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Abstract 

 

 

The work presented in this thesis outlines several new input strategies aimed at providing 

intuitive and robust signals for the control of a prosthetic limb in cases of high-level 

amputation.  It was demonstrated that various input sources could be exploited to produce 

effective adapting strategies that provide a means of automatically calibrating and 

optimizing the control system schemes. 

 

The thesis describes myoelectric signal-based (MES) classification strategies that utilizes 

contractions originating from the shoulder complex (shoulder elevation, protraction, 

depression, and retraction) and humeral rotation.  Experimental data collected from one 

amputee and six able bodied individuals revealed that high offline classification accuracy 

could be achieved with these MES-based strategies.  

 

This work also resulted in the development of a novel shoulder position-based input 

strategy, termed vector projection.  The new control scheme focused on the position of 

the shoulder rather than interpreting the MES originating from the shoulder complex 

musculature.  The algorithm also adapted to several user and input sensor variables based 

on a short data collection protocol performed prior to the use of the prosthetic limb. 

 

An investigation of the functional usability of the devised strategies revealed that the 

vector projection method outperformed the MES-based schemes.  The reaction tests 

showed that all strategies added little increase in the mental burden load demanded from 

the user. 
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Chapter 1 – Introduction 
 

1.1 Research Objectives and Motivation 

 

Significant research has occurred in the past several decades to achieve a suitable 

solution for the control of upper extremity prosthetic limbs [1].  Although the 

development of advanced and sophisticated strategies has progressed steadily for more 

distal amputation cases, very limited improvements have taken place for more proximal 

amputation levels.  This may be, in part, caused by the simple fact that the majority of 

cases are below elbow amputees while higher level amputations, such as shoulder 

disarticulation, are less common. “The functionality requirement of the prosthesis 

increases with the level of amputation, which leads to a paradox” for any control strategy 

of the prosthetic limb as the number of available input sources inversely decreases [1].  

As a result, the need for a robust and intuitive strategy is most critical for high level 

amputation cases in order to regain some acceptable level of functionality with the 

artificial limb. 

 

Under ideal conditions, a synergistic relationship could be developed between the 

amputee’s neural activity and associated missing degrees of freedom (DOF).  

Unfortunately, this correlation cannot be utilized since no such interface is readily 

available for practical purposes.  There are, however, non-invasive alternatives that have 

existed for several decades.  These alternatives include the monitoring of either the 

movement of a residual limb (or of another part of the body) or the electrical activity 

accompanying voluntary contraction of one or multiple muscles. 
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It can be said that most natural arm trajectories require coordinated and simultaneous 

movements of several independent joints [2].  Previous research has shown that these 

complex movements only require a limited amount of user input while the majority of the 

control and coordination of the DOF are determined by the lower levels of the 

musculoskeletal system and central nervous system.  As a result, very little conscious 

effort is required from an able bodied individual when performing upper extremity 

motions.  Many researchers have devoted their research to modeling and describing the 

means by which an individual processes and executes a desired motion via the nervous, 

muscular and skeletal systems. 

 

Although research has been ongoing in these outlined areas, very few advancements have 

been devoted to providing new and more effective solutions for high level upper 

extremity amputees.  The purpose of the work described in the following chapters does 

not attempt to develop a control system to replace the complex control loops found within 

the body.  The work, rather, focuses on exploiting the residual input sources available to 

produce the most effective non-invasive input strategy that will provide the user with the 

maximum amount of controllability while imposing the least amount of mental burden.  

More specifically, this work’s motivation was on investigating more efficient use of the 

available control sources in high-level amputation cases.  The relationship between 

various input sources, user intent, and the control strategies employed must be better 

understood in order for the prosthetic limb’s control system to effectively exploit the 

available information. 
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1.2 The Control of Artificial Limbs in High Level Amputation 
Cases 

 

The gross movement of a prosthetic arm, in above elbow up to forequarter cases, has 

relied heavily on the use of residual motions in order to allow the user to control several 

DOF.  Body powered motion has indeed been successfully used as an input source to 

control all the available prosthesis movements since the 19
th

 century [3,4].  Externally 

powered prostheses were first attempted in Germany shortly after the First World War 

[5].  In this case, electromagnets were used in an effort to drive a prosthetic hand.  The 

first myoelectric signal-based (MES) prosthesis was developed later in 1948 [6] while 

pneumatic prostheses were developed in the early 1950s.  Various input sources and 

control schemes for these devices have been investigated and are continually evolving to 

this day. 

 

The most common form of input source and control scheme, for high-level upper 

extremity amputation, is the use of residual movements to drive cable-operated joints.  

This body-powered method has been in use for several decades and is the most clinically 

available option at this point in time.  Externally powered systems do exist where sensors, 

such as force sensing resistors, joysticks, and rocker switches, are activated by the user’s 

residual motion or single or dual site MES originating from the residual limb and 

shoulder complex [7-9] have been used to control some functions of the prosthetic limb. 

 

To this day, the commercially available control algorithms used in conjunction with these 

input sources have been simplistic in nature.  Often, the limited number of residual DOF 

and/or independent MES electrode sites available for present schemes restricts the 
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controllability of the user’s prosthesis.  It may also require considerable training in order 

to achieve an acceptable level of control over these residual DOF and MES input sources.  

In some cases, users may require extensive iterative socket customization.  Amputees 

frequently favor the cable-operated system for gross movements of their prosthesis since 

it offers simpler operation of the prosthesis’ DOF, even more so when the potential 

implementation of a single or dual site MES control paradigm is limited.  Other 

promising, and possibly more sophisticated control schemes have yet to present 

themselves as viable and effective alternatives that yield better results for proximal DOF 

control.  This may help explain why there are currently no commercially available 

electric-powered mechanisms for positioning any shoulder DOF of a prosthetic limb [10]. 

 

The use of MES has, however, proven itself to be a useful input source to control the 

more dexterous distal DOF of the prosthesis for below elbow amputation cases.  Over the 

past several decades the University of New Brunswick’s (UNB) Institute of Biomedical 

Engineering (IBME), along with several other research groups, have been developing 

various MES strategies that provide control of prosthetic limb functions.  The UNB one-

site three-state control system was first clinically used in 1965 [6] and the algorithm was 

then published a year later [11].  The system simplified the control problem since only 

one controllable MES site was needed.  Furthermore, the user could enter one of three 

different states based on the rectified measured MES amplitude.  The ‘open hand’, ‘close 

hand’, and ‘no movement/rest’ states were typically employed with this strategy (Figure 

1.1).  This approach was widely accepted as a clinically implementable solution since 

hardware could be easily designed with the available technology, it was simple for the 
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user to learn and only demanded a low mental burden to operate.  Attempts at expanding 

this approach to a one-site five-state myoelectric control system have been investigated 

[12] but were found not to be suitable for clinical implementation due to high error rates. 

 
Figure 1.1 – One-site three-state controller system diagram. The mean absolute value (MAV) of the 

MES is thresholded to provide state control.  

 

 

During that time, several research groups started focusing on pattern recognition 

techniques that could potentially achieve multifunction control [32] while reducing the 

number of control sites required to attain such a goal.  These techniques shifted the focus 

from solely using amplitude measures (MAV or root mean square – RMS) to extracting 

several new features from the MES.  In fact, these new strategies evolved from the 

assumption that, for a specific state of muscle activation, the MES feature set would be 

repeatable and would differ from feature sets obtained during different state muscle 

activations [13]. 

 

The feature sets used in the early pattern recognition-based myoelectric control systems 

consisted of amplitude coded features and were classified with a statistical-based 

classifier.  Studies showed that the classification rate for a four-class problem was 
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roughly 75%.  These early systems suffered from several limitations (e.g. bulky 

instrumentation and limited control system processing power) and required a large 

number of MES sites [14]. 

 

Further advancements in myoelectric pattern recognition, during the following decade, 

introduced the use of autoregressive (AR) coefficients as part of the feature set [15]. 

These increased classification accuracy by approximately 10% for a 3 class problem, 

when compared to previous classifiers, and used as few as 4 or 2 MES sites [13, 16].  

These classifiers were, however, clinically not implementable due to the computational 

complexity of the AR algorithms, and insufficient computing capacity of the day. 

 

During the early 1990s, research conducted at the IBME demonstrated that the MES 

showed a deterministic structure at the onset of muscle contractions [17].  The feature set 

used was composed of time domain (TD) characteristics of the MES; these TD features 

were provided to a two-layer artificial neural network (ANN) classifier.  The scheme 

provided classification accuracy above 90% for a four state system using only one MES 

electrode site.  The results from this work demonstrated a new control system with an 

enhanced capacity for discriminating multiple classes of motion.  Furthermore, the 

algorithm was implemented on a microprocessor-based system to control a bench 

mounted electric elbow and hand prosthesis. It was also determined that defining an 

appropriate training procedure for the pattern recognition control system was not trivial, 

and required further investigation.  This work also generated much work to follow in 

identifying other possibly useful features extracted from the MES signal. 
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In recent years, considerable efforts in this field have yielded systems that use new 

feature sets based not only on TD statistics [14, 17] but also AR coefficients [15] and 

time-frequency information [18].  The system classification schemes investigated vary 

from ANN [17, 19, 20], genetic algorithms [21], fuzzy logic [22], Gaussian mixture 

models (GMM) [15], to linear discriminant analysis-based (LDA) algorithms [18].  All 

have been shown to achieve high classification accuracy.  Figure 1.2 illustrates the 

common components found in many of these multifunction control approaches. 

 

 

Figure 1.2 – A block diagram showing basic stages of current multifunction pattern recognition 

system.  

 

Throughout the development of all these schemes, the primary objectives have remained 

the same: to provide functional operability of the device while simultaneously reducing 

the conscious effort demanded from the user to operate the limb.  Many other factors, 

such as ease of use, number of drivable actuators, and sensor fittings also has to be 

considered when developing new control strategies, as they will inherently be linked to 

the overall performance and user acceptance of the prosthesis. 
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1.3 Thesis Outline 

 

Chapter 1 has discussed the research advancements that have been aimed at producing 

viable control solutions for the prosthetic limbs of upper extremity amputees.  The 

limited improvements to the control system options for high level upper extremity 

amputation case, over the past few decades, was highlighted as the main motivation for 

the work presented in this thesis. 

 

Chapter 2 presents the background information relating to the obstacles and limitations 

faced when developing a new control system for a prosthetic limb.  A thorough review of 

previous control philosophies and designed control systems are also included to present 

some of the key considerations required when attempting to enhance the robustness and 

intuitiveness of a new control strategy while also struggling to reduce the mental burden 

imposed on the user. 

 

Chapter 3 describes the shoulder electrophysiology associated with various movements of 

the shoulder complex.  This chapter also introduces several new multifunction 

myoelectric control strategies based on the muscle synergies affecting shoulder 

movement.  Data are presented to outline the ability of each strategy to accurately 

classify the user’s intent for both able-bodied and amputee subjects. 

 

Chapter 4 presents a novel shoulder position-based algorithm that automatically tailors 

the input strategy parameters in order to eliminate many of the issues associated with the 

design, fabrication, and fitting of a prosthetic limb.  A detailed explanation of the 
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algorithm is presented along with qualitative results from several case studies using 

different input sensors.  

 

Chapter 5 discusses the current lack of functional tests to investigate new input strategies 

for the prosthesis’ control system.  The chapter describes the design and fabrication of a 

new usability test aimed at providing qualitative and quantitative results of various 

shoulder-based input strategies.  A devised experimental protocol is also detailed and was 

used for the data collection sessions. 

