this Chapter, we expand on this definition and provide &moduction to the field.
We defer the subject of Fuzzy Clustering to the next Chaprtefinitions of the nomen-
clature used for the remainder of the dissertation are geavin Section 2.1, and ex-

amples of dot patterns encountered in clustering liteesdine presented in Section 2.2.

Classically, clustering algorithms have been divided iR&stitional and Hierar-
chical. In Section 2.3, hierarchical and partitional aitjons are described with the
specific examples of the Single Link hierarchical algoriténad the Hard-Means par-
titional (HCM) algorithm. The Chapter concludes with a breview of new directions

in clustering.
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Figure 2.1: An example of a data set.

2.1 Notation and Terminology

In general, we seek to clustdr objects, or observations. An observation may consist
of a set ofp numeric attributes or features. If that is the case, we némmedllection

of N x p values thelata set Figure 2.1 illustrates this concept.

Let the data set to be clustered be definedas he sett¥’ consists ofN feature

vectorsor data points, x. Eachx consists op features such that € R?.

X = {Xl,XQ,...,XN}.

Assume we wanted to find clusters inX', where2 < ¢ < N. In crisp cluster-
ing, the goal would be to partitiod’ into the disjoint non-empty partitions,, - - -, S.
defined by:

X =S USU...US,

where
SiﬁSj:¢ Z',jE{l,...,C},Z'#j

29
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and

Sz%gb ie{l,...,c}

In fuzzyclustering (described in detail in Chapter 3), the goal wdog to find
the partition matrix , Z. The partition matrix is a reaN x ¢ matrix that defines

membership degrees for each feature veétas defined by:
Uec RV = [uy] ie{l,....,ch,ke{l,...,N}
whereu;; is thedegree of membershipof x;, in cluster;,

ui € [0, 1] Vi, k.

Clusters should contain feature vectors relatively sintitaone another. In the
general case, therefore, the results of a given clustergtyoa very much depend on
the similarity measure used. The similarity measure will provide an indication of
proximity, likeness, affinity, or association. The more tdata objects resemble one
another, the larger a similarity index and, converselystineller a dissimilarity index.
In this sense, the Euclidean distance between two datargasta dissimilarity index,

whereas the correlation is a similarity index.

Data sets may not always contain only numeric data. Manyfeaibservations,
especially data collected from humans, are binary. Thesddyequire an appropri-
ate similarity measure likematching coefficientsIn some cases, feature observa-
tions would have been obtained from a time-series. An ap@tgpsimilarity measure
should then take account of the temporal nature of these Batéhermore, there are
situations where the features would be of mixed types, omwdaa observations are
missing. We refer the reader to [Backer, 1995] for an intadidun to common ways of

extracting similarity measures for binary, mixed, and imgslata.

In some applications dissimilarity data are collectedalyein the form of adis-
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similarity matrix . The dissimilarity matrix occurs as an x N matrix whose entries
measure dissimilarity between all pairs/@fobservations. It is also sometimes called
the proximity data. This type of data set is commonly usedhpsitito hierarchical
clustering algorithms (described in the next Section). dissimilarity matrix can in
general be derived from the feature-vector data set by ygangxample, Euclidean
distance. The reverse transformation is not always pasaidl requires special ordi-

nation techniques [Everitt, 1978]. We do not use dissintylatata in this dissertation.

Researchers iRattern Recognitiomsually make a distinction betweetustering
andclassification This distinction is that clustering is an unsuperviseccpss where
no, or little, prior information is given on the classes ie thata. On the other hand, the
classification problem [Bishop, 1995; Mitchell, 1997] ig#s pre-classified training
data which is then used to deal with previously encounteedd. d~or the rest of the
dissertation, we will not consider classification, onlystkring, but we will use the

wordsclusterandclassinterchangeably.

Most partitional clustering methods utilise the concepttthfor a given cluster
i, there exists an ideal poinpt;, such thatp; € R?, which best represents cluster
i's members. This point is called thgrototype of the cluster. Thus, the clustering

problem becomes that of finding a setcgirototypes,

P ={p1,pP2,.--,Pc} where p, €RP Vie{l,...,c}

that best represent the clustering structur&’in

We note that in the general case, prototypes are not restriotpoints. This is so
that they can better represent any possible cluster shaeexBmple, a ring-shaped
cluster would be best represented with a circle-prototffoether, a prototype may be
composed of a set of points instead of a single point. Howewerosing non-single-
point prototypes renders the clustering problem harder.d@/aot delve into this in

this dissertation. For now, we assume a set of single-potibtypes as defined above.
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The clustering algorithms we investigate in this thesiskaam entirely numerical
data and employ distance metricto measure similarities between points, or between
points and prototypes. For a given pokjtand a given prototypp;, by far the most

common of all metrics is the Euclidean, or squared error one:

i — pill = /(201 — pin)> + ++ (21 — piy)’ (2.1)

Another common, computationally simple, metric is the Mattdin (or taxicab)

one.

1xx = Pill = [(@k1 — pir)| + -+ + [(Thp — Pip)] (2.2)

The Mahalanobis metric is sometimes preferred to the Eeatidone because it is

invariant to linear transformation of the data:
%k — pill = (% — pi)" C; ' (i — D) (2.3)

whereC, is the covariance matrix of. The price to pay for the scale-invariance of the
Mahalanobis metric is the determination of covariance matrd added computational

complexity.

Clustering methods often employ ahjective function to provide a numeric eval-
uation of a tentative clustering of the data set. Usuallig it employed within an
iterative scheme where tentative solutions are evaluatebtain progressively bet-
ter partitions. This type of clustering methods is known alsjective-functional, or
objective-function-based, and is strongly related to rosation theory. Objective
functions are usually formulated on the basis of distan&s,. for example, the fa-
miliar “sum of squared errors” criterion may be translatethie clustering framework.

More detail will be provided on this in the following Chapger
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2.2 Examples of Data Sets

(@) (b)

(c) (d)

(€) (f)

Figure 2.2: Sample dot patterns of two clusters of varyingsdees and separation —
reproduced from [Zahn, 1971].

In 1971, Charles Zahn wrote an influential paper on clusgetusing minimum
spanning tree techniques, [Zahn, 1971]. In Figures 2.2x#2e6show the same scat-
ter plots of the examples of two-dimensional data sets teairesented in his paper.
These data sets continue to present a challenge to resesantiotustering. In almost
thirty years, no single clustering algorithm has been dgped capable of identifying

successfully the same clusters humans perceiaél of these plots.

The six dot patterns of Figures 2.2(a),(b), (c), (d), (el éhshow a pair of clus-

ters but with different varying point densities and varyuiegrees of separation. In
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(a), the two clusters have approximately the same densityb)| they have unequal
densities. In (c), the densities vary proportionally to thiance from the mean. In
(d), the clusters have smoothly varying densities, and épamtion appears nearest
the points of highest densities of the two classes. In (eXBnthe separation between
clusters becomes almost non-existent, as the clusterh gaah other. These six dot
patterns should not pose a problem to a lot of the establiglygatithms available to-
day. However, in certain situations the accuracy of detechestering structure may
be compromised. Our research has examined this issue ihatedave shall describe

our results in Chapter 4.

Figure 2.3: Sample dot pattern of linear, branch-like drsst

Figure 2.3 shows a plot of clusters of linear fragments witihhaach-like structure.
Here, humans might themselves be unable to agree on whh#reris any clustering
and if so, what it is. However, given the information thattplof this kind consist
of linear fragments, most of us would not have problems ifigng the clustering
structure. On the other hand, clustering algorithms thatsaecifically designed to

detect linear cluster structures might fail.

Figure 2.4 shows a plot of two well defined clusters, but infeedent type of pat-
tern than that of Figures 2.2(a), (b), or (c). Here, the pertonce of many algorithms
would be ad-hoc, depending on the length of each “string”a@h{s and how far the

strings are apatrt.

Figure 2.5 shows a plot of clusters with one class enclosethdwpther, but both

34



2.2. EXAMPLES OF DATA SETS 35

Figure 2.4: Sample dot pattern of linear, string-like chust

Sl

e tatab
g

Figure 2.5: Sample dot pattern of ring-like and circularstdus.

well-defined. With the exception of the shell clusteringaaithms, no other algo-
rithms would be capable of handling ring-like patterns likes. Shell clustering is a
recent development in cluster analysis and suffers froniabethat it looks for only
shells. The non-ring shaped cluster within the shell in Feg2l5 may confuse such

algorithms.

Figure 2.6 shows a point pattern that may have been extr&ctedan image pro-
cessing application. Region- or edge-based operators &gy leen applied to the
original image and the resulting image then thresholdedstMlustering algorithms
we know would fail with this point pattern because of the eaminent of one group of

points within another.

Having realised the limited success achieved in Clustesinigr, we should hasten

to add that with regards to the point patterns of Figure 2réegpectations are mainly
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Figure 2.6: Sample dot pattern possibly extracted from aagemafter some image-
processing stages.

dictated by human perception, rather than machine leamrignowledge discovery.
It is debatable whether identifying the structure with ateuat like that of Figure 2.6

could be of use within such contexts.

2.3 Hierarchical and Partitional Clustering

Clustering methods tend to be divided in the literature méwarchicalandpartitional
methods. In hierarchical clustering (the older of the tvedyee-structured partitioning
of the data set is produced. The tree is either construcfeddan or bottom-up, with
an all-inclusive cluster at the top of it and the individuata points at the bottom of it.

Different partitions may be suggested according to wherécwe the tree.

In partitional clustering, only one suggested partitiopreduced. Partitional meth-
ods also usually produce prototypes, or typical represigata of the clusters. These

methods have become prevalent mainly due to their low coatipnl cost.

2.3.1 Hierarchical Clustering

Hierarchical clustering algorithms transform a proxindgta set into a tree-like struc-

ture which for historical reasons is calledlendogranjJardine & Sibson, 1971]. The
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dissimilarity

X6 @ l
X7 @ ‘

°_

Figure 2.7: An example of the dendogram that might be prodibyea hierarchical al-
gorithm from the data shown on the right. The dotted linegcaute different partitions
at different levels of dissimilarity.

dendogram is constructed as a sequence of partitions saicitsthoot is a cluster cov-
ering all the points and the leaves are clusters contaimhgane point. In the middle,
child clusters partition the points assigned to their comiparent according to a dis-
similarity level. This is illustrated in Figure 2.7. (We rank that the dendogram is not
a binary tree.) The dendogram is most useful up to a few leleddp, as the clustering

becomes more trivial as the tree depth increases.

Agglomerativeclustering is a bottom-up way of constructing the dendograhe
hierarchical structure begins withi clusters, one per point, and grows a sequence of
clusterings until allV observations are in a single clust@ivisive clustering on the
other hand is a top-down way of constructing the dendogrdra.structure begins with
one cluster containing alV points and successively divides clusters uMitlusters

are achieved.

Agglomerative hierarchical clustering is computatiopédss complex and, for this
reason, it is more commonly used than divisive hierarchobastering. A generic
agglomerative hierarchical clustering technique wouldsist of the steps shown in

Figure 2.8. Various algorithms can be constructed depegnaiirthe way in which the
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1 Assign each data vector to a cluster

2 Find the smallest entry in the dissimilarity matrix and geethe corresponding
two clusters

3 Update the dissimilarities between the new cluster aneratlusters

4 Return to step (2) until all vectors are in one cluster

Figure 2.8: A generic agglomerative hierarchical algonith

dissimilarities are updated in step (3). In Section 2.3.2escribe one such way.

Both agglomerative and divisive techniques suffer fromftto that if, say, at one
point during the construction of the dendogram, a misdliassion is made, it is built
on until the end of the process. At some point of the dendogrgrowth an observa-
tion may be designated as belonging to a cluster in the loleyaltt remains associated
with the successors of that cluster till the dendogram isliied. It is impossible to
correct this misclassification while the clustering pracissstill on. Optimization of

clusterings is then called for [Fisher, 1996].

After the tree has been produced, a multitude of possibkeling interpretations
are available. A practical problem with hierarchical carstg, thus, is: at which value
of dissimilarity should the dendogram be cut, or in otherdgpiat which level should
the tree be cut. One heuristic commonly used is to choosevéthag of dissimilarity
where there is a large “gap” in the dendogram. This assuna¢s ttiuster that merges
at a much higher value of dissimilarity than that at whichaisformed is more “mean-

ingful”. However, this heuristic does not work all the timla[n, 1986].

2.3.2 Example: Single link algorithm

The Single Link Algorithm is an instantiation of the geneaigglomerative clustering

procedure and is one of many possible agglomerative altgosit Its steps are outlined
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1 The dissimilarity matrix, if unavailable, is calculatetfiest.

2 The smallest entry in the matrix is chosen, and the two ppirandb are fused
together as one group.

3 The dissimilarity matrix is updated by reducing its sizeomg and recalculating
the distances using the nearest neighbour rule. Thus faradsonk and the
newly formed(ab) cluster:

d(abye = Min(dgk, dpr)

4 Go back to step (2) until the matrix is 1x1.

Figure 2.9: The Single Link Algorithm

in Figure 2.9. For a description of other possible algorgtsee [Everitt, 1974].

2.3.3 Partitional Clustering

Most partitional clustering algorithms assuraeriori a number of clusters;, and
partition the data set intoclusters. Obviously, there can be many partitions of a given
data set, but there will be only a few which identify the cérstg in the data set.
To arrive at a correct partition, an objective function carnfetrmulated that measures
how good a partition with respect to the data set is. If a gipartition minimises
the objective function (or maximises, depending on the fdation of the objective
function), we assume that the optimal partition has beendo\ generic partitional

clustering technique would probably operate as in Figuté.2.

Most objective function-based algorithms useluster prototypes to facilitate the
evaluation of a given partition. Each prototype is assurodakta typical representa-
tive of the group of points in that cluster. In the ideal caseh prototype will take the
general shape of its cluster. In practice, however, mosirdlgns assume point proto-

types because this simplifies the mathematics. Since olgdanctions are typically
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1 Fixe, 2 < ¢ < N, choose the objective function you wish to minimise, and
initialise the partition matrix

2 Evaluate the objective function, and modify the partitioatrix accordingly

3 If consecutive partitions have not changed by a fixed tlolesistop, otherwise,
return to step (2)

Figure 2.10: A generic partitional clustering algorithm.

non-linear, the optimal partition will usually have to beasghed for algorithmically.
The initial placement of the prototypes, thus, is importsince there can be many

suboptimal solutions that will trap the prototypes and ieate the algorithm.

Objective functions are specified using the data 8&ta distance metric/, the
partition matrix,\/, and the set of cluster prototyp®s The data set’ and the metric
d are fixed and act as input/ andP are variables whose optimal values are being

sought. This can be represented mathematically as:
min [J(P,U; X,d,...)]

whereJ is a generic objective function whose minimum value is besngght. The
dots afterD indicate that a given formulation of the objective functicen use its
own set of parameters. The squared error criterion, whictimses offsets between
a prototype and its nearest points, is the most common fatioul of the objective

function.

2.3.4 Example: Hardc-Means (HCM)

The HCM algorithm has appeared in different equivalentieasover the years since
its first appearance in the sixties. It was given the n&taed because it produces a

crisp, or hard, partition (as opposed to fuzzy, or soft,ipar, as described before).
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Further, HCM shares themeanspart of its name with many prototype-based parti-
tional algorithms. The reason is because they searchgimtotypes, which intuitively
are the means, or centroids, of the clusters they repreBeatobjective function min-

imised in this algorithm is:

- £ a) - £( T menr]
i=1 \k,x,€S; i=1 \k,x,€S;

where S; is the partition ofX corresponding to cluster andd?, is a norm metric,
usually the Euclidean distance, measuring the distande&ba the cluster prototypes
and those data vectors belonging to #; € S;. In this way, J is the overall or
total within-cluster sum of squared errors, and thus, earai geometrically appealing

rationale. The equation for determination of the proto$yisagiven by:

N N
bi = Z Uz’ka/ Z Uik (2.4)
k=1 k=1

whereu; is either0 or 1 depending on membershipxf in S;. From the equation we
can see that the prototypes are the geometrical centroittewfrespective cluster’'s
data members. Equation 2.4 is arrived at by setting the gmadif ./ with respect to
eachp; equal to zero. The derivation is similar to the one in Appgr@diwhich is

explained in detail later.

Most versions of HCM operate in the same way as the oldestraqdéntly cited
algorithm of Forgy [Forgy, 1965] which is given in Figure 2.1Its intuitive proce-
dure is: guess hard clusters, find their centroids, reallocate cluster beships to
minimise squared errors between the data and current ppa®t stop when looping
ceases to lower. Since the memberships are discrete, eithar1, the notion of local

minimum is not defined foy, and likewise convergence would be undefined.

There are probably hundreds of papers detailing the thedya@plications of
HCM (other names like ISODATAs-means, etc, have also been used); [Duda & Hart,
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1 c cluster prototypes (centroids), or equivalently, an atigartition is randomly
generated

2 Each feature vector is assigned to the cluster of the ngan@stype

3 If no change of cluster memberships for all feature vectsigp. Otherwise,
calculate the centroids for the ¢ new clusters accordingjtmgon 2.4, and go
to (2)

Figure 2.11: The Hard-Means Algorithm.

1973] surveys some of this literature. HCM suffers from theatness of producing
spurious solutions because the algorithm’s iterativessitegy not converge [Bezdek,
1980; Selim & Kamel, 1992]. It also does not provide the weaftinformation fuzzy

clustering provides.

