Adaptive Filtering and Change Detection

TOOLBOX

Fredrik Gustafsson

Purpose

‘ Syntax

Simulation

y=simadfilter (z,nnn,adm,adg)
y=simchange (z,nnn, jumptimes,TH)
y=simresid (z,nnn,threc)
[y,u,th]=simchannel (alphabet,nn,N,th)

Adaptive filtering

[thhat,epsi] =adfilter (z,nnn,adg,adm)
[xhat] =adkalman (z,nnn,adg,options)

Change detection

[threc, jhat,thsegl=detectl (z,nnn,options)
[threc, jhat,thsegl=detect2 (z,nnn,options)
[threc, jhat,thsegl=detectM (z,nnn,options)
[threc, jumpsmc, jhat]=gibbs (z,nnn,options)
[jhat,jtype,thsegl=multihyp (z,nnn,options)
[jhat,thsegl=cpe (z,nnn,options)

[jhat]l=mlr (z,nnn,options)

[xhat, jhat]=glr (z,nnn,options)
[r]=faultdetect (z,nnn,options)

Equalization

[uhat]=viterbi (y,th,alphabet,lam,utrain)

Blind equalization

[threc,uhat]=blindeq (y,nnn,adg,adm,th0)
[threc,uhat]=blindeqM (y,nnn,alphabet)
ber=u2ber (u,uhat)

m=openeye (bch,beq)

Model conversion

thseg=par2segm (TH, jumptimes,N)
TH=segm2par (thseg)
phi=z2phi (z,nnn)

Plot segplot (z,jumptimes)
thplot (thl,TH, jumptimes,th2)
hypplot (XdetectM)
radarplot (y,xhat,x)

Help helpdetect

Demonstration demodetect , reference , tutorial

Book examples

book , signal

GUI

guidetect

Real data sets

airbag, altdata, ash, bach, carspeed
ceram, defibrator, eeg_human, eeg_rat
ekg, equake, fricest, fuel, highway
labmotor, nmt450, nmt900, nose, carpath
photons, planepath, salesment, sfquake
sheep, speech, tpi

Models

nnnplane , nnnDCml

Contents

1

2

Preliminaries
1.1 The Adaptive Filtering and Change Detection Problems
1.2 Dataobjects

1.3 Imstallation

Adaptive filtering and change detection

2.1 Introduction
2.2 Change detection principles
2.3 Datasimulation Lo o
2.4 Linear filter
2.5 Whiteness test detection 0oL,
2.6 Parallel filter detection oL
2.7 Multiple-model detection L.

2.8 Stoppingrules.o L

Kalman filtering and change detection
3.1 Introduction.

3.2 Datasimulation

Equalization

4.1 Introductiono

11

11

12

13

15

15

16

18

19

20

21

23

23

29

29

30

35

Contents

4.2 Equalization using the Viterbi algorithm 36
4.3 Adaptive blind equalizer 37
4.4 Maximum likelihood sequence detection 40
Target tracking 47
5.1 Introduction L 47
5.2 Simulation L oL o 49
5.3 Kalman filtering o 50
5.4 Change detection with whiteness test 54
5.5 Change detection with filter banks 56
Applications 61
6.1 Fuel Monitoring 61
6.2 EEGsignals o o 62
6.3 Paperrefinery oo 65
6.4 Poisson process of photon arrivals 66
6.5 Maneuver detection for a driven path 69
6.6 Altitude sensor quality 71
6.7 Belching sheep o Lo 71
Blockset and alternative implementations 75
Graphical User Interface 87
8.1 What do adaptive filtering problems have in common? 87
8.2 Getting acquainted with the frontend 88
Command Reference 95

9.1 Commands Grouped by Function 96

Contents

9.2 adfilter 99
9.3 adkalman 102
9.4 Dblindeq. e 103
9.5 blindegM 106
9.6 cdfigure 109
97 CPE .« v v o e 110
9.8 cusumarl.o L 113
9.9 cusumdesign. Lo 115
9.10 cusumMOC 116
9.11 detectl L 117
9.12 detect2 120
9.13 detectM 123
9.14 faultdetecto 126
9.15 gibbs 128
9.16 glr 130
9.17 Imm ... 132
9.18 hypplot 133
9.19 mlr . . . L 135
9.20 modeltypeo 138
9.21 multihypo 139
9.22 NN ... 141
9.23 nnnplane Lo 145
9.24 openeye 147
9.25 par2segmyo e e e e 149
9.26 POWET2 L e e e e 150

Adaptive Filtering and Change Detection Toolbox 5

9.27 radarplot
9.28 radfilter
9.29 rdetectlo
9.30 rdetect2
931 rglr.o
9.32 segm2par
9.33 segploto
9.34 simadfilter L.
9.35 simchange
9.36 simchannel
9.37 simresid
9.38 th2poles
9.39 th2tfd
9.40 thplot L.
941 u2bero
9.42 wviterbio

943 z2phi.

10 Signal models and notation

Bibliography

Index

Contents

184

186

Command overview

Preface

This manual is the link between the MATLAB™ toolbox
http://www.sigmoid.se

and the text book [10]
http://www.comsys.isy.liu.se/books/adfilt.

The tutorial describes how to make simple simulation studies and illustrates
the different approaches to adaptive filtering and change detection as well as
the supported model structures. Two chapters describe target tracking and
equalization in digital communications, where dedicated functions are avail-
able. Chapter 6 shows some examples on how real data can be analysed. The
examples are taken from the text book, and here accompanied with complete
code. As a side mark, the toolbox contains a variety of real data from various
applications useful for benchmark studies.

Chapter 7 presents some advanced material for those who want to make more
customized applications, or real-time applications. Chapter 8 presents the
Graphical User Interface (GUI).

The Reference chapter 9 explains each function in detail. Tables of functions
grouped similar to the tutorial are given first. All examples given in the
reference part are available in reference .

The theory behind the functions is thoroughly treated in the accompanying
text book. Each of the toolbox algorithms corresponds to one or more algo-
rithms in the textbook, and the reference part contains a precise reference to
which algorithm is implemented. The examples in the text book are available
in book . There is also a connection to the text book in Signal Processing (in
swedish). The examples in that book are given in signal . Other examples
are found in demodetect .

More information, related material and upgrades can be found at the toolbox
homepage.

http://www.sigmoid.se
http://www.comsys.isy.liu.se/books/adfilt

10

1 Preliminaries

This tutorial part is divided into sections of different application areas: Kalman
filtering, adaptive filtering, change detection, equalization and target tracking.
Each chapter can be seen as a mini-manual for its respective application, where
a table of all relevant toolbox functions is given first, followed by examples.
The tutorial examples are available in the toolbox as

tutorial (’application’).

1.1 The Adaptive Filtering and Change Detection
Problems

The toolbox provides algorithms, plot facilities, analysis tools and design tools
for adaptive filtering and change detection. Applications in these areas can be
divided into the the following categories:

o Surveillance and parameter tracking. Classical surveillance problems
consist in filtering of noisy measurements of physical variables as flows,
temperatures, pressures etc. In model-based signal processing, adaptive
filtering consists in tracking time-varying parameters. Monitoring phys-
ical parameters in the model is one application. Another one is adaptive
control, which can be based on these parameters. Yet another exam-
ple is blind equalization, where the model is used to equalize channel
distortion.

o State estimation. The Kalman filter provides the best linear state es-
timate, and change detection support can be used to speed up the re-
sponse after disturbances and abrupt changes. State feedback, such as
LQG (linear Gaussian control), belongs to this area. Nawigation and
target tracking are two particular application examples.

e Fuult detection. Faults can occur in almost all systems. Change detection
here has the role to locate the fault occurence in time and to give a quick
alarm. After the alarm, isolation is often needed to locate the faulty
component. The combined task of detection and isolation is commonly
refered to as diagnosis.

12

Preliminaries

These problem areas are usually treated separately in literature. However,
the tools for solving these problems have much in common and the same
algorithms can be used. The main difference lies in the evaluation criteria.
In surveillance the parameter estimate should be as close to the true value as
possible, while in fault detection it is essential to get an alarm from the change
detector as soon as possible after the fault, and at the same time receiving few
false alarms. The design usually consists of the following steps:

1. Modeling the signal or system.
2. Implementing an algorithm.

3. Tuning the algorithm with respect to certain evaluation criteria, either
using real or simulated data.

The toolbox provides a large number of algorithms suggested in literature,
and many evaluation criteria. The novel concept of auto-tuning an adaptive
algorithm is introduced. That is, an objective measure of performance is
chosen and the design parameters are optimized with respect to this measure
for each method and finally the best method is chosen. The output of a typical
design session is a table summarizing the performance of different algorithms.

1.2 Data objects

To understand the syntax of the functions, a brief description of the data
objects is motivated. The core object is the model. The toolbox accepts
models in standard formats as state space models, ARX like structures (like
nn in the System Identification TB), or a user-defined m-file. The first object
in the list below is a generalization of these models.

nnn is the model structure used in simulation or filtering. It comprises the
different filter structures nn in the System Identification Toolbox as well
as linear regression models and state space models. nnn can also be a
string, when it represents a user-written m-file defining the model.

jumptimes is a vector of time instants for abrupt changes. jumphat is an
estimate of jumptimes. The number of jump times is denoted n.

z is the data vector, consisting of the inputs for simulation, and the outputs
and inputs for estimation. The number of data is V.

th is a matrix of dimension d x N where the columns define the parameter
vector at time . threc is the recursive estimates and thseg stands for
smoothed parameter estimate, which are piecewise constant.

Installation

TH with capital letters is as above, but the columns define the parameter
vector for each segment (between the jump times). The n jumps define
n+ 1 segments, so its size is d x (n+ 1) for parametric models. For state
space models, its size is d X n.

x is the state vector in a state space model, and xhat its estimate.
sr contains the design parameters of the stopping rule, see Section 23.

dm chooses the distance measure, see page 20.

1.3 Installation

The installation should be quite simple, since the core functions are plain text
files. Assure that the directory adfilt/ is in the MATLAB™ path. There are
two sub directories. First, adfilt/blockset/ contains C-code and Simulink
blocks. If you want to use these, include the directory in the search path. Sec-
ond, adfilt/extras contains mostly dummy functions in case some matlab
toolboxes are missing. For instance, the GUI uses leastsq from the optimiza-
tion toolbox at one instance, and if this function does not exist, the GUI can-
not be started. For this reason, it is recommended that this directory should
be put last in the path, for instance using path(path,’/adfilt/extras’);
Then the toolboxes you have installed, will be used.

To summarize:

1. Move the directory adfilt from the toolbox CD to anywhere on your
hard disk, most logically to something like
c:/matlabR12/toolbox/adfilt.

2. Add the following lines to the file startup:

disp(’Adaptive filtering and change detection toolbox.’)
disp(’To get started, do ’’help adfilt’’’)

disp(’)

addpath(’c:/matlabR12/toolbox/adfilt’);
addpath(’c:/matlabR12/toolbox/adfilt/blockset’);
path(path, ’c:/matlabR12/toolbox/adfilt/extras’);

For upgrades, bug fixes and tips, check the home page http://www.sigmoid.se.

Adaptive Filtering and Change Detection Toolbox 13

http://www.sigmoid.se

14

Preliminaries

2 Adaptive filtering and change
detection

‘ Purpose ‘ Syntax ‘

Simulation y=simchange (z,nnn, jumptimes,TH)

Change detection | [threc,jhat,thseg]=detectl (z,nnn,options)

[threc, jhat,thsegl=detect2 (z,nnn,options)

[threc, jhat,thseg] =detectM (z,nnn,options)
[threc, jhat,thsegl=multihyp (z,nnn,options)
[jhat,thseg]l=cpe (z,nnn,options)

Plot segplot (z,jumptimes)

thplot (jumptimes,thO,threc,thseg)

2.1 Introduction

The basic idea is that one function simulates the output of a specified signal
model or system, and another one inverts it aiming at reconstructing its inputs.
The principle is illustrated in Figure 2.1.

Noise e Output y: Yt €t X et
-,
Input wut System Parameter 6, Ut Ad. filter 0, ~ 0,

Figure 2.1 Adaptive filter structure.

A typical use of the functions could be

[y,th] = simadfilter([e u],nnn,adg,adm);
[thhat,lamhat,epsi] = adfilter([y ul,nnn,adg,adm);

The simulation function simadfilter simulates a linear filter where the pa-
rameters change as a random walk. This random walk can be taylored to
match the adaptive filters RLS, NLMS or the Kalman filter. For instance, one

16

Adaptive filtering and change detection

can simulate, in principle, a signal where NLMS with, say, step size 0.0014 is
the optimal linear filter.

One can also use simchange to simulate signals with abruptly changing dy-
namics or disturbances, which can be used to test the tracking ability of the
linear adaptive filters implemented in adfilter. In this latter case where the
system undergoes abrupt changes, Figure 2.2 is more relevant:

—

Jumps k" kn o~ k"
—_—
Nois Output £t &
o & System HPHE b Yt Ad. filter ——— ", o
Input u Parameter 6; Ut 0 ~ 0,
—_—

Figure 2.2 Adaptive filter structure for change detection.
The corresponding sequence of function calls may be:

[y,th] = simchange([e ul] ,nnn, jumps,TH);
[thhat,lamhat,epsi] = adfilter([y u],nnn,adg,adm);
[thhatl, jumphatl,thsegl] = detectl1([y ul,nnn);
epsil = simresid([y ul,nnn,thsegl);

The last call is necessary since the residuals using smoothed estimates (thseg)
are not computed automatically.

2.2 Change detection principles

The change detectors detectl, detect2, and detectM can be applied any-
where where adfilter can be applied. The difference is a speed-up in track-
ing ability when an abrupt change is detected, and an explicit alarm output
argument. detectl is based on whiteness residual tests from one adaptive
filter (see Figure 2.3), detect2 compares the results from two parallel filters,
one slow and one fast (see Figure 2.4), and finally detectM is based on a
multiple-model hypothesis test (see Figure 2.5).

cpe (Change Point Estimation) implements off-line algorithms proposed in the
literature of mathematical statistics. glr (the Generalized Likelihood Ratio
test) and mlr (the Generalized Likelihood Ratio test) are aimed at detecting
state or sensor changes in state space models.

faultdetect implements algorithms found in the literature of fault/failure
detection in the area of control theory.

Change detection principles

&t

Whiteness test

alarm

kick on adaptation gain

Ut
Yt Filter
Figure 2.3

Idea of detection based on residual whiteness test. When

non-white residuals are detected, the adaptation gain (forgetting factor,
step size or the like) is momentarily increased.

Ut

Ut

Filter Hy

€t(H0)

-

Ut

Yt

Filter Hy

Model validation

]

€t(H1)

Figure 2.4

Hy or Hy (alarm)

Idea of detection based on parallel filters. The slow filter

Hy normally provides the parameter or state estimate, but after a change
the fast filter gives smaller residuals and the model validator chooses Hq,
whose estimate is used for initialization when the slow filter is restarted.

Adaptive Filtering and Change Detection Toolbox

18

Adaptive filtering and change detection

lQl

Ut (1)
—_—] €y

Yt Ad. filter
|

[
Ut (2)
—] 6i N
Yyt | Ad. filter Q
Hyp. test ——
lQM
Ut 52(§N)

Yt Ad. filter

Figure 2.5 A bank of matched filters, each one based on a particular
assumption on the set of change times Q = {k;}_,, that are compared in
a hypothesis test.

2.3 Data simulation

Adaptive filtering will be illustrated on a simulated ARX model
(t) = (03¢ + 04q72) u(t) + 0.1e(2)
Y L+ 61g71 + 02g2

of length 100 with abrupt changes at times 40 and 70. Both input and noise
are generated as Gaussian white noises.

., Eul=Ee* =1

randn(’seed’, 1)
u=randn(100,1); % Input
e=randn(100,1); % Noise
jumptimes=[40 70];

TH=[1.5 .8 2 0.5;...

1.5 .8 2 1;...

1.5 .6 2 117
nnn=[2 2 1]; % Model structure
y=simchange ([0.1*e ul] ,nnn, jumptimes,TH);
z=[y ul;

segplot (y, jumptimes)
title(’Signal and real change times’)

From Figure 2.6 it is not easy to estimate the change times by visual inspection.

Linear filter

Signal and real change times
T T

20

20 L L L L L I I
0 10 20 30 40 50 60 70 80 90 100

Sampel number

Figure 2.6 Simulated signal and change times.

2.4 Linear filter

First, we examine the signal using RLS with forgetting factor 0.9.

thRLS=adfilter(z,nnn,0.9,’RLS’);
thplot (thRLS,TH, jumptimes) ;

Estimated (solid) and real (dotted) parameters
25 T T T T T

I I I I I
10 20 30 40 50 60 70 80 90 100
Sampel number

-05 L L L I
0

Figure 2.7 Parameter estimates from RLS.

You can guess where the abrupt changes are located by visual inspection.
Other forgetting factors than 0.9 give either slower response or a more noisy
estimate.

Adaptive Filtering and Change Detection Toolbox 19

20

Adaptive filtering and change detection

2.5 Whiteness test detection

The one-filter approach tries to estimate the jumps by just looking at the
residuals from a standard filter. Two different distance measures are possible,
but the residual does not make sense here. The squared residual (dm=1) is
therefore used. Two conceivable stopping rules are compared: the CUSUM
and GMA detectors. Only the one-sided version is computed, since the squared
residual will not decrease after a change. The stopping rules decide when the
squared residual is large enough to alarm. Let us test the CUSUM test with
threshold 10 and drift parameter 5 (sr=[1 10 5]).

[threc, jhat,thseg,gt2,tal=detect1(z,nnn,2,[1 10 5]1,0.01);
jhat
jhat =
42
72
thplot (thseg,TH, jumptimes) ;

Estimated (solid) and real (dotted) parameters
24 T T T T T

221 q

18- q

1.6 q

14r b

1.2 q

08 \ N

0.4 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Sampel number

Figure 2.8 Parameter estimates from detectl.

Once again the result is very good. The one-filter approach is furthermore
extremely cheap to compute and easy to implement.

Let us look at the distance measure in Figure 2.9, where an alarm is obtained
when the curve exceeds the threshold value 10. The delay for detection is
about two samples.

h2=cdfigure(2,1);

Parallel filter detection

plot([gt2(:,1)]1)
title(’Distance measure for the stopping rule’)

Distance measure for the stopping rule
60 T T T T T

50 q

40f B

20 q

10 1

0 L L L L L L L L N
0 10 20 30 40 50 60 70 80 90 100

Figure 2.9 Distance measure for detect1l.

2.6 Parallel filter detection

In the two-filter approach, one model is estimated on all past data and com-
pared to one estimated in a sliding window. There are three available dis-
tance measures, Brandt’s GLR test (dm=1), the divergence test (dm=2) and the
asymptotic local approach (dm=3). The same stopping rules as for the one-filter
approach are possible, but the design parameters are generally different.

[threc, jhat,thsegl,gt3,tal=detect2(z,nnn,1,[1 5 0.3],10,-1); jhat
jhat =
41
71
[threc, jhat,thseg2,gt4,tal=detect2(z,nnn,2,[1 10 3],10,-1);jhat
jhat =
41
72
hi=cdfigure(l);
thplot (thsegl,TH, jumptimes) ;
h2=cdfigure(2,1);
thplot (thseg2,TH, jumptimes) ;

The jump times are estimated correctly but the parameter estimates are not
as good as in the detectM function.

Adaptive Filtering and Change Detection Toolbox 21

22

Adaptive filtering and change detection

Estimated (solid) and real (dotted) parameters. Estimated (solid) and real (dotted) parameters

25

S ——— S ——
051 | 4 05t
| |

05 05
0 10 20 30 40 50 60 70 80 % 100 0 10 20 30 40 50 60 70 80 90 100
Sampel number Sampel number

Figure 2.10 Parameter estimates from detectl using stopping rules
CUSUM and GMA, respectively.

h3=cdfigure(3,2);
plot([gt3(:,1) gtd4(:,1)])
title(’Distance measure for the stopping rule’)

Distance measure for the stopping rule
14 T T T T T

12+

10r

| | “‘\ | |
N N

0 10 20 30 40 50 60 70 80 90 100

Figure 2.11 Distance measure for detect?2.

Note from Figures 2.11 and 2.9 that different thresholds are required in the
stopping rules! Generally, the design of a stopping rule is a bit difficult. See the
command reference for some general guidelines, and Section 2.8 for a dedicated
study of the performance of a stopping rule.

Moultiple-model detection

2.7 Multiple-model detection

Now, the function detectM is applied. Here a number of different filters are
run in parallel. A weighting coefficient (the likelihood) determines which is
the best one. Note that the default design parameters can be used, as is the
case for most signals.

[threc, jhat,thseg,lamhat,Alfal=detectM(z,nnn); jhat
jhat =
41
71
hil=cdfigure(1);
segplot(y,jhat)
title(’Signal and estimated change times’)
h2=cdfigure(2,1);
thplot (thseg,TH, jumptimes) ;

Signal and estimated change times Estimated (solid) and real (dotted) parameters
T - T . T T T T

.
0 10 20 20 40 50 60 70 80 90 00 0 10 20 30 40 50 60 70 80 90 100
Sampel number Sampel number

Figure 2.12 Signal segmentation and parameter estimates from detectM.

The true change times are mostly estimated correctly in this example.

2.8 Stopping rules

We will here demonstrate how to apply and design a stopping rule with partic-
ular attention to the CUSUM detector. Compare with Section 12.2 in the text
book. Assume we observe a signal y(¢) which is N(0,0?) before the change
and N(0,0) after the change. We apply the CUSUM test with threshold h

Adaptive Filtering and Change Detection Toolbox 23

24

Adaptive filtering and change detection

and drift v:
gt =gt—1+ Y —V (2.1a)
gt =0, and ktepp =t if g; < 0 (2.1b)
g =0, t, =1, k= l%temp and alarm if g, > h > 0. (2.1c)

A successful design requires 6 > v.
The alternative is to use the geometrical moving average (GMA) test:
gt = g1 + Ay (2.2a)

gt =0, to =t and alarm if g; > h > 0. (2.2b)

The average run length (ARL) function for a stopping rule for detecting a
change 6 in the mean of a signal is defined as

E(ta]0) (2.3)

where t, is the stopping time. There are two design parameters in the CUSUM
test, the threshold h and the drift parameter v. If o is the standard deviation

of the noise, then
h 60—
ta=f (—, V) (2.4)

g g

That is, it is a function of two arguments. We can assume that ¢ = 1 and, for
simplicity, v = 0/2 (a standard choice of drift if 6 is known in advance). The
mean time between false alarms is f(h, —6/2) and the mean time for detection
is f(h,+60/2). To check these for a given h, do as follows:

h=3;
th=1;
nu=th/2;
mu=th-nu;
[ta0,NO] = cusumarl(h,-mu);
[tal,NO] = cusumarl(h,+mu);
disp([ta0, tall)
127.5000 6.5000

That is, the mean time between false alarms is 6.5 samples. NO denotes the
mean time beween resets in the CUSUM algorithm. A reset is caused by either
an alarm or a negative test statistic (the reset operation in (2.1b)).

The exact value of the ARL function is given by a so called Fredholm integral
equation of the second kind, which must be solved by a numerical algorithm.
A direct approximation suggested by Siegmund is obtained by

Stopping rules

[taOsiegmund] = cusumarl(h,-mu,0.5,-1);
[talsiegmund] cusumarl(h,+mu,0.5,-1);

and another approximation suggested by Wald is obtained by

cusumarl (h,-mu,0.5,-2);
cusumarl (h,+mu,0.5,-2) ;

[taOwald]
[talwald]

These values are displayed in the table below. The mean times do not say
anything about the distribution of the run length, which can be quite unsym-
metric. Monte Carlo simulations can be used for further analysis of the run
length function:

NMC=1000;

LO=cusumMC (h,-mu,NMC) ;

hi=cdfigure(1);

hist(L0,30);

title(’Distribution of false alarm times’)
Li=cusumMC (h,mu,NMC) ;

h2=cdfigure(2,1);

hist(L1,30);

title(’Distribution of delay for detection’)

Distribution of delay for detection

Distribution of false alarm times

0
0 100 200 300 400 500 600 5 10 15 20 25 30

Figure 2.13 Distribution for false alarm times and delay for detections,
respectively.

Compare theoretical with achieved mean times;

disp(’Numerical Wald Siegmund MC’)
disp([ta0 taOwald taOsiegmund mean(LO)])
disp([tal talwald talsiegmund mean(L1)])
Numerical Wald Siegmund MC

Adaptive Filtering and Change Detection Toolbox 25

26

Adaptive filtering and change detection

127.5000 32.0000 118.5000 116.8040
6.5000 4.0000 6.5000 6.2080

The distribution for false alarms is basically binominal. A rough estimate of
the delay for detection is Lo = h/(6 — v), which is 6 in this example.

What is really needed in applications is to determine A from a specified mean
time for detection Lg. This is computed by a numerical search in

hmax=10;
L0=10;
h=cusumdesign(L0O,mu,hmax)
h =

5

Evaluate the design by Monte Carlo simulations

Li=cusumMC (h,mu,NMC) ;
mean (L1)
ans =

10.28

Finally, we can generate a table. This is the table on page 443 in the textbook
and Table 5.1 in [2].

