
Abstract. The performance of di�erent wavelet- and
wavelet packet-based methods for removing simulated
noise was studied using an electrocardiogram (ECG)
signal. A non-linear denoising approach was investigated
by applying soft and hard thresholdingmethods, in which
thresholds were chosen using four di�erent methods.
Coi¯et wavelet and wavelet packet functions were used to
build up the dyadic wavelet and optimized wavelet packet
decompositions. This study involves the quantitative
comparison of di�erent denoising approaches by means
of optimized error measures and visual inspection of the
denoised ECG and the error signal. The localization of
the denoising error within the cardiac cycle was studied
by visual inspection of the denoised signal and extracting
the error measures during the QRS-complex. The results
showed that wavelet denoising approaches were generally
more e�cient thanwavelet packet approaches in all cases,
but with HEURISTIC SURE threshold selection rule as hard
thresholding for white noises was used. Denoising errors
tend to concentrate within the QRS-area when the
wavelet approach was employed. Moreover, soft and
hard non-linearities showed di�erent balances in denois-
ing the high-frequency parts of an ECG.

1 Introduction

The wavelet transform (WT) is a recently introduced
time-scale representation which has found applications
in a variety of ®elds in biomedical signal processing. The
value of WT as a signal analysis tool has been
demonstrated by its application e.g. to image compres-
sion (Mallat 1989) and the study of evoked potentials
(Thakor et al. 1993b). At the moment, the interest in
using WT for the processing of electrocardiogram
(ECG) signal is increasing. WT has been used in the
detection of ventricular late potentials (VLP) (Dickhaus

et al. 1994; Meste et al. 1994), ECG analysis during
angioplasty (Gramatikov et al. 1995) and arrhythmia
analysis (Senhadji et al. 1996). The approach can also be
applied to automatic waveform detection (Li et al. 1995)
and signal compression (Bradie 1996; Ramakrishnan
and Saha 1997; Thakor et al. 1993a).

One application of WT is in removing noise from sig-
nals. The noise ®ltering scheme, generally called denois-
ing, has been studied in both simulated (Bruce and Gao
1996; Donoho and Johnstone 1994; Hilton and Ogden
1997) and real signals (Hilton and Ogden 1997) involving
the selection of the thresholding rule and choosing the
thresholding non-linearity. In the wavelet packet-based
approach, the signal composition structure is optimized,
for example, by an entropy-based rule, whichmeansmore
adaptivity of the decomposition scheme to the signal
characteristics as compared with the pure wavelet-based
approach. The selection of wavelet or wavelet packet
function should also be considered.

In biomedical signal processing wavelet denoising has
been applied in tomographic (Kolaczyk 1996) and
functional magnetic resonance imaging (MRI) (Hilton
et al. 1996) data. An example of developing a multirate
adaptive ®ltering scheme based on wavelet packets can
be found in Karrakchou and Kunt (1996), where it has
been used in cancelling respiratory interference from the
pulmonary capillary pressure signal. In many data ac-
quisition settings, ECG may contain noise of a technical
and/or a physiological origin. The ambulatory ECG, for
example, is corrupted by powerline interference, elec-
trosurgical and instrumentation noise, as well as elec-
tromyogram and motion artifact (Pahlm and SoÈ rnmo
1984; Thakor and Zhu 1991). ECG noise reduction has
been investigated by means of adaptive ®ltering (Thakor
and Zhu 1991; Xue et al. 1992; Hamilton 1996). Various
solutions for cancelling the power line interference have
also been proposed (Pei and Tseng 1995; Hamilton
1996). Time-varying ®lters have been used to correct the
baseline wander in ECG (SoÈ rnmo 1993). A Wiener ®l-
tering approach has been proposed and applied to high-
resolution ECG (Lander 1997).

