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A New Strategy for
Multifunction Myoelectric Control

Bernard Hudgins, Philip Parker, Senior Member, IEEE, and Robert N. Scott, Senior Member, [EEE

Abstract—This paper describes a novel approach to the control
of a multifunction prosthesis based on the classification of myo-
electric patterns. It is shown that the myoelectric signal exhibits
a deterministic structure during the initial phase of a muscle
contraction. Features are extracted from several time segments
of the myoelectric signal to preserve pattern structure. These
features are then classified using an artificial neural network.
The control signals are derived from natural contraction patterns
which can be produced reliably with little subject training. The
new control scheme increases the number of functions which can
be controlled by a single channel of myoelectric signal but does
so in a way which does not increase the effort required by the
amputee. Results are presented to support this approach.

BACKGROUND

YOELECTRIC systems have received widespread use

as controls of prosthetic devices for individuals with
amputations or congenitally deficient upper limbs [1], [2].
Many systems are now available commerically to control a
single device (hand, elbow, wrist). These systems extract a
control signal based on an estimate of the amplitude [3], or
on the rate of change [4] of the myoelectric signal (MES).
This control signal is either derived from a single myoelectric
channel, in which case the amplitude of the signal is used to
select one of three states of device operation, or it is derived
from two channels of myoelectric signal, in which case the
channel with the largest amplitude determines the device state.
Once the state is selected its speed may be constant [3], or it
may be controlled in a manner proportional to the level of
myoelectric activity [5]. Although the success of fitting these
systems for single device control is apparent, the extension to
the control of more than one device (either simultaneously
or sequentially) has been difficult. For this reason fittings
of high level amputees often have been unsuccessful [2].
However, it is these individuals who would benefit most from
the functional replacement of their lost limbs. The lack of
success can be attributed primarily to the inadequacy of present
multifunction control strategies.

To develop a practical multifunction myoelectrically con-
trolled prosthesis it is necessary to extract more information
from each channel of myoelectric signal, or to assign a
control function to a specific combination of signals from
a multichannel system. In this way, the number of control
outputs or functions may be greater than the number of
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control inputs or channels. The number of functions per control
channel of a level coded or rate coded system is limited to
at most two [6]. An attempt to increse the number of states
per channel by using state feedback has been unsuccessful
[7]. Other multifunction prostheses have been developed using
several channels of amplitude coding [8], [9]. These require the
existence of several electrode sites which are usually difficult
if not possible to locate on high level amputees. The Boston
elbow [5] and Utah arm [10] have been used with some success
in combination with an electric hand but this has required the
use of a mechanical switching arrangement or a switch based
on a quick co-contraction to select which of the two devices
is to be controlled. More elaborate multifunction prostheses
have been attempted but the result is that training the user to
isolate the required number of control muscles is impractical
if not impossible [11].

The myoelectric signal is essentially a one-dimensional
pattern and the methods and algorithms developed for patten
recognition can be applied to its analysis. The information
extracted from the myoelectric signal, represented in a feature
vector, is chosen to minimize the control error. In order to
achieve this, a feature set must be chosen which maximally
separates the desired output classes. The need for fast response
of the prosthesis limits the period over which these features
can be extracted. Once a feature set has been chosen, a suitable
pattern classifier can be used to determine class output.

Numerous researchers have discussed attempts toward solv-
ing the multifunction myoelectric control problem using pat-
tern recognition. All multifunction myoelectric control systems
implemented using pattern recognition have been based on
the assumption that at a given electrode location, the set of
parameters describing the myoelectric signal will be repeatable
for a given state of muscle activation and furthermore it
will be different from one state of activation to another
[12]. To control M functions in the prosthesis requires M
unique patterns of activity. The control schemes have been
based almost entirely on the discriminant approach to pattern
recognition, in which each pattern is described by a set of N
features. These features may be myoelectric signals from a
number of channels, a set of statistics describing the signal
sampled at one control site, or some other reproducible set of
features. Once the patterns are described in this N-dimensional
feature space an unknown pattern can be compared with them,
in some way, to determine which of the M functions should
be selected.

Multifunction control systems based on either the weighted
sum of the mean absolute values [13]-[15] or other statis-
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tical measures [16]-[18] extracted from many channels of
myoelectric signal share many of the same deficiencies of
multichannel amplitude coded systems. Graupe developed an
alternative pattern recognition scheme based on time series
analysis of the myoelectric signal sampled from a single
control site [12], [19], [20]. In essence he has replaced the
information as obtained from the signal’s mean absolute value
at many sites with the many parameters of the stochastic
temporal pattern of the signal at one site. Others have extended
Graupe’s work using a multichannel approach [21]. Kelly
et alhas implemented a single channel multifunction control
scheme based on the classification of myoelectric spectra using
an artificial neural network. These single-channel systems
required a relatively large computational effort and did not
evolve beyond a laboratory implementation.

The purpose of the current work was to investigate new
approaches to the problem of control of a multifunction
prosthetic limb. The paper has two major sections. Section
I describes new information found in the patterns of instanta-
neous myoelectric signal associated with the onset of a muscle
contraction. Section II discusses implementation and evalu-
ation of a single channel five-state proportional myoelectric
control system based on the classification of these patterns.

SECTION 1. PRELIMINARY STUDY
INTRODUCTION

This section describes research undertaken to determine if
more information can be extracted from a signal channel of
myoelectric signal. The myoelectric signal measured at the
skin surface should hold a wealth of information concerning
the underlying muscle contraction. However, much of this
information is neglected or obscured by the signal conditioners
used in conventional myoelectric control systems. The section
begins with a description of an experiment in which myoelec-
tric signals from normally limbed and amputee subjects are
collected during static and dynamic contractions of the arm.
The results describe new information in the myoelectric signal
found during the initial phase of a dynamic contraction. The
section concludes with a discussion of how this information
can be used to control a multifunction myoelectric limb.