2.4 Remarks

In this Chapter, we reviewed Clustering terminology anccdbsd our nomenclature.
We also described some hierarchical and partitional aimgt@lgorithms. In applying

any clustering method, some issues need to be addressedse-tickide:

1 studying the raw data in terms of processing it, dealing witssing values in it,

or deciding on the features to use,

2 determining the similarity measure that will be incorgedain the clustering

process,

3 studying the parameter list of the algorithm and settimga@rameters to appro-
priate values, perhaps revisting this step a number of timesperiment with

different values,
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4 for algorithms that require iteration, or consist of animgation procedure, re-

runs may be required to discover if different solutions wiltface,

5 finally, some form of validation, or quantified cross-chiagk of different solu-

tions may be used to decide on the best solution.

Before moving to the main theme of our research, fuzzy cltiusjewe conclude

this Chapter with examples of recent novel clustering apghmes.

As was mentioned before, most partitional algorithms s#ila cluster prototype
in their calculations. In general, it is not effective to deise a cluster using a single
prototype if the cluster has an elongated or nonconvex shiagamples of recent work
to tackle this problem include [Chaudhuri & Chaudhuri, 1p@here more than one
seed was used to describe a cluster if it passes a honcontestitand [Tyree & Long,

1999] where linked line segments based on density linkage used.

The notion of scale space was used for hierarchical clugten [Roberts, 1996],
producing good results. However, the problem of where tdloeiresulting tree still
persists. Scale space was also used in [Kothari & Pitts, [1@0find and validate

clustering results.

In conclusion, as was discussed in this Chapter, hieraathmethods are compu-
tationally costly and always suffer from the problem of nobwing where to cut the
generated tree. Crisp partitional methods, while compratly inexpensive are no-
torious for getting trapped in spurious solutions. But hmtihadigms possess a further
underlying shortcoming; this is their inability to des&ibffectively data sets with a
clustering structure that is not crisp. It was this shortcapthat motivated the intro-
duction of fuzzy clustering methods. Naturally, these opew research problems, as

we see in the next two Chapters.
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CHAPTER 3

Fuzzy Clustering

In the previous Chapter we described the general clusteroiglem and gave exam-

ples of crisp hierarchical and partitional algorithms.

In this Chapter, we describe fuzzy clustering algorithmsigaarly those related
to the fuzzyc-means (FCM) algorithm. FCM’s objective function has beenagalised
and extended as well as changed in several ways. For th@rega€M is sometimes
described as a model for fuzzy clustering. Our aim in thisg@éawill be to define and
describe the FCM model. We then describe several algorithatsare based on this
model. We also highlight the strengths and shortcomingdhiege various algorithms

have. In the next Chapter, we propose our own modificatiorCtel F

The concept of “fuzziness” underpins fuzzy clustering. ByZiness is meant im-
precision as to the exact class of an object. When we “fuarstet” a data set we allow
for data points to belong with varying degrees to more thanaaster. We briefly in-
troduce Fuzzy Set Theory in the first Section of this Chapterder to familiarise the

reader with it.
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3.1 Fuzzy Set Theory

Fuzzy Set Theory was developed by Lotfi Zadeh [Zadeh, 1966}deer to describe
mathematically the imprecision or vagueness that is ptese&ur everyday language.
Imprecisely defined classes play an important role when hsncammunicate and
learn. Despite this imprecision, humans still carry outs#gle decisions. In order to
deal with these classes, Zadeh introduced the conceptiazg setFuzzy sets parallel
ordinary mathematical sets but are more general than thdravimg a continuum of

grades, or degrees, of membership.

Let X be a space of points, or objects. Let us denote any elemeXtlnf z. A
fuzzy setd in X is now defined by anembership functigryf 4 (), which associates with
each pointinX areal number in the intervil, 1], with the value off 4 () representing
the “degree of membership” af in A. The nearer the value ofs(x) to unity, the

higher the degreee of membershiprah A.

Based on the above definition for the fuzzy set, extensiangdbnitions involving
ordinary sets likempty equal containmentcomplementunion andintersectiorhave
been proposed. We refer the reader here to the wide literati@ilable on this matter
[Kosko, 1993; Zadeh & Klir, 1996; Kliet al., 1997; Cox, 1998].

In the fuzzy clustering setting, a cluster is viewed as aysat in the data sef’.
Thus each feature vector in the data set will have membevsiigs with all clusters
— membership indicating a degree of belonging to the clusteler consideration.
The goal of a given fuzzy clustering method will be to defineheeluster by finding

its membership function.

In the general case, the fuzzy sets framework provides a Wagading with prob-
lems in which the source of imprecision is the absence ofpdhalefined criteria of
class membership rather than the presence of random \esiablizzy clustering fits
well with the rest of the fuzzy sets and systems applicatidhbas been used with

success in, for example, optimising membership functionforming fuzzy inference
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rules, [Chiet al,, 1996; Chen & Wang, 1999].

Fuzzy set theory is widely used as a modeling tool in varicatseh Recognition
and Image Analysis problems, [Rosenfeld, 1979; Phatipl., 1994] for example, be-
cause of the relative ease with which it can be applied to bBleno and the robustness

of the resulting solution.

For a discussion of the future directions of fuzzy logic asnsby its founder see
[Zadeh, 1995; Zadeh, 1996; Zadeh, 1999]. Fuzzy logic is aéanately as a method-
ology for computing with word¢CW) in which words are used in place of numbers
for computing and reasoning. The rationale for CW is thatdsdyecome a necessity
when the available information is too imprecise to justifg tise of numbers. And also
when there is a tolerance for imprecision which can be etqadb achieve tractability,

robustness, low solution cost, and better human-computiraction.

3.2 The Fuzzyc-Means Algorithm

The FCM algorithm took several names before FCM. These deckuzzy ISODATA

and Fuzzyk-Means. The idea of using fuzzy set theory for clusteringréglited to

Ruspini [Ruspini, 1969; Ruspini, 1970]. Dunn is creditedhathe first specific for-
mulation of FCM, [Dunn, 1973], but its generalisation andreat framing is credited
to Bezdek, [Bezdek, 1981]. A collection of influential pagpén the development of
fuzzy clustering methods can be found in [Bezdek & Pal, 1992fe FCM objective
function and its generalisations are the most heavily stliflizzy model in Pattern

Recognition.

As mentioned in Section 2.1, we expect FCM to be a clusteriggrihm that
provides a fuzzy partition of the input data set. Howeveereghis an infinite range
of possible fuzzy partitions. Therefore, an optimisatiood®l or objective function

must be devised to search for the optimal partition accgrttinthe chosen objective
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function. FCM is, thus, first and foremost an objective fiumett The way that most
researchers have solved the optimisation problem has bemrgh an iterative locally-
optimal technique, called the FCM algorithm. This is not tmdy way to solve the
FCM objective function, for example, in [AlSultan & Selim993] it is solved by the
Simulated Annealing optimisation technique; in [HathaWagezdek, 1995] the prob-
lem is reformulated and general optimisation methods aggested for its solution;
in [Al-Sultan & Fedjki, 1997] it is solved by a combinatoriaptimisation technique
called Tabu Search; in [Hadt al, 1999] it is solved by thgenetic algorithmwhich

is an optimisation technique based on evolutionary contimmaand in [Runkler &

Bezdek, 1999] it is solved within an alternate optimisaft@mework. In fact, itis not

impossible that an exact solution to the problem may be ftatad.

3.2.1 FCM Optimisation Model
The formulation of the FCM optimisation model is :-

C

N
Minimise JFCM(Pa Z/{ X, C, m) = Z Z(Uik)md?k(xk; pz) (31)

i=1 k=1
subject to the constrain} _ u;, = 1 Vk e {1...N}, (3.2)
i=1
whereP andl{ are the variables whose optimal values are being sought, andm

are input parameters 0f¢,,, where :-

e cis the number of clusters assumed to existin

e m > 1 is a fuzzification exponent that controls how fuzzy the resull be.
The larger the value af, the fuzzier the solution. At. = 1 FCM collapses to
HCM, giving crisp results. At very large values of, all the points will have

equal memberships with all the clusters.
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e u;. describes the degree of membership of feature vegtawith the cluster
represented bp,;. U = [u;] is thec x N fuzzy partition matrix satisfying the

constraint stated in Equation 3.2.
e N is the total number of feature vectors.

e d7 is the distance between feature vectqrand prototypep;. The original
formulation of FCM uses point prototypes and an inner-pobdaduced-norm

metric ford?, given by
dfk(xka pi) = || xx — P ||ix = (xx — pi) A(xx — pi).
A is any positive definite matrix which in the case of Euclideé#stance is the
identity matrix.
3.2.2 Conditions for Optimality

Let the minimisers of/zc (P, U) be called(P*,U/*). The necessary conditions for
(P*,U*) are defined below. These conditions are derived in [Bezd@&1land are

similarly derived for the PDI algorithm in Appendix C.

N m
o k=1 WikXy

p; = (3.3)
ZIJCV:I Ui
and
. 1
51 ()
j=1 d]?k

The FCM algorithm is a sequence of iteratiohthrough the equations above,

which are referred to as the update equations. When theidtereonverges, a fuzzy

This is referred to as Picard iteration in [Bezdek, 1981LaRi iteration [Greenberg, 1998] is
a successive approximation scheme commonly used to sdfeeeditial equations, which starts with
initial guesses of the variables and by means of succesgbsatigition arrives at a solution.
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c-partition matrix and the pattern prototypes are obtaiegdroof of the convergence
of the iterations to a local minimum can be found in [Bezded8Q; Selim & Kamel,
1992].

3.2.3 The Algorithm

See Figure 3.1.

1. Fixe, 2 < ¢ < N; choose any inner product norm; fix, 1 < m < oo; initialize
the fuzzy membership matri¥.

2. Calculate: fuzzy cluster center® as per Equation 3.3
3. Update memberships as per Equation 3.4

4. Compare the change in the membership values using a ajgteoporm; if the
change is small, stop. Else return to 2.

Figure 3.1: The FCM algorithm

3.2.4 An Example

Let us give an example of FCM in action. Figure 3.2 shows the skt that we used as
input to FCM ¢ = 2). The table on the right of Figure 3.2 tabulates the founditpam

matrix.

Whereas the solution is an approximately correct one, tbatilons of the found
prototypes are not satisfactory since they should be at ¢h&res of the diamond-
like patterns. It is clear that the points located away from diamond patterns have
influenced FCM's solution in that they have “pulled” the mtypes away from the
ideal locations. We note that, as expected, the memberships per each point add

up to one.
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Data Memberships
| = | y | Cluster 1] Cluster 2|
18| 2 0.997 0.003
20| 22| 1.000 0.000

N X 2.0/ 1.8 0.995 | 0.005

3t . £ 22| 2 | 0.997 | 0.003
b5 ) 2.0/ 35| 0.968 | 0.032
88| 3 | 0.000 | 1.000

L 9.0/ 3.2 0.003 | 0.997

9.0/ 2.8| 0.003 0.997
9.2 3 0.006 0.994
7 |2.8]| 0.100 0.900

Figure 3.2: A 10-point data set with two clusters and twoyng points. Input data
points are marked with a + and the prototypes found by FCM aaeked with x.
Membership values provided by FCM are tabulated on the hightl side. The found
prototypes are af2.0, 2.2) and (8.7, 3.0) instead of ideal placement &2.0, 2.0) and
(9.0,3.0).

Outliers and Noise Points

We remark here on our definition of outlier and noise pointeer€ is a lot of literature
on outlier detection and rejection (see [Millar & Hamiltdr§99] for a recent review).
In this dissertation, we took the view that every outlienr@an be associated with one
cluster in the data in the sense that it would be lying clogbdbcluster. Also, we took
the view that the few points in a data set that cannot be s&é wose to any cluster,
be considered noise points. We recognise that a dense tamlesf outliers could
become, at some scale, a “small” cluster of its own, but weaipeon the assumption
that the number of outliers is insignificant and that we alydenow the correct number

of clusters.

In general, we perceive that outliers should be recognisédadellite” points to a
given cluster and given an appropriately high degree of nezstiyp with that cluster.
However, their presence should not affect the accuracy tarehéning the location

of the clusters. For noise points, we perceive that they lshaoot receive significant
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memberships with any of the clusters.

3.2.5 Analysis of FCM Model

Let us first start by describing the HCM (haredmeans) model. The optimisation
approach to the clustering problem uses an objective fomd¢t measure how good
a suggested partition is compared to an ideal, generalised ©his is facilitated by
using the concept of cluster prototypes; by introducingrththe formulation of the
objective function is made easier. In the ideal scenarie,iototypes are located
within very tightly packed clusters of points so that theaises between every cluster
of points and its prototype would be almost zero. Deviatioos this model can then

be formulated, in squared-error fashion, as:

S Y )

i=1 k,x,€S;

where S; would be the cluster of points belonging to prototyipeTo decide on the
membership of a point with a prototype, a crisp decision islenat belongs to the

prototype it is closest to.

FCM generalised the notion of membership to emulate theyfakrstering struc-
tures found in the real-world. The FCM objective functionigiged the distance be-
tween a given data point and a given prototype by the correipg degree of mem-
bership between the two (the respective entry in the fuzziitipm matrix). Thus,
partitions that minimise this function are those that weigimall distances by high
membership values and large distances by low membershiesallhis was formu-
lated as per Equation 3.1. To visualise this, consider Ei@u8. If point 6 is given a
high membership value with prototype B as compared to pdrdaad 3, the overall
objective function score will be minimal compared to anyastmembership scheme

involving those three points and that prototype.

51



3.2. THE FUZZY C-MEANS ALGORITHM 52

Figure 3.3: The distances between points- 8 and prototypes A and B are weighted
by the degrees of memberships. Here, the distances and msdngssconcerning only
prototype B are shown.
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Figure 3.4: Fixingd,, at 1,u,, is plotted versusgl, for m = 1.1,2.0 and5.0. This
clearly illustrates that,, changes in value depending on the location of the prototype
b. Note that asn approaches 1 the membership decision becomes a crisp one.

However, if things were left at the objective function foriation, without the con-
straint of Equation 3.2, all the;,’s would take the value of zero as this would det
to the absolute minimal value of zero, which is a trivial $@n. In order to force the
u;,’'S to take values greater than zero, the constraint was iethoghis way, degrees

of membership must take non-trivial values.

Looking now at the minimisers of the objective function, Bgjans 3.3 and 3.4,
we see that the prototypes are the fuzzy centroids, or meéatisir respective mem-

bership function. This is an intuitively-pleasing result.

Further, we see that a point’s membership with a given pyptots affected by how
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far that same point is to the other prototypes. This is itatsd in Figure 3.4, where

This may cause counter-intuitive behaviour in real-wortdad For example, in
the case of a “noise” point lying far outside of two clusteus équi-distantly to both
centroids, such a point would be given a membership.dfwith each cluster (see
Figure 3.4: all curves pass throug! for d,, = 1). The intuitive solution would be
to award such points equal but small membership degreesatth cluster. However,
such a solution would violate the constraint of equation(&2mberships must add
to 1). If we observe Figure 3.4, we notice that a point's mersiig degree is not a
function of anything but its relative distances to eachqisgie. The presence of many
points close to one prototype which is our (human) cue to tiweseness” of a point,
is not included. Later in this Chapter, we will present bsafnmaries of some ideas

proposed to alleviate this counter-intuitive behaviour.

3.2.6 Notes on Using FCM

Several investigations have been made on the best valuetselfior the fuzzification
exponent,m, which is chosen a priori. A recent study [Pal & Bezdek, 19€&i-
cludes empirically thatn = 2.0 is a “good” value. This value fom has the further
advantage of simplifying the update equations and can fibrerspeed up computer

implementations of the algorithm.

Many investigations have been made on the convergence niespef FCM, for
example, [Bezdek, 1980; Selim & Kamel, 1992]. The conclassathat the constraint
of Equation 3.2 is a necessary condition for the proof of eogence to a local mini-

mum of the FCM algorithm.

Investigations have also been made on speeding up the iraptatron of FCM
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[Cannonet al, 1986]. Recent examples of such studies are geared towaalgei
analysis applications [Chermg al., 1998; Smith, 1998], and report orders of magnitude

speed-ups.

3.2.7 Strengths and Weaknesses

The FCM algorithm has proven a very popular method of clusgeior many reasons.
In terms of programming implementation, it is relativelsesghtforward. It employs an
objective function that is intuitive and easy-to-grasp . @@ta sets composed of hyper-
spherically-shaped well-separated clusters, FCM digsotreese clusters accurately.
Furthermore, because of its fuzzy basis, it performs rdjaustalways converges to a

solution, and it provides consistent membership values.

The shortcomings of FCM, as we have assessed them indeigndest

1. It requires the number of clusters to look for to be knowmiarp
2. Initialisation

(a) It requires initialisation for the prototypes, goodiisation positions are

difficult to assess.

(b) If the iterative algorithm commonly employed for findisglutions of the
FCM objective function is used, it may find more than one sotutle-
pending on the initialisation. This relates to the generabfem of local

and global optimisation.

3. It looks for clusters of the same shape (hyper-spheresiifguthe Euclidean

metric); different cluster shapes cannot be mixed.

4. Its objective function is not a good clustering critenehen clusters are close to
one another but are not equal in size or population. Thisudistl comprehen-

sively in Chapter 4.