Waveform detection algorithms naturally need as
noise-free an ECG as possible to reduce the e�ect of
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artifacts in such analyses as RR interval time series
(Tikkanen et al. 1999). However, the original ECG
should be distorted as little as possible by the applied
®ltering scheme. For these reasons, ECG noise removing
is an interesting area, and moreover, the application of
wavelet- and wavelet packet-based approaches has not
yet been largely studied. As the selection of the thresh-
olding rule and the thresholding non-linearity depend on
the signal properties, they also o�er the possibility to
adapt the denoising scheme to the prevailing conditions.
Furthermore, it is interesting to investigate the perfor-
mances of the di�erent denoising procedures, as the
ECG signal may be considered a prototype for selecting
the proper noise removal approach based on wavelet
and wavelet packet transforms.

If noise contributes the same frequency bands as the
original signal, conventional ®ltering approaches run
into serious di�culty. Consequently, it is bene®cial to
use wavelet-based methods, where the signal is decom-
posed into a number of frequency bands (scales), the
transform coe�cients are interpreted and processed scale
by scale, and ®nally the inverse transform is performed.
In addition, the component of interest may fall into the
gap regions of the ®lters and may then be cancelled or
enhanched. Therefore, the wavelet packet approach with
optimal base selection establishing a decomposition
adapted to the signal might be bene®cial when dealing
with non-white noise. Further, subband adaptive ®lter-
ing may su�er from non-ideal features of the ®lters, e.g.
an imperfect rejection of stopband, which cause an ali-
asing phenomena of components on the stopband at the
downsampling stage (Karrakchou and Kunt 1996).
These points make wavelet denoising a promising choice
to bring out better noise cancelling schemes.

The end-point is to evaluate the novel wavelet- and
wavelet packet-based denoising methods to remove
simulated noise from an ECG signal. The noise real-
izations include normally and uniformly distributed
white noises and non-white noise created using an au-
toregressive signal model. The study also involves the
quantitative comparison of di�erent denoising ap-
proaches by means of optimized error measures, and
visual inspection of the denoised ECG and the error
signal between the original and ®ltered signal. The lo-
calization of the denoising error within the cardiac cycle
is studied by visual inspection of the denoised signal and
extracting the error measures in the QRS-complex. The
QRS-complex refers to successive waveforms seen in an
ECG including Q-, R-, and S-waves. The duration of the
QRS-complex is de®ned as from the onset of the Q-wave
to the o�set of the S-wave. At this stage, the goal is to
focus on measuring the denoising performance within
the high-frequency part of the ECG.

2 Methods

2.1 Continuous wavelet transform

As a starting point, the continuous wavelet transform
(CWT) is introduced and then extended to the theory of

discrete (multiresolution) wavelet and wavelet packet
transform, which are used to decompose the signal.
CWT is de®ned for a signal x�t� by Daubechies (1992)

Wx�a; b� �
Z �1
ÿ1

x�t�wa;b�t� dt �1�

where a and b are the scaling and translation factors.
Di�erent versions of wavelet functions wa;b�t� are
obtained from the basic wavelet by

wa;b�t� � jajÿ
1
2w

t ÿ b
a

� �
�2�

where a and b are real (a 6� 0). A large value of the factor
a stretches the basic wavelet function and allows the
analysis of low-frequency components of the signal. A
small value of a gives a contracted version of the basic
wavelet and then allows the analysis of high-frequency
components.

2.2 Discrete wavelet transform

By choosing ®xed values a � am
0 and b � nb0am

0 ,
m; n � 0;�1;�2; . . . ; we obtain for the discrete wavelet
transform (DWT):

Wx�m; n� �
Z �1
ÿ1

x�t�wm;n�t� dt

� aÿm=2
0

Z �1
ÿ1

x�t�w�aÿm
0 t ÿ nb0� dt �3�

Both in continuous and discrete cases the wavelet
function should satisfy

R
w�t� dt � 0. Values a0 � 2 and

b0 � 1 construct discrete wavelets wm;n�t� � 2ÿm=2w
�2ÿmt ÿ n� used in multiresolution analysis constituting
an orthonormal basis for L2�R� (Daubechies 1992).

