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Abstract

Progress in myoelectric control technology has over the years been incremental, due in part to the alternating focus of the R&D
between control methodology and device hardware. The technology has over the past 50 years or so moved from single muscle control
of a single prosthesis function to muscle group activity control of multifunction prostheses. Central to these changes have been develop-
ments in the means of extracting information from the myoelectric signal. This paper gives an overview of the myoelectric signal processing
challenge, a brief look at the challenge from an historical perspective, the state-of-the-art in myoelectric signal processing for prosthesis
control, and an indication of where this field is heading. The paper demonstrates that considerable progress has been made in providing
clients with useful and reliable myoelectric communication channels, and that exciting work and developments are on the horizon.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Control systems for powered upper limb prostheses
often use the surface myoelectric signal as the control
input. This control approach, referred to as myoelectric
control, has been a clinically significant option for limb-
deficient individuals for some 30 years. In these systems
voluntarily controlled parameters of the signal from a mus-
cle or muscle group are used to select and modulate a func-
tion of a multifunction prosthesis. Fig. 1 shows a block
diagram schematic of the essential elements of a myoelec-
tric control system. The feedforward path is the myoelec-
tric channel, which is a replacement in part for the
physiological motor control system. The effectiveness of
myoelectric control continues to improve, offering users
improvements in dexterity and ease of use.

The indications for myoelectric control include upper
limb amputation, appropriate control signal sites, i.e.,
superficial voluntarily controlled muscle, and suitable life-
style and functional requirements, i.e., function required
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can be met with externally powered devices. The number
of amputees per year that could be considered candidates
for myolectric control is difficult to ascertain, however, it
is estimated to be in the order of 10,000 per year in the
USA. The acceptance of a controller by the client depends
on a number of factors including client motivation, control
complexity, and system reliability. For an in-depth discus-
sion of powered upper limb prostheses, see Mazumdar
(2004).

Myoelectric signal as control input has dominated
because it has several advantages over other inputs.
Namely that the user is freed of straps and harnesses, the
signal is noninvasively detected on the surface of the skin,
the muscle activity required to provide control signals is
relatively small and can resemble the effort required of an
intact limb, it can be adapted to proportional control with
relative ease, and the required electronic circuits (whether
analog or digital) can be continuously improved and min-
iaturized and they appear to have the prospect of better
long-term reliability.

Myoelectric control improvements over the years have
been incremental in nature. This is due in part to the alter-
nating nature of myoelectric control R&D between control
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Fig. 1. Block diagram illustrating relationship between normal and
myoelectric control systems (shaded area is removed by amputation).
(Reprinted from Parker and Scott (1986) with permission.)

algorithms and device hardware. On the one hand the need
for more sophisticated control algorithms increases with
the device functionality, while on the other more functional
devices are only useful if the algorithms for control are
available. The functionality requirement of the prosthesis
increases with the level of amputation, which leads to a
paradox seen in myoelectric control. Namely that the func-
tionality and thus control site requirements increase with
the level of amputation while the number of sites decreases
and these sites are less physiologic (the muscle normally
involved in the function is used as the control source).

As implied in the previous paragraph the primary engi-
neering issues in myoelectric control are the mechanical
design of multifunction devices (hands, wrists, elbows,
etc.), and the design of appropriate signal processing algo-
rithms for these devices. Given the demand for increased
prosthesis functionality and progress in device capability,
a major R&D thrust to obtain continuous simultaneous
independent multifunction controllers is on. The objective
of this paper is to provide an overview of myoelectric signal
processing in the context of the past, current, and future
directions in prosthesis control.

2. The myoelectric signal processing challenge

While the overall task is control of the prosthesis, it is
appropriate to think of the feedforward path as a commu-
nication channel in which the myoelectric signal becomes
an information carrier. The control information is encoded
by modulating some feature/features of the signal, as dis-

cussed later. In this context, the myoelectric signal process-
ing problem becomes one of demodulation, and an
appropriate demodulation algorithm is required to recover
the control information, as shown in Fig. 2.

