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Summary

This thesis deals with the subject of terrain aided underwater navigation for underwa-
ter vehicles. The term “navigation” is throughout the thesis understood as the task of
estimating the position and attitude of a vehicle, together with the corresponding uncer-
tainties. The main focus is on autonomous underwater vehicles (AUVs), but the methods
discussed can also be readily used by other underwater vehicles.

Terrain aided navigation is an attractive concept for obtaining submerged position
fixes for the main navigation system, in most cases an inertial navigation system, for
which the deterioration of the position accuracy necessitates external aiding methods.
Terrain navigation has been used for decades in land and air applications, e.g. in aircraft
and cruise missiles. In recent years, the technique has been applied also in underwater
vehicles. The thesis concentrates on what is known as “bathymetric terrain navigation”,
in which bathymetric measurements are matched directly with a map, as opposed to the
related area of “feature-based navigation”, in which features extracted from the bottom
measurements are used for position updates. Throughout the thesis, the terrain navi-
gation system is treated as an external module, providing measurement updates for the
main navigation system in a loosely coupled manner. This approach makes the terrain
navigation module more portable and the overall system more robust to errors in the ter-
rain navigation updates, although it is more difficult to exploit the internal states of the
main navigation system in the terrain navigation algorithm.

The thesis starts with a recapitulation of existing methods for terrain navigation
(Chapter 2), with focus on Bayesian estimation methods. The problem is formulated
as a recursive state-space estimation problem, which is highly nonlinear, due to the non-
linear nature of the terrain measurement function. As a consequence, nonlinear esti-
mation methods like point mass filters (PMFs), particle filters (PFs) and sigma point
Kalman filters (SPKFs) must be used. Special emphasis is put on the fact that, due
to the computational complexity of the estimation methods, one must often use low-
dimensional state-space models, leading to discrepancies between the true system and
the filter model. Such discrepancies sometimes lead to inaccuracies and overconfidence
in the estimators.

Chapter 3 continues with a discussion on the special difficulties that arise when using
terrain navigation techniques underwater, e.g. different sensor characteristics, the effect
of tide compensation etc. It is also shown how unknown depth biases can be handled,
either through estimation of the bias in the filter, or by using relative depth information
only. A novel formulation of the filter process model is also developed, in an attempt
to model the drift in the main navigation system more accurately. Chapter 4 gives an
overview of map databases, which are essential to the success of terrain navigation.

The main contributions of the thesis are related to the computational results pre-
sented in Chapter 5. The behavior in different terrain types of the TERCOM (Terrain
Contour Matching) algorithm, the PMF algorithm, various particle filters and the SPKF
are compared, using sea data from an AUV equipped with a multibeam echosounder. All
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vi Summary

the tested methods are able to estimate the position of the AUV with an accuracy within
the horizontal resolution of the terrain map, with the PMF as the most accurate and ro-
bust, though also the most computationally demanding, method. A clear positive effect
on accuracy and robustness from the inclusion of the depth bias is observed. The main
problem with the methods discussed in the thesis is their tendency of overconfidence,
i.e. the estimated uncertainty is too low compared to the true uncertainty. This can be
partially solved by sub-sampling the terrain measurements, minimizing the effect of un-
modeled correlations. Results from computations using the novel process model derived
in Chapter 3 show that this approach does not solve the inconsistency problem, though
the accuracy and stability are slightly improved on the tested data. Chapter 5 closes with
some simulations using a map database based on real MBE data from an area with pock-
marks, i.e. small craters on the sea floor. The sea floor in the area is otherwise flat. The
simulations indicate that the pockmarks contain enough terrain information to facilitate
the use of terrain navigation in areas previously thought of as unsuited.
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1
Introduction

OCEANS cover around 70 % of the Earth’s surface, yet most of the deep oceans re-
main relatively unexplored, especially at large depths. Deep oceans are hostile

environments, with high pressure and difficult light conditions, making the exploration
of these extremely challenging. The advent of advanced underwater vehicles has, how-
ever, made detailed exploration of the oceans feasible, both in shallow and deep waters.
The applications of such vehicles are numerous, spanning from oceanographic research,
seabed mapping and environmental monitoring to military applications, e.g mine hunt-
ing and reconnaissance. Essential to all these applications is the ability to accurately
determine the location of the vehicle. A measurement is of little value unless one knows
the location at which the measurement was taken. This thesis deals with important as-
pects within the field of underwater vehicle navigation, particularly those related to the
use of terrain properties for navigation, known as terrain-based navigation. The focus
is mainly on autonomous underwater vehicles (AUVs), though the methods presented
can also be used by other underwater vehicles, like submarines and remotely operated
vehicles (ROVs).

1.1 Motivation

1.1.1 Autonomous Underwater Vehicles

Over the last 10–20 years, a number of different AUVs have been developed, both com-
mercially and academically. As AUV technology has matured, an increasing commercial
demand has emerged, especially in the offshore sector (Wernli, 2000). Among the lead-
ing commercial AUVs today are the REMUS vehicles from Kongsberg Hydroid, the
HUGIN vehicles from Kongsberg Maritime (Kongsberg Maritime AS, 2009) and the
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2 1 Introduction

Bluefin Robotics AUVs (Bluefin Robotics, 2010). In addition, a number of universities
worldwide have also developed their own AUVs for academic purposes.

1.1.2 Underwater Navigation in General

The term ‘navigation’ has been used with several different meanings throughout history.
Traditionally the word was used both for determining the whereabouts of ship a or vehi-
cle and for the task of maneuvering a vehicle from a place A to a place B. In this thesis,
the term has a narrower meaning, as is common in many research areas today. ‘Nav-
igation’ is throughout the thesis understood as the process of estimating the position,
velocity and attitude (i.e. the roll, pitch and heading angles) of a vehicle.

The principal problem in underwater navigation is the lack of GPS signals. As GPS
signals are blocked by water, they are only available to the vehicle as long as its GPS
antenna is above the water surface. Because of this, most advanced AUVs today are
equipped with navigation systems based on inertial navigation. Even high-end inertial
navigation systems will have an unacceptable drift in their position accuracy when no
aiding sensors are used. For extensive underwater operations, aiding sensors are needed,
providing the inertial navigation system with additional measurements. The most im-
portant aiding sensor in modern AUVs is the Doppler velocity log (DVL), an active
acoustic sensor, which uses the Doppler shift of sound signals refracted from the sea
floor to obtain bottom referenced measurements of the vehicle’s velocity. Even with
DVL aiding the inaccuracy in the inertial navigation system will become unacceptably
high for extended submerged operations. As an example, modern HUGIN AUVs, which
are equipped with a HG9900 Inertial Measurement Unit (IMU), typically has a drift
of 0.1% of distance traveled when DVL aiding is used and the vehicle travels along a
straight line. If the vehicle travels in a lawn-mower pattern, some of the DVL biases
become observable and can be filtered out, resulting in a drift of 0.025% of the distance
traveled. When the vehicle travels with its typical speed of 2 m/s second, this drift cor-
responds to an error drift of 2 m/h (Hagen et al., 2009). For operations longer than a few
hours, the navigation system will therefore need additional aiding in order to maintain
an acceptable accuracy.

The IMU provides the navigation system with inertial measurements, i.e. specific
forces (acceleration pr mass unit) measured by the accelerometers, and angular rates,
measured by the gyroscopes. These measurements are integrated to obtain position,
velocity and attitude and fused with the aiding sensor measurements in a Kalman filter
(see Section 2.4.3 of this thesis and the references therein). Figure 1.1 gives an overview
of how this is done in the HUGIN navigation system. The figure is taken from Hagen
et al. (2009). In this system, en error-state Kalman Filter is used for integration of the
inertial measurements and the aiding sensors. The system is described in more detail in
Jalving et al. (2003).

In addition to the DVL velocity updates, crucial aiding methods for underwater ve-
hicle navigation include:
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Figure 1.1: Block diagram of the HUGIN integrated navigation system. Figure
reprinted with permission from Hagen et al. (2009).
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4 1 Introduction

• GPS updates: The vehicle is equipped with a GPS receiver for use when surfaced.

• Acoustic aiding from mother ship: A combination of ship GPS/Differential GPS
(DGPS) or even RTK GPS (Real Time Kinematic GPS) and ultra-short baseline
positioning (USBL) of the vehicle with respect to the ship. This requires that the
mother-ship follows the vehicle during the operation.

• Long-Baseline (LBL) positioning: A network of transponders with known posi-
tions are placed on the sea floor, and the position of the vehicle is calculated using
triangulation from acoustic measurements (Milne, 1983).

• Hydrodynamic model aiding: The dynamics of the vehicle as a function of fin
deflections and propeller motion are calculated and used as measurements to the
Kalman filter. This requires estimation of the sea current (Hegrenæs et al., 2008).

• Underwater Transponder Positioning (UTP) / Synthetic Long Baseline: A
related method to LBL, in which range-only measurements are tightly integrated
with the inertial system and fewer transponders are needed (Larsen, 2000; Hegrenæs
et al., 2009).

Terrain navigation is an additional option for obtaining submerged position fixes, and the
rationale behind using terrain navigation will be explained briefly in the next subsection.
Reviews of the research area of underwater navigation, with more details on the various
techniques described above, can be found in Kinsey et al. (2006) and Hagen et al. (2009).

1.1.3 Why Terrain Navigation?

All underwater vehicles carry sensors that enable them to explore the underwater envi-
ronment. The quality of such sensors vary, from low-end acoustic altimeters to advanced
sonar and camera systems. Modern AUVs are often used for terrain mapping, and they
are consequently often equipped with advanced multibeam mapping sonars. Using ter-
rain measurements for navigation purposes has been a well-known technique for years
in air and land applications and the application of such methods also in the underwater
environment has martured over the last decade or so, as will be shown later in Chapter
2.

The use and meaning of the term ‘terrain aided navigation’, in this thesis often short-
ened to ‘terrain navigation’, vary between authors. It includes at least two related, but
different classes of methods:

• Bathymetric terrain navigation: The bathymetric measurements are used di-
rectly, and compared with a bathymetric map database to obtain a position esti-
mate.

• Feature-based terrain navigation: Features on the sea floor, e.g. rocks, topo-
graphic features, wrecks etc. are extracted from the data and compared with a
feature database to obtain a position estimate.
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Figure 1.2: Illustration of different aiding techniques used by the HUGIN AUV.
Top: The vehicle is using acoustic aiding from a mother ship. Bottom left: UTP
transponder. Bottom right: UTP aiding. Courtesy Kongsberg Maritime.
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6 1 Introduction

This thesis focuses on bathymetric terrain navigation, and the term ’terrain naviga-
tion’ will be used for this class only, unless otherwise stated explicitly. Other terms
for the same class of methods are found in the literature, e.g. ‘map based navigation’,
‘terrain relative navigation’ or ‘terrain correlation’.

The terrain navigation methods treated in this thesis require the existence of a prior
terrain map database. Depending on the operation, such a map may or may not exist. The
need for a prior map may seem more restrictive than it is. When a vehicle is equipped
with a mapping sensor, it is possible for the vehicle to construct its own local map,
which can be used for relative navigation when returning to the area later in the mission,
using the methods described herein. Using the methods in this manner borders the vast
research area of simultaneous localization and mapping (SLAM), which will be briefly
reviewed in Section 2.9.