In discrete wavelet analysis, x�t� is decomposed on
di�erent scales as follows:

x�t� �
XK

j�1

X1
k�ÿ1

dj�k�wj;k�t� �
X1

k�ÿ1
aK�k�/K;k�t�

where wj;k�t� are discrete analysis wavelets and /K;k�t�
are discrete scaling functions, dj�k� are the detailed
signals (wavelet coe�cients) at scale 2j, and aK�k� is the
approximated signal (scaling coe�cients) at scale 2K . In
Fig. 1a, the idea of discrete wavelet analysis is presented
by means of a wavelet decomposition tree.

The discrete wavelet transform can be implemented
by the scaling and wavelet ®lters

h�n� � 1���
2
p h/�t�;/�2t ÿ n�i �4�

g�n� � 1���
2
p hw�t�;/�2t ÿ n�i � �ÿ1�nh�1ÿ n� �5�

being quadrature mirror ®lters (QMF) (Daubechies
1992). The estimation of the detail signal at level j will
be done by convolving the approximate signal at level
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jÿ 1 with the coe�cients g�n�. Convolving the approx-
imate signal at level jÿ 1 with the coe�cients h�n� gives
an estimate for the approximate signal at level j. The
decomposition scheme involves retaining every other
sample of the ®lter output.

2.3 Wavelet packet analysis

Let us de®ne the scaling function W0�t� � /�t� and the
wavelet function W1�t� � w�t�. Then we can write
functions Wm�t�, m � 0; 1; 2; . . . ; as

W2m�t� � 2
X2Nÿ1

n�0
h�n�Wm�2t ÿ n� �6�

W2m�1�t� � 2
X2Nÿ1

n�0
g�n�Wm�2t ÿ n� �7�

The analysing functions called wavelet packet atoms are
given in an orthogonal case as

Wj;m;n�t� � 2ÿj=2Wm�2ÿjt ÿ n� �8�
where j is a scale parameter, n is a time-localization
parameter, and parameter m gives roughly the number
of `cycles' included in the oscillating waveform. A
wavelet packet can be considered as a waveform whose
oscillations persists for many cycles but is still ®nite.
With ®xed value of j, the function Wj;m;n�t� analyses the

signal around the position 2j � n at the scale 2j. The
analysed frequencies are roughly given by n=2N with
n � 0; 1; . . . ; �2jÿ 1�.

Wavelet packet analysis is a generalization of
wavelet analysis o�ering a richer decomposition pro-
cedure. Both detail and approximation signals are split
at each level into ®ner components. A set of details and
approximations is called the wavelet packet decompo-
sition tree.

2.4 Optimization of the wavelet packet decomposition

Discrete wavelet decomposition allows searching an
optimal decomposition among L trees if a signal of
length N � 2L has been decomposed at L levels. Wavelet
packet analysis involves the selection of an optimal
decomposition tree among at most 2L di�erent subtrees
of depth L. The optimization can be based on e.g. the
minimization of the entropy of the analysed signal,
where the optimized decomposition is called the best
tree. The idea is to look at each node of the decompo-
sition tree and quantify the information to be gained by
performing each split. The entropy can be obtained by
many approaches; we calculated the Shannon entropy
(Coifman and Wickerhauser 1992) de®ned as
E�x� � ÿPt x2�t� � log�x2�t��. In Fig. 1b, an optimized
wavelet packet decomposition tree is shown, which
schematically presents the idea of this procedure.

2.5 `Denoising' the signal

A possible application of the discrete wavelet analysis is
to remove undesired components (noise) from the signal
through a denoising approach. Basically, the procedure
includes decomposing the signal into the detail compo-
nents described above, identifying the noise components,
and reconstructing the signal without those components.
This is called the linear denoising approach. The linear
denoising approach assumes that the noise can be found
within certain scales, for example, at the ®nest scales
when the coarsest scales are assumed to be noise-free.
More sophisticated denoising can be done by applying
the non-linear thresholding approach, which involves
discarding the details exceeding a certain limit. This
approach assumes that every wavelet coe�cient contains
noise and is distributed over all scales.