The user of a channel modulates the carrier through
motor unit recruitment and firing rate patterns. The mod-
ulation manifests itself in signal parameters such as vari-
ance or mean absolute value (MAV) as well as in signal
patterns such as time-frequency or autoregressive moving
average (ARMA) model parameters. Thus, parameter
and pattern detection/estimation are at the heart of a myo-
electric channel demodulator for prosthesis control.

A channel includes the muscle group, the volume con-
ductor between each muscle of the group and the electrode,
and the summing electrode. The block diagram for a linear
system model for a channel is given in Fig. 3 where for the
ith muscle, i=1, ...,m, S; is the muscle electrical source,
U(t,2;,p;) 1s the pooled innervation point process with
pooled firing rate 4; and pattern p;, P(¢,r;) is the average
motor unit action potential seen at the electrode with dis-
tance r; from the source, and m;(¢) is the ith muscle signal.

The parameters of M(¢) that can be voluntarily modu-
lated are the recruitment parameters A; through muscle
contraction level, and to some extent the p; through varia-
tions in muscle contributions. It can be shown (Parker
et al., 2004) that for the quasi-isometric contractions
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Fig. 3. Linear system model for a myoelectric channel consisting of
muscle sources, S;, innervation processes, U(,4;,p;), and volume conduc-
tor filters, P(z,r;),i=1,2, ... ,m. (Reprinted from Parker et al. (2004) with
permission.)
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Fig. 2. Myoelectric communication channel.
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and for nonstationary contractions

an(t) ~ Y kidi(d), 2)
=1

where o2,

constant.

Thus, it is seen that voluntary modulation of the 4;
through muscle contraction level provides voluntary mod-
ulation of the variance, o2, of M (7). Voluntary modulation
of the variance is the basis of conventional myoelectric con-
trol systems such as the three-state controller (Dorcas and
Scott, 1966). For reviews of amplitude modulation-based
controllers, see Parker and Scott (1986) and Scott and Par-
ker (1988). The modulation of signal, M(z), parameter pat-
terns through /4, and p,, i = 1,2, ... ,m, is the basis for more
recent multifunction controllers (Hudgins et al., 1993;
Englehart et al., 1999). Detailed reviews of pattern classi-
fier-based systems are given in Hudgins et al. (1994) and
Englehart et al. (2001a). All myoelectric communication
channel demodulators have the task of recovering/estimat-
ing these parameters and/or parameter patterns.

With reference to Fig. 4, performance measures for the
communication channel are typically demodulator func-
tion classification rate (probability of error), and operator
error. As pointed out in Englehart and Hudgins (2003)
these might not well reflect prosthesis functionality in
which case an active daily living (ADL) assessment is
required (Lock et al., 2005). The challenge for myoelectric
channel design is to maximize functionality and perfor-
mance while minimizing complexity and response time.

What is it about the myoelectric channel that makes sig-
nal processing for prosthesis control such a challenge?
There are two principal reasons. The first has to do with
demodulator output signal-to-noise ratio (SNR) where sig-
nal and noise are the demodulator’s output mean and stan-
dard deviation, respectively — see Fig. 5. Unlike the
mechanical force output at the muscle tendon where the
SNR is large (>10) and increases with the number of active
motor units, the SNR of the myoelectric channel demodu-
lator is relatively low (<10) and does not increase with the
number of motor units beyond about 10 (Parker and Scott,

is the variance of M(¢), and k; is a muscle
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Fig. 5. MES mean absolute value (MAYV) estimate at three different
contraction levels. MAV estimated with a 250 ms rectangular averaging
window.

1986). Specifically, SNR can be shown, (Parker et al.,
2004), to be given for MAV by SNR = (4BT)"?, where B
is the signal equivalent statistical bandwidth (=100 Hz)
and T is the demodulator response time. The demodulator
SNR will in large part determine the classification perfor-
mance, and it can be seen that 7' is the only design param-
eter through which the SNR can be affected. A typical
value for B is 100 Hz, and a value of 250 ms for T gives
an SNR of only 10. Thus, there is a tradeoff between
demodulator performance and dynamic response. It is gen-
erally accepted that 7 should in practice not exceed 200 ms.