METHODS

Four normally limbed subjects and one above elbow am-
putee took part in this study. Myoelectric data were obtained
from each subject during isometric and anisometric contrac-
tions. The signal was acquired using a single bipolar surface
electrode pair. An active electrode was placed over each
of the biceps brachii and triceps brachii muscle groups of
each subject. This arrangement should provide the maximum
pickup region for the acquisition of myoelectric signal from
all muscles in the upper arm. A differential amplifier with an
isolated input and signal gain of 5000 was used to amplify
the myoelectric signal. The amplified myoelectric signal was
sampled at a rate of 1 kHz using a Metrabyte DAS16F
A/D board in an IBM PC/AT compatible microcomputer. A
threshold based on the level of myoelectric activity was used
to trigger sampling.
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The subjects were first instructed to maintain a constant
force isometric contraction and myoelectric data were acquired
once the contraction was established. This was repeated for
a total of 60 steady-state myoelectric records from each
subject. Each subject was then asked to produce several
anisometric contractions types (e.g., flexion, extension, etc.).
All contractions began with the subject’s arm by the side in
a comfortable neutral position. No constraints were placed on
the force, velocity or range of the contraction except that the
subject was asked to be consistent in reproducing the desired
motion. Myoelectric data was acquired for 500 ms after the
trigger. Each normally limbed subject repeated each specific
contraction type a total of 60 times. The amputee was asked
to repeat each contraction type 20 times.

The data for a subject and specific contraction type formed
an ensemble of records. An ensemble average of the myoelec-
tric signal was calculated by summing the sample values at an
instant in time n7T over all records. To remove measurement
induced errors, each record is aligned with the sum using the
crosscorrelation technique described by Woody [24] before it
is added to the sum. The sum is then divided by the number of
records in the ensemble to give an average value for the signal
at that instant in time. This is done for each instantaneous time
sample, (i.e., n = 0,---,499). The resulting average over
many records will be approximately the mean value of the
distribution of the instantaneous time samples. This procedure
was used for averaging both the steady state signal and the
signal from the anisometric contractions.

RESULTS

All myoelectric control systems are based on the common
assumption that the instantaneous value of the myoelectric
signal contains no information. According to the accepted
myoelectric signal generation models, the myoelectric signal
measured using surface electrodes is stochastic [25]. This is
due to the random nature of the pooled activity of the motor
units within the pickup region of the electrodes. The firing
intervals of single motor units are randomly distributed with
a firing rate in the order of ten per second. As many motor
units become active the firing rate increases and the pooled
activity closely fits a Gaussian process. This implies that the
instantaneous amplitude of the myoelectric signal is a random
variable with zero mean. The myoelectric signal variance is a
function of contraction level [26]. It is this relationship which
is exploited in the conventional amplitude coded myoelectric
control systems. The accepted signal generation model implies
there is no information in the instantaneous value of the
myoelectric signal.

Fig. 1(a) shows several 300 ms records of myoelectric
signal from a normally limbed subject measured during a
constant force isometric contraction. Although the electrode
arrangement is unusual, the recordings are typical of my-
oelectric signal measured during a steady state isometric
contraction. Fig. 1(b) is an ensemble average of 60 records
of this steady state myoelectric signal. This figure illustrates
that the steady state myoelectric signal is indeed zero mean
and has no apparent structure. There is a factor 56 reduction
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Fig. 1. (a) Four 300 ms records of steady state myoelectric signal (normally
limbed subject). (b) The ensemble average of 60 records of steady state
myoelectric signal. (Note: only the first 300 ms of the ensemble is shown.)

in the variance of the ensemble over the average variance of
the individual waveforms in the ensemble. The reduction in
variance agrees with that expected for an ensemble average of
60 random waveforms.

Although these results support the accepted myoelectric
signal generation models, consider the waveforms shown in
Fig. 2. This figure shows several records of the initial 300
ms of myoelectric signal measured from the same subject
and electrode arrangement but taken during the initiation of
elbow flexion. An ensemble average of 60 of these waveforms
is shown in Fig. 2(b). This figure clearly shows that over
60 repeated trials there were many instantaneous samples
which were not random but had predictable values which were
maintained in the ensemble average waveform. The structure
in this ensemble and its deterministic nature are apparent.
The reduction in variance is only 7 rather than 60, which
indicates there is a significant nonrandom component in these
waveforms.

Similar structure can be found in myoelectric waveforms
from other contraction types. Fig. 3 shows the dynamic pattens
of myoelectric signal which accompany the onset of several
different types of muscle contraction. These signals were again
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Fig. 2. (a) Four 300 ms records of myoelectric signal acquired during the
initial phase of elbow flexion (normally limbed subject). (b) The ensemble
average of sixty 300 ms records of myoelectric signal acquired during elbow
flexion. (Note: only the first 300 ms of the ensemble is shown.)

obtained from the same subject using the same electrode
arrangement as described above. Each figure is the ensemble
average of 60 waveforms recorded during the initial phase of
a particular contraction, (i.e., elbow extension, wrist flexion,
and humeral lateral/medial rotation). Although the reduction
in variance (R) is large in some cases, it is still far less than
that expected for an ensemble of random waveforms. The
figures clearly illustrate that the inherent structure for each
contraction type is reproducible. This deterministic component
is of short duration and occurs during the initial phases of the
contraction. It is interesting to observe that the structure in the
waveform pattern for each contraction type is distinct. Results
from the other normally limbed subjects were similar to those
found from this subject. However, since the exact form and
execution of the contraction types could vary between subjects,
no attempt was made to compare data across subjects.