 

Chapter 6 details the analysis of the results obtained from the qualitative and quantitative 

usability test performed using the designed experimental functional testing apparatus 

described in Chapter 5.  The data presented demonstrates the effectiveness of the 

proposed input strategies in addressing the objectives outlined in Chapter 1.  Chapter 7 

summarizes the original contributions of this thesis while also proposing future research 

considerations for improving the devised input strategies. 
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Chapter 2 – Literature Review 
 

2.1 Introduction 

 

A person’s ability to achieve simultaneous and independent control of multiple upper 

extremity DOF is influenced by several factors.  Clearly the control scheme employed 

along with the actuator strategy will heavily influence the overall performance of the 

system.  It must be kept in mind that choosing to control each individual DOF 

independently will exhibit a very different behavior from trying to control multiple DOF 

as a synergetic group.  The former would require a different form of input data from the 

latter as well as a much larger quantity of input sources.  These distinctions can be 

directly attributed to the implemented control scheme and must be evaluated in the 

context of available input sites and the number of DOF to be controlled. 

 

The type of data acquired from the input sources also has to be considered as a significant 

attributing feature within the system.  Several different data acquisition methods have 

been investigated in previous research studies and some have been implemented within 

the clinical setting.  Each approach has advantages along with some drawbacks or 

limitations.  As previously mentioned, the most commonly used are MES and some form 

of residual limb motion.  Both of these input sources along with several control 

philosophies are presented in greater detail in the remainder of this chapter. 
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2.2 User-Based Prosthetic Input Sources 

 

2.2.1. Myoelectric Signals 

 

The MES occurs during muscular contractions as a result of the depolarization and 

repolarization of the cell membrane of the muscle fibers.  The electric currents associated 

with the ionic displacements produce measurable action potentials in the body [23].  The 

propagation of these potentials can be non-invasively measured on the skin surface using 

surface electrodes. 

 

Myoelectric signals allow for the partial interpretation of the intent of the user.  This 

limited view is because the MES does not indicate what the desired motion is but rather 

whether this muscle is an active participant within that intended motion.  This can be 

thought of as being a noisy input to a multi-dimensional dynamic system.  It has been 

shown that it is possible to train the amputee user to use alternate muscles to control 

prosthetic DOF.  In many instances, such an approach will unfortunately increase the 

mental burden (level of concentration) required of the amputee to control these 

‘reconfigured’ DOF [24]. 

 

There are a limited number of ways that one could feasibly control multiple DOF 

simultaneously in an independent manner solely using MES or in combination with other 

non-invasive sensor technology as input data sources.  The most obvious would be to 

have the ability to directly map the muscle activity to the missing DOF.  In order to 

achieve such controllability, the muscles targeted by this approach would need to be 
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those that are naturally involved in the movement of the DOF in question.   Such an 

approach would allow the user of a prosthetic limb to intuitively contract the DOF related 

muscles in order to control it.  The intuitiveness would come from the fact that 

“coordinated movements are not represented in the higher levels of the central nervous 

systems as joint-muscle schemata, but rather exist as topologically oriented engrams that 

can be translated into different joint-muscle sets” [25].  Additional research also seems to 

be in agreement with such a statement [26, 27].  As a result, the user would not need to 

think of controlling each DOF individually, which would be a tremendous mental burden 

in itself, but rather naturally perform a desired motion. The muscles necessary to control 

all the intended DOF would be recruited to perform the desired motion.  Unfortunately, it 

is impossible to use such an approach on all DOF as their associated muscles groups may 

also be missing.  The possibility of targeted reinnervation may increase the total number 

of controllable DOF with the use of this method [28].  This innovative approach consists 

of surgically deinnervating some functioning muscle(s) and reinnervating it with nerves 

that were truncated due to the amputation.  The elicited contractions of the reinnervated 

muscle(s) now represent the user’s intended activation of muscles groups that are missing 

as a result of the amputation.  

 

The use of physiologically appropriate muscle activity to control a DOF may be termed 

direct control.  Direct control theory is certainly not a recent breakthrough in prosthetic 

limb research.  Many early control strategies were developed during the 50s, 60s and 70s 

and can often be found within papers from the Dubrovnik conferences.  It has been stated 

that “communication between the patient and his assistive device should be established 
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through preserved neuromuscular complexes rather than through isolated muscles in 

order to use efficiently higher levels of natural neuromuscular hierarchy” [29].  Such a 

scheme should be used whenever possible as it currently allows for the nearest direct 

interface between user intent and DOF activation (with the use of surface EMG).  The 

shoulder joint may have the greatest potential reward for such an approach especially in 

the case of shoulder disarticulation (SD) amputees.  The elbow DOF could also utilize 

this methodology for above elbow amputees provided there is a suitable amount of 

agonist/antagonist musculature remaining within the residual limb (or, again, in the case 

of successful targeted reinnervation). The remaining proximal segments are more 

involved in the gross movement of the upper extremity and are not actively involved in 

finely coordinated motor activities.  As a result, the control of such fine motions may be 

incredibly difficult if based solely on the remaining muscle sites from the shoulder area.   

 

As previously mentioned, muscle activity may also be used to predict the intent of the 

user by extracting feature sets from the muscle group.  These sets can then be used to 

estimate the user’s intent by means of pattern classifiers.  Once again, this concept is by 

no means new; multiple pattern recognition algorithms have been used within various 

control schemes since the late 1960s [30].  Considerable advancements in this field [17, 

31] have yielded systems that can be tailored to individual users and achieve high 

classification accuracy [14]. 

 

Previous research has also investigated the use of the MES to estimate the torque values 

used as input for a prosthetic control system.  Indeed, an elegant control theory, which 
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attempts to estimate the desired limb motion using a mathematical formulation of 

musculo-skeletal dynamics, was developed in the early 1970s [33].  The strategy, termed 

postulate-based theory, attempted to control the prosthetic joints by using the residual 

limb MES to describe the dynamic characteristics of the intact arm and prosthetic device.  

Unfortunately, the method by which the joint moments were estimated required that a 

new dynamic model be developed on a subject-by-subject basis and that inter-subject 

variability was such that generalization was not feasible while maintaining an accurate 

model [33].  As a result, the clinical evaluation of the system demonstrated that joint 

control was possible but required considerable effort and that other control methods 

concurrently investigated showed superior performance [34, 35]. 

 

Many of the obstacles faced by previous research groups come back to the issue of 

information transmission.  How much user intent information can be extracted from the 

MES?  Also, what is this information saying?  Most current clinical myoelectric control 

systems utilize the MES to interpret some low level of user intent along with the intensity 

level of activity.  This information is then used to actuate the DOF in question.  In terms 

of control theory, this method is nothing more than an open loop control system.  

Kinematic and dynamic feedback
1
 are rarely considered in the controllability of the 

prosthesis.   

 

                                                 
1
 The term feedback here relates solely to the prosthetic control system and not to user 

sensory/proprioceptive feedback which is another issue altogether. 
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2.2.2. Body Movement 

 

Gross body movement as a control input has been around since the design of early 

prostheses [3].  Reasonable performance of these devices was achieved by directly 

linking the prosthesis joint motion to the back, shoulder and residual limb movements.  

Although, in many cases, this proved to be non-intuitive in nature, it was deemed 

successful since amputees regained a certain level of mobility from their residual limb. 

 

In 1974, a new concept, termed extended physiological proprioception (EPP), was 

developed which states that the body’s own natural physiological sensors can be used to 

relate the state of the prosthetic arm to the operator [36].  It can be thought of as the 

extension of one’s proprioceptive feedback into an intimately linked inanimate object 

[37]. 

 

This concept was applied to a pneumatically-powered prosthesis where the positions of 

the two clavicles controlled four DOF [38-40].  Three of these specified the endpoint 

position of the device while the fourth characterized the orientation of the terminal 

device.  It should be noted that the clavicle movements were restrained when the 

movement actuators were restricted thereby allowing proprioceptive information of the 

current state of the prosthesis to be transmitted to the user at all times.  The results 

demonstrated that a high level of subconscious control could be attained given the 

continuous awareness of the current position of the prosthesis. 
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Another research group also applied the EPP concept by linearly controlling a prosthetic 

elbow using the humeral flexion angle of an above-elbow amputee [41] and went on to 

develop another controller for an electric elbow which was driven by biscapular 

abduction motion [42, 43].  They reported achieving excellent results during laboratory 

tests of these systems. 

 

The feasibility of using shoulder elevation-depression and protraction-retraction to 

control elbow flexion and wrist rotation was also investigated [37].  The research initially 

consisted of analyzing normal subjects’ physiological control of these two joint motions 

in one-dimensional and two-dimensional tracking experiments.  The motions were then 

used as inputs in combination with an experimental prosthesis to implement the EPP 

control of the prosthesis elbow flexion and wrist rotation.  They reported having more 

potential for providing effective control as compared to velocity-based control.  

 

Research conducted at Southampton University also investigated the possibility of using 

body motions as inputs to control a prosthetic limb in three-dimensional space.  An end 

point strategy was integrated within the control system using three input sources 

originating from the user’s body movements [44].  This work continued by incorporating 

additional DOF and adding an additional MES input source [45].  The resulting eleven 

DOF hand/arm prosthesis was shown to be controllable with some difficulty as a result of 

the limitations of the processing technology available at the time of the research.  
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Other researchers also went on to develop a prosthetic controller based on the shoulder 

flexion angle during specific motion trajectories, which they termed linkages [46].  The 

shoulder flexion angle was measured using an electrogoniometer that would be attached 

to the chest and residual limb of the subject.  The controller output was based on mapped 

motion angles stored in the controller’s memory.  These output angles would determine 

how the prosthetic elbow joint was controlled.  Their research differed from previous 

work [37] since this new research attempted to incorporate the control of several different 

linkages as an open-loop system.  It was felt that only having one fixed linkage between 

the controller’s input and output signals was very constraining on the number of tasks 

that could be performed [46].  Therefore, an increase in performance would be achieved 

by allowing the control of several different input-output relationships.  A selector switch 

was used within their experimental system to choose the desired task.   

 

Including the shoulder abduction/adduction as an input to the controller [47] to previous 

research efforts [46] was also investigated.  The control system determined which linkage 

was to be selected by using several different kinematic features of the shoulder joint as 

inputs to a nearest neighbor classification scheme.  They reported having successful 

experimental results using a subject with an intact limb doing three different tasks. 

 

It should be noted that the later mentioned controllers [46, 47] provided the user with the 

ability to choose from multiple different tasks (linkages).  Although this provided a less 

constraining control system, it also resulted in a reduction in the level of proprioception 
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that would be delivered to the user, since the direct one-to-one mapping of the input and 

output was partially lost.  

 

The use of gross body movements yields different information content as it has the ability 

to show the current position, velocity, and acceleration of the limb, which differs from 

the information that MES data is able to provide.  This type of information is more often 

used to determine the ‘current’ desired state of the missing DOF in terms of some 

predefined correlation between the input data and/or residual joint being used.  The use of 

such input sources should be strongly considered during the development of new control 

strategies. 

 

2.3 Control Strategies 

 

The EPP principle had a profound impact on the way some researchers approached 

prosthesis and orthosis control issues.  However, several years prior to the EPP paradigm, 

researchers recognized the need for the implementation of control systems that were more 

intuitive.  These researchers developed the basis of many of the control strategies that 

have been attempted by various research groups in the past several decades as well as 

some concepts that have yet to be successfully implemented. 

 

It has been stated that “All or part of the information provided by sensory elements must 

not go to the central or conscious control place for processing, but should be directly used 

for servomotor control.  Such loops are called local feedback loops and their existence 

greatly reduces the information content of conscious signal sources without affecting the 



 19 

artificial hand performance.  The best way to achieve improved prosthesis performance is 

to give the problem of control signal sources full consideration.  In our opinion it is not 

wise to rely only on conscious signals in the prosthesis design.” [48]. 

 

Two things can be drawn from this statement.  The first observation is that reducing the 

conscious effort demanded from the user may increase intuitiveness and operability of the 

device. Second, not all control input parameters need to originate from the user.  The 

degree to which research groups, through the years, have applied both these statements 

has varied [44, 45, 73].  Any new control strategies will need a careful consideration of 

these factors as they are inherently linked to the overall performance and acceptance of 

the prosthesis by the user.  It should be noted however that the acceptance of a system by 

the user does not necessarily require it to be intuitive.  Other factors, such as motivation 

and ease of use, also need to be considered. 