MU=[-2 -1.5 -1 -0.5 0 0.5 1 1.5 2.0];

h=3;

for i=1:length(MU);
[ta0,NO] = cusumarl(h,MU(i),0.1);
[tas,NO] = cusumarl(h,MU(i),0.1,-1);
[taw,NO] = cusumarl(h,MU(i),0.1,-2);
Li=cusumMC(h,MU(i) ,NMC) ;
tab(i,:)=[MU(i),ta0,taw,tas,mean(L1)];

end

format short e

disp(’)

disp(’ mu Exact Wald Siegmund MC?)

disp(tab(1:3,:));
format short
disp(tab(4:9,:));
mu Exact Wald Siegmund MC
-2.00e+00 2.36e+02 2.03e+04 2.15e+06 9.99e+02

Stopping rules

-1.50e+00 1.98e+02 1.79e+03 5.95e+04 9.92e+02
-1.00e+00 2.11e+02 1.98e+02 2.07e+03 7.65e+02
-0.50 127.7000 32.2000 118.6000 119.9640
0 19.4000 9.0000 17.4000 16.7620
0.5000 6.7000 4.1000 6.4000 6.4620
1.0000 3.9000 2.5000 3.7000 3.7600
1.5000 2.7000 1.8000 2.6000 2.6560
2.0000 2.1000 1.4000 2.0000 2.1740

The table is also illustrated in Figure 2.14.

Mean delay for alarm: from simulations and theory
10

—— Theoretical
- - Siegmund’s approx.
Wald's approx.
- - Monte Carlo aprox.

10°F

10

100 1 1 1 1
-0.5 0 0.5 1 15 2
0-v/2

Figure 2.14 ARL function for different approximations as a function of
uw=0—uv.

The ARL function can only be computed analytically for very simple cases,
but the approach based on Monte Carlo simulations is always applicable. See
the GUI chapter how this work can be automated.

Adaptive Filtering and Change Detection Toolbox 27

28

Adaptive filtering and change detection

3 Kalman filtering and change
detection

‘ Purpose ‘ Syntax ‘

Simulation [y,x] = simchange (z,nnn, jumptimes,TH)
Adaptive filtering | xhat = adfilter (z,nnn,adg,adm)
xhat = adkalman (z,nnn,options)
xhat = detectl (z,nnn,options)
xhat = detect2 (z,nnn,options)
xhat = detectM (z,nnn,options)

Plot segplot (z,jumptimes)
thplot (xhat,x)

3.1 Introduction

As for adaptive filtering, the basic idea is that a two-liner as

[y,x] = simchange(z,nnn, jumptimes,TH) ;
xhat = adfilter([y ul ,nnn);

will simulate a state space model and recover the state from the output with
a Kalman filter, respectively. Compare with Figure 3.1

Noise e, vt Output y; Yt €t R ey
—_—
Input u; System State ¢ Ut Kalman filter | ¢ =~ x¢

Figure 3.1 Kalman filter structure.

That is, the simulation and filter functions will be each others inverses. The
difference of adfilter and adkalman is that the latter is a dedicated Kalman
filter, while the former covers more models than a state space one. Conse-
quently, adkalman has more features implemented:

30

Kalman filtering and change detection

e It can deliver filter, prediction and smoothing forms. (Only filter in
adfilter.)

e It applies time-varying or stationary Kalman filter. (Only time-varying
in adfilter.)

e It may use a numerically more well-conditioned, but slightly more com-
plex, implementation, using a square root algorithm.

For change detection, the two-liner becomes

[y,x] = simchange(u,nnn, jumptimes,TH)
[xhat, jumphat] = detectl([y ul,nnn,options);

The change detection function for detectl has the same limitations on gen-
erality as adfilter.

3.2 Data simulation

The functions will be illustrated on the discrete time correspondence to the
continuous time model

B1) = wit)+ ot~ KT (31)
y(t) = x(t) +e(t).

This double integrator model is common in navigation and tracking applica-
tions, where the model simplifies reality and assumes that the object is moving
as a random walk. Here f is an unknown force which influences the object at
time kTs, where Ty is the sample interval. The sampled model is defined (see
also c2d in CSTB), simulated and filtered below:

A=[1 1;0 1]; B=[0.5;1]; C=[1 0]; D=0;
Q=0.01*eye(2);

R=0.01;

PO=1x*eye(2);
nnn=ss2nnn(A,B,C,D,Q,R,P0);
jumptime=50;

TH=[10; 20];

u=randn(100,1);
[y,X]=simchange ([u] ,nnn, jumptime,TH) ;
[Xhat,lamhat,epsil=adfilter([y ul,nnn);
hi=cdfigure(l);

plot(epsi)

Data simulation

35

0 10 20 30 40 50 60 70 80 90 100

Figure 3.2 Prediction error from Kalman filter.

Figure 3.2 shows the prediction error from the Kalman filter, where the peak
comes from the abrupt force change.

mlr is suitable for this kind of motion model. It provides a very efficient
method for locating the change point.

[jhat,lr]=mlr([y ul,nnn);jhat
jhat =
50
h2=cdfigure(2,1);
plot(1r)

The glr approach is somewhat slower, but gives on the other hand an estimate
of the change magnitude. That is, the state vector can be compensated for
the estimated change as soon as a decision is made about the change time.

[Xhatglr, jumphat,ta,lr,numat,mu]=glr([y ul ,nnn,10,6e4);
disp([jumphat])

disp([nuhat])

h3=cdfigure(3,2);

plot(1lr)

h4=cdfigure(4,3);
legl=plot(X(1,:),’:°); hold on
leg2=plot(Xhat(1,:),’--’);

leg3=plot (Xhatglr(1l,:),’-’); hold off

Adaptive Filtering and Change Detection Toolbox 31

32

Kalman filtering and change detection

350

300 H q

250 T

150 - q

50 q

-50 L L L L L L I I I
0 10 20 30 40 50 60 70 80 90 100

Figure 3.3 Marginalized likelihood ratio function p(y'°°|k) for mlr com-
puted off-line.

legend([leg2 leg2 leg3],’True states’,...
’Kalman filtered states’,’GLR filtered states’,2);

h5=cdfigure(5,4);
legl=plot(X(2,:),’:°); hold on
leg2=plot(Xhat(2,:),’--’);
leg3=plot (Xhatglr(2,:),’-’); hold off
legend([leg2 leg2 leg3],’True states’,...
’Kalman filtered states’,’GLR filtered states’,2);

Data simulation

8000

7000

6000

5000

4000

3000

2000

1000

ST L L L i L

0
0

Figure 3.4 Generalized likelihood ratio function p(yt|k =t — L) for glr

10 20 30 40 50 60 70 80 90 100

computed using a sliding window of size L = 10.

25 T T T T T T T T T

1000

--- True states 2 --- True states
--- Kalman filtered states /| =f|--- Kalman filtered stat
—— GLR filtered states / — GLR filtered states |”

g

Figure 3.5

Adaptive Filtering and Change

True state and estimates from Kalman filter and GLR.

Detection Toolbox

100

33

34

Kalman filtering and change detection

4 Equalization

‘ Purpose ‘ Syntax ‘
Simulation [y,u,th] = simchannel (alphabet,nb,N,th)
Equalization [uhat] = viterbi (y,th,alphabet,lam,utrain)

Blind equalization | [threc,uhat] = blindeq (y,nb,adg,adm,th0)

[uhat,threc] = blindegM (y,nb,alphabet)
Utilities ber = u2ber (u,uhat)

m = openeye (bch,beq)
Demo demo_equalization

4.1 Introduction

The contribution to digital communication in this toolbox is the set of functions
simchannel , viterbi , blindeq and blindegM . These all operate on FIR
filters, as is the standard model in this area. The FIR orders are specified in
nb. simchannel simulates a channel, where the input alphabet and channel
parameters are specified. One can also simulate time-varying fading channel,
where channel fading parameters are specified. blindeq implements classical
methods based on LMS like algorithms, and blindegM implements multiple-
model algorithms, or mazimum likelihood sequence detector algorithms. In
structure and code, these are very similar to adfilter and detectM .

The basic idea is that a simulation and estimation are inverses as follows:

[y,u,th]=simchannel (alphabet,nn,N);
[threc,uhat]=blindeqM(y,nb,alphabet)

Here uhat should come close to u and threc should approximate th.

There are two principles for equalization:

1. The channel is estimated from a training sequence, this can be done in-
side viterbi, and the channel estimate is specified to viterbi which im-
plements the Viterbi equalization algorithm for recovering the unknown
input.

36

Equalization

2. The channel and the unknown input are estimated simultaneously with
one of the two classes of blind equalizers, as is done in blindeq and
blindegM.

4.2 Equalization using the Viterbi algorithm

In this approach, it is assumed that an estimate of the channel is available.
It might have been estimated using a known training sequence. The idea is
then to enumerate all possible input sequences, and the one that produces the
output most similar to the measured output is taken as the estimate.

Ut Yt
— Channel
o Uy
Similarity measure ———
’Ilt yt(ﬁ’)

— > Estimated channel

Figure 4.1 Viterbi equalization.

Technically, the similarity measure is the maximum likelihood criterion, as-
suming Gaussian noise. This is quite similar to taking the sum of squared
residuals Y, (y — v:(@))? for each possible sequence 4. Luckily, not all se-
quences have to be considered. It turns out that only nl* sequences have to
be examined, where ng is the number of symbols in the finite alphabet, and
1y is the channel order.

The bit error rate (BER) is defined as

number of non-zero (u; — ;)

N

where trivial phase shifts (sign change) and time delays of the estimate should
be discarded. Use u2ber to compute this.

BER =

(4.1)

The example below shows different possibilities of guessing or estimating the
channel model, and what the resulting bit error rate is.

% Simulate a channel

Adaptive blind equalizer

N=100;

randn(’seed’,1);

b=[1 1 1];

alphabet=[-1 1];

[y,ul=simchannel (alphabet,3,N,b);

% BER for bad channel estimate
bhat=[1 0 0];
uhat=viterbi(y,bhat, [-1 1],0.01);
ber=u2ber (u,uhat)

0.2400
% BER for good channel estimate
bhat=[1 0.7 1.3];
uhat=viterbi(y,bhat,[-1 1],0.01);
ber=u2ber (u,uhat)

0.0400
% BER when using a short training sequence
[uhat,thhat]=viterbi(y,3,[-1 1],0.01,u(1:5));
disp(thhat)

0.9589

0.9589

0.9679
ber=u2ber (u,uhat)

0
% Using a general input alphabet
alphabet=[-1 1 sqrt(-1) -sqrt(-1)];
[y,ul=simchannel (alphabet,b,N);
uhat=viterbi(y,b,alphabet);
ber=u2ber (u,uhat)

0

4.3 Adaptive blind equalizer

Figure 4.2 shows a block diagram for the adaptive blind equalizer approach.

Ut Yt

Zt Ut
— > Channel

Equalizer Decision [——

Figure 4.2 Adaptive blind equalizer.

Adaptive Filtering and Change Detection Toolbox 37

38

Equalization

The channel is modeled as a FIR filter

B(q) =biq ' +biq 2.+ bjrg™ (4.2)
The same model structure is used in the equalizer

Clq) =ciq +ciqg 2+ g™ (4.3)

Both the channel and equalizer FIR parameters can either be constant (a row
vector) or time-varying (a matrix). MIMO models are defined analogously,
where the FIR model B%(q) denotes the channel distortion from input i to
output j.

The impulse response of the combined channel and equalizer, assuming FIR
models, is
ht = (b * C)t

where * denotes convolution. The best one can hope for is hy ~ md;_j, where
k is an unknown time-delay, and m with |m| =1 is an unknown modulus.

The two most popular loss functions defining the adaptive algorithm are given
below:

E[(1—2%? modulus restoral (Godard) (4.4)
E[(sign(z) — 2)?] decision feedback (Sato) (4.5)

These are minimized by an LMS like algorithm in blindeq.

The modulus and delay do not matter for the performance and can in ap-
plications be ignored. However, for evaluation using the bit error rate, these
have to be determined. The algorithm implemented in u2ber estimates the
covariance function (using FFT for maximum speed) R(k) = E(ust;—r). The
time delay is then estimated as k = argmaxy |R(k)|, and the maximum of
R(k) can be taken as the corresponding estimate of the modulus.

Consider the case of input alphabet u; = +1. For succesful demodulation,
assuming no noise on the measurements, it is enough that the largest compo-
nent of h; is larger than the sum of the other components. That is, m; > 0,

where
(7))

my =2 — .
t maxyg |ht|

This measure is computed by openeye. If the equalizer is a perfect inverse of
the channel (which is impossible for FIR channel and equalizer), then m; = 1.
The standard definition of an open-eye condition corresponds to m; > 0, when
perfect reconstruction is possible, if there is no noise. The larger my, the larger

noise can be tolerated.

Look at the plot in Figure 4.3 for an example of how a blind equalizer improves
the open-eye measure with time.

Adaptive blind equalizer

In the example below, the channel 0.3¢~! + 1¢~! + 0.3¢~! is simulated using
an input sequence taken from the alphabet [—1,1]. The initial equalizer pa-
rameters b0 are quite critical for the performance. They should at least satisfy
the open-eye condition m; > 0 (here m(0) ~ 0.5).

N=1000;

randn(’seed’,1);

b=[0.3 1 0.3]

alphabet=[-1 1];

[y,ul=simchannel (alphabet,3,N,b);

y=y; %+0.1*xrandn(N,1);

nc=>5; % equalizer order for blindeql

c0=[0 -0.1 1 -0.1 0]’;

[theql,ubatl,epsil]=blindeq(y,nc,0.01,1,c0);
[theq2,uhat2,epsi2]=blindeq(y,nc,0.01,2,c0);

ml=openeye (b, theql) ;
m2=openeye (b, theq2) ;

cdfigure(1);
hi=plot(ml,’-’); hold on
h2=plot(m2,’--’); hold off

title(’Open eye condition’)
legend([hl h2],’Sato’,’Godard’,3)

cdfigure(2,1);
plot([epsil’ epsi2’])

%hcdfigure(3,2);

figure

hi=plot(1:3,b,’b-"); hold on

h2=plot(1:5,theql(:,N)’,’r:’);

h3=plot(1:7,conv(b,theql(:,N)’),’g--"); hold off

legend([hl h2 h3],’Channel’,’Equalizer’,...
’Combined channel+equalizer’,2)

beri=u2ber(u,uhatl);
0

ber2=u2ber (u,uhat2) ;
0

Adaptive Filtering and Change Detection Toolbox 39

Equalization

Open eye condition
1 T T T

09f
08f
07t

“rl
06f

05
04
03
0.2
0.1

— sato
— — Godard
0 L

L L L L L L L » L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure 4.3 Open-eye measure and residuals for Sato’s and Godard’s
algorithms.

14

Equalizer

T
—— Channel
— — Combined channel+equalizer

1.2

0.6 q

0.4r- q

021 4

0.4 L L L I I
1 2 3 4 5 6 7

Figure 4.4 Impulse response of channel, equalizer and combined
channel-equalizer (almost an impulse function).

4.4 Maximum likelihood sequence detection

This direct approach to channel equalization using maximum likelihood se-
quence detection does not involve an explicit equalizer, but rather a bank of
channel estimators, each one matched to a particular input sequence. These
input sequences are enumerated in a Viterbi like fashion.

The main difference to the Viterbi algorithm is that the channel is estimated
using a standard adaptive filter conditioned on the input sequence. Another
difference is that here all input sequences must be examined to get the optimal
estimate, and a key question is how to approximate the estimate by only
considering M sequences at any time. The most important design variable is
M, while the noise variance should also be of the right order of magnitude
(but this may not be so critical).

Maximum likelthood sequence detection

Ug Yi
— Channel
o Uy
Similarity measure —————
it(n) v (i, 0)

— > Channel estimator

Figure 4.5 Maximum likelihood sequence detection.

Below a number of examples of increasing generality are given.

441 A time-invariant SISO channel

We start with the simplest case of a time constant SISO channel. Note that
the order of the equalizer should be the same as the channel here, in contrast

to the adaptive blind equalizer where n. > n; generally.

N=100;

randn(’seed’,1);

rand(’seed’,1);

b=[0.51 0.7];

alphabet=[-1 1];

[y,ul=simchannel (alphabet,3,N,b);
y=y+0.1*randn(N,1); % Noise on y

nb=3; % channel order for blindegM

[thhat,uhat]=blindeqM(y,nb, [-1,1],0.001,16,.1,10,0);

[ber,uhatout,delay,m]=u2ber(u,uhat) ;
ber
ber =
0
cdfigure(1);
plot (mxthhat’) 7 Correct modulus
hold on
plot (ones(N,1)*b,’-=7)
hold off

Adaptive Filtering and Change Detection Toolbox

41

42

Equalization

Note how we use the estimated modulus to correct the sign of the estimated
parameters. That is, if 4(t) = u(t — 7), then compare —6 with 6. See Figure
4.6.

-0.4
0

1‘0 2‘0 3‘0 4‘0 5‘0 f;O 7‘0 8‘0 E;O 100
Figure 4.6 Estimated channel parameters by blindegM for a time-
invariant SISO channel.

4.4.2 A time-varying SISO channel

Next, we use simchannel to simulate a Rayleigh fading channel.

N=100;
[y,u,b]=simchannel ([-1 1],2,N,[]);
nb=2;

[thhat,uhat]=blindeqM([y u],nb,[-1,1],.001,64,.1,10,0);

[ber,uhatout,delay,m]=u2ber (u,uhat);
ber
ber =
0
cdfigure(1);
plot (m*thhat’) % Correct modulus
hold on
plot(b’)
hold off

Figure 4.7 illustrates the parameter tracking.

Maximum likelthood sequence detection

0.8

0.6

0.4

021

0.2

-0.4
0

1‘0 2‘0 3‘0 4‘0 5‘0 f;O 7‘0 8‘0 E;O 100
Figure 4.7 Estimated channel parameters by blindegM on a noise-free
time-varying channel.

4.4.3 A time-invariant SIMO channel

A SIMO model can be simulated as follows:

rand(’seed’,0);
b=[3 2 1 6 5 4];
a=1;

nb=[3;3];

N=200;

sigma=1;

[y,ul=simchannel ([-1 1] ,nn,N,b(:));
y=y+sigma*randn(N,2);
[thhat,uhat,ber]=blindeqM(y,nb, [-1,1] ,sigma~2,64);

[ber,uhatout,delay,m]=u2ber (u,uhat) ;
ber
ber =
0
cdfigure(2,1);
plot (mxthhat’)
hold on
bdum=b’ ;
b=bdum(:) ;
plot((ones(N,1)*b’))
hold off
axis([0O N 0 7])
title(’Estimated (solid) and true (dashed) parameters’)

Adaptive Filtering and Change Detection Toolbox

44

Figure 4.8 shows how the six parameters are estimated.

Estimated (solid) and true (dashed) parameters
T T T

0

0 20 40

80

100

120

140

160

180

200

Equalization

Figure 4.8 Estimated channel parameters by blindegM on a noisy time-

invariant SIMO channel.

4.4.4 A time-varying SIMO channel

A time-varying SIMO model is simulated below.

randn(’seed’,0);

N=100;
nb=2; ny=2; nu=1;
sigma=0.01;

randn(’seed’,1);

[y,u,thl=simchannel ([-1 1] ,nb*ones(ny,nu),N,[]);

y=y+sigma*randn(N,ny) ;

[thhat,uhat]=blindeqM(y, [2;2],[-1,1],sigma"2,64,.1,10,0);
[ber,uhatout,delay,m]=u2ber(u,uhat) ;

ber
ber =

0
cdfigure(3,2);
plot (m*thhat’,’-’)
hold on
plot(th’,’-=?)
hold off

Tracking of the four time-varying parameters are illustrated in Figure 4.9.

Maximum likelthood sequence detection

-0.6
0

1‘0 2‘0 3‘0 4‘0 5‘0 f;O 7‘0 8‘0 E;O 100
Figure 4.9 Estimated channel parameters by blindeqM on a noisy time-
varying SIMO channel.

4.45 A time-invariant MIMO channel

Finally, the most general MIMO model is simulated.

N=64;
sigma=0.1;

th=[1 0.9 0.8 0.7 0.6 0.5 0.4 0.3];
nb=2;
ny=2;
nu=2;

[y,ul=simchannel ([-1 1] ,nb*ones(ny,nu),N,th);
y=y+sigma*randn(N,ny) ;

[thhat,uhat]=blindeqM(y,nb*ones (ny,nu), [-1,1]);
[ber,uhatout,delay,m]=u2ber(u,uhat) ;
ber
ber =
0
disp([th’ thhat(:,N)])

cdfigure(4,3);

plot (m*xthhat’)

hold omn
plot(ones(N,1)*th,’--7)
hold off

axis([0O N 0.2 1.1])

Adaptive Filtering and Change Detection Toolbox

46

Equalization

See Figure 4.10 for the resulting plot.

11

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

‘ |
02 A ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60

Figure 4.10 Estimated channel parameters by blindeqgM on a noisy
time-invariant MIMO channel.

446 Remarks

From the examples in this section, one may conclude that everything is simple
and works perfectly. All the plots show perfect channel reconstruction and the
BER is (almost) zero. However, the main practical problems are as follows:

e For blindeq , the problem is to find a good initialization. It is almost
impossible to just guess a value.

e For blindegM , the complexity grows in the channel order n, and the
size of the alphabet ng as n7?, which may be prohibitive for certain
applications.

Another problem for MIMO channels is to decide which input belongs to which
output. This may cause an estimate which is repeatingly switching between
the different possibilities, where the probability for one combination is about
the same as the probability for the other input—output combination.

5 Target tracking

‘ Purpose ‘ Syntax ‘

Simulation | [y,x]=simchange (N,nnn,jumptimes,TH)
Tracking [xhat]=adkalman (y,nnn,options)

[xhat, jumptimes]=detectl (y,nnn,options)
[xhat, jumptimes]=detectM (y,nnn,options)
[xhat, jumptimes]=imm (y,nnn,options)

Plot radarplot (y,xhat,x)
Model nnnplane (t,x,f,flag)
Demo demo_tracking

5.1 Introduction

For target tracking, the usual Kalman filter applies, but there are particular
algorithms suggested, like IMM. There are also many standard motion mod-
els. The main contribution of this toolbox to target tracking, is a general
motion model nnnplane . It implements a variety of models used in the area,
controlled by the global parameter NNNmethod.

The state variables are defined in continuous time as as subset of the following;:

e 11 and zy denote the cartesian position in the horizontal plane.
e v; and vy denote the cartesian velocity in the horizontal plane.

v denotes the speed.

h denotes the heading angle, so v = vsin(h) and ve = v cos(h).

e w = h denotes the turn rate.

The state space model must be transformed to discrete time before the Kalman
filter applies. For non-linear models, there are two alternatives, either to
linearize the non-linear model and then apply standard sampling of state space
models, or to try to sample the continuous time non-linear model to a discrete

48

Target tracking

time non-linear model, which is then linearized. We refer to these principles as
discretized linearization and linearized discretization, respectively. The global
switching parameter NNNmethod can now be defined as follows:

1. Four state linear model z = (2,23 v yCHT,

2. Four state linear model as above with a time-varying and state depen-
dent covariance matrix Q(z;), corresponding to velocity noise mainly in
lateral direction, as will be explained below.

3. Six state linear model with x = (3:(1),:6(2),@(1),1)(2), a(l),a(Q))T.

4. Six state linear model as above with a time-varying and state depen-
dent covariance matrix Q(x;), corresponding to velocity noise mainly in
lateral direction, as will be explained below.

5. Five state coordinated turn model, cartesian velocity, linearized dis-
cretization, with x = (:c(l),x(2),v(1),v(2),w)T (w is turn rate).

6. Five state coordinated turn model, polar velocity, linearized discretiza-
tion, with = = (3:(1),:6(2),1;, h,w)T (h is heading angle).

7. Five state coordinated turn model, cartesian velocity, discretized lin-
earization.

8. Five state coordinated turn model, polar velocity, discretized lineariza-
tion.

The first five ones seem to be the most common ones in applications. A covari-
ance matrix @) corresponding to, for example, 100 times larger maximal acel-
eration in lateral direction compared to longitudinal direction (g, = 0.01gy)
is given by

0 = arctan(z /z®)

Q- (qv cos?(0) + qu sin?(0) (qy — qu)sin(f) cos(@))
(qv — Gu) sin(#) cos(0) g, sin?(0) + gy, cos?(0)

T3/3 0
T%/2 0 0 T3/3
0 T%/)2 T2/2 0
Bo= p o | " B= 0 1200
0 T T 0
0 T

The reason for introducing an ugly global variable for switching purposes is
solely to keep the Simulink-like syntax. See Section 8.9 in the text book
for a thorough treatment of model definitions and their extended Kalman
filters. The flexibility of nnnplane is illustrated by the fact that the same

Simulation

Kalman filter adkalman applies to all of these non-linear and linear models.
All adkalman needs to know is defined inside the model.

Change detection means in this context maneuver detection, and here the
alternatives are detectl and detectM . radarplot gives a nice illustration of
the result.

The only taylored function for this problem is imm (Interactive Multiple Model),
which is one of the most cited method in this area. Besides the extended
Kalman filter, it has become a standard in the field. The main difference
between detectM and imm , which algorithmically are very similar, is that
the former prunes different hypotheses of maneuvers, while the latter merges
them.

5.2 Simulation

A flight trajectory with maneuvers is simulated using abrupt changes in the
turn rate of a fifth order non-linear state space model.

N=70; % Simulation length

lam=1;
nnn=’nnnplane’; % Motion model
global NNNmethod % with global switch
NNNmethod=5; % Five state model for simulation
u=zeros(N,1); % No input
th0=[-0.025;... % Define state changes in turn rate
+0.025; ...
0.04;...
-0.04;...
0.039;...
-0.039]°;

jumps=[10 16 35 41 55 61]; % Define true jump times
% Start a simulation
[y,x0]=simchange (N,nnn, jumps,thO,lam, ’pulse’);

An illustration of the experiment is obtained as follows:

pl=radarplot(y,x0); % Nice illustration
legend(pl, ’Measured position’,’True position’)

Adaptive Filtering and Change Detection Toolbox 49

50

Target tracking

4 —o— Measured position
x10 . | -* True position
3.5f %]

251

1.5F

0.5r

[

x 10*

Figure 5.1 Target tracking: simulated trajectory

5.3 Kalman filtering
Default values work fine for the Kalman filter as illustrated below:

NNNmethod=1; % Fourth order linear model for estimation
[xhat]=adfilter(y,nnn,1); % Kalman filtering

radarplot (y,xhat);

title(’Kalman filter’)

% 10" Result from adfilter with adgain=1

o
-k
N

é —6— Measured position
—-» Estimated position

X IU

Figure 5.2 Target tracking: position predictions from the Kalman filter.