54



3.2. THE FUZZY C-MEANS ALGORITHM 55

” Data Memberships
| j | =z | y | Cluster1] Cluster 2|
sl 12.0] 3.0 0975 | 0.025
.l 12.0| 40| 0983 | 0.017
o 115| 35| 0989 | 0.011
125| 35| 0967 | 0.033
121 M ] 21.0| 10.0| 0.028 | 00972
07 T 21.0/ 11.0{ 0.009 | 0.991
81 205/ 10.5| 0.014 | 0.986
6T 215105 0.021 | 0.979
2l . 1 20| 40| 0845 | 0.155
2r T 19.0] 20.0|/| 0.174 0.826
00 2 4 6 8 10 12 14 16 18 20 22 24 11.0]120 0.588 0.412

Figure 3.5: A data set containing noise points. The protgyfound by FCM are
also plotted. Membership values provided as output are slwowthe right hand side.
The presence of noise points strongly affected the positadrihe found prototypes,
furthermore, the noise points’ membership values may bsistamt but they are not
intuitive.
5. Its accuracy is sensitive to noise and outlier points émsahstrated in Figure 3.2
and also again in Figure 3.5 where the placement of the yqstwas affected
by the outlying points). This is so because it squares theftbetween a

prototype and a point, thus, the effect of outlier and nomets is emphasised.

6. It gives counter-intuitive membership values for noisets. Noise points are
those that do not belong to any cluster, thus, their type ohbeships should
not necessarily sum to one. In Figure 3.5, for example, thpdants to the top
and bottom of the plot should have low memberships with batkters. How-
ever, FCM gives each of them a membership value of more @ltawith their
respective nearest cluster. The probabilistic consti@iEquation 3.2 causes

this behaviour.
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3.3 Extensions of FCM

Despite its weaknesses, the strengths of FCM have led olsarto generalise and
extend it further. In fuzzy covariance clustering, covenedSection 3.3.1, hyper-
ellipsoids can be detected instead of only hyperspheredlijotype clustering, cov-

ered in Section 3.3.2, lines or planes can be detected bysyw#dooking for hyper-

ellipsoids with a flat thickness. In shell clustering, caain 3.3.3, boundaries of
spheres and ellipsoids are detected. All these extensamsot mix cluster shapes,
i.e., they cannot look for a line and a circular shell simultarspuFurthermore, they
are all very sensitive to initialisation and much more cotapanally expensive than
FCM. However, they must be considered as necessary evodnyicteps in the devel-
opment of better fuzzy clustering algorithms. This viewoalmderlies our own work

in Chapter 4.

A generalisation was made by Bobrowski and Bezdek [BobrowsBezdek,
1991] of the distance metric norm. For generalisations aiehsions relating to han-
dling non-numeric data see [Hathawetyal., 1996; Huang, 1998]. For generalisations
and comparisons with switching regression models see fiath & Bezdek, 1993],

and linear vector quantisation models see [Bezdek, 199 anniset al,, 1996].

3.3.1 Fuzzy Covariance Clustering

Gustafson and Kessel [Gustafson & Kessel, 1979] introdaceew variation on the
FCM functional given by Equation 3.1 by allowing the inneoguct inducing matrix
A used in the distance metric to vary per each cluster. In atloeds, they allowed
each cluster to have its own A-norm with which to measureadists from its proto-

type. This allows different clusters to have differing pdloidal shapes. Thus, their
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modified objective function becomes:

N ¢ c
IPUAX e;m) =3 3wt xi —pi |3, = X uli (i — pi)" Ai(xk — py)
k=11i=1 i=1
(3.5)
whereA; is a positive definite symmetric matrix. An additional coastt to the con-

straint of equation 3.2 was imposed. This is:

|Ail| = pi = constant (3.6)

1. Fixec. Fix m. Initialise all p;. Initialise all A;.

2. Calculate fuzzy partition matriX by u;;, = di PTG
i=1 (T

3. Update prototype® by p; = Dy Uik

N
Zk:l u:;é

4. Calculated’s by
4= (L)
" plC l

whereC;, the fuzzy covariance matrix, is given by:

)T

_ SN U (xy, — i) (Xk — D

C;
N m
2 ok=1 Uik

5. If termination condition not achieved, return to step 2.

Figure 3.6: The Gustafson-Kessel Algorithm

The resulting optimality conditions remain the same withaladition of an update
equation for thed;’s. The modified algorithm is described in Figure 3.6. Allogi
A; to vary for each cluster enables the detection of ellipdestiaped clusters each
with a differing orientation. The new constraint above tsrthe volume within which
an A-norm metric can have influence. The new constraint mag baen placed to

simplify deriving update equations that would allow impkemation of the method
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as an algorithm. Adding this constraint, however, causesGH algorithm, as it
is commonly referred to, to look for hyper-ellipsoids of atjuolume and this may
limit its accuracy, [Krishnapuram & Kim, 1999]. Note thatlike FCM there is no
proof of convergence for this algorithm. Furthermore, tlgoathm is very sensitive

to initialisation.

3.3.2 Fuzzyc-Elliptotypes Clustering

The Fuzzyc-Elliptotypes (FCE) algorithm was proposed by Bezdglal. to detect
clusters that have the shape of lines or planes [Bezdek,]19&L main idea is to
discount Euclidean distances for points lying along them@agenvector directions
of a cluster (like those lying on a line) while taking the Hdeln distance in full
for other points. This is achieved by means of using a digtaneasure which is a

weighted combination of two distance measures:
d* (X, Pi) = iy + (1 — @) dy. (3.7)

Here,d%,, is the Euclidean distance ang,, is defined as:

Ay = xi — i I = Zl((xk —Pi) - &)
=

wherer € [1,p], ande;; is the ;" eigenvector of the covariance mati® of cluster
i. (The- operator denotes the dot product of the two vectors.) Theneggtors are
assumed to be arranged in descending order of the corraggogidenvalues. Thus,
the first eigenvector describes the direction of the longeistof the cluster. When=
1, d%,, can be used to detect lines, and whens 2 it can be used to detect planes. The
value ofa in Equation 3.7 varies from 0 to 1 and needs to be specifieda fout there
is a dynamic method commonly used in the algorithm’s impletaons (see [Dave,

1992]). It has been shown [Krishnapuram & Kim, 1999] that bbgveing this dynamic
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variation the FCE algorithm avoids the G-K algorithm’s ghoming of looking for
clusters of equal volumes. However, since it looks for omgadr structures, it would
therefore fit these structures onto data that may not cotitam. The update equations

for this algorithm can be shown to be equivalent to thosez#yucovariance clustering.

3.3.3 Shell Clustering

The main application of shell clustering algorithms is irage processing. Images are
pre-processed for edge detection and the edge pixels ardatido these algorithms
for boundary detection. There are several variants of shedtering algorithms and a

full review of them can be found in [Hoppnet al, 1999].

The main innovation behind every shell clustering algonitis the distance mea-
sure it uses. In the Fuzzy c-shells algorithm by Davé, tloégpype for a circular shell
cluster is described by its centre point and radpysndr;, respectively. The distance

measure is:

d*(xg, (pi; 1)) = (| %6 — pi || —r4)?

In the fuzzy c-spherical shells algorithm the distance mesmgsed instead is:

d*(xp, (pi; 7)) = (| x = pi [|* =17)?

This distance measure is more sensitive to points on thedeut$ the shell than on
the inside but has the advantage of simplifying the updatetons. In the adaptive
fuzzy c-shells algorithm, shells in the shapes of ellipsesdetected by means of the

distance measure:

d%(xg, (Pir A)) = (\/(xx — Pi)TA(x — p;) — 1)°

where A is a positive definite matrix that contains the axes and tatems of the

ellipse. A more complex distance measure for shell ellggsd described in [Frigui
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& Krishnapuram, 1996].

Shell clustering algorithms are computationally expemsrecause their update
equations require solving a system of non-linear equatwimsh require iteration.
Thus, within each clustering iteration, several iteragitmke place. Data set sizes of

more than two dimensions or of lengths more than a few thaliaesmimpractical.

3.4 Modifications to the FCM Model

Several attempts have been made to remedy one or more ofdtie®hings we men-
tioned in Section 3.2.7. In Possibilistic Clustering, a@ekin Section 3.4.1, the mem-
bership value of a point with a cluster does not depend orciteibn of other cluster
prototypes. In High Contrast Clustering, covered in 3.4nitures of the hard and
fuzzy c-means algorithms will be formulated. In CompettAgglomeration, covered
in 3.4.3, the requirement for specifyirgs overcome by means of starting with a large
value for it and subsequently letting bigger clusters camper the smaller ones. In
Credibilistic Clustering, covered in 3.4.4, noise points @entified first as not credi-
ble representatives of the data set and awarded membegdbhgs\vhat do not sum up

to 1.

3.4.1 PossibilisticC-Means (PCM) Clustering

Krishnapuram and Keller [Krishnapuram & Keller, 1993a] marad what they termed
the probabilistic constraint of Equation 3.2 by allowing ttegrees of membership;;,

to take on any value within th® — 1] range. Their argument for the removal of the
constraint wasthe membership function of a set should not depend on the enshib
functions of other fuzzy sets defined in the same domainafutse Thew;;'s were

therefore allowed to take on any value within fie- 1] range, but in order to avoid
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the trivial solution, the followingpossibilisticconstraint was added:
max u;; > 0 Vj (3.8)

Thus, the memberships values generated are taken as ahsolutelative, and denote

degrees of belonging or typicality of the cluster in questio

The new objective function proposed was:

JU,v; X) = iZu%dfk—l—imZ(l — u)" (3.9)

i=1 k=1 i=1 k=1

wheren; are positive numbers. The first term is the normal FCM objedtiinction
which is minimised for compact and well-separated clusterereas the second term
forces theu;,’s to be as large as possible, thus avoiding the trivial smhut This
formulation of the objective function leads to the updateatmpn ofu,, to be modified
to

Uik = ——— 1 (3.10)

The value ofy); determines the distance at which the membership value ofré po
in a cluster becomes 0.5. If all clusters are expected torhéasiin size, this value
could be the same for all of them. In the objective functionnetice that the value
of n; determines the relative importance of the second term am@ukhors observe
that it should therefore be of the same rangéZas# equal weighting to both terms is

desired.

This definition of possibilistic clustering can be appliedhe other fuzzy cluster-
ing algorithms. So, if we use the FCM algorithm but updateaccording to Equa-
tion 3.10 above (plugging in the suitable values for tfig), the algorithm becomes
the Possibilistic--Means algorithm (PCM). Likewise we may have the Possiiilis

Gustafson-Kessel algorithm, Possiblisti€pherical Shells algorithm, and so on.
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The success of PCM is very much dependent on the initiadisatis it may not
converge or the prototypes may even conincide [Batnal, 1996; Krishnapuram
& Keller, 1996]. The values of); to use are probably the most difficult choice to
make when using this algorithm. The authors themselveswewnd running FCM
once and estimating from its output, then running PCM and adjustingn its first
few iterations in order to provide the most meaningful valoéu,, while bypassing
the danger of not converging to a stationary point. The mdiraatage of PCM is
that it is more resilient to noise by comparison to FCM, artérafaking the above
guidelines into consideration, the membership values dsfiare more intuitive by

human perception standards.

3.4.2 High Contrast

Exceptin the case where a data point coincides with theitwtaf a prototype, degrees
of membership found by FCM are never either 0 or 1. This is smevhen a point is
very close to a prototype. The reason for this is the “sh&kngstraint of Equation 3.2
imposed on the FCM optimisation problem. This constraiati®eto update Equation
3.4 from which we can see that a membership value will neveeb® since itis a ratio
of distances. This peculiarity causes core points of a etust receive membership
values of less than one, even though we would clearly see &isdmeing typical of the

cluster.

Approaches of the “High Contrast” kind, though not develbfdly in [Rousseeuw
et al, 1995; Peiet al, 1996], aim to classify clear-cut, core, points in a crispme,

while leaving other points to still be classified in a fuzzymar.

In [Rousseeuvet al,, 1995], theu? term in the objective function is replaced by
f(uir) = cuie + (1 — c)u?, where0 < ¢ < 1is termed a contrast factor. When-= 0,
f(uix) = u?, which gives a fuzzy solution identical to standard FCM. Whes 1,

f(u;) = uy, which gives a crisp solution identical to standard HCM. Vlagyc be-
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tween( and1 changes the “contrast” of the clustering results from nohataover
(fuzzy) to full (crisp). Rousseeuwt al. conclude empirically that = 0.3 is a good
value to set the contrast factor. However, the general chse $ 2.0 was not men-
tioned in the paper, nor were the differences between tipgiroach and dynamically

varyingm stated.

3.4.3 Competitive Agglomeration

The CA algorithm [Frigui & Krishnapuram, 1997] was proposech robust successor
to FCM attempting to remedy several of its shortcomings.stFit requires only a
maximum number of clusters as input rather than the exacbeuynt will then find
the “correct” number of clusters itself. It does so by firsttp@ning the data set
into the given (large) number of small clusters. As the atbor progresses, adjacent
clusters compete for data points and the clusters that leesedmpetition gradually

become depleted and vanish.

The CA algorithm minimises the following objective funatinoting that is dy-

namically updated by the algorithm:

¢c N c N
JPU) =" > upll xp — pi |5 — @ D_[> ui]® (3.11)
i—=1 k=1 i=1 k=1
subject to
i=1

The objective function has two components. The first compbisesimilar to the
FCM obijective function/p = 2.0) while the second component is the sum of squares
of the fuzzy cardinalitie$ of the clusters. The global minimum of the first component

is achieved when the number of clustens equal to the number of samplés i.e.,

2The cardinality of a cluster is the number of points belogdmit; the fuzzy cardinality of a cluster
is the sum of the memberships of all points with it.
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each cluster contains a single point. The global minimumhefgecond component
is achieved when all points are grouped into one cluster, aindther clusters are
empty. Based on the premise that chosen properly the final partition resulting from
this algorithm will find compact clusters while at the sammedifinding the smallest

possible number of clusters.

3.4.4 Credibilistic Clustering

Noise pointsj.e., points that do not lie close to any particular cluster aredustin-
guished as such by FCM. They share memberships with alleckigtst like all points
even though we may clearly identify them as not belonginghtocuster. Noise points

affect the accuracy of the FCM algorithm.

The credibilistic fuzzy c-means algorithm was proposed hin@lapudi and Kam
[Chintalapudi & Kam, 1998] to combat FCM’s sensitivity toise points. Their re-
guirement was to assign to noise points low membership sakith all clusters. In

this way, noise points will not affect the location of the fotypes.

The probabilistic constraint of Equation 3.2 was replacgd b
> ug = Yy, Vk
i=1

wherevy, is thecredibility of point x;. It represents the typicality of; to the entire
data set and not to any specific cluster. Thugif> ¢, thenx; is more typical to

X thanx;. Two alternative formulations for the credibility of a pbire given, both

are measures of the relative isolation of the point. The fimshulation compares the
point’s average distance to issnearest neighbours to the average intra-point distance
of X', while the second formulation compares it to the harmornsosd moment oft.
After estimating they,’s, their values are plugged into the slightly modified ugdat

equations of the algorithm. This approach has also intredits own share of param-
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eters. However, the authors suggest that their algorithriogmes well in most cases

using the default values for the parameters.

3.5 Remarks

In this Chapter, we reviewed in detail the Fuzzy c-Meanstelusgy model, and we
also briefly reviewed some of its extensions and modificatioie explained that a
lot of the algorithms mentioned in this Chapter were moadaty one or more of the
shortcomings we listed in Section 3.2.7. In the next Chapterwill focus only on

FCM'’s inability to perform accurately on data sets contagnclusters close to one
another but not equal in size or population. Since we havwermehtioned a few of the
large body of algorithms based on FCM, we conclude with alglaick at two threads

of fuzzy clustering research we did not include in our review

The first thread of research is concerned with finding thenogdthumber of clusters
in the data. This problem is continually being addressedhénliterature. The first
approach is to validate fuzzy partitions obtained at ddif¢rvalues ot: by means of
an index, and then selecting the valuecaforresponding to the partition that scored
best on the index. In comparison to many indices, the XierBetex [Xie & Beni,
1991] performs best (as studied in [Pal & Bezdek, 1995])ugiothere are some new
competitors [Kwon, 1998; Rezaext al, 1998]. Further, there have been attempts
to integrate the validation step into the FCM clusteringcess such as the validity-
guided clustering method of Bensaid [Bensaidl., 1996]. The second approach is
to fuse an agglomeration process with the clustering peycarting at a reasonably
high value forc. Section 3.4.3 already described an algorithm of this tyjseother
recent algorithm is that of [Geva, 1999] which fuses hidnaicclustering with fuzzy

clustering.

The second thread of research is concerned with making FCké& modust by

enhancing its response to noise points. We have alreadyssisd one such algorithm

65



3.5. REMARKS 66

in Section 3.4.4 which addressed that point, however thenteand still developing
work by [Davé & Krishnapuram, 1997; Frigui & Krishnapura®99] should also be
highlighted. These aim to use statistical methods suchedsl thstimator and weighted

least-squares technique to supplement the objectiveifumct
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CHAPTER 4

A New Algorithm for Fuzzy Clustering

In the previous Chapter we described the FCM algorithm andildd several algo-

rithms based on it.

In this Chapter, we investigate a well-known behaviourargtoming of FCM,
namely that it mis-classifies a small cluster of data lyingsel to a large one. We
formulate a new objective function (OF), based on FCM’st tiedresses this short-
coming. We will accordingly derive a new algorithm, that weamed the Population
Diameter Independent (PDI) algorithm. We will evaluate B@ffectiveness by com-

paring its results with those of FCM.