The second reason is the difficulty presented to the pros-
thesis user of generating correct signals at the channel
input. For the amputee this will be without the benefit of
full proprioceptive feedback. Incorrect signals presented
to the channel produce output errors (referred to as opera-
tor error) even if the demodulator’s classification is correct.
Operator error rate has been found to be acceptable in the
case of conventional three-state amplitude modulation con-
trollers and in some multifunction controllers using higher
dimension signal pattern modulation.

3. Historical perspective

Early, pre-1960s, myoelectric communication channels
used two-state amplitude modulation and envelope demod-
ulators (Berger and Huppert, 1952; Reiter, 1948) and were
limited clinically by the electronics technology of the per-
iod. With the development of semiconductor device tech-
nology and the associated decrease in device size and
power requirements, clinical application saw promise and
research and development increased dramatically.

During the 1960s and 1970s significant progress was
made in the development of myoelectric signal amplitude
and rate modulation for multistate controllers. Two-state
amplitude- or rate-modulated channels (see Fig. 6) were
the first to receive R&D attention (Battye et al., 1955; Bot-
tomley, 1965; Herberts, 1969; Jacobsen and Mann, 1973;
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Fig. 6. Example of two-state amplitude modulation for control of a hand.
S1 and S2 are switching thresholds for flexor and extensor activity,
respectively. (Reprinted from Parker et al. (2004) with permission.)

Kato et al., 1967; Kobrinski, 1960; Lyman et al., 1976; Sch-
midl, 1977; Vodovnik et al., 1967) and the first to be taken
up commercially by such companies as Otto Bock, Hugh
Steeper, Motion Control Inc., Liberty Mutual, Variety
Ability Systems, and Fidelity Electronics. These systems
are attractive as they are physiologic and hence easy to
use, and have very good performance. On the other hand,
each function requires a muscle control source, the avail-
ability of which decreases as the amputation level increases.
To address this limitation three-state amplitude-modulated
channels (see Fig. 7) were developed (Childress, 1969; Dor-
cas and Scott, 1966) and taken up commercially by such
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Fig. 7. Example of three-state amplitude modulation for control of a
hand. S1 and S2 are switching thresholds for flexor and extensor activity,
respectively. (Reprinted from Parker et al. (2004) with permission.)

Signal Representation

companies as Otto Bock, Hugh Steeper, Hosmer, and
Fidelity Electronics. These systems, in which each muscle
source can control two functions, are not physiologic and
hence not as easy to use although with a brief training per-
iod the performance is good (Richard et al., 1983; Paciga
et al., 1980). It is also shown that, for amplitude-modulated
channels with more than three states, the operator error is
unacceptable.

The period 1975 to the present saw large improvements
in performance (>90%) for multifunction (>2) control
through application of new approaches including optimal
detection/estimation, pattern recognition, and electrode
arrays. Fig. 8 shows a block diagram of the general demod-
ulation/classification process for the multifunction control-
ler. For classification purposes a set of MES features must
be selected, for example, time-domain statistics, short-time
Fourier transform (STFT) values, wavelet transform val-
ues, etc. This feature vector can, in general, be of very high
dimension in which case dimension reduction techniques
such as feature selection or feature projection are applied
in order to reduce the classification complexity. Possible
classifiers include Bayes, linear discriminant analyzer
(LDA), and multilayer perceptron neural network (MLP),
each of which has its advantages and disadvantages.

In multifunction systems using a single myoelectric chan-
nel with amplitude modulation improved demodulation
performance was obtained through the application of opti-
mal signaling and detection methods (Bayes classifier) (Par-
ker et al., 1977) and parameter estimation methods (Hogan
and Mann, 1980). Signal amplitude modulation and detec-
tion is a pattern recognition-based controller in which the
classifier’s feature vector is one-dimensional. In order to
obtain acceptable classifier performance with more than
three functions and still one channel, pattern-based systems
using more than one signal parameter (feature vector
dimension >1) were developed. Graupe and Cline (1975)
were among the first, using four parameters of an ARMA
model of steady-state signal with a ““nearest neighbor” clas-
sifier to classify four functions with a performance > 95%.
Hudgins et al. (1993) developed a four-function system
using four time-domain parameters of transient signal with
an adaptive neural network (ANN) classifier as shown in
Fig. 9. After off-line training of the ANN the classifier coef-
ficients are downloaded to a microprocessor-based on-line
controller. A performance, averaged over limb-deficient
and normally limbed users, of 85% was obtained.