The non-linear denoising by both soft- and hard-
thresholding methods was performed (Donoho 1995).
The soft-thresholded wavelet coe�cients will be

g�dj�k�� � sign �dj�k�� � �jdj�k�j ÿ p�; if jdj�k�j > p
0; if jdj�k�j � p

�
�9�

where p is the applied threshold. The wavelet coe�cients
whose absolute values are lower than the threshold are
®rst set to zero, and then the remaining non-zero

Fig. 1. a A wavelet decomposition tree of depth 4. b An optimized
wavelet packet decomposition tree of depth 6
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coe�cients are shrunk towards zero. With hard thresh-
olding, the thresholded coe�cients will be

g�dj�k�� � dj�k�; if jdj�k�j > p
0; if jdj�k�j � p

�
�10�

which simply means setting to zero the absolute
coe�cients lower than the threshold p.

The assumed model for a noisy signal was
x�t� � f �t� � e�t�, where f �t� is the noise-free signal and
e�t� is the white or non-white noise of variance d2. The
performance of the methods was evaluated from the
simulations with L2-norm given by the equation

jjfo ÿ x̂ijj2 �
X

t

jfo�t� ÿ x̂i�t�j2
 !1=2

�11�

where fo denotes the original ECG signal being the same
for all simulations, and x̂i denotes the ECG signal with
added noise after noise removal.

2.6 Selection of the threshold

The threshold p was selected for each signal using four
threshold estimation procedures: SURE, HEURISTIC SURE,
FIXTHRES and MINIMAX principles. The aim was to
compare the performance obtained by di�erent methods
in the noise removal of an ECG signal. Stein's unbiased
risk estimate (SURE) (Donoho 1993; Donoho and
Johnstone 1995) is an adaptive threshold selection rule
de®ned as p � ��������������������������������������

2 � loge�n � log2�n��
p

, where n is the
number of samples in the signal vector. With this
approach, obtaining risks and minimizing them with
respect to p values give a threshold selection. The
method is adaptive through searching a threshold level
for each wavelet decomposition level. A ®xed threshold
approach FIXTHRES calculates the threshold with respect
to the length of the signal, and the estimated threshold is
given by p � ��������������������

2 � loge�n�
p

(Donoho and Johnstone
1994). The HEURISTIC SURE approach, being a variant
of the ®rst, replaces in very noisy conditions the SURE

with FIXTHRES estimate (Misiti et al. 1996). Further, the
MINIMAXI procedure applies a ®xed threshold
p � 0:3936� 0:1829 � log�n� (Misiti et al. 1996) to pro-
duce a so-called minimax performance for mean square
error against an ideal case (Bruce and Gao 1996,
Donoho and Johnstone 1994).

The underlying signal model assumes the noise is
normally distributed with zero mean and variance of 1,
which means that we have to rescale the threshold values
when dealing with unscaled and non-white noise. When
normally and uniformly distributed noises were studied,
calculated thresholds were rescaled by the standard de-
viation of noise estimated from the ®nest level of the
decomposition of each signal so that p̂ � p � d̂. Further,
with AR(4)-noise, the noise level was estimated scale by
scale to take account of the obviously strong high-fre-
quency content. In the wavelet approach, this was done
by calculating d̂ for all scales. In the wavelet packet case,
d̂ was estimated from the ®rst node at each subdecom-

position band which gave the best statistics for the noise
level estimation. As a robust estimate of the standard
deviation d̂ �Median�jdj�k�j�=:6745 was used (Donoho
and Johnstone 1994).