We first start by describing a framework to evaluate the belaal performance
of objective-function-based clustering algorithms. Fng only on the small-cluster
shortcoming, we identify the factors that cause it. In cgpmndence to the factors we
identified, we will then generate a suite of benchmarks aimgj of two-dimensional
data sets of incrementally varying properties. Tabulativegoutput of the FCM algo-
rithm, we will demonstrate the extent of the shortcoming analyse how to overcome

it. We will then develop PDI and evaluate its behaviour oncwsen benchmark.

67



4.1. THE EXPERIMENTAL FRAMEWORK 68

x1,yl
N

‘o
””” S’
Dot Pattern B
Generator _— PR
dq .o‘o,.j,,,, v2
%y
/ 5

x2,y2

Figure 4.1: In this two-clusters example, the inputs to tbemhttern generator are:
the populationsp; andp,, the diametersg; andd,, of each cluster, and the central
locations of each clustefy;,y;) and (z9,y2). A clustering algorithm should now
attempt to match this description of the clusters by examgioinly the dot pattern.

4.1 The Experimental Framework

Assume that we have a dot pattern generator that generagtsrs| of points in a given
p-dimensional feature spacR?. Assume, further, that the points of every cluster are
distributed uniformly around that cluster’s centre-poilhis assumed generator will
require as input a number of parameters. First, the numb&usters we want to have
in the dot pattern. Second, the central location of eacheluBinally, for each cluster
its population and diameter. We define thiameterof a cluster as the diameter of a
hyper-sphere (or a circle in 2D) that contains the entireupedn of the cluster. This

is illustrated in Figure 4.1.

The test for any clustering algorithm would be to produce @ueate description
of the clusters present in the dot pattern, given only thepattern and no other in-
formation. Since the clustering structure of the dot patiemlready known, accuracy
of the clustering can be computed by comparing the knownrigeemn to the one dis-
covered by the clustering algorithm. This is illustratedrigure 4.2. Thus, for the

example in Figure 4.1, we would ideally like any clusterihgpaithm to output the in-
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Dot Pattern Accuracy
Parameters ) Data Algorithm Structure Evaluation )
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Figure 4.2: A block diagram of our framework.

Generator

formation: number of clusters is two; the locations of thetptypes of the two clusters
are(z,y1) and(zs, y2); the diameters of the two clusters ateandd, respectively;
as well as a classification of the points from which we canutate the populations;

andps.

The generator we have described above is ideal for objefttivetion (OF) meth-
ods that minimise the aggregate distances between datts @oid suggested proto-
types. This type of methods, as discussed earlier, seardtypzr-spherical clusters
of points (assuming the Euclidean distance metric). Pyptsbased, sum-of-squared-
error objective function methods like FCM should perfornthamaximum accuracy

because the generated data consists of hyper-spheristdrslu

In general, clustering algorithms provide different typdsresults, e.g., fuzzy,
crisp, or hierarchical. These different ways of providindescription of the clustering
structure will necessitate different types of accuracy suess for evaluation. Algo-
rithms like FCM produce their results in the form of protogypcations and the fuzzy
partition matrix. To evaluate this output, one accuracy sneacould be the average
offsets of the FCM-found prototypes from the known centoghltions. Another ac-
curacy measure could be to use the FCM-found partition mtdrcalculate the fuzzy
cardinalities of the clustersand then to compare these values with the known popu-
lation values. In a similar manner, accuracy measures todithmeters of the found

clusters can be devised.

the fuzzy cardinality of a cluster is the sum of all its mensibép values
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A further test for any clustering algorithm is to find the @mtrsolution every time it
is run. Since the results of some clustering algorithms negaedd on the initialisation,
the correct solution should be found irrespective of thaahsation. Otherwise, the
algorithm would not be suitable for non-expert use. Thidlenge, however, can be
assumed to be of less priority than the other challenge® sirdepends also on the

optimisation scheme used.

4.1.1 Tests for Clustering Algorithms
Within our framework, a clustering algorithm is requireditad reliably:-

| the correct number of clusters,
Il the correct locations of the prototypes, and
[l populations of the clusters, and also

IV diameters of the clusters,

Realistically, we know that most clustering algorithmslwibt be able to pass
all these tests successfully. For example, most obje&tinetion-based algorithms
require the number of clusters,as an input parameter beforehand. They thus fail test
l. This shortcoming is not addressed in this dissertatisimstead we assume that the
correct number of clusters has been estimated beforehfind.suich estimate exists,
the common way of handling this shortcoming is validating #olutions resulting
from different values ot and choosing the best one [Windham, 1982; Gath & Geva,
1989; Pal & Bezdek, 1995].

Objective-function-based methods can deliver on testf |and IV. Their perfor-
mance on these tests, however, may seem ad-hoc, for theyndahdicorrect solution

in one run but fail to do so in another. The reason is that Gdetbalgorithms are
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iterative and locally optimal, and therefore produce ressihlat depend on their initial-
isation. Unless an exhaustive or an (as-yet undiscoveratytcal solving method is
used, different solutions may be found. Therefore, shartibélising these algorithms
identically each time they are run, obtaining the same cbselution should not be
expected. Thus, in order to measure an algorithm’s accuma@ny of the three tests
above, we need to use identical initialisation. This ifigi&tion should be favourable
to finding the correct solution by being close to it. If an algon now fails a test, we

will know that it cannot ever find the correct solution stagtfrom a near-correct one.

Turning our attention now to tests I, lll, and 1V, we obsethat within our dot

pattern generator framework, we can vary three sets ofblasa

1. the centre-points of the clusters,
2. the populations of the clusters, and

3. the diameters of the clusters.

In the next Section we will describe how we used these threahlas in a two-
dimensional two-cluster setting to generate a suite ofrstit data sets. Our aim is to
construct a benchmark covering many of the data sets that betencountered within
this setting and then to see if an OF algorithm like FCM wilspaests II, Ill, and IV
on each of the data sets in the benchmark suite. We shouldherotethat while the
framework as described above is ideal for squared-erp{yototype-based methods,

its basic structure is valid for other types of methods.

4.1.2 Designing the Synthetic Data

We now use our dot pattern generator to generate a suite eflitwensional two-
cluster data sets. Thus, 6 variables must be set: the tweeepaints af(z;, ;) and

(x2,12), the diameter and population of cluster 1 (the lhs cluste@ndp;, and the
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diameter and population of cluster 2 (the rhs clusterandp,. If we do not consider
overlapping clusters and sample the range of possibiéitssite of data sets that covers

many cluster configurations can be generated.

The Centre-Points

We first fix the two centre-points 40, 0) and(1,0). This is a valid assumption not
only because it reduces the number of possible data setdsbubecause we can al-
ways transform any two given locations in 2-D space to théga@sed coordinates of
(0,0) and (1,0). The transformations will consist of translation, rotati@nd scal-

ing transformations applied sequentially. By fixing thetcanocations, we can now

concentrate on varying the remaining variables.

The Populations

We now have to consider that andp, can vary. Our approach has been to fix a
minimum value for the population of any cluster in any of tla¢edsetsp,,;,. Then, to
use configurations where clusters have populations thatlaoée number multiples of
Pmin- USINg this new scale, we renamgeandp, to P, and P, respectively. We chose
to limit the range of both?; and P, to 1 to 20. A configuration withP1 : P2 =1 : 20
indicates that the lhs cluster has the minimum populatioeathe rhs cluster has
twenty times that population. To reduce the number of ddataganerated, we sampled
the range ofP1 and P2 at 1, 10, and 20 only. Thus, there will B& = 9 population
configurations. These are (in the form@f: P): 1:1,1:10,1:20,10: 1,10 : 10,
10:20,20: 1,20 : 10, and20 : 20.

The Diameters

With regards tal; andd,, both can have values from zero to infinity — a range that

has to be sampled. Let us choose to sample the distance Ibettvé¢ and(1,0) 20
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times and to restrict the diameters to those 20 levels. Tawetyster with diameter-
level 10 will touch the poin{0.5,0) and one with diameter-level 20, will touch the
other’s centre-point. Using this normalised scdleandd, are renamed t®»; and D,

respectively, where the latter set has discrete-levesunit

In order to not lose focus of our goals, we leave further t&etz#ithe generation
of the data suite to Appendix A. We will say at this juncturatthll in all 900 data
sets were generated in correspondence to the various catianis of populations and

diameters available.

Samples of the Benchmark Data Suite

Table 4.1 shows the values we used in our actual generatedafdata sets. Figure

4.3 illustrates some examples of the 900 data sets generated

1o U1 Pmin dmin
0| 0] 300 |2x0.05
T2 | Y2 | Pmaz dma:v
1| 0/|6000|2x0.95

Table 4.1: Parameters used to generate the suite of data sets

The data points of each cluster were generated within seabehtred at the points
stated above. The area of each circle is divided into 10 sle¢lequal areas. The
population of a shelli.e., the number of points inside it, is the result of dividing the
total population of the cluster by the number of shells. Faohepoint, two polar co-
ordinateqr, #) were picked from a random number generator of uniform distion.

These coordinates were then transformed to Cartesianioabed.
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P1:P2=1:1 and D1:D2=2:4 P1:P2=10:10 and D1:D2=10:10

0 = @ SN0 0 o 0]
0 0
P1:P2=10:20 and D1:D2=3:17 P1:P2=20:10 and D1:D2=3:17
1 1

P1:P2=1:20 and D1:D2=5:10 P1:P2=20:1 and D1:D2=5:10

Figure 4.3: Samples of the benchmark data suite. The populatd diameter settings
for a pattern are located at the top of its plot.
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4.2 The Behaviour of FCM

Having established a framework and designed our suite oflreark data we will
now examine the behaviour of the FCM algorithm. We will firsegent the results
of FCM clustering of the benchmark data, then, we will disctige performance of
FCM and its behaviour. In Section 4.3, we will present our iepulation Diameter

Independent (PDI) algorithm and its results on the samelyeak data.

4.2.1 FCM'’s Results on the Synthetic Data

FCM was run on the full 900 data sets described in Sectior 4lfh.Figures 4.4 and
4.5 samples of the 900 clustered sets are shown. The prewfgpnd by FCM are
marked out with arrows. Also, the points are classified atiogrto the max rule which
specifies that a point is classified according to its maximegrele of membership.
FCM was run withm set at 2.0 and the initial prototypes placed-ad.05, 0.05) and

(1.05,0.05), i.e., at positions which are very close to the ideal positionss itot our

aim here to test FCM'’s shortcoming of getting entrapped ¢alsolutions. Our aim is

to see if the ideal solution can indeed be an FCM solution.

We can clearly see from Figures 4.4 and 4.5 that FCM’s perdoicais affected by
the relative widths of the clusters and by their relativeydapons. We can also see that
in some cases gross misclassification has occured. Singedtaype initialisation
was very favourable (by being very close to the correct iooa), we can deduce that
in these cases placing the prototypes at the correct losaisonot a minimal solution

for the OF of FCM.

Let us first provide a summary of the FCM results. To achievg the need to
decide on our accuracy measures. There are potentially thiferent measures of a
given clustering algorithm’s accuracy within our frameworhey are:-

1. how well it performs in finding the correct centre-pointshe clusters,
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FCM results for P1:P2=10:10 and D1:D2=5:9 FCM results for P1:P2=10:10 and D1:D2=8:8

0 0.5 1 15 0 0.5 1 15

[ 0 0 ¢ F O
-0.5 0 0.5 1 -0.5 0 0.5 1
(a) (d)
FCMresults for P1:P2=10:10 and D1:D2=5:11 FCM results for P1:P2=10:10 and D1:D2=8:10
0 0.5 1 1.5 0 0.5 1 1.5
0 0 0 0
-0.5 0 0.5 1 -0.5 0 0.5 1
(b) (e)
FCM results for P1:P2=10:10 and D1:D2=5:13 FCM results for P1: P2=10:10 and D1:D2=8:12
0 0.5 1 15 0 0.5 1 15
[ & 0 0 0
-0.5 0 0.5 1 -0.5 0 0.5 1

(©) (f)

Figure 4.4: FCM clustering of synthetic dot patterns witlo tvolours representing the
two found clusters. Prototypes are marked out by the dotheel Imes. P1:P2 ratio
fixed at 10:10. D2 is varied while D1=5 for column (a), (b), eyl and D1=8 for
column (d), (e), and (f).
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FCM results for P1:P2=1:10 and D1:D2=10:10 FCM results for P1:P2=1:10 and D1:D2=5:10

0 T 0
-0.5 0 0.5 1 -0.5 0 0.5 1
(a) (d)
FCM results for P1:P2=10:10 and D1:D2=10:10 FCM results forP1:P2=1:20 and D1:D2=5:10
0 0.5 1 1.5 0 0.5 1 1.5
0 1 + 0
-0.5 0 0.5 1 -0.5 0 0.5 1
(b) (e)
FCMresults forP1:P2=10:1 and D1:D2=10:10 FCMresults forP1:P2=20:1 and D1:D2=5:10
0 0.5 1 1.5 0 0.5 1 1.5
0 7§+ 0 0 0

(©) (f)

Figure 4.5: FCM clustering results. D1:D2 fixed at 10:10 foluenn (a), (b), and (c),
and 5:10 for column (d), (e), and (f). The P1:P2 ratio is \drie
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2. how well it performs in finding the correct diameters of thesters,

3. and, also how well it performs in finding the correct popiolas of the clusters.

In FCM'’s case and with this type of symmetrical cluster, threé measures are not
all required. If FCM fails in finding the centre-point, thehet two measures become
misleading. So, our first priority will be, for every data setsee how far off each of
the found prototypes is from its correct location. We deditteat, for a given data set,

the maximum of the two prototype offsets will be our measuracouracy.

Defininge; as the distance between and(z1, ;) (Wherep; is the closest found-
prototype to(x1, 1)), ande, similarly, we can define the maximum prototype offset,
e, as:

e = max(eq, )

wheree; =|| p; — (z1,y1) || and ey =| pa — (22,42) ||

In Figure 4.6 we plotted againstD?2 for all nine population configurations, while
fixing D1 at 1. Each curve represents a constant ratio of proportiéasote that apart
from population configurations where P1:P2 = 1:10 and 1128 curve proceeds in a
somewhat uniform upward trend. However, for the aforenoerdl configurations, the
curve takes a very steep upward climb and then slowly fatesafirds. In both these
configurations cluster 2 becomes very large by compariscluster 1. This largeness
is twofold: both in diameter and in population. Thus, clust&s prototype moved
toward cluster 2 while cluster 2's prototype moved towatds right side of its own

cluster. This is illustrated in Figure 4.7.

As cluster 2 became larggs; was “drawn” towards it and took large steps in that
direction. This explains the steep climb. However, aftegrdan point, the diameter of
cluster 2 extended into the middle region between the twstets, towards cluster 1,
thus,p; moved back again towards the left side of the graph, caubmgécline ire.

As D, went through and past the middle towards cluster, ¥pllowed it progressively
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Figure 4.6: Plot ofe againstD2. D1 = 1. All nine population configurations are
shown. Each curve has a constant population ratio.
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FCMresultsforP1:P2=1:20 and D1:D2=1:7 FCM results forP1:P2=1:20 and D1:D2=1:9

0 { ) 0 0 o Tt 0
-0.5 0 0.5 1 -0.5 0 0.5 1
(a) (b)
FCMresults forP1:P2=1:20 and D1:D2=1:11 FCMresults forP1:P2=1:20 and D1:D2=1:13
0 0.5 1 1.5 0 0.5 1 1.5
-0.5 0 0.5 1 -0.5 0 0.5 1

() (d)

Figure 4.7: An illustration of the positions of the found fmtypes asD2 increases
from (a) 7, (b) 9, (c) 11, to (d) 13D1is fixed at 1. Thisis fo’1 : P2 =1 : 20.

back towards the left hand side, albeit with a large margieragr.

The upward-trend curve of the other population configuretipe., those exclud-
ing 1 : 10 and1 : 20) can be explained that in these configurations, cluster 2mss-
came as large or “dominant” as the two other cases in termspflption. Thus, there
was less requirement f@r; to move into cluster 2’s territory. However, &2/ D1 got

bigger, the error worsened proportionally.

We examined results for a somewhat larger diameter foraldstatD1 = 5. In
Figure 4.8, we plotted againstD2 while fixing D1 for all nine population configu-

rations. The results are quite similar to those of Figure 4.6e two “sudden rise”
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Figure 4.8: Plot ot againstD2. D1 = 5. Each curve has a constant population ratio.
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curves ofP1 : P2 =1 :10andP1 : P2 = 1 : 20 are there as well as the “upward
trend” curves for the rest of the population configuratiohiis time, because cluster
1 is fixed at a bigger diameter than in Figure 4.8, the degreerof is generally lower

than that of figure (0.18 compared to 0.28, for example).

We found FCM’s results on thB1 : P2 = 1 : 20 data sets very interesting, so we
analysed them all in a separate plot. In Figure 4.9 we pldttedesults for all 10@’s
resulting from FCM'’s clustering of the data sets. The alnmastzontal curves of the
plot illustrate something important: that the effect of agiation of D1 is negligible,
it is D2 that decides the degree of the error. Furthermore, as waswausbefore,
the worst clustering results are those of whHehreaches to within the middle region

between the two clustef®2 = 7...13), instead of wherD2 is close to 19.

Next, we studied configurations where the population ratim ifavour of cluster
1 (i.e, cluster 1 is more populous than 2), likgl : P2 = 20 : 1. The results are
plotted in Figure 4.10. Here, we note that befére = 7, e is proportional taD2, such
that the worst error is ab2 = 19. Then, atD1 = 7, a sudden jump ir is observed
(see Figure 4.11). As of that point, the effect of the vamiatf D2 is negligible, as
the plots coincide. This can be explained in a way similah®R1 : P2 =1 : 20
configuration above. Cluster 1, the more populous and laryster dominated the
FCM solution. It drewp, towards it. However, as cluster 1 expandéd (ncreased),

p2 has moved back towards the left thus reducimgogressively.