Measured | Feature Dimensionalit: I . .
Signal | Extraction > Reduction Y : »| Classification | 5, Lcal:::;js
- - 1| |
Time Domain e  Feature Selection « LDA
STFT e Feature Projection e MLP

L ]
.
e  Wavelet
¢  Wavelet Packet

Fig. 8. A breakdown of the classification problem, and the possible methods applicable to each block. (Reprinted from Englehart et al. (1999) with

permission.)
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Fig. 9. A multifunction control scheme based upon the transient MES, using an artificial neural network. (Reprinted from Englehart et al., 2001a with

permission.)

The previous paragraph described performance
improvements in the single-channel multifunction system
through an increase in feature vector dimension. Improve-
ments can be also be obtained through and increase in the
number of channels. One of the earliest of this case is the
work of Finley and Wirta (1967), who used six channels
of amplitude modulation with a “linear discriminant” clas-
sifier to obtain a performance > 80% with a six-function
system. Lyman et al. (1976) used nine channels for three
degrees of freedom with amplitude modulation and a
“nearest neighbor” classifier. Almstrom et al. (1981)
obtained a 90% classification rate with amplitude modula-
tion of six channels for six functions using a linear discrim-
inant classifier. Saridis and Gootee (1982) developed a
two-channel system with a Bayes classifier of signal
moments for six functions and 85% classification. Doer-
shuk et al. (1983) used four channels with four ARMA
coefficients per channel to classify four functions with a
“nearest neighbor” classifier and >95% classification.
Kuruganti et al. (1995) used two channels with five time-
domain features per channel to classify four functions with
an ANN classifier and 90% classification. Englehart et al.
(2001b) used four channels with wavelet coefficient features
and an ANN to classify six functions at 98% classification.

The contributions for this period can be summarized as:
(1) the optimization of MES parameter detection/estima-
tion, (2) the application of MES temporal and spatial pat-
terns, (3) the development of signal pattern feature
selection and reduction, (4) the application of trainable
classifiers, and (5) the application of electrode arrays and
muscle group signal patterns.

4. State of the art

Commercially available myoelectric control systems use
combinations of one-channel two-state and one-channel

three-state communications with amplitude or rate modu-
lation/demodulation. These systems are well developed,
reasonably reliable, and for the most part provide the per-
formance that clients require for the available prostheses
hardware. However, with the recent developments in mul-
tifunction prostheses hardware there has been considerable
effort towards providing improved multifunction (>2)
control.

The ultimate goal of this development work is to have
simultaneous, independent, and proportional control of
multiple degrees of freedom with acceptable performance
(classification rate and ADL) and near “‘normal” control
complexity and response time. The thrusts in R&D
towards this end have been in a number of directions. First,
to improve multifunction performance while maintaining
or reducing control complexity, is extending the signal pat-
tern work through the classification of signal parameter
patterns generated by an electrode array detecting multiple
signals from a muscle group — a multichannel approach.
The different patterns are generated by normal movements
associated with the muscle group. Davidge et al. (2004)
investigated the extent of increase in classification perfor-
mance with number of channels — see Fig. 10. The perfor-
mance in classifying 10 functions with a linear discriminant
(LD) classifier increased with number of channels, reaching
94% at 16 channels. However, the performances at eight
and four channels drop to only 93% and 87%, respectively.

The second thrust, aimed at reducing control complexity
for the user, is to develop multifunction pattern classifica-
tion and control algorithms which allow the user to gener-
ate the patterns via normal movements (virtual movements
in the case of an amputee), and which can be “trained” to
optimize performance for a given user. This approach is
becoming standard, and can be readily realized through
microprocessor-based Bayes, ANN, and LD classifiers.
The classifier is trained off-line with a PC and the resulting
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Fig. 10. Classification results of discrete motions using autoregressive
model coefficients and RMS value as features and an LDA classifier. The
heavy black line is the mean over six subjects and the error bars indicate
one standard deviation of the data.

coefficients downloaded to the microprocessor — see Fig. 9
and Hudgins et al. (1997).