2.7 Experimental setup

In this study, 50 independent simulations were used to
evaluate the performances of the applied denoising
methods. Simulations were created by adding three types
of noise to the noise-free ECG: Gaussian and uniformly
distributed white noise, and non-white noise generated
by an autoregressive (AR) model of order 4. The noise
amplitudes were scaled so that the signal-to-noise ratio
was 5 dB for all signals. The performances of the
methods were studied by obtaining errors within an ECG
including 2600 samples and, more speci®cally, obtaining
errors within 6 QRS-complexes extracted manually from
the whole ECG. The latter approach allowed the
investigation of the performance of the denoising
methods to handle the high-frequency parts of the
ECG. Matlab software was utilized with Wavelet
Toolbox to perform wavelet analysis for the digitized
ECG signal obtained from an anaesthesized monkey. A
512 Hz sampling frequency was used with a resolution of
12 bits.

When considering the compactly supported orthog-
onal wavelet families (Daubechies, Symlets, Coi¯ets)
with discrete transform, the Coi¯et wavelet basis was
found to be most suitable. The denoising performances
were very close between these families, however, with
Coi¯ets showing a slightly better performance. Coi¯et
and Symlet wavelets were created to improve the fea-
tures of Daubechies wavelets (Daubechies 1992). The
Coi¯et wavelet (Coif5) of order N � 5 was used which
had lowest denoising error among Coi¯et functions. The
Coif5 function is a near symmetrical wavelet, which is
compactly supported with the maximum number of
vanishing moments for a given support width (6N ÿ 1)
(Fig. 2a). The analysis done by Coif5 wavelet is or-
thogonal. Wavelet packet analysis was made by Coi¯et
wavelet packet function Wj;m;n�t� with m � 5, see Fig. 2b.

3 Results

Denoising performances of the four threshold selection
methods are reported in Tables 1 and 2 with optimal
decomposition depths. Generally, the denoising error
®rst decreased as the decomposition depth increased.
The results were optimized in respect of the minimum
value of the error averages giving an optimal downsam-
pling depth, which varied between denoising approach-
es. Methods were compared in wavelet and wavelet
packet analyses applying both soft and hard threshold-
ing. First the performance within the whole ECG strip
including six cardiac cycles was measured. The results
show that wavelet denoising approaches had better
overall denoising performances than wavelet packet
approaches in all cases except with the HEURISTIC SURE
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rule when using hard thresholding for white noises. The
wavelet methods were preferable in removing especially
the AR(4)-noise, when the errors were generally 2±5
times greater with wavelet packets (Tables 1 and 2).

With other noise types the di�erence varied from a few
to a few tens of percent for wavelet methods.

In the wavelet-based approach, the most e�cient
noise-removing method with soft thresholding was
HEURISTIC SURE, which gave the lowest error averages
(Table 1). The FIXTHRES rule showed the best perfor-
mance with hard thresholding. When comparing soft
and hard thresholding, the result depended upon the
threshold selection rule and the added noise. The highest
errors for all noise types with soft thresholding were
produced by the FIXTHRES and MINIMAX methods and
with hard thresholding by the SURE and HEURISTIC SURE

methods.
In the wavelet packet-based approach, the HEURISTIC

SURE and FIXTHRES rules produced the lowest denoising
errors (Table 2). FIXTHRES and MINIMAX approaches
gave the largest errors when soft thresholding was used.
Furthermore, with hard thresholding, the SURE and
MINIMAX methods had the highest error averages except
for AR(4)-noise, when the FIXTHRES and MINIMAX indi-
cated the poorest performance. When comparing the
soft and hard thresholding methods, in all cases except
FIXTHRES with all noise types and MINIMAX with AR(4)-
noise, the soft thresholding was better in denoising the
ECG.