4.2.2 Discussion of FCM'’s Results

From the results above, we can deduce preliminarily thabag ks the separation
between clusters is high, FCM will not have a problem in idgimg the output of the
pattern generator. Once one of the clusters extends intnitheie region between the
two centre-points, FCM will produce very bad results. Thesjion of the ratio of

the populations of the clusters plays a role in these diancetgigurations and makes
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Figure 4.10: Plot ot againstD1 for P1: P2 = 20 : 1. Each curve has a constang®.
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FCM results forP1:P2=20:1 and D1:D2=6:10 FCM results forP1:P2=20:1 and D1:D2=7:10

-0.5 0 0.5 1 -0.5 0 0.5 1

(@) (b)

Figure 4.11: An illustration of the positions of the foundtypes as)1 increases
from (a) 6 to (b) 7.D2 is fixed at 10. Thisis fo1 : P2 =20 : 1.

the error severer. FCM, effectively, lets clusters withg&arpopulations and larger

diameters dominate its solution.

To explain this, let us consider the OF of FCM:

C

N
Minimise Jpen (P, U; X, e,m) =) Z(uik)mdfk(xk, Pi)
i=1 k=1
subject to the constraint
i=1

This is a separating-distance-based function that acaterithe weighted distances
between the prototypes and the data points. A large clust&rfns of diameter) will
contribute more to the OF than a small one because its destare higher. Thus, the
relative diameters of clusters play a role in determininghecluster’s contribution to

the OF. In general, a large cluster contributes more thanadl sme.

The constraint forces a point's membership with a prototyptake into account
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the point’s distances from the other prototypes:

u = ke{l,....,N},ie{l,... c}.

Therefore, points that lie very close to a prototype take beEnships of almost zero
with the other prototypes. However, points lying in the niétetween two proto-
types will take membership degrees that are close to 0.5hitnway they add to
both prototypes’s OF contributions. If one prototype canrmved to a position that
will “neutralise” these midway points without incurring hu penalty from its former
neighbourhood, it will be moved. This is because the newtiogavould be close to

the optimal solution of the OF.

We also see that the OF is a summation oXer If there is a disparity in the
relative diameters of the clusters such that their relatorgributions are not equal, the
populations play a determining factor. For if the smallerstér has more points, the
small contributions can add up to balance the large clsstentribution. On the other
hand, if a large cluster is more populous, its contributidlhdominate the OF. In such

a case the accuracy of FCM is further compromised.

In the next Section we will attempt to visualise the shapéef®F of FCM. This
will help us to explain the sensitivity of FCM to the middlgren between the two pro-
totypes. As we observed in the previous Section, when oneeofltisters approaches

the diameter level of 7, FCM’s accuracy deteriorates sicguifily.

4.2.3 Shape of FCM Objective Function

We now wish to visualise the shape of the OF of FCM. As befoeeassume that there
are two cluster prototypes in a two-dimensional featuresp@he left-hand prototype
is placed at the origin of the coordinate systéfm,0). The right-hand prototype is

placed at coordinatél, 0). Assuming now that a given data point is placed anywhere
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Figure 4.12: FCM £, = 2): Plot of pointx;’s OF contribution,.J,, againstx;’s
position. x; is constrained to move along theaxis only. The prototypes are located
at(0,0) and(1,0).

in this 2D feature space, and given an OF, we can calculatedhtibution of this

point to the OF.

Let us assume that we denote the OF contribution value fotapint, x;, by
Ji. First, let us constrais; to be located along the-axis. In Figure 4.12, we plot
xx's contribution to the FCM OF versus its location along thaxis. We left the
mathematical derivations of the equation for the curve tpé&mlix B. From Figure
4.12 we observe each prototype has appropriated symnigtiaceegion of low cost
around it. In the middle between the two prototypes, ther liscal peak. A point
placed at exactly half-way between both prototypes costsntbst amongst points
lying between the prototypes. Furthermore, as a point haaeyg from the prototypes,

its cost rises steeply.

Now we allow the location ok, to move freely in the 2D space. Thus, we can
plot contour lines around the prototypes; points lying agsthcontour lines contribute
identical values towards the OF. Such a contour plot istiiéded in Figure 4.13. We
observe again that FCM creates symmetrical contours arthengrototypes. As a
generalisation of Figure 4.12 in 2D, we observe that the aatghich contributions

change in the “valleys” around each prototype is less thahéu afield. Once again,
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Figure 4.13: FCM . = 2): Contour plot ofJ;, representing;’'s OF contribution;
Ji's value depends oRr,’s location in the 2D space.

we left the mathematical derivations to Appendix B. Baseth@contour plot we can
see the shape of ideal clusters for FCM, and we can guage hdwt wdl perform

given any particular constellation of points.

A point of note is that if we were to integrate the area underdhrve between
(0,0) and (1,0) in Figure 4.12, what would that represent? It would represiea
total contribution of a continuous line of data points alohgz-axis between the two
prototypes. Let us now work out the bounds of a region cedtareund the mid-point
which would cover only half of the computed area under theeuhe significance
of this computation would be to find the region, along the beéveen the prototypes,
that contributes as much as the remaining parts of the lihe.bbunds, as worked out
in Appendix B, are the point$).38, 0) and(0.62, 0). In our benchmark data suite, these

approximate to values for eithér, or D, of between 7 and 8. This is confirmed by our
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results as previously presented. This calculation alsashbat there is a relatively
narrow region of width 0.24 centred around the half-way peihich “costs” FCM

twice as much as either region to the side of it.

4.3 Population-Diameter Independent Algorithm

When we first investigated FCM, we focused on its inabilitghaster accurately when
the data set contains one cluster which is highly populate@mparison to the other
(in a two-cluster case). Thus, we thought of dividing eaalsi@r's contribution to
the objective function by its population. This way, the natia of one cluster’s con-
tribution to another would not be as disproportionate asotdeone. In other words,
the lightly-populated cluster’s contribution would berieased, and that of the highly-

populated one decreased.

However, upon further study, as evidenced above, we coedltitht as well as the
populations problem, there is also another problem. Thisiscwhen there is a sharp
difference in the spans of the clusters (represented byetemsin our experiments)
and the larger cluster’'s span reaches into the middle regiowdst the two. The
diameters problem can either be compounded or alleviatélaeoyopulations problem
depending on the populations-ratio and which cluster iwg&s. Thus, we concluded
that the effects of population and diameter are correlateditawould not be easy to
compensate for their effects separately. We found it is rpoeeise to talk about the

“relative contributions” of clusters

Obviously, FCM'’s objective function does not account foedt effects. This is
why we introduced the Population-Diameter Independent)RIyorithm. The main
idea behind our new algorithm is to normalise the clustetrgdautions found in the
FCM objective function. Thus, in PDI's objective functiong divide each cluster’s
(FCM) contribution by a number that should represent thengfth of the contribution.

The result of the division would give the cluster’'s new (PEdntribution.
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If we were to set no constraints on these “normalisers” theuld take infinite
values because the OF is being minimised. Therefore, weraomsd the sum of the
normalisers to 1. This means if one normaliser increaseslirey at least one other
normaliser must decrease in value. A minimal solution wasddign lower-valued
normalisers to clusters with small contributions and, espondingly, higher-valued
normalisers to clusters with big contributions. If clusteontribute roughly equally
to the OF then the normalisers should take the valie wherec is the number of

clusters.

We named the normaliser variables Thus,p; is the normaliser for cluster In
order to allow the user to vary the influence of & we raised them to the exponent

r,r > 0. We now formally state our formulation of the optimisatiaciolplem.

4.3.1 The New Objective Function

Minimise Jpp (P, U, p; X, c,m, 1) = Zp%% > (xp,pi)  (4.)
subject to the constraints:
chuik =1 (4.2)
=1
and
> =1 4.3)

From the above formulation we can derive an algorithm toeaha minimal so-
lution. This is effected by means of using the Lagrange mpligti method, setting
the differentials to zero, obtaining the update equationgéch variable, and then us-
ing the Picard successive substitution strategy, as wakwigk FCM. We leave the

derivation of the update equations to Appendix C and now setdie them.
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4.3.2 Conditions for Optimality

Let the minimisers o/ pp; (P, U, p) be called(P*,U*, p*). The necessary conditions

for (P*,u*, p*) are :-

r 2 \1/m—1
and N
RS e 9
and
o S ()" @)

-1 [Zgzl(uik)md?k} e

We note that the optimality condition fgr has intuitive meaning; it is a ratio of
clusteri’s contribution to the sum of all the clusters’ contributsohe equations also

confirm that, as with the OF, setting= 0 collapses PDI to FCM.

4.3.3 PDI's Improvement on FCM

We now present a summary of PDI’s performance on the bend¢hsugie. As with

FCM, we used the max rule to the de-fuzzify the clusteringilites We also used the
same initialisation as we did with FCM. Based on our expesdidescribed in the next
Section), we empirically set = 1.0. Similarly to FCM’s plots, PDI’s plots display

both classification results as well as location of found qixgies.

We start with Figure 4.14, the plots can be compared dirdotlthose of FCM
shown in Figure 4.4. Through visual assessment, we can\abaegreat overall im-
provement in clustering accuracy. The data sets of Figufiegd),(b),(d), and (e) were
clustered perfectly. Figures 4.14(c) and 4.14(e) werehmtiever, compared to FCM,

PDI's performance is a great improvement.
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PDI results for P1:P2=10:10 and D1:D2=5:9

0 0.5 1 15

PDI results for P1:P2=10:10 and D1:D2=8:8

0 0.5 1 15

(@)
PDI results for P1: P2=10:10 and D1:D2=5:11

(d)

PDI results for P1: P2=10:10 and D1:D2=8:10

0 0.5 1 15

(b)

PDlI results for P1:P2=10:10 and D1:D2=5:13

0 0.5 1 15

-0.5 0 0.5 1
(e)

PDlI results for P1:P2=10:10 and D1:D2=8:12

0 0.5 1 15

Figure 4.14: PDI clustering of synthetic dot patterns witi tolours representing the
two found clusters. Prototypes are marked out by the dottellimes. Compare with
the results in Figure 4.4.
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PDlresults forP1:P2=1:20 and D1:D2=1:9 PDl results forP1: P2=1:20 and D1:D2=1:11

0 0.5 1 15 0 0.5 1 15

(b)

PDI results for P1:P2=1:20 and D1:D2=1:13 PDI results for P1:P2=1:20 and D1:D2=1:15

-0.5 0 0.5 1 -0.5 0 0.5 1
(c) (d)
PDI results forP1:P2=1:20 and D1:D2=1:17 PDI results forP1:P2=1:20 and D1:D2=1:19
0 0.5 1 1.5 0 0.5 1 1.5

Figure 4.15: PDI results @32 increases from (a) 9, (b) 11, (c) 13, (d) 15, (e) 17, to (f)
19. D1isfixed at 1. This is fo”1 : P2 =1 : 20.
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Figure 4.15 shows more PDI results. Here, fixiAg: P2 =1 : 20 andD1 =1,
we observe how PDI copes extremely well with increadiigncrementally. Itis only

in the difficult case of)2 = 19 that PDI’s accuracy is compromised.

Figure 4.16 continues with more PDI results, the plots candmepared to those
of FCM shown in Figure 4.5. In column (a), (b), and (c) of Figut.16, the case
of two equal-sized, touching cluster®1 : D2 = 10 : 10) is tested with changing
population ratios. Here we observe an interesting behawbBDI: it finds a cluster
within a cluster. This behaviour is also observed in Figueé&) where population
ratios are varied while the diameters remain fixedat: D2 = 5 : 10. This anomaly
of finding a cluster within a cluster is due to the light deysit one of the clusters as
compared to the other. Because of the light density, theriboion is weak and thus
the corresponding cluster-normaliser takes a low valuas ifhturn marks a smaller
region of influence for the cluster prototype. We explais ihimore detail in Section
4.4,

We now plot the improvement of PDI over FCM in a summarised megas cor-
responds Figures 4.6—4.10. In these plots, wedigg, — eppr @s our measure of

PDI’'s improvement on FCM.

We start with all data sets with 1 = 1 configuration and plot the improvement
in Figure 4.17. The plot resembles almost exactly thatzf,, in Figure 4.6. Thus,
it confirms that PDI effectively equalises disproportianabjective-function contribu-

tions for configurations oD1 = 1.

We now compare Figure 4.18 to Figure 4.8 whére = 5. We observe effective
correction of FCM - except for configuratiod3l : P2 = 10 : 1 andP1 : P2 =
20 : 1. Here due to the behaviour mentioned above, namely, igamgifa cluster
within a cluster, FCM actually performs better than PDI. Bielreless, FCM’s margin

of improvement is not a big one - not exceeding 0.15.

Comparing Figure 4.19 to Figure 4.9, where we fix the popoitatatio atP1 :
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PDl results for P1:P2=1:10 and D1:D2=10:10 PDlI results for P1:P2=1:10 and D1:D2=5:10

0 0.5 1 15 0 0.5 1 15

0
-0.5 0 0.5 1 -0.5 0 0.5 1
(@) (d)
PDlI results for P1: P2=10:10 and D1:D2=10:10 PDl results for P1:P2=1:20 and D1:D2=5:10
0 0.5 1 15
-t
P N\":"
0 = 0 0 RS O
ﬁ“‘.,:#".
-0.5 0 0.5 1 -0.5 0 0.5 1
(b) (e)
PDI results for P1:P2=10:1 and D1:D2=10:10 PDl results for P1:P2=20:1 and D1:D2=5:10
0 0.5 1 1.5 0 0.5 1 1.5
5:-:: "
0 4= 0 0 . _:sf‘.' 0
i,
-0.5 0 0.5 1 -0.5 0 0.5 1

Figure 4.16: PDI clustering: D1:D2 fixed at 10:10 for coluna), (b), and (c), and
5:10 for column (d), (e), and (f). The P1:P2 ratio is variednpare with the results
in Figure 4.5.
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Figure 4.17: Plot okrcy — eppy @againstD2. D1 = 1. All nine population configu-
rations are shown. Each curve has a constant populatian rati
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Figure 4.18: Plokycy — eppr againstD2. D1 = 5. Each curve has a constant
population ratio.
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Figure 4.19: Plot ot ¢y — eppyr @gainstD1 for P1: P2 =1 : 20. Each curve has a
constantD?2.
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P2 =1: 20, we observe that whereas PDI effectively corrects FCM ftuesof D1
less than 6, its performance declines afterwards. How&¥ still retains a margin
of improvement over FCM for values @#1 > 6. The decline in performance is due to
the fact that alD1 > 6 the LHS cluster becomes of such light contribution thatectrr
placement of its prototypes would necessitate a small ialudae corresponding nor-
maliser, thus the prototype moves towards the left and P&itifles only a subsection

of the cluster.

Finally, comparing Figure 4.20 to Figure 4.10, where we fexplopulation ratio at
P1: P2 = 20 : 1, we observe that the plot follows the same trend as FCM’spgxce
that it ventures below zero for values < D1 < 6. This is the same behaviour as
mentioned above. Once again, we note that the margin ofisrnat great and that for

most cases PDI effectively corrects for FCM shortcomings.
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Figure 4.20: Plot oty — eppr @gainstD1 for P1: P2 = 20 : 1. Each curve has a
constantD?2.
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4.4 Observations on PDI

The avenues of enquiry that PDI opens are quite numeroukisiséction we observe
the shape of the OF of PDI and compare it to that of FCM. We asicht on our

experience with the exponent, and with PDI’s resilience to different initiali|ons.

4.4.1 Shape of Objective Function

In Figure 4.21, we show PDI’s point-contribution contouotpivhich corresponds to
that of FCM in Figure 4.13. Recall that the contours arounchgarototype indi-
cate progressively more expensive point-locations. Wemasthat setting, = 0.2
has caused contraction around that cluster’s prototygkaaorresponding expansion

around the other prototype, compared to the symmetricabcos of FCM.

If we move along only the:-axis and plot the/,, curve, Figures 4.22—4.25 show
the variations caused by different valuessandr. These can be compared to that of
FCM in Figure 4.12.

In Figure 4.22, = 1 andpy, = p; = 0.5. The shape of the curve is exactly the
same as for FCM: two symmetrical valleys around each prpttyhe OF magnitudes

are not, however, directly comparable.

In Figure 4.23, maintaining = 1.0, we emphasise the LHS prototype by setting
po = 0.1. We observe that this causes a thinner valley around the Lid®type as

compared to that of the RHS prototype.

In Figure 4.24, we maintaip, = 0.1, but increase the exponent ta- = 1.5. We
observe this causes a sharper, thinner valley around thedriStype and increases
the scope of the RHS prototype. Thusgan be increased when searching for tiny

clusters.

In Figure4.25, where = 0 andp, = 0.1, we observe this causes an exact same
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Figure 4.21: PDl# = 2,r = 1,p; = 0.2): Contour plot of.J;, representing;’s
OF contribution;J;’s value depends oRr,’s location in the 2D space. Compare with
Figure 4.13.
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Figure 4.22: PDI{ = 1, py = 0.5): Plot of a point’s OF contribution against its
position with respect to two prototypes given that both piyptes have equals of 0.5
each.