Note that it is not possible to change the initial conditions in adfilter. To
get full freedom and alternative implementations, use the Kalman filter in
adkalman .

Kalman filtering

[xhatl]=adkalman(y,nnn,1,1); % stationary Kalman filter
[xhat2]=adkalman(y,nnn,1,2); % Kalman filter
[xhat3]=adkalman(y,nnn,1,3); % Kalman filter square root
[xhat4]=adkalman(y,nnn,1,4); % Kalman smoother

,:)-xhat0(1:2,:)).72));
,:)-xhat1(1:2,:)).72));
,:)-xhat2(1:2,:)).72));
,:)-xhat3(1:2,:)).72));
,:)-xhatd(1:2,:)).72));

rmse0=sqrt (sum((x0(1:
rmsel=sqrt (sum((x0(1:
rmse2=sqrt (sum((x0(1:
rmse3=sqrt (sum((x0(1:
rmsed=sqrt (sum((x0(1:

NN DN NN

figure

plot([rmsel’ rmse2’ rmse3’ rmse4’])

legend(’adkalman: stationary’,’adkalman: time-varying’,...
’adkalman: square-root’,’adkalman: smoothing’);

axis([0 N 600 1600])

1600

—— adkalman: stationary
1500F — adkalman: time-varying ||
— adkalman: square-root
—— adkalman: smoothing

1400

1300

1200

1100

1000

900

800

700

600 L L L L L L
0 10 20 30 40 50 60 70

Figure 5.3 Target tracking: position error for different variants of the
Kalman filter.

figure

plot(x0(1,:),x0(2,:),’-d’)

hold on
plot(xhat1(l,:),xhat1(2,:),’g-")
plot(xhat2(1,:),xhat2(2,:),’g--")
plot(xhat3(1,:),xhat3(2,:),’r-.7)
plot(xhat4(1,:),xhat4(2,:),’m:’)
hold off

axis(’equal’)

legend(’true’,’adkalman: time-varying’,’adkalman: stationary’,...

’adkalman: square-root’,’adkalman: smoothing’);
axis([1 2.5 3 4]x1e4d)

Adaptive Filtering and Change Detection Toolbox

51

52

Target tracking

4 —— true
— : time-varying |
— — adkalman: stationary
— - adkalman: square-root
39r adkalman: smoothing [

381 q

Figure 5.4 Target tracking: tracking a manoeuvre for different variants
of the Kalman filter.

Optimization of the adaptation gain is straightforward:

adg=[1le-2 le-1 1e0 lel le2 1e3 1le4];

leg=[];

for i=1:length(adg)
[xhat]=adkalman(y,nnn,adg(i),[2 1]); % Kalman predictor
rmse(:,i)=sqrt(sum((x0(1:2,:)-xhat(1:2,:)).72))7;
leg=str2mat (leg,num2str(adg(i)));

end

leg(1,:)=[1;

rmseO=sqrt (sum((y’-x0(1:2,:)).72))’;
figure

pl=plot([rmse]);

hold on, p2=plot(rmse0,’r--’); hold off
leg=str2mat (leg,’Ad-hoc filter’);
legend([pl;p2],leg,2)

xlabel(’Time [samples]’)
ylabel(’Predictive RMSE(t)’)

A plot of RMSE versus adaptation gain is instructive.

semilogx (adg,sqrt (sum(rmse."2)))

hold on,

semilogx (adg,sqrt (sum(rmse0."2))*ones(size(adg)),’r--);
hold off

xlabel (’Adaptation gain’)

ylabel (’Predictive RMSE’)

Kalman filtering

4000 T
— 0.01
— 0.1
3500 — 1
— 10
— 100
3000f 1000
_ — 10000
25004~ —Ad-hoc filter
%)
=
x
© 2000
=
S
©
Q1500
a
1000
500
0 :
0 10 20 30 50 60 70

40
Time [samples]

Figure 5.5 Target tracking: position prediction error using different @
scalings. The ad-hoc filter uses y; as the position estimate.

Predictive RMSE
o I
(=) = N

o
)
T

0.4

0.2 — —

107 10 10 5 ° *

161 10 10 10
Adaptation gain
Figure 5.6 Target tracking: time-averaged RMSE as a function of the
@ scaling. Dashed line is the RMSE for the ad-hoc filter using y; as the

position estimator.

Adaptive Filtering and Change Detection Toolbox

54

Target tracking

Finally, the different state coordinates implemented in nnnplance can be com-
pared in the Kalman filter.

leg=[1;

for i=1:5
NNNmethod=i; % State coordinates
[xhat]=adkalman(y,nnn,1,[2 1]); % Kalman predictor
rmse(:,i)=sqrt(sum((x0(1:2,:)-xhat(1:2,:)).72))7;
leg=str2mat(leg,num2str(i));

end

leg(1,:)=[1;

plot([rmse])

legend(leg,2)

xlabel(’Time [samples]’)

ylabel (’Predictive RMSE(t)’)

12000

10000 —

6000

4000

2000 “
NA A,Az i

Figure 5.7 Target tracking: position prediction error using the diffferent
state coordinates in nnnplane, listed on page 5.1. Note that @ is not
optimized, so one cannot say which state coordinate system is best from
this plot.

Predictive RMSE(t)

©
o
o
o

‘A =

,t

R

Time [samples]

5.4 Change detection with whiteness test

The basic whiteness test idea, where a stopping rule monitors a distance mea-
sure, and the alarm kicks on the adaptiation gain, is implemented in detectl.
We can redo the estimation, and see whether the detector improves tracking
during the manoeuvres.

h=5;

Change detection with whiteness test

nu=0.5;

[xhat, jhat,xseg,gt,tal=detect1(y,nnn,1,[2 1e10 nul,1);
[xhatl, jhatl,xsegl,gt,tal=detectl(y,nnn,1,[2 h nul,1);
jumps, jhatl=jhatl’

jumps =

10 16 35 41 55 61
jhatl =

15 39 64
figure

plot(x0(1,:),x0(2,:),’-,...
xhat(1,:),xhat(2,:),’—=7,...
xhat1(1,:),xhatl1(2,:),’-.")

hold on

plot(xhat1(1,jhatl),xhat1(2,jhatl),’o’)

hold off

legend(’True trajectory’,’Kalman filter’,...

’KF with change detector’)
axis(’equal’)

45+ —— True trajectory
- - Kalman filter
- - KF with change detector

0 1 2 3 4 5
x10*

Figure 5.8 Target tracking: detectl improves position tracking during
manoeuvres due to an increase in adaptation gain when the CUSUM test
gives an alarm.

As for adkalman, changing the design parameters in the Kalman filter (zq, Py, @, R),
requires editing the model. That is, make a local copy of nnnplane and edit
these definitions.

The estimation error of the Kalman filter with and without change detector
is plotted next.

subplot (211)

Adaptive Filtering and Change Detection Toolbox 55

56

Target tracking

segplot ([x0(1,:)’-xhat(1,:)’ x0(1,:)’-xhat1(1,:)’],jhatl);
ylabel(’Error in x_1’)

xlabel(’ ’), title(’)

subplot (212)

segplot ([x0(2,:)’-xhat(2,:)’ x0(2,:)’-xhat1(2,:)’],jhatl);
ylabel(’Error in x_2’)

xlabel(’Time [samples]’)

title(’)

legend(’Kalman filter’,’KF with change detector’,4)

1000

[fxxv/’c7%\,wp\\dﬁx
~

§

las

1
o

Error in x

~2000 N N N N N
0 20 30 40 50 60 70

1000

A

2
o
T

)

— Kalman filter
—— KF with change detector

Error in x,

-1000f

~2000 L L L IT
0 10 20 30 40 50 60 70

Time [samples]

Figure 5.9 Target tracking: position error in x; and x5 using a Kalman
filter with and without change detection. Note the faster recovery with
detection.

5.5 Change detection with filter banks

Here, filter banks is applied, where each filter is matched to a specific manoeu-
vre hypothesis. The fourth order linear motion model is used. First, detectM
tests manoeuvres by increasing (), allowing momentarily faster tracking.

NNNmethod=1,;

[xhat, jhat,xseg,gt,tal=detectM(y,nnn, [1 10],1le-15,1);
[xhatM, jhatM,xsegM,gt,tal=detectM(y,nnn, [1 10],0.5,[1);
jumps, jhatM=jhatM’

jumps =

10 16 35 41 55 61
jhatM =

14 38 58
figure

Change detection with filter banks

plot(x0(1,:),x0(2,:),’-,...
xhat(1,:),xhat(2,:),’--7,...
xhatM(1,:),xhatM(2,:),’-.")
hold omn
plot (xhatM(1, jhatM) ,xhatM(2, jhatM),’o’)
hold off
legend(’True trajectory’,’Kalman filter’,’Multiple model KF’)
axis(’equal’)

45} —— True trajectory
- - Kalman filter
-~ Multiple model KF

0 1 2 3 4 5
x10*

Figure 5.10 Target tracking: tracking with detectM gives in this exam-
ple similar detection performance to detect1. Note the improved recovery
after the alarms in Figure 5.11 though.

We get one estimated jump in each maneouvre, where theoretically there
should be two. The position plot in Figure 5.10 is similar to the one in Fig-
ure 5.8, so detectl and detectM perform similarly regarding detection. An
estimation error plot is generated below. Here one can see that recovery after
a detected change is much better for detectM, due to that it remembers old
data before the change, and can adapt accordingly.

subplot(211)

plotfix

segplot ([x0(1,:)’-xhat(1,:)’ x0(1,:)’-xhatM(1,:)°],jhatM);
ylabel(’Error in x_1’)

xlabel(’ ’), title(’)

axis ([0 N -2000 2000])

subplot (212)

plotfix

segplot ([x0(2,:)’-xhat(2,:)’ x0(2,:)’-xhatM(2,:)°], jhatM);

Adaptive Filtering and Change Detection Toolbox 57

58

Target tracking

ylabel (’Error in x_2’)

xlabel(’Time [samples]’)

title(’)

axis ([0 N -2000 2000])

legend(’Kalman filter’,’Multiple model KF’,3)

2000

_, 1000}]
i /2
-1000 «/\//k\’\\?—J

-2000

Error in x

2000 T T T T
o~

Of—\m/ i

~1000/ ™"\ aiman filter \7\\9
—— Multiple model KF

-2000 L .
0 10 20 30 40 50 60 70
Time [samples]

Error in x,

Figure 5.11 Target tracking: tracking with detectM gives superior re-
covery after an alarm compared to detectl in Figure 5.9.

IMM is based on a model with heading angle as one state. We can compare
imm with detectM as follows:

NNNmethod=5; % Coordinated turn model
e=randn(N,2) ; % Measurement noise
yn=y+500%*e; % Add extra noise

[xhat, jhat,xseg,gt,tal=detectM(yn,nnn, [1 1e9],1e-15,1);

[xhatM, jhatM,xsegM, gt ,tal=detectM(yn,nnn, [1 1€9],0.5,[1);

[xhatimm]=immnew (yn,nnn) ;

jumps, jhatM=jhatM’

figure

plotfix

plot(x0(1,:),x0(2,:),’-,...
xhat(1,:),xhat(2,:),’--7,...
xhatimm(1,:) ,xhatimm(2,:),’:7,...
xhatM(1,:),xhatM(2,:),’-.7,...
yn(:,1),yn(:,2),%07)

hold on

plot(xhatM(1, jhatM) ,xhatM(2, jhatM),’0’)

hold off

legend(’True trajectory’,’Kalman filter’,...

>IMM’,°’Multiple model KF’,’Measurements’)

Change detection with filter banks

axis(’equal’)

— True trajectory
- - Kalman filter
- IMM
- - Multiple model KF
O Measurements

Figure 5.12 Target tracking: comparison of IMM, detectM and adkalman.

2000 T T T T T T
1000 1
“
x
£
5 0
]
-1000 1
~2000
0 10 20 30 40 50 60 70
2000 T T T T T T
1000 1
&
£
§ 0
i [— Kalman filter
~10001 _ Multiple model KF 1
— IMM
~2000 I I
0 10 20 30 40 50 60 70

Time [samples]

Figure 5.13 Target tracking: comparison of IMM, detectM and adkalman.

Adaptive Filtering and Change Detection Toolbox

60

Target tracking

6 Applications

6.1 Fuel Monitoring

The following application illustrates the use of change detection for improving
signal quality. The data consist of measurements of instantaneous fuel con-
sumption available from the electronic injection system in a Volvo 850 GLT
used as a test car.! The raw data are quite noisy and need some kind of
filtering before being displayed to the driver at the dashboard. There are two
requirements on the filter:

e Good attenuation of noise is necessary in order to being able to tune the
accelerator during cruising.

e Good tracking ability. Tests show that fuel consumption very often
changes abruptly, especially in city traffic.

These requirements are contradictory for standard linear filters. Figure 6.1
shows the raw data together with a filter implemented by Volvo?. Volvo uses
a quite fast low-pass filter to get good tracking ability and then quantize
the result to a multiple of 0.3 to attenuate some of the noise. However, the
quantization introduces a difficulty when trying to minimize fuel consumption
manually and the response to changes could be faster.

The CUSUM algorithm, Brandt’s GLR test and the ML sequence estimator
are applied. These algorithms are only capable to follow abrupt changes. For
incipient changes, the algorithm will give an alarm only after the total change
is large or after a long time. In both algorithms, it is advisable to include data
forgetting in the parameter estimation to allow for a slow drift in the mean of
the signal.

Table 6.1 shows how some change detection algorithms perform on this signal.
As a starter, one can try

load fuel

!Thanks to Volvo AB for lending the test car.
2This is not exactly the same filter as Volvo uses, but the functionality is the same.

Applications

N=length(y);
£=0.2:0.2:0.2%N;

threc=adfilter(y,-1,0.9);
threcl=detectl(y,-1,2,[2 3 2]);
threc2=detect2(y,-1,1,[2 20 3],3);
threcM=detectM(y,-1,[1 3],[1,5);

which generates information for Table 6.1. The demo demo_fuel gives more
examples.

‘ Method ‘ Design parameters ‘ n ‘ MDL ‘ kFlops ‘
RLS A=0.9, quant =03 | - | - 19
CUSUM h=3, v=2 14 1 8.39 | 20
Brandt’s GLR h=20, v=3, L=3]|13|840 | 60
Multiple filter ML o’ =3 14 | 8.02 | 256

Table 6.1 Simulation result for fuel consumption

Figure 6.2 shows the result using the recursive ML detector as a non-linear
filter, using 5 parallel filters. Compared to the existing filter, the tracking
ability has improved slightly and, more importantly, the accuracy gets better
and better in segments with constant fuel consumption.

Low-pass filtered and quantitized measurements (Volvo)
25 T T T T T T T

20

151

10

Fuel consumption [liters / 100 km]

0

.
0 10 20 30 40 50 60 70 80 90 100
Time [s]

Figure 6.1 Measurements of fuel consumption and Volvo’s proposed
filter.

6.2 EEG signals

A human and a set of rat EEG signals are investigated. A full demo is provided
in demo_eeg.

FEEG signals

Filtered and raw data
T

25

Fuel consumption [liters / 100 km]

.
0 20 40 60 80 100 120
Time [s]

Figure 6.2 Filtering with recursive ML detection using detectM.

6.2.1 Human health diagnosis

The data are measured from human ocdipital area.® Before a certain time,
tp, the lights are on in test room and the test person is looking at something
interesting. The neurons are processing information in visual cortex, and only
noise is seen in measurements. When the light is turned off, the visual cortex
is at rest. The neuron clusters start 10 Hz periodical "rest rythm”. The delay
between t; and the actual time when the rhythm starts varies strongly. It is
believed that the delay correlates with e.g. Alzheimer decease, and methods
for estimating the delay would be useful in for example medicin tests. An
fourth order AR model is used in the multi-filter approach using detectM.

load eeg_human
[threc, jhat,ths]=detectM(Y(:,1),4);jhat
jhat =
429
hi=cdfigure(l);
segplot(Y(:,1),jhat)
title(’EEG signal on a human when lights turned on at time 387°)

The plot shows a rather precise location of the change point. That is, medical
diagnosis can be automized.

3Thanks to Pasi Karjalainen, Dept. of Applied Physics, University of Kuopio, Finland.
The original data have been rescaled.

Adaptive Filtering and Change Detection Toolbox 63

64

Applications

EEG signal on a human when lights turned on at time 387
40 T T T T T

20 q

a0l 4

60| 4

-80 L L L L L I I
0 100 200 300 400 500 600 700 800

Sampel number

Figure 6.3 Human EEG signal with detection change point.

6.2.2 RatEEG

The EEG signal here is measured on a rat.* The goal is to classify the sig-
nal into segments of so called ”spindles” or back ground noise. Currently
researchers are using narrow band filter and they have some treshold for the
output power of that. That method gives

[1096 1543 1887 2265 2980 3455 3832 3934].

This is a signal where the ML estimator for changes in noise variance can
be applied. The multihyp function is used, but the detectM function is also
applicable.

load eeg_rat

plot(y)

[th,lam,epsil=adfilter(wl,0,.97);

[jtime, jtype,ths,lams]=multihyp(wl,0,300,[0 1 0]);
[jtime; jtypel

ans =
754 10568 1358 1891 2192 2492 2796 3098 3398 3699
2 2 2 2 2 2 2 2 2 2

h3=cdfigure(3,2);
plot([lam lams’])

4Thanks to Pasi Karjalainen, Dept. of Applied Physics, University of Kuopio, Finland.
The original data have been rescaled.

Paper refinery

It can be remarked that the changes are hardly abrupt, but rather incipient,
for this signal. Note also that the type of change will always be 2 (meaning
variance change) since the masking option [0 1 0] is used.

EEG signal on arat
T T

- L L L L L L L L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 6.4 Rat EEG

6.3 Paper refinery

The data here are process data from a refiner in the paper industry. ° The
interesting signal is a raw engine power signal in kW which is extremely noisy.
The refinery engine grinds tree fibers for paper production, and it is used
to compute the reference value in a control system for quality control. The
requirements on the power filter are:

e The noise must be considerably attenuated to be useful in the feedback
loop.

e It is very important to quickly detect abrupt power decreases to be
able to remove the grinding discs immediately and avoid physical disc
damages.

That is, both tracking and detection is important, but for two different reasons.
RLS provides som useful information, as seen from the left plots in Figure 6.5.

e There are two segments where the power clearly decreases quickly. Fur-
thermore, there is a starting and stopping transient that should be de-
tected as change times.

e The noise level is fairly constant (0.05) during the observed interval.

5Thanks to Thore Lindgren at Sunds Defibrator AB, Sundsvall, Sweden. The original data
have been rescaled.

Adaptive Filtering and Change Detection Toolbox 65

66

Applications

The ML recursive sequence estimator has been applied, with the assumption
of constant and known noise variance:

load defibrator

y=y/1100; % y=power
[thff,lamff]=adfilter(y,-1,0.98); %implemented filter
figure

subplot(211)

plot (thff)

subplot (212)

plot (lamff)
[jhat,thseg,lamseg,threc]=segm(y,-1,[1 0.02]);
jhat

figure

subplot (311)

segplot([yl, jhat)

subplot (312)

plot([threc’ thseg’])

title(’Recursive and smoothed power estimate’)
subplot (313)

plot([filtpower/1100 threc’])

title(’Filtpower and recursive power estimate’)

Comments:

e [t is generally advisable to use known noise variance when it is known.

e [t is also advisable to scale the signal so the parameter is in the order of
1.

e Default design parameters are used.

The resulting power estimate (both recursive and smoothed) are compared to
the filter implemented by Sund in the right plots of Figure 6.5.

Both tracking and noise rejection are improved.

6.4 Poisson process of photon arrivals

Tracking the brightness changes of galactical and extragalactical objects is an
important subject in astronomy. The data examined here are obtained from
X-ray and 7-ray observatories.® The signal contains even integers represent-

SThanks to Dr. Jeffrey D. Scargle at NASA for providing these data. The original data
have been rescaled.

Poisson process of photon arrivals

Signal and segmentation
T T

. . |
6000 8000 10000 12000 14000
arghameothedipemer estimate

0 2000 4000 6000 8000 10000 12000 14000 1f
05f
0.25 T T T T T T
L L L

L .
000 12000 14000

00
Recursive

00 5000 8000 10
Fitpower and recursive power estimate
1L

: W

. n

12000 14000 0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000

Figure 6.5 Power signal in Sund’s defibrator. Left: Low-pass filtered
signal using RLS with forgetting factor 0.98 (upper plot). The estimated
noise variance (lower plot) indicates that it is fairly constant. Right: Orig-
inal signal (upper plot) where estimated change times are marked, Sund’s
filter and smoothed ML estimate (middle plot), and finally, Sund’s filter
and recursive ML estimate (lower plot).

ing the time of arrival of the photon, in units of microseconds, where the
fundamental sampling interval of the instrument is 2 microseconds. This is a
typical queue process where a Poisson process is plausible. A Poisson process
can easily be converted to a change in the mean model by taking the time dif-
ference between the arrival times. By definition, these will be independently
exponentially distributed (modulo quantization errors). That is, the model is

Yt

yr =0 +er, ply) = Hlte %, E(y) =0
Thus, e; is white noise. There is no problems in modifying the algorithms with
respect to any distribution of the noise. The distribution essentially influences
only the line where the likelihood is computed. This is however a perfect
illustration of the robustness of the algorithms with respect to incorrectly
modeled noise distribution. The following lines compute the RLS estimate
and ML segmentation of the changing mean model:

load photons
y=diff (y1)/30;
thrls=adfilter(y,-1,0.99);
[jhat,thseg,lamseg,threc]=segm(y/30,-1,[1 1],0.01,[10 3 8]);
jhat
jhat =

[3001, 5012, 6509, 11674]
cdfigure(1)
thplot (thrls,thseg,threc)
cdfigure(2,1)
segplot (decimate(y,100), jhat/100)

Adaptive Filtering and Change Detection Toolbox 67

Applications

Signal and segmentation
T

.
. . . .

o 05 1 15 2 25 43 o 50 100 150 200 250 300

x10 Sampel number

Figure 6.6 Time difference between photon arrival times for astronomical
data

Comments:

e A typical feature of the exponential distribution is frequent large out-
liers. This is the reason why the estimated parameter from RLS contains
spikes.

e For the same reason, the design parameters in the MAP segmentation
need to be tuned. Here we have increased the minimum segment length
to 8. With the default settings, outliers will be put into very short
segments.

e Note that it is advisable to scale the signal so 6 is in the order of 1.
We can play around with the design parameter ¢ and see what segmentations

it will lead to. Table 6.2 shows that more change points are added in the end
of the signal as we let the probability for a change increase.

q Change times

0.001 | 3001 5012 6509 11674

0.01 | 3001 5012 6509 11674

0.02 | 3001 5012 6509 11674

0.05 | 3001 5012 6509 11674 27071 27099

0.1 3001 5012 6509 11674 27071 27099

0.2 3001 5012 6509 11674 20266 20277 27071 27102

0.5 3001 5012 6509 11674 20266 20277 25884 27071 27102

Table 6.2 Change times as a function of change probability ¢

68

Maneuver detection for a driven path

6.5 Maneuver detection for a driven path

These data were collected from test drives with a Volvo 850 GLT using sensor
signals from the ABS system.” From these data, the position of the car can
be calculated very roughly using dead-reckoning.

The heading angle within each segment is modeled as a first order polynomial
in t,
h(t) = c1 + cot,

and the detectM function is used with 10 parallel filters and required accuracy
of the prediction errors corresponding to a variance of 0.05.

load path

N=length(x1);
hil=cdfigure(1);

plot(v)

title(’Velocity’)
h2=cdfigure(2,1);
plot(x1,x2)

axis(’equal’)
xlabel(’Meter’)
ylabel(’Meter’)
title(’Position’)
text(x1(1),x2(1)-50,’t=0 s’)
text (x1(N)+50,x2(N)+50,’t=225 s’)

phi=phase (i*diff (x2) ’+diff(x1)’)’;

N=length(phi);

M=10;

nnn=-2;

t=(1:N)’;

t0=clock;

[jhat,thsegl=segm([phi ones(size(t)) t],nnn,[1 0.05],.05,M);
consumedtime=etime (clock,t0)

estpath=thseg’.*[ones(size(t)) tlx[1;1];

figure(h2)
plot(x1,x2,’-’,x1(jhat),x2(jhat),’0’)
axis(’equal’)

xlabel(’Meter’)

ylabel(’Meter’)

title(’Position’)
text(x1(1),x2(1)-50,’t=0 s’)

"Thanks to Volvo AB for lending the test car.

Adaptive Filtering and Change Detection Toolbox 69

70

Applications

text (x1(N)+50,x2(N)+50,°t=225 s’)

figure(hl)
plot(t,phi,’-’,jhat,phi(jhat),’0’,t,estpath,’--")
title(’Actual and segmented heading angle’)
xlabel(’Time [s]’)

ylabel(’Heading angle [rad]’)

Velocity

Figure 6.7 Driven path and velocity profile.

Actual and segmented heading angle
T T

Heading angle [rad]

80 600 400 200 0 200 400 600 o 50 100 150 200 250
Meter Time [s]

Figure 6.8 Driven path, with detected maneuver times marked, and
segmented heading angle.

The estimated change times come quite close to what visual inspection gives.
The second corner is not estimated, but the estimated heading angle shows a
good mean-square approximation with the measured one. If more changes are
to be estimated, the acceptable deviation in terms of the noise variance (set
to 0.05 above) should be decreased.