Fig. 4 shows the ensemble averages of 20 myoelectric
waveforms acquired from the amputee subject. Each figure
is the ensemble average of 20 waveforms recorded during the
initial phase of a particular contraction, (i.e., extension, flexion,
co-contraction, and humeral medial rotation). Although, as
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Fig. 3. The ensemble average of sixty 300 ms records of myoelectric

signal acquired during each of four contraction types. (a) Forearm supination,
R = 12: (b) elbow extension, R = 30: (c) wrist flexion, R = 6.0; and (d)
forearm pronation, R = 33. (Note: R is the reduction in variance. Only the
first 300 ms of each ensemble is shown. Data from a normally limbed subject.)

expected, the pattern of myoelectric activity is different than
the normally limbed subject, the inherent structure in the signal
from these contractions is again maintained.

DiSCUSSION

It is well known that the low frequency envelopes of
myoelectric signals of intact muscles acting about a joint are
different for different joint movements [27]. The change in the
relative timing of on/off activity in the different muscles con-
tributing to the contraction is reflected in the phasic envelopes
of myoelectric activity measured during limb movement. In
this case the pattern of the dynamic waveforms should change
with different contraction types. This is certainly a factor in
the observed patterns, but the deterministic structure in some
of the waveforms implies more than just timing patterns of
different muscle activations. Hannaford and Lehman [28] used
short time Fourier analysis to investigate the activity patterns
of the muscles which produce wrist and head movements. They
calculated short time spectra (75 ms) from many overlapping
time segments and combined them to form a spectragram
for each motion. This is similar to the “voice print” analysis
technique used in speech recognition. Their results showed that
the myoelectric spectra measured during rapid movements of
the wrist and head had less variability than those measured
during isometric contractions. This is consistent with the low
variability of the instantaneous myoelectric waveforms shown
in this section.

An obvious mechanism which could produce this nonran-
dom component is movement artifact. However, attempts to
reproduce these patterns by passive movement of the limb
and rapid electrode lead motion have failed. The possibility
that the determinisitic component is due to unknown sources
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Fig. 4. The ensemble average of twenty 300 ms records of myoelectric signal
acquired during each of 4 contraction types. (a) Inward humeral rotation,
R = 8.1: (b) contraction of the flexor muscle group, R = 4.1; (c) contraction
of the extensor muscle group, R = 11.3: and (d) biceps/triceps co-contraction,
R = 3.1. (Note scale change in (a) and (b). R is the reduction in variance.
Only the first 300 ms of each ensemble is shown. Data from an amputee
subject.)

of movement artifact such as the relative movement between
signal sources and the detection electrodes has not been ruled
out. Future work will investigate physiological and artifact
based mechanisms which may produce these patterns. The
emphasis of the present work is on the development of a
myoelectric control system based on this new information.

CONCLUSIONS

The data presented in this section suggest there is consid-
erable structure in the myoelectric signal during the onset
of a contraction. Furthermore, this structure is distinct for
contractions which produce different limb functions. Conse-
quently, the actual structure of the myoelectric signal over
time can be used to discriminate limb function. The result of
this discrimination can be used to control the selection of a
prosthetic limb function.

This is an entirely new concept. Other myoelectric control
schemes have considered the signal when it has reached steady
state conditions and have required signal averaging to obtain
an accurate estimate of the contraction level. A control scheme
based on signal dynamics would eliminate the delay associated
with signal averaging and thus increase the time available
for signal analysis. The approach is also attractive because
these myoelectric patterns are generated by producing the
contraction which naturally corresponds with the desired limb
function. Such a natural scheme is preferred. As well, control
schemes based on steady state levels or on the rate of increase
in this level are limited to two limb functions, (three-states
including off), for a single myoelectric channel. The number
of functions which can be selected by the proposed scheme
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is limited only by the number of distinct patterns which can
be generated. A further benefit is that proportional control of
the selected function is easily incorporated into the new state
selection scheme. Section II of this paper discusses the design,
implementation, and evaluation of a multifunction myoelectric
control system based on the classification of these patterns.

SECTION II. A NEW MULTIFUNCTION
MYOELECTRIC CONTROL SYSTEM
INTRODUCTION

This section describes the development of a multifunction
myoelectric control system based on the classifications of
the myoelectric patterns discussed in Section I. The section
will begin with a discussion on the selection of the pattern
classifier. The features used to represent the myoelectric pat-
terns are then introduced. The basic operation of the new
multifunction myoelectric control system is described and
several experiments are outlined to evaluate the control system
performance. The section concludes with a discussion of the
results and suggestions for future enhancements.

CLASSIFIER SELECTION

The pattern classifier is the major component of the new
control scheme. There are several factors which must be
considered when choosing a classifier for the present ap-
plication. Due to the nature of the myoelectric signal, it
is reasonable to expect a large variation in the value of a
particular feature between individuals. This is particularly
true in the case where muscle structure is altered due to
an amputation or a congenital defect. Other factors such
as changes in electrode position, myoelectric signal training,
and body weight fluctuations will produce changes in feature
values over time. A suitable classifier must be trainable
to accommodate the expected individual differences and, as
well, must be able to adapt to slow variations in feature
values. Another factor arises from the user’s perception of
the myoelectric control system. The user must quickly feel
confident in his ability to control the limb with reasonable
accuracy. This limits the amount of time available to obtain
the data which is needed to train the classifier. An artificial
neural network (ANN) was chosen as the classifier for this
application. This form of classifier determines the best set of
feature weights based on a series of training patterns. The
relative importance of each feature is determined during the
training of the network. With a suitable training algorithm and
sufficient training data the network automatically integrates
the diverse feature set using a metric which minimizes the
specified error, (i.e., mean squared error at the output). Recent
work suggests that the relationship between input features for
a specific class is retained in the stored weights of a trained
network [29]. This means that structure within the feature
set is used to enhance classification. In a way it is similar
to a syntactic classifier which determines class assignment
by feature/primitive structure. This is unlike nearest neighbor
and discriminant classifiers which treat each feature as an
independent element in the set. Section I illustrated that there
is information in the time structure of the myoelectric signal. A

classifier which uses this information would be appropriate. A
neural network is also inherently a parallel structure in which
the comparison to all classes is done simultaneously. The value
of each output of the ANN is essentially a measure of the
similarity of the unknown pattern to each of the classes.