102



4.4. OBSERVATIONS ON PDI 103

Jk

X axi s

-1 -0.5 0.5 1 1.5 2

Figure 4.23: PDIA = 1, py = 0.1): The plot forms a thin valley around the LHS
prototype, thereby giving a wider “scope” to the RHS propaty
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Figure 4.24: PDIf = 1.5, py = 0.1): Raisingr’s value causes even stronger emphasis
around the LHS prototype, and a much wider scope around tt& @bétotype.
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Figure 4.25: PDI« = 0, py = 0.1): Despite the low value af, PDI's OF collapses
to FCM’'s symmetrically-shaped one becauseas set to 0. This plot is equal in
magnitude to that of Figure 4.12.

curve to that of FCM’s since = 0 collapses PDI to FCM.

4.4.2 Varying ther-Exponent

The exponent of the normalisesglays an important role in how PDI performs. The
higher its value, the sharper the emphasis of the normaligédre lower its value the
more PDI resembles FCM. In Figure 4.26 we demonstrate thétses applying PDI

at various values af to a data set similar to those in our suite.

At r = 0, the results are identical to FCM. At = 0.5, the boundary between
both classes becomes slightly curved, indicating that tirenalisers have begun to
have some effect. Beginning at= 2.4, we see that PDI classified a subset of the
small cluster as a cluster of its own. At= 3.0 only one point in the small cluster
is identified! The small-cluster prototype is placed at ttheai location. This result
indicates that PDI “spotted” the small cluster. Howevels tlsult is very sensitive to

the initialisation. Our experience is that if the initiat®n is far away from the ideal
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Figure 4.26: Results on varyingn PDI. r's value is labelled at the top of each graph.
r = 0 renders PDI to be FCM. An interesting behaviour happemns-ap.4.
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106

r

P1

P2

0.0

0.468998

0.531002

0.5

0.444052

0.555948

1.0

0.032148

0.967852

1.2

0.031990

0.968010

1.4

0.037311

0.962689

1.8

0.050938

0.949062

2.0

0.057516

0.942484

2.2

0.063063

0.936937

2.4

0.066393

0.933607

2.6

0.061108

0.938892

2.8

0.000000

1.000000

3.0

0.000000

1.000000

4.0

0.000000

1.000000

Table 4.2: The effect of varyingon p; andp, in the data set of Figure 4.26.

locations, different solutions will be found.

In Table 4.2, the different values ofwe used are tabulated against the correspond-
ing values for the normaliseys andp,. p; represents the small cluster. At= 0,
the normalisers are approximately balanceds At 1.0, a steep descent in the value
of p, is clearly observed and the solution found is the correct die ratio ofp,/p;
here is about 30. At = 2.4, the “aperture” of the small cluster begins to narrow and
by r = 2.8 it has become only wide enough for a very small number of goiithe
points are located around the ideal location for the prg@ityThe solution is there-
fore technically correct! However, as mentioned aboves Hulution is sensitive to
initialisation.

We further observe that at values:ofr > 2.8, the results became of doubtful use.
It is clear some form of divergence has occurred. In algonithimplementations of
PDI such behaviour can be prevented by checking if one of dhealisers is heading

towards an infinitesimally small value.

On inspecting Table 4.2, we can speculate that at 1.2 the best “tuning” of
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PDI's performance was achieved. This we can justify on thsedthat the normaliser
p1 is at a local minimum with respect to its other values-as varied. So, it would
be interesting to conduct a study on tuning the value lodised on the variation of the

normalisers and finding out if the tuned value correlateh btter clustering accuracy.

4.4.3 Resilience to Initialisation

We investigated PDI’s sensitivity to initialisation. Thgltuwe do not include the re-
sults here, our conclusion is that for valuesrof.5 < r < 1.5, PDI's solution (as
found by our iterative implementation) is usually a stabte and is quiet resilient to
the different initialisations. Higher values otause turbulence in the shape of the ob-
jective function. Iterative implementations like ours getrapped in locally-optimal

solutions.

4.5 Summary and Conclusions

In the early parts of this Chapter, we established a shoitapof FCM: its clustering

accuracy drops sharply in situations where there are sigliers lying close to large
ones. We rectified this shortcoming by introducing clusteength variables, one per
each cluster, to normalise cluster contributions. In trag,vgolutions that identify the

clustering structure correctly become optimal - in the eyfebe PDI OF.

The OF of FCM weights each point-to-prototype distance withembership de-
gree. This way, points close to a prototype get high degréesembership because
they contribute little to the OF’s value. The OF of PDI goedHhar by weighting each
cluster's (FCM) contribution to the OF with normalisers.i§tvay, clusters that con-
tribute more acquire large normalisers to minimise thepaet, and small normaliser

values must be allocated to the other clusters, thus altptiiem to be represented.

The rationale for the weighting mechanism in FCM is to plane prototype in
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the middle of each group of points in the data set. The ralofwe PDI’s additional

weighting mechanism is to allow small clusters to be represe For FCM, prototype
locations determine membership values and, thereforeyalue of the OF. For PDI,
prototype locations are matched with normaliser valuestagdther they determine
the membership values and, therefore, the value of the Qks, THormalisers grant a

scope to each prototype that matches the prototype’sweledintribution.

To fully assess this new algorithm, we reported in full itsuks on a variety of
data sets. We also proved that PDI remedies FCM'’s shortapm@ur new OF has
on the other hand shown a shortcoming of its own. This shoriieg is that it may

over-emphasise small, compact clusters. It is also versitento the value of-.

Our approach in this Chapter has been a fundamental one. tip s@& idealised
framework and accordingly designed data sets to test spagifiotheses. We believe
new clustering algorithms, particularly ones derived fronsimilar to FCM, should
be tested on the specific behavioural properties we raisisiChapter using our data

sets.

In the next Chapter, we present our experience with the uskistering for image

analysis.
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CHAPTER b

Clustering of Medical Images

Fuzzy clustering provides a good framework for medical imagalysis. The main
advantages of this framework are that it provides a way toesgmt and manipulate
the fuzzy data contained in medical images, and that it gesvilexibility in presenting

extracted knowledge to clinicians and radiologists.

This Chapter discusses the issues involved in the analysmages in general,
but with particular attention to medical images, using fuetistering methods. Since
segmentation is often considered the main step in the imaggss process, we will

mainly be discussing the segmentation of medical imagegwdustering.

We first give a brief background on medical imaging and thenmaédical imag-
ing modalities involved. In Section 5.2, a segmentatiomiEavork based on clustering
will be outlined; the decision points within this framewofkature extraction, method,
and post-processing, will be discussed. Continuing on arkw the previous Chap-
ter, in Section 5.3, we describe a synthetic 2D model of eardnages on which we

compared the performances of FCM and PDI.
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5.1 Medical Image Analysis

Medical imaging has developed exponentially in the pastyfears in terms of techno-
logical advance and wide-spread use. High-resolutioeetdimensional anatomical
information can now be obtained in a routine manner with netignesonance imag-
ing (MRI) and X-ray computer-aided tomography (CT). Thege modalities provide
complementary information; CT shows detail of bony stroesuand some contrast
between hard and soft tissues while MRI shows detail of s&due structures, with
almost no detail of bony structures. CT imaging, like alla§+techniques, exposes the
patient to a dose of X-rays, thus, incurring some healtlsriskRI does not expose the
patient to radiation, but uses the magnetic propertieseopttient’s tissues to provide

contrast in the image, and as far as we know at present it ipledety harmless.

In our research, we focused on cardiac MR images. In commtnmuiich medi-
cal image analysis work, our images may be used to gain anzbkmowledge of the
patient being studied so that diagnostic decisions mayHksntarlo aid in this, quan-
titative measures may be calculated or a qualitative aisaitgay be reported. Thus,

segmentation of this type of images is a necessary step.

5.2 Segmentation as a Process Involving Clustering

There is strong similarity between “clustering a data satf &segmenting an image”.
Both these processes share the goal of finding “true” claasibin of the input. “True”

here depends very much on the application at hand. In gererakver, there is a
stronger requirement for accuracy placed on the segmentatocess. This is mainly
because while the data processed by clustering methods ohagpresent a physical

reality, medical images represent physical anatomy.

The general clustering process, because of its exploraiaiyre, has license to

interpret and may be imprecise. Its main strength is thatunisupervised.e., it does
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Feature Clustering

) Feature\ Vectors /clustering Structure Post—
mage A Extraction/ ™ Algorithm )~ Processing

—Image Description

Figure 5.1: The process of clustering image data for theqaep of segmentation.

not require any training data, and is automatic (requiresimmal user interaction).
Segmentation methods on the other hand are not generallyredcto interpret, but
instead have to be accurate. While many segmentation nmetiegdire training data
and are only semiautomatic, automatic methods are welcamse they require no

training effort, or human resources.

Segmenting images using clustering defines three decisiorispfor the process,
as shown in Figure 5.1. The first decision point that ariselsas will we present the
image data to the clustering algorithm? This we have namatife extraction and
we address below. The next decision point is: what algoritttmwe choose to run
on the data, and of course, how do we set it up? In responsésioh have already
discussed a variety of algorithms in Chapters 2 and 3 and swillveot discuss this
further in this Chapter. Embedded in any algorithm chosal,b& the question of
choice of distance metric by which to measure the simildr@fween two constituent
points in the extracted data set. The last decision poirftast do we use the output
of the clustering method? In some cases, all that may be degdesuitable colouring
scheme or similar human-computer-interaction device abdlnicians (experts) can
use the results easily. In Section 5.2.2, we discuss sonme @héthods to post-process

the output of fuzzy clustering methods.

Arguably, workers in the field of image analysis have deathwiihe above three
guestions with increasing sophistication over the past d&cades. About twenty
years ago, most researchers made straightforward choloes elustering image data

[Schachteret al, 1979; Muiet al, 1977]. Recent works have delved deeper into
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the workings of a clustering algorithm, in some cases madifyt specifically for

the application. For example, in [Kottke, 1992] a featureiginting mechanism that
utilises variance estimates is incorporated into the ehusfj process. In [Tolias &
Panas, 1998b; Tolias & Panas, 1998a] an iterative scherhadhats to the local im-
age characteristics by imposing spatial constraints ofutt®y partition matrix is used
during the clustering process. In [Pham & Prince, 1999] iplidative intensity inho-

mogeneities are compensated for by allowing the prototjgesach cluster to vary

across the image.

Also, new metrics specifically designed for image data haenlkproposed. For
example, in [Udupa & Samarasekera, 1996] the notion of {fuzannectedness” is in-
troduced as a natural, but computationally complex, measiulistance best-suited to
images. Also, in [Gatlet al, 1997] a data-induced measure of distance was introduced

for the purpose of extracting non-convex patterns in images

The pragmatic idea of carrying out the three steps of Figurebd then repeating
them in order to produce better results has also been coadidethe literature. For
example, in [Bensaiét al, 1996] an automatic evaluation of the segmentation result
is formulated so that based on this evaluation, the prosagpeated with a new set of

parameters beginning at the second step.

5.2.1 Feature Extraction

We now address three ways in which image data may be presemgedlustering
algorithm. These are: using only the voxel intensitiespgshe voxel intensities and
spatial coordinates, and extracting locality measures filoe image data. We have
called this step feature extraction because, in the datgsasdramework, clustering

methods work on “feature vectors”.

In general, image data arrive in the form of one or more 2-), 3 even 4-D

(including time) data lattices containing the image measiants, or intensities. Every
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Figure 5.2: An example of three different images obtainedn@asuring three differ-
ent properties in MR brain imaging. These are, from left ghti PD, T1, and T2
respectively.

cellin the image lattice is called a voxel (or pixel if the ig&ais 2D). In the cases where
there is more than one lattice, each image provides a spégigcof measurement.
For example, in MR brain imaging there are usually three esaarquired at different

times: T1 and T2 weighted, and proton density PD. This isitlated in Figure 5.2.

To illustrate how data are organised, assume two equalgds3D image lattices
M, and M,. The voxels in each of these lattices are accessed via thielsatesian
coordinatesz, y, z). So, if at voxel coordinatege, yx, 21 ), the intensity as measured

onM; is M1k, thenmlk = M, [xk][yk][zk]

Voxel Intensities

The simplest way to extract image data into a clusteringrdtya is to define the
feature-set as the available image measurements. Evdigl$peation in every image
lattice provides a feature element. These feature vecterthan constructed to serve

as X, the input data set. For example, we construct datatsebnsisting of two
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Figure 5.3: An original tissue density MR image is shown om lgft, while its PDI-
clustered segmented version is shown on the right ¢) Only the intensity data was
used. The max rule was used for defuzzification.

features that correspond id, and M/, as follows:

X = (mlka ka) Vk € {17"'1N}1

whereN is the size of either of the image lattices.

The simplicity of this approach and its sometimes quite eateuresults are its main
strengths. Its most common application is when there amerakfeature images of the
same scene as in MR brain images or CT images [Girél, 1994; Clarket al,
1998; Mansfielcket al., 1998]. In such cases, the feature set consists of a givesl’sox

intensity in each image.

Figure 5.3 shows a cardiac MR image of the type we use in oearek. Using
pixel intensity as the only feature of the data set, a segatient of the image into
four regions using PDI (randomly initialised) is shown. Thistogram of the image is

shown in Figure 5.4. The placements of the prototypes by BBlso shown.

By using this feature extraction technique, voxel neighboad information is
dispensed with and not represented in the feature-set. ifeosht (spatially-distinct)

objects which share the same approximate intensity levildav clustered into one
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Figure 5.4: The histogram of the MR image of Figure 5.3 fofedént bin sizes. The
vertical lines mark the locations of the found prototype$iD).
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level. A simple way of addressing this problem is to appeneeach feature vector in
X (which corresponds to a voxel location) additional feaduzentaining that voxel's

spatial coordinates.

Spatial Coordinates and Intensities

Clustering voxel intensities only, as described abovesdu# utilise the proximity
relationships that exist between neighbouring voxels. dinect way of taking this

into account is to add features for the spatial coordinaft#iseovoxel.

For example, we construct data sétconsisting of five features that correspond to

M, M,, and three spatial cartestian coordinates as follows:

X = (mm, moyg, xk,yk,zk) Yk € {1, .. .,N},

whereN is the size of either of the image lattices. Note that we mayaudifferent

coordinate system, like polar or cylindrical, instead @& tartesian one.

The values of the coordinates can be plotted as an imageimothe right. Thus,
using the same framework as above, we have the original ifadiiees plus one or
more lattices containing coordinate information. By vigiag things in this manner
we can see that the data set will contain a lot of regularitgsuAning a 2D image,
then we have am — y coordinate system with a single intensity feature, the data
would be regularised on the grid of- y coordinates and would look like a 3D rugged
terrain. This has influenced the design of special cluggesigorithms that have no
general utility beyond this type of data,g, mountain clustering [Velthuizeat al.,

1997].

Intensity and spatial coordinate data will almost certamdt share the same units
and range. Thus, itisimportant to determine the weightorgy\te to each feature. This

is however a largely empirical exercise. In the image of Fedu3, the intensity (tissue
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Figure 5.5: An original tissue density MR image is shown oa léft, and different
FCM-clustered segmented versions are shown on the righkt. 3, ¢ = 1.5) The first
segmentation was produced with zero weighting given ta:they coordinates, then a
weighting of 10 was given te andy, then 20, then 40, and finally a weighting of 60
was used. In the final image the clusters divideithey space equally between them.
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density) values range from 0 to approximately 3700, whikeithand y coordinates

range from O to 77 only.

One approach to overcome this is to dynamically weight tregigpfeatures and
then choose the value of the weight that minimises a suitdbtering validity crite-
rion [Boudraaet al, 1993]. In this case, the usual clustering validity measunay
not be suitable to make a judgement which is grounded in palyahatomy. However,
they may be useful in guiding the user to choose betweerréiffelustering results.
But a further problem lies in the fact that the objects in ti@ge may not cluster in

shapes recognisable by the algoritherg, spheres or ellipsoids.

Locality Measures

In this feature extraction approach, voxel intensity valaee supplemented with other
“locality” features. A data pointitt’ will therefore be composed of the intensity values
at the corresponding voxel and other numeric indicatorsrtteey be edge- or region-
based. These are usually measured over a small window edrdesund the voxel.
The histogram of this window region will have such featuresraean, mean square
value (average energy), dispersion, skew, and so on. Rdsoith this approach are
empirical and vary from one application to another [Tucar§&alain, 1993; Marchette
et al, 1997].

As we have not conducted much research into this approachmeay that whereas
this approach may provide very accurate results, it requinech more experimen-
tation than the above two approaches. There are a lot ofestuah novel locality
measures, and while these may be effectively applied to @magntaining textures,
most medical imaging modalities produce pictures that nwyoe aptly described by

mixtures of textures.
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5.2.2 Post Processing

We now address three ways in which the output of a fuzzy dlimgt@lgorithm may
be processed for the purposes of obtaining a segmentatist, the fuzzy member-
ship images provided by the algorithm can be thresholdedbtaim crisp, segmented
images. Second, the fuzzy membership images can be contbipeavide image en-
hancement or used for segmentation display. Or, a small latg&-base can used to

supplement the fuzzy output of the algorithm.

Crisp Segmentation

From the outset, we should say that obtaining crisp memhexstiues from fuzzy
ones involves throwing away information. This is one of tl@wundrums of fuzzy
logic applications. However, the argument of fuzzy logiogwnents is: it is better to
have more information, which may be pared down at some pbiau, less information,
which may be wrong. Obtaining a fuzzy partition of the imageeg us the option
of assessing the fuzziness of the solution before applyirdde-fuzzification” step.
Furthermore, the fuzzy partition provides more informatiban a crisp one, in case

high-level processing were conducted.

One of the most common ways of obtaining a crisp partitioneginsentation is to
use the max rule which stipulates that a point be allocatéde@luster with which it

has highest membership.