 

It is also worth noting that not all researchers are in agreement that some level of 

feedback will be necessary in order to achieve a successful control system.  Some 

researchers have stated “that many movements can be performed in the complete absence 

of sensory feedback [49-53] even in the presence of external mechanical disturbances 

[50, 53-57].  Thus, the amputee’s need for direct feedback from an artificial limb may be 

more due to poor controller architecture than to loss of proprioception.” [58].  They 

postulated that the observed dependence on feedback information could be reduced 

provided the control system could accurately interpret the intention of the user [51, 59-

61]. 
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In light of this, it is believed that difficulties experienced by EMG-based control research 

may be alleviated if better control strategies could be developed to improve the overall 

performance. Investigating the possible use of more than one type of EMG control 

approach (hybrid systems) may yield some interesting and fruitful results.  The same 

could be said of also integrating residual limb motion information within the 

conventional EMG control systems with the use of a multi-expert system.  Although 

numerous research groups have been investigating both approaches (EMG and residual 

limb motion), very few have evaluated the effectiveness of combining both strategies 

within the same system.  Pattern recognition could also be used to determine the user 

intent based on residual movements at the shoulder and associate that intent with a 

specific linkage/task from a given list.  The amplitude of the EMG activity, from selected 

sites, could be used to scale the intensity/speed at which the recognized task is performed 

as well as, possibly, to adjust the endpoint condition. 

 

Depending on the control approach, there may be issues when implementing gross upper-

extremity movements using two separate control schemes.  Several research groups [35, 

47] have cited that some correlation exists between the shoulder and elbow kinematics 

during various tasks.  Since there may be a need for some level of communication 

between both schemes, it may be difficult to implement kinematic characteristics within 

the control system.  Other approaches would utilize pattern recognition in order to 

implement and expand upon trajectory task-based motion control.  Many of the possible 

implementations could benefit from the addition of the shoulder motion along with the 

MES from residual limb.  Residual motion may include clavicular motion, shoulder 
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elevation-depression, flexion/extension, and/or abduction/adduction.  Such motions, 

however, may be limited by the techniques used to suspend the prosthetic limb.  

Investigation of new materials used to measure body movement have been ongoing [62] 

and the addition of such technology could also be beneficial if additional shoulder motion 

information is shown to be valuable for the control system. 

 

2.4 Modular Control System Approach 

 

It is evident that there is a need to step back and look at the different levels of upper 

extremity amputation.  It is clear that every user will have different input sources 

associated with their amputation and also variable level of control on those inputs.  It is 

important to try to develop several different strategies that can be applied, in one form or 

another, to each subject.  It will be important to avoid assumptions as to the type and 

number of input sources a particular subject has available when developing these 

schemes.  The design of such a system must also be investigated in a somewhat modular 

fashion.  Improvements in different areas should ideally allow researchers to implement 

advancements within the system without significant modifications to its overall 

architecture. 

 

In terms of control strategies, the number of DOF of a particular system reveals no real 

indication of its movement performance and characteristics.  Rather it roughly outlines 

the boundaries in which the system may operate.  Although it is true that any control 

system will be limited by the physical and mechanical characteristics of the prosthesis in 

question, these constraints should not be considered metrics used to evaluate the system’s 
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controllability.  The control scheme employed within the system will be much more 

indicative of the prosthesis behavior.  It is important to make such distinctions as, 

inevitably, the development of control strategies should not be restricted solely to a 

specific prosthetic system but, to a certain extent, be able to be applied to several 

different devices with varying physical and electrical characteristics.  Although the 

implementation of any designed system will always require a thorough examination of 

the necessary interconnection between the input sources and the control system layers, it 

is also important to consider the control strategy as an independent component in itself.  

Making such differentiation potentially eliminates any possible restrictions associated 

with the future advancement of the control system with respect to input source 

limitations.  Finally, it is important to make a distinction between the control and actuator 

driver systems.  This separation between control intent and motor signal function 

modularizes the entire system such that improvements may be independently 

implemented to specific components. Using such an approach inherently results in a 

higher level of execution flexibility. 

 

Using the term ‘control’ for the interpretation of information content in the MES and 

actuating the prosthetic devices accordingly is, although correct, a fairly generalized 

statement. It is beneficial to refine and classify such assertion into the major components 

required to develop a successful prosthetic control strategy.  The suggestion of using 

multiple layers (e.g. user intent, prediction, kinematic, dynamic, actuation, etc) within the 

control scheme (Figure 2.1) definitely has merit and can be used to integrate various 

control philosophies. 
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Figure 2.1 – Layered control system diagram. 

 

2.5 Mental Burden Considerations 

 

Some of the described approaches are intended to partly move the control issues away 

from the user and instead put that burden on the control system itself.  The concept would 

basically reduce the information content required from the residual limb and EMG sites 

but at the expense of removing some level of control from the user.  This raises several 

issues that must be resolved during the design of any system using both user and 

embedded control.  How much control is given to the control system?  What kind of 

information is needed to control the system?  Is it robust?  Is it continuously adaptable or 

predefined in its control strategy?  How does it relate in terms of dynamically controlling 

the multiple DOF of the prosthesis?   
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It is clear that the user should always be the “driving force” behind the control system.  It 

will undoubtedly be necessary to allow the system to take control of some of the 

coordination issues associated with multiple DOF whether it is through the use of 

linkages, heuristic rules, or both.  To achieve this goal, the control system will require a 

large amount of information from various sources, including many from the prosthesis 

itself.  To put such burden on the user would simply not be feasible or realistic.  

Feedback loops originating from the prosthesis will provide the system with its present 

characteristics while other inputs may be acquired from classifiers of the user intent layer. 

 

Concentrated efforts should be invested into determining exploitable relationships that 

could be used in the embedded control development.  Some researchers have found 

potentially useful upper extremity behaviors in their work but few have implemented 

these into a useful control scheme.  An example of such correlation would be from 

Lacquaniti and Soechting who stated that “the ratio between the angular acceleration (sic) 

is the parameter which is invariant of target location” with respect to the shoulder and 

elbow joint [63].  Using this information could reduce the overall complexity of 

trajectory planning and generation as the dimensionality of the problem is decreased. 
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2.6 Concluding Remarks 

 

The background information presented in this chapter describes many issues associated 

with the development of a robust and practical control system for a prosthetic limb.  

Although user intent interpretation and control signal sources were clearly identified as 

important considerations nearly fifty years ago, very little advancements have been made 

for shoulder disarticulation and forequarter amputation cases when compared to more 

distal amputation situations.  

 

Several new MES-based pattern classification strategies are presented in Chapter 3 that 

have been designed to provide improved control solutions for high level amputation 

cases.  These approaches are based on the notion that reducing the mental burden of the 

user and simplifying the control requirements will lead to a more effective and intuitive 

control strategy. 
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3.1 Introduction 

Pattern classification has been described, in the previous chapters, as an effective method 

of interpreting user intent based on myoelectric data.  Most research efforts have been 

devoted to the classification of hand, wrist and elbow movements.  The work presented in 

this chapter expands the use of pattern classification schemes to the shoulder complex to 

provide new input strategies for high level amputation cases. 

 

Understanding the available musculature of the residual limb is an important first step in 

determining the potentially accessible input signal sites for the control of a prosthetic 

limb.  Since this research concentrates on the potential input sources for high level 

amputation cases, this section will concentrate on the musculature that may or may not be 

available in a transhumeral, shoulder disarticulate and/or forequarter amputee.  It should 

also be noted that, due to the high synergistic muscle activity in these areas, the amputee 

might not be able to activate all of the remaining musculature in a controllable fashion.  

As a result, a careful examination of the muscle activations during common shoulder 

motions is also presented as to provide a better understanding of these muscle synergies. 

 

3.2 Shoulder Physiology and Electrophysiology 

The shoulder is one of the most sophisticated and complex joints in the human body.  

Unlike the knee and elbow, which can be defined as a hinged joint, the shoulder is best 
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described as a ball and socket joint capable of a series of motions with a wide range of 

mobility.  These movements are caused by a large array of muscles that act upon and 

displace the humerus, clavicle and scapula.  Figure 3.1 specifies all the major muscles 

that are active in the shoulder complex area. 

 

 

 

Figure 3.1 – Shoulder/Humeral Area Musculature (Note: Images from Gray, Henry. Anatomy of the 

Human Body. Philadelphia: Lea & Febiger, 1918 were used in this figure) 

 
1. Serratus Anterior 

2. Pectoralis Minor 

3. Pectoralis Major (Sternal Head) 

4. Pectoralis Major (Clavicular Head) 

5. Anterior Deltoid 

6. Lateral Deltoid 

7. Posterior Deltoid 

8. Infraspinatus 

9. Latissimus Dorsi 

10. Lower Trapezius 

11. Middle Trapezius 

12. Upper Trapezius 

13. Levator Scapulae 

14. Rhomboid Minor 

15. Rhomboid Major 

16. Supraspinatus 

17. Teres Minor 

18. Teres Major 

19. Biceps Brachii 

20. Coracobrachialis 
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Some of the shoulder motions consist of the displacement of the shoulder socket itself 

(Table 3.1 a-d) while others also result in the movement of the humeral bone (Table 3.1 

e-l).   

 

Table 3.1 – List of Relevant Shoulder Motions 

 

Most studies found in the literature outline which muscles’ associated MES were 

recorded when performing various motions with an intact arm [65-67].  The main goals 

of these studies vary but can generally be categorized in the following groups: 1) 

Investigation of MES/kinematic relationship during intact limb motion, 2) Development 

of musculoskeletal system models, 3) Motor control theory studies.  For the purpose of 

the work outlined in this thesis, it would be beneficial to not only highlight which 

muscles are elicited during the various motions of interest but also map their spatial/MES 

characteristics.  This information would provide a visual guide as to optimally select the 

electrode site locations.  The IBME signals lab is equipped with a multi-channel amplifier 

system (Figure 3.2) manufactured by TMS International (www.tmsi.com).  This 



 29 

system is capable of capturing high density MES allowing the simultaneous recording of 

up to 128 monopolar electrodes at a sampling frequency of 2KHz. 

 

 

Figure 3.2 – REFA!  Multi Channel Data Collection System 

 

Following a comparable protocol to previous work found in literature [68], a pilot study 

to investigate the mapping of the elicited MES was performed on one able-bodied subject 

(Figure 3.3) performing the motions found in Table 3.1.  Figures 3.4 and 3.5 illustrate 

typical high-density color maps obtained from the pilot data collection.  The numbered 

electrode locations and the remaining map associated with each motion can be found in 

Appendix A. 
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Figure 3.3 – High Density MES Data Collection Setup 
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Figure 3.4 - Shoulder elevation motion muscle activity diagram.  The highlighted muscles in the 

upper diagram illustrate the expected active muscles while the color mapped diagram indicate the 

observed muscle activity during the contraction. (Note: Upper diagram used images from Gray, 

Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure 3.5 - Shoulder depression motion muscle activity diagram. The highlighted muscles in the 

upper diagram illustrate the expected active muscles while the color mapped diagram indicate the 

observed muscle activity during the contraction. (Note: Upper diagram used images from Gray, 

Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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The MES maps seem to indicate distinct activation patterns for the various motions 

performed.  Some variability was observed when comparing the results with reference 

literature.  This can be attributed to method which was used to perform the desired 

motions as defined by the experimental protocol.  Any slight difference in performing a 

given motion, if compared to the protocols used in the reference literature, may elicit 

other muscle contractions which would result in the variations seen in the intensity 

mapping. 