The basic structure of the neural network used in the present
study was a standard two-layer network in which all the input
nodes, which correspond to the waveform features, are fully
connected with the hidden layer. The hidden layer is in turn
fully connected with the output nodes which correspond to
pattern classes. The network is trained using a standard back
propagation algorithm [30]. This algorithm was chosen due to
its extensive use in the pattern recognition literature. Although
the gradient descent nature of this algorithm means that
learning can be slow, recent works by several groups [31]-[34]
have discussed enhancements and alternatives to the standard
backpropagation algorithm to improve network training and
performance. Much time can be spent investigating alternative
network structues and training algorithms. That exercise is
beyond the scope of the present research.

Although the numbers of input and output neuronal units are
determined by the number of features and classes, the optimum
number of hidden units has not been established and appears
to be problem dependent. The hidden layer should be kept
as small as possible to reduce the complexity of the neural
network algorithm and to improve generalization when using a
small set of training data. However, the size must be sufficient
to learn the necessary input/output mapping. The number of
hidden units can influence the classifier performance in several
ways. Increasing the number of hidden units will increase the
time taken to do each error update in the backpropagation
training and also will increase the time taken by the trained
network to do the pattern classification. However, the num-
ber of iterations required for training may actually decrease
because of the increased storage capability of the network,
and thus training time may decrease. On the other hand, this
increased network storage may allow the network to memorize
the training data and make generalization to unknown patterns
less successful. Too few hidden units will result in poor
network performance because the network will be unable to
learn the necessary input/output mapping represented in the
training data. An optimum number of hidden units must be
determined experimentally for this application.

FEATURE SELECTION

The success of any pattern classification system depends
almost entirely on the choice of features used to represent the
continuous time waveforms. Although the transient waveforms
presented in Section I have a deterministic component, they
also contain a random component. An attempt to classify
these patterns using the sampled raw myoelectric signal will
result in a classification accuracy which is unacceptable for
control purposes. Much of the structural detail will be lost,
however, if features are averaged over the entire transition
period. A way of retaining some of this structural information
is to segment the transient waveform and determine a set
of features based on the statistics from each segment. This
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approach has been used to classify seismic activity [35], and
biological waveforms such as the EKG [36] and carotid pulse
waveforms [37].

Several factors will determine the best feature set but the
most important are the computational complexity and class
discrimination. The acceptable computational complexity is
limited by the response time of the system which must be
kept below 300 ms to reduce user perceived lag. Much of this
time will be required to obtain enough signal samples to allow
feature extraction. This leaves less than 100 ms to do the actual
feature extraction and pattern classification. Features based
on time statitics can be obtained within this time constraint
using a simple hardware processor or a simple algorithm on
a microprocessor. Features based on spectral parameters or
AR models as discussed in the literature require much more
complicated processing and were not considered. With this
in mind the following features were chosen to represent the
myoelectric patterns:

1) Mean Absolute Value —An estimate of the mean abso-
lute value of the signal, X, in segment ; which is N samples
in length is given by

- 1

N
X,:N’;w fori=1,---,1 (1

where z is the kth sample in segment 7 and I is the total
number of segments over the entire sampled signal.

2) Mean Absolute Value Slope —This is simply the differ-
ence between sums in adjacent segments, ¢ and i+ 1, as defined
by

AX;=Xi1—-X; fori=1,---,1—1. )

3) Zero Crossings —A simple frequency measure can be
obtained by counting the number of times the waveform
crosses zero. A threshold must be included in the zero cross-
ing calculation to reduce the noise induced zero crossings.
Assuming a system noise of 4 yV peak to peak and a system
gain of 5000, this dead zone can be calculated to be +10
mV measured at the input to the A/D converter. Given two
consecutive samples x and z. 1, increment the zero crossing
count, ZC, if

T >0 and zpy1 <0, or zr <0

and zry1 >0, and |op — 241 > 0.01V.

3

This algorithm will fail to register a zero crossing if two
consecutive samples of opposite sign fall within the deadzone.
However, based on a uniform amplitude distribution, the
probability of missing a zerocrossing is less than 0.2%.

4) Slope Sign Changes —A feature which may provide
another measure of frequency content is the number of times
the slope of the waveform changes sign. Once again a suitable
threshold must be chosen to reduce noise induced slope sign
changes.

Given three consecutive samples, zj_1,zx and 41, the
slope sign change count, SC, is incremented if

T > Tp—1 and Tg > Tp41, OF Tk < Tk

87

|zk — Tp41] > 0.01V
4

5) Waveform Length —A feature which provides informa-
tion on the waveform complexity in each segment is the
waveform length. This is simply the cumulative length of the
waveform over the time segment defined as

and zp < Tx+1, and
or |xy — Tk-1| > 0.01V.

N

lo="|Azy|.

k-1

(&)

where Az, = x — zr—-1 (difference in consecutive sample
voltage values).

The resultant values gives a measure of waveform ampli-
tude, frequency, and duration all within a single parameter.