Terrain navigation, both bathymetric and feature-based, can also be said to belong
to a wider class of navigation methods, together with related methods like gravitation
based or geomagnetic based navigation. This class of navigation methods may be termed
geophysical navigation methods.

1.2 Contributions

The contributions of this thesis to the research area of underwater navigation are the
following:

• The comparison of the Terrain Contour Matching (TERCOM) and the Point Mass
Filter (PMF) algorithms for underwater terrain aided navigation, using real AUV
measurement data. The results from this work were first presented in Ånonsen
et al. (2005) and appear here in Section 5.2.1.

• The comparison between different types of point mass and particle filters in 2D
and 3D, with focus on depth bias estimation. Real AUV data were used, and the
work was first presented in Ånonsen and Hallingstad (2006). The results appear
here in Section 5.2.2, while the theoretical foundations of the depth bias estimation
is discussed in Section 3.3.1.

• The development and real data testing of an extended drift model for terrain navi-
gation. The development of the model is done in 3.2.1, while the results are given
in Section 5.2.3. This work was first presented in Ånonsen et al. (2007).

• The application of the Sigma Point Kalman Filter for terrain navigation using real
AUV data. This work was first presented in Ånonsen and Hallingstad (2007) and
appears here in Section 5.2.4

• The simulations and discussions on the use of pockmarks for underwater terrain
navigation in Section 5.2.5. This work was first published in Ånonsen and Hagen
(2009).
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1.3 Thesis Scope

In the early stages of this doctoral project, it was decided to keep the terrain navigation
system as an external module, providing position updates for the inertial navigation sys-
tem. In other words, the terrain navigation position estimates are treated as a position
aiding sensor, in much the same manner as a GPS position update. Thus, the terrain
navigation updates are loosely coupled with the inertial navigation system. There are
several advantages with such an approach. First and foremost, it makes the system more
portable, as it is not dependent on a specific implementation of a navigation system. The
terrain navigation system can therefore easily be used on other platforms with different
navigation systems. The navigation system need not be based on inertial navigation.
Many low-cost systems are for example based on dead reckoning of velocity and com-
pass measurements. The terrain navigation system outlined in this can easily be ported
to such a system. In other systems, the user may not have full access to the raw mea-
surements of the inertial system, prohibiting a tightly-coupled approach. Also, sticking
to the loosely-coupled approach makes integrity and quality control of the terrain navi-
gation updates easier. It is also safer from a system point of view, as fewer modifications
of the main navigation system are needed in order to integrate the terrain navigation
measurements.

However, as will be evident in later chapters, there are certain limitations to the
loosely-coupled approach. Most importantly, it is difficult to model the drift of accuracy
in the inertial sensors properly without access to the internal biases of the inertial system.

The scope of this work has been to make a best possible terrain navigation system
based on the limitations above. The focus is on different estimation algorithms and their
performance in real underwater scenarios. Topics related to integration of the terrain
navigation estimates in the main navigation system, e.g. integrity control, convergence
definitions etc. have not been given high priority, though they are briefly discussed in
Section 3.4.

1.4 Outline of the Thesis

The outline of the thesis is as follows. Chapter 2 gives an overview of the basics of terrain
aided navigation in general, i.e. the common problems of the concept in all possible
environments. The main focus in this chapter is on the various Bayesian estimation
methods that will be used later in the thesis. Most of the material here is a review of
earlier work within the area, though the notation and presentation have been adopted to
fit into this thesis.

In Chapter 3 the focus is on the particular problems that arise when terrain navi-
gation is used in an underwater environment. First, the different sensors that can be
used for underwater terrain navigation are described, before presenting the system and
measurement models that will be used in the results part of the thesis.

Chapter 4 presents the principles of underwater mapping and the use of map databases
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8 1 Introduction

in the terrain navigation algorithms, while Chapter 5 contains all the computational re-
sults of the thesis. The focus is mainly on application of the various algorithms on real
AUV data.

The thesis concludes with Chapter 6, in which the results are summarized and some
suggestions for future research within the area are made.

Lists of acronyms, abbreviations and mathematical notation can be found in Ap-
pendix A.

Figure 1.3: Military version of HUGIN 1000, owned and operated by the Royal
Norwegian Navy. The vehicle is equipped with a synthetic aperture sonar ideal for
mine countermeasure operations. Picture courtesy of FFI.
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2
Terrain Navigation

TERRAIN aided navigation, or just terrain navigation for short, has been used for
decades in air and land application, e.g. in aircraft and cruise missiles. This chapter

gives an overview of the techniques and algorithms that have previously been used for
terrain navigation.

2.1 Introduction

The idea behind terrain navigation is to use a set of terrain measurements to build up
a terrain profile, and then find an optimal position estimate by comparing it to a prior
map database. What is meant by ‘optimal’ varies from method to method. Terrain
navigation can be carried out both in batch and recursively. In batch processing, all
the measurements in the profile are processed at the same time, whereas in a recursive
algorithm the estimate is being updated recursively as each measurement arrives. Many
algorithms may be formulated both in batch and recursive form. The choice between
batch and recursive algorithms depends on the situation and the sensors being used. For
sensors giving multiple measurements at each measurement instant, like a multibeam
echosounder (MBE) in an underwater application, batch processing is often natural.

The following overview of terrain navigation algorithms is similar to those given in
Bergman (1999) and Mandt (2001), but with a few additional methods and considera-
tions. All of the algorithms described here need an initial position estimate with some
uncertainty measure. The initial position and its uncertainty are fed into the algorithms
before running the terrain matching. The accuracy needed in the initial position is depen-
dent on the method used and the terrain characteristics in the area. All terrain navigation
algorithms require a certain degree of terrain variation to work. The degree of terrain
variation necessary varies with the resolution of the terrain map and the accuracy of the
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sensors.

2.2 Approaches to Terrain Navigation

Terrain navigation methods can generally be divided into search area methods and gra-
dient search methods. Although this thesis mainly focuses on the search area methods,
both groups are described shortly in the following sections.

2.2.1 Search Area Methods

The characteristic of the search area methods is that they make a search through the
map, or parts of the map, to find the profile that best matches the measured terrain pro-
file, in some sense. The first and simplest terrain navigation algorithm, the TERCOM
algorithm, developed at the Wright-Patterson US air force base in the 1970s (Baker and
Clem, 1977; Golden, 1980), belongs to this class of methods. The Bayesian terrain nav-
igation methods in Bergman (1999), Bergman et al. (1999) and Nordlund (2002) also
belong to the search area methods, in the sense that a search through the map is per-
formed in order to find the optimal solution in the Bayesian sense. This thesis mainly
focuses on this class of methods.

The concept of convergence is important for the search area methods and a conver-
gence criterion of some kind must be defined. In a recursive terrain navigation algorithm,
the estimates will typically have some fluctuations in the beginning of the matching pro-
cedure, before stabilizing around a position as more information is added through the
measurement updates. A simple convergence criterion may be based on changes in the
position estimate as new measurements are added; when no change has been observed
over a predefined measurement interval, the method is said to have converged. The
Bayesian methods, described in Section 2.4, have an intrinsic uncertainty measure in
the form of an estimate covariance matrix, which also can be used as a convergence
criterion. Notice that the converged estimate is not necessarily the correct position. Es-
pecially in self-similar terrain, multiple possible solutions may occur, as discussed in
Henley (1990), Mandt (2001) and Nygren (2005).

2.2.2 Gradient-Based Methods

In the gradient-based methods, the local changes in the terrain near the initial position
are modeled in some sense, often linearly. When a measurement is made, the estimated
position is moved along the gradient in the direction indicated by the measurement,
as shown in Figure 2.1. If the measured height/depth is lower than that in the map,
the estimated position is moved iteratively towards larger depths, and vice versa. The
gradient-based methods are often implemented in a Kalman filter, often tightly integrated
with the INS system.
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An example of a gradient-based methods is the SITAN (Sandia Inertial Terrain Aided
Navigation) algorithm (Hostetler, 1978). SITAN was the first recursive terrain navigation
algorithm, and it is based on a modified Kalman filter that uses an adaptive stochastic
linearization technique in an effort to overcome the effect on nonlinearities in the terrain.
Several developments of the SITAN algorithms have been made, for example in Boozer
and Fellerhoff (1988) and Hollowell (1990), where multiple Kalman filters arranged in
a horizontal grid are used.

The main disadvantage with the gradient-based methods is that they require a much
better initial position estimate than the search methods. If the initial uncertainty is too
high, the gradient methods will diverge. An alternative would be to use some kind of
hybrid method, where a search area method is used initially to limit the uncertainty. As
the gradient methods do not perform any search operations, the computational load may
be held quite low, in contrast to what is the case for the search area methods. Also, since
the gradient methods use the Kalman filter of the navigation system, a tighter integration
of the TerrNav algorithm and the inertial system is possible, e.g. when it comes to
modeling of velocity errors, depth errors and so on. This is usually not possible in the
search area methods, as will be discussed later.

This thesis focuses on the search area methods, and the gradient-based methods will
not be pursued any further here.

2.2.3 Other Methods

Some other terrain navigation methods, which do not fit into the two main groups de-
scribed above have also been developed. These may be combinations of the classes
above or completely different methods. One example is the TERPROM system (British
Aerospace Ltd., 1995). The TERPROM system has been used among others by US Air
Force F-16 aircraft. It operates in two modes, an acquisition mode and a tracking mode,
in concert with the INS system. In acquisition mode, the system builds up a series of
terrain measurements and use them to establish a position estimate in a TERCOM-like
manner. When an accurate position estimate has been established, the system enters
tracking mode, in which the terrain is tracked in order to monitor the quality of the posi-
tion estimate. If the quality of the estimate is poor, the system reenters acquisition mode
in order to establish a better position fix. The TERPROM system also contains features
for forward obstacle avoidance. Because of the military use of the system, it is not as
well documented as other terrain navigation systems.

The VATAN algorithm (Viterbi Algorithm Terrain Aided Navigation) (Enns and
Morrell, 1995) uses a version of the Viterbi algorithm (Viterbi, 1967; Forney, Jr., 1973).
The VATAN algorithm uses a hidden Markov model (HMM) approach, see Rabiner
(1989) for an introduction. Hidden Markov models and the Viterbi algorithm have been
used in numerous applications within signal processing and pattern recognition. In a
hidden Markov model, the estimated quantity, i.e. the vehicle position in the TerrNav
case, is modeled as a discrete Markov chain. The transitions between the different states
are modeled in a Markov transition matrix, which gives the probability of transition from
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one state to another. The states are only accessible through measurements of a different
quantity, i.e. the depth in our application, and they are thus ‘hidden’ from direct ob-
servation. Simulations in Enns and Morrell (1995) show that the VATAN method has
good convergence properties, but it also has a tendency of bias errors in the estimates.
Furthermore, implementation of the algorithm is quite complicated and it is computa-
tionally very demanding. As the VATAN method uses a Markov model, it is in some
sense similar to the Bayesian methods described in Section 2.4, the difference being
that the Bayesian methods utilize a spatially continuous state-space description of the
problem.

2.3 The TERCOM Algorithm

The Terrain Contour Matching algorithm was the first terrain navigation algorithm that
was described in the literature. It was developed at Wright-Patterson US Air Force base
in the 1960s and 70s. Descriptions of the original TERCOM algorithm can be found in
Baker and Clem (1977) and Golden (1980). TERCOM has been used mainly in cruise
missiles, like in the Tomahawk missiles (Tsai, 1996), but also in aircraft (Uijt de Haag
and Vadlamani, 2006).