 

It has been hypothesized that a pattern classification scheme could be used rather than 

employing a conventional direct control strategy for the shoulder.  Previous shoulder 

control research carried out at the IBME has had limited success [69].  Although clearly 

illustrating the ability to achieve high accuracy with various classification algorithms and 

a specific subset of the motions listed in Table 3.1, the work could not be implemented 

into a usable and intuitive control output to drive the system’s virtual actuators.  It was 

apparent that “alternative methods of representing shoulder motion are necessary for 

intuitive and natural control of an artificial shoulder” [69].  The mental burden associated 

with mapping multi-articulated user intent directly to the available DOF was found to be 

too high for the successful implementation of the pattern classification scheme.  The task 

of controlling each DOF individually and sequentially is not an intuitive approach and 

confuses the user.  The work presented in the remainder of this chapter attempts to 

overcome these obstacles by investigating the use of more physiologically relevant 

shoulder characteristics to allow more intuitive shoulder classification scheme 

implementations. 
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3.3 MES Classification for User Intent Interpretation 

 

An LDA classification scheme has been chosen for the user intent interpretation layer 

because it has proven itself as a simple robust MES pattern recognition strategy for the 

control of prosthetic limbs [14].  A feature set based on TD statistics was also selected 

based on prior pilot data, collected by the author, that showed no significant performance 

improvements when using an AR-based feature set or a feature set which combined both 

TD and AR coefficients when classifying shoulder motions. 
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Linear discriminant analysis classification schemes are based on Bayes’ classification 

rule that estimates the a posteriori probability of a pattern belonging to a given class 

using a priori probabilities of the system.  The scheme assumes that all the probability 

density functions have a Gaussian distribution and that all covariance matrices are equal.  

As a result, the classification calculations are simplified to a feed forward function based 

on the current input feature vector as well as weight and offset matrices defined using 

MES pattern data collected during a prior training session. 

 

                                                 
2
 A complete mathematical explanation of the system can be found in [70].  Only a very 

short summary of the referenced literature has been included in this section. 
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A feature set consisting of TD statistics, used previously in real time MES control 

schemes [14, 17, 71] was selected as part of the signal representation layer of the input 

strategy.  Included in the TD set are the number of zero crossings, the waveform length, 

the number of slope sign changes and the mean absolute value for a given data window.  

The data from each channel were segmented into window frames of 250ms
3
 from which 

these features were computed.  The features from each channel were then concatenated 

into an aggregate feature vector and used as inputs to the LDA classifier. 

 

3.4 Previous Work on Shoulder Motion Classification 

As stated in Section 3.1, previous research conducted at the IBME investigated the ability 

of able-bodied users to elicit repeatable patterns from the shoulder complex musculature 

that could accurately be interpreted by several experimental classification schemes used 

in myoelectric pattern recognition systems for the control of prosthetic limbs.  The 

motions used for this research concentrated on humeral movements which are created by 

the various synergistic relationships of the shoulder musculature.  Fairly accurate offline 

results were reported with the use of several classification algorithms [69].  Results from 

real time usability experiments in a virtual environment did not, however, indicate usable 

and intuitive control.  It was concluded that the humeral-based motions chosen, although 

highly repeatable, might not necessarily lend themselves as ideal movements for eliciting 

                                                 
3
 Window length was selected based on pilot work aimed at calculating optimal 

classification accuracy results.  It should be noted that an optimal window length, aimed 

at obtaining the smallest user error, would be of shorter duration. 
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MES for the control of a prosthetic limb in terms of reaching tasks involving multiple 

DOF.  

3.5 Discrete Shoulder Contraction Classification 

Based on the results from the previous outlined research, it was felt that attempting to 

solely classify a large number of humeral segment motions might not result in the most 

reliable or robust input strategy for high-level amputation cases.  The need to use simple 

contractions, which would be intuitive for users to produce, would most likely improve 

the chances of developing a practical MES-based input strategy option.  As a result, 

contractions that were physically achievable for high-level amputees were chosen as 

potential candidates for the classification scheme. Four different discrete shoulder girdle 

contractions were selected: elevation, protraction, depression, and retraction.  In addition, 

both medial and lateral humeral rotations were included in the motion subset along with a 

no movement class. 
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The MES data corresponding to seven classes of contraction were collected from six 

healthy subjects and one bilateral shoulder disarticulated (SD) amputee who has had 

targeted muscle reinnervation (TMR) surgery
4
 on the left pectoralis area of the body.  

Eight Ag-AgCl Duotrode electrodes (Myotronics, 6140) were placed at physiologically 

relevant locations for shoulder girdle motions for the able bodied group (Figure 3.6).  A 

total of sixteen electrodes were used with the amputee subject (Figure 3.7) although 4 

                                                 
4
 Details concerning TMR surgery and patient can be found in [89]. 
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electrodes were purposely placed in the TMR region (reinnervated by the nerves which 

would normally control the elbow, wrist and hand) and were not used in the analysis of 

the data collected.  The UNB Research Ethics Board approved the experimental 

procedure used for this research and each subject provided informed consent prior to 

participating in the experiment. 

 

Figure 3.6 – Electrode Placement Locations (Able-Bodied Users Group). (Note: Images from Gray, 

Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918 were used in this figure) 

 

 

Figure 3.7 – Electrode Placement Locations (SD/TMR Amputee). (Note: Images from Gray, Henry. 

Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918 were used in this figure) 
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Subjects were instructed to complete seven isometric contractions associated with the 

following shoulder girdle motions: elevation, protraction, depression, retraction, medial 

humeral rotation, lateral humeral rotation, and a no movement/rest class.  Each 

contraction was held for four seconds and the entire set was repeated six times. The first 

three repetitions were used as training data, and the remaining data were used for testing.  

The data were amplified using a gain of 20000, low pass filtered at 500 Hz, and acquired 

at 1 kHz using a 16-bit analog-to-digital converter. 
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The optimal number of channels used to extract the features, train and test the classifiers 

was investigated.  Classifiers based on all possible channel combinations were trained 

and evaluated. The classifiers were then ranked, for the able-bodied group, on a subject-

by-subject basis in terms of their classification accuracy. The process was repeated for i 

channel data sets (where i=1:8).  The classification accuracy of the optimal channel 

combination (the best i of 8 channels) was recorded on a subject-wise basis.  It should be 

noted that although 12 electrodes were used with the SD/TMR amputee subject only the 

results for up to 8 optimal channels were reported in this section in order to coincide with 

the able-bodied group’s maximum number of electrodes available. 
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The classification results of both the able-bodied group and the SD/TMR amputee are 

presented in Figure 3.8.  Error bars of one standard deviation are shown for the able-



 39 

bodied group.  It can be seen that, for both cases, significant classification improvements 

occur when initially increasing the number of electrodes. It should be mentioned 

however, that increasing the number of channels beyond five produced only minor 

improvements to the classifiers’ performance.  Furthermore, the optimal electrode subset 

varied across subjects without providing any clear indication of any electrode location 

whose inclusion in the subset would provide only limited classification improvement.  

The results from the single TMR subject indicate very similar performance when 

compared to the able-bodied group. 

 

 

Figure 3.8 – Accuracy Results for Discrete Motion Classification 
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3.6 Combined Shoulder Contraction Classification 

The previous section illustrated how highly accurate classification of discrete 

contractions could be achieved through the use of a pattern classification scheme.  The 

shoulder girdle is, however, not only limited to these discrete contractions.  In fact, it is 

possible to move the shoulder in various ways that simultaneously combines two of the 

discrete motions previously presented.  Eliciting these motions with the discrete classifier 

presented in Section 3.4 would not generate a combined output since the pattern classifier 

can only output one discrete class. As a result, it was felt that adding additional combined 

contraction classes might produce a more reliable scheme for the interpretation of the 

user’s intent. 
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Additional combined contraction data were collected from the same subjects outlined in 

the discrete shoulder motion classification study.  Subjects were asked to complete four 

combined motions originating from the shoulder girdle: elevation/protraction, 

depression/protraction, depression/retraction, and elevation/retraction. Similarly to the 

discrete motions described in the previous section, these contractions were held for four 

seconds and repeated six times.  The first three repetitions were used as training data, and 

the remaining data were used for testing.  The combined shoulder contraction 

classification evaluation used an identical data processing approach as described in the 

previous section. 
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The overall classification accuracy of both the able-bodied group and the SD/TMR 

amputee are presented in Figure 3.9.  Similarly to the discrete classification section, error 

bars of one standard deviation are shown for the able-bodied group.  The results also 

seem to indicate similar performance behavior as a function of the number of electrodes 

used by the classifier.  A drop in classification accuracy was, however, observed for all 

optimal electrode subsets when compared to the discrete shoulder motion classification 

case. 

 

Figure 3.9 – Accuracy Results for Combined Motion Classification 
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A confusion matrix table (Table 3.2) was additionally calculated for the eight-channel 

classification performance.  The results were averaged across all subjects and illustrate 

the classifier’s ability to accurately identify each of the desired motions. The dark shaded 

areas represent accurate motion classification while the results found within the lightly 

shaded areas represent adjacent misclassification during combined motion performance.  

The remainder of the respective column represents incorrect classification for the given 

motion. 

 

The overall classification accuracy, for the able-bodied group using eight electrodes, was 

found to be 88.5%.  Another classification measure, termed adjacent classification, was 

also used to underscore the misclassifications, which were one of the discrete motions 

used in the combined motion classes.  Its value was found to be 3.6%; indicating that 

7.9% of the misclassifications were from unrelated contractions.   

 

The performance results of the classifiers seem to indicate that the protraction and 

depression motions as well as the retraction and elevation motions pair are major 

contributors to classification error.  This may be explained by the highly correlated 

actuation of synergistic shoulder muscles used for these movements.  
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3.7 Humeral Rotation Classification 

The residual shoulder contractions, utilized in the previous sections of this chapter, 

displaced the shoulder girdle when the shoulder musculature was activated. An alternate 

input strategy, based on the shoulder position measurements, is presented in the following 

chapter.  In an attempt to utilize both positional information and MES information, it was 

deemed beneficial to further investigate an additional MES-based classification option 

that would focus solely on the musculature responsible for movements that could not be 

measured by means of inputs based on shoulder position. As a result, this classifier could 

be combined with a positional-based scheme to increase the number of input sources for 

the control strategy layer.  The medial and lateral humeral rotations movements were 

selected for this new classifier. 
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The humeral rotation motion classification evaluation used an identical data processing 

approach as described in the two previous sections.  It should be noted, however, that all 

other motion (discrete or combined) data trials were used as part of the no movement 

class.  
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The overall multi-channel classification accuracy of both the able-bodied group and the 

SD/TMR amputee are presented in Figure 3.10.  Error bars of one standard deviation are 
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shown for the able-bodied group.  Minimal classification performance variance can be 

observed when using a different number of MES channels. The optimal channel subset 

varied between subjects.  Decreasing the number of channels produced only minor 

degradations to the classifier performance.  Furthermore, the performance of the humeral 

rotation classifier shows its ability to separate the EMG elicited during normal shoulder 

and humeral rotation movements. 

 

 

 

Figure 3.10 – Accuracy Results for Humeral Rotation Motion Classification 
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3.8 Concluding Remarks 

The results presented in this chapter demonstrate how the devised strategies allow for 

reliable interpretation of the user’s intended motions by using MES originating from the 

shoulder musculature.  These intuitive schemes represent significant new options for the 

development of robust control systems for the control of a prosthetic limb in high-level 

amputation cases. 

 

As mentioned in Chapter 2, the advancements in the use of residual limb position for 

high-level amputation control strategies have progressed at a much slower rate than for 

their distal counterparts. The following chapter seeks to investigate the ability to interpret 

the motion intent using positional information of the shoulder instead of the associated 

MES.  This is done in an innovative way that removes many of the complexities often 

associated with motion-based solutions. 
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Chapter 4 – Residual Shoulder Motion Vector Projection 
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Residual shoulder motion has been shown to be a useful input source for various 

prosthetic control strategies [37, 40, 44, 72, 73].  Each research group illustrated various 

methods in which this type of input source could be implemented.  Its importance is often 

amplified for high-level amputation cases where the availability of robust input control 

sources is often limited. The selection of sensors and the control scheme by the clinical 

team will depend heavily on the consideration of several design factors (patient’s 

musculature condition, range of motion, learning ability, etc.) in order to obtain an 

appropriate prosthetic rehabilitation plan [9].  Other design issues such as sensor 

orientation and output range also require some consideration prior to the fabrication of 

the prosthesis. 