These features are extracted from each time segment to
create the total feature set used to represent the myoelectric
pattern. The total number of features is determined by the
number of time segments in the pattern. For deterministic
patterns, increasing the number of time segments will increase
the amount of class information available to the classifier. For
patterns with a nondeterministic component, smaller time seg-
ments will result in a larger feature estimation error which will
reduce system performance. It is obvious that the deterministic
structure of the myoelectric patterns is more pronounced
in certain contraction types. Other types present an almost
random nature from the onset. Although the variance in the
time structure of these signals is high, waveform statistics may
be stable enough to allow pattern classification. Likewise, in
the situation where the pattern structure is well defined but
the duration is short, waveform features will provide extra
information to the classifier. The effect of segment length on
classification accuracy must be examined to determine a value
which is the best compromise between class information and
feature estimation error.

CONTROL SYSTEM DESIGN

Although hidden layer size and segment length must be
determined before the final control system structure can be
defined, the basic system operation can now be established.
Fig. 5 is a diagram of the neural network based myoelectric
control system. The following is a brief description of the basic
elements in the control system operation.

Segment Feature Extraction —The myoelectric signal is
acquired using a single bipolar electrode pair and is amplified
to an appropriate level by a standard myoelectric amplifier.
The mean absolute value of the signal is monitored and when
a threshold is exceeded, 200 samples (1 kHz sampling rate)
are analysed to extract the pattern features. The feature set is
then used as input to the neural network.

Network Training —During network training, the controller
collects ten sample feature sets from each contraction type.
This group of training feature sets is presented to the neural
network with the corresponding class outputs. The backpropa-
gation algorithm then adjusts the network weights from preset
random values to reduce the output error to some specified
value. The trained weights are stored and maintained until the
system requires retraining.
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Fig. 5. Control system design.

Pattern Classification —During system operation, the fea-
ture is presented to the feedforward component of the network
and the outputs of the network are scanned to choose the
largest (MAX). If this is above a specified threshold, the pros-
thetic function corresponding to this output class is selected.

Proportional Speed Control —Once a function is selected,
the system monitors the myoelectric signal to determine the
level of activity. The speed of the function is then chosen based
on this level. If the myoelectric signal drops below specified
threshold for more that a specified length of time the function
is terminated and the system adapts the network weights,
initalizes buffers and counters and returns to its original state.

Weight Adaptation —The neutral network outputs are sent
to the weight adaptation algorithm after each contraction is
completed. The desired output is set to 0.9 if it was the largest
network output, otherwise it is set to 0.1. The error between the
actual network output and the desired output is used to update
the network weights using the backpropagation procedure. In
this way, the weights are being continually modified by the
most recent patterns presented to the classifier. The learning
rate for the backpropagation rule is kept small so that the long
term trends in the generated patterns will produce the desired
weight adaptation.

The new control scheme was implemented on a micro-
computer (8 MHz Intel 80286) using Borland TurboC to
simulate the control algorithm. The next section describes
several experiments used to finalize the control system design
and to evaluate the control system performance.

CONTROL SYSTEM EVALUATION

Methods (General)

Several experiments were conducted to record myoelectric
activity from the first 200 ms of repetitive muscle contractions
to determine the effect of network structure and feature noise
on the pattern classification accuracy of the new control
strategy. A total of 18 subjects took part, however, not all

subjects participated in all experiments. For the below elbow
amputee subjects (SUB ID K-N) the electrodes were placed
on the wrist flexor/extensor group. The above elbow amputees
(SUB ID O-P) used the biceps/triceps electrode arrangement.
Each amputee subject was asked to produce four different
contractions which they felt they could reproduce reliably.
The normally limbed subjects (SUB ID A-J, Q-R) were asked
to produce four different limb functions: a contraction of
the elbow flexor group; a contraction of the elbow extensor
group; medial rotation of the humerus; and lateral rotation
of the humerus. All contractions began with the relaxed arm
by the side, the elbow fully extended and the wrist in a
comfortable neutral position. It was left to the subject to
establish the exact form of the contraction. This in part will
determine the robustness of the new classification approach
by testing it on the variable myoelectric patterns from many
subjects. Typically 30 repeitions of each of the four contraction
types were collected, although for some subjects less data
was acquired and in some cases more. There was no subject
training prior to the collection of data.

The data analysis program began by monitoring the signal
with a 100 ms moving average window. When the moving
average went above a specified threshold (typically 100 mV
amplified MES), the feature selection began at a point 50 ms
before the trigger point, (i.e., point 51 in the moving average
window). From this point the data was analyzed in time
segments from which the MAV, difference MAV, waveform
length, slope sign changes and zero crossings were calculated.
This was repeated for several successive segments providing
a total feature set over the 200 ms frame. These features along
with the five average statistics from the 200 ms frame were
then used as inputs to the neural network. The data from
each trial were divided into a training set and a test set. The
training set was used to train the neural network classifier
using a backpropagation algorithm. The test set was used to
measure system performance. The training set/test set ratio,
(#TR/#TST), was typically 1 : 1.

Experiment #1—Effect of Network Structure

Method —In this experiment the data from three subjects
(2 normally limbed, 1 amputee) were used to investigate the
effects of changing the number of hidden units and the size of
the time segments on the classification accuracy to determine
the optimum network structure. For each combination of the
two variables, one half of the data set was used to train the
network. The other half of the data set was used to evaluate
classification accuracy of the trained network.

Results —The results from this investigation for one sub-
ject are shown in Fig. 6(a) and (b). Although there were
differences in the effect of segment length and hidden unit
number between subjects some clear trends did emerge. The
error rate was initially high for all subjects when only 1 (200
ms) or 2 (100 ms) segments were used. The classification
accuracy was highest at between 4-5 segments for all subjects.
The error rate again increased if the number of segments was
increased beyond 5 (40 ms). The effect of hidden unit number
was less variable. A hidden layer with between 4-12 hidden
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Fig. 6. Classification accuracy versus (a) segment length for several values of
hidden unit number, (b) number of hidden units for several values of segment
length. (Data from amputee subject A’.)

units gave good classification accuracy for all three subjects.

