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Abstract—We present results from an embedded real-time
hardware system capable of decoding surface myoelectric signals
(sMES) to control a seven degree of freedom upper limb
prosthesis. This is one of the first hardware implementations of
sMES decoding algorithms and the most advanced controller to-
date. We compare decoding results from the device to simulation
results from a real-time PC-based operating system. Performance
of both systems is shown to be similar, with decoding accuracy
greater than 90% for the floating point software simulation and
80% for fixed point hardware and software implementations.

I. INTRODUCTION

Current prosthetic limbs are limited to a few degrees of
freedom (DOF) and rely on fairly simple mechanical or myo-
electric control schemes [1]. The Defense Advanced Research
Projects Agency (DARPA) seeks to change this state of affairs
with the Revolutionizing Prosthetics program, which aims to
develop a dexterous, high-DOF prosthetic arm that can be
controlled with motor signals from the residual limb and/or
neural activity in the central and peripheral nervous systems
[2], [3]. In support of this goal, we have recently developed
two upper limb prostheses, called Proto 1 (Fig. 1) and Proto 2,
with 7 and 22 DOF, respectively. While the Proto 2 limb
will likely require implanted electrodes to achieve independent
control of all 22 DOF, Proto 1 is designed to be controlled
non-invasively with surface myoelectric signals (sMES).

Myoelectric signals have been used for prosthesis control
for over 50 years (reviewed in ref. 1). Although myoelectric
recordings can theoretically support a large number of in-
dependently controlled channels, myoelectric prostheses have
historically been limited to a few DOF [1]. This is partly due
to the lack of multiple-DOF prosthetic limbs, and partly due
to the difficulty of extracting multiple channels from the noisy
signals.

In this paper, we present an embedded real-time hardware
system (called the Biointerface Board, or BIB) aimed at
recording and decoding sMES to control the seven DOF in
the Proto 1 limb. Although sMES has been used to decode
upper limb movements in the past [4]–[7], there are relatively
few embedded hardware implmentations of sMES decoding
algorithms [8], [9], and we believe the BIB+Proto 1 to
be the most advanced embedded sMES controller and limb

Fig. 1. Proto 1 limb system (from [10]).
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Fig. 2. Algorithm processing block diagram. The dashed line represents
offline processing (training).

solution to be developed to-date. For evaluation purposes, the
performance of the embedded algorithms is compared to a
software implementation of the same algorithms running in
a real-time PC-based operating system, using both fixed and
floating point processing.

II. METHODS

Electromyography (EMG) data were collected from the
forearm of a male able-bodied subject who gave informed
consent. The experiments were approved by the Johns Hopkins
Institutional Review Board.

Eight bipolar Ag/AgCl Duotrode electrodes (Myotronics-
Noromed) were placed around the proximal part of the fore-
arm. Data were acquired off-line using a 12-bit Data Acqui-
sition card (PCI 6024, National Instruments) and sampled at
1 kHz. The subject was asked to perform eight movements,
holding each contraction for 3 s and then resting for 3 s. The
movement classes were: elbow flexion and extension (ef, ee:
isometric contractions); wrist pronation, supination, flexion,
and extension (wp, ws, wf, we); and hand open and close
(ho, hc). Data were also collected for a rest state, in order
to discern movements from rest. Twelve repetitions of each
movement and the rest state were recorded, eight of which
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Fig. 3. Features extracted with software simulations (red) and the Bio-interface board (blue) for each electrode. Each of the nine movements described in
Section II is performed four times, with each trial lasting 3 s, for a total of 12 s per movement and 108 s overall.

were used for training, and the remaining four were separately
and subsequently recorded for testing (approximately two
hours after the training data). The testing data were played
back in real-time through a digital-to-analog converter (DAC)
card (PCI 6733, National Instruments) equipped with eight
analog output channels.

A schematic overview of the decoding algorithm is depicted
in Fig. 2. First, features extracted from the (offline) training
data are used to generate parameters—sample mean vectors µ
and sample covariance C—for a simple linear discriminant
analysis (LDA) classifier. (We chose to use LDA because
Englehart et al. have shown that EMG-based pattern recog-
nition is almost independent of the choice of classifier [11].)
These parameters are then input to the classifier component of
the Signal Analysis (SA) block. During testing, the SA block
extracts features from incoming data and classifies them via
LDA in real-time. For both training and testing, four features
are extracted every 10 ms using data from within a 150 ms
time window:
• Mean absolute value (|X|): this feature displays a large

increase in value at onset and maintains fairly high values
during contraction.

• Waveform length (WL):

WL =
N∑

i=1

|xi − xi−1|

The waveform length of the signal provides indicators for
signal amplitude and frequency.

• Zero-crossings (ZC): this is the number of times the
EMG waveform changes sign within a time window. It
is correlated with the signal’s frequency.

• Turns: this feature indicates the number of times the
waveform’s derivative changes sign within a time win-
dow.

More details on these features can be found in refs. 6 and
12. The implementation of these algorithms in software and
hardware are described in the next sections.

A. Software implementation

A software implementation of the sMES decoder was imple-
mented in our real-time Virtual Integration Environment (VIE)
[13], developed as part of the Revolutionizing Prosthetics
program to efficiently and realistically evaluate prototype
limbs and associated control algorithms. Algorithms on the
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VIE are developed in Simulink (The Mathworks, Inc.) and
compiled for the real-time xPC Target (The Mathworks, Inc.)
operating system.