The ability of denoising methods to remove noise
from the high-frequency parts of an ECG was studied by
determining the error values within QRS-complexes, see
Tables 3 and 4. The wavelet methods were more e�cient
to remove the AR(4)-noise, when the errors were up to 4
times greater with wavelet packets. However, wavelet
packet approaches showed better performances than
wavelet approaches in removing normally or uniformly
distributed noise within the QRS-area, especially as hard
thresholding was used. The SURE method produced the
lowest proportional error for the wavelet denoising
using the hard thresholding method for all noise types.
With soft thresholding, except AR(4)-noise, FIXTHRES

had the lowest proportional error within the QRS-area.
In the wavelet packet approach, the lowest proportional
error was indicated most often by SURE or HEURISTIC

SURE rules. Generally, denoising errors seem to concen-

Fig. 2. a A Coi¯et wavelet function used for a discrete wavelet
analysis. b A Coi¯et wavelet packet function used for a discrete
wavelet packet analysis

Table 1. Denoising performance of wavelet denoising approach. Values are means and standard deviations of jjfo ÿ x̂ijj2. N(0, d2) is
normally distributed and zero mean noise with variance d2, U[a, b] stands for a uniformly distributed noise, and AR(4) is the non-white
noise generated by an autoregressive model of order 4. dopt is the optimal decomposition depth minimizing the denoising error

Noise type Thresholding non-linearity Thresholding selection rule

SURE

(dopt)
HEURISTIC SURE

(dopt)
FIXTHRES

(dopt)
MINIMAX

(dopt)

N�0; d2) Soft 449.3 � 16.2 445.7 � 12.7 573.0 � 11.6 538.1 � 16.2
5 5 2 4

Hard 660.8 � 74.0 539.9 � 19.8 444.5 � 12.0 531.9 � 24.8
4 4 4 4

U[a, b] Soft 445.3 � 13.6 444.6 � 13.4 576.2 � 10.7 532.5 � 17.7
5 5 2 4

Hard 646.4 � 64.6 543.5 � 19.4 446.3 � 17.0 526.0 � 25.6
4 4 4 4

AR(4) Soft 363.5 � 20.7 363.3 � 14.1 394.2 � 13.3 390.2 � 13.5
4 4 2 2

Hard 526.4 � 93.0 382.6 � 15.7 365.4 � 15.8 481.9 � 25.2
4 4 4 4
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trate on the QRS-area when the pure wavelet approach
is employed. The QRS-complex area included propor-
tionally less error when hard thresholding was used,
except when the FIXTHRES rule as the wavelet decom-
position was used.

When comparing the performance within QRS-com-
plexes using absolute error measurement, HEURISTIC

SURE or FIXTHRES gave most often the lowest error val-
ues for the wavelet approach. In the wavelet packet
approach, the best performances were found by SURE

and HEURISTIC SURE rules. Further, the hard threshold-
ing method gave lower absolute errors with all variations
of denoising methods when the wavelet packet approach
was used. With pure wavelet denoising, results were the
same except with FIXTHRES, when soft thresholding gave

a lower error. SURE and MINIMAX also showed better
denoising performance for AR(4)-noise with soft
thresholding.

Because numerical error measures do not necessarily
tell everything about noise removal, it is useful to check
the denoised signals visually. Strange signal patterns
probably exist which cannot be predicted from error
values. It is important to see the error signal between the
noisy and the denoised signal, because then one can
observe how the error is localized within the cardiac
cycle. In Fig. 3, the successful result of denoising an
ECG with normally distributed noise by the wavelet
approach using the MINIMAX method is shown. The error
between the original and denoised ECG is mainly con-
centrated within the QRS-complexes.

Table 2. Denoising performance of wavelet packet denoising approach. Values are means and standard deviations of jjfo ÿ x̂ijj2. See Table
1 for abbreviations

Noise type Thresholding non-linearity Thresholding selection rule

SURE HEURISTIC SURE FIXTHRES MINIMAX

(dopt) (dopt) (dopt) (dopt)