Discussion —This analysis is lengthy, as it requires the
training and testing of the neural network for many combina-
tions of the variables. Network training time is excessive for
many of the combinations and the network error often does
not converge. It is not feasible to do this analysis for every
subject nor is it reasonable to assume that it can be done
for each individual user of this system. Values which perform
well for the general user must be chosen. A network with
eight hidden units trained on features from 5 time segments
was found to train quickly and provided good classification
performance for all subjects.

Experiment #2—Classification Results

Method —Data from 15 subjects were used to test the
classification accuracy of the new control strategy using the
network structure described above. The data from each subject
was analyzed in five 40 ms time segments and the resulting
30 pattern features (25 segment features 4 5 average features)
were used as input to a two layer (30 inputs: 8 hidden: 4
outputs) neural network classifier.

Results —The results of this experiment are given in
Table 1. The correct classification (%CL) for the 9 normally
limbed subjects averaged 91.2% (SD 5.6%) while the amputee
subjects averaged 85.5% (SD 9.8%). Although the results
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TABLE I

CLASSIFICATION RESULTS FOR FOUR CLASSES (CONTRACTION TYPES)

SUBID  #TR SETS el # ERRS % CL
B 50 20 2 90
C 60 60 6 90
D 80 40 4 90
E 80 80 16 80
F 80 80 2 98
G 80 80 2 98
H 80 80 4 95
1 54 60 5 92
J 80 80 10 88
K 80 80 6 92
L 50 50 2 96
M 52 52 16 69
N 57 50 10 80
0 40 40 4 90
P 50 65 9 86

from the amputee subjects were comparatively less impressive,
the difference between the two subjects groups was only
statistically significant at the p = 0.1 significance level. These
are excellent results considering that no subject training took
place prior to data collection.

Discussion —There are several reasons for the larger vari-
ability in the amputee data. The amputees found it much more
difficult to produce four distinct contraction classes. For the
normally limbed subjects there was a noticeable amount of
joint motion involved in the contractions. This of course cannot
be duplicated by the amputees. The amputees also had less
success in reproducing the contractions which they had chosen
to represent the pattern classes. This can be attributed in part to
disuse of the musculature in the stump. Most amputee subjects
commented on this aspect. Although electrode placement was
standardized for the normally limbed subjects (biceps/triceps),
these locations could not be reproduced on the amputees.
Electrode sites were chosen on the forearm musculature for
below elbow amputees and on the upper arm for above elbow
amputees, however no attempt was made to determine the
optimum  sites.

Experiment #3—Effect of Feature Noise

Method —Two tests were performed to determine the
effect of feature noise on the classification accuracy and
adaptation of a fully trained neural network classifier. Data
sets from four subjects C, F, G, K) were used in these tests.
Feature noise can be attributed to at least two sources. These
are errors in feature values caused by the operator’s inability
to match the desired contraction pattern and errors due to the
limited time available for feature estimation. It is difficult to
quantify the feature estimation error. For deterministic patterns
it will be zero but for patterns with a random component,
such as those of the present study, it will be somewhat higher.
Operator error is a major source of error in all myoelectric
control systems. This error will be high initially and decrease
as the operator becomes familiar with the control task. To
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maintain a high level of system performance the control systerh
must be able to tolerate reasonable levels of feature noise. As
well, the control system must be able to adapt to changes in
operator patterns if performance becomes unacceptable.

The first test was performed to determine the level of
feature noise at which the classifier performance becomes
unacceptable. For this test, the complete data set for a subject
was used to train the classifier. The same training set was then
corrupted by adding uniformly distributed random noise to
each of the features in the training set. The noise distribution
was varied from +5% to £100% of the feature value. The
trained network was then used to classify the corrupted training
set for each value of feature noise.

The second test was performed to determine how quickly
the network could be retrained if system performance becomes
unacceptable. In such a situation training does not have to
begin with random network weights but can continue from the
previously determined values. In this way the control system
may be retrained on the updated patterns more quickly. For
this test the uncorrupted training data was used to train the
network until the average pattern output error (defined as the
average error between the desired output and the actual output
for each pattern during a training cycle) was less thart 0.05. The
training time taken to reach this stopping criteria was recorded.
At that point the data set was corrupted with noise which
was uniformly distributed over £5% of the feature value. The
network was retrained with the corrupted data under the same
stopping rule and the time taken for retraining was recorded.
The process was repeated for other percentage noise values.

Results —The results of the first test for the four sub-
jects are shown in Fig. 7(a). For all subjects, there is little
degradation in classification accuracy for low to moderate
levels of feature noise. The error rate is below 5% for up
to +15% feature noise for all subjects. A 95% classification
accuracy is maintained for two of the four subjects up to
+25% feature noise. This noise immunity is essential for the
present application in which the pattern generator is a human
operator. The variability in the features will be a function of
the individuals’ ability to reproduce the desired pattern. It is
obvious, however, that as the level of feature noise increases,
the number of classification errors becomes unacceptable. In
this case the system must be retrained on new control patterns.

The results of the second test for one subject are shown in
Fig. 7(b) which plots the average output error in the training
patterns as a function of training time. The training time
has been normalized by the training time required for the
uncorrupted data. The results show that the network was able
to adapt quickly to abrupt changes in feature values of up to
+25%. Beyond this point training time became excessive or
the network was unable to converge to the desired output error.
Similar results were found for the other subjects.