 

Some level of final adjustments and modifications are often required with any devised 

solution.  Ideally, it would be beneficial to have an initialization protocol by which some 

of these factors would be taken into consideration and their associated implementation 

complexity removed from the prosthetic design stages.  Automatic tailoring of the system 

for factors such as the user’s range of motion, the sensor type, positioning and output 

range would also speed up the setup time required within a clinical fitting and/or system 

retraining setting. 
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This type of approach has been successfully implemented in MES pattern recognition 

systems where the location of the electrodes and the elicited MES patterns for each 

motion class will certainly vary for each person.  To accommodate for this variability, a 

user is required to perform a short training session where class specific contractions are 

performed as prompted by a training software program.  Following the completion of the 

training session, the information collected is used to train a user specific pattern 

classification system that will respond to repeatable MES contraction patterns elicited by 

the user, which are comparable with the patterns observed during the training session. 

 

It may also occur that the electrode locations found within the socket of the prosthesis 

may be misaligned with respect to the residual limb as a result of removing and re-

donning the prosthesis.  In the occurrence of such event, the control system performance 

may degrade if the MES captured by the electrodes on the new residual limb locations are 

significantly different when compared to the original data from the training session.  If 

this does occur, a new training session can be carried out such that the pattern 

classification system recognizes the new patterns.  Recent work has also demonstrated 

the possibility of incorporating the MES data found within close proximity of the 

electrode locations into the training protocol in an attempt to account for possible pattern 

variability, thereby eliminating the need for a new training session and thus increasing the 

overall robustness of the system [74].  Although mostly utilized for MES based schemes, 

these adapting strategies could also be used with other input sources.  The incorporation 

of such components would provide a means of automatically calibrating and optimizing 

motion-based control strategies. 
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The algorithm presented in this chapter addresses the issue of automatic calibration and 

control using residual shoulder motion by adapting the actuator output calculations based 

upon data collected during a short training session. The fundamental basis of the 

algorithm consists of three stages:  1) creating class specific vectors based on training 

data, 2) determining the projected
1
 interim class values by relating a real time input 

signals based vector to these class vectors, and 3) calculating the class outputs by 

adjusting these values using algorithm parameters.  The first stage is performed 

automatically immediately following the training session while the latter two stages are 

executed in real time. 
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The data collected during the training session provide the information necessary to 

determine the average position of each class (including the rest class), termed class 

centroids, within the input signal space.  The centroids are treated as localized vectors 

(Figure 4.1) to produce class specific vectors (Figure 4.2).  These class vectors are 

created using the rest class as the origin where X denotes the vector class: 

   

! 

v 
V 

Rest X
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v 
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O X
"

v 
V 

O Rest  (4.1) 

                                                 
1
 The term projection used in this chapter does not refer to the common angle projection 

methods used in various fields of study.  It rather refers to the comparison of the real time 

input vector with respect to the adjacent class vectors. 



 50 

 

Figure 4.1 – Class centroids and vector diagram within input space 

 

 

Figure 4.2 – Class specific vector diagram for the vector projection algorithm 
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The use of a rest state is a common occurrence in most control systems.  Some systems 

have used the rest state/class as the starting point (i.e. origin) by which a classification 

decision could be made [17].  A variation of this concept was utilized for this scheme as 

the foundation upon which to relate all other classes in order to remove some of the 

dependencies associated with the input sensor type, orientation and range.  By specifying 

the centroid of the rest class as the reference point, the scheme effectively eliminates any 

need for the actual origin of the input signals. 

 

The newly calculated class vectors for every desired class in the system also encompass 

several noteworthy characteristics.  The range of motion for each class has been 

integrated into the magnitude of its associated vector.  As described below, this 

information will be invaluable in determining the amplitude of the output signals.  The 

orientation of these vectors also removes the complexities normally associated with 

sensor placement and alignment.  The importance of the orientation of the input signals 

axis has been negated since all future calculations are performed solely with the use of 

these centroids and vectors. 

 

Having created the class vectors with the training data, it is now possible to calculate both 

the magnitude component of each class vector along with the angle between two adjacent 

vectors: 
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 where N = input space dimension 
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In terms of real time implementation, the current input signals can also be used in order 

to form a final vector, termed the input vector, using Equation (4.4). 
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Similarly, its magnitude and the angles between it and the adjacent class vectors can also 

be calculated using Equations (4.2) and (4.3) respectively.  The input vector can also be 

projected onto any of the class vectors: 
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This projected value, termed dX, represents the normalized input vector magnitude for 

class X.  More than one projected value is calculated at this stage since one can be 

calculated for each class vector defined in the algorithm (Figure 4.3). 
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Figure 4.3 – Simultaneous projection of input vector onto adjacent class vectors 
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The final stage of the algorithm uses the previously calculated values along with tunable 

parameters to determine each of the class output strength.  The coefficients and tuning 

parameters used in the class output strength equations are described individually below. 

 

Threshold Factor, TF: 

The threshold factor, TF, creates a region of inactivity for any amplitude 

below the threshold value.  The TF ensures that a given class output is 

inactive for the specified area.  

 

Amplitude Factor, AF: 

The amplitude factor, AF, allows the clinician to adjust the position at 

which the projected value will saturate to unity.  It should be noted that the 

class output saturation would occur at the centroid location if a unity AF 

were used. 
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Spread Factor, SF: 

The spread factor, SF, dictates how quickly the offset coefficient value 

(described below) will diminish as the angle between the input signal and 

class vectors increases. 

Magnitude Coefficient, !: 

The magnitude coefficient, !, represents the adjusted input signal’s 

projected value, dX, based on both the threshold factor, TF, and amplitude 

factor, AF.  It is required to provide a region of no activity near the rest 

class centroid as well as adjust the amplitude value associated with the 

given class centroid.  It should also be noted that the current 

implementation of the magnitude coefficient ensures that no 

discontinuities will occur when crossing the boundary between the rest 

and active regions. 
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Offset Coefficient, ": 

The offset coefficient, ", reduces the effective output strength of a given 

class as the angle between the input signal and class vectors increases.  
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The spread factor, SF, dictates how quickly the value will diminish as the 

angle increases (Figure 4.4). 
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Figure 4.4 – Offset coefficient transfer function 

 

The described components are used in the class output strength equation (4.8) to 

determine the magnitude of each class output.   
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These values can now be used as inputs to the control strategy layer of the control system 

as defined in Figure 2.1.  

To help illustrate the effect of each tuning parameter, class output colormaps were 

created which illustrate how adjusting the parameters will affect the output strength.  

Figures 4.5, 4.6, and 4.7 demonstrate the output behavior that occurs when modifying the 

TF, SF, and AF respectively. 
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The vector projection algorithm requires very little data to properly calculate the class 

centroids.  It was empirically determined that, unlike certain MES classification systems, 

repetitive trials of very short duration provide ample data to reliably calculate the class 

centroids.  The data collection protocol designed for the preliminary case studies of the 

algorithm instructed users to complete five shoulder motions: elevation, protraction, 

depression, retraction, and a rest class.  Each motion was held for one second and the 

entire set was repeated five times.  The one second duration was arbitrarily chosen and 

shorter durations are acceptable since the algorithm only requires one instantaneous time 

sample for each motion in the set.  Subsequent experiments prompted the user to only 

repeat the entire set three times.  There were no apparent detrimental effects as a result of 

the reduction of trial repetitions.  The entire data collection can be completed in 

approximately one minute if a three second delay is used in between motion recordings. 
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The development of the vector projection algorithm greatly benefited from four separate 

case studies that permitted the evaluation of the effectiveness, reliability and versatility of 

the system.  Rather than solely relying on the offline results obtained during the 

development stages, the real-time implementation and user feedback allowed for quick 

corrections and modifications to be made in order to improve the input strategy.  Three 

case studies consisted of using a two-axis joystick as the input source while the final case 
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study used two linear transducers mounted on an experimental bypass socket.  Each case 

study is described below. 
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The first study consisted of orienting the joystick such that one of its axes was vertical 

while the other horizontal.  The subject performed the training protocol and qualitatively 

assessed the performance of the algorithm.  Some issues were experienced as a result of 

having the joystick positioned on an experimental stand (Figure 4.8).  The rest position 

drifted occasionally since the subject’s body position, relative to the joystick, could be 

drastically altered during the experiment.  This problem was easily corrected by ensuring 

a chair with a backrest supported the subject’s torso. 

 

 

Figure 4.8 –Experimental joystick apparatus used for the 

evaluation of the vector projection algorithm 
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The second case study used the same joystick employed in the first study but rotated by 

45 degrees (counter clockwise) such that the new axes were now oriented halfway in 

between the original vertical and horizontal axes.  This was done in an attempt to 

evaluate the algorithm’s ability to automatically calibrate itself regardless of sensor 

orientation.   The same training protocol was used and similar performance was observed. 
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Having observed promising results from the first two case studies, it was felt that the 

algorithm should be tested with a socket such that the sensor would be more realistically 

positioned as compared to the experimental apparatus used in the previous studies.  

Access to a shoulder disarticulation amputee’s socket (Figure 4.9) was provided by the 

Neural Engineering Center for Artificial Limbs (NECAL) group at the Rehabilitation 

Institute of Chicago (RIC) during a visit to their research facility.  The algorithm used a 

custom two-axis joystick as the input source and the amputee qualitatively assessed its 

performance.  The results did coincide with the elicited shoulder movements and seem to 

corroborate the previously observed performance with the experimental joystick 

apparatus. 
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Figure 4.9 – Shoulder disarticulation amputee’s socket with a two-axis joystick for the evaluation of 

the vector projection algorithm 
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The final case study used an experimental bypass shoulder socket that used two linear 

transducers as the input source to monitor shoulder movement (Figure 4.10).  The UNB 

clinical fitting team fabricated this socket and Dr. Peter Kyberd of the IBME provided 

access to the socket.  Testing the algorithm with the socket outlined some algorithm 

implementation errors that were easily corrected.  The algorithm was tested and found to 

work well once some of the parameters were tuned based on user feedback.  The socket 

was also removed and re-donned during the course of the experiment.  The system was 
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qualitatively reassessed without any retraining once the socket was reattached and was 

found to operate with similar performance. 

 
Figure 4.10 – Experimental bypass socket with linear transducer inputs used for the evaluation of the 

vector projection algorithm 
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A mathematical algorithm has been described which attempts to eliminate some 

implementation complexities associated with sensor characteristics and possible user 

physiological constraints.  The use of a short preliminary training session allows the 

algorithm to automatically tailor itself to both the prosthesis setup and user.  Several case 

studies were used during the development phase of the algorithm and they have 

showcased the benefits of using such a system.  

 

All of the classification results, from Chapter 3, along with the qualitative results 

presented in this chapter, although promising, are not indicative of actual functional 



 64 

usability when combined with various control strategies (e.g. endpoint, joint 

position/velocity, torque-based control schemes).  Previous research has shown that 

usability may vary significantly when compared to classifier performance [75, 76].  To 

appropriately evaluate these classification schemes, the use of an appropriate qualitative 

and quantitative experimental test was required to further investigate their efficacy.  

Since no such test was available, an experimental testing apparatus and protocol was 

developed by the author and is presented in Chapter 5. 
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Several different input strategies have been introduced in the previous chapters.  