As mentioned above, the TERCOM algorithm belongs to the class of search area
methods. Upon initialization, a search area around the initial position estimate from the
INS must be defined. It is crucial to the performance of any search area method that the
true position be within this search area. The search area can for example be ±3σ around
the INS estimate. The algorithm has access to prior terrain data stored in a regular grid.

The original TERCOM algorithm is batch oriented, but it can also be formulated
as a recursive algorithm. The algorithm implicitly assumes no position drift between
the terrain measurements, and in its original form, no maneuvers are allowed during
the matching process. The reason for this is that the original algorithm stored the prior
terrain data in matrices that were aligned with the planned orientation of the missile or
vehicle. Also, the grid spacing had to be consistent with the measurement frequency of
the vehicle. By allowing interpolation of the map database, the terrain properties at an
arbitrary position can be estimated, and these restrictions can be relaxed.

Several minimization criteria can be used to determine the ‘best’ position estimate
in the TERCOM algorithm. The classic TERCOM criterion is the MAD (mean absolute
difference). The search area is divided into a candidate grid {xl(i, j)}i=1...M,j=1...N ,
where x ∈ R

2 represents a horizontal position candidate at time instant l. As the vehicle
is moving while the measurements are being taken, the grid itself will also be moving
in accordance with the vehicle displacements as measured by the INS. Let {zl}l=1...k

represent a series of scalar terrain measurements. The MAD at position candidate (i, j)
is then given as

MADk(i, j) =
1
k

k∑
l=1

|zl − h(xl(i, j))|, (2.1)
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MADk(i, j) =
1
k

k∑
l=1

|zl − h(xl(i, j))|, (2.1)
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where h(·) denotes the terrain height given by the map data base. The correlation sum
(2.1) is calculated for every candidate position xk(i, j), and the TERCOM MAD esti-
mate is the candidate that minimizes the correlation sum:

x̂k = xk(i∗, j∗) : (i∗, j∗) = arg min
i,j

MADk(i, j)

= arg min
i,j

1
k

k∑
l=1

|zl − h(xl(i, j))|. (2.2)

When plotting the correlation sum (2.1) for every candidate position, the so-called
correlation surface appears. It is customary to plot the correlation surface with a negative
sign, such that the highest point on the correlation surface corresponds to the position that
gives the best match. One can also plot the inverse of the correlation sum, in order to have
the peaks stand out more sharply. This is shown in Figure 2.2, which shows correlation
surfaces from real AUV data, using a Doppler velocity log as a terrain navigation sensor.
It is clearly seen how the main peak of the correlation surface gets as more information
is incorporated into the correlation surface. After one measurement update, there are
several peaks of almost the same height, whereas after 10 measurements three to four
candidates seem to dominate. Finally, after 35 measurement updates one peak is clearly
the highest, and this is indeed the correct vehicle position, though there is still one other
peak with a high correlation sum.

Several modifications of the TERCOM method are possible. One example is to use
a weighting factor for each measurement,

x̂k = xk(i∗, j∗) : (i∗, j∗) = arg min
i,j

MADk(i, j)

= arg min
i,j

1
k

k∑
l=1

βl|zl − h(xl(i, j))|, (2.3)

which might me useful if some of the measurements are known to be of better quality
than others. It is also possible to use squared differences instead of the MAD criterion.
The estimate is then given by

x̂k = xk(i∗, j∗) : (i∗, j∗) = arg min
i,j

1
k

k∑
l=1

(
zl − h(xl(i, j))

)2
. (2.4)

By using the squared differences as in (2.4), the method becomes more analytically
tractable, at a slightly higher computational cost. The squared difference criterion is also
more sensitive to measurement wild points than the MAD criterion.

Because the vehicle is moving as the measurement profile is taken, it is more con-
venient to formulate the position estimation problem in such a manner that the position
offset from the INS system is estimated, instead of the position itself. If the INS position
at time step k is denoted x̃k, the vehicle movement is given by

x̃k+1 = x̃k + uk, (2.5)
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where uk denotes the position change from time step k to k + 1. Letting xk be the
true position at time step k, the position offset δxk from the INS position is given by
δxk := xk − x̃k. On the other hand, as the algorithm assumes no drift in the INS
position, the true position at k + 1 is also given by

xk+1 = xk + uk. (2.6)

Consequently, the motion equation (2.5) becomes

δxk+1 : = xk+1 − x̃k+1 = xk + uk − x̃k − uk = δxk, (2.7)

so a fixed candidate grid {δx(i, j)}i=1...M,j=1...N can be used. With this new grid, the
TERCOM MAD criterion becomes

MADk(i, j) =
1
k

k∑
l=1

|zl − h(x̃l + δxl(i, j))|, (2.8)

with the correspoinding MAD estimate

x̂k = xk(i∗, j∗) : (i∗, j∗) = arg min
i,j

MADk(i, j) = arg min
i,j

1
k

k∑
l=1

|zl−h(x̃l+δxl(i, j))|.
(2.9)

The delta formulation used above is practical in all search area methods, since the
grid does not have to be moved and re-centered at every time step. Mathematically the
two formulations are identical, but conceptually and from an implementational point of
view, the delta formulation is favorable, and similar formulations will be used for all the
methods throughout this thesis.

Despite its simplicity, the TERCOM algorithm has proven quite useful and accu-
rate in a number of applications, see for example Jalving et al. (2004b), Ånonsen et al.
(2005), and Section 5 of this thesis. Its main disadvantage is that it has no intrinsic
uncertainty measure, at least not in its original form, and the estimate is known to pos-
sess an oscillatory behavior in some situations, even after a relatively large number of
measurements have been included.

When a terrain navigation algorithm is to be integrated with an INS, a covariance ma-
trix for the position estimate is needed. As mentioned above, the TERCOM algorithm
in its original form does not have such an uncertainty measure. One solution may be to
use a fixed covariance matrix; once the algorithm has converged, it is assumed that the
estimated covariance is at a certain predefined level, related to the map resolution, ter-
rain type or other factors. The main difficulty with this approach would be to determine
the fixed covariance properly. If the covariance is set to low, the integration Kalman fil-
ter treats the TERCOM position ‘measurement’ as very accurate, and a false TERCOM
estimate may potentially damage the final estimate severely. On the other hand, if the
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covariance is set too high, the information contained in the terrain navigation algorithm
will not be utilized properly. Another, more sophisticated approach, outlined in Jalving
et al. (2004b) would be to try to develop a covariance matrix based on the characteristics
of the correlation surface. If the correlation surface has multiple high peaks, the covari-
ance is high and vice versa. This approach can at the same time work as a convergence
measure for the algorithm. However, one should bear in mind that the TERCOM cor-
relation surface is not a probability density, and there is consequently not necessarily a
direct correspondence between the surface and the estimate covariance matrix.

2.4 Bayesian Terrain Navigation

There are traditionally two approaches to estimation theory, the Fisher approach and the
Bayesian approach (van Trees, 1968; Bar-Shalom et al., 2001). In the Fisher approach
the quantity to be estimated is viewed as an unknown parameter, with no available prior
information about the value of the parameter. The parameter value is estimated based
solely on measurements of the quantity of interest. These measurements may be direct
or indirect, and the statistics of the measurement noises are assumed known. The most
common Fisher estimate is the Maximum likelihood (ML) estimate, which is dicussed
in any introductory book on estimation, e.g. van Trees (1968).

Bayesian estimation differs from the Fisher approach in the sense that the quantity
to be estimated is considered a random variable, with a known statistical distribution,
known as the prior distribution. As measurements are taken, the goal is to fuse the
prior information with the information from the measurements, utilizing the statistics of
the measurement errors, to obtain what is known as the posterior density. This is done
through the celebrated Bayes’ formula for random variables (Bar-Shalom et al., 2001),
which in the scalar case reads

p(x|z) =
p(z|x)p(x)

p(z)
, (2.10)

where p(x|z) is the posterior probability density function of the estimated stochastic
variable x, conditioned on the measurement z. The likelihood p(z|x) is taken from the
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also changes between these time instants. A natural framework for such a problem, is the
state-space approach (Gelb, 1974; Maybeck, 1979), in which the process is modeled in a
process equation, describing the dynamics of the problem, and a measurement equation,
describing the measurements. Bayesian estimators in state-space systems can in many
cases be formulated recursively and are therefore often known as recursive Bayesian
estimators. In the case of linear process and measurement models and Gaussian er-
ror distributions, the celebrated Kalman filter (Kalman, 1960; Kalman and Bucy, 1961;
Jazwinski, 1970) is the optimal solution in a minimum mean square error sense. The
terrain navigation application, however, is an example of a highly non-linear estimation
problem, to which the linear Kalman filter does not provide a satisfactory solution. In
the following, the general optimal nonlinear recursive Bayesian filter will be presented.
Though the optimal solution can be written in closed form, the integrals in the equa-
tions can generally not be solved analytically, and numerical approximation methods are
needed. A number of different approximation methods will be described here, with the
terrain navigation application in mind.

2.4.1 The Optimal Bayesian Filter Equations

Consider the general non-linear discrete time state-space model

xk+1 = f(xk,uk, vk), k = 0, 1, . . . (2.12)

zk = h(xk, wk), (2.13)

with states xk ∈ R
nx , known input uk ∈ R

nu , measurement zk ∈ R
nz initial distribu-

tion x0 ∼ px0(x0) and error distributions vk ∼ pvk
(vk), and wk ∼ pwk

(wk). These
initial state and noise vectors are also considered mutually statistically independent, both
within an between time steps, such that the noise sequences are white, i.e. E[xkx

T
l ] is a

zero matrix whenever k �= l. Note that nothing is assumed about the distributions; they
may be of arbitrary type. However, it is often practical and sufficient in many situations
to assume additive noise, such that the model becomes

xk+1 = f(xk,uk) + vk, (2.14)

zk = h(xk) + wk. (2.15)

The models (2.12) –(2.13) and (2.14) –(2.15) possess the important Markov property,
see e.g. van Trees (1968) or Bar-Shalom et al. (2001), which means that entire state
history is contained in the probability density function of the state xk at time step k.
This property can be formulated as

p(xk+1|xk,xk−1, . . .x0) = p(xk+1|xk), (2.16)

i.e if the state at some time step k is known, the probability distribution and density
function of the state at time step k + 1 are independent of all the states prior to k. The

18 2 Terrain Navigation

also changes between these time instants. A natural framework for such a problem, is the
state-space approach (Gelb, 1974; Maybeck, 1979), in which the process is modeled in a
process equation, describing the dynamics of the problem, and a measurement equation,
describing the measurements. Bayesian estimators in state-space systems can in many
cases be formulated recursively and are therefore often known as recursive Bayesian
estimators. In the case of linear process and measurement models and Gaussian er-
ror distributions, the celebrated Kalman filter (Kalman, 1960; Kalman and Bucy, 1961;
Jazwinski, 1970) is the optimal solution in a minimum mean square error sense. The
terrain navigation application, however, is an example of a highly non-linear estimation
problem, to which the linear Kalman filter does not provide a satisfactory solution. In
the following, the general optimal nonlinear recursive Bayesian filter will be presented.
Though the optimal solution can be written in closed form, the integrals in the equa-
tions can generally not be solved analytically, and numerical approximation methods are
needed. A number of different approximation methods will be described here, with the
terrain navigation application in mind.