Discussion —Any state selection error in a myoelectric
control system is unacceptable to the user. Realistically, how-
ever, most systems are designed with a specification of less
than 5% error. The largest component of the control system
error is the operator error which usually exceeds 5% initially
but is reduced with operator training. It is reasonable to expect
that once the operator is familiar with the control system,
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Fig. 7. (a) Effect of feature noise on classification accuracy for four subjects.
(b) Network adapting to feature noise. (Data from amputee subject X.)

feature noise due to operator error and feature estimation
will be less than 10%. Fig. 7(a) demonstrates that the control
performarice is within the acceptable range for this level of
feature noise. There are, however, other factors which can alter
the control patterns. It has been shown there is a substantial
change in the myoelectric signal with motor skill practice
[38]. It is reasonable to assume that a similar change will
occur in the signals of first time users of myoelectrically
controlled artificial limbs. These changes can occur because of
modifications to the muscle recruitment patterns and because
of an increased familiarity with the required control task. It is
expected that these changes will cause slow varying changes
in the myoelectric patterns used in the new control system.
Feature changes due to these mechanisms may be sufficient
to cause unacceptable system performance. It is necessary
then, to have a classifier which can adapt to these changes to
maintain performance. As shown in Fig. 7(b), a neural network
has this ability. This adaptation can be done in two ways. The
system can be retrained with a new set of training data or the
system can be continually adapting under the assumption that
an accurate classification has been made.

Experiment #4—Electrode Position Sensitivity

Methods —This experiment was undertaken to investigate
the effect of electrode position errors on the system per-
formance. Such variations are expected due to socket/stump
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misalignment. Data from four contraction types were collected
from a base electrode site (see position BOTO in Fig. 8), from
two normally limbed subjects. This data was used to train the
control system. The biceps electrode was then displaced by 1
and 2 cm as shown in Fig. 8 (positions B1-B8). The triceps
electrode was then displaced (positions T2-T5). As well, worse
case conditions were tested with the biceps electrode at B4 and
the triceps electrode at T4, and then with the biceps electrode at
B6 and the triceps electrode at T5. Control data were collected
from the base position (position BOTO) at the beginning and
end of the experiment.

Results —Table I gives the results of this investigation.
The results from Subject A show only a slight decrease in
the classification performance for displacements of either elec-
trode. The 5% decreases at positions B2TO0, BOT2, and B6T5
are countered by 5% increases at several other displacements
and there is no pattern to the errors. The data from Subject D
also show a lack of sensitivity to displacements of the biceps
electrode and of medial/laterial displacements of the triceps
electrode. In most cases the difference in classification error
is close to the expected experimental error (2%). There is,
however, a significant increase in classification errors for this
subject when the triceps electrode is longitudinally displaced.
The pretest and post test controls agree within experimental
error for Subject D. The difference between these controls for
Subject A, however, is greater than expected. This suggests
that the variability in classifier performance for this subject
is most likely due to operator error and not feature variations
caused by electrode displacement.
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TABLE 11
ELECTRODE DISPLACEMENT POSITION AND CLASSIFICATION. CLASSIFIER
TRAINED WITH 30 SETS FROM EACH OF FOUR CONTRACTION
TypES. ALL TEST USE TEN SETS FROM FOUR CONTRACTION
TYPES (* DENOTES PRESTEST AND POST TEST CONTROL DaTA)

SUBJECT A SUBIJECT D
Pos. Errs %Cl. Errs %Cl.
*BOTO 3 92.5 2 95.0
BI1TO 2 95.0 —_ —
B2TO 5 87.5 4 90.0
B3TO 1 97.5 — —
B4T0 3 925 3 92.5
B5TO 3 92.5 — —
B6TO 3 92.5 1 97.5
B7TO 3 92.5 — —_
B8TO 3 92.5 3 92.5
BOT2 5 87.5 1 97.5
BOT3 2 95.0 6 85.0
BOT4 1 975 7 825
BOTS 4 90.0 2 95.0
B4T4 1 97.5 4 90.0
B6TS 5 87.5 8 80.0
* BOTO 0 100.0 3 92.5

Discussion —The 2 cm displacement used in the present
test is far larger than any displacement which would occur
in a well designed socket. Clinical experience has shown that
electrode displacements of > 1 cm are unusual. The test results
do show that over all, the classification system is insensitive
to small changes in electrode position. This lack of sensivity
suggests that the widely spaced electrode configuration is
detecting a signal which represents the global activity within
the limb. This is unlike the typical closely spaced bipolar
pair which detects a signal from a small region of muscle
directly below the electrodes. Although such electrodes aic
ideal for commercially available myoelectric control systems
where crosstalk is considered noise, in our system it is the
crosstalk which is producing the unique myoelectric pattern
used for classification. The lack of electrode position sensi-
tivity also demonstrates one advantage of the neural network
classifier—its ability to generalize from a few training patterns.
Although the value on the neural network output for the
desired class may be lower for the displaced signals, the
classification is still correct.

Experiment #5—State Tracking

Methods —Five normally limbed subjects took part in this
experiment to test the accuracy of tracking a random state
target. The equipment setup and electrode locations were the
same as in experiments 1-3. Each subject was asked to produce
ten repetitions of the four contraction types. The feature set
was extracted from the myoelectric patterns associated with
these contractions. These 40 features sets were used to train the
neural network classifier. After the network had been trained,
the subjects were asked to duplicate a series of states presented
to them on a computer screen. The states were presented in a
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pseudo random order and were of the form UP, DOWN, OUT,
and IN. These states corresponded to the myoelectric patterns
from elbow flexion, elbow extension, outward humeral rotation
and inward humeral rotation respectively. A total of 300 state
targets was presented to each subject. These 300 targets were
divided into six trials with each trial consisting of 50 targets.
Rest periods were given between trials to avoid fatigue. The
task was not timed, so a new target was not presented until the
subject responded to the previous target. The target state and
classifier response were used to adapt the network weights
over the duration of the test. The number of errors in each
trial was recorded to determine the effect of training on the
classification accuracy.