Although the vector projection algorithm was qualitatively tested to assess its 

performance, the MES classification strategies have only been evaluated using 

classification accuracy results from data collected during experiments.  Additionally, the 

vector projection algorithm was never evaluated in combination with the humeral rotation 

MES classifier. In order to properly assess these strategies, it would be beneficial to use 

some form of gross movement functional test in order to determine the efficacy of each 

strategy as well as evaluate the performance with respect to each other in three-

dimensional space.  

 

!".$/01,-23-&4$'51$6178-&-&4$9831(:$)2$'51$;)&'()<$/3:'17$=(,5-'1,'+(1$

 

To use the input strategies within a functional test, the remaining layers found in the 

control system architecture must be specified in order to have a complete control solution 

(Figure 5.1).  Since all three input strategies are able to provide six control signals to the 

control strategy layer, a three dimensional endpoint control scheme was chosen.  The 

control strategy’s output signals were transmitted to a servo motor-based manipulator 

which was used during the course of the experiment.  Protraction and retraction motions 

were used to control the forward and backward motion.  Elevation and depression 

motions were correlated to the upward and downward movement of the manipulator’s 



 66 

endpoint.  Finally, the medial and lateral humeral rotations were used to control the left 

and right movement. 

 

 
Figure 5.1 – Experimental control system 
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Literature has suggested that a MES-based input strategy could potentially be used in 

conjunction with an endpoint control strategy in order to provide multifunctional control 

of prostheses [77].  Using endpoint control would help alleviate some of the user’s 

mental burden by significantly reducing the dimensionality of the control problem.  

Kinematic functions are required to implement such a scheme since they are used to infer 

the appropriate angular displacements necessary for multi-joint control of the prosthetic 

limb. 
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The term forward kinematics refers to the mathematical process by which the endpoint 

Cartesian position of an articulated limb is calculated using the angular position of every 

joint. The articulated limb’s mechanical characteristics are represented in a mathematical 

form using coordinate transforms: 
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 (5.1) 

 

Here, R denotes the rotation matrix for a specified axis while P represents the translation 

component of the coordinate transform.  For the purpose of the servo arm described in the 

following section, the transformation matrix derivation can be found in Appendix B.  The 

resulting matrix can be used as a function, f, to calculate the Cartesian position of the 

manipulator’s endpoint given the angular position of every servo motor:  
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Inverse kinematics (IK) refers to the process by which a manipulator’s joint angles are 

calculated given a desired position of the manipulator’s endpoint in Cartesian space.  It is 

often considered a more difficult problem since many possible solutions may exist for a 

given position.  Several techniques exist for solving the IK problem including various 

iterative approaches.  For the purpose of this experimental control system, the 

transformation function, f, was differentiated to obtain the Jacobian matrix, J:   

 

! 

dP = Jd"  (5.3) 
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Since J is nonsingular, the following equation can be used with an iterative technique in 

order to solve the inverse kinematics problem for small changes in position: 

 

! 

d" = J
#1
dP   (5.5) 

 

 

The iterative solution requires that the Jacobian inverse be calculated and used with the 

small change in endpoint position, dP, in order to calculate the change in theta, d!.  This 

value is added to the current ! vector and the process is repeated until the system 

converges to the desired solution. 
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The endpoint control strategy requires that the angular position of each joint of the device 

is known at any given point in time.  Furthermore, the device also requires a minimum of 

three DOF in order to functionally move the endpoint in three-dimensional space.  Since 

no prosthesis was available that met such requirements, a servo motor-based manipulator 

was designed and fabricated (Figure 5.2).  The length of both the upper arm and forearm 

segments were selected based on previous literature [78].  As seen in Figure 5.2, the 

manipulator does not have the ‘conventional’ flexion/extension, abduction/adduction, and 

humeral rotation joints.  The two most proximal joints have instead been arranged in a 
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spherical coordinate representation.  It should be noted that, for endpoint control, the 

actual mechanical joint composition of the device is irrelevant in terms of the control 

input signals required from the user.  Having the weight of the manipulator being 

countered by a thrust bearing
3
 rather than the joint’s servo motor torque is the most 

significant benefit of using a transverse flexion/extension joint rather than an 

abduction/adduction joint for this experimental setup. 

 

 

 
Figure 5.2 – Servo motor manipulator 

                                                 
3
 Thrust bearings differ from common radial bearings since they are designed to support 

loads along the axis of rotation rather than perpendicularly.   
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Several assessment methods and tools exist for the evaluation of prosthetic limb systems 

[73, 79-84] and the outcome measure of each of these methods will vary [85]. This 

variation can best be described by the intended purpose of the outlined method.  Like 

many other fields, the qualitative and quantitative goals will differ depending on whether 

the device is, for example, in an early development, prototype form, or final product 

stages.  Leading researchers
4
 in the prosthetic field have attempted to best describe the 

involvement of various groups within this development cycle through the use of a 

diagram (Figure 5.3) that is based on the International Classification of Function health 

framework [86].  This figure illustrates how early outcome measures typically require the 

involvement of technical, often engineering, expertise to help with the development, 

prototyping and refinement of a control scheme.  Their involvement decreases as the 

outcome measures move away from functionality tests to more activity-based tests where 

the use of a clinical staff and expertise is expanded.  Finally, the user’s involvement 

increases dramatically when the outcome measures focus on actual participation and use 

of the prosthesis by the user. 

                                                 
4
 Dr Peter Kyberd developed the figure based on the discussions from the ‘Outcome 

Measures in an Upper-Limb R&D Context’ workshop in Trondheim, Norway (March 1-

2, 2007).  No publication references were available at the time of the thesis submission 

but the author obtained approval, from Dr Kyberd, to present the diagram in this 

document. 
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Figure 5.3 – Stakeholders’ contribution to assessment domain diagram.  The shaded area roughly 

represents the corresponding location of the functional test described in this chapter. 

 

The intended purpose of the functional test for this project was to evaluate the input 

strategies’ ability to produce accurate and robust signals to be used by the control system 

layer.  The goal of the experiment was to effectively evaluate the strategies’ performance 

while minimizing the effects of possible highly variable factors within the control system.  

As a result, it was felt that it would be preferable to solely concentrate on evaluating the 

gross movement of the manipulator rather than focusing on fine manipulation 

displacement, which would normally be linked to the DOF of the hand and wrist 

components.   This approach was discussed with two occupational therapists
5
 in the 

prosthetic field and both concluded that this approach seemed to appropriately coincide 

with the evaluation objective diagram (Figure 5.3) as the current development of these 

                                                
5
 Kathy Stubblefield, OTR/L, is a member of the Neural Engineering Center for Artificial 

Limbs at the Rehabilitation Institute of Chicago. 

Wendy Hill, BSCOT, is a member of the IBME clinical prosthetic team at the University 

of New Brunswick. 
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control strategies is still attempting to evaluate functional benefit rather than assess a 

complete prosthetic solution for various activities of daily living.  The test also attempted 

to record a measure of mental burden associated with each input strategy.  A dual task 

paradigm was chosen in order to provide possible insight as to how much effort and 

concentration was required to effectively use these input strategies. This approach has 

been used as a method of quantitavily assess the mental load associated with a performed 

task [73, 87, 88].  The cognitive load associated with an individual task performance (i.e. 

reaction test) can be compared with the performance of the same task when combined 

with an additional task (i.e. usability test) in order to calculate a measure of the associated 

mental burden imposed on the user. 
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The experimental appartus was designed and fabricated with the intended purpose of: 

• Acquiring both shoulder position and MES originating from the shoulder 

complex 

• Providing a manipulator device capable of handling endpoint control 

• Quantitatively measuring the input strategy performance for gross movement 

tasks 

• Quantitatively capturing some form of mental burden measure 

 

The experimental setup is illustrated in Figures 5.4 and 5.5 while a brief description of 

the major components is included in the following subsections. 
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Figure 5.4 – Experimental apparatus diagram 

 

 

 
Figure 5.5 – Experimental apparatus setup 
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The usability test apparatus consisted of a central controller and several pushbuttons.  The 

controller would instruct which pushbutton should be illuminated while the pushbuttons 

would alert the controller when pressed.  The sequence in which the buttons were pressed 

was specified in a MATLAB GUI-based program specifically designed for this 

experiment.  

 

 
Figure 5.6 – Usability test system 
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The reaction test used two pushbuttons similar to the ones found in the usability test 

apparatus.  The controller for the reaction test included a buzzer which would instruct the 

user when to perform the test.  The buttons would alert the controller when either the 

primary button was released (i.e. reaction time) or the secondary button was pressed.  The 

purpose of both these buttons is explained in the following section of this chapter.  The 

time at which the test would be initiated was selected through the same GUI-based 

MATLAB software. 
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The experiment consisted of one session where subjects were fitted with eight Ag-AgCl 

Duotrode electrodes (Myotronics
TM

, 6140) placed at physiologically relevant locations 

(Figure 5.7) for the desired shoulder movements.  A reference ground electrode (3M 

Health Care
TM

 RedDot, 2259) was placed on the clavicular bone region midway between 

the sternum and acromium.  A second similar electrode was place on the acromium bone 

landmark and was used to attach the joystick connector. 

 

 
Figure 5.7 – Electrode placement diagram. (Note: Images from Gray, Henry. Anatomy of the Human 

Body. Philadelphia: Lea & Febiger, 1918 were used in this figure) 

 
1 – Upper Trapezius / Supraspinatus 

2 – Mid Trapezius / Rhomboid 

3 – Lattissimus Dorsi 

4 – Teres Major / Minor 

5 – Posterior Deltoid 

6 – Anterior Deltoid 

7 – Pectoralis Major (Clavicular Head) 

8 – Pectoralis Major (Sternal Head)
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Subjects were seated and their right hand secured in order to allow for isometric humeral 

rotation contractions (Figure 5.8).  The users were required to rest their left hand by 

pressing the primary reaction button located in front of them (Figure 5.8). 

 

 
Figure 5.8 – Subject setup diagram 

 

Twelve normally limbed, healthy, male individuals ranging in age from 25 to 33 were 

recruited to participate in this experiment.  Each subject was required to provide informed 

consent (Appendix C) prior to participating in the experiment.  The UNB Research Ethics 

Board approved the experimental procedure used for this research. 

 

Each subject was given a general overview of the purpose of the experiment.  The data 

collection process was also described in detail since most subjects had no prior 
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experience with MES data collection.  Four consecutive reaction test trials were 

performed at the beginning of the experiment. 

 

Each input strategy required a different data collection protocol as outlined in Table 5.1.  

Every LDA classifier used the training data from all 8 MES channels to calculate their 

weight and offset matrices.  The testing data were not used during the experiment and 

were collected for classification accuracy comparisons, which are detailed in a later 

section in this chapter. It should be noted that the amplitude value for MES-based 

classifiers was calculated as the average of the mean absolute value from each channel 

that was then amplified by a gain factor. 

 

The testing of a given input strategy was performed immediately following its associated 

data collection session.  The participants were given the opportunity to practice moving 

the manipulator with the implemented input strategy until such point that the researcher 

felt the user had reached an acceptable level of controllability.  Furthermore, the 

researcher, at his discretion, adjusted the amplitude gain of any given class output to 

ensure that the entire control system was operating at an acceptable and controllable 

speed.   The order in which the input strategies were presented was randomized in order 

to negate any learning effects associated with the experiment.



 79 

 

 



 80 

A total of three trials were completed for each input strategy.  A trial consisted of moving 

the manipulator to 1) press the illuminated start button, 2) press the randomly selected 

illuminated target button, and 3) repeat the process until instructed otherwise. 