2.4.1 The Optimal Bayesian Filter Equations

Consider the general non-linear discrete time state-space model

xk+1 = f(xk,uk, vk), k = 0, 1, . . . (2.12)

zk = h(xk, wk), (2.13)

with states xk ∈ R
nx , known input uk ∈ R

nu , measurement zk ∈ R
nz initial distribu-

tion x0 ∼ px0(x0) and error distributions vk ∼ pvk
(vk), and wk ∼ pwk

(wk). These
initial state and noise vectors are also considered mutually statistically independent, both
within an between time steps, such that the noise sequences are white, i.e. E[xkx

T
l ] is a

zero matrix whenever k �= l. Note that nothing is assumed about the distributions; they
may be of arbitrary type. However, it is often practical and sufficient in many situations
to assume additive noise, such that the model becomes

xk+1 = f(xk,uk) + vk, (2.14)

zk = h(xk) + wk. (2.15)

The models (2.12) –(2.13) and (2.14) –(2.15) possess the important Markov property,
see e.g. van Trees (1968) or Bar-Shalom et al. (2001), which means that entire state
history is contained in the probability density function of the state xk at time step k.
This property can be formulated as

p(xk+1|xk,xk−1, . . .x0) = p(xk+1|xk), (2.16)

i.e if the state at some time step k is known, the probability distribution and density
function of the state at time step k + 1 are independent of all the states prior to k. The

18 2 Terrain Navigation

also changes between these time instants. A natural framework for such a problem, is the
state-space approach (Gelb, 1974; Maybeck, 1979), in which the process is modeled in a
process equation, describing the dynamics of the problem, and a measurement equation,
describing the measurements. Bayesian estimators in state-space systems can in many
cases be formulated recursively and are therefore often known as recursive Bayesian
estimators. In the case of linear process and measurement models and Gaussian er-
ror distributions, the celebrated Kalman filter (Kalman, 1960; Kalman and Bucy, 1961;
Jazwinski, 1970) is the optimal solution in a minimum mean square error sense. The
terrain navigation application, however, is an example of a highly non-linear estimation
problem, to which the linear Kalman filter does not provide a satisfactory solution. In
the following, the general optimal nonlinear recursive Bayesian filter will be presented.
Though the optimal solution can be written in closed form, the integrals in the equa-
tions can generally not be solved analytically, and numerical approximation methods are
needed. A number of different approximation methods will be described here, with the
terrain navigation application in mind.

2.4.1 The Optimal Bayesian Filter Equations

Consider the general non-linear discrete time state-space model

xk+1 = f(xk,uk, vk), k = 0, 1, . . . (2.12)

zk = h(xk, wk), (2.13)

with states xk ∈ R
nx , known input uk ∈ R

nu , measurement zk ∈ R
nz initial distribu-

tion x0 ∼ px0(x0) and error distributions vk ∼ pvk
(vk), and wk ∼ pwk

(wk). These
initial state and noise vectors are also considered mutually statistically independent, both
within an between time steps, such that the noise sequences are white, i.e. E[xkx

T
l ] is a

zero matrix whenever k �= l. Note that nothing is assumed about the distributions; they
may be of arbitrary type. However, it is often practical and sufficient in many situations
to assume additive noise, such that the model becomes

xk+1 = f(xk,uk) + vk, (2.14)

zk = h(xk) + wk. (2.15)

The models (2.12) –(2.13) and (2.14) –(2.15) possess the important Markov property,
see e.g. van Trees (1968) or Bar-Shalom et al. (2001), which means that entire state
history is contained in the probability density function of the state xk at time step k.
This property can be formulated as

p(xk+1|xk,xk−1, . . .x0) = p(xk+1|xk), (2.16)

i.e if the state at some time step k is known, the probability distribution and density
function of the state at time step k + 1 are independent of all the states prior to k. The

18 2 Terrain Navigation

also changes between these time instants. A natural framework for such a problem, is the
state-space approach (Gelb, 1974; Maybeck, 1979), in which the process is modeled in a
process equation, describing the dynamics of the problem, and a measurement equation,
describing the measurements. Bayesian estimators in state-space systems can in many
cases be formulated recursively and are therefore often known as recursive Bayesian
estimators. In the case of linear process and measurement models and Gaussian er-
ror distributions, the celebrated Kalman filter (Kalman, 1960; Kalman and Bucy, 1961;
Jazwinski, 1970) is the optimal solution in a minimum mean square error sense. The
terrain navigation application, however, is an example of a highly non-linear estimation
problem, to which the linear Kalman filter does not provide a satisfactory solution. In
the following, the general optimal nonlinear recursive Bayesian filter will be presented.
Though the optimal solution can be written in closed form, the integrals in the equa-
tions can generally not be solved analytically, and numerical approximation methods are
needed. A number of different approximation methods will be described here, with the
terrain navigation application in mind.

2.4.1 The Optimal Bayesian Filter Equations

Consider the general non-linear discrete time state-space model

xk+1 = f(xk,uk, vk), k = 0, 1, . . . (2.12)

zk = h(xk, wk), (2.13)

with states xk ∈ R
nx , known input uk ∈ R

nu , measurement zk ∈ R
nz initial distribu-

tion x0 ∼ px0(x0) and error distributions vk ∼ pvk
(vk), and wk ∼ pwk

(wk). These
initial state and noise vectors are also considered mutually statistically independent, both
within an between time steps, such that the noise sequences are white, i.e. E[xkx

T
l ] is a

zero matrix whenever k �= l. Note that nothing is assumed about the distributions; they
may be of arbitrary type. However, it is often practical and sufficient in many situations
to assume additive noise, such that the model becomes

xk+1 = f(xk,uk) + vk, (2.14)

zk = h(xk) + wk. (2.15)

The models (2.12) –(2.13) and (2.14) –(2.15) possess the important Markov property,
see e.g. van Trees (1968) or Bar-Shalom et al. (2001), which means that entire state
history is contained in the probability density function of the state xk at time step k.
This property can be formulated as

p(xk+1|xk,xk−1, . . .x0) = p(xk+1|xk), (2.16)

i.e if the state at some time step k is known, the probability distribution and density
function of the state at time step k + 1 are independent of all the states prior to k. The



2.4 Bayesian Terrain Navigation 19

Markov property is a consequence of the function fk being dependent on the state xk

and the input uk only, and of the whiteness of the noises.
The filtering problem in Bayesian estimation is defined as the task of estimating the

marginal density p(xk|Zk), where

Zk = {z0, z1, . . . ,zk}

denotes an aggregated measurement vector containing all the measurements up to and in-
cluding time step k. Thanks to the Markov property of the problem, the filtering problem
can, provided the prior distribution p(xk−1|Zk−1) be known (analytically or approxi-
mately), be estimated using the process model and the most recent measurement only.
The filtering problem has its counterpart in the full estimation problem or smoothing
problem which estimates the density p(Xk|Zk), i.e. each time a measurement comes
in, the full history

Xk = {x0, x1, . . . ,xk}
of the system is reestimated. The smoothing problem is much more complex than the
filtering problem. In real-time situations, e.g. during the operation of an underwater
vehicle, the filtering density is normally of more interest, as one cannot remake the
decisions already made in the past. However, when the position accuracy is critical, e.g.
in underwater mapping, all available information should be utilized in order to make
the map as accurate as possible, and consequently one is more interested in the full
estimation problem. In this thesis, terrain navigation is mostly viewed as a real-time
aiding to the INS system, and consequently most effort is put into the filtering problem.

Assume that the posterior density p(xk|Zk) at time step k is known. The time update
of the system can be expressed by using that

p(xk+1,xk|Zk) = p(xk+1|xk,Zk)p(xk|Zk)
= p(xk+1|xk)p(xk|Zk), (2.17)

which follows from the Markovian property of the system. By marginalizing out the
state xk, the expression for the Bayesian time update becomes:

p(xk+1|Zk) =
∫

Rnx

p(xk+1|xk)p(xk|Zk) dxk. (2.18)

Equation (2.18) is known as the Chapman-Kolmogorov equation (Jazwinski, 1970), and
it is the discrete counterpart of the Fokker-Planck equation, which will be discussed later
in Section 2.7.

The measurement update is found by applying Bayes’ formula (2.10) to the last
measurement zk+1 in the measurement series Zk+1,
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p(xk+1|Zk+1) =
p(zk+1|xk+1, Zk)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)∫

Rnx p(zk+1|xk+1)p(xk+1|Zk) dxk+1
, (2.19)

where the second equality follows from the Markovian property, and the third equality
uses the law of total probability in the denominator, as in (2.11).

The two equations (2.18) and (2.19) constitute the optimal recursive Bayesian filter.
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ods, a local approximation around a point estimate of the states is done, in order to obtain
a closed form expression for the estimate. The most common example is the extended
Kalman filter (EKF), which makes a local linearization of the model around the cur-
rent estimate. If the problem is highly nonlinear, which is often the case for the terrain
navigation problem, due to the highly unstructured an nonlinear nature of the terrain
database, the EKF has proven not to work well in many cases, see e.g. Mandt (2001).
An alternative to local approximation methods are the global approximation methods,
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the cost of making an error in the state estimation, and the most common is the square
error cost function

CSE(xk, x̂k) = ‖xk − x̂k‖2, (2.20)

where the norm is usually the common Euclidian norm or 2-norm,

‖v‖2 =
n∑
i

v2
i , (2.21)

for v ∈ R
n. Minimization of the expectation of the cost function leads to the minimum

20 2 Terrain Navigation

p(xk+1|Zk+1) =
p(zk+1|xk+1, Zk)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)∫

Rnx p(zk+1|xk+1)p(xk+1|Zk) dxk+1
, (2.19)

where the second equality follows from the Markovian property, and the third equality
uses the law of total probability in the denominator, as in (2.11).

The two equations (2.18) and (2.19) constitute the optimal recursive Bayesian filter.
Given the initial probability density function p(x0), the likelihood function p(zk|xk),
the time update kernel p(xk+1|xk), and the measurement sequence Zk, the posterior
density p(xk|Zk) can in principle be calculated, using (2.18) and (2.19) recursively.
However, the integrals in these equation can only in simple cases be calculated analyt-
ically, and in the general case approximation methods are needed. There are generally
two kinds of such methods, local and global approximation methods. In the local meth-
ods, a local approximation around a point estimate of the states is done, in order to obtain
a closed form expression for the estimate. The most common example is the extended
Kalman filter (EKF), which makes a local linearization of the model around the cur-
rent estimate. If the problem is highly nonlinear, which is often the case for the terrain
navigation problem, due to the highly unstructured an nonlinear nature of the terrain
database, the EKF has proven not to work well in many cases, see e.g. Mandt (2001).
An alternative to local approximation methods are the global approximation methods,
which try to estimate the complete posterior probability density. The point mass filter
(PMF) (Bucy and Senne, 1971; Bergman, 1999) uses a grid approach for the approxi-
mation of the posterior. Particle filters (sequential Monte Carlo filters), see e.g. Gordon
et al. (1993), Andrieu et al. (2001) and Crisan and Doucet (2002), are another approach,
in which the posterior is estimated using a set of particles, sampled from the underlying
distributions.