Results —The results of this test are shown in Fig. 8.
Initial classification errors were very high, (> 35%), for all
subjects. However, four of the five subjects displayed a rapid
decrease in classification error over the 6 trials, confirming that
the task was easily learned. The fifth subject (F) achieved
approximately the same classification error, (15%), for trial
6, but had difficulty throughout the test. The reason for
this problem was in the choice of the initial patterns. This
highlights the main limitation of the new approach. The initial
patterns which are chosen to represent state function and are
used to train the classifier must be distinct. It is difficult to
determine a meaningful estimate of how distinct each pattern
is from the patterns of other classes. Although the pattern
differences can be calculated using some form of distance
measure on the feature sets, it may not be indicative of the class
differences after the nonlinear transformation of the feature set
by the neural network.

The experiment described above measures only the state
selection component of the new control system. The propor-
tional control of the function is achieved by continuing to
monitor the MAV of the myoelectric signal after the state has
been selected. This value is used as an estimate of the desired
speed of the limb function.

Fig. 10 illustrates a typical example from the integration
of the state selection scheme with proportional control during
the normal operation of the new control scheme. Fig. 10(a)
is a section of raw myoelectric signal which resulted in the
selection of State 2 at time 73 as shown in Fig. 10(c). The time
T, was the time delay between the time the MAV exceeded
the Von threshold until the time the state was selected. This
state selection delay is typically in the order of 225 ms. To
avoid a rapid “turn on” transient, the proportional output signal
is buffered by a 100 ms moving average window which has
been initially reset to zero. This introduces a ramp in the
proportional signal after which time the speed of the device is
proportional to the MAV as shown in Fig. 10(d). The figure
shows that the state remained high until the MAV, shown in
Fig. 10(b), fell below a threshold Voff. After this time another
myoelectric pattern was generated by the user and classified
by the control system. This resulted in another state selection
at time T5.

DISCUSSION

The results of this method of myoelectric control are very
encouraging. It was demonstrated that the neural network
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Fig. 10. (a) Raw myoelectric signal, (b) output of 100 ms MA window (c)
control system output-state (d) control-system output-speed. (Arbitrary units
for vertical scale.)

classifier could accomodate the diverse set of the myoelectric
patterns produced by intact and amputated musculature. The
subjects were not required to reproduce contractions with
a specific force, velocity or duration but contracted in a
way which was both comfortable and reproducible. During
training of the neural network, the classifier was able to
adapt to each subject’s distinct myoelectric patterns. The
pattern classification system could correctly classify between
70-98% of the test patterns presented after an initial training
of the neural network. It was noted that this performance was
achieved with no training of the user.

These tests confirmed that the performance of the neural
network based classifier will be unaffected by small variations
in feature values. The results also suggest that the network
could continually adapt to changes in the pattern class features.
In a way, the abrupt changes shown in Fig. 7(b) are worst case
conditions of this feature drift. It is reasonable to assume that
the most common feature value variation will be a slowly
varying trend rather than an abrupt change. In this case the
output errors can be used to continually update the network
weights to compensate for these trends. This is particularly
useful for subject training during which time the user will
become more proficient at using the control system. If the
network is allowed to adapt to these training patterns it will
also become more capable of recognizing the user patterns.
This will allow the user to adopt an approach to generating
the desired pattern classes which is comfortable and efficient
rather than forcing the user to continue to use the same strategy
which was used when the task was unfamiliar.

Acquisition of the set of test patterns, which consists of
several exemplar patterns from each of the contraction classes,
requires the generation of about 40 separate contractions by
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the user. The time required to train the control system on the
test patterns is typically less than 5 min for the microcomputer
implementation. This is about 100 presentations of the set of
test patterns to the neural network. The network training time
is device dependent and will be less for a faster processor. This
makes occasional retraining of the control system feasible.
The time required to extract the feature set from the 200
ms of sampled data is approximately 10 ms. The feedforward
calculation of the neural network classifier requires about 10
ms. These values are again device dependent. The overall state
selection delay is less than 250 ms. This results in no user
perceived delay. The weight updates take approximately 20
ms after the function has stopped. A delay of 200 ms is also
added during this time to ensure that the myoelectric activity
has returned to its resting value before the system is rearmed.

Amputee and normally limbed subjects have used the
microcomputer-based system to realize proportional control of
a bench mounted electric elbow and hand prosthesis. Good per-
formance was achieved by most subjects. Implementation of
this scheme on a dedicated microprocessor (TI TMS320C25)
to be used for clinical trials is now in progress.

CONCLUSION

This paper has introduced the observation that the myoelec-
tric signal is not random during the initial phase of muscle
contraction. The information found in the signal structure
during this phase provides a means of classifying patterns
from different contraction types. This information is used as
the basis of a new multifunction myoelectric control system.
The new control scheme increases the number of functions
which can be controlled by a single channel of myoelectric
signal but does so in a way which does not increase the effort
required by the amputee. The control signals are derived from
natural contraction patterns which can be produced reliably
with little subject training.

It was also demonstrated that the new multifunction control
strategy can be implemented using an artificial neural network
to classify myoelectric patterns. The ability of the network to
learn the feature values which represent the pattern classes
provide a means of tailoring the control system to the individ-
ual. A control system based on a neural network classifier
provides the user with a means of retraining the control
system to maintain a high degree of accuracy in the system’s
performance. The system performance is also enhanced by the
ability of the network to adapt to moderate changes in the
control patterns.

Although the control scheme development was based on
the observation that there is deterministic structure in the
instantaneous value of the myoelectric signal, it does not
require this. It will utilize whatever form of information may
be available, whether it be in the frequency, amplitude or
envelope of the signal. Many of the features used in the present
study are highly correlated. Work is continuing to determine
if a subset of these features can give similar performance.
Likewise, features extracted from more than one myoelectric
channel may enhance system performance. Further work is
also necessary to define an appropriate training procedure for
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the operator of this system. Much research is necessary to
determine the potential of this control scheme.
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