Unbeknownst to the user, each target was illuminated twice during each trial and the 

reaction test was performed once for each target.  The order in which the reaction test 

was performed was also randomized in an attempt to avoid any user anticipation of the 

reaction test prompting.  During the course of the trial, the buzzer from the reaction test 

controller would activate and the user was required, with their left hand, to release the 

primary reaction button, press the secondary reaction button, and return their hand back 

to a resting position by pressing the primary reaction button. A time delay was added for 

each reaction test at the onset of the reaching task of the newly illuminated target and was 

varied between 0 and 2 s.  The purpose of this delay was to reduce the user’s ability to 

anticipate the commencement of the reaction test.  All of these parameters were specified 

through the MATLAB GUI software (Figure 5.10).  Once a trial was completed, the 

results were displayed in the GUI for recording purposes. 
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Figure 5.9 – MATLAB graphical user interface screen capture 
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An experimental functional test was described and implemented to evaluate the three 

input strategies described in the previous chapters.  This new test was required since no 

currently available tests are capable of producing results to compare the different user 

intent interpretation strategies developed through the course of this research.  The control 

system was completed with the selection of an endpoint control strategy and servo-based 

manipulator.  Several additional components were designed and fabricated as part of the 



 82 

experimental apparatus.  A total of twelve subjects participated in the study.  The 

analyzed results can be found in the following chapter. 
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The experimental test described in the previous chapter was implemented in an attempt to 

quantitatively and qualitatively assess the functional characteristics of the input 

strategies.  This chapter will focus on presenting the input strategies’ performance and 

associated mental burden.  It should be noted that the vector projection/humeral rotation 

MES based classifier input strategy is simply termed as the vector projection strategy 

throughout this chapter. 

 

The strategy performance metric used for the data analysis is the average time required to 

reach a given button, µTime.  The mental burden metric used for the data analysis is 

expressed as the difference between the time to depress the primary button when 

performing both the reaction and usability tests and the time to depress the same button 

when solely performing the reaction test (6.1). 

 

 

! 

"
REACTION

= T
REACTION DURINGUSABILITY TEST

#T
REACTIONONLY  (6.1) 

 

The relationship between offline classification error and functional usability is also 

covered in this chapter.  The analysis of the data set out to answer the null hypotheses 

outlined in Table 6.1 and are described as follows: 

 

1. The average time to press a usability test button was the same for all input 

strategies. 
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2. The average time to press a usability test button remained the same during the 

entire experiment. 

3. The average time to press a usability test button remained the same during the 

usability testing of a given input strategy. 

4. The average reaction time difference (Eq. 6.1) was the same for all input 

strategies. 

5. The average reaction time difference remained the same during the course of the 

entire experiment. 

6. The average reaction time difference remained the same during the usability 

testing of a given input strategy. 

 
 

1-a)  Ho:  µprojection = µdiscrete = µcombined 

1-b)  Ho:  µprojection = µdiscrete  

1-c)  Ho:  µprojection = µcombined 

1-d)  Ho:  µdiscrete = µcombined  

 

2)  Ho:  µtrial #1 = µtrial #2 = … = µtrial #9 

 

3-a)  Ho:  µprojection trial #1 = µprojection trial #2 = µprojection trial #3 

3-b)  Ho:  µdiscrete trial #1 = µdiscrete trial #2 = µdiscrete trial #3 

3-c)  Ho:  µcombined trial #1 = µcombined trial #2 = µcombined trial #3 

 

4-a)  Ho:  !projection = !discrete = !combined 

4-b)  Ho:  !projection = !discrete 

4-c)  Ho:  !projection = !combined 

4-d)  Ho:  !discrete = !combined 

 

5)  Ho:  !trial #1 = !trial #2 = … = !trial #9 

 

6-a)  Ho:  !projection trial #1 = !projection trial #2 = !projection trial #3 

6-b)  Ho:  !discrete trial #1 = !discrete trial #2 = !discrete trial #3 

6-c)  Ho:  !combined trial #1 = !combined trial #2 = !combined trial #3 

 

 
Table 6.1 – Investigated null hypotheses for input strategies performance test 
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The principal objective of this experimental test was to obtain quantitative and qualitative 

outcomes from the implemented input strategies.  Figure 6.1 shows the averaged usability 

test outcomes for each subject where button time refers to the average time required to 

reach the buttons during the usability test.  The data were subjected to a one-way analysis 

of variance (ANOVA) to investigate statistical significance.  A p value of less than 0.001 

was found, indicating that the input strategies’ performance were not similar.  The results 

also indicate that the vector projection input strategy was significantly better than the 

other two MES-only based strategies (p < 0.001 for both combinations).  

 
Figure 6.1 – Usability performance of input strategies on a per subject basis 

 

 

No significant difference, p=0.228, was found between the two MES strategies (Figure 

6.2).  Further investigation attempted to regroup the MES data based on the order in 

which the MES strategies were presented (i.e. 1
st
 and 2

nd
 implemented MES based 

strategy in experiment).  It was hypothesized that usability performance may have 
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improved based on the amount of time exposed to MES-only based control systems as 

opposed to the specific input strategies themselves. 

 

 
Figure 6.2 – Usability performance of MES input strategies on a per subject basis 

 

 

Statistical analysis of the regrouped data failed to show significance, p = 0.073, although 

the regrouped data do appear to suggest that a possible weak learning affect may be 

present (Figure 6.3).  The short exposure to each control strategy may have been a 

contributing factor to the lack of statistical significance between the two groups. 

 

 
Figure 6.3 – Usability performance of regrouped MES input strategies on a per subject basis 
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While the purpose of the functional test was to evaluate the developed input strategies 

presented in this thesis, the collected data could also be used to evaluate any possible 

learning effect that would have occurred during the course of the experiment regardless 

of the order in which the strategies were presented.  These data yield p = 0.055, 

indicating that no significant improvements occurred during the experiment (Figure 6.4).  

 
Figure 6.4 – Button time versus experiment trial number diagram 
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The effect of trial performance for a given input strategy was further investigated 

(Figures 6.5-6.7).  No significant differences were found for the vector projection, 

discrete MES motions classifier, and combined MES motions classifier strategies (p = 

0.086, 0.427, 0.257 respectively).  As previously stated, the relatively short duration of 

the experiment, both in terms of familiarization and testing, would inhibit the 
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manifestation of such improvements.  The results may have varied if users were given 

additional time to use the device and further familiarize themselves with the control 

systems’ characteristics. 

 
Figure 6.5 – Button time versus vector projection strategy trial number diagram 
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Figure 6.6 – Button time versus discrete strategy trial number diagram 

 

 
Figure 6.7 – Button time versus combined strategy trial number diagram 
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The purpose of evaluating the reaction test outcomes was to measure the additional 

mental load associated when performing the functional test.  Previous research has used 

secondary tasks as a means of increasing the mental burden when performing a usability 

task [73, 87, 88].  Using this method provides a measure of the mental load associated 

with the primary task.  Any sizeable mental burden difference between the input 

strategies could possibly suggest the elimination of the higher mental burdened strategy 

in favor of the others.  The experimental results showed a significant difference between 

the strategies (p = 0.008, Figure 6.8).  Specifically, the difference was found to be 

between the vector projection and the combined motion MES-only classifier strategies (p 

= 0.006).  It should, however, be taken into consideration that the analysis did not find 

any significant difference between the discrete MES-only classifier strategy when paired 

with one of the two other strategies (p = 0.287 and 0.033 for projection/discrete and 

discrete/combined respectively). 
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Figure 6.8 – Reaction time versus input strategy diagram 
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The mental burden associated with a specified control system cannot be fully associated 

with the chosen input strategy.  The control strategy used along with the device dynamics 

may also contribute to the added mental load.  It was hypothesized that there would be no 

reduction in reaction time, due to increased exposure to the endpoint control strategy 

from trial to trial during the experiment (Figure 6.9).  A p = 0.174 for trial effect, over the 

course of the experiment, suggests that there was no significant reduction in the added 

mental burden over the course of the experiment.  The amount did decrease, however, by 

approximately 100 ms when comparing the mean reaction times of the first and last trials 

in the experiment. 
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Figure 6.9 – Reaction time versus experiment trial number diagram 
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The trial effect for a given input strategy was further investigated (Figures 6.10-6.12).  

No significant differences in added cognitive burden were found for the vector 

projection, discrete MES motions classifier, and combined MES motions classifier 

strategies (p = 0.406, 0.627, and 0.670 respectively).  It should be noted that the data 

were highly variable and additional reaction test results may be desirable to provide 

better statistical power to the evaluation of trial effect for the given strategies. 
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Figure 6.10 – Reaction time versus projection strategy trial number diagram 

 

 

 
Figure 6.11 – Reaction time versus discrete strategy trial number diagram 
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Figure 6.12 – Reaction time versus combined strategy trial number diagram 
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The results presented in the previous sections of this chapter focused on providing a 

quantitative assessment of the investigated input strategies.  Qualitative results, obtained 

through a short series of questions to the user, were also recorded upon the completion of 

the experiment.  Additionally, the primary researcher recorded a number of qualitative 

observations throughout the data collection process.  Users were asked to rate the input 

strategies, from most controllable to least controllable, after completing the entire 

experiment (Table 6.1). 
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Table 6.2 – Qualitative input strategy user rating 

 

 

From these ratings, it can be seen that the user group mainly favored the use of the vector 

projection method over the two MES based classifier input strategies.  These findings 

seem to corroborate the experiment’s quantitative results.  It should also be noted that the 

discrete MES motion classifier strategy was frequently preferred over the combined MES 

motion classifier strategy.  Interestingly, in the three other cases, the combined classifier 

was seen after the discrete classifier strategy.  Although no conclusions can be made from 

this observation, the possibility of the order influencing qualitative results does indicate 

the need for further investigation. 

 

Users were also asked if any of the strategies enabled them to proportionally control the 

speed of the device.  Most subjects identified some proportional control capabilities with 

the vector projection method while few felt any proportional amplitude using the MES-
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only based strategies.  This lack of output variation has been a known issue for IBME 

researchers and is currently the subject of ongoing research. 

 

On a final note, the primary researcher observed simultaneous control of two different 

DOF for every subject while using each strategy.  This was to be expected of both the 

vector projection and combined motion strategies but was not, however, deemed possible 

by the discrete motion classifier prior to the experiment.  This classifier can indeed only 

activate one DOF at any point in time.  This apparent simultaneous control of two 

degrees of freedom can most likely be explained by rapid variation of the classifier 

outputs between two different motions (most commonly elevation and protraction). 
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Previous work has suggested that the often-presumed direct relationship between 

classification accuracy and usability performance may be affected by several other 

factors [75].  This conclusion was based on the results of a virtual environment clothespin 

usability test.  Since the protocol of the usability test described in this document included 

the classification accuracy calculation of the MES-based classifiers, the 

accuracy/performance relationship was investigated. 
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6.13 Humeral rotation (projection strategy) classification error and usability performance 

comparison 

 

The humeral rotation classifier’s offline error rate was compared with the usability button 

time results for the vector projection strategy (Figure 6.13).  It can be seen that no clear 

relationship may be drawn from these results.  Similar comparisons were performed for 

both MES-only based discrete and combined motions classifiers (Figures 6.14. 6.15).  In 

both cases, there appears to be a downward trend which would indicate that a worst 

performance may occur when a low error rate (i.e. high classification accuracy) is 

achieved during offline training of the classifier.  Clearly, more data would be required to 

further investigate these possible trends.  It is of the author’s opinion that the usability 

button time would start increasing as the error rate further increased.  Unfortunately, none 

of the users error rates were significantly large enough to corroborate this suggestion.  It 

is also believed that the higher usability button times for highly accurate classifiers may 
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be the result of the users being capable of eliciting highly repeatable contraction patterns 

during the training session but not producing similar patterns during the actual usability 

test.   

 

 
6.14 Discrete classification error and usability performance comparison 

 



 99 

 
6.15 Combined classification error and usability performance comparison  
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The usability results presented in this chapter indicate that the vector projection method 

was significantly better than both MES strategies.  No significant difference was found 

between the two MES system although regrouping the data into the order in which they 

were presented did seem to suggest a possible learning effect.  There were no apparent 

improvements over the course of the experiment although it was stated that the user’s 

limited ‘wear time’ and familiarization might have greatly impacted the results. 