When the posterior density p(xk|Zk) or an approximate density is known, an esti-
mate of the states can readily be found. In principle, the choice of estimate is based on
a cost function C(xk, x̂k), as described in van Trees (1968). The cost function reflects
the cost of making an error in the state estimation, and the most common is the square
error cost function

CSE(xk, x̂k) = ‖xk − x̂k‖2, (2.20)

where the norm is usually the common Euclidian norm or 2-norm,

‖v‖2 =
n∑
i

v2
i , (2.21)

for v ∈ R
n. Minimization of the expectation of the cost function leads to the minimum

20 2 Terrain Navigation

p(xk+1|Zk+1) =
p(zk+1|xk+1, Zk)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)∫

Rnx p(zk+1|xk+1)p(xk+1|Zk) dxk+1
, (2.19)

where the second equality follows from the Markovian property, and the third equality
uses the law of total probability in the denominator, as in (2.11).

The two equations (2.18) and (2.19) constitute the optimal recursive Bayesian filter.
Given the initial probability density function p(x0), the likelihood function p(zk|xk),
the time update kernel p(xk+1|xk), and the measurement sequence Zk, the posterior
density p(xk|Zk) can in principle be calculated, using (2.18) and (2.19) recursively.
However, the integrals in these equation can only in simple cases be calculated analyt-
ically, and in the general case approximation methods are needed. There are generally
two kinds of such methods, local and global approximation methods. In the local meth-
ods, a local approximation around a point estimate of the states is done, in order to obtain
a closed form expression for the estimate. The most common example is the extended
Kalman filter (EKF), which makes a local linearization of the model around the cur-
rent estimate. If the problem is highly nonlinear, which is often the case for the terrain
navigation problem, due to the highly unstructured an nonlinear nature of the terrain
database, the EKF has proven not to work well in many cases, see e.g. Mandt (2001).
An alternative to local approximation methods are the global approximation methods,
which try to estimate the complete posterior probability density. The point mass filter
(PMF) (Bucy and Senne, 1971; Bergman, 1999) uses a grid approach for the approxi-
mation of the posterior. Particle filters (sequential Monte Carlo filters), see e.g. Gordon
et al. (1993), Andrieu et al. (2001) and Crisan and Doucet (2002), are another approach,
in which the posterior is estimated using a set of particles, sampled from the underlying
distributions.

When the posterior density p(xk|Zk) or an approximate density is known, an esti-
mate of the states can readily be found. In principle, the choice of estimate is based on
a cost function C(xk, x̂k), as described in van Trees (1968). The cost function reflects
the cost of making an error in the state estimation, and the most common is the square
error cost function

CSE(xk, x̂k) = ‖xk − x̂k‖2, (2.20)

where the norm is usually the common Euclidian norm or 2-norm,

‖v‖2 =
n∑
i

v2
i , (2.21)

for v ∈ R
n. Minimization of the expectation of the cost function leads to the minimum

20 2 Terrain Navigation

p(xk+1|Zk+1) =
p(zk+1|xk+1, Zk)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1)p(xk+1|Zk)∫

Rnx p(zk+1|xk+1)p(xk+1|Zk) dxk+1
, (2.19)

where the second equality follows from the Markovian property, and the third equality
uses the law of total probability in the denominator, as in (2.11).

The two equations (2.18) and (2.19) constitute the optimal recursive Bayesian filter.
Given the initial probability density function p(x0), the likelihood function p(zk|xk),
the time update kernel p(xk+1|xk), and the measurement sequence Zk, the posterior
density p(xk|Zk) can in principle be calculated, using (2.18) and (2.19) recursively.
However, the integrals in these equation can only in simple cases be calculated analyt-
ically, and in the general case approximation methods are needed. There are generally
two kinds of such methods, local and global approximation methods. In the local meth-
ods, a local approximation around a point estimate of the states is done, in order to obtain
a closed form expression for the estimate. The most common example is the extended
Kalman filter (EKF), which makes a local linearization of the model around the cur-
rent estimate. If the problem is highly nonlinear, which is often the case for the terrain
navigation problem, due to the highly unstructured an nonlinear nature of the terrain
database, the EKF has proven not to work well in many cases, see e.g. Mandt (2001).
An alternative to local approximation methods are the global approximation methods,
which try to estimate the complete posterior probability density. The point mass filter
(PMF) (Bucy and Senne, 1971; Bergman, 1999) uses a grid approach for the approxi-
mation of the posterior. Particle filters (sequential Monte Carlo filters), see e.g. Gordon
et al. (1993), Andrieu et al. (2001) and Crisan and Doucet (2002), are another approach,
in which the posterior is estimated using a set of particles, sampled from the underlying
distributions.

When the posterior density p(xk|Zk) or an approximate density is known, an esti-
mate of the states can readily be found. In principle, the choice of estimate is based on
a cost function C(xk, x̂k), as described in van Trees (1968). The cost function reflects
the cost of making an error in the state estimation, and the most common is the square
error cost function

CSE(xk, x̂k) = ‖xk − x̂k‖2, (2.20)

where the norm is usually the common Euclidian norm or 2-norm,

‖v‖2 =
n∑
i

v2
i , (2.21)

for v ∈ R
n. Minimization of the expectation of the cost function leads to the minimum



2.4 Bayesian Terrain Navigation 21

mean square error (MMSE) estimate, which can be shown (see e.g.van Trees (1968)) to
coincide with the mean of the posterior density:

x̂MMSE
k = E[xk|Zk] =

∫
Rnx

xkp(xk|Zk) dxk, (2.22)

with the covariance matrix of the estimate given by

P̂
MMSE
k = E[(xk − x̂MMSE

k )(xk − x̂MMSE
k )T |Zk]

=
∫

Rnx

(xk − x̂MMSE
k )(xk − x̂MMSE

k )T p(xk|Zk) dxk. (2.23)

The MMSE estimate is often a useful estimate when dealing with unimodal posterior
densities. In the terrain navigation case, however, the posterior is often multimodal, and
in such cases the MMSE may not be a good estimate. For example, if the posterior has
two distinct peaks, the MMSE estimate will be located somewhere between the peaks,
in an area where the probability of the vehicle position estimate being correct is low, or
even zero.

An alternative to the MMSE estimate, which may be a better choice when the pos-
terior is multimodal, is the maximum a posteriori (MAP) estimate, which is simply the
value of the state vector that maximizes the posterior

x̂MAP
k = arg max

xk

p(xk|Zk). (2.24)

The MAP estimate will always be located at one of the grid nodes if a grid method is
used, or it will coincide with one of the particles in a PF.

The choice of estimate type may be a difficult task in a real terrain navigation system.
What estimate that is the most favorable may vary with sensors and terrain types. In
many cases, however, the MMSE and MAP estimates will coincide, especially in terrain
suited for terrain navigation. Other estimates are also used, based on other types of cost
functions (van Trees, 1968). One example is the median estimate.

2.4.2 The State-Space Model for Terrain Navigation

The state-space model for terrain navigation will here be presented. In a real problem,
there will usually be a discrepancy between the system to be estimated and the model that
is used in the filters. This is discussed e.g. in Gelb (1974) and Bar-Shalom et al. (2001).
The real system is usually so complex that is impossible to model all its properties in
a finite state filter. In the terrain navigation application this is especially true, due to
the computational complexity of the point mass and particle filters. In order to keep the
computational load at a reasonable level, the number of states in these filters must be
kept very low, usually as low as 2-3 states in the point mass filters, whereas the particle
filters usually can handle a few more states.
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The discrepancy between the true system and the filter model is a major source of
error in the terrain navigation estimates. In the following presentation, the distinction
between the true system and the filter model will be made explicit. Generally one speaks
of three possibly different systems; the physical system, the system model and the filter
model. The physical system is generally infinite-dimensional. The physical system is
modeled in the truth model, or system model, and this is the most accurate model of the
real system that is available. Finally, the filter model is the model that is implemented in
the estimator, and this model can in some cases be significantly different from the truth
model.

Truth Model

Consider the following generic truth model for the motion of the vehicle:

xk+1 = xk + vk + uk + v′
k, (2.25)

vk+1 = g(vk) + v′′
k, (2.26)

where xk = (xN,k, xE,k)T is the horizontal AUV position vector (north, east) decom-
posed in the {e}-frame, uk is the position change from time step k to k + 1, calculated
from the inertial navigation system, and v′

k and v′′
k are white noise sequences. Equation

(2.26) models the strongly correlated error propagation of the inertial navigation system.
Note that neither the dimension of vk nor the function g(·) are specified, so this generic
model can be made arbitrarily complex.

The system measurement equation reads

zk = h(xk) + wk, (2.27)

where the function h(xk) denotes the true total sea depth (or altitude, for an aircraft
or missile) at vehicle position xk and wk is the corresponding noise. For a single-
measurement sensor, like a radar altimeter on an aircraft or a single beam echo sounder
on an underwater vehicle, the depth measurement is scalar. In most cases that will be
treated in this thesis, the measurements are vector measurements, for example from a
multibeam echo sounder (MBE). The MBE measures the depth at a number of points
arranged in a fan below the vehicle. In this case, the function h(xk) also has to take
care of the positions of the measurement points on the sea floor relative to the vehicle
position, often referred to as the sensor footprint. The function is thus a mapping from R

2

to R
Nb , where Nb again denotes the number of measurement beams. In the MBE case,

the function h(xk) also depends on the attitude of the vehicle, in order to determine the
right orientation of the footprint on the sea floor. With a slight abuse of notation, this
dependency will not be explicitly included in the argument list of the h function, as the
attitude will not be part of the state vector in this thesis.

As mentioned previously, it is convenient to formulate the terrain navigation problem
as an estimation of the position offset δxk from the INS calculated position x̃k. By
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2

to R
Nb , where Nb again denotes the number of measurement beams. In the MBE case,
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As mentioned previously, it is convenient to formulate the terrain navigation problem
as an estimation of the position offset δxk from the INS calculated position x̃k. By
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defining
δxk = xk − x̃k, (2.28)

the system model can be written in the form

δxk+1 = xk+1 − x̃k+1

= xk + uk + v′
k + vk − x̃k − uk

= δxk + v′
k + vk, (2.29)

vk+1 = g(vk) + v′′
k, (2.30)

zk = h(x̃k + δxk) + wk. (2.31)

Filter Model

As mentioned above, the system model (2.25)–(2.27) must be simplified before the
Bayesian methods can be used. In most earlier work on terrain navigation, like in
Bergman (1999) and Nygren (2005), a two-dimensional filter model is used. Using
asterisks for variables and functions in the filter model, in order to distinguish it from
the system model, the conventional filter model reads

x∗
k+1 = x∗

k + uk + v∗
k (2.32)

zk = h∗(x∗
k) + w∗

k, (2.33)

where the noise sequences are assumed zero mean and white, i.e.

E[v∗
kv

∗T
l ] = Q∗

kδkl, (2.34)

E[w∗
kw

∗T
l ] = R∗

kδkl, (2.35)

where Q∗
k and R∗

k are the process and measurement noise covariance matrices, which
may differ from the corresponding truth model covariance matrices Qk and Rk, and δkl

is the Kronecker delta,

δkl =

{
1, if k = l,
0, if k �= l.