N(0, d2) Soft 466.1 � 22.7 447.8 � 20.9 866.3 � 27.3 594.1 � 20.4
5 5 7 6

Hard 705.4 � 66.1 526.8 � 21.0 505.7 � 19.5 699.1 � 27.6
3 5 5 3

U[a, b] Soft 462.2 � 19.7 448.7 � 20.2 859.1 � 25.7 591.1 � 17.7
5 5 7 6

Hard 685.3 � 61.5 526.8 � 20.1 507.7 � 18.9 695.5 � 31.4
3 4 5 3

AR(4) Soft 745.6 � 38.7 600.9 � 222.1 2074.5 � 114.6 1371.2 � 101.4
6 6 7 7

Hard 903.3 � 23.0 650.5 � 144.6 1416.1 � 117.5 1020.5 � 45.3
6 6 7 6

Table 3. Denoising performance of wavelet denoising approach measured within QRS-complexes. Values presented are means and
standard deviations of jjfo ÿ x̂ijj2. The decomposition depths are the same as in Table 1. See Table 1 for abbreviations

Noise type Thresholding non-linearity Thresholding selection rule

SURE HEURISTIC SURE FIXTHRES MINIMAX

N(0, d2) Soft 286.2 � 21.4 300.5 � 18.5 258.5 � 10.6 445.8 � 18.4
Hard 274.6 � 25.4 259.9 � 12.2 319.7 � 16.7 287.9 � 17.9

U[a, b] Soft 283.6 � 19.6 297.3 � 19.0 259.1 � 11.9 439.5 � 19.2
Hard 269.5 � 20.0 262.1 � 12.3 321.7 � 18.1 289.1 � 17.5

AR(4) Soft 208.6 � 13.9 230.0 � 9.9 214.3 � 7.7 200.7 � 8.4
Hard 221.9 � 28.2 209.7 � 10.0 224.4 � 10.1 226.2 � 22.6

Table 4. Denoising performance of wavelet packet denoising approach measured within QRS-complexes. Values presented are means and
standard deviations of jjfo ÿ x̂ijj2. The decomposition depths are the same as in Table 2. See Table 1 for abbreviations

Noise type Thresholding non-linearity Thresholding selection rule

SURE HEURISTIC SURE FIXTHRES MINIMAX

N(0, d2) Soft 271.2 � 19.1 301.8 � 28.7 607.1 � 22.4 381.3 � 19.4
Hard 270.9 � 27.6 253.9 � 17.0 272.4 � 16.6 287.6 � 23.4

U[a, b] Soft 267.1 � 18.0 300.5 � 27.7 602.7 � 23.2 377.5 � 18.6
Hard 264.9 � 24.8 264.4 � 16.4 276.5 � 16.1 286.6 � 18.2

AR(4) Soft 324.0 � 34.1 308.8 � 39.9 866.2 � 61.6 562.5 � 32.2
Hard 320.8 � 23.2 258.3 � 42.7 493.8 � 36.9 391.4 � 33.7
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Sometimes performing signal denoising does not
mean that only the added noise has been removed. In
Fig. 4, the ECG is very clean after denoising, and the
error signal has a large amplitude, which means that the
denoising method has not only been robust in removing
added noise but also has seriously altered the ECG
signal. This result was observed particularly with the
wavelet packet approach when the FIXTHRES approach
was applied. With wavelet-based denoising, hard
thresholding showed spiky patterns in the error signal
which are also seen in the denoised ECG, which was
typical with all noise types when the SURE and MINIMAX

rules were used (Fig. 5). The wavelet packet-based ap-
proaches had di�culties in removing the noise, as can be

seen in Fig. 6, where the error signal includes a large
random component due to non-white noise. This was
common particularly when SURE and MINIMAX were
applied, and also often with other rules with hard
thresholding.