Another common way of obtaining crisp segmentation is bymae# identifying
the cluster of interest and setting a threshold for its mestbe values. This is also
called obtaining am-cut of the cluster’s fuzzy set. Determining an optimum esgfior

«, the threshold, remains a largely empirical exercise 58eems a popular value.)

Both post-processing methods must be addressed carespiicrlly when a ma-

jority of points have nontrivial membership values with mdhan one cluster. In this

119



5.2. SEGMENTATION AS A PROCESS INVOLVING CLUSTERING 120

Figure 5.6: Three clusters’ membership images. PDI used, m = 2.0).

case, the solution is very fuzzy and de-fuzzification may featentative (inaccurate)

results.

Membership Images and Contrast Enhancement

Provided a cluster of interest is determined, the membgsshith that cluster can be
plotted as a gray-level image. In such a case, maximum mesmiped., may be shown
as white and all other membership values scaled accordi@gby-level membership
images can provide good enhancement of an object of intdriést standard contrast
enhancement techniques which give a bigger dynamic ranggé#oticular section of

the intensity histogram, a fuzzy membership image will eage those pixels that
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Figure 5.7: The image on the left is a colour-coded segmentabtained using FCM
(c = 3), while the image on the right is its PDI counterpart.

most belong to a cluster. This is seen in Figure 5.6.

Also, in cases of a small number of clusters (ideally thre&ar), the member-
ship values of all clusters can be plotted as a colour imageoldur is selected to
represent a cluster and a given membership value is altbeapeoportional strength
of that colour. The resulting colour image provides at they Veast a neat summary
of the fuzzy output. This is shown in Figure 5.7 where we shothli-CM and PDI’s
combined membership image using a colour coding. In theagas) the pixels are la-
belled with varying strengths of red, green, blue, depemndimtheir respective cluster
memberships. The dark pixels are, therefore, those whos#ership values are not

strongly in favour of any one cluster.

High-level Rule-based Reasoning

Clustering provides an initial approximation to the reasslification of objects in the
image. If high accuracy and reliability is required the fyzmtput can then be fed
into a high-level reasoning “unit”. Often such units arezZyzule bases. Depending
on the application at hand, the rule base may seek to combanzg fegions (clusters)

together, determine certain properties of them, or edtaldpatial relations between
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them [Rosenfeld, 1984; Krishnapuram & Keller, 1993b; @hial, 1996]. Often,
this is done with the purpose of designing an automatic iflasqClark et al., 1998]

provides a good example of this type of work.
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5.3 Comparison Between FCM and PDI on Synthetic

Medical Images

Having explained how clustering is used in image analysithis Section, we provide
a comparison between the performance of FCM and PDI on siyntheges that have
some similarity to the medical images we used in our reseaféhfirst describe our

synthetic model, then we present the results of both alynst

5.3.1 Synthetic Model

Class 2

Class 1

Figure 5.8: A synthetic image witlhy = 5. Class 0 is the background, class 1 is the
shell, and class 2 is the inside of the shell.

The images were designed to Be x 77 with a structure resembling the one we
have in our medical images. This consists of three objectscikground, a circular
shell and the inside of a shell. The classes of the objects alaysen so that: class 0

stands for the background, class 1 for the shell, and classthé inside of the shell.
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The shell was given a widthy, which we varied in our experiments. Figure 5.8 shows

an example of one such image with= 5.

The three classes consisted of pixel intensities deschigedhiform distributions.
The parameters of Class 0 (background) wererepresenting the average intensity
level, anda, representing the width of the distribution. Class 1 (9hets given
average intensity and width3. Class 2 (inside) was given average intensignd
width 7.

Our methodology will now be to vary and see its effect on the quality of both
FCM and PDI’s clustering. We measure the quality by countirgnumber of mis-

classified pixels.

In all our experiments below, we use = 2, and for PDIr = 1.5. These values
were selected in accordance with our experiences from thequs Chapter. We chose
the valued), 45, and80 for «a, b, andc respectively, and the valuds$, 35, and4 for
«, (3, and~ respectively. These values were arbitrary but selectedstiotihe familiar
problem of close clusters of different sizes (Classes 0 griauitLthis time there is a
third cluster present (Class 2). Class 2 is a relatively corhpand well-sepearated
cluster in comparison to the other two. This is evident inuFég5.9 which shows the
histogram distributions of the synthetic images corresjpumtow = 3,5,7,9, and11

respectively.
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Figure 5.9: Plots (a), (b), (c), (d), and (e) are the histogdastributions of the synthetic
images corresponding ©=3,5,7,9, and 11 respectively. The columns in each plot
correspond, from left to right, to classes 0, 1, and 2 resgadgt(background, shell,
and inside of the shell). The height of a column depicts thalmer of pixels in the
class it represents. The width of a column depicts the iitiedsstribution of the class.
The background and shell contain a varying number of pixasiaing tow and have

a wide almost-touching range, but the inside of the shelbhaarrow range.
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Width % misclassified pixels
| w | FCM | PDI |
3 24.57 (1547 pixels) 2.44 (145 pixels
5 19.90 (1180 pixels) 2.46 (146 pixels
7
9

6.04 (358 pixels) 0.89 (35 pixels)
3.88 (230 pixels) 0
11 | 241 (143 pixels) 1.62 (64 pixels)

Table 5.1: Comparison of accuracy of FCM vs. PDI in clasdificaof the synthetic
images.

5.3.2 Results

PDI's segmentation results were a great improvement ovét’sCThis is confirmed
by Table 5.1 which is a comparison between FCM and PDI in terhaassification
accuracy. The visual segmentation results obtained fdr BGIM and PDI are shown
in Figures 5.10 and 5.11. We observe that FCM performs raidwdly at smaller values

of w.

For example, atv = 3, where class 0 is seven times the population of class 1,
FCM splits class 0 into two (bahaviour seen in Chapter 4) ded=fore misclassifies
large chunks of it. Class 1 thus is divided between class Ockasb 2. This is so
even though class 2 is very focussed in terms of intensityegdsee Figure 5.9). PDI
does not have any problems in identifying class 2 accurakétyvever, PDI does fall
to classify correctly a small number of pixels belonging kase 1 and assigns them
instead to class 0. Those mis-classified pixels have angitydrevel close to class 0’s

range.

At w = 7, most of the pixels in class 1 are correctly classified by Pl aear-
perfect results are attained:at= 9. FCM continues to struggle. We note that whereas
PDI misclassifies a small section of class 1's pixels at snaklues ofw, by w = 11
(where class 1 is now more populous than class 0), it extdads & to cover some of

the noiser points in class 0.
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(a2)

(b1) (b2)

(c1) (c2)

Figure 5.10: The left side column shows FCM results and tiet side column shows
PDI results. The top row shows results for= 3, next isw = 5, and bottom-most is
w="1.
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(d2)

(;91) (e2)

Figure 5.11: The left side column shows FCM results and tifet side column shows
PDI results. The top row shows results for= 9 and the bottom row is fow = 11.
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This study shows how the effects of the population and dianwdta cluster affect
clustering algorithms’ performance. FCM would have copetl with this problem if
there was large separation between the intensity rangescbf dass. PDI performs
much better at this type of problems because of the ineqeityden cluster sizes and

populations.

5.4 Conclusions

This Chapter provided a summary of our experience with ehrsfy images for the
purpose of segmentation. We have divided the segmenthyiarndstering process into
three decision phases: feature extraction, clustering past-processing. Within the
clustering phase itself there are also decisions to be nizmid algorithm and distance
metric. We also demonstrated the advantage of PDI over FGMdme synthetic

images. Furthermore, we briefly reviewed the image clusgdiierature.

Since most clustering algorithms suffer from shortcomitigg may affect accu-
racy, it is essential for the user to be aware of the shortegaof their preferred
algorithm. Some segmentations are impossible to produng akistering, unless the
right features are extracted to act as input to the clugegorithm. Thus, empirical

feature extraction plays an important role as will be seah@mext Chapter.
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CHAPTER O

Application to Medical Image Analysis

This Chapter presents the results of our published work orgdazzy clustering in a
cardiac imaging application. The aim was to segment andt trecvolume of the left
ventricle during a complete cardiac cycle. The images useM& images containing
tissue density and velocity data. Since there is no othelighdal work on analysing
this type of image using fuzzy clustering, our applicatisrainovel one. Our results

may be viewed to be an investigation into the feasibilitylo$ type of research.

The Chapter proceeds as follows. Section 6.1 presentsfadoriew of the anatomy
and physiology of the cardiovascular system. Section 6s2ri®es the type of velocity
(or flow) images we used in this research. Section 6.3 givesplecifics of our appli-
cation and Section 6.4 describes our results in full. Theareh presented here uses

PDiI for clustering.
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6.1 The Cardiovascular System

For a detailed introduction to cardiovascular anatomy amgsjplogy see [Davson
& Segal, 1975; Wilson, 1990], and for a more detailed revidéihe imaging of the
cardiovascular system see [Underwood & Firmin, 1991; vavdsl & de Ross, 1991;

Pettigrewet al.,, 1999].

The Heart is a Pump

The cardiovascular system is responsible for blood citmran the human body. It
supplies blood to cells throughout the body. Blood acts aaresport medium, where
it transports oxygen from the lungs to the cells and carbowride from the cells back
to the lungs. This circulation of the blood is achieved by mpu— the heart — which

forces the blood through elastic tubes — the blood vessels.

Blood Vessels

The main function of the blood vessels is to carry the bloadughout the body. If
the blood flows away from the heart the blood vessels areccalteries. If the blood
flows to the heart the blood vessels are called veins. Thesa@ytery is the aorta
which is characterised by a number of bifurcations. A thiydet of blood vessels

called capillaries connect the arteries to veins.

Heart Structure

A schematic diagram of the heartis shown in Figure 6.1. Tlaetlensists of two pairs
of chambers: the left and right ventricles and the left riginta. The ventricles act as
pumps while the atria act as reservoirs. Blood enters the frean its long journey
around the body through the superior and inferior vena aaeetihe right atrium. This

blood has very little if any oxygen. Then it passes by theuspd valve into the right
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Pulmonary artery
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Figure 6.1: A simplified diagram of the heart.

ventricle. After the right ventricle contracts, the blosdarced through the pulmonary
semilunar valve and into the pulmonary artery. The pulmpmatery splits into the
right and left pulmonary artery where the still oxygen-defit blood travels through
the lungs. The blood becomes enriched with oxygen and séaalk toward the heart.
The blood enters the heart via the right and left pulmonany wdich come directly
from the lungs. The blood then enters the left atrium. Theidpad valve opens up
and the blood falls into the left ventricle. The ventriclentacts and the blood goes

rushing passed the aortic semilunar valve and into the adrih is the largest artery
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in the body. Now the blood is on its way back to the body.

The Myocardium and Systole and Diastole

The walls of the ventricles are composed of muscular tisedd@m what is known as
the myocardium. During the cardiac cycle, the myocardiuntrexts, pumping blood
out of the ventricular chambers and through the semiluniaesa The myocardium’s

inner surface is called endocardium while the outer suricalled epicardium.

In normal conditions the human heart beats between 65 anidnés per minute.
Each heart beat corresponds to an entire cardiac cycle whitbe characterised by a
contraction phase (systole) and a relaxation phase (teastithe atria and ventricles.
The systole can be divided into two phases. In the first phesattioventricular valves
close, the ventricular muscle starts to contract, and tikrieellar pressure increases
due to the closed artery valves. At this stage the volume doeshange and the phase
is referred to as iso-volumetric contraction. In normalditions this phase lasts for
60ms. In the second phase, the artery valves open due todieaged pressure, the
ventricular muscles contract and the ejection starts. Mbynthe left ventricle ejects
only half of its volume of ca. 130ml as stroke volume into tbheta. At the end of this

phase a rest volume of ca. 70 ml remains in the ventricle, la@drteries valves close.

Similarly to systole, diastole can also be divided into tw@ages. During the first
phase of the relaxation all valves are closed and the retaxest iso-volumetric. The
ventricular pressure drops rapidly. During the second @kfaes valves separating atria
and ventricles open and the ventricles are filled first rgmdid then more slowly. The

ventricular pressure increases slightly. Then the camjale starts again.

Quantitative Measurements

There are a number of quantitative measurements which cadervaluable clinical

information for the assessment of the heart [Mohiaddin & grore, 1993]. Myco-
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radial functionality can be assessed by measuring theigalar volume, the stroke
volume and the rest volume. Based on these quantities itSsilple to calculate the
ejection fraction of the ventricles which measures the@rdagitween stroke and rest vol-
ume. Other indicators of myocardial functionality are thestie thickness and mass
as well as wall motion and thickening during the cardiac ey@rterial functionality
can be assessed by measuring the distensibility or elgsticrteries in terms afom-
plianceand is defined as change in volume per change in pressurgydbarcardiac

cycle.

6.2 MR imaging and Velocity Quantification

Magnetic Resonance images picture anatomic detail by megdissue density in the
plane of imaging. Every pixel in an MR image carries a valu thproportional to the
average tissue density registered by the MR scanner at thesponding approximate

location in the plane of imaging.

The magnetic resonance signals are caused by Hydrogen pregent in the tis-
sue. The nuclei spin on their axes generating magnetic msmeaking them become
magnetic dipoles. When these nuclei are placed in the miagredt of the scanner,
the axes of spin precess about the direction of the applieghete field. The fre-
guency of precession is directly proportional to the sttierd the magnetic field each

nucleus experiences.

Flow velocity quantification [Rueckert, 1997; Yang, 1998biased on the observa-
tion that as spins move along an imaging magnetic field gnadibey acquire a shift
in their angular position relative to those spins that aaéi@bary. This is called a spin
phase shift, and it is proportional to the velocity with winig spin moves. This shift
in the phase angle of the spins is a parameter containedwitaidetected MR signal

and can be readily measured.
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The composite MR signal provides two images. The first onkescbnventional
image, called the modulus of the magnitude image, in whiehrttage signal intensity
is simply related to the magnitude of the MR signal. The sddamage is the phase
image in which the signal intensity is proportional to thétsh spin phase relative to
the stationary spins. This phase image, therefore, predgexel-by-pixel mapping of
spin velocities, given that both the strength of the magrfedid gradient and the time
during which the spins are exposed to the gradient are kn@mrte these features of
the sequence can be explicitly determined, it is possibllthiduser to define a desired
amount of spin phase shift per unit velocity and consequetgtermine flow rates

from the phase image.

To display flow in two opposite directions, a gray scale faptiying the spin
phases is chosen so that zero phase shift is medium grays 8@ihmove into the
scanner will typically acquire positive phase shifts of L&D degrees. These are as-
signed a proportional intensity from midgray to white. Spihat move in the opposite
direction will acquire negative phase shifts of 0 to 180 éegr These are assigned
a proportional intensity from medium gray to black. Thisimmigar to color Doppler
echocardiography, in which the flow toward and away from thedducer is displayed

with two different colors, red and blue.

6.3 Novel Application to Velocity Images

We now detail the results of our work [Shihab & Burger, 1998ajhab & Burger,

1998b] using cardiac velocity MR images. We describe th&ufeaextraction, clus-
tering, and post-processing decisions we made in thisfspagpiplication. Our appli-
cation consists of analysing MR image cine sequences axtjairthe mid-ventricular
plane of the heart. The images are conventional MR tissusityamages as well as

velocity images. Our objective is to segment and track tHeVentricle (LV).

The cine sequences of images are aligned with the shorbéxie left ventricle
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ASuckland Cardiac kEI

Figure 6.2: A plane of imaging that provides a short-axiswa# the heart would be
parallel to the plane showi©)Auckland Cardiac MRI Unit
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Figure 6.3: Examples of tissue density images: frames 0, @, &, 10, 12, and 14 in
an image sequence.

(illustrated in Figure 6.2). The velocity data is renders®amagesy,, v, andv,, cor-
responding to the cartesian components of the velocityvéeld V" at each pixel. The
reference coordinate system has theg plane lying on the plane of imaging (aligned
with the short-axis of the left ventricle) and thexis perpendicular to it (aligned with

the LV long-axis).

The image sequences contain 16 frames. The sequencest Sgstade and end
at early diastole. The time space between each frame ancettesnapproximately
40 ms. Figure 6.3 displays example frames from a sequengard=6.4 displays four
frames from each of the three velocity components. We rertteakeach image is
generated out of normally 256 heartbeats and thereforeigege depicts the average
behaviour of the heart during a large number of heartbeatseMer, the information
provided is useful for observing the global dynamics of tearhand we can still refer
in a meaningful manner to a particular time of the cine seqeeamce it belongs to a

definite phase of the cardiac cycle.
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Figure 6.4: Examples of the velocity images, frames 0, 4n8, &2 ofv,, v,, andv,,
from top to bottom respectively.
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Figure 6.5:0 and¢ define the direction of the velocity vector at a given point.

6.3.1 Feature Extraction

Each frame in a cine sequence contains several types of Hatantains the tissue
density data:/ and the velocity datav,, v,, andv,. Further, we can use the y
spatial coordinates for each pixel, assuming a cartesiandotate system or the
andf coordinates, assuming a polar coordinate system. Thes@artgelocity data
can also be transformed to spherical or cylindrical datae&l Thus, with very little

pre-processing, many possible features can be selecteddbrpixel.

In all our experiments, we used the two cartesian spatialdioates,z andy, as
features. However, we did not enter into the issue of findintable weighting for the
spatial features. As their range is much smaller than theitbér the tissue density or
velocity data, they had little effect on the results. Howewee left them in since they

are useful in the post-processing stage.