(2.36)

This implies that the process and measurement noises are uncorrelated between time
steps, i.e. they are white noise sequences. It is also assumed that the noise sequences
and the initial state x0 are mutually uncorrelated. A convenient, but not necessary, as-
sumption is to assume Gaussian noises and initial distributions, i.e.
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px∗
0
(x0) = N (x̃0, P

∗
0) (2.37)

pv∗
k
(v∗

k) = N (0,Q∗
k), (2.38)

pw∗
k
(w∗

k) = N (0,R∗
k). (2.39)

Since the noises are the results of averaging over a number of different, unknown stochas-
tic processes, the Gaussian assumption is justifiable and will be used in most cases in
this thesis. However, since the non-linear Bayesian methods that will be used for the
estimation of these systems are able to handle non-Gaussian cases, this assumption is
not necessary. The non-linear Bayesian estimation techniques were in fact developed to
be able to handle non-Gaussian distributions.

The filter model (2.32)–(2.33) has been simplified in several ways, compared to the
system model (2.25)–(2.27). Most importantly, the colored noise sequence vk has been
replaced by a white noise sequence v∗

k. This is an oversimplification of the dynamics of
the INS system, which may lead to unfavorable results, like filter divergence. This will
be further discussed in Chapter 3.

The function h∗(·) represents the digital terrain map. In this thesis, gridded terrain
maps will be used, using some kind of interpolation between the grid nodes. Conse-
quently, the measurement error w∗

k must contain contributions both from map errors,
including interpolation errors, and from sensor errors. An error analysis of terrain maps
is presented in Chapter 4. Terrain map interpolation is discussed in Section 4.3.

As previously discussed, it is often convenient to formulate the problem as an esti-
mation of the offset from the INS position. By defining

δx∗
k = x∗

k − x̃k, (2.40)

the filter model becomes

δx∗
k+1 = δx∗

k + v∗
k (2.41)

zk = h∗(x̃k + δx∗
k) + w∗

k, (2.42)

with the same assumptions as before. Using this filter model the Bayesian measurement
update equation becomes

p(δx∗
k|Zk) =

p(zk|δx∗
k, Zk−1)p(δx∗

k|Zk−1)
p(zk|Zk−1)

= α−1
k pw∗

k
(zk − h∗(x̃k + δx∗

k))p(δx∗
k|Zk−1) (2.43)

where

αk =
∫
R2

[
pw∗

k
(zk − h∗(x̃k + δx∗

k))p(δx∗
k|Zk−1)

]
dδx∗

k.
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Similarly, the time update equation now reads

p(δx∗
k+1|Zk) =

∫
R2

p(δx∗
k+1, δx

∗
k|Zk) dδx∗

k

=
∫
R2

p(δx∗
k+1|δx∗

k, Zk)p(δx∗
k|Zk) dδx∗

k

=
∫
R2

pv∗
k
(δx∗

k+1 − δx∗
k)p(δx∗

k|Zk) dδx∗
k. (2.44)

2.4.3 The Extended Kalman Filter

As mentioned above, the Kalman filter is the optimal minimum variance Bayesian es-
timator in the linear, Gaussian case. The Extended Kalman filter (EKF) is the most
straightforward way to solve a nonlinear estimation problem. It is based on a local lin-
earization of the nonlinearities in the process and measurement equations around the
previously estimated states, whereas the Gaussian approximation of the noise distribu-
tions is kept, which makes the EKF less suitable for cases where the noises are far from
Gaussian.

Like the linear KF, the EKF also represents the posterior solution by its two first mo-
ments, the mean and the covariance matrix. Gaussian random variables are completely
characterized by their first two moments, since their probability density function can
be written based on these parameters only. Furthermore, when Gaussian variables are
passed through linear dynamic systems, the output is still a Gaussian, see e.g. van Trees
(1968). However, this is not the case for non-linear systems; even if the noises are Gaus-
sian, the posterior density will not be Gaussian after the states have been passed through
the nonlinearities of the system. Consequently, the EKF is a suboptimal filter. Also, for
strong nonlinear functions, the local linearization may not give a sufficiently accurate
description of the local behavior of the system. For example, if the second order terms,
which are assumed small in the EKF, can not be neglected, this will lead to inaccuracies
in the EKF. One possible solution to this problem is to use a higher order filter, taking
also the higher order terms into account. Iteration techniques also exist, in which the
system is re-linearized several times at each update, to obtain a better linearization tra-
jectory. Thorough discussions on the extended Kalman filter and its variations are given
in e.g. Jazwinski (1970), Gelb (1974), and Bar-Shalom et al. (2001).

Despite its suboptimality, the EKF has been used successfully in a number of appli-
cations, e.g. in control systems, signal analysis and target tracking. The EFK is also the
basis of any aided inertial navigation system (Savage, 1998a,b; Bar-Shalom et al., 2001).
The EKF can, in principle, be used for estimation of the states in the terrain navigation
filter model (2.32)– (2.33). However, EKF requires the evaluation of the measurement
Jacobian matrix
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straightforward way to solve a nonlinear estimation problem. It is based on a local lin-
earization of the nonlinearities in the process and measurement equations around the
previously estimated states, whereas the Gaussian approximation of the noise distribu-
tions is kept, which makes the EKF less suitable for cases where the noises are far from
Gaussian.
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ments, the mean and the covariance matrix. Gaussian random variables are completely
characterized by their first two moments, since their probability density function can
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which are assumed small in the EKF, can not be neglected, this will lead to inaccuracies
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also the higher order terms into account. Iteration techniques also exist, in which the
system is re-linearized several times at each update, to obtain a better linearization tra-
jectory. Thorough discussions on the extended Kalman filter and its variations are given
in e.g. Jazwinski (1970), Gelb (1974), and Bar-Shalom et al. (2001).

Despite its suboptimality, the EKF has been used successfully in a number of appli-
cations, e.g. in control systems, signal analysis and target tracking. The EFK is also the
basis of any aided inertial navigation system (Savage, 1998a,b; Bar-Shalom et al., 2001).
The EKF can, in principle, be used for estimation of the states in the terrain navigation
filter model (2.32)– (2.33). However, EKF requires the evaluation of the measurement
Jacobian matrix
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which may be difficult to compute. Since h∗(·) is not an analytical function, but a map
database representing the real terrain, the partial derivatives have to be computed using
some kind of numerical differentiation. Using the fact that the map database is already
defined on a grid, finite differences (Iserles, 1996) is a natural choice for the numerical
derivatives. The quality of these approximations may however be low, because of the
relatively low resolution of the maps and the unstructured and nonlinear nature of most
real terrain types.

Even though the measurement Jacobian can be calculated, the first order approx-
imation of the measurement equation will often not be sufficiently accurate in many
situations, and the EKF is therefore in many cases not well suited for terrain navigation.
It should be noted, however, that several examples of EKF-based terrain navigation exist
in the literature, in which different approaches are used in order to counter the lineariza-
tion problems. One example is the SITAN approach mentioned in Section 2.2.2. Other
examples are Bergem (1993) and Di Massa (1997), which both discuss underwater ap-
plications. Bergem (1993) defines a matching strength function that is computed for all
positions within a validation gate, and the best match is used in a Kalman filter. Sev-
eral simple process models in the KF are tested. Results from multibeam echo sounder
data are presented. Di Massa (1997) uses a sophisticated coarse-to-fine search method
in search areas of different resolution, in order to be able to handle large search areas
with a large number of potential matches. Several matches are used simultaneously in a
Kalman filter using a probabilistic data association (PDAF) approach (Bar-Shalom et al.,
2001).

2.4.4 The Point Mass Filter

The idea of using grid based methods for approximating the probability densities in
Bayesian estimation is quite old and was introduced by Bucy and Senne (1971). How-
ever, since the approach is extremely computationally demanding, it is not until recent
years that modern computer technology has made it possible to implement grid based
methods in practical situations. In Bergman (1997) and Bergman (1999), the point mass
filter (PMF) was used for terrain navigation of aircraft.

Point Mass Approximation

Before defining the point mass grid a search area around the position estimate x̃k from
the INS has to be specified. The size of the search area can for example be determined
by the uncertainty in the initial INS position, e.g. 3σ in each direction. The algorithm is
started by discretization of the two-dimensional search area into a grid with M and N
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grid points in each direction. At each grid point the density p(δx∗
k|Zk) is approximated

by a probability mass weight

p(δx∗
k(i, j)|Zk) i = 1, . . . , M, j = 1, . . . , N. (2.46)

Consider a uniform grid with grid resolution Δ in both directions. Let

p(δx∗
0(i, j)|Z0) = p(δx∗

0(i, j)) = α−1
0 p(δx∗

0)|δx∗
0=δx∗

0(i,j), (2.47)

where

α0 =
M∑

m=1

N∑
n=1

p(δx∗
0)|δx∗

0=δx∗
0(i,j)Δ

2. (2.48)

Notice the difference between p(δx∗
0(i, j)), which is a point-wise probability mass ap-

proximation and p(δx∗
0), which is a continuous probability density function. Also notice

that
M∑
i=1

N∑
j=1

p(δx∗
0(i, j)|Z0)Δ2 = 1, (2.49)

which is required for a true probability mass approximation. Then, for each time step,
the measurement update is performed according to

p(δx∗
k(i, j)|Zk) = α−1

k pw∗
k
(zk − h∗(x̃k + δx∗

k(i, j)))p(δx∗
k(i, j)|Zk−1), (2.50)

αk =
M∑
i=1

N∑
j=1

pw∗
k
(zk − h∗(x̃k + δx∗

k(i, j)))p(δx∗
k(i, j)|Zk−1)Δ2.

The MMSE estimate of the position offset can now be computed from

δ̂x
MMSE

k =
M∑
i=1

N∑
j=1

δx∗
k(i, j)p(δx∗

k(i, j)|Zk)Δ2, (2.51)

with covariance matrix given by

P̂
MMSE
k =

M∑
i=1

N∑
j=1

(δx∗
k(i, j) − δ̂x

MMSE

k )(δx∗
k(i, j) − δ̂x

MMSE

k )T

· p(δx∗
k(i, j)|Zk)Δ2, (2.52)

and the full vehicle position estimate is given by

x̂MMSE
k = x̃k + δ̂x

MMSE

k . (2.53)
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Since the point mass approximation represents the full posterior probability density,
any other type of estimate can also readily be calculated, for example the maximum a
posterior (MAP) estimate, given by

δ̂x
MAP

k = arg max
i,j

p(δx∗
k(i, j)|Zk). (2.54)

The time update step in the PMF is calculated as

p(δx∗
k+1(i, j)|Zk)

=
M∑

m=1

N∑
n=1

pv∗
k
(δx∗

k+1(i, j) − δx∗
k(m, n))p(δx∗

k(m, n)|Zk)Δ2. (2.55)

Equation (2.55) can be viewed as a two-dimensional convolution, and it is the sin-
gle most computationally demanding operation in the PMF. Bergman (1999) shows that,
under the assumption that the expected position drift is equal in both grid directions and
uncorrelated between the directions, this two-dimensional convolution can be substan-
tially simplified. However, in the underwater case it is a known fact that the position
drift of a Doppler velocity aided INS is different along and across the vehicle body co-
ordinate system (Jalving et al., 2004a), so the validity of the equal drift assumption may
be disputed. This is further pursued in Chapter 3 of this thesis.

Implementational Aspects

The two-dimensional point mass filter can be implemented quite easily in MATLABTM,
storing the point masses in a matrix and using matrix operations for carrying out the time
update convolution (2.55) and measurement update (2.50). However, as pointed out in
Bergman (1999), many of the point masses will be close to zero and their contributions
to the time and measurement updates will be negligible. Consequently it is possible to
implement a version of the point mass filter with an adaptive grid, using sparse matrices
in MATLABTM. By utilizing sparse matrix operations in MATLABTM, only the point
masses with a nonnegilible contribution are used in the update equations. After every
measurement update, grid points below a certain threshold value are removed from the
grid. The threshold can be defined as a certain proportion of the average point mass
value.