Altitude sensor quality

6.6 Altitude sensor quality

A barometric air pressure sensor is used in airborne navigation systems for
stabilizing the inertial navigation system in height. The barometric sensor is
not very accurate and gives measurements of height with both a bias and large
variance error. The sensor is particularly sensitive to the so called transonic
passage, that is, when Mach 1 is passed. It is a good idea to detect for which
velocities the measurements are useful, and perhaps also to try to find a table
for mapping velocity to noise variance. Figure 6.9 shows the errors from a
calibrated (no bias) barometric sensor, and low-pass filtered squared errors.®
Figure 6.10 shows how the ML variance segmentation algorithm estimates the
change times and noise variance as a function of sample number.

load altdata
y=hdiff (1:4:15608);

hi=cdfigure(l);

subplot (211)

plot(y)

title(’Barometric height residuals’)

nnn=0;

[thhat,lamhat]=adfilter(y,nnn,0.97);
subplot(212)

plot (lamhat)

title(’Low-pass filtered squared residuals’)

q=0.01;

[jhat, jtype,thseg,lamseg]=multihyp(y,nnn,100,[0 1 0],q);
h2=cdfigure(2,1);

semilogy ([lamhat,lamseg’])

title(’Low-pass filtered and segmented squared residuals’)

6.7 Belching sheep

The input is the lung volume of a sheep and the output the air flow through the
throat.” The goal is get a model for how the input relates to the output, and
how different medicines affect this relation. A problem with a straightforward
system identification approach is that the sheep belches regularly. Therefor,
belching segments must be detected before modeling. The approach here is

8Thanks Saab AB and Dr. Jan Palmqvist for providing the data. The data have been
rescaled.
9Thanks to Draco for sharing their data. The data have been rescaled.

Adaptive Filtering and Change Detection Toolbox 71

72

Applications

Barometric height residuals
15

Tl M
W |

I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000

Low-pass filtered squared residuals
14 T

T T

12r q

101 q
L n

L I L
0 500 1000 1500 2000 2500 3000 3500 4000

o N & O ®

Figure 6.9 Barometric altitude residuals and low-pass filtered squared
residuals (RLS with forgetting factor 0.97).

that the residuals from an ARX model is segmented according to the variance
level. A good alternative is to use detectM with an ARX model directly,
instead of explicitely computing the residuals.

load sheep
z=[sheep(:,2) sheep(:,1)];
[th,lamhat,e]=adfilter(z,[5 5 0],1);

nnn=0;
[jhat, jtype,thsegl,lamsegl]=multihyp(e,nnn,100,[0 1 0]);
jhat
jhat =
[837 937 2345 2445 4195 4295 5564 5664 7009 7109]
N=length(e);
g=zeros(N,1);
lambda=0.97;
g=filter([1-lambda 0], [1 -lambdal,e."2);

hil=cdfigure(1);

subplot(211);

plot (1000* (1+sheep-2* [ones(N,1) zeros(N,1)]1));
ax=axis;ax(2)=N;axis(ax);

title(’Pressure and air volume’)

xlabel (’Sample number’)

subplot (212);

thplot(g,lamsegl);

ax=axis; ax(2)=N; ax(4)=4e-4; axis(ax);
title(’Filtered model residual’)

Belching sheep

10 T T T

Low-pass filtered and segmented squared residuals

10 ¢

10° |

10°

10" I I I

I
0 500 1000 1500 2000

I
2500

I
3000

3500

4000

Figure 6.10 Low-pass filtered and segmented squared residuals

xlabel (’Sample number’)

Pressure and air volume

5000

—-5000 L

AN AU A A
S N

I I I
0 1000 2000 3000 4000

I
5000

I
7000

8000

6000
Sample number
x107° Filtered model residual
4 T T T
|
|
3| i
2L i
1k [i
[
0 T h i
0 1000 2000 3000 4000 5000 6000 7000

Sample number

Figure 6.11
mented noise variance (below)

Adaptive Filtering and Change Detection Toolbox

8000

Input and output (above), and low-pass filtered and seg-

73

74

Applications

7 Blockset and alternative
Implementations

The core functions have dual implementations. There are three different im-
plementations of most of the filters. The recursive m-file implementation is
useful for people who want to include toolbox functions in a larger applica-
tion specific context, or customize for instance what is done after a detected
change. The S-functions written in C are intended for Simulink and Real Time
Workshop.

For example, detect1 appears in the following shapes:

detectl.m Basic loop-based implementation.

detectlc.c C implementation.

detectlc.mexsol C implementation compiled for unix.
detectlc.dll C implementation compiled for PC.

rdetectl.m Recursive implementation, doing one time recursion.
rdetectlc.c Recursive C implementation.

rdetectlc.mexsol C implementation compiled for unix.
rdetectlc.dll C implementation compiled for PC.
sdetectl.mdl Simulink block for compiled C-version.
srdetectl.mdl Simulink block for compiled recursive C-version.

detectlx.m Fast implementation using simulink but matlab syntax as
detectl.

The recursive version is contained in the main directory, while all others are
collected in the subdirectory blockset.

76

Blockset and alternative implementations

7.1 Recursive whiteness test detection

There is a number of recursive implementations of the functions in the toolbox.
These have the prefix 'r’, e.g. radfilter. The syntax of these functions are
almost the same as in the original, except that a state has to be included in the
input and output arguments. The state is initialized by calling the function
itself with no data. In this way, the user can use his own filters, e.g. EKF,
and make appropriate actions after a detected change. In this example, a first
order ARX model with one jump is simulated.

randn(’seed’,1)

N=100;

u=randn(N,1);

e=randn(N,1);

th0=[0.5 1.5;0.8 1.8]’;

d=2;

lam=0.1;

nnn=[1 1 1];

y=simchange ([lam*e u] ,nnn,N/2,thO0);

Then, we initialize the recursive versions of adfilter and detect1

[Xfilt]=radfilter ([NaN NaN],nnn);
dm=2;

h=5;

nu=lam;

sr=[1 h nul;
[Xonel=rdetect1([],[],dm,sr,-1);

Let’s also initialize some parameters we want to save for plots

TH=[];

LAM=[];
GT1=[];
alarmtimes=[];

The following loop does what
detect1([y ul] ,nnn,dm,sr,-1)

would do. Note that the tasks of residual generation and detection are split
into separate functions in contrast to detect1.

Recursive whiteness test detection

for t=1:N;
[thhat,lamhat,epsi,S,Xfilt]=radfilter([y(t) u(t)],nnn,0.97,...
’RLS’ ,Xfilt);
[alarm,Xone]l=rdetectl(epsi/sqrt(S),Xone);
GT1=[GT1;Xone(1)];
TH=[TH thhat];
LAM=[LAM; lamhat] ;
if alarm™=0;
alarmtimes=[alarmtimes t];
end;
end;

For comparison, we generate the smoothed parameter estimates from detectM,
the test statistic off-line from detectl and the estimates from adfilter.

[jhat,thseg]=detectM([y u],nnn);

[jdum, thdum,GT2]=detect1([y ul ,nnn,dm,sr,-1);

[TH2,LAM2]=adfilter([y u],nnn,0.97);

hil=cdfigure(1);

plot([thseg’ TH’ TH2’])

axis([0 N -1 3])

h2=cdfigure(2,1);

segplot ([GT1] ,alarmtimes)

hold on, plot(GT2), hold off

title([’Test statistic and alarm times, Threshold = ’,...
num2str(h)])

Test statistic and alarm times, Threshold = 5
T T T T T

~

L L L L L L
L L L L L L L L L 0 10 20 30 40 50 60 70 80 90 100
o 10 20 30 40 50 60 70 80 90 100 Sampel number

Figure 7.1 Estimated parameters from adfilter and detect1, and test
statistics.

From the left plot of Figure 7.1 we conclude that the same estimates are
generated and from the right one that we get several alarms after the change.

Adaptive Filtering and Change Detection Toolbox 77

78

Blockset and alternative implementations

The most appropriate thing to do after the alarm is to increase the tracking
ability of the filter. This is done below by increasing the covariance matrix of
the parameters a factor 10.

[Xfilt]=radfilter ([NaN NaN],nnn);
[Xone]=rdetect1([],[],dm,sr,-1);
TH=[];
LAM=[];
GT1=[1;
alarmtimes=[];
for t=1:N;
[thhat,lamhat,epsi,S,Xfilt]=radfilter([y(t) u(t)],nnn,0.97,...
’RLS’,Xfilt);
[alarm,Xonel=rdetectl(epsi/sqrt(S),Xone);
GT1=[GT1;Xone(1)];
TH=[TH thhat];
LAM=[LAM;lamhat];
if alarm™=0;
alarmtimes=[alarmtimes t];
Xfilt(:,5:4+d)=10*xXfilt(:,5:4+d);
end;
end;
h3=cdfigure(3,2);
segplot ([GT1],alarmtimes)
title([’Test statistic and alarm times, Threshold = ’,...
num2str(h)])

This time there is only one alarm.

7.2 Recursive parallel filter detection

Consider the first order ARX model with one jump from the previous example.
Then, we initialize the recursive versions of adfilter, one using all data and
one using a sliding window and detect?2.

L=10;

[X0]=radfilter ([NaN NaN],nnn,1,’RLS’);
[X1]=radfilter ([NaN NaN],nnn,L,’WLS’);
dm=2;

h=10;

nu=lam;

sr=[1 h nul;
[Xdet]=rdetect2([1,[]1,[],0],[],dm,sr);

Recursive parallel filter detection

Test statistic and alarm times, Threshold = 5
3 T T T T T

251

15r

051

0 L L L L
0 10 20 30 40 50 60 70 80 90 100

Sampel number

Figure 7.2 Test statistics for recursive rdetect1.

Let’s also initialize some parameters we want to save for plots

THO=[];
TH1=[];
LAM=[];
GT1=[];
alarmtimes=[];

The following loop does what detect2([y ul] ,nnn,dm,sr,-1) would do. Note
that the task of residual generation and the detector is split into separate
functions in contrast to detect?2.

for t=1:N;
[thhat0,lam0,epsi0,S0,X0]=radfilter ([y(t) u(t)],nnn,1,’RLS’,X0);
[thhatl,laml,epsil,S1,X1]=radfilter([y(t) u(t)],nnn,L,’WLS’,X1);
[alarm,Xdet]=rdetect2C(...

epsi0/sqrt(S0),epsil/sqrt(S1),lam0,laml,Xdet);
GT1=[GT1;Xdet(1)];
THO=[THO thhatO];
TH1=[TH1 thhati];
LAM=[LAM; 1am0] ;
if alarm™=0;
alarmtimes=[alarmtimes t];

end;

end;

An illustration of the result follows:

Adaptive Filtering and Change Detection Toolbox 79

80

Blockset and alternative implementations

plot ([THO’ TH1’1)

axis([0 N -1 3])

segplot ([real(GT1)],alarmtimes)

title([’Test statistic and alarm times, Threshold = ’,...
num2str(h)])

Test statistic and alarm times, Threshold = 10
T T T T

L L L L L L L
L L L L L L L L L 0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100 Sampel number

Figure 7.3 Estimated parameters from radfilter with different adap-
tation, and test statistics.

For comparison, we generate the smoothed parameter estimates from detectM,
the test statistic off-line from detect2 and the estimates from adfilter.

[jhat,thseg]l=detectM([y ul,nnn);

[jdum, thdum,GT2]=detect2([y u] ,nnn,dm,sr,-1);

[TH2,LAM2]=adfilter([y ul,nnn,0.97);

figure(hl);

plot([thseg’ THO’ TH1’ TH2’])

axis([0 N -1 3])

figure(h2);

segplot ([real(GT1)],alarmtimes)

hold on, plot(real(GT2)), hold off

title([’Test statistic and alarm times, Threshold = ’,...
num2str(h)])

From the left plot of Figure 7.4, we conclude that the same estimates are
generated, and from the right plot that we get several alarms after the change.

The most appropriate thing to do after the alarm is to increase the tracking
ability of the filter. This is done below by increasing the covariance matrix of
the parameters a factor 10.

[XO0]=radfilter ([NaN NaN],nnn,1,’RLS’);

Recursive parallel filter detection

Test statistic and alarm times, Threshold = 10
T T T T T

L L
60 70 80 90 100

L !
0 10 20 30 40

50
‘Sampel number

Figure 7.4 Estimated parameters from adfilter, detect2 and detectl,
and test statistics for detectl and detect2.

[X1]=radfilter ([NaN NaN],nnn,L,’WLS’);
[Xdet]=rdetect2([1,[]1,[],0],[],dm,sr);
TH=[];

LAM=[];

GT1=[1;

alarmtimes=[];

Start recursion

for t=1:N;
[thhatO,lam0,epsi0,S0,X0]=radfilter(. ..
[y(t) u(t)],nnn,1,’RLS’,X0);
[thhatl,laml,epsil,S1,X1]=radfilter(...
[y(t) u(t)],nnn,L,’WLS’,X1);
[alarm,Xdet]=rdetect2(...
epsi0/sqrt (S0),epsil/sqrt(S1),1am0,laml,Xdet);
GT1=[GT1;Xdet (1)];
TH=[TH thhatO] ;
LAM=[LAM; 1am0] ;
if alarm™=0;
alarmtimes=[alarmtimes t];
X0(:,6:5+d)=10%X0(:,6:5+d);
end;
end;
h3=cdfigure(3,2);
segplot([real(GT1)],alarmtimes)
title([’Test statistic and alarm times, Threshold = ’,...

num2str(h)])

This time there is only one alarm. There is one main advantage of this ap-

Adaptive Filtering and Change Detection Toolbox 81

82

Blockset and alternative implementations

Test statistic and alarm times, Threshold = 10
10

0 I I I I

I
0 10 20 30 40 50 60 70
Sampel number

80

90

100

Figure 7.5 Test statistics for recursive rdetect?2.

proach, compared to using detect?2: it is possible to use arbitrary adaptive
filters in parallel. For instance, we might try two RLS algorithms with different

forgetting factors.

7.3 Recursive GLR detection

First, a second order state space model with one jump is simulated.

randn(’seed’,0)

N=100;

d=2;

%w=randn(N,2) ;

u=randn(N,1);

Y%e=randn(N,1);

A=[1 1;0 1]; B=[0.5;1]; C=[1 0]; D=0;
Q=0.01%eye(2); R=0.1; PO=1xeye(2);
nnn=ss2nnn(A,B,C,D,Q,R,P0);
thO=[1;...

21;
y=simchange ([u] ,nnn,N/2,th0) ;
hi=cdfigure(1);
plot(y)
title(’Signal’)

Let’s examine the off-line versions of glr and mlr

Recursive GLR detection

Signal
600 T

400 T

300 q

200 T

100 b

0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Figure 7.6 Signal.

M=-10; % size of sliding window, batch test here
flops(0)
[jhatglr,taglr,lrglr,Xhat,nuhatglr,mul=glr([y u],nnn,M);
flopsglr=flops;
[jhatmlr,lrmlr,flopsmlr]=mlr([y u],nnn,1);
disp([jhatglr,jhatmlr])

49 50
nuhatglr

0.1120

2.7933
figure(hil)
plot([y, (C*Xhat)’1)
hold omn
plot (N,Cx(Xhat (:,N)+muknuhatglr(:,1)),’0’)
hold off
title(’Signal and Kalman filtered estimate’)
h2=cdfigure(2,1);
plot([1rglr lrmlr])
title(’Decision function for GLR and MLR’)

That is, a threshold of 70 seems appropriate. The number of flops compares

as follows

disp([flopsglr flopsmlr])
241986 37983

Then, we initialize the recursive versions of adfilter and glr.

Adaptive Filtering and Change Detection Toolbox

83

84

Blockset and alternative implementations

Signal and Kalman filtered estimate Decision function for GLR and MLR
T T T

500

300

0 10 20 30 40 50 60 70 80 90 00 0 10 20 30 40 50 60 70 80 90 100

Figure 7.7 Signal and Kalman filter prediction (left), and decision func-
tions of GLR and MLR (right), respectively.

[Xfilt]=radfilter ([NaN NaN],nnn);
h=72;
M=10;
[(Xglrl=rglr([], (1, [J,nnn, [1,M,h);

Let’s also initialize some parameters we want to save for plots

TH=[];
EPSI=[];
LAM=[];
GT1=[];
alarmtimes=[];

The following loop uses the recursive implementation of glr. Note that the
task of residual generation and the detector is split into separate functions.

for t=1:N;
[thhat,lamhat,epsi,S,Xfilt,K]=radfilter(...
[y(t) u(t)],nnn,1,’RLS’ ,Xfilt);

fO=flops;
[alarm,Xglr,nuhat, jhat,lrmax,P]=rglr(epsi,S,K,nnn,Xglr) ;
fi=flops;
GT1=[GT1;1lrmax];
EPSI=[EPSI;epsil;
TH=[TH nuhat];
if alarm™=0;

nuhat

P

alarmtimes=[alarmtimes t];

Recursive GLR detection

% Increase P in the Kalman filter
Xfilt(:,6:5+d)=100*Xfilt(:,6:5+d);
end;
end;

The number of flops per iteration is

disp([f1-£0])
2548

h3=cdfigure(3,2);
segplot ([GT1] ,alarmtimes)
title([’Test statistic and alarm times, Threshold = ’,num2str(h)])

Test statistic and alarm times, Threshold = 72
60 T T T T T

40t

30

20

10r

I I I I I
0 10 20 30 40 50 60 70 80 920 100
Sampel number

0 I I I I

Figure 7.8 Test statistics for recursive rglr.

Adaptive Filtering and Change Detection Toolbox 85

86

Blockset and alternative implementations

8 Graphical User Interface

Generally, a graphical user interface (GUI) has the following advantages:

e The unexperienced user gets a structured overview of the functionality
and user choices and does not have to bother about syntax.

e The experienced user gets help from the track record of previous experi-
ments. That is, the GUI can be used to organize a large amount of data
and design parameters.

e There are certain computations that are so complex that they can hardly
be implemented in one file because of the large number of arguments.
The alternative to a GUI is to work with big script files, which after a
while are hard to maintain.

The first section gives and overview of the functionality of the GUI, and the
second one describes the implementation of guidetect .

8.1 What do adaptive filtering problems have in
common?

Both industral and acamedic researchers using adaptive filters in control sys-
tem design, signal processing or statistical time series analysis essentially do
the same investigations:

e Tune the filters to get maximal performance.

Perform Monte Carlo simulations to evaluate the mean performance.

Examine the RMS errors in states/parameters and other performance
measures.

Compare different methods and present tables with results.

The GUI automates these procedures:

88

Graphical User Interface

e Manual tuning is facilitated by storing the result in tables. Auto-tuning
of the most important parameters is possible. That is, the optimal de-
sign parameter is computed automatically to minimize a specified per-
formance measure.

e Monte Carlo simulations are done with a mouse-click, and all statistics
are kept.

e RMS plots are available and various performance measures are stored.

e Automatic table generation gives overview of the investigations.

8.2 Getting acquainted with the frontend

The frontend consists of a block diagram illustrating the filter structure. The
figure is dynamic, so if a different filter structure (buttons will in the sequel
be boldface and emphasized) is chosen, it will change.

The basic principle is that the experimental setup is done from submenus
started in the upper row of pushbuttons, a simulation is started by pushing
the respective blocks and design tools are started from the pushbuttons in the
right column. The signals shown in the block diagram are push buttons, and
a mouse click opens a plot window.

File Utilites Options Help

_| Data Generatioh _| Design Parameter &daptive filter —

|
—-

m | Plat Tool
e [

_| Adaptive Tool

Simulation Adaptive Filter

_| Change Tool

Exit
CPU ldle

Figure 8.1 Frontend of the GUI. When the filter structure is changed,
the block diagram is adapted.

From the menus, you can

e Get help. On-line help is available from all subwindows.

e Load real data with default values of design parameters (File/Load
Real Data).

Getting acquainted with the frontend

e Start examples Utilities/Examples, where design parameters have
good default values.

e Options include functions for windows management and printouts in

the matlab command window.

Once the structure is decided on, a model needs to be specified in the Data
Generation. This opens the window in Figure 8.2.

o Datafrom File: | |

i@ Simulated Data |

Model structure Mean Change =
yit] = thetait) + e(t)
theta(t) piecewise constant

Mumber of data: |1|:||:|
Change times: |5|:|
Parameter vectors: |[1 A
Moise variancers): |[1J1]
ok | Help | Close |

Figure 8.2 Data Generation window. You can switch between logged
data on file, or a simulation where you first specify the model structure,
then its parameters and change times.

In the Design Parameters window, you specify a system model and its
design parameters.

There are three design tools: plot tool, adaptive tool and change tool.
These windows are shown in Figures 8.4, 8.5 and 8.7, respectively.

From the plot tool, all kind of signal plots are available, e.g. parameter and
root mean square error plots. Either the recursive or smoothed, or both of
them simultaneously, parameter estimates can be illustrated in the plots.

In the adaptive tool, several norms are displayed for the last filter action.
Monte Carlo simulations can be initiated, after which mean values of the
norms are displayed, and mean values are shown in all plots. The Optimize
button auto-tunes the adaptation gain for adaptive filters and threshold for
change detectors. A plot shows the sensitivity of the chosen norm with respect

Adaptive Filtering and Change Detection Toolbox 89

90

Graphical User Interface

Figure 8.3 Filter Design Parameters. The window is dynamically de-
pending on the filter structure. To each one, there is a number of options
for the adaptation gains, stopping rules and distance measures. You can
also try out different model structures for the filter, which does not need
to be the same as for the simulation.

to the design parameter, and the plots are updated with the optimal design
parameter. The current norms and a summary of the method can be stored
in a table.

The change tool has also a Monte Carlo simulation facility. The performance
is here also computed in terms of detections, and some useful norms are dis-
played in a separate window. These figures and a summary of the method can
be stored in a table.

Getting acquainted with the frontend

Figure 8.4 Plot tool. Different views of the filtering result. There is a
possibility to zoom in (but not out) the signal to be filtered.

Adaptive Filtering and Change Detection Toolbox

91

92

Graphical User Interface

NCRMS FOR SMOOTHED ESTIMATES
J Loss function ()
MDL:
J RMS parameter error:

Current
1.7934
1.9349

071107

MNORMS FOR RECURSIVE ESTIMATES
_J Loss function ()
MDL:
J RMSE parameter error (PE):

Current
1.9151
2.0325
0.72456

Computation time

097466

Algarithm: Whiteness test with dm=1, sr=2, h=10, nu=1,
Maonte Carlo iterations: 1

MC | AutoTune Tahle |

Help | Close |

Latex

Method (push to re-load) Viseq) MDL(seq

Whiteness test dm=1, sr=2, h=10, nu=1, lam=1 1.7934 1.9349
RLS Forgetting factor 0.95 - -
RLS Forgetting factor 0.76732 - -
Filter hank If=2, q=0.5, 56=[10,6,0] M=10 11133 12614
“arallel filters dm=1, sr=1, h=10, nu=1, lam=1, L=1{ 1.2617 1.4032

Help Close Latex Quit

Optimal adaptation gain for RLS is 0.76792
T T T T T

PE{seq) Wirec) MDLirec) PE(rec)

071107 19151 2.0325 072488
= 21843 2.2043 0.948
= 1.5203 16126 063327

0.10733 16222 1.6368 06258

0.38857 19191 2.0326 0.72496

Optimization criterion (V or PE or MDL)

0.65F

. I . . I
0.45 05 0.55 06 0.65 07 0.75
Adaptation gain

L L
0.8 0.85 0.9 0.95

Figure 8.5 Adaptive tool for design of adaptive filters. Here the per-
formance is printed out, a table item can be generated and optimization
(auto-tuning) started. For all cases, Monte Carlo simulations can be used.
MC by itself, iterates the filter for the current settings. For auto-tuning,
first choose a norm (only the lower three ones available for filters. The func-
tion then performs a line search over the most critical design parameter,
and a plot of the performance versus design parameter is delivered. If the
optimum is at the investigated border, push auto-tune another time. Table
below is handy for comparison and administration, since you can quickly
load all quantities from a specific test from the table.

Getting acquainted with the frontend

kdonte Carlo simulation

MC iter IT

FC STATISTICS

Parallel filters with design par:
dm=1, sr=1, h=10, nu=1,
Tatal number of det.: 10

Falze alarm rate (FAR): O
Fissed det. rate (MDR): 0
kdean time to det. (MTDY: 9.7

_ Histograms |

Add to Table | Help statisticq

Suto-Tuning of Threshaold |

False alarm rate | 001

Help | Close |

Figure 8.6 Change tool design of change detectors. Here Monte Carlo
simulations are started and the relevant statistics are presented. There is a
possibility to plot histograms and make tables, as illustrated in Figure 77.
There is also a way to perform auto-tuning of the threshold in the detector
to get a specified false alarm rate.

Adaptive Filtering and Change Detection Toolbox

94

Graphical User Interface

Latex
Method (push to re-load) IMsim Mr det FAR MDR MTD
Parallel filters dm=1, sr=1, h=10, nu=1, lam=1, L=10 | 10 10 - .7
Whiteness test dm=1, sr=2, h=10, nu=1, lam=1 | a 10 - 6.3
Help | Close | Latex | Quit |

3 T

25

05

54 545 55 555 56 565 57 57.5 58

Figure 8.7 The change tool table is suitable for comparisons, overview
and administration of experiments. A previous experiment can be down-
loaded by clicking on the filter settings, and all plots and text fields will be

updated.