We assessed the impact of velocity features by clusteriagviithout them, and
then with combinations of them. The features for the firstegixpent consisted of
x, y, and I (tissue density data without). In the second experiment we added

which is the magnitude of the three velocity components el @axel: v,, v,, andv,
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vV = \/va + v,%2 4+ v,2). In the third experiment, we removédand replaced it with
6 and¢. These angles describe the direction of the velocity field given pixel, as

shown in Figure 6.5.

6.3.2 Method

In all experiments we ran the PDI algorithm. Thefuzziness factor was set a5,
and ther the normalisers’ exponent was fixedla. Also, ¢ was set to four, as this
gave the most intuitive segmentation of the images. As isvknd’DI’s output is in
the form of cluster prototypes, membership matrix, and radisars. In the results we

present here, we utilised the membership matrix.

For each data set belonging to a frame after the first one, tiaised PDI with the
found prototype locations of the previous frame. The firatrfe’s data was randomly
initialised. An entire patient sequence would take betw&erl minutes on a recent

Pentium PC model.

6.3.3 Post-Processing

Having clustered a patient’s data (in the three ways stdiedey, we then selected the
cluster corresponding to the LV blood pool area. This codafected in two ways:
the first is to estimate which of the found prototypes represéhe LV, or to plot a
max-rule segmentation of the first frame, from which one danally determine the
LV-cluster. Membership images of the LV-cluster for the teases oiwithout-Vand

with-V are shown for a normal patient in Figures 6.6 and 6.7.

Once we have determined the LV cluster, we can now count ttedspin the LV
area. Using the andy features of the LV cluster’s prototype as a seed, we ran amegi
growing routine on the max-rule segmented images. Thesademw us with a count

of the pixels in the LV area for each of the chosen data setgdoh patient.
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Figure 6.6: First experiment (only tissue density data)miership images of the LV
cluster tracked from frames 0 to 15 (left-to-right, topktottom) for a normal patient.
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Figure 6.7: Second experiment (tissue density &ndata): membership images of
the LV cluster tracked from frames 0O to 15 (left-to-rightpttm-bottom) for the same
patient as in Figure 6.6.
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6.3.4 Results

We remark here that we faced difficulties in our investigagiodue to the unreliable
data values sometimes produced in phase-contrast MREestuaind due to the length
of time required for a single patient study (to collect th&ga). Thus, we clarify that
our intention is to illustrate the application of fuzzy diersng to this type of studies,

instead of to present a complete, validated medical inyastin.

In Figure 6.8, we compare the calculated areas of the leftriote using the three
routes we took with a 'ground truth’ established by a cliarci The cine sequence is

that of a normal patient.

4000 T T T T T T T

H Ground Truth <—
g Max rule: Density data only -+--

Max rule: Density +V -8--
3500 & m Max rule: Density + directions -

3000

2500

2000

LV Planar Area (pixels)

1500

1000

500 1 1 1 1 1 1 1

Frame Number

Figure 6.8: Comparison of calculated LV area for the thrda dats used.

The general trend of all the curves as compared to the grawrla s correct.

However, we observe that using the velocity-magnitudeufeatauses somewhat er-
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ratic estimates of LV area. Furthermore, these estimates generally greater than
the correct values. In general, it was difficult to distigjubetween the results of
density-only and density-and-velocity-direction featir As can be seen in the plot,

the estimates using these two feature sets were consydesglthan the correct values.

6.4 Conclusions

In this Chapter, we studied the cardiac system and thentige¢sd the viability of us-
ing fuzzy clustering as the principal method for segmeataind tracking of the LV.
We proceeded along the same steps outlined in the previoast€ih feature extrac-
tion, clustering, and post-processing. In the featureaekion step, we experimented
with novel feature sets that include velocity data madelalks through phase con-
trast MR. In the clustering step, we used our novel PDI chirsgealgorithm. In the

post-processing step, we took a conventional route andthsadax rule.

We conclude by reviewing our experience. First, our resuége generally accu-
rate and can be used for quantifying cardiac measures. c@ing easily understood
the concept of clustering and immediately grasped its agidin. The strength of the
method lies in its general flexibility and accuracy. Deaisidike: setting a value for
¢, fixing values for the clustering parameters, and idenigythe cluster of interest,
allow flexibility for the user. Once these decisions are gthmeugh for one patient,

the processing of the other data sets can be automated.

Second, in studying the effect of using extra velocitytedideatures, we found that
they enhanced accuracy for only one frame out of the 16, apamd to a conven-
tional feature set containing tissue density data. We alsod that velocity-directional

features provided more accurate results than velocityamade features.

An interesting problem which should be a fruitful line of fiué research is to track

the myocardium in the same image sets (containing veloeitg)d This would proba-
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bly necessitate using polar coordinates instead of cartesies and weighting the spa-
tial coordinates suitably. Including velocity featuresuMbprobably increase the ex-

tent of accurate segmentation because of the relative fankton of the myocardium.
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CHAPTER [/

Conclusions and Further Work

7.1 Summary of Main Results

This dissertation investigated the FCM algorithm and daVia new algorithm, PDI,
to address a behavioural shortcoming of FCM. The shortcgrisrthat FCM does
not classify accurately a data set containing small cladteng close to big clusters.
We found the reason for this to be that the objective functiirch is at the heart of
FCM becomes inadequate in situations like those statedeabbwloes not have the
flexibility of narrowing or widening the scope of a clusteofotype. Byscope of a
cluster prototypave mean an area around the prototype in which points would add
little cost to the objective function. If the objective fuion allows a given prototype
to possess a relatively wider scope than other prototypesithat lie far from the
given prototype, but within its scope, would not be costlZMFs objective function
gives an equal amount of scope to each prototype and thisg#us correct solution to
be costly when clusters are of unequal sizes, the situatiorade worse if the clusters

are of unequal populations as well.

To overcome this shortcoming, we devised a modification dfiFChe new PDI

objective function attempts to equalise cluster contrdng and by doing so, it allows
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the smaller clusters to be found. For each prototype, POdfnees its “cluster contri-
bution” to be the same as FCM's but divides it by a variable, ¢luster normaliser.
This normalisation creates a non-equal distribution opssdor each prototype. Thus,
small clusters are granted small scopes, because theytelllenermaliser values, and

they therefore become less costly and have a higher cham&raf found.

We demonstrated FCM'’s shortcoming through systematicysta formulated a
framework and generated dot patterns to specifically téststhortcoming. We also
showed, using the same data, that PDI improves quite a lotGM'$-performance.

Furthermore, we investigated some aspects of PDI’s betavio

This dissertation also critically investigated the praceksanalysing image data by
using fuzzy clustering. We highlighted three decisionsigmin this process: feature
extraction, algorithm and parameters, and post-procgssathod. We described ex-
amples of each of these decision points. Furthermore, weaned FCM'’s and PDI’s

clustering of medical MR images, and designed synthetia titatest this.

Finally, the thesis presented the results of a novel appicaf fuzzy clustering
in medical image analysis. We used velocity data obtaineglsinyg a phase-sensitive
MR technique, as well as the usual tissue density data, ¢t& thee left ventricle in
image cine sequences. We found the availability of veladiitgctional data increases

the accuracy of the overall clustering.

7.2 Further Research

1. Further Analysis of PDI

(a) PDI requires some investigation from an optimisatiorspective. This
may be achieved using some of the global optimisation so&Wwiararies.
An assessment may then be made as to how prone the model isato lo

solutions. The model itself may require improvements, as gensitive
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to initialisation and prone to divergence. If the iteratinglementation is
used, divergence may be studied by means of tracking thewvatithe
normalisers,p;, and re-starting the algorithm when a value becomes too

low (indicating divergence).

(b) We have not carried out a computational complexity asialpf PDI as
compared to FCM, in terms of an iterative implementatioresed. Such
an analysis may be useful in finding ways to optimise PDI’s potational
efficiency. This would naturally enhance the feasibilityusing PDI for

the analysis of very large data sets.

(c) In Chapter 4, we structured our data sets in two-dimeradii@ature space.
While all indications are that PDI will continue to performone accurately
than FCM for higher dimensional spaces, it would be usefglantify the

limit at which PDI no longer provides a substantial advaatager FCM.

(d) In our experiments in Chapter 4, we only tested PDI’'sqgranfance on two-
cluster data sets. In Chapter 5, we compared PDI and FCMferpaaince
on images containing three clusters. While both experimshbwed that
PDI improves over FCM’s accuracy, will PDI’'s performancedase with

increasing numbers of clusters?

(e) It might be useful to extend PDI in some of the ways FCM wdsraled.
So, for example, how would a PDI-G-K algorithm (see Sectidh13 differ
from the plain G-K algorithm? Likewise, we can create a pustic (see

Section 3.4.1) version of PDI and compare its performanctedmriginal.

2. Cardiac Medical Image Analysis
The points we propose below are independent of clustergyighm used, ex-

cept when mentioned.

(@) In Chapter 6, we only clustered the image data availablenie cross-

sectional slice. Even though there is no spatial continuntynulti-slice
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volume data, investigating clustering the entire volumedia 3D spatial
space may provide a good challenge. The question of wemttimspatial
features appropriately will come up. Excluding spatial rciimates from
the data set may well turn out to be an effective approachitalise a

more precise clustering process operating on each slice.

(b) Similarly to above, investigating clustering the vokeigata with time peri-
odic information summarised in a phase angle feature pezl\{@r exten-
sion of the approach in [Boudra al., 1993]) may yield an improvement

to the accuracy of results obtained via point (a) above.

(c) In Chapter 5, we mentioned in passing using clusteringniage contrast
enhancement. This can be facilitated by the membershipama@nce a
cluster of interest has been identified, it would be usefeMaluate how a
clustering-enhanced membership image compares withitradi contrast

enhancement techniques.

7.3 Final Conclusions

The goal of clustering methods: detecting an inherentetirgg in the data set and then
accurately describing it is a complex exploratory procésswo dimensional feature
space, it seems that no method or strategy is as versatiledsuman. In practical
applications, therefore, misleading interpretationsloster structure will have to be

detected and corrected by human expertise.

Humans, however, need clustering methods to automatatrepetustering tasks
and to deal with the huge volumes of data that exist todag.iecessary that for data
sets that possess cluster structures for which there lis ditubt about their correct
interpretation, a clustering method be found to performueately on them. It was in
this vein, that we proposed PDI as a better successor to FOMike other proposed

successors to FCM, opens many questions about its widecappity and accuracy.
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Widening our view to beyond our PhD research, we offer thiefahg conclusions

on the subjects of clustering and image analysis :-

1. It is necessary that more research be conducted on thedbplustering ten-
dency — a topic that is little-studied at present. Tests fostering tendency
would precede actual clustering and would report on whethesuld be worth-
while to use a clustering algorithm. This would probablydiwe comparing the

information content of the data to that of randomly disttdzlidata.

The usual logic which consists of applying a clustering atgm first and then
assessing the clustering tendency from the algorithmislieassumes perfect
accuracy of the clustering algorithm — which is not guaradteFurthermore,
this two-step computational effort ought to be replacedhwitsimpler one-off
test. The approaches of [Dunn, 1973; Windham, 1982] areastiag and should

be followed on.

2. Graph-theoretic methods have not been combined witlctgefunction meth-
ods. It would seem that this a fruitful research area as tisgeiuinction methods
rely on distance metrics that do not “see” connectivity erldck of it, while that

is graph-theoretic methods’ strongest point.
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APPENDIX A

Details of Benchmark Data Suite Generation

If D; were plotted againgD, as in Figure A.1, the liné; + Dy, = 20 would describe
configurations where the clusters touch. Since it is not ourta test a clustering
algorithm on detection of overlapping clusters, only th@ 20nfigurations under the
line should be considered. If we eliminate, by symmetry,hezjant diameter config-
urations (.e,, D; = 5 andD; = 10 is equivalent taD; = 10 and D, = 5), then only

100 diameter configurations remain.

In the above, when we cut down the number of possible diamsetdrgurations to
100, we said that a configuration 6f, = 5 and D, = 10 is equivalent taD; = 10
and D, = 5. However, when we take the populations into consideratiais, is no
longer case. For example, imaginé a10 population configuration combined with a
5 : 10 diameter configuration:P, = 1, D, = 5) and (P, = 10, D, = 10). If we keep
the populations as they are but swap the diameters, thdirgsabnfiguration(P; =
1,D; = 10) and(P, = 10, D, = 5), is not equivalent to the former configuration.
This is illustrated in Figure A.2. Thus, it seems we must kibepsecond configuration
as it describes a different data set, and we can not discartetjuivalent” region of

Figure A.1.

However, when we arrive at the configuration consisting(of 1 population ratio
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Figure A.1: Plot of possible diameter configurations. Dats sorresponding to the
black dots in the triangular region were generated. If weiglate overlapping and
equivalent configurations only 100 data sets remain.

I -— |

Figure A.2: Each row illustrates equivalent p-d configunasi. Only one of each suf-
fices when generating the suite of data sets.
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and5 : 10 diameter ratio we will discover that it is the same as thathef $econd
configuration above. Therefore, in order to not count theesam d configurations
twice, we can still consider only the 100 diameter configoret of Figure A.1 for each

of the nine population configurations.
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APPENDIX B

Derivation of 2D 2-Prototype Model

These are the derivations used to plot the shape of FCM anaBjBttive functions

on Mathematica.

B.1 FCM'’s derivations

Assume two 1D cluster prototypes located at the origin@n@) respectively. Denote

prototype at the origin by and the other by.

Assume a point located at locati¢n) somewhere on the-axis. Let’s calculate its
contribution towards the FCM objective function. Assume= 2.

_ .2 32 2 12
Jx - u:z:ad:m + uxbdxb

ey
= (U, + (1)
(1/d2)
(/&) + (1)
R+ (1)
"R, + (1) @,)P

Ugp =
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B.2. PDI'S DERIVATIONS 165

Since
dye =zvandd,, =z — 1

(1/2%) + (1/(x = 1)*)
[(1/?) + (1/(x = 1)2))2

= J, =

which simplifies to:

1
Jp = —

1
(z—1)2 + z2

For the two dimensional case, where the point is now locatsavhere on the

plane and is of coordinatés, y), we derive the point’s contribution,,:

d?, = 2> +y* andd?, = (v — 1)* + ¢*

= Jpy =
/ [(;132-}—?/2) + ((qj—l)lQ-i—yr))]Q
which simplifies to:
1
Jay = 1 T 1
(x—1)2+y2 x2+y2

B.2 PDI’'s derivations

Assume two 2D cluster prototypes located at the origin@nd) respectively. Denote

prototype at the origin by and the other by.

Assume a point located at coordinatesy) somewhere on the — y-plane. Let’s
calculate its contribution towards the PDI objective fumet Assumen = 2 and the
normalisers of each cluster to have valuegpéndp, = (1 — p,).

u?, d? u2,d2,

Jx — ra~—"ra +

Pa (1 - pa>r

Y (Pa/d30)
T (on/d2) 4 (1= pa)/d2y)
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o (=p)y)
T )+ (= ) [

Since

dye =zvandd,, =z — 1

(z—1)? + %

T

For the two dimensional case, where the point is now locatsavhere on the

plane and is of coordinatés, y), we derive the point’s contribution,,:

dyo = 2* +y* anddy, = (v — 1) + ¢

1
= Joy =

U=pa)” 4 _po
(z=1)%+y> © 2+y?
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APPENDIX C

Derivation of PDI Optimality Conditions

Finding a solution is effected with the Lagrange multigierethod [Bertsekas, 1996].
Since an exact analytical solution can not be obtained, tsedider optimality con-
ditions are found and these are used as update equationsard Rierations. The
algorithm is started with any initial values fof; P, andp and then these are iteratively

improved until convergence is attained.
We define the Lagranian function as follows:
Cc
Z/{IO’ Z Zu +)\Zuzk_1 +M(sz—1)
i=1 Z k=1 i=1 i=1

Where) andy; are Lagrange multipliers for each of the constraints a vector ofNV

elements, ang is a single value.

According to the Lagrange multipliers method, the necgssat order optimality

conditions are:

VyL =0, (C.1)
VoL =0, (C.2)
v,L =0, (C.3)
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ugp—1=0 Vk=1.N, (C.4)

i=1
and,
pi—1=0 Vi=1l.c (C.5)

=1

From the optimality condition of equation C.1, we obtain:

m—1 ;2
mug i, _

- A = 0. (C.6)
Pi
Ak} 11 jm1
L= L1t/m—L g

Substituting the above equation in C.4, we obtain:

c )\kp: 1/m—1
2 [md2 } =L
=1 ik
m
A = . C.8
RO AN K o
Substituting\;, into C.7, we obtain the update equation fgy:
r d2 1/m—1
Uip = (pz/ zk) (Cg)

iz (i /) m=t

From the optimality condition of equation C.2 and notingtttia is any inner-

product induced norm on the difference betwegmandv;, we obtain:

N
2/p; Y wjp(zr — pi) = 0.
k=1

N N
= Y ufpTp = Y uRp;
k=1 k=1
which leads to the following update equation fgr

N
- Zk:1 Up T

25:1 Uik,
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Finally, from the optimality condition of equation C.3, whbtain:

(T Z;cvzl U:ﬁdfk )1/7"—{—1.
1

Pi =
And from the optimality condition of equation C.5, we obtain

S (1 Tk Uik 1/ g
=1 H

C

N
p=0D_ Z ufpd3, ] =)

=1k

Substituting foru in equation C.11, we obtain the update equatiorpfor

(SN, umdz) 1+
S (SN undg)
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(C.14)