4 Discussion

In this work new wavelet- and wavelet packet-based
noise removal schemes were studied using ECG with
simulated noises. The performances of several variations
of denoising including thresholding rules and the type of
non-linearity were compared. A level-dependent scaling

Fig. 3. Top panel: Electrocardiogram (ECG) with added normally
distributed white noise. Centre panel: Result of the noise removal
performed by wavelet-based approach using MINIMAX thresholding
selection rule with soft thresholding non-linearity. Bottom panel: Error
signal between the original and denoised ECG

Fig. 4. Top panel: ECG with added noise generated by an auto-
regressive model of order 4. Centre panel: Result of the noise removal
performed by wavelet packet-based approach using FIXTHRES

thresholding selection rule with soft thresholding non-linearity.
Bottom panel: Error signal between the original and denoised ECG

Fig. 5. Top panel: ECG with added normally distributed white noise.
Centre panel: Result of the noise removal performed by wavelet-based
approach using MINIMAX thresholding selection rule with hard
thresholding non-linearity. Bottom panel: Error signal between the
original and denoised ECG

Fig. 6. Top panel: ECG with added noise generated by an auto-
regressive model of order 4. Centre panel: Result of the noise removal
performed by wavelet packet-based approach using SURE thresholding
selection rule with hard thresholding non-linearity. Bottom panel:
Error signal between the original and denoised ECG
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of the thresholds was used for adjusting to the non-white
noise structure.

Wavelet and wavelet packets showed di�erent results,
which is mainly due to the di�erent division strategies of
the signal decomposition structures. Furthermore, these
analysing functions also di�er in shape. The wavelet-
based approach produces a dyadic decomposition
structure which is constant for all signals. Correspond-
ingly, the wavelet packet approach is an adaptive
method using an optimization of the best tree decom-
position structure independently for every signal, which
can be quite irregular and gain very ®ne features. Gen-
erally, this kind of adaptivity did not o�er an improved
overall denoising performance compared with a simpler
wavelet approach. Only applying the HEURISTIC SURE

rule with soft thresholding produced a superior result.
Inside the high-frequency parts of the ECG, the situa-
tion varied even more. Visual examination of the error
signal proved remarkable, showing the localization of
the error within the cardiac cycle as well as its nature.
The obtained error values cannot directly indicate the
improvement for the ECG waveform detection. How-
ever, a large error within a certain area suggests an im-
paired accuracy of the waveform measurement, which
can only be quanti®ed by the appropriate tests.

The performance of the wavelet packet-based noise
removal may be improved by adapting the signal de-
composition structure to the changing signal character-
istics as presented by Xiong et al. (1997), where the signal
was divided into segments of variable lengths using dy-
namic programming setting. The approach involves cal-
culating optimized wavelet packet decompositions
independently for each segment. This procedure would
probably be useful for ECGs which are corrupted by
di�erent types of noises with time-varying magnitudes.

Bruce and Gao (1996) studied soft and hard non-
linearities and derived a theoretical result that soft
thresholding has a higher bias, but lower variance than
hard thresholding. This was also supported by their
experiments. This is probably due to the basic properties
of these two approaches: the hard thresholding function
has a discontinuity, and the soft thresholding function
shrinks all big coe�cients towards zero. Their results
were obtained for FIXTHRES and MINIMAX rules as the
wavelet denoising approach was applied.

The observations found in this work support those
®ndings partly, as with these two threshold selection
rules soft thresholding tends to give higher overall error
values. Nevertheless, hard thresholding gave constantly
bigger errors within the QRS-area when the FIXTHRES

rule was applied. The wavelet packet approach showed
di�erent results, indicating larger error rates in all cases
for soft than hard thresholding within QRS-complexes.
With SURE and HEURISTIC SURE rules, the soft thresh-
olding non-linearity tends to give a more acceptable
overall denoising result compared with hard threshold-
ing. However, it should be noted that when using soft
non-linearity, the error between the original and de-
noised ECG was concentrated within the QRS-com-
plexes. In that case, the absolute error values were
generally bigger than using hard non-linearity. Only the

FIXTHRES rule with hard non-linearity showed with a
wavelet approach a proportionally higher error within
the QRS-area than soft non-linearity. It is apparent that
soft and hard thresholding cause di�erent high-fre-
quency balances. This is due to the fact that the soft
thresholding in general produces proportionally a larger
error within the QRS-area by rounding o� towards zero
the coe�cients bigger than the threshold, which obvi-
ously a�ects the coe�cients including a remarkable
amount of information about the original ECG.
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