9 Command Reference

Command Reference

9.1 Commands Grouped by Function

Simulation
y=simchange (z,nnn,jumptimes,TH) | Abrupt parameter/state changes
y=simadfilter (z,nnn,adm,adg) Parameter variations for RLS, LMS
y=simresid (z,nnn,threc) Linear regression residuals

[y,thl=simchannel (z,nb,options) Communication channels

Parameter estimation
[threc] = adfilter (z,nnn,adg,adm) | Linear adaptive filters
[threc] = detectl (z,nnn,options) Non-linear adaptive filters
[threc] = detect2 (z,nnn,options) Non-linear adaptive filters
[threc] = detectM (z,nnn,options) Non-linear adaptive filters
[threc] = multihyp (z,nnn,options) | Non-linear adaptive filters

State estimation
[xhat] = adfilter (z,nnn,adg,adm) | Kalman filter
[xhat] = adkalman (z,nnn,adg) Kalman filter, general
[xhat] = detectl (z,nnn,options) Kalman filter with whiteness test
[xhat] = detectM (z,nnn,options) Kalman filter bank

[xhat] = gibbs (z,nnn,options) MCMC resampling algorithm
[xhat] = mlr (z,nnn,options) Kalman filter using MLR
[xhat] = glr (z,nnn,options) Kalman filter using GLR

[r] = faultdetect (z,nnn,options) | Parity space residual generation

96

Commands Grouped by Function

Change Detection

[threc, jhat,thseg]
[threc, jhat,thseg]
[threc, jhat,thseg]
[threc, jumpsmc, jhat]
[threc, jhat,thseg]
[jhat,thseg]

detectl (z,nnn,options)
detect2 (z,nnn,options)
detectM (z,nnn,options)
= gibbs (z,nnn,options)
multihyp (z,nnn,options)
cpe (z,nnn,options)

Whiteness tests

Two parallel filters
Multi-filter approach

MCMC resampling algorithm
Multiple hypotheses

Change point estimation

[jhat] = mlr (z,nnn,options)
[xhat,jhat] = glr (z,nnn,options)
[xhat] imm (z,nnn,options)

Marginalized likelihood ratio test
Generalized likelihood ratio test
Interactive multiple model

Equalizers

[uhat]=viterbi (y,nn,th,lam)

ber=u2ber (u,uhat)
m=openeye (bch,beq)

[threc,uhat]=blindeq (y,nb,adg,adm)
[threc,uhat]=blindegM (y,nb,options)

Viterbi algorithm

Adaptive blind equalizer

ML sequence detection
Computation of bit error rate
Computation of open eye measure

Conversions

thseg=par2segm (TH, jumptimes,N)
TH=segm2par (thseg)
phi=z2phi (z,nnn)

Compressed to full format
Full to compressed format

Construct the regression vector

Plots

segplot (z,jumptimes)

thplot (th,TH, jumptimes,threc)
hypplot (XdetectM)

radarplot (y,xhat,x)

Mark jump times in signal plot
Compare parameter estimates
Filter bank hypotheses
Illustrate target tracking

Examples in the accompanying text book
Examples in the text book Signal Processing (in swedish)

Utilities
Contents General overview
guidetect Start the GUI
demodetect Command line demo
reference Examples in this manual
tutorial Tutorials in this manual
book
signal

Adaptive Filtering and Change Detection Toolbox

97

Command Reference

Implementations

detectl.m
detectlc.c
detectlc.mexsol
detectlc.dll
rdetectl.m
rdetectlc.c
rdetectlc.mexsol
rdetectlc.dll
sdetectl.mdl
srdetectl.mdl
detectlx.m

Basic loop-based implementation

C implementation

C implementation compiled for unix

C implementation compiled for PC

Recursive implementation, doing one time recursion
Recursive C implementation

C implementation compiled for unix

C implementation compiled for PC

Simulink block for compiled C-version
Simulink block for compiled recursive C-version
Fast matlab call using simulink

General Utilities

cdfigure As figure, but creates non-overlapping windows in a
3 x 3 pattern.

cdnum2str As num2str, but the exact inverse operation of str2num.

cdfiltfilt Improvement of Matlab’s £iltfilt, by optimizing the
initial conditions and thus minimizing transient effects.

fastfilter Improvement of Matlab’s filter, by performing the
filter operation in the frequency domain when it pays off
(long input sequence).

fastfiltfilt | Improvement of Matlab’s filtfilt, by performing the
filter operation in the frequency domain when it pays off
(long input sequence).

MakeMatrix Generates a Latex file which formats the input matrix
appropriately.

MakeTable Generates a Latex file which formats a table with entries
from the input matrix.

98

adfilter

9.2 adfilter

Purpose

Synopsis

Description

Tuning

adfilter implements various linear filters for estimating time-varying param-
eters in filters or linear regression models or the states in a state space model.

[thhat,lamhat,Epsi]=adfilter(z,nnn,adg,adm,fflam);

adfilter implements recursive least squares (RLS), least mean square (LMS),
normalized least mean square (NLMS) or the Kalman filter (KF). For para-
metric models (FIR, ARX, linear regressions etc.), adg defines the adaptation
gain and adm the adaptation method. For state space models, the adg param-
eter adjusts the tracking ability of the Kalman filter by scaling ||Q||/||R||, and
adm is not used. A more general implementation of the Kalman filter is found
in adkalman .

z=[y ul Output-input data.

nnn Model structure, see nnn.

adg Adaption gain: forgetting factor (RLS), step size (LMS and NLMS), win-
dow size (WLS) or scaling of @) (Kalman filter).

adm Adaptation method: RLS (default for parametric models), WLS, LMS,
NLMS or KF (always for state space models). The default value depends
on adg. If adg< 0.1 then LMS is used, or if 0.1 <adg< 1 then RLS is
used, or if adg> 1 then WLS is used.

thhat Estimated parameter/state vector for each ¢.

lamhat Estimated noise variance for each ¢

Epsi The prediction errors for each t.

fflam Forgetting factor for estimating noise variance lambda, which should
be estimated with higher gain than the parameters.

The syntax is compatible with other recursive algorithms, like
threc=detectl(z,nnn).

This function is useful prior to segmentation or detection to find out the nature
of the parameter changes (abrupt or inicipative). Use high gain in this case.

Tuning the adaptation gain is a trade-off between variance and tracking errors.
If the estimate is not able to follow the true variations (poor tracking), then
increase the adaptation gain. If the tracking is acceptable but the variance
error is large, then try to decrease the adaptation gain.

Adaptive Filtering and Change Detection Toolbox 99

Examples

100

Command Reference

Define and simulate a second order ARX model with two abrupt changes.
Then estimate its parameters recursively with a linear filter and compare the
result with the true parameters in a plot.

u=randn(100,1);
e=randn(100,1);
jumptimes=[40 70];
TH=[1.5 0.8 2 0.5;...
1.50.821;...
1.5 0.6 2 1]°;
nnn=[2 2 1];
y=simchange([0.1*e u],nnn, jumptimes,TH) ;
z=[y ul;
thRLS=adfilter(z,nnn,0.9);
thplot (thRLS, segm2par (TH, jumptimes, 100)) ;

25

20— {\/v_\f/ T~ ~——T" "1 /,\%,/:/‘/”\3

15— ’, f\,/:’l(ﬁ/:w—,\meJ_ﬁw = A

057‘/ SN

This example is revisited in detectl , detect2 , detectM .

A state space model is defined and simulated and the Kalman filter is applied
below.

[a,b,c,d]=tf2ss([0 1 -1],[1 -1 0.8]);
Q=0.0001%eye (2);

R=0.01;

nnn=ss2nnn(a,b,c,d,qQ,R);

jumptime=50;

TH=[10 10]’;
[y,X]=simchange ([u] ,nnn, jumptime, TH) ;
[xhat,lamhat,epsil=adfilter([y u],nnn);
subplot(211)

adfilter

Algorithm

References

See Also

thplot (X,xhat)
subplot(212)
plot(epsi)

This example is revisited in glr , mlr .

The algorithms are described in Fredrik Gustafsson. Adaptive filtering and
change detection. John Wiley & Sons, Ltd, 2000:

LMS : Algorithm 5.2, p 134.

NLMS : Algorithm 5.2, p 134, and equations (5.38)-(5.39), p. 136.
WLS : Lemma 5.1, p 193.

RLS : Algorithm 5.3, p 138.

KF for parameter estimation: Algorithm 5.4, p. 142.

KF for state estimation: equations (8.34)-(8.37), p. 278.

The underlying models are described in Appendix A.

A thorough treatment of Kalman filtering is found in B.D.O. Anderson and
J.B. Moore. Optimal filtering. Prentice Hall, Englewood Cliffs, NJ., 1979 and
T. Kailath, A.H. Sayed, and B. Hassibi. Linear estimation. Information and
System Sciences. Prentice-Hall, Upper Saddle Riber, New Jersey, 2000, and of
recursive parameter estimation in L. Ljung and T. Séderstrom. Theory and
practice of recursive identification. MIT Press, Cambridge, MA, 1983.

adkalman , detectl , detect2 , detectM, glr , mlr , radfilter

Adaptive Filtering and Change Detection Toolbox 101

Command Reference

9.3 adkalman

Purpose

Synopsis

Description

Algorithm

See Also

102

adkalman includes various implementations of the Kalman filter

[xhat,yhat,P]=adkalman(z,nnn,adgain,kftype) ;

adkalman generalizes the Kalman filter implemented in adfilter a number of
alternative formulations and implementations.

z=[y u] Output-input data.

nnn Model structure, see nnn .

adgain Adaptation gain which scales Py and Q.
kftype Type of implementation:

stationary KF

time-varying KF on prediction form
time-varying KF on filter form (default)
fixed interval smoother

square root filter

S A S o e

square root predictor

The algorithms are described in Fredrik Gustafsson. Adaptive filtering and
change detection. John Wiley & Sons, Ltd, 2000:

1 Stationary Kalman filter: Algorithm 8.2.

2 Time-varying Kalman filter on predictor form: Algorithm 8.1.
3 Time-varying Kalman filter on filter form: Algorithm 8.1.

4 Fixed interval smoother: Algorithm 8.3.

5 Square root filter: Algorithm 8.8.

6 Square root predictor: Algorithm 8.7.

The used state space model is defined in (A.19)-(A.20) in Appendix A.

adfilter

blindeq

9.4 blindeq
Purpose blindeq implements classical blind equalization algorithms.
Synopsis [uhat,threc]=blindeq(y,nb,adg,adm) ;

Description A linear filter is adaptively estimated in order to inverse filter the channel
dynamics. The output from the equalizer is compared to the known input
alphabet, and its nearest neighbor is chosen. To be able to converge, blindeq
assumes that the adaptive equalizer is initially such that its output u is ap-
proximately equal to the channel input u, and adaptation aims at refining the

initial guess to improve bit error rate.

Yt

——Channel B(q) Eq. C(q)

Zt

Decision

y Output data
uhat Estimated input

adg=1 Loss function E[(1 — 2%)?] (modulus restoral, Godard)
adg=2 Loss function E[(sign(z) — 2)?] (decision feedback, Sato)

adm Adaptation gain in a stochastic gradient (LMS like) method.

thO Initial guess of equalizer parameters in C'(¢). Quite critical for conver-

gence.

Limitations
1. Only FIR equalizers
2. Only input alphabets [-1,+1]
3. Only scalar channels
Examples

N=1000;
randn(’seed’,1);
b=[0.3 1 0.3]; % Channel dynamics

Adaptive Filtering and Change Detection Toolbox

103

Algorithm

References

104

Command Reference

nb=length(b);

alphabet=[-1 1]; % Binary channel

[y,ul=simchannel (alphabet,nb,N,b); % Simulate channel input and output
y=y+0.1xrandn(N,1); % Add noise

nc=>5; % equalizer order for blindeq
c0=[0 -0.1 1 -0.1 0]’; % Initial equalizer
[theql,uhatl,epsil]=blindeq(y,nc,0.01,1,c0);
ml=openeye(b,theql);
% ml=1 is a perfect equalizer, ml1>0 gives perfect
% reconstruction in the noise free case
plot(m1)
title(’Open eye condition’)
conv(b,theql (:,N))”’
ans =
0.0308 -0.0122 0.0170 1.0004 0.0180
-0.0111 0.0311
% Impulse response of combined channel and equalizer

Input u
T

0.8 4
0.6 q
0.4 4

0.2 q

0
0 100 200 300 400 500 600 700 800 900 1000

The algorithms are described in Algorithm 5.6, p. 166, in Fredrik Gustafsson.
Adaptive filtering and change detection. John Wiley & Sons, Ltd, 2000.

The modulus restoral algorithm is presented in D.N. Godard. Self-recovering
equalization and carrier tracking in two-dimensional data communication sys-
tems. IEEE Transactions on Communications, 28:1867-1875, 1980, and deci-
sion feedback in R.W. Lucky. Techniques for adaptive equalization of digital
communication systems. Bell System Technical Journal, 45:255-286, 1966.

blindeq

See Also blindeqM , openeye , u2ber , viterbi

Adaptive Filtering and Change Detection Toolbox 105

Command Reference

9.5 blindegM

Purpose

Synopsis

Description

106

blindegM is a multi-filter approach to blind equalization.

[uhat,threc]=blindegM(y,nb,alphabet,r2,M,r1,p0,dsp)

blindegM estimates the unknown input u(t) taken from a finite alphabet sim-
ulataneously with the unknown channel, using a Viterbi-like search algorithm.
The principle is that each possible input sequence implies one estimated chan-
nel model, and the one that fits the data best in the maximum likelihood sense
wins. Since the number of input sequences in finite (though quite large), all
of them can be evaluated. A search algorithm eliminates unlikely sequences
to limit the number of parallel hypotheses (and filter) to a finte number M.

Ut Yt
—_— Channel B(q)
Uy
Similarity measure —
Ut N Yt (fb)
— B(q)

y or z Output data.

nb ny times nu matrix, where ny is the number of outputs and nu the number
of input. The elements denote the corresponding FIR orders.

q Covariance of parameter drift is Q=eye (n) *q. Here n=sum(sum(nb)) is the
total number of parameters. Default gq=0.

alphabet Finite alphabet of input symbols.
r Measurement noise variance. Default R=0. 1*eye (ny).
pO Covariance matrix of initial estimate, P=eye (N)*p0. Default p0=10.

M Number of models. Default M=64. This number must be an integer multiple
of the size of the input alphabet.

dsp Display some information if dsp~=0. Default dsp=0.
uhat Estimated input.

threc Estimated parameter vector as a function of time (n x N matrix).

blindeqM

The implementation handles MIMO FIR channel models and any input al-
phabet (in contrast to blindeq). Use u2ber to correct the modulus in the
estimated sequence and the channel parameters.

Limitations
1. Only FIR channel models.
2. The MIMO implementation only works for nb all having constant elements
(nb*ones (ny,nu) where nb is the common FIR order).
Examples

N=100;

randn(’seed’,1);

rand(’seed’,1);

b=[0.5 1 0.7]; % Channel dynamics

nb=length(b) ;

alphabet=[-1 1]; % Binary channel

[y,ul=simchannel (alphabet,nb,N,b); % Simulate channel input and output
y=y+0.1*randn(N,1); 7 Add noise

nb=3; % channel order for blindegM
[thhat,uhat]=blindeqM(y,nb,.001,16,.1,10,0);
cdfigure(1);

plot(thhat’), hold on
plot(ones(N,1)*b,’--’), hold off

12

08

0.6

04r

0.2 q

10 20 30 40 50 60 70 80 920 100

Adaptive Filtering and Change Detection Toolbox 107

Algorithm

References

See Also

108

Command Reference

The algorithms are described in Algorithm 10.7, p. 395, in Fredrik Gustafsson.
Adaptive filtering and change detection. John Wiley & Sons, Ltd, 2000.

F. Gustafsson and B. Wahlberg. Blind equalization by direct examination

of the input sequences. IEEE Transactions on Communications, 43(7):2213~
2222, 1995.

blindeq , viterbi

cdfigure

9.6 cdfigure
Purpose cdfigure creates non-overlapping plot windows.
Synopsis h=cdfigures(n);

Description Set up n<10 figures, starting at the top at the right side of the screen.

Examples
h=cdfigure(9);

will set up 9 nicely placed figure windows of the same size in a 3 times 3
pattern.

cdfigure(1); plot(yl)
cdfigure(2); plot(y2)

will place the first plot in the upper right corner, and then the second plot is
placed below the first one.

Adaptive Filtering and Change Detection Toolbox 109

Command Reference

9.7 cpe

Purpose cpe implements Change Point Estimation methods from the statistical litera-
ture for a change in the mean model.

Synopsis [jumphat,thseg,gt]=cpe(z,nnn,dm,h,lambda,dsp) ;

Description cpe implements some statistical off-line methods for estimating the change

110

point for mean in white noise.

[O +efort<k
7Y 04 fort >k

The maximum likelihood and Bayesian change point estimates are based on
a Gaussian assumption on the noise, while the non-parametric options only
assume symmetric distributions and examine the sign of the signal.

z=[y ul] output-input data

nnn model structure is always set to [0 1 0] in this approach! It is kept for
conformity.

dm distance measure = [approach problem]:
approach

1 = Bayesian (Gaussian noise)

2 = ML (Gaussian noise)

3 = Non-parametric I (default)

4 = Non-parametric 1T

problem

1 = Detect increase in mean, 6y unknown

2 = Detect increase in mean, #y = 0 known

3 = Detect change in mean, 6y unknown (default)
4 = Detect change in mean, 3 = 0 known

h Threshold

lambda Known noise variance

jumphat estimated change points

thseg estimated parameters

gt The distance measure, which is compared to the threshold h.

cpe

Examples
% HO signal:
y0=[1*ones(50,1) ;1*ones(50,1)]+.1*randn(100,1);
% H1 signal:
y1=[1*ones(50,1) ;2*ones(50,1)]+.1*randn(100,1);
% Use an unknown mean model (required in cpe)
nnn=-1;
% Bayesian approach
[jh,ths,GT01,U01]=cpe(y0,nnn,1);
[jh,ths,GT11,U11]=cpe(yl,nnn,1);
% Maximum likelihood approach
[jh,ths,GT02,U12]=cpe(y0,nnn,?2) ;
[jh,ths,GT12,U12]=cpe(yl,nnn,2);
% Non-parametric approach I
[jh,ths,GT03,U13]=cpe(y0,nnn,3);
[jh,ths,GT13,U13]=cpe(yl,nnn,3);
% Non-parametric approach II
[jh,ths,GT04,U14]=cpe(y0,nnn,4) ;
[jh,ths,GT14,U14]=cpe(yl,nnn,4);
subplot (221), plot([GTO01,GT11]), title(’Bayes’)
subplot (222), plot([GT02,GT12]), title(’Maximum Likelihood’)
subplot (223), plot([GT03,GT13]), title(’Non-parametric I’)
subplot(224), plot([GT04,GT14]), title(’Non-parametric II’)
Bayes Maximum Likelihood

14 30

12 25

10 20

8 15

6 10

4 5

2 o

OO 20 40 60 80 100 _50 20 40 60 80 100

Non-parametric | Non-parametric Il
25 14
20 12
10
15 8
10 6
4
5 2
00 20 40 60 80 100 00 20 40 60 80 100
Algorithm See Section 4.5, p. 102-105, in Fredrik Gustafsson. Adaptive filtering and

change detection. John Wiley & Sons, Ltd, 2000.

Adaptive Filtering and Change Detection Toolbox 111

Command Reference

References These methods are surveyed in A. Sen and M.S. Srivastava. On tests for
detecting change in the mean. Annals of Statistics, 3:98-108, 1975 where
further references can be found.

See Also detectl , detect2 , detectM, glr

112

cusumarl

9.8 cusumarl

Purpose

Synopsis

Description

cusumarl computes the Average Run Length function for the CUSUM test.

LO=cusumarl (h,mu,acc,Nstep,sigma,dsp);

The cusumarl function computes the mean time to detection
Ly = Elt4|h, 0]
where t, is the stopping time from the CUSUM algorithm:
gt = max(g;—1 + s¢ —v/2,0), alarm andt, = tif g; > h.

The signal is assumed to be white with mean th and standard deviation signa,
where

E(s;) =60, Var(s;) = o?

It also computes the more general average run length function, where run
length is the time the algorithm is running until it is reset (g¢ becomes 0). Reset
can be caused either by an alarm, when g; > h, or when g;—1 + sy — v/2 < 0.

Zero initial condition in the CUSUM test is assumed. The solution is given
by a Fredholm integral equation, which is solved numerically. Siegmund’s and
Wald’s approximations can be obtained as well.

LO Mean time between false alarms

NO Mean number of samples between resets of CUSUM
h Threshold in CUSUM algorithm

mu Mean of the signal th - the drift parameter nu/2
sigma Standard deviation of the noise

acc Relative error in LO.

Nstep Number of grid points in the numerical function approximation (de-
fault is 200).

Nstep=-1 gives Siegmund’s approximation.

Nstep=-2 gives Wald’s approximation.

Adaptive Filtering and Change Detection Toolbox 113

Examples

Algorithm

References

See Also

114

Command Reference

Compute theoretically the mean time between false alarms ta0 and the mean
time to detection tal after a change in the mean of th=1 for the CUSUM test
with threshold h=5 and drift nu=th=1.

h=3;
nu=1;
th=1;
mu=th-nu/2;
[ta0,NO] = cusumarl(h,-mu); % HO
[tal,NO] = cusumarl(h,+mu); Y% H1
[taOsiegmund] = cusumarl(h,-mu,0.5,-1);
[talsiegmund] = cusumarl(h,+mu,0.5,-1);
[taOwald] = cusumarl(h,-mu,0.5,-2);
[talwald] = cusumarl(h,+mu,0.5,-2);
LO=cusumMC (h,-mu,500) ;
Li=cusumMC (h,mu,500) ;
disp([ta0 taOwald taOsiegmund mean(LO) ;...
tal talwald talsiegmund mean(L1)])
127.5000 32.0000 118.5000 115.3580
6.5000 4.0000 6.5000 6.2680

See Section 12.2.2, p. 441-444, in Fredrik Gustafsson. Adaptive filtering and
change detection. John Wiley & Sons, Ltd, 2000.

A thorough treatment is given in C.S. Van Dobben de Bruyn. Cumulative
sum tests: theory and practice. Hafner, New York, 1968 and M. Basseville and
I.V. Nikiforov. Detection of abrupt changes: theory and application. Informa-
tion and system science series. Prentice Hall, Englewood Cliffs, NJ., 1993.

cusumdesign , cusumMC

cusumdesign

9.9 cusumdesign

Purpose

Synopsis

Description

Examples

Algorithm

See Also

cusumdesign converts specified delay for detection to design threshold in the
CUSUM algorithm.

h=cusumdesign(LO,mu,h0,acc);

cusumdesign finds the threshold h in the CUSUM algorithm,
gt = max(gi—1 + s¢ — v/2,0), alarm if g; > h.

which gives the mean delay for detection LO. A line search is implemented,
where Siegmund’s approximation of the ARL function is used to evaluate LO.

L0 Mean time between false alarms

h Threshold in CUSUM algorithm

mu Mean of the signal th - the drift parameter nu/2
hO Initial guess

acc Accuracy of final LO

Suppose we want to determine the threshold h in the CUSUM test from a
specified mean time for detection LO of a change of magnitude th. Set nu=th.
The threshold is computed by a numerical search and validated as follows:

hmax=10;
th=0.4;
L0=10;
h=cusumdesign(L0,th/2,hmax) ;
[taO]l=cusumarl (h,th/2);
disp([ta0,L0])

10.5000 10.0000

A line search in the threshold h is performed using a bisection technique.

cusumarl , cusumMC

Adaptive Filtering and Change Detection Toolbox 115

Command Reference

9.10 cusumMC

Purpose cusumMC computes the distribution for the delay for detection in the CUSUM
algorithm, by means of Monte Carlo simulations.

Synopsis L=cusumMC (h,mu,Niter,N);

Description The assumptions are that the increments in the CUSUM algorithm are white
and Gaussian. The output L is a vector of Niter alarm times, do hist (L),
and the mean delay for detection is obtained by LO=mean(L). This figure can
be compared to the theoretical value obtained from cusumarl.

L Vector of alarm times

h Threshold in CUSUM algorithm

mu Mean of the signal th - the drift parameter nu
Niter Number of simulations

N Number of data in each simulation. Should be chosen larger than all alarm
times in L to get a reliable mean LO=mean (L).

Examples Compare the theoretical delay for detection with a Monte Carlo simulation.

h=3;
mu=0.5;
tal = cusumarl(h,+mu)
tal =

6.5000
Li=cusumMC (h,mu,500) ;
mean (L1)
ans =

6.1620

See Also cusumarl , cusumdesign

116

detect1

9.11 detectl

Purpose detectl detects abrupt changes and tracks parameters/states using a white-

ness test on the output from an adaptive filter (residual generator).

Synopsis [threc, jumphat,thseg,gt,tal=detectl1(z,nnn,dnm,sr,lambda,dsp)

Description The adaptive filter in the figure below is matched to the model specified in
nnn . The output residual is white in the fault free case, and non-whiteness

can be tested in various ways.

Ut

&t

Yt Filter

Whiteness test

alarm

kick on adaptation gain

z=[y u] Output-input data

nnn Model structure

dm Distance measure:

1 = normalized sample mean

2 = normalized squared sample mean

sr Stopping rule

sr=[1 h nu] CUSUM detector with threshold h and drift parameter nu
sr=[2 h nu] two-sided CUSUM detector with threshold h and drift param-

eter nu

sr=[3 h gamma] GMA detector with threshold h and forgetting gamma
sr=[4 h gamma] two-sided GMA detector with threshold h and forgetting

gamma

lambda Scaling of measurement noise variance. Default: estimated

jumphat Estimated change points

thseg Smoothed estimated parameters

threc Recursively estimated parameters

gt The decision function

Adaptive Filtering and Change Detection Toolbox

117

Command Reference

Tuning Start with a very large threshold h and adjust v such that g; = 0 more than
50 % of the time. Then set the threshold so the required number of false
alarms (this can be done automatically) or delay for detection is obtained.
For details, see p. 70 in [10].

Examples Define and simulate a second order ARX model with two abrupt changes.
Then estimate its parameter with the one model filter and compare the recur-
sive estimates with the true parameters in a plot.

u=randn(100,1);
e=randn(100,1);
jumptimes=[40 70];
TH=[1.5 0.8 2 0.5;...

1.50.82 1;...