 

Furthermore, the reaction test results did not see a highly significant difference between 

all the strategies.   The results were found to be highly variable and no improvements 

over the course of a given strategy or entire experiment were observed.  This might, 
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again, be explained by the relatively short duration of the experiment and lack of 

considerable practice time with the device. 

 

The qualitative assessment demonstrated that the vector projection strategy was clearly 

the favored input strategy.  From an observer's perspective, the discrete motions and 

projection methods seemed to be more robust.  Most users found the discrete method to 

be the second best.  Three users identified preferring the combined MES strategy to the 

discrete MES method.  It was noted that these users used the combined classifier at some 

point after the discrete strategy. 

 

The classification accuracy and usability performance comparison seems to be in 

agreement with previous research that suggests that their relationship is more complex 

than previously reported in literature.  The results also seemed to indicate that highly 

accurate classifiers may have a decrease in performance when compared to a slightly less 

accurate classification system.  

 

The results presented in this chapter were never meant to eliminate any of the three 

options but rather ensure that all could be reliably used.  Some users faired better than 

others with the MES classifiers.  Most users were able to seemingly elicit some level of 

simultaneous control of two DOF with the use of the discrete motion classifier.  Most 

users reported a small learning and familiarizing curve with respect to the control systems 

while many reported intuitive use of the shoulder for endpoint control. 
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Proportional speed control was only apparent to users with the vector projection method. 

MES based system have often been known for their lack of proportional amplitude 

control and it was not unexpected to see similar results with this functional test.  The 

evaluation of learning effects was inconclusive due to the limited scope of the functional 

test.  It is felt that a more involved training and evaluation protocol would be necessary to 

properly evaluate any improvements in usability or decreased mental load. 

 

A new non-virtual environment based usability test was performed to investigate the 

performance of several different control strategies aimed at high-level amputation cases.  

The MES based strategies are typically used in distal amputation cases and this work has 

shown that they are quite capable of being transferred to more proximal amputation 

cases.  However, the projection-based method offered the best performance of the control 

strategies tested. 
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The intended purpose of this thesis was to exploit the input source potential found at the 

shoulder complex for the control of prosthetic limbs for high-level amputation cases.  

Chapter 2 described several key components of control systems for prosthetic 

applications.  The information content in various input sources and its correlation to user 

intent was discussed.  A review of the literature relating to prosthetic limb control theory 

and developed strategies was presented.  This chapter suggested the need to modularize 

the control system into a series of layered components to allow focused research in 

developing/improving/testing specific elements of the control system as opposed to a 

complete control system solution.   

 

In Chapter 3, the shoulder physiology was introduced with an emphasis on the relevant 

musculature used in various shoulder motions.  An experimental protocol aimed at 

highlighting the elicited myoelectric signal activity was used and the resulting amplitude 

data was superimposed on their respective musculature with the use of amplitude-based 

colormaps.  The experimental data corroborated reference literature in terms of specific 

elicited muscles during various upper extremity motions.  Past work, which focused on 

humeral motion classification, was presented and its limitations were outlined. Three new 

classification schemes based on experimental data collected from one amputee and six 

able bodied individuals was described.  The classifiers were based on movements 

originating from the shoulder complex (shoulder elevation, protraction, depression, and 
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retraction) and humeral rotation motions.  The results revealed that high offline 

classification accuracy could be achieved using these classification systems for the user 

intent interpretation layer.  Furthermore, the amputee results were found to be 

comparable to those from the able bodied group. 

 

A new shoulder position-based input strategy, termed vector projection, was introduced 

in Chapter 4.  This novel mathematical framework addresses sensor installation issues 

related to its type, output range, and orientation while simultaneously adjusting its output 

signals based on the user’s range of motion.  These adjustments are based on a short and 

simple training data collection protocol performed prior to using the prosthetic device.  

Several adjustable parameters were outlined and their characteristics were presented.  

Vector Projection focused on the actual position of the shoulder rather than interpreting 

the MES originating from the shoulder complex musculature.  Several case studies were 

utilized to verify its potential use and to ensure proper functionality. 

 

Chapter 5 introduced a newly devised functional test aimed at evaluating the performance 

of the three input strategies presented in the previous chapters.  A reaction test was also 

developed in an attempt to measure the added mental burden associated with the 

implemented schemes.  These new tests were created since no currently available 

performance tests were capable of both quantitatively and qualitatively measure the 

effectiveness of the newly developed input strategies. The complete control system was 

formed by using an endpoint control strategy along with a servo motor-based 

manipulator.  Users were required to press target buttons by controlling the manipulator 
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using one of the three input strategies. The reaction test apparatus periodically prompted 

users to release a primary button and press a secondary button during the course of the 

usability test. 

 

The analysis of the experimental results was presented in Chapter 6.  The data revealed a 

significant improvement between the performance of the vector projection method and 

the two MES-based input strategies.  User feedback also corroborated these findings.  

The reaction test results indicate that all strategies were intuitive doing little, if any, 

increase in mental burden.  The vector projection method had consistently lower mental 

burden over the combined MES method and was similar in mental burden to the discrete 

MES method. No improvements, in either usability performance or reaction times, were 

observed over the course of a given strategy or the entire experiment.  The experiment’s 

relatively short duration and the user’s lack of training with the device and input 

strategies may have reduced the ability of detecting any significant improvements or the 

task may have been simple enough that there was no learning necessary for accurate use 

due to the intuitive nature of the control strategies. 
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In the author’s opinion, several components of this research are to be considered original 

contributions: 

 

1. The implementation of several new pattern classification schemes using the MES 

elicited during shoulder motions typically remaining for high-level amputation 
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cases.  These schemes were shown to be intuitively controlled in a robust manner 

by solely using shoulder motions.   

 

2. The development of a novel mathematical framework that eliminates some 

prosthesis fabrication issues related to the sensor installation, type, and range 

while also considering the user’s range of motion.  This is done, in part, by using 

a short preliminary data collection session to train the algorithm for the intended 

user and prosthesis. 

 

3. Expanded vector projection algorithm to provide configurable parameters capable 

of adjusting the projection method’s characteristics to suit the user’s needs. 

 

4. Successfully integrated a shoulder position-based scheme with a MES-based 

classifier for a new input strategy layer option. 

 

5. Designed and implemented a new real-time functional test capable of producing 

quantitative and qualitative results to assess both user’s performance and imposed 

mental burden. 
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There remain several points that would benefit from additional investigation efforts: 

 

1. Expand vector projection to include more than 2 sensors.  Although the algorithm 

can, theoretically, be expanded into a higher dimensional input space, its actual 

implementation and consequent robustness remains to be seen. 

 

2. Implement vector projection input strategy within the control system of an 

experimental prosthesis. 

 

3. Investigate using vector projection with other control strategies.  This may allow 

users to robustly incorporate EPP functionality within the overall control system 

with minimal setup time and effort. 

 

4. Attempt an MES-based vector projection input strategy by linearly discriminating 

the input signals to provide a successful implementation. 

 

5. Investigate the effect of the number of electrodes on usability performance of the 

MES-based input strategies.  The investigation of the number electrodes presented 

in this thesis only examined offline classification accuracy results. 

 

6. Study the effect of shoulder socket movement constriction on the performance of 

MES-based systems. 
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7. Attempt to provide proportional amplitude control for MES-based systems.  The 

addition of proportional control would increase the usability of the MES schemes.  

Although this goal has eluded most distal amputation research cases, it is unclear 

how amplitude control will be affected by the shoulder muscle synergies. 
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Figure A.1 - Shoulder Protraction Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.2 - Shoulder Retraction Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.3 - Shoulder Flexion Motion Muscle Activity Diagram. (Note: Upper diagram used images 

from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.4 - Shoulder Extension Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.5 - Shoulder Abduction Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.6 - Shoulder Adduction Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.7 - Transverse Flexion Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.8 - Transverse Extension Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.9 - Medial Humeral Rotation Motion Muscle Activity Diagram. (Note: Upper diagram used 

images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Figure A.10 - Lateral Humeral Rotation Motion Muscle Activity Diagram. (Note: Upper diagram 

used images from Gray, Henry. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918) 
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Appendix C – Informed Consent Form 
 

 

 

 

U N I V E R S I T Y  O F  N E W  B R U N S W I C K  

I N S T I T U T E  O F  B I O M E D I C A L  E N G I N E E R I N G  

INFORMED CONSENT 

Residual Limb Motion Integration within EMG 
Classification Systems 

Investigators: Yves Losier, Dr. B Hudgins & Dr. K. Englehart 

 

Primary Investigator 

Yves Losier – PhD Candidate, Institute of Biomedical Engineering                                                 

Email: yves.losier@unb.ca   Phone: 458 – 7026 

Supervisors: 
 

Dr. B. Hudgins – Director, Institute of Biomedical Engineering 

Email: hudgins@unb.ca   Phone: 458 – 7094 

 

Dr. K. Englehart – Associate Director, Institute of Biomedical Engineering 

Email: kengleha@unb.ca   Phone: 458 - 7020  

 

Purpose 
 

This project seeks to investigate the potential benefits of incorporating shoulder motion position along with 

surface MES as inputs to new experimental input schemes developed at the Institute of Biomedical 

Engineering for the control of prosthetic limbs.     

Procedure 
 

The role of the research subjects in this research is to control a servo motor based robotic arm, using 

shoulder motion, in order to touch a series of pushbuttons. Either the MES produced by the muscles 
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involved in these motions or the shoulder position itself will be measured and used as inputs to the specific 

control strategy.  Up to sixteen channels of surface MES will be used from sixteen different control sites on 

upper arm, shoulder, pectoral, and back muscles.  They will be chosen to reflect the muscles primarily 

responsible for the movement of the shoulder complex. A two-axis joystick will also be attached to the 

acromium skeletal landmark to allow the measurement of the joint’s position. Each subject will attempt to 

control 3 different input control schemes. The subject will complete a training session then perform 5 

pushbutton trials per input control scheme. The entire experiment will take between 1 1/2 – 2 1/2 hours. 

Withdrawal 
 

Participation in this study is strictly voluntary. Participants are free to withdraw from the experiment at any 

time and without any consequences. 

Feedback 
 

Any questions, concerns or comments can be directed to any of the investigators at the Institute of 

Biomedical Engineering at the University of New Brunswick.  Participants can also request any 

publications and information about the final results of conclusions from the study by contacting any of the 

investigators. 

Telephone: (506) 453-4966 

FAX:  (506) 453-4827 

Postal Address: Institute of Biomedical Engineering  

University of New Brunswick   

PO BOX 4400  

Fredericton NB E3B 5A3  

CANADA  

 

 

In the event that you might wish to discuss this project with someone who is not involved with it, you may 

contact Dr. Philip Parker, professor at the Institute of Biomedical Engineering at the University of New 

Brunswick, who may be reached at: 

 

e-mail:  pap@unb.ca       Phone number: 453-4966  

 

Risks 
 

There are no known risks of injury or discomfort regarding this inverstigation.  Surface electrode 

measurements are commonly made at the Institute of Biomedical Engineering and the risks associated with 

these measurements are minimal and include slight skin irritation associated with skin preparation.  All 

measurement devices used in this experiment are isolated to ensure subject safety. 

Potential Benefits 
 

There are no direct benefits to participants in this study.  
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Confidentiality 
 

The identity of the participant will be kept strictly confidential unless consent is obtained from the 

participant. Any scientific report, presentation, or publication of the data will refer to the participant using a 

subject number. Information on the participant’s sex and age may be used. 

Consent 
 

I hereby agree to participate in this study and consent to the use of this research data in scientific 

reports, presentations, and publications with the understanding that my identity will remain 

confidential. I have read and understand the above explanation of the research procedure and all my 

questions have been answered to my satisfaction. I understand that I am free to withdraw from this 

research at any time and without any consequence. 

Participant: _______________________ Signature: _______________________ Date: _____________ 

Investigator: _____________________ Signature: _______________________ Date: ___________ 
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