The four EMG classification features are extracted in real-
time using the formulas described above. Although the ex-
tracted features are all fixed-point integer calculations, and
should therefore yield similar results in both a software and
hardware implementation, the classifier’s parameters (i.e., the
mean µ and the covariance C) are calculated from the training
set in a double-precision floating-point representation. Because
the digital signal processor described in the next section has
no floating point unit, we rescaled the parameters as follows:

µfp = b(κµ) (1)

Cfp = b(κC) (2)

where the operator b denotes the extraction of the whole part
of the multiplication and κ is the scaling factor:

κ =
215

max(max(µ),max(C))
(3)

because the mapping is on a 16-bit integer space.

B. Hardware implementation

The BIB is implemented on a small (9.5 cm × 2.5 cm)
printed circuit board. At its core, it consists of an embedded
fixed-point digital signal processor (TMS320VC5509A, Texas
Instruments, Inc.) that includes an analog-to-digital converter
running at 16,000 samples/sec. Because the BIB contains no
non-volatile memory, it cannot store any configuration data,
and instead receives configuration parameters (including µ and
C) from the prosthetic limb controller via shared memory. The
configuration can subsequently be modified using a Bluetooth
link. During operation, the BIB executes code in real-time and
performs:
• high-pass filtering of the EMG activity at 80 Hz cutoff

to remove cardiac influence as well as 60 Hz noise;
• extraction of the four features described in Section II;
• multiplication of the features by the µfp parameter as

calculated in the previous section;
• addition of the Cfp parameter to the result;
• application of the max function to this result to output

the predicted class value, i.e. the prothetic limb’s control
signal.

III. RESULTS

Figs. 3a–d show the differences in computing the same four
features in software (red) and hardware (blue) during the nine
movements. It is evident that the integrated approach approxi-
mates the simulation results quite closely. However, there is a
slight mismatch in sample frequency between the software and
harware implementations, resulting in a non-constant offset.
The discussion section examines this discrepancy in some
detail.

Figs. 4–6 present classification results from the simulation
and the integrated approaches. Specifically, Figs. 4 and 5 show
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Fig. 4. Simulation results using floating point processing. The average
accuracy for the 8+1 states is 91.0%.

0 20 40 60 80 100
elbow flex

elbow extend

wrist pronate

wrist supinate

wrist flex

wrist extend

hand open

hand close

no movement

time (s)

intended movement

decoded movement

Fig. 5. Simulation results using fixed point processing. The average accuracy
for the 8+1 states is 82.1%.

the differences in decoding the movements in software using
floating- and fixed-point calculations, respectively. The decod-
ing accuracy drops significantly due to the rescaling, from
91% to 82%. However, the difference in decoding accuracy
between the software and hardware fixed-point calculations
is not significant and is due in part to the lag between the
extracted features. For the nine discrete movement states, the
decoding accuracy of the embedded hardware is 79.5%.

IV. DISCUSSION

We have presented experimental results from an embedded
upper limb prosthesis controller. Although pattern recognition
algorithms for decoding sMES have been studied extensively,
to our knowledge, this work represents one of the first im-
plementations of these algorithms in an embedded hardware
system compact enough to fit inside an upper limb prosthesis.
To validate the performance of the system, we compared its
results with those produced by a custom-designed software-
based implementation. The primary source of discrepancies
between these implementations is caused by the hardware
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Fig. 6. Hardware results using the bio-interface board. The average accuracy
for the 8+1 states is 79.5%.

system’s reliance on fixed-point arithmetic as opposed to the
higher resolution floating-point numbers used in software.
Crucially, this observation implies that either a more tailored
conversion from the floating-point to the fixed-point range or
the use of a floating point processor is necessary. Currently,
the approach depends only indirectly on the extracted training
features, through the µ and C parameters. A rescaling based
on the maximum values of the products of the µ matrix
by the training set would constitute a better mechanism for
fixing the output range. This would provide a broader output
range thus enabling further separation between the classes.
Nevertheless, it is important to note that the decoding accuracy
in all cases remains significantly high, and is suitable for
control of Proto 1.

What appears as a time lag between features extracted in
software and hardware (Fig. 3) is mainly an artifact of our
experimental setup. Because the actual sample frequency of
the BIB differs from that of the xPC (although they are
nominally set equal), both systems generate a different number
of features during the same 108 s testing period. Here we have
chosen to time-align the end of data collection in both systems.
Therefore, although the data appears to have an decreasing
time lag as the test goes on, this visual effect is caused by
the synchronization of the endpoints of data collection and
the slightly different number of samples collected by each
system in the same time frame. In principle, this should not
affect the classification results, because both systems operate
in real-time. However, it does have the effect of reducing the
decoding accuracy of the BIB when the xPC Target is used as
the standard (compare Figs. 5 and 6).

Figs. 4–6 also allow identification of decoding errors due
to confusion in the classifier output. The limit of 91.0%
accuracy is due to two main sources of confusion. The first,
confusion between elbow flexion and extension, is due in part
to the fact that no activity from the biceps and triceps (the
muscles most involved in these movements) was recorded—as
mentioned in Section II, only EMG activity from the forearm
was captured. The second, confusion of wrist supination with

elbow extension and hand opening, is likely dependent on a
characteristic of the movement itself: pronation and supination
of the wrist were the only two movements that were not
completely isometric and required movements of the hand
itself.

V. CONCLUSION

We have successfully classified upper limb motions (and
non-movement) using an embedded hardware controller for
a prosthetic upper limb. The results of the decoding tasks
were evaluated through comparison with a real-time software-
based controller. Though both systems provide a high level
of decoding accuracy for the trained movements, we conclude
that the major differences between the two approaches lie not
in the system used, but in the method to convert a floating
point-based space into one provided by an embedded fixed-
point digital signal processor. While acknowledging that there
is room for improvements in classification, it should be noted
that this difference does not prevent a successful deployment
of this embedded system in our custom-designed upper limb
prostheses.
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