1.50.6 2 1]°;
nnn=[2 2 1];
y=simchange([0.1*e u],nnn, jumptimes,TH) ;
z=[y ul;
[jhat,thseg,gt,ta,threc]=detectl(z,nnn,2,[1 10 5],0.01);
thplot (threc,TH, jumptimes) ;

Bayes Maximum Likelihood
14 30
12 25
10 20
8 15
6 10
4 5
2 of~—"
0O 20 40 60 80 100 _50 20 40 60 80 100
»s Non-parametric | 1‘;Estimated (solid) and real (dotted) parameters

20

15

10

0 20 40 60 80 100 0 20 40 60 80 100
Sampel number

Algorithm Depending on the model structure, detect1 implements:

e Change in the mean model: Algorithm 3.3, p.68.

e Parametric models: Section 5.6, p. 148.

118

detect1

e State space models: Section 8.10, p. 324.
The stopping rule is one of:

e GMA: Section 3.2, p. 59.

e CUSUM: Algorithm 3.2, p. 66.

Limitations There is no adaptation between the estimated change points. A quite logical
ad-hoc algorithm, where for instance RLS is supervised by a change detector,
which after an alarm decreases the forgetting factor, must be implemented by
rdetectl . See Section 7.0.1 for one example.

See Also rdetectl , detect2 , detectM, adfilter , glr , mlr

Adaptive Filtering and Change Detection Toolbox 119

Command Reference

9.12 detect2

Purpose detect2 detects abrupt changes and tracks parameters with the sliding win-
dow approach.

Synopsis [threc, jumphat,thseg,gt,tal=detect2(z,nnn,dm,sr,L,lambda,dsp);

Description The two adaptive filters in the figure below are matched to the hypotheses Hy
and H1, respectively. These filters are assumed to be windowed least squares
estimators with infinite (since last alarm) and size L windows, respectively. A
more general approach with different adaptation gain and possibly using dif-
ferent adaptation methods can be achieved with rdetect2. Model validation
consists in specifying a distance measure for the residuals, and a stopping rule.

Ut
] €t(H0)

i Filter Hy —

Model validation

Hy or Hy (alarm)

Ut

Y Filter H; 1
— €t(H1)

z=[y u] Output-input data.

nnn Model structure.

L Length of the sliding window.

dm Distance measure:

1 = Brandt’s GLR algorithm

2 = divergence test

3 = mean

sr Stopping rule

sr=[1 h nu] CUSUM detector with threshold h and drift parameter nu

sr=[2 h nu] Two-sided CUSUM detector with threshold h and drift param-
eter nu

sr=[3 h gamma] GMA detector with threshold h and forgetting gamma

120

detect2

Algorithm

Limitations

Tuning

sr=[4 h gamma] Two-sided GMA detector with threshold h and forgetting
gamma

sr=[5 h q] Bayes detector with threshold h and jump probability g.
lambda Noise variance/scaling. Default: estimated

jumphat Estimated change points

thseg estimated and smoothed parameters

threc Recursively estimated parameters

gt The decision function

dsp (0/1) Display some information (default 0)

See Chapter 6, and in particular Section 6.1 for an overview. The distance
measure is one of:

e Brandt’s GLR test: Algorithm 3.6, p.79, and Equation (6.7) on p. 212.

e The divergence test: Equation (6.8) on p. 212.

The stopping rule is one of:

e GGMA: Section 3.2, p. 59.

e CUSUM: Algorithm 3.2, p. 66.

Not prepared for state space models. Use rdetect?2 in that case.

The two filters are not adaptative, except for the restart after each estimated
change point. A quite logical ad-hoc algorithm, where for instance two RLS
filters with different forgetting factors are supervised by model validation,
must be implemented by rdetect2 . See the example in Section 7.0.1, which
is easily modified to this case.

As for detectl , the design parameters are a bit tricky to choose. Plot the
decision function gt. It should be zero most of the time when there is no
change. If it isn’t, increase the forgetting. If it does not respond fast enough
or not at all after a change, decrease the forgetting. Choose then the threshold
where you want the alarms.

The window size is coupled to the desired delay for detection. A good starting
value is the specified or wanted mean delay for detection. Set the threshold
to get the specified false alarm rate. Diagnosis:

Adaptive Filtering and Change Detection Toolbox 121

Command Reference

e Check visually the variance error in the parameter estimate in the sliding
window. If the variance is high, this may lead to many false alarms and
the window size should be increased.

e If the estimated change times look like random numbers, too little infor-
mation is available and the window size should be increased.

e [f the change times make sense, the mean delay for detection might be
improved by decreasing the window.

Examples Define and simulate a second order ARX model with two abrupt changes.
Then estimate its parameter with the two-filter approach and compare the
recursive estimates with the true parameters in a plot.

u=randn(100,1);

e=randn(100,1);

jumptimes=[40 70];

TH=[1.5 .8 2 0.5;1.5 .8 2 1;1.5 .6 2 1]’

nnn=[2 2 1];

y=simchange([0.1*e u],nnn, jumptimes,TH) ;

z=[y ul;

[jhat,thseg,gt,ta,threc]=detect2(z,nnn,1,[1 0.5 0.3],10,-1);
thplot (threc,TH, jumptimes) ;

Estimated (solid) and real (dotted) parameters
25 T T T T T

L
0 10 20 30 40 50 60 70 80 90 100
Sampel number

See Also rdetect2 , detectl , detectM, adfilter , glr , mlr

122

detectM

9.13 detectM

Purpose

Synopsis

Description

detectM detects changes and tracks parameters/states using an approximation
of the MAP /ML estimate of change times.

[threc, jhat,thseg,lamhat,Alfa,XM]=detectM(z,nnn,1f,q,ss,dsp);

The function implements a bank of matched filters that are run in parallel.
Each filter is based on a particular assumption on the set of change times
Q = {k;}]";. These hypotheses are compared in a hypothesis test. A clever
algorithm is used to reduce the exponentially in time growing number of hy-
potheses.

lQl

Ut (1)
— €t

Yt Ad. filter
|

|™
Ut 6§2) R
Yt Ad. filter Q
Hyp. test ——
lQM
Ut Ez(gN)

Yt Ad. filter

Mathematically, the function approximates the mazimum likelihood (ML) and
mazimum a posteriori probability (MAP), in a way that the exact likelihood
is computed on a subset of all possible combination of change times. The
approximation is in many cases identical to the exact solution.

z The output-input data vector z=[y ul] or z=[y Phi].
nnn Model structure (see nnn)
1f Loss function:

1f=[1 lambda]l MAP estimate with known noise scaling lambda

Adaptive Filtering and Change Detection Toolbox 123

Tuning

Examples

124

Command Reference

1f=[2] MAP estimate with unknown noise scaling (default)
1f=[3] BIC/MDL penalty term for complexity
1£=[4] AIC penalty term for complexity

q The probability that the system jumps at each sample (default 0.5, which
gives ML)

ss Search scheme = [M,11,minseg]

M The number of filters (default 8 plus number of parameters)
11 Guaranteed lifelength of a jump sequence (default M-4)
minseg The minimum allowed segment size (default 0)

dsp (0/1) Display some information (default 0)

jumphat The estimated jump times

thseg Estimated and smoothed piecewise constant parameters.
threc Recursive estimate of parameters.

lamhat Estimated and smoothed piecewise constant noise variance.
Alfa Probability of each filter as a function of time.

XM Hypothesis histories for each filter (for hypplot).

The ML estimate is achieved if g=1/2 (default). The exact ML/MAP estimate
of change times is obtained if M=N+1 (and 11=M-2) where N is the number
of data. If M is less an approximative local search is performed. thseg is
the smoothed parameter estimate conditioned on the estimated change times.
Note that the syntax is the same as for the parameter estimation methods in
SITB, e.g. arx and rarx and time series analysis is possible as well by letting
z=y and nnn=na.

The default design parameter usually works quite well. The number of change
times can be tuned by ¢. The smaller ¢, the fewer change times. If this is not
enough, try to use 1f=[1 lambda] and tune lambda until a sufficient number
of changes are detected. Generally, 1f=[1 lambda] should be used when prior
information about the noise variance is available. See Section 7.5.2 in [10] for
more information.

Define and simulate a second order ARX model with two abrupt changes.
Then estimate its parameter with the detectM filter and compare the recursive
and smoothed estimates with the true parameters in a plot.

u=randn(100,1);
e=randn(100,1);

detectM

jumptimes=[40 70];

TH=[1.5 .8 2 0.5;1.5 .8 2 1;1.5 .6 2 1]’
nnn=[2 2 1];

y=simchange([0.1*e u],nnn, jumptimes,TH) ;
z=[y ul;
[jhat,thseg,lamhat,threc]=detectM(z,nnn) ;
thplot (thseg,TH, jumptimes,threc);

Estimated (solid=smoothed, dashed=recursive) and real (dotted) parameters
T

25 T T T T T T T

15——<= — —

L L L L L L L
10 20 30 40 50 60 70 80 90 100
Sampel number

Algorithm Depending on the model structure, detectM implements:

e Change in the mean model: Algorithm 4.1, p. 94.
e Parametric model: Algorithm 7.1, p. 244.

e State space model: Algorithm 10.2, p. 386.

See Also hypplot , detectl , detect2 , adfilter , glr , mlr , gibbs

Adaptive Filtering and Change Detection Toolbox 125

Command Reference

9.14 faultdetect

Purpose

Synopsis

Description

Examples

126

faultdetect implements fault detection using the parity space approach.

[r,0Ordo,Hu,Hd,Hf ,Null,T]=faultdetect(z,nnn,L,R,F,minorder) ;

r The residuals are zero during non-faulty mode. The optional transformation
using R and F makes the residual parallel to column ¢ of R when the fault
is parallel to column ¢ of F, and the size of the residual is the fault size.

L Size of sliding window
R Residual structure
F Fault pattern structure

minorder Compute minimum order residual filters (default 0)

A DC motor is simulated using step-wise (fifth argument of simchange) faults
in state one and two, respectively. The structured residuals diagnosis which
change has happened. The residual vector becomes the first column in R after
a change parallel to F and so on. From the plot we see that one structured
residual becomes exactly one after the first fault, which means that the diag-
nosed fault is exactly the first column of F.

See Section 11.5.1, p. 405, for more information on this example.

nnn="nnnDCm1’;

N=80; fi1=[1;0]; f2=[0;1];

TH=[f1 -f1 £2 -f2];

jumps=[3*N/8 4%N/8 5xN/8 6%N/8];

u=randn(N, 1) ;

d=[zeros(N/8,1); randn(N/8,1); zeros(6*N/8,1)];
[y,x0]=simchange([u d],nnn, jumps,TH,1);

L=2; z=[y ul;

ri=faultdetect(z,nnn,L);

F=eye(2); R=eye(2);

r2=faultdetect(z,nnn,L,R,F);

subplot(211), plot(ril)

title([’Unstructured residuals for L = ’,num2str(L)])

faultdetect

subplot(212),

plot(r2)
title([’Structured residuals for L = ’,num2str(L)])

Unstructured residuals for L = 2

12

0.8
0.6
0.4r
0.2

-0.2
0

Structured residuals for L = 2

70

80

12

0.8
0.6
04r

0.2

-0.2
0

Algorithm

Algorithm 11.1, p. 399.

Adaptive Filtering and Change Detection Toolbox

80

127

Command Reference

9.15 gibbs

Purpose gibbs detects changes and tracks parameters/states using an approximation
of the MAP /ML estimate of change times.

Synopsis [threc, jhat,thseg,lamhat,Alfa,XM]=detectM(z,nnn,1f,q,ss,dsp);

Description The function implements a Gibbs-Metropolis resampling algorithm for resamp-
ing the jump sequence in a MCMC fashion. At each iteration, each jump time
is resampled individually, and the new time is kept or rejected with prpobabil-
ity proportional to its likelihood. Mathematically, the function approximates
the mazximum likelihood (ML) and mazimum a posteriori probability (MAP),
in a way that the exact likelihood is computed on a subset of all possible com-
bination of change times. That is, gibbs and detectM approximates the same
optimality criteria, but with different algorithms.

z The output-input data vector z=[y ul] or z=[y Phi].

nnn Model structure (see nnn)

1f Loss function:

1f=[1 lambda] MAP estimate with known noise scaling lambda
1f=[2] MAP estimate with unknown noise scaling (default)
1f=[3] BIC/MDL penalty term for complexity

1£=[4] AIC penalty term for complexity

q The probability that the system jumps at each sample (default 0.5, which
gives ML)

par Search scheme = [n M prior]
n is the number of jumps (must be given),
M the number of Gibbs iterations and
prior denotes the prior distribution on the jump times (prior=0 uni-
form, prior > 0 Gaussian with standard deviation = prior). The prior
controls the resampled jump time.

opt opt=[0l 02 03] creates different plots.
ol #£ 0 gives an off-line jump plot.
02 # 0 gives an on-line jump plot.
03 # 0 gives a histogram with assumed burnin-time 0.25M .

jumpinit Initial estimate of jump sequence.

The ML estimate is achieved if q=1/2 (default).

128

gibbs

Tuning

Examples

rand(’state’,1)

randn(’state’,3)

N=30;

TH=[1 4 8];

jump=[N/3 2*N/3];

y=simchange (randn(N, 1) ,-1, jump,TH);

thplot (y,TH, jump) ;

[threc,kn]=gibbs(y,-1,[1 1],0.5,[2 500 0],[0 1 1],[5 10]);

Estimated (solid) and real (dotted) parameters

10

Iteration plot Histogram
T T T

1 1sb

Change times
[
@

_20 é 1.0 1.5 2.0 2.5 30 00 5‘0 1(‘]0 1é0 260 2‘50 3(‘]0 SéO 460 4‘50 500 OU 2(;0
Sampel number Iteration number
Algorithm Depending on the model structure, gibbs implements:
e Change in the mean model: Algorithm 4.2, p. 102.
e Parametric model: Special case of below, not explicitly given.
e State space model: Algorithm 10.6, p. 394.
See Also detectM

Adaptive Filtering and Change Detection Toolbox

129

Command Reference

9.16 qir

Purpose glr estimates the jump time and size of an additive change in the state of a
linear system.

Synopsis [Xhat, jumphat,NUhat,ta,LR]=glr (z,nnn,M,h,pnu) ;

Description Computes the log likelihood ratio of a jump at time k versus no jump in a

130

state space model

i1 = Awxy + Byug + Byvy + 0y Byv
Y = C(L’t + D’U,t + €,

The generalized likelihood ratio replaces the unknown jump magnitude by its

most likely value:
p(Ylv, k)
[(k) = maxlog ————=.
(k) = me p(Y)

Then a change at time k is decided if

k= arg mkaxl(k:) > h.

The test can be applied off-line, when the test above is applied for all 1 < k <
N first when all data are processed, or on-line, when the test is applied for
either all k < ¢ or using a sliding window for t — M < k < t.

jumphat Estimated jump time, no jump if jumphat=0
1r Log likelihood ratio

nuhat Estimated jump

z Output-input data

nnn Structure parameters

M Size of sliding window of considered change times.
If M<1 all time instants are considered (default).

If M=1 a Gaussian prior on the jump is used.

h Threshold in the test (default h=10)

pnu Covariance of the jump when M=1. Default is pnu=100.

glr

Examples Simulate a state space model corresponding to the transfer function
(' +¢2)/(1 +q ' 4+ ¢~2) with a sudden increase in state with (10,10)7 at
time 50. Then glr tries to find the change time and magnitude.

u=randn(100,1);

[a,b,c,d]=tf2ss([0 1 -1],[1 -1 0.8]);
Q=0.0001*eye(2);

R=0.01;

nnn=ss2nnn(a,b,c,d,qQ,R);
jumptime=50;

TH=[10 10]’;
[y,x]=simchange (u,nnn, jumptime,TH) ;
[jhat,nuhat,xhat,lr]=glr([y ul ,nnn);
thplot (x,xhat)

nuhat, jhat

Check the likelihood ratio 1r so that the threshold is set properly.

Algorithm Algorithm 9.1, p. 350.

References The original reference is A.S. Willsky and H.L. Jones. A generalized likeli-
hood ratio approach to the detection and estimation of jumps in linear systems.
IEEE Transactions on Automatic Control, 21:108-112, 1976. A general treat-
ment is given in M. Basseville and 1.V. Nikiforov. Detection of abrupt changes:
theory and application. Information and system science series. Prentice Hall,
Englewood Cliffs, NJ., 1993. Implementation issues and an algorithm are dis-
cussed in F. Gustafsson. The marginalized likelihood ratio test for detecting
abrupt changes. IEEE Transactions on Automatic Control, 41(1):66-78, 1996.

Adaptive Filtering and Change Detection Toolbox 131

Command Reference

9.17 imm
Purpose imm implements the Interactive Multiple Model filter.
Synopsis [xhatp,xhatf,Alfa] = imm(z,nnn,wbar,q)

Description Common algorithm used for target tracking. Use this in combination with the
motion models for the aircraft in nnnplane .

xhatp Filter predictions Zy; ;.

xhatp Filter estimates 2.

alfa Wieghts of the individual filters as a function of time.

z Position related measurements y; for target tracking.

nnn Motion model, see nnnplane .

wbar Possible turn rates. Default [0 -3 3] degrees per second.

q Transition probabilities. Default is 0.5*eye (3)+0.5/3*ones(3).

Algorithm Algorithm 10.4 on page 389.

132

hypplot

9.18 hypplot

Purpose hypplot illustrates the local search of hypotheses in detectM.
Synopsis hypplot (Xn, jump) ;

Examples

jumps=[10 20];

TH=[0 5 8];

[y,thO]=simchange (randn(30,1) ,-1, jumps,TH) ;

M=6;

[jumphat,thseg,lamseg,threc,Alfa,hist]=detectM(y,-1,[1 1],0.5,M,0);
cdfigure(1);

hypplot (hist, jumphat)
title([’Local search with M=’ ,num2str(M)])

Local search with M=6

Number of change points
N
v
T

Il
0 5 10 15 20 25 30
Time [sample]

The plot illustrates a filter bank with 6 parallel matched filters. Each filter is
matched to a hypothesis of a sequence of change times. Each line shows one
such hypothesis, where each change time is illustrated with a jump. Termi-
nating lines indicate that the hypothesis is rejected, and the filter is initiated
to a new one. The circles denote at each time the most likely hypothesis.
Thus, the first rather large change is detected by one matched filter after two
samples, while the second change require six samples.

Adaptive Filtering and Change Detection Toolbox 133

Command Reference

See Also detectM

134

mlr

9.19 mlr

Purpose mlr estimates the jump time for an additive change in the state of a linear
system.

Synopsis [jumphat,lr]=mlr(z,nnn,1f,L)

Description The function computes the log likelihood ratio of a jump at time k versus no

jump in a state space model

Tiy1 = Awxg + Byug + Byvg + 6 Byv
ye = Czp+ Duy + ey,

The marginalized likelihood ratio integrates out the influence of the unknown

jump magnitude,
< p(Y|vk)
I(k :/ log ———=dv.
=)

Then the change time k is estimated as

where k = N is to be interpreted as no jump. Note the principal difference to
the glr test, where a threshold is involved. MLR is an estimation approach,
and GLR a hypothesis test. The test is aimed to be off-line.

jumphat Estimated jump time, no jump if jumphat=0.
1r Log likelihood ratio.

z Output-input data.

nnn Model structure.

1f Loss function.

1f

[1 lambda]; known noise level.
1f = 2; unknown constant noise level.
1f = 3; unknown changing noise level (default).

L Number of ignorance data at the end. (Default length(H).)

Adaptive Filtering and Change Detection Toolbox 135

Command Reference

Limitations The algorithm may have numerical problems when the state matrix A has
eigenvalues different from one. Examples on A matrices with eigenvalues one
are most models used for navigation and tracking and parametric models on
state space form.

No estimate of the change magnitude v is computed, so isolation and diagnosis
are unsolved problems.

Examples Simulate a state space model corresponding to the transfer function
(' +q72)/(1 4+ ¢~ +¢~?) with a sudden increase in state with (10,10)” at
time 50. Then mlr tries to find the change time and magnitude.

[a,b,c,d]=tf2ss([0 1 1],[1 1 11);
Q=0.0001*eye(2);
R=0.01;
w=randn(100,2);
nnn=ss2nnn(a,b,c,d,qQ,R);
jumptime=50;
TH=[0 0;10 10]’;
y=simchange([0.1*e u 0.01*w] ,nnn, jumptime,TH) ;
[jhat,lr]=mlr([y u],nnn);
jhat
jhat =

49
plot(1lr)

300

250 M q

200 | q

150 - q

100 - q

50 q

Algorithm Algorithm 9.2, p. 358.

136

mlr

See Also glr

Adaptive Filtering and Change Detection Toolbox 137

Command Reference

9.20 modeltype

Purpose modeltype determines the type of model implicitely given in nnn

Synopsis mtype=modeltype (nnn) ;

Description The mtype definition of models are used internally by all filters for switching
purposes. It is defined as

mtype = 0 No model (only noise)

mtype = 1 Unknown mean in noise
mtype = 2 Linear regression with regressor in z=[y PHI]
ARX model

State space model, defined according to Simulink S-functions.

0
1
2

mtype = 3 AR model
mtype = 4
5

mtype =

For mtype<3, the model formats relate as mtype=-nnn. For mtype=3,4, the
model formats are essentially equivalent to nn in the System Identification
ToolBox. See nnn for more details on how the models are defined.

See Also nnn

138

multihyp

9.21 multihyp

Purpose

Synopsis

Description

multihyp detects abrupt changes in parametric models and performs diagnosis
on the hypothesis parameter change and noise variance change.

[jhat,jtype,thseg,lamseg]l=multihyp(z,nnn,L,hypmask,q,dsp)

The algorithm applies to all parametric models nnn (not state space models)
and makes the following hypothesis test at each time instant recursively:

HO No change in parameters or noise variance.
H1 Change in parameters and the no change in noise variance.
H2 Change in noise variance but no change in parameters.

H3 Change in both parameters and noise variance.

The hypothesis test is performed by comparing the outputs from one non-
adaptive filter and one adaptive filter implemented by the sliding window
approach. The algorithm is a two-filter one similar to what is done in detect?2
. Variance changes can also be detected in detectM , but there no diagnosis is
done. That is, here you don’t know whether the parameter or variance change
is significant.

There is an optional mask, hypmask, to exclude one or more of the hypoth-
esis. For instance, default is to exclude H3. By excluding both H2, H3, the
algorithm detect?2 is obtained essentially.

jumptime Detected jump times:

jumptype Vector of diagnosed changes (0,1,2,3) according to the hypotheses.
z=[y u] Output-input data.

nnn Model structure.

L Length of the sliding window. Default L=50.

hypmask Possibility to mask, e.g. [0 1 0] means only variance changes
considered. Default: [1 1 0], that is, either parameter or variance
change but not both at the same time.

q Prior probability for a jump at time ¢ (default g=0.5 (ML))

dsp Display some information every dsp sample. Default dsp=0.

Adaptive Filtering and Change Detection Toolbox 139

Limitations

Examples

Algorithm

Tuning

References

See Also

140

Command Reference

The algorithm is not intended for state space models.

Simulate a second order FIR model with noise with 4 abrupt changes: two
parameter and two noise variance changes. The multihyp filter should be able
to find the type of change and approximate position.

TH=[1.6 0.64;...

-1.6 0.64;...

-1.6 0.64;...

-1.6 0.64;. ..

1.6 0.64;]7;
Lam=[1 1 10 1 1];
jumptimes=[50;100;150;200];

N=250;
nnn=[0 2 1]; % FIR model
L=10; % Size of sliding window

e=randn(N,1);
u=randn(N,1);
y=simchange([e u] ,nnn, jumptimes,TH,Lam) ;
[jhat, jtype,thseg,lamseg]=multihyp([y u],nnn,L);
disp([jhat;jtypel)
54 103 157 201
1 2 2 1

Algorithm 6.1, p. 224.

See detect?2 .

Theory, algorithm and a communication application are found in C. Car-
lemalm and F. Gustafsson. On detection and discrimination of double talk
and echo path changes in a telephone channel. In A. Prochazka, J. Uhlir,
P.J.W. Rayner, and N.G. Kingsbury, editors, Signal analysis and prediction,
Applied and Numerical Harmonic Analysis. Birkhauser Boston, 1998.

detect2 , detectM, detectl

nnn

9.22 nnn

Purpose nnn displays help documentation for the model structure object nnn.
Synopsis nnn

Description nnn denotes the model structure for data z. There are seven different model

types, enumerated by mtype = 0-6.

0 nnn = 0 and z = y; Assumes noise with piecewise constant variance A(t)
y(t) =e(t), Ee(t)* = A(1).
1 nnn = -1 and z = y; Assumes a piecewise constant mean model

y(t) = 0(t) +e(t), Ee(t)> = \(t).

2 nnn = -2 and z
model

[y Phi] Assumes a piecewise constant linear regression

y(t) = ()7 0(t) +e(t), Ee(t)” = A(t).
3 nnn = na and z = y Assumes a piecewise constant AR(na) model:

y(t)=—01(t)y(t —1) — .. = On,()y(t — na) + e(?)
=o(t)T0(t) + e(t), Ee(t)? = \(t).

4 nnn = [na nb nk] and z = [y ul
Assumes a piecewise constant ARX(na,nb,nk) model:

y(t) == 01(t)y(t = 1) — .. = Op, ()y(t — na) +
+ Ongr1ult — ng) + .+ Opaynpu(t —ng —np) + e(t)
=p(1)70(t) + e(t), Ee(t)* = A(t).