2.4.5 Particle Filters

In the PMF and other grid based methods, the integrals under consideration, i.e. the
Bayesian time and measurement updates (2.19)–(2.18) and the calculation of the (MMSE)
estimate (2.22) and its covariance (2.23), are calculated numerically using a determinis-
tic grid. In particle filters (PF) the integrals are instead approximated using Monte Carlo
integration, in which the integrand is calculated at a number of stochastically chosen grid
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k(i, j)|Zk). (2.54)

The time update step in the PMF is calculated as

p(δx∗
k+1(i, j)|Zk)

=
M∑

m=1

N∑
n=1

pv∗
k
(δx∗

k+1(i, j) − δx∗
k(m, n))p(δx∗

k(m, n)|Zk)Δ2. (2.55)

Equation (2.55) can be viewed as a two-dimensional convolution, and it is the sin-
gle most computationally demanding operation in the PMF. Bergman (1999) shows that,
under the assumption that the expected position drift is equal in both grid directions and
uncorrelated between the directions, this two-dimensional convolution can be substan-
tially simplified. However, in the underwater case it is a known fact that the position
drift of a Doppler velocity aided INS is different along and across the vehicle body co-
ordinate system (Jalving et al., 2004a), so the validity of the equal drift assumption may
be disputed. This is further pursued in Chapter 3 of this thesis.

Implementational Aspects

The two-dimensional point mass filter can be implemented quite easily in MATLABTM,
storing the point masses in a matrix and using matrix operations for carrying out the time
update convolution (2.55) and measurement update (2.50). However, as pointed out in
Bergman (1999), many of the point masses will be close to zero and their contributions
to the time and measurement updates will be negligible. Consequently it is possible to
implement a version of the point mass filter with an adaptive grid, using sparse matrices
in MATLABTM. By utilizing sparse matrix operations in MATLABTM, only the point
masses with a nonnegilible contribution are used in the update equations. After every
measurement update, grid points below a certain threshold value are removed from the
grid. The threshold can be defined as a certain proportion of the average point mass
value.

2.4.5 Particle Filters

In the PMF and other grid based methods, the integrals under consideration, i.e. the
Bayesian time and measurement updates (2.19)–(2.18) and the calculation of the (MMSE)
estimate (2.22) and its covariance (2.23), are calculated numerically using a determinis-
tic grid. In particle filters (PF) the integrals are instead approximated using Monte Carlo
integration, in which the integrand is calculated at a number of stochastically chosen grid
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points. In the following, a brief description of Monte Carlo integration and particularly
importance sampling is given, before moving on to a description of the class of recur-
sive estimation algorithms known as particle filters or Sequential Monte Carlo Filters
(SMCF).

Monte Carlo Integration

Numerical integration deals with the problem of numerically approximating a general
integral

I =
∫
Ω

g(x) dx, (2.56)

where x ∈ R
nx , Ω ⊂ R

nx and g : R
nx → R is an arbitrary, scalar-valued function.

The reason for evaluating the integral numerically may be that is either has no analytical
solution or it is impractical to implement the exact solution. Monte Carlo integration
deals with the special case when the integral can be written as

I =
∫
Ω

f(x)π(x) dx, (2.57)

where the scalar-valued function π(x) ≥ 0 in Ω and integrates to unity:∫
Ω

π(x) dx = 1.

Note that the familiar expectation and variance integrals for a scalar random variable are
special cases of (2.57), with π(x) taking the form of a probability density function. The
same is true for the vector and matrix components of the mean vector and covariance
matrix of a random vector, so the theory can be readily used for both scalar random
variables as well as random vectors.

Monte Carlo approximation of (2.57) is based on the assumption that it is possible
to generate N >> 1 samples {xi}N

i=1 from the distribution π(x). The integral is then
approximated by taking the average over the set of samples

IN =
1
N

N∑
i=1

f(xi). (2.58)

It can be shown (Andrieu et al., 2001) that as N → ∞, the approximation IN will
converge almost surely to I by the strong law of large numbers, and that if all the samples
{xi}N

i=1 are independent, the approximation is unbiased. Also, provided the variance of
f(x) be finite,

σ2 =
∫
Ω

(f(x) − I)2 π(x) dx =
∫
Ω

f2(x)π(x) dx − I2 < ∞, (2.59)
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the central limit theorem yields that the error IN − I converges in distribution to a
Gaussian distribution,

lim
N→∞

√
N(IN − I) ∼ N(0, σ2). (2.60)

Definitions of terms related to measure and probability theory, such as almost sure
convergence and convergence in distribution can be found in Folland (1999).

An interesting aspect of (2.60) is the fact that the error in the numerical integration
is of order N−1/2, i.e.

IN − I = O(N−1/2), (2.61)

which means that the error is independent of the dimension, nx, of the sample space. One
should remember, however, that this is an asymptotic result, and for a practical situation
one must of course resort to a finite N . For such cases, the constant factor hidden in
(2.61) will generally be dependent on the dimension, and in practice more samples will
be needed as the dimension of the problem increases. A thorough discussion on the
efficiency of Monte Carlo integration is given in Bergman (1999).

Rejection Sampling and Importance Sampling

To be able to estimate integrals like (2.57) using Monte Carlo integration, it is necessary
that a sampling algorithm for the distribution π(x) exists. For a few common one-
dimensional distributions, e.g. uniform distribution, Gaussian distribution etc., exact
sampling algorithms exist. The uniform distribution is fairly easy to sample from, using
pseudo randoms numbers (Ross, 1972), and if one has a random number ξ sampled
from a uniform distribution on the interval [0, 1], one can generate a new sample from
an arbitrary distribution by feeding ξ through the inverse of the cumulative distribution
function of interest. If Fx(x) is the cumulative distribution of the desired stochastic
variable x, i.e. P [x ≤ a] =

∫ a
−∞ Fx(x) dx, a sample xs having the desired distribution

is found as

xs = F−1
x (ξ). (2.62)

This method is sometimes referred to as the reverse transformation method. The proof
is fairly straight-forward, based on Fx(x) being a monotone function, and can be found
in any standard text describing sampling of random variables, e.g. Ross (1972). Multi-
dimensional distributions are typically sampled using mixtures or combinations of one-
dimensional sampling algorithms.

For a typical Bayesian estimation problem the distribution of interest is the poste-
rior (2.19) at each time step, and as time evolves, the posterior distributions are often
highly irregular and may in most cases not be described by an analytic, closed-form ex-
pression. In terrain navigation multimodal posteriors are commonplace. Consequently,
exact sampling algorithms are not useful in such problems.

30 2 Terrain Navigation

the central limit theorem yields that the error IN − I converges in distribution to a
Gaussian distribution,

lim
N→∞

√
N(IN − I) ∼ N(0, σ2). (2.60)

Definitions of terms related to measure and probability theory, such as almost sure
convergence and convergence in distribution can be found in Folland (1999).

An interesting aspect of (2.60) is the fact that the error in the numerical integration
is of order N−1/2, i.e.

IN − I = O(N−1/2), (2.61)

which means that the error is independent of the dimension, nx, of the sample space. One
should remember, however, that this is an asymptotic result, and for a practical situation
one must of course resort to a finite N . For such cases, the constant factor hidden in
(2.61) will generally be dependent on the dimension, and in practice more samples will
be needed as the dimension of the problem increases. A thorough discussion on the
efficiency of Monte Carlo integration is given in Bergman (1999).

Rejection Sampling and Importance Sampling

To be able to estimate integrals like (2.57) using Monte Carlo integration, it is necessary
that a sampling algorithm for the distribution π(x) exists. For a few common one-
dimensional distributions, e.g. uniform distribution, Gaussian distribution etc., exact
sampling algorithms exist. The uniform distribution is fairly easy to sample from, using
pseudo randoms numbers (Ross, 1972), and if one has a random number ξ sampled
from a uniform distribution on the interval [0, 1], one can generate a new sample from
an arbitrary distribution by feeding ξ through the inverse of the cumulative distribution
function of interest. If Fx(x) is the cumulative distribution of the desired stochastic
variable x, i.e. P [x ≤ a] =

∫ a
−∞ Fx(x) dx, a sample xs having the desired distribution

is found as

xs = F−1
x (ξ). (2.62)

This method is sometimes referred to as the reverse transformation method. The proof
is fairly straight-forward, based on Fx(x) being a monotone function, and can be found
in any standard text describing sampling of random variables, e.g. Ross (1972). Multi-
dimensional distributions are typically sampled using mixtures or combinations of one-
dimensional sampling algorithms.

For a typical Bayesian estimation problem the distribution of interest is the poste-
rior (2.19) at each time step, and as time evolves, the posterior distributions are often
highly irregular and may in most cases not be described by an analytic, closed-form ex-
pression. In terrain navigation multimodal posteriors are commonplace. Consequently,
exact sampling algorithms are not useful in such problems.

30 2 Terrain Navigation

the central limit theorem yields that the error IN − I converges in distribution to a
Gaussian distribution,

lim
N→∞

√
N(IN − I) ∼ N(0, σ2). (2.60)

Definitions of terms related to measure and probability theory, such as almost sure
convergence and convergence in distribution can be found in Folland (1999).

An interesting aspect of (2.60) is the fact that the error in the numerical integration
is of order N−1/2, i.e.

IN − I = O(N−1/2), (2.61)

which means that the error is independent of the dimension, nx, of the sample space. One
should remember, however, that this is an asymptotic result, and for a practical situation
one must of course resort to a finite N . For such cases, the constant factor hidden in
(2.61) will generally be dependent on the dimension, and in practice more samples will
be needed as the dimension of the problem increases. A thorough discussion on the
efficiency of Monte Carlo integration is given in Bergman (1999).

Rejection Sampling and Importance Sampling

To be able to estimate integrals like (2.57) using Monte Carlo integration, it is necessary
that a sampling algorithm for the distribution π(x) exists. For a few common one-
dimensional distributions, e.g. uniform distribution, Gaussian distribution etc., exact
sampling algorithms exist. The uniform distribution is fairly easy to sample from, using
pseudo randoms numbers (Ross, 1972), and if one has a random number ξ sampled
from a uniform distribution on the interval [0, 1], one can generate a new sample from
an arbitrary distribution by feeding ξ through the inverse of the cumulative distribution
function of interest. If Fx(x) is the cumulative distribution of the desired stochastic
variable x, i.e. P [x ≤ a] =

∫ a
−∞ Fx(x) dx, a sample xs having the desired distribution

is found as

xs = F−1
x (ξ). (2.62)

This method is sometimes referred to as the reverse transformation method. The proof
is fairly straight-forward, based on Fx(x) being a monotone function, and can be found
in any standard text describing sampling of random variables, e.g. Ross (1972). Multi-
dimensional distributions are typically sampled using mixtures or combinations of one-
dimensional sampling algorithms.

For a typical Bayesian estimation problem the distribution of interest is the poste-
rior (2.19) at each time step, and as time evolves, the posterior distributions are often
highly irregular and may in most cases not be described by an analytic, closed-form ex-
pression. In terrain navigation multimodal posteriors are commonplace. Consequently,
exact sampling algorithms are not useful in such problems.