With this approach the classifier can be easily retrained
if necessary, and indeed the signal processing strategy can
be quickly modified. Englehart and Hudgins (2003) devel-
oped a real-time processor around this approach. Their
classification performance using four channels in a four-
class problem with a LD classifier, as a function of proces-
sor delay and data analysis window, is shown in Fig. 11.

Another thrust is to obtain a “continuous” controller
(Englehart et al., 2001b) in which the signal modulation
can move from function to function without first going
to the “rest” function. This is desirable from the user’s
point of view as it is more efficient and results in a seamless
function transition. A relatively new and promising

221 —A- T =256ms
= Ty=128ms

20t -~ Ty=64ms
;\? —— Unprocessed decisions
S
w
c
k<]
©
Q2
‘@
7]
<
(6]

4 1 1 1 J

8 16 32 64 128 256
Analysis Window Length, T, (ms)

Fig. 11. The effect of analysis window length, 7,, and the acceptable
delay, T4, upon the classification accuracy of the system. The error is
expressed as a percentage, averaged over all 12 subjects. (Reprinted from
Englehart and Hudgins (2003) with permission.)
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Fig. 12. Targeted reinnervation on shoulder disarticulation patient.
(Reprinted from Miller et al. (2005) with permission.)

approach (Chan and Englehart, 2005) to the continuous
controller uses a hidden Markov model (HMM) as the
classifier. The HMM classifier is well suited to the myoelec-
tric channel because of its resilience to temporal variations.
It was found that the performance with a four-channel six-
function system exceeded that of an MLP ANN classifier
and it also handled the function transitions with less error.

A major constraint on current myoelectric controllers is
not only that the number of signal sources decreases with
level of amputation but also that the sources that are avail-
able are mostly not physiologic. This clearly adds greatly to
the control complexity, load on the user, and user training.
However, in many cases the nerves that originally inner-
vated the lost muscles and functions are intact — albeit
truncated. An innovative approach to resolving this con-
straint, referred to as ‘‘targeted reinnervation” (Miller
et al., 2005), is to surgically deinnervate some functioning
muscle (say in the chest region) and reinnervate it with
the truncated nerve. The reinnervated muscle can now act
as a physiologic myoelectric source for control of a func-
tion lost due to amputation — see Fig. 12.

5. Future directions and expectations

There are a number of research directions towards meet-
ing the stated goal of simultaneous, independent, and pro-
portional control of multiple degrees of freedom with
acceptable performance (classification rate and ADL) and
near ‘“‘normal” control complexity and response time.

To reach simultaneous, independent, and proportional
control, two possible approaches might be taken — direct
and pattern function selection. The direct approach entails
a one-to-one mapping between a given channel activity and
a given function. This requires a signal detection method that
is immune to crosstalk between muscles. Most promising in
this regard is the targeted reinnervation work described
above together with the application of signal telemetry
implants. An implantable system proposed by Weir et al.
(2005) can be placed in the reinnervated muscle providing
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a control source that is both physiologic and immune to
crosstalk — thus direct proportional control of a function.
A number of such implants could provide the desired simul-
taneous, independent, and proportional control.

The pattern approach would have an electrode array
detecting, from a group of muscles, signals with feature
patterns that depend on the group co-activity. The co-
activity pattern and feature set would map proportionally
to a corresponding set of degree-of-freedoms (DOF). The
proportional mapping would be established through the
training of an ANN that has the same number of propor-
tional outputs as the number of DOFs. Through the train-
ing the ANN learns which subset of DOFs are required and
at what level of activation for the required limb movement.

An interesting and potentially effective approach to
independent simultaneous control is independent compo-
nent analysis and blind source separation. Applied to the
signals generated by a group of muscles and detected by
an array of electrodes, it is theoretically possible, under cer-
tain conditions, to recover the individual muscle signals for
control purposes.

The USA Defense Advanced Research Projects Agency
(DARPA) has initiated an R&D program to investigate
novel neuromuscular interfaces for the control of prosthe-
ses. This very ambitious research program will look at con-
trol inputs from a mixture of peripheral nerve and
myoelectric signals, as well as signals for proprioceptive,
local, and supervisory feedback.

6. Concluding remark

Myoelectric signal processing for powered prosthesis con-
trol input has indeed come a long way, but still there are
many challenges and exciting prospects for improvements!
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