5 nnn=’filename’ and z=[y u] is a general user specified state space model
using an S-function syntax:

[n,x0,P0]=filename(0,0,0,0);

n = [nx nu nv nd nf ny];
xp=filename(t,x,th,2);

y =filename(t,x,th,3);

th=[th;lambdal ;
[A,Bu,Bv,Bd,Bth,Q]=filename(t,x,th,5);
[C,Du,Dth,R]=filename(t,x,th,6);

Adaptive Filtering and Change Detection Toolbox 141

Examples

142

Command Reference

Note that the last two optional calls are not standard simulink, but used
to increase speed in filtering when provided. The state space model is
defined by

x(t+1

~—
|

Az(t) + Bu(t) + Byo(t) + Bad(t) + Beb(t)
y(t Cx(t) + Dyu(t) + e(t) + Dyb(t)
Butuw@n! = Q
Ee(t)e(t)T = RA(t)
Covz(0)z(0)) = Py
Ex(0

N—
I

N

~—

Lo

This rather complicated way of expressing a state space model is needed
for implementing time-varying or extended Kalman filters. The model
format covers all conceivable dynamic systems. There is a m-file tem-
plate, nnnmodel, which is recommended to use when defining your own
model. An advantage of the increased generality is that it can also be
used for pseudo-linear regressions and general parametric model struc-
tures (ARMAX, OE etc.). Then Xfun is a state that can be used to store
old data that is needed to compute the gradient C(t) = ¢(t)7.

Note that the state space model generally is MIMO (multi-input multi-output),
while the other parametric models are SISO.

Let n denote the number of jump times. For state space model (5), the
dim# = dxn matrix TH (©) and 1 xn vector jumptimes define the amplitude
and time for the additive changes. For the linear regression models (1-4),
the 1 x n vector jumptimes defines the segments where the parameter vector
is piecewise constant and the dim@ = d x (n + 1) matrix TH contains the
corresponding parameter vectors.

This structure is used for simulation, adaptive filtering and change detection.

Here follows a definition of a DC motor contained in the template file nnnDCm1

function [outl,out2,out3,out4,outb,out6]=nnnDCml (t,x,uinp,flag);

% Sampled state space model of Dc motor with x=[phi w]’
A

yA 1
b G(s) = —————-
A s(s+1)

b

% Inputs are uinp=[u;d;f;lam];

nnn

% Noise inputs are simulated within the model

T=0.4;
nx=2; nu=1; nv=0; nd=1; nth=2; ny=2;

outl=[]; out2=[]; out3=[]; outd=[]; outb=[]; out6=[];

if flag==0; % Initialization
PO=zeros (nx) ;
x0=zeros(nx, 1) ;
n=[nx nu nv nd nth nyl;
outl=n; out2=x0; out3=PO;
elseif flag==1;
elseif flag==2;
[A,Bu,Bv,Bd,Bf,Q]=feval (’nnnDCm1’,0,x,0,5);
u=uinp(1l:nu);
d=uinp (nu+1:nu+nd) ;
f=uinp(nu+nd+1:nu+nd+nth) ;
xp=A*x+Buxu+Bd*d+Bf*f;
outl=xp;
elseif flag==3;
[C,Du,Df,R]=feval (’nnnDCm1’,0,x,0,6);
u=uinp(1l:nu);
d=uinp(nu+1:nu+nd) ;
f=uinp(nu+nd+1:nu+nd+nth) ;
y=Cxx+Duxu+Df*f;
outl=y;
elseif flag==4;
t=t+T;
outl=t;
elseif flag==5;
a=exp(-T);
A=[1 1-2a;0 al;
Bu=[T-1+a; 1-a];
Bd=[0;0];
Bf=eye(2);
Q=[1;
outl=A; out2=Bu; out4=Bd; outb5=Bf; out6=Q;
elseif flag==6; 7% Output equation matrices
Cc=[1 0; 0 0];
C=eye(2);
Du=[0;0];
Df=zeros(2);
R=[1;
out1=C;
out2=Du;

Adaptive Filtering and Change Detection Toolbox 143

Command Reference

out3=Df;
out4=R;
end

See Also modeltype

144

nnnplane

9.23 nnnplane

Purpose

Description

nnnplane implements a variety of motion models used in the area of target
tracking.

The chosen motion model is controlled by the global parameter NNNmethod.

The state variables are defined in continuous time as as subset of the following:

x1 and xo denote the cartesian position in the horizontal plane.
v1 and vo denote the cartesian velocity in the horizontal plane.
v denotes the speed.

h denotes the heading angle, so v; = vsin(h) and vy = v cos(h).

w = h denotes the turn rate.

The state space model must be transformed to discrete time before the Kalman
filter applies. For non-linear models, there are two alternatives, either to
linearize the non-linear model and then apply standard sampling of state space
models, or to try to sample the continuous time non-linear model to a discrete
time non-linear model, which is then linearized. We refer to these principles as
discretized linearization and linearized discretization, respectively. The global
switching parameter NNNmethod can now be defined as follows:

. Four state linear model z = (z(M), 22 o))T,

. Four state linear model as above with a time-varying and state depen-

dent covariance matrix Q(z;), corresponding to velocity noise mainly in
lateral direction, as will be explained below.

. Six state linear model with x = (3:(1),:6(2),@(1),1)(2), a(l),a(Q))T.

. Six state linear model as above with a time-varying and state depen-

dent covariance matrix Q(x;), corresponding to velocity noise mainly in
lateral direction, as will be explained below.

. Five state coordinated turn model, cartesian velocity, linearized dis-

cretization, with x = (:c(l),x(2),v(1),v(2),w)T (w is turn rate).

. Five state coordinated turn model, polar velocity, linearized discretiza-

tion, with z = (z™), 2® v, h,w)” (h is heading angle).

Adaptive Filtering and Change Detection Toolbox 145

Examples

See Also

146

Command Reference

7. Five state coordinated turn model, cartesian velocity, discretized lin-
earization.

8. Five state coordinated turn model, polar velocity, discretized lineariza-
tion.

The first five ones seem to be the most common ones in applications. A covari-
ance matrix @) corresponding to, for example, 100 times larger maximal acel-
eration in lateral direction compared to longitudinal direction (g, = 0.01gy)
is given by

0 = arctan(z /z®)

Q= (qv cos?(0) + qusin?(0) (go — qu) sin(0) cos(@))
(qv — qw) sin(#) cos(0) g, sin?(0) + gy, cos?(0)

T3/3 0
T%/2 0 0 T3/3
0 T?%/)2 T2/2 0
Bo=1 p o | BT 0 120
0 T T 0
0 T

The reason for introducing an ugly global variable for switching purposes is
solely to keep the Simulink-like syntax. See Section 8.9 in the text book
for a thorough treatment of model definitions and their extended Kalman
filters. The flexibility of nnnplane is illustrated by the fact that all toolbox
filters and change detectors apply to all of these non-linear and linear models.
For instance, adkalman applies the Kalman filter, or extended Kalman filter,
depending on the model.

See Section 5.

nnn

openeye

9.24 openeye

Purpose

Synopsis

Description

Examples

openeye computes a so-called open-eye measure, which is a measure of how
well an equalizer works for a given channel.

m=openeye(b,c);

The impulse response of the combined channel and equalizer, assuming FIR
models, is
ht = (b * C)t

where * denotes convolution. The best one can hope for is hy =~ md;_,, where
7 is an unknown time-delay, and the modulus m with |m| = 1 is unknown.
The modulus and delay do not matter for the performance when differential
modulation is used and can in such applications be ignored.

Consider the case of input alphabet u; = £1, in which case the modulus is m =
+1. For succesful demodulation and assuming no noise on the measurements,
it is enough that the largest component of h; is larger than the sum of the
other components. That is, m; > 0, where

2 (7))

=2 .
e maxyg |ht |

If the equalizer is a perfect inverse of the channel (which is impossible for FIR
channel and equalizer), then m; = 1. The open-eye condition corresponds to
my > 0, when perfect reconstruction is possible, assuming there is no noise.
The larger my, the larger noise can be tolerated. Look at the plot in the
blindeq example to see how a blind equalizer improves the open-eye measure.

Both the channel and equalizer FIR parameters can either be constant (a row
vector) or time-varying (a matrix).

b FIR parameters for channel.

c FIR parameters for equalizer.

m Open-eye measure

Compute the open-eye measure for two initial equalizers.

b=[0.3 1 0.3]; % channel

Adaptive Filtering and Change Detection Toolbox 147

Command Reference

c1=[0 -0.1 1 -0.1 0]’; 7% equalizer
ml=openeye(b,cl)
ml =

0.5106
c2=[0 11 10]’; Y% another equalizer
m2=openeye (b, c2)
m2 =

-1.0000

This means that c1 will work well, but c2 is useless. See also the example in
blindeq .

See Also blindeq

148

par2segm

9.25 par2segm

Purpose par2segm converts a d X N matrix of piecewise constant parameter vectors to
a d x n matrix of parameter vectors in each segment.

Synopsis [TH, jumptimes,N]=par2segm(th) ;

Examples Approximate a sinusoid with a piecewise constant second order polynomial,
and present the coefficients in each segment.

£=(1:100)’/100;
y=sin(t*2x*pi) ;
[jhat,thseg]=detectM([y ones(size(t)) t t.72],-2,[1 0.001]);
plot (thseg’)
par2segm(thseg)
ans =
-0.0838 8.1438
8.5421 -24.3353
-17.0447 16.2328

Parameter estimate
20 T T T

10F | 4

|
_20k ‘ i

10 20 30 40 50 60 70 80 90 100

Signal and segmentation
1 T T T
T \ i

-1 Il Il Il Il L L L
0 10 20 30 40 50 60 70 80 90 100
Sample number

See Also segm2par

Adaptive Filtering and Change Detection Toolbox 149

Command Reference

9.26 power2

Purpose

Synopsis

Description

Examples

150

power2 computes the statistical power for testing a parameter change using
detect2 in a FIR model.

beta=power2(th0,thl,R,lambda,N,alpha);

Asymptotic expression for the power function in the two-filter approach for a
constant known noise variance. tho is assumed known and thil estimated in a
sliding window. The result holds for the distance measures GLR, divergence
test and normalized parameter norm. For unnormalized parameter norm,
replace N by sqrt(N). The mean time to detection is approximately 1/beta
while the mean time between false alarms is approximately 1/(1-alpha).

Note that the actual value of beta is not reliable (see the demo). Qualitatively
it is correct in the sense that when comparing different model structures it gives
the highest value to the one that performs best. Thus, this function can be
used to compare different model structures in the case where the parameter
vector before and after the change is known. With a known change time, these
can both be estimated from data, and the most powerful model structure can
be determined.

Note also that in many cases under-modelling is good for change detection
performance.

th0 FIR parameter vector before change

th1l FIR parameter vector after change

R N % P(N) where P is the covariance matrix
lambda Noise variance

N Size of sliding window

alpha Confidence level in the hypothesis test

nb=30;

lambda=0.1;

N=50;

alpha0=0.99; % confidence level 999

power2

Limitations

See Also

Calpha=erfinv(2*(alpha0)-1); % Assuming AsN of test statistics

% The "Astrom system", pole in 0.8376*exp(ix*0.4592)
thO=dimpulse(.2/1.5%[0 1 .5],[1 -1.5 0.7],nb);
r=0.8376*exp(i*0.4) ;

% Move the phase angle from 0.46 to 0.4
thi=dimpulse(.2/1.5%[0 1 .5],[1 -real(r+r’) real(r*r’)],nb);

for m=1:nb;
betal(m)=power2(th0(1:m),th1(1:m),eye(m),lambda,N,alphal);

end;

plot(betal)

xlabel (’FIR order’), ylabel(’Power of model validation test’)

0.8

o
o
T

o
o
T

Power of model validation test
o o
w S
T T

o
N
T

0.1r

Il
0 5 10 15 20 25 30
FIR order

In this example we can conclude that using a FIR model of order 10 gives
much higher power (smaller mean time to detection) for a given confidence
level (mean time between false alarms) than using higher order FIR models.

See also Section 6.4, p. 221, in [10], or, for a full description, F. Gustafsson
and B.M. Ninness. Asymptotic power and the benefit of under-modeling in
change detection. In Proceedings on the 1995 Furopean Control Conference,
Rome, pages 1237-1242, 1995

Only for the parallel filter approach in detect2 and only FIR models

detect?2

Adaptive Filtering and Change Detection Toolbox 151

Command Reference

9.27 radarplot

Purpose radarplot plots a two-dimenhsional path plot with a marker for a radar at
the origin.
Synopsis radarplot (ym,yhat, jhat) ;

152

radfilter

9.28 radfilter

Purpose radfilter is a recursive implementation of adfilter.

Synopsis For initialization of state:
[Xfilt]=radfilter([],nnn);
For recursion:
[thhat,lamhat,epsi,S,X,K]=radfilter(z,nnn,adg,adm,X);

Description The only syntax change from adfilter is the inclusion of a state vector X.
The state is of the form

X=[d,lamhat ,mtype,n,th,P,Z],

where Z is a memory of measurements used only for the WLS option.

The exact definition is

X=[[d lamhat mtype n; zeros(L*xd+d-1,4)]...
[xhat P;zeros(Lx*d,d+1)] Z];

Examples Simulate a first order ARX model and identify it recursively.

N=100;

u=randn(N,1);

e=randn(N,1);

th0=[0.5 1.5;0.8 1.8]’;

d=2;

lam=0.1;

nnn=[1 1 1];

y=simchange ([lam*e u] ,nnn,N/2,thO0);
TH=[];

[Xfilt]=radfilter([],nnn);
for t=1:N;
[thhat,lamhat,epsi,S,Xfilt]=radfilter(...
[y(t) u(t)],nnn,0.97,’RLS’ ,Xfilt);
TH=[TH thhat];
end
plot(TH?)

Adaptive Filtering and Change Detection Toolbox 153

Command Reference

Magnitude of the poles
25 T T T

15f q

0.5 q

! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500

See Also rdetectl , rdetect2, rglr , adfilter

15/

rdetect1

9.29 rdetectl

Purpose rdetectl is a recursive implementation of detectl .

Synopsis For initialization of state:
[Xonel=rdetect1([],[],dm,sr,-1);
For recursion:
[alarm,Xone]l=rdetectl(epsi(t) ,Xone);

Description The difference to detect1 is mainly that the filter and stopping rule are sep-
arated, so rdetectl only implements the stopping rule. For that reason, the
data input is the normalized filter residual epsi, such that Var(e(t)) = A if
there is no change. This can be computed from the outputs of radfilter
as epsi/sqrt(8), where S is the variance of the residual. See the example
in rdetect2 . lambda (A) is an unknown noise scaling, which is by default
estimated.

The distance measure dm and stopping rule sr are the same as for detect1

The state is defined as

X=[gt,gtm,n,lambda,dm,nu,gamma,q,h,hm,noiseest]

Examples Simulate a change in the mean, and apply the CUSUM test as a whiteness
detector.

lambda=0.25;
y=[zeros(50,1) ;ones(50,1)] + sqrt(lambda)*randn(100,1);

sr=[1 h nul;
GT1=[1;
alarmtimes=[];

[Xonel=rdetect1([],[],dm,sr,-1);
for t=1:100;
[alarm,Xone]l=rdetect1(y(t),Xone);
GT1=[GT1;Xone(1)];
if alarm™=0;

Adaptive Filtering and Change Detection Toolbox 155

Command Reference

alarmtimes=[alarmtimes t];
end;
end
segplot (GT1,alarmtimes)

Magnitude of the poles
25 T T T

15f 7

0.5 4
0 Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500
Signal and segmentation
5 T T
4 i
3 i

0 10 20 30 40 50 60 70 80 90 100
Sample number

After the change, we get several alarms.

See Also detectl , radfilter , rdetect2 , rglr

156

rdetect2

9.30 rdetect2

Purpose rdetect? is a recursive implementation of detect2 .

Synopsis For initialization of state:
[(X]=rdetect2([1,[1,[1,[1,[],dm,sr);
For recursion:
[alarm,X]=rdetect2(epsi0/sqrt(S0),epsil/sqrt(S1),lam0,laml,X);

Description The difference to detect2 is mainly that the filter and stopping rule are sep-
arated, so rdetect?2 only implements the stopping rule. For that reason, the
data input is the normalized filter residuals epsi from two adaptive filters,
such that Var(e(t)) = X if there is no change. Each residual can be computed
from the outputs of radfilter as epsi/sqrt(8), where S is the variance of
the residual. lambda (\) is an unknown noise scaling, which is by default
estimated.

The distance measure dm and stopping rule sr are the same as for detect?2 .

The state is defined as

X=[gt,gtm,dm,nu, gamma,q,h,hm]

Examples Simulate a change in the mean, run two parallel RLS filters with different
forgetting factors and apply the two-sided CUSUM test to the divergence
measure.

lambda=0.25;

y=[zeros(50,1) ;ones(50,1)] + sqrt(lambda)*randn(100,1);
nnn=-1;

GT2=[];

alarmtimes=[];

[XO]=radfilter([],nnn,1,’RLS’);
[X1]=radfilter([],nnn,0.8,’RLS’);
dm=2;

h=10;

nu=1;

sr=[1 h nul;
[Xdet]=rdetect2([1,[1,[1,0],[],dm,sr);

Adaptive Filtering and Change Detection Toolbox 157

Command Reference

for t=1:100;
[thhatO,lam0,epsi0,S0,X0]=radfilter([y(t)] ,nnn,1,’RLS’,X0);
[thhatl,laml,epsil,S1,X1]=radfilter([y(t)],nnn,0.8,’RLS’,X1);
[alarm,Xdet]=rdetect2(epsi0/sqrt(S0),epsil/sqrt(S1),...
lam0,laml,Xdet);
GT2=[GT2;Xdet (1)];
if alarm™=0;
% Let the slow filter overtake the fast filter state
X0=X1;
alarmtimes=[alarmtimes t];
end;
end
segplot (GT2,alarmtimes)

Magnitude of the poles
25 T T T

0 50 100 150 200 250 300 350 400 450 500

Signal and segmentation
10 T T T

0 i ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 920 100

Sample number

See Also detect2 , rdetectl , rglr , radfilter

158

rglr

9.31 rglr
Purpose rglr is a recursive implementation of glr .
Synopsis For initialization of state:

[(Xglr]l=rglr([], (], [],nnn, [1,M,h);

For recursion:

[alarm,Xglr,nuhat, jhat,lrmax,P]=rglr(epsi,S,K,nnn,Xglr);
Description In rglr, the Kalman filter and GLR test are implemented separately.
Examples Simulate a state space model, and run the Kalman filter and GLR test recur-

sively in series.

N=100;
d=2;
u=randn(N,1);
A=[1 1;0 1]; B=[0.5;1]; C=[1 0]; D=0;
Q=0.01*eye(2); R=0.1; PO=1xeye(2);
nnn=ss2nnn(A,B,C,D,Q,R,P0);
thO=[1;...

21;
y=simchange ([u] ,nnn,N/2,th0) ;

[Xfilt]=radfilter ([NaN NaN],nnn);
h=72;

M=10;

[(Xglrl=rglr([1, (1,] ,nnn, [1,M,h);
GT1=[];

alarmtimes=[];

for t=1:N;
[thhat,lamhat,epsi,S,Xfilt,K]=radfilter(...
[y(t) u(t)],nnn,1,’RLS’ ,Xfilt);
[alarm,Xglr,nuhat, jhat,lrmax,P]=rglr(epsi,S,K,nnn,Xglr);
GT1=[GT1;1lrmax];
if alarm™=0;
alarmtimes=[alarmtimes t];
% Increase P in the Kalman filter
Xfilt(:,6:5+d)=100%Xfilt(:,6:5+d);

Adaptive Filtering and Change Detection Toolbox

159

Command Reference

end;
end;
segplot ([GT1] ,alarmtimes)

Signal and segmentation
50 T T T

40~

30

20

151

101

Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100
Sampel number

0 I I I I

See Also radfilter , glr , mlr , rdetectl , rdetect2

160

segm2par

9.32 segmZpar

Purpose segm2par converts a vector of change times and d x n matrix of parameters
vectors in each segment to a full d x N parameter matrix.

Synopsis thseg=segm2par (TH, jumptimes,N) ;

Examples

jumptimes=[40 70];
TH=[1.5 0.8 2 0.5;...

1.6 0.821;...

1.5 0.6 2 1]°;
nnn=[2 2 1];
th=segm2par (TH, jumptimes, 100) ;
plot(th’)
axis([0 100 0 2.5])

Parameter estimate
20 T T T

10F | 4

| ﬁ

10 20 30 40 50 60 70 80 90 100

Signal and segmentation

-1 Il Il Il Il L L L
0 10 20 30 40 50 60 70 80 90 100
Sample number

See Also par2segm

Adaptive Filtering and Change Detection Toolbox 161

Command Reference

9.33 segplot

Purpose segplot plots the signal and marks the segments.
Synopsis segplot (z, jumphat) ;

Examples

u=randn(100,1);
e=randn(100,1);
jumptimes=[40 70];
TH=[1.5 0.8 2 0.5;...

1.560.821;...
1.5 0.6 2 1]7;
nnn=[2 2 1];
y=simchange ([0.1*e ul] ,nnn, jumptimes,TH);
segplot (y, jumptimes)
Signal and segmentation
15 T T
10 4
5r 4
0
sl i
10 i
-15 L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Sample number
See Also thplot

162

simadfilter

9.34 simadfilter

Purpose

Synopsis

Description

See Also

simadfilter simulates a time-varying parametric model with random walk
parameters.

[y,thl=simadfilter(z,nnn,adg,adm) ;

The parameter time-variations are modelled as random walk:

Ot +1) = 0(t) +v(t)
Cov(v(t)) = Q)

The function simulates a trajectory according to this random walk model, and
computes the output corresponding to the model specified in nnn.

The Kalman filter is the optimal estimator for random walk parameters. Note
that some interesting special cases exist, which correspond to models where
RLS and NLMS are the optimal filters.

The parameters are:
z data matrix equal to [e], [e u] or [e Phil
nnn Model structure.

adg Adaptation gain, see adfilter .
adm Adaptation method, see adfilter .

simchange , simresid

Adaptive Filtering and Change Detection Toolbox 163

Command Reference

9.35 simchange

Purpose

Synopsis

Description

Examples

164

simchange simulates a linear system with abrupt changes.

[y,thO]=simchange(z,nnn, jumptimes,TH,Lambda,ipm, ippar) ;

The function offers a flexible way to simulate additive changes in all supported
model structures. The default change is abrupt, but smooth changes (incipa-
tive), can be obtained with the two optional parameters ipm, ippar.

z Data matrix equal to [e], [e u], [e Phi] or [e u w]
nnn Model structure.
jumptimes Times for abrupt changes (denoted n below).

TH Additive changes. For regression models, TH contains the parameter vec-
tors in each segment, so the number of columns in TH equals the number
of elements in jumptimes plus one (n + 1). For state space models TH
has as many columns as there are jumps (n).

Lambda Scaling of measurement noise variance R.
thO True parameters, which might be interpolated values of TH.

ipm Interpolation method for the impulsive changes in TH.

e ipm=’"no’ No interpolation (default for parametric models).
e ipm=’1c’ Interpolated change from jumptime to jumptime+m*L.

e ipm=’ic’ Integrated change (default for state space models).

ippar=[L m] Interpolation window size L and degree m used for interpolated
changes (see above). m=1 gives linear interpolation.

e=randn(100,1);

jumptimes=[20 60];

TH=[0 1 3];

nnn=[-1];

[y,thO]=simchange (e ,nnn, jumptimes,TH) ;
[y,thl]l=simchange(e,nnn, jumptimes,TH,1,’1c’,[10 1]);
[y,th2]=simchange (e,nnn, jumptimes,TH,1,’1c’,[10 3]);
plot(tho0), hold on

simchange

plot(thl,’--?)
plot(th2,’-.’), hold off

title(’Simulation with different interpolations’)

3.5

Simulation with different interpolations

251

15

05

Interpolation is implemented by convolution with a pulse of width L, so higher

order interpolation implies longer response times (mL).

See Also simresid , simadfilter

Adaptive Filtering and Change Detection Toolbox

165

Command Reference

9.36 simchannel

Purpose

Synopsis

Description

Examples

166

simchannel simulates a digital communication channel.

[y,u,th]=simchannel (alphabet,nn,N,th) ;

The function generates a random input signal with elements in a finite alpha-
bet and simulates a MIMO (ny outputs, nu inputs) FIR (order nb(ny,nu))
channel.

alphabet Finite input symbol alphabet

nn Orders of the MIMO FIR channel. ny x nu matrix with FIR order
nn(i,j) for input i to output j.

N Number of simulated data points.
th Channel parameters

th Matrix of size (N x sum(sum(nn))) of channel FIR parameters for a time-
varying or a sum(sum(nn)) vector for a time invariant channel. The
parameter vector starts with the FIR from input 1 to output 1, then
proceeds with the other inputs to output 1, and then goes on with the
second output and so on. If th=[]; then a fading channel is simulated,
which is complex if the alphabet is complex, otherwise real-valued.

y Channel output
u Channel input

th Channel parameters, which is a N x sum(sum(nn)) matrix

The time-varying parameters are simulated according to a Rayleigh fading
model. The alphabet can be taken as [—11] for a binary channel, [1 — 1i —]|
for PM/ modulation. QAM16 may be generated by the script

di=[-3 -1 1 3];
d2=ones(1,4) ;
a=d1’*d2+d2’ xd1*i;
a(:);

Simulate a second order SISO time-varying channel, with input alphabet
[—1,1]:

simchannel

N=1000;

nb=2;

alphabet=[-1 1];

[y,u,b]=simchannel (alphabet,nb,N, []);

Input u
T

0 10 20 30 40 50 60 70 80 90 100

Change to a time constant SIMO system with FIR channels 3 + 2¢~! 4 ¢ 2
and 6 4 5¢~ ! 4 4¢2, respectively.

b=[3 2 1 6 5 4];

nb=[3;3];

[y,u,bl=simchannel (alphabet,nb,N,b);
subplot(211)

plot(uw)

subplot(212)

plot(y)

Adaptive Filtering and Change Detection Toolbox 167

Command Reference

Input u
T

| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Output y

Simulate a time-varying MIMO channel:

nb=2; ny=2; nu=2;
[y,u,th]=simchannel (alphabet,nb*ones (ny,nu),N, [1);

The MIMO parameters are defined below for the channel Gj; = 1+ 0.9¢7 !,
G2 =08 +0.7¢"", Goy = 0.6 +0.5¢" " and Gy = 0.4 + 0.3¢g7 L.

th=[1 0.9 0.8 0.7 0.6 0.5 0.4 0.3];
nb=2; ny=2; nu=2;
[y,ul=simchannel (alphabet,nb*ones(ny,nu),N,th);

See Also

168

simrestd

9.37 simresid

Purpose

Synopsis

Description

Examples

simresid computes the residuals from a given parameter matrix.

[epsi,epsif]=simresid(z,nnn,th);

The function can be used for validation purposes; the smaller residuals the
better model and detection performance generally. Formally, simresid is the
inverse operation of simadfilter and simchange.

z Output-input data.
nnn Model structure.

th Parameters or states, obtained from an adaptive filter or change detector.
Both recursive and smoothed (piecewise constant parameters) can be
used of course.

epsi Predictor residuals y; = @?9;:—1 or yy = Cxy_1q.

epsi Filter residuals y; = gptTHt or y; = Cxy.

Simulate an ARX model and recover the noise sequence by inverse filtering.

randn(’seed’,0);
u=randn(100,1);
e=0.1*randn(100,1);
nnn=[2 2 1];
jumptimes=[40 70];
TH=[1.5 .8 2 0.5;...
1.5 .8 2 1;...
1.5 .6 2 1]7;
y=simchange([e u] ,nnn, jumptimes,TH);
th=segm2par (TH, jumptimes, 100) ;
[epsi,epsif]=simresid([y ul] ,nnn,th);
plot([epsif-e])

Adaptive Filtering and Change Detection Toolbox 169

Command Reference

0.02

0.014 i

-0.01 4

-0.02- 4

-0.03 4

-0.04- q

-0.05 q

-0.06 L L L L L L I I I

Except for a short transient depending on unknown initial conditions, the
residual is identical to the noise sequence.

See Also simchange , simadfilter

170

th2poles

9.38 th2poles

Purpose

Synopsis

Description

Limitations

Examples

th2poles plots the absolute value and argument of the poles of the recursively
estimated AR parameters in th.

th2poles(th);

This function is useful for time-varying spectral analysis using AR-models. The
time-varying resonance frequencies and their relative strengths are directly
readable from the plot.

Works only for AR-models.

Generate a chirp-signal with linearly increasing frequency. Its frequency con-
tent can be illustrated non-parametrically by FF'T techniques using specgram
in SPTB, or by an adaptively estimated AR model illustrated by th2tfd.

cdfigure(1);

N=5000;
y=sin(2*pix(1:N)’.~2./N);
specgram(y)

cdfigure(2);

N=500;
y=sin(2*pix(1:N)’.~2./N);
[th,lamhat]=adfilter(y,2,20);
th2poles(th);

Adaptive Filtering and Change Detection Toolbox 171

Command Reference

Magnitude of the poles
T T T

]

I I I I I I I I
50 100 150 200 250 300 350 400 450 500

Frequency
=)
ul

Argument of the poles
T T T

0 500 1000 1500 2000
Time 0 50 100 150 200 250 300 350 400 450 500

Look how well the phase of the poles reflects the frequency content.

See Also th2tfd

172

th2tfd

9.39 th2tfd

Purpose

Synopsis

Description

Examples

th2tfd plots the time-frequency description of an adaptively estimated AR
model.

[z,w,T]=th2tfd(threc,lamhat,y,wbin,tbin,plottype) ;

The function computes the transfer function of the recursively estimated AR
model in threc and plots the result.

lamhat, if provided, is the local energy in the AR model.
y, if provided, is the original signal used only for plotting.
wbin is the number of frequency bins. Default is 32.

tbin is the number of time bins. Default is 32.

Both wbin and tbin could be vectors of actual bin values. w and T are the
frequency and time bins. With no output arguments, one (or more if plottype
is a vector) of the following is obtained:

plottype=1 Imagesc plot (default).
plottype=2 Waterfall plot.
plottype=3 Contour plot.

Note: sampling interval 1 assumed.

Generate a chirp-signal with linearly increasing frequency. Its frequency con-
tent can be illustrated non-parametrically by FF'T techniques using specgram
in SPTB, or by an adaptively estimated AR model illustrated by th2tfd.

cdfigure(1);

N=5000;
y=sin(2*pix(1:N)’.~2./N);
specgram(y)

cdfigure(2);

N=500;
y=sin(2*pix(1:N)’.~2./N);
[th,lamhat]=adfilter(y,2,20);
th2tfd(th,lamhat,y,64,[]1,1);

Adaptive Filtering and Change Detection Toolbox 173

Qe
3

o
o

»
3
g
£l
305
g
w

See Also

174

500

th2poles

1000

Time

1500

2000

15

Periodogram

Command Reference

- -
3
- -
- = - =
25 . - . -
z o = =
3
S
5
e
$15 I 1
z
L
I
1 1
0.5 1
50 100 150 200 250 300 350 400 450 500
Time
Signal plot
1 T m T m T
n I
0
-1 | ! I) | L |
0 50 100 150 200 250 300 350 400 450 500

thplot

9.40 thplot

Purpose thplot plots the estimated parameters and true parameters together for easy
comparison.

Synopsis thplot (th,TH, jumptimes,threc);

Description

th Parameters plotted with solid line (typically smoothed estimate)
TH Parameters plotted with dotted line (typically simulated true values)
threc Parameters plotted with dashed line (typically recursive values)

jumptimes Change times illustrated with vertical bars.

Note: th and threc are given for each time instant, but TH for each segment

only.
Examples See detectM
See Also segplot

Adaptive Filtering and Change Detection Toolbox 175

Command Reference

9.41 uZ2ber
Purpose u2ber computes bit error rate for the output of an equalizer.
Synopsis [ber,uhatout,delay,m]=u2ber (u,uhat) ;

Description The impulse response of the combined channel and equalizer, assuming FIR
models, is
ht = (b * C)t

where x denotes convolution. The best equalizer one can get is hy ~= md;_p,
where k is an unknown time-delay, and m, with |m| = 1, an unknown mod-
ulus. The modulus and delay do not matter for the performance and can in
applications be ignored. However, for evaluation using the bit error rate, these
have to be determined.

This algorithm is intelligent and looks for an appropriate time delay and mod-
ulus of the combined channel and equalizer, by a correlation technique.

u True input (from finite alphabet).
uhat Estimated input.

uhatout The corrected input estimate with respect to time delay and mod-
ulus of the combined channel and equalizer.

ber Bit error rate.
delay Estimated time delay.

m Estimated modulus.
Examples See blindeq .

Algorithm The algorithm implemented in u2ber estimates the covariance function (using
FFT for maximum speed)

R(k) = E(uitiy—g,).
The time delay is then estimated as

k= argm2X|R(k)|,

and the maximum of R(k) can be taken as the corresponding estimate of the
modulus.

176

u2ber

See Also blindeq , openeye

Adaptive Filtering and Change Detection Toolbox 177

Command Reference

9.42 viterbi

Purpose

Synopsis

Description

178

viterbi equalizes distortion from a channel using an estimate of it.

[uhat]=viterbi(y,th,alphabet,R)
or
[uhat,thhat]=viterbi(y,nb,alphabet,R,utrain)

The Viterbi algorithm enumerates all possible combinations of input signals
over the time horizon of the FIR channel estimate th. The input sequence
that gives the smallest likelihood is taken as the estimate.

Ut Yt
—_— Channel B(q)
Ut
Similarity measure —
Uy . - ye(@)
— Estimated B(q)

The channel estimate may here come from a training sequence. This is also
included in the code, so it is possible to specify the part of the input sequence
that is known. In this case, also the channel estimate is provided in the out
arguments.

The parameters are:

y Output from channel.

utrain If provided, utrain is the training sequence, th=nb is the FIR order
and thhat is the FIR estimate.

uhat Estimated input.
th Estimated FIR parameters in the channel.
alphabet Finite input alphabet. Can be any set of complex/real numbers.

R Noise variance.

viterbt

Limitations

Examples

References

See Also

1. Only FIR equalizers.

2. Only scalar channels.

N=100;
b=[1 1 1]; % True channel
u=sign(randn(N,1));
y=filter(b,1,u)+sqrt(0.1)*randn(N,1);
bhat=[1 0.7 1.3]; % Channel ’’estimate’’
uhat=viterbi(y,bhat, [-1 1],0.1);
ber=u2ber (u,uhat)
ber =

0.0400
% BER when using a short training sequence
[uhat,thhat]=viterbi(y,3,[-1 1],0.1,u(1:5));
thhat
ans =

0.9589 0.9589 0.9679
ber=u2ber (u,uhat)
ber =

0

G.D. Forney. The Viterbi algorithm. Proceedings of the IEEE, 61:268-278,

1973

blindeq , blindeqM , u2ber

Adaptive Filtering and Change Detection Toolbox

179

Command Reference

9.43 z2phi
Purpose z2phi extracts the regression vector and data z.
Synopsis [phi,y,u,w]=2z2phi(z,t,nnn);
or
[tstart,d]=z2phi(z,0,nnn);
Description This function is called by all filters when a linear regression model is specified.

180

If ¢t = 0, the first possible starting time is delivered together with the number
of parameters, otherwise the corresponding regression vector for the linear
regression structure in nnn is computed.

10 Signhal models and notation

General

The signals and notation below are common for the book and toolbox.

Name | Variable Dimension
N Number of data (off-line) Scalar
L Number of data in sliding window Scalar
t Time index (in units of sample intervals) | Scalar
Ty Dimension of the vector * Scalar
im Measurement Ny, P
ug Input (known) Ny

et Measurement noise Ny

0; Parameter vector ng, d
Ty State Ny

k; Change time Scalar
n Number of change times Scalar
k™ Vector of change times n

St Distance measure in stopping rule Scalar
Gt Test statistic in stopping rule Scalar

Signal estimation models

The change in the mean model is
yr = O; + ey, Var(e;) = o7, (10.1)
and the change in the variance model is
yr = er, Var(ey) = oj. (10.2)

In change detection, one or both of §; and ¢} are assumed piecewise constant,
with change times k1, ks, . .., k, = k". Sometimes it is convenient to introduce
the start and end of a data set as kg = 0 and k,, = N, leaving n — 1 degrees
of freedom for the change times.

182

Signal models and notation

Parametric models

Name | Variable Dimension | Covariance matrix
et Measurement noise Ne R, or o°

ét Parameter estimate ng, d P = Pt|t

Et Residual Yt — @?ét,1 oy St

The generic signal model has the form of a linear regression:
T
Yt = ¢ + et (10.3)

In adaptive filtering, 6, is varying for all time indexes, while in change detection
it is assumed piecewise constant, or at least slowly varying in between the
change times.

Important special cases are the FIR model

Yt :btlut,nk =+ b?ut,nk,1 —+ -+ b?but,nk,anrl + €t (104&)
SO? :(utfnka Ut—mp—15- -+ autfnkfnb+1) (104C)
0F =(b}, b7,...,b"), (10.4d)
AR model

Yt =— QY1 — AiYr2 — — QY + € (10.5a)
Solir :(_ytfl) —Yt—2,-- -, _?/t—n) (105C)
0F =(a}, a?,...,a}), (10.5d)

and ARX model
Yt = — QY1 — Qi Ye—2 — — Q) Yin, (10.6a)
+ Dyt + b2y 1 O Uy 1 €4 (10.6b)
=10, + e (10.6¢)
O =(~Yt-1s ~Yt=2s -+ —Yt—nas Ut—nyy Ut—pg—1s- -+ Ut—my—ny+1) (10.6d)
0F =(a}, a?,...,al, b}, b2,...,b"). (10.6¢)

A general parametric, dynamic and deterministic model for curve fitting can
be written as

.’I.Jt :gt((I,'t; 0) (107&)

State space models

Name Variable Dim. | Cov.
Ty State Ny —

vy State noise (unknown stoch. input) Ty Q¢

dy State disturbance (unknown det. input) | ng —

fi State fault (unknown input) ng —

e Measurement noise Ny Ry, 02
A, B,C,D | State space matrices —— -

Ty Filtered state estimate Ng Py
Zyp—q Predicted state estimate Ny Py
s\t Filtered output estimate ny -
Ug|t—1 Predicted output estimate ny —

£t Innovation or residual y; — g1 Ny St

The standard form of the state space model for linear estimation is

COV(Ut) :Qt
COV(Gt) :Rt .

Additive state and sensor changes are caught in the model

where v is the additive fault magnitude.

space model is

Tip1 =Aixs + By pug + By vy,

yr =Crxy + ey,

Tip1 =Aixy + By pug + By vy + 0y Bov

yr =Cixi + ep + Dy pus + 0 Do v,

Tpy1 =Apxy + Byyug + Bagd + By f

yr =Cixy + Dy gugp + Dy gdy + Dy ft,

(10.8a)
(10.8b)

(10.9a)
(10.9b)

A completely deterministic state

(10.10a)
(10.10b)

where f; is the additive time-varying fault profile. All in all, the most general

linear model is

i1 =Awxy + Bygug + Bagdy + By ft + 01 Bov + By vy

COV(’Ut) :Qt
Cov(e;) =Ry
COV(.T()) :Po.

Yyt =Cyxy + Dy yuy + Dgydy + Dy ft + 04— Do v + €

Multi-model approaches can in their most general form be written as

T =Ae(8)xy + By t(6)ur + Byt (9)ve

yr =Cr(8)xt + Doyt (O)ur + €
vy EN(my1(6), Q1 (9))
et €N(me(6), Re(0)),

where 0 is a discrete and finite mode parameter.

Adaptive Filtering and Change Detection Toolbox

(10.12a)
(10.12b)
(10.12¢)
(10.12d)

183

Signal models and notation

18/

Bibliography

1]

2]

B.D.O. Anderson and J.B. Moore. Optimal filtering. Prentice Hall, En-
glewood Cliffs, NJ., 1979.

M. Basseville and 1.V. Nikiforov. Detection of abrupt changes: theory
and application. Information and system science series. Prentice Hall,
Englewood Cliffs, NJ., 1993.

C. Carlemalm and F. Gustafsson. On detection and discrimination of dou-
ble talk and echo path changes in a telephone channel. In A. Prochazka,
J. Uhlir, P.J.W. Rayner, and N.G. Kingsbury, editors, Signal analysis
and prediction, Applied and Numerical Harmonic Analysis. Birkhauser
Boston, 1998.

C.S. Van Dobben de Bruyn. Cumulative sum tests: theory and practice.
Hafner, New York, 1968.

G.D. Forney. The Viterbi algorithm. Proceedings of the IEFE, 61:268—
278, 1973.

D.N. Godard. Self-recovering equalization and carrier tracking in two-
dimensional data communication systems. IEEE Transactions on Com-
munications, 28:1867-1875, 1980.

F. Gustafsson. The marginalized likelihood ratio test for detecting abrupt
changes. IEEE Transactions on Automatic Control, 41(1):66-78, 1996.

F. Gustafsson and B.M. Ninness. Asymptotic power and the benefit of
under-modeling in change detection. In Proceedings on the 1995 Furopean
Control Conference, Rome, pages 1237-1242, 1995.

F. Gustafsson and B. Wahlberg. Blind equalization by direct examina-
tion of the input sequences. I[EEE Transactions on Communications,
43(7):2213-2222, 1995.

Fredrik Gustafsson. Adaptive filtering and change detection. John Wiley
& Sons, Ltd, 2000.

Fredrik Gustafsson. Adaptive filtering and change detection. John Wiley
& Sons, Ltd, 2000.

Index

[12] T. Kailath, A.H. Sayed, and B. Hassibi. Linear estimation. Information
and System Sciences. Prentice-Hall, Upper Saddle Riber, New Jersey,
2000.

13] L. Ljung and T. Soderstrém. Theory and practice of recursive identifica-
jung
tion. MIT Press, Cambridge, MA, 1983.

[14] R.W. Lucky. Techniques for adaptive equalization of digital communica-
tion systems. Bell System Technical Journal, 45:255-286, 1966.

[15] A. Sen and M.S. Srivastava. On tests for detecting change in the mean.
Annals of Statistics, 3:98-108, 1975.

[16] A.S. Willsky and H.L. Jones. A generalized likelihood ratio approach to
the detection and estimation of jumps in linear systems. IEEE Transac-
tions on Automatic Control, 21:108-112, 1976.

186

Index

adaptive control, 11
adaptive filtering, 11
adaptive tool, 89
adfilt/, 13
adfilt/blockset/, 13
adfilt/extras, 13
adfilter, 2, 29, 35, 96, 99, 102,
119, 122, 125, 154, 163, 190
adkalman, 2, 29, 47, 49, 50, 96, 99,
101, 102, 190
AR, 182
ARL, 24
Siegmund’s approximation, 24
Wald’s approximation, 25
ARX, 182
asymptotic local approach, 21
average run length, 24

BER, 36

bit error rate, 36

blind equalization, 11

blind equalizer, 37

blindeq, 2, 35, 46, 97, 103, 107,
108, 147, 148, 176, 177, 179,
190

blindeqgM, 2, 35, 46, 97, 105, 106,
179, 190

book, 2, 9, 190

Brandt’s GLR test, 21

cdfigure, 109

change in the mean, 67

change in the mean model, 181
change in the variance model, 181
change tool, 89, 90

cpe, 2, 15, 16, 97, 110, 190
CUSUM, 20, 24

CUSUM test, 23

cusumarl, 113, 115, 116
cusumdesign, 114-116

cusumMC, 114-116

Data Generation, 89

decision feedback, 38

demodetect, 2, 9, 190

Design Parameters, 89

detectl, 2, 15, 29, 30, 47, 49, 96,
97, 100, 101, 112, 117, 121,
122, 125, 140, 155, 156, 190

detect2, 2, 15, 29, 96, 97, 100, 101,
112, 119, 120, 125, 139, 140,
151, 157, 158, 190

detection, 11

detectM, 2, 15, 29, 35, 47, 49, 58,
96, 97, 100, 101, 112, 119,
122,123, 128, 129, 134, 139,
140, 175, 190

diagnosis, 11

digital communication, 35

discretized linearization, 48, 145

distance measure, 13, 120, 121, 155,
157

distance measures, 20

divergence test, 21

dm, 13

drift parameter, 24

Fault detection, 11

faultdetect, 2, 16, 96, 126, 190
File/Load Real Data, 88

filter structure, 88, 90

FIR, 182

Fredholm integral equation, 24, 113

geometrical moving average, 24

gibbs, 2, 96, 97, 125, 128, 190

glr, 2, 16, 31, 96, 97, 101, 112, 119,
122,125, 130, 137, 159, 160,
190

GMA, 20, 24

188

Godard, 38

graphical user interface, 87
GUI, 87

guidetect, 2, 87, 190

help, 88
hypplot, 2, 97, 125, 133, 190

imm, 47, 49, 58, 97, 132
Interactive Multiple Model, 49, 132
isolation, 11

jumphat, 12
jumptimes, 12

Kalman filter, 29, 99
KF, 99

least mean square, 99

linear Gaussian control, 11
linear regression, 182

linearized discretization, 48, 145
LMS, 99

LQG, 11

MAP, 123, 128
maximum a posteriori probability,
123, 128
maximum likelihood, 123, 128
maximum likelihood sequence de-
tection, 40
maximum likelihood sequence de-
tector, 35
ML, 123, 128
mlr, 2, 16, 31, 96, 97, 101, 119, 122,
125, 135, 160, 190
mode, 183
model
AR, 182
ARX, 182
change in the mean, 181
change in the variance, 181
FIR, 182
linear regression, 182
linear state space, 183
multi-, 183
non-linear parametric, 182

Index

state space with additive changes,
183
modeltype, 138, 144
modulus restoral, 38
multihyp, 2, 15, 96, 97, 139, 190

navigation, 11

NLMS, 99

nn, 12

nnn, 12, 102, 117, 123, 128, 138,
141, 146

nnn, 12

nnnDCm1, 2, 142, 190

NNNmethod, 47, 48, 145

nnnplane, 2, 47, 48, 132, 145, 146,
190

normalized least mean square, 99

openeye, 2, 35, 97, 105, 147, 177,
190

Optimize, 89

Options, 89

par2segm, 2, 97, 149, 161, 190
parameter tracking, 11

plot tool, 89

PM4, 166

power2, 150

QAMI16, 166

radarplot, 2, 47, 49, 97, 152, 190
radfilter, 101, 153, 156, 158, 160
rdetectl, 119, 154, 155, 158, 160
rdetect2, 121, 122, 154-157, 160
recursive least squares, 99
reference, 2, 9, 190

rglr, 154, 156, 158, 159

RLS, 99

Sato, 38

segm2par, 2, 97, 149, 161, 190

segplot, 2, 15, 29, 97, 162, 175,
190

Siegmund’s ARL approximation, 24

signal, 2, 9, 190

Signal Processing, 9

Index

simadfilter, 2, 96, 163, 165, 170,

190
simchange, 2, 15, 29, 47, 96, 163,
164, 170, 190

simchannel, 2, 35, 96, 166, 190
simresid, 2, 96, 163, 165, 169, 190
square root algorithm, 30

sr, 13

startup, 13

State estimation, 11

State feedback, 11

state space model, 183

stopping rule, 13, 119, 121, 155, 157
stopping rules, 20, 23

Surveillance, 11

target tracking, 11

TH, 13

th, 12
th2poles, 171, 174
th2tfd, 172, 173
thplot, 2, 15, 29, 97, 162, 175, 190
threc, 12
threshold, 24
thseg, 12
tutorial, 2, 11, 190
two-filter approach, 21

w2ber, 2, 35, 97, 105, 107, 176, 179,
190
Utilities/Examples, 89

viterbi, 2, 35, 97, 105, 108, 178,
190
Viterbi equalization, 35

Wald’s ARL approximation, 25

x, 13
xhat, 13

z, 12
z2phi, 2, 97, 180, 190

Adaptive Filtering and Change Detection Toolbox

189

Purpose

‘ Syntax

Simulation

y=simadfilter (z,nnn,adm,adg)
y=simchange (z,nnn, jumptimes,TH)
y=simresid (z,nnn,threc)
[y,u,th]=simchannel (alphabet,nn,N,th)

Adaptive filtering

[thhat,epsi] =adfilter (z,nnn,adg,adm)
[xhat] =adkalman (z,nnn,adg,options)

Change detection

[threc, jhat,thsegl=detectl (z,nnn,options)
[threc, jhat,thsegl=detect2 (z,nnn,options)
[threc, jhat,thsegl=detectM (z,nnn,options)
[threc, jumpsmc, jhat]=gibbs (z,nnn,options)
[jhat,jtype,thsegl=multihyp (z,nnn,options)
[jhat,thsegl=cpe (z,nnn,options)

[jhat]l=mlr (z,nnn,options)

[xhat, jhat]=glr (z,nnn,options)
[r]=faultdetect (z,nnn,options)

Equalization

[uhat]=viterbi (y,th,alphabet,lam,utrain)

Blind equalization

[threc,uhat]=blindeq (y,nnn,adg,adm,th0)
[threc,uhat]=blindeqM (y,nnn,alphabet)
ber=u2ber (u,uhat)

m=openeye (bch,beq)

Model conversion

thseg=par2segm (TH, jumptimes,N)
TH=segm2par (thseg)
phi=z2phi (z,nnn)

Plot segplot (z,jumptimes)
thplot (thl,TH, jumptimes,th2)
hypplot (XdetectM)
radarplot (y,xhat,x)

Help helpdetect

Demonstration demodetect , reference , tutorial

Book examples

book , signal

GUI

guidetect

Real data sets

airbag, altdata, ash, bach, carspeed
ceram, defibrator, eeg_human, eeg_rat
ekg, equake, fricest, fuel, highway
labmotor, nmt450, nmt900, nose, carpath
photons, planepath, salesment, sfquake
sheep, speech, tpi

Models

nnnplane , nnnDCml

	Preliminaries
	The Adaptive Filtering and Change Detection Problems
	Data objects
	Installation

	Adaptive filtering and change detection
	Introduction
	Change detection principles
	Data simulation
	Linear filter
	Whiteness test detection
	Parallel filter detection
	Multiple-model detection
	Stopping rules

	Kalman filtering and change detection
	Introduction
	Data simulation

	Equalization
	Introduction
	Equalization using the Viterbi algorithm
	Adaptive blind equalizer
	Maximum likelihood sequence detection
	A time-invariant SISO channel
	A time-varying SISO channel
	A time-invariant SIMO channel
	A time-varying SIMO channel
	A time-invariant MIMO channel
	Remarks

	Target tracking
	Introduction
	Simulation
	Kalman filtering
	Change detection with whiteness test
	Change detection with filter banks

	Applications
	Fuel Monitoring
	EEG signals
	Human health diagnosis
	Rat EEG

	Paper refinery
	Poisson process of photon arrivals
	Maneuver detection for a driven path
	Altitude sensor quality
	Belching sheep
	Blockset and alternative implementations
	Recursive whiteness test detection
	Recursive parallel filter detection

	Recursive GLR detection
	Graphical User Interface
	What do adaptive filtering problems have in common?
	Getting acquainted with the frontend

	Command Reference
	Commands Grouped by Function
	adfilter
	adkalman
	blindeq
	blindeqM
	cdfigure
	cpe
	cusumarl
	cusumdesign
	cusumMC
	detect1
	detect2
	detectM
	faultdetect
	gibbs
	glr
	imm
	hypplot
	mlr
	modeltype
	multihyp
	nnn
	nnnplane
	openeye
	par2segm
	power2
	radarplot
	radfilter
	rdetect1
	rdetect2
	rglr
	segm2par
	segplot
	simadfilter
	simchange
	simchannel
	simresid
	th2poles
	th2tfd
	thplot
	u2ber
	viterbi
	z2phi

	Signal models and notation