30 2 Terrain Navigation

the central limit theorem yields that the error IN − I converges in distribution to a
Gaussian distribution,

lim
N→∞

√
N(IN − I) ∼ N(0, σ2). (2.60)

Definitions of terms related to measure and probability theory, such as almost sure
convergence and convergence in distribution can be found in Folland (1999).

An interesting aspect of (2.60) is the fact that the error in the numerical integration
is of order N−1/2, i.e.

IN − I = O(N−1/2), (2.61)

which means that the error is independent of the dimension, nx, of the sample space. One
should remember, however, that this is an asymptotic result, and for a practical situation
one must of course resort to a finite N . For such cases, the constant factor hidden in
(2.61) will generally be dependent on the dimension, and in practice more samples will
be needed as the dimension of the problem increases. A thorough discussion on the
efficiency of Monte Carlo integration is given in Bergman (1999).

Rejection Sampling and Importance Sampling

To be able to estimate integrals like (2.57) using Monte Carlo integration, it is necessary
that a sampling algorithm for the distribution π(x) exists. For a few common one-
dimensional distributions, e.g. uniform distribution, Gaussian distribution etc., exact
sampling algorithms exist. The uniform distribution is fairly easy to sample from, using
pseudo randoms numbers (Ross, 1972), and if one has a random number ξ sampled
from a uniform distribution on the interval [0, 1], one can generate a new sample from
an arbitrary distribution by feeding ξ through the inverse of the cumulative distribution
function of interest. If Fx(x) is the cumulative distribution of the desired stochastic
variable x, i.e. P [x ≤ a] =

∫ a
−∞ Fx(x) dx, a sample xs having the desired distribution

is found as

xs = F−1
x (ξ). (2.62)

This method is sometimes referred to as the reverse transformation method. The proof
is fairly straight-forward, based on Fx(x) being a monotone function, and can be found
in any standard text describing sampling of random variables, e.g. Ross (1972). Multi-
dimensional distributions are typically sampled using mixtures or combinations of one-
dimensional sampling algorithms.

For a typical Bayesian estimation problem the distribution of interest is the poste-
rior (2.19) at each time step, and as time evolves, the posterior distributions are often
highly irregular and may in most cases not be described by an analytic, closed-form ex-
pression. In terrain navigation multimodal posteriors are commonplace. Consequently,
exact sampling algorithms are not useful in such problems.



2.4 Bayesian Terrain Navigation 31

Several algorithms for approximate sampling exist. The method of rejection sam-
pling (Ross, 1972) is based upon the assumption that there exists a proposal distribution
q(x) which is somewhat similar to the target distribution π(x) one wants to sample
from. Moreover, the target distribution must be bounded by the proposal distribution,
i.e. a known finite constant M exists, such that π(x) ≤ Mq(x) for any x ∈ Ω. It is
further assumed that the proposal distribution is easy to generate samples from and that
π(x) can be evaluated up to a normalizing constant at any point in Ω. The rejection sam-
pling algorithm compares a sample ξ drawn from q(x) with a sample u from a uniform
distribution on [0, 1]. If u < π(ξ)

Mq(ξ) the sample is accepted, otherwise it is rejected and
the procedure is repeated. It can be readily shown (Ross, 1972) that the samples that are
accepted by the rejection sampling algorithm are drawn from the distribution π(x).

In many practical situations, the assumptions made in the rejection sampling algo-
rithm do not hold. It may be difficult to evaluate π(x) at any point in Ω or it may not
be possible to find a constant M that bounds the proposal distribution in the entirety of
the sampling space. If the constant M is too large, a large proportion of the samples
generated in the algorithm are rejected, leading to an inefficient algorithm.

An alternative to the rejection sampling algorithm is the importance sampling algo-
rithm (Ross, 1972; Andrieu et al., 2001). All the particle filter algorithms discussed in
this thesis are based on importance sampling, and it is therefore worthwhile to describe
it in somewhat more detail. Like rejection sampling, importance sampling is also based
on the existence of a proposal distribution q(x), also referred to as the importance distri-
bution, that is easy to generate samples from. The support of the target distribution π(x)
must be included in the support of the proposal distribution, i.e.

π(x) > 0 ⇒ q(x) > 0, ∀x ∈ Ω. (2.63)

The sought integral (2.57) can now be rewritten as

I =
∫
Ω

f(x)π(x) dx =
∫
Ω

f(x)
π(x)
q(x)

q(x) dx, (2.64)

and the Monte Carlo approximation (2.58) becomes a weighted sum

IN =
1
N

N∑
i=1

f(xi)w(xi), (2.65)

where the weight w(xi) = π(xi)
q(xi)

is the importance weight of the sample xi. The im-
portance weight takes into account the likelihood of the sample xi being from the distri-
bution π(xi). To use the importance sampling algorithm, one must be able to evaluate
the importance weight w(xi). In many cases, however, the importance weight can only
evaluated up to a normalizing factor. As will be shown later, this is the case in Bayesian
filtering problems. Fortunately, the Monte Carlo approximation (2.65) can still be com-
puted, choosing weights that are proportional to the ratio π(xi)

q(xi)
and doing a normalization
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generated in the algorithm are rejected, leading to an inefficient algorithm.

An alternative to the rejection sampling algorithm is the importance sampling algo-
rithm (Ross, 1972; Andrieu et al., 2001). All the particle filter algorithms discussed in
this thesis are based on importance sampling, and it is therefore worthwhile to describe
it in somewhat more detail. Like rejection sampling, importance sampling is also based
on the existence of a proposal distribution q(x), also referred to as the importance distri-
bution, that is easy to generate samples from. The support of the target distribution π(x)
must be included in the support of the proposal distribution, i.e.

π(x) > 0 ⇒ q(x) > 0, ∀x ∈ Ω. (2.63)

The sought integral (2.57) can now be rewritten as
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and the Monte Carlo approximation (2.58) becomes a weighted sum
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f(xi)w(xi), (2.65)

where the weight w(xi) = π(xi)
q(xi)

is the importance weight of the sample xi. The im-
portance weight takes into account the likelihood of the sample xi being from the distri-
bution π(xi). To use the importance sampling algorithm, one must be able to evaluate
the importance weight w(xi). In many cases, however, the importance weight can only
evaluated up to a normalizing factor. As will be shown later, this is the case in Bayesian
filtering problems. Fortunately, the Monte Carlo approximation (2.65) can still be com-
puted, choosing weights that are proportional to the ratio π(xi)

q(xi)
and doing a normalization
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of the final estimate, such that (2.65) becomes

IN =
∑N

i=1 f(xi)w(xi)∑N
i=1 w(xi)

, (2.66)

where w(xi) ∝ π(xi)
q(xi)

. For notational convenience, the short-hand notation wi for w(xi)
will often be used in this thesis, but one should bear in mind that the importance weight
depends explicitly on xi.

The estimate (2.66) is sometimes referred to as the Bayesian importance sampling
estimate. For finite N , this estimate is biased, but it can be shown (Geweke, 1989) that
asympotically a law of large numbers as well as a central limit theorem hold.

As will be evident below, when the SMC methods based on importance sampling
are introduced, in the case of recursive Bayesian estimation, the set of samples {xi}N

i=1

with corresponding importance weights {wi}N
i=1 will usually be of more interest than the

actual approximation to the integral (2.57). The Sampling Importance Resampling al-
gorithm (Algorithm 2.1), due to Rubin (1988) generates a set of samples {xi}N

i=1 which
are an approximate independent draw from the target distribution π(x) based on the
importance sampling weighted approximation. Step 4 in the algorithm is an additional
resampling step that is added in order to keep the diversity of the particle set.

Algorithm 2.1 Sampling Importance Resampling

1. Generate M independent samples {xi}M
i=1 from the proposal distribution q(x).

2. Compute the importance weights {w̃i}M
i=1 as w̃i ∝ π(xi)

q(xi)
.

3. Normalize the importance weights, wi = w̃i/
∑M

i=1 w̃i.
4. Resample with replacement N times from {xi}M

i=1 with probability wi of resam-
pling particle xi.

An important aspect of Algorithm 2.1 is that the M samples are resampled N times.
To ensure an effective algorithm, M should be chosen greater than N . In Rubin (1988)
a factor 10 is recommended, i.e. M = 10N . It should be noted, however, that it is
common practice in particle filtering to choose M = N , often with good results. This is
for example the case for many of the results presented in this thesis.

Sequential Monte Carlo Estimation

Recursive Bayesian estimation deals with the problem of estimating the posterior den-
sity p(xk|Zk), using the Bayesian update equations (2.18)–(2.19). Unfortunately, the
importance sampling algorithm can not be used for recursive estimation in its original
form. One must instead estimate the full posterior density p(Xk|Zk) at each time step
k = 0, 1, . . ., reusing the full measurement series Zk every time. The dimension of the
estimation problem will thus grow at every time step, making the method inefficient,
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because a higher number of samples is required as the dimension of the estimated distri-
bution is growing, leading to an ever increasing computational complexity. However, it
is possible to utilize the Markovian property of the system (2.25)–(2.27) to slightly mod-
ify the importance sampling algorithm in such a manner that it can be used recursively
(Gordon et al., 1993; Doucet et al., 2001).

First consider the problem of estimating the full density p(Xk|Zk), i.e the tar-
get distribution π(·) in the importance sampling algorithm is the full joint distribution
p(Xk|Zk). The recursion formula for this problem can be easily derived using Bayes’
formula,

p(Xk|Zk) =
p(zk|xk)p(xk|xk−1)

p(zk|Zk−1)
p(Xk−1|Zk−1). (2.67)

The importance function qk(·), with the index k denoting time step k, can be chosen, in
the general case, to be dependent on the measurements, i.e.

qk(·) = q(Xk|Zk). (2.68)

Using Bayes’ formula, the importance function can be written as

q(Xk|Zk) = q(Xk−1|Zk−1)q(xk|Xk−1,Zk). (2.69)

By iterating, the proposal of the full joint posterior distribution can be written as

q(Xk|Zk) = q(x0)
k∏

i=1

q(xi|Xi−1, Zi), (2.70)

such that the importance weights {w(i)
k }N

i=1 can be computed recursively as

w
(i)
k ∝ w

(i)
k−1

p
(
zk|x(i)

k

)
p

(
x

(i)
k |x(i)

k−1

)
q
(
x

(i)
k |X(i)

k−1, Zk

) . (2.71)

Notice that the proposal distribution in the denominator of (2.71) contains the full state
history X

(i)
k of each sample. There are several possible choices for the form of the pro-

posal distribution q(x(i)
k |X(i)

k−1,Zk). One convenient choice, which also simplifies the
recursion procedure considerably, is to let the proposal be independent of the measure-
ments, i.e. simply to let the proposal be equal to the prior distribution,

q
(
x

(i)
k |X(i)

k−1,Zk

)
= p

(
x

(i)
k |X(i)

k−1

)
= p(x0)

k∏
j=1

p
(
x

(i)
j |x(i)

j−1

)
. (2.72)

The importance weight recursion in this case becomes,

w
(i)
k ∝ w

(i)
k−1p

(
zk|x(i)

k

)
, (2.73)
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i.e the importance weights are simply updated according to the measurement likeli-
hood density p(zk|xk). This particular choice of importance function is the basis of
the Bayesian bootstrap and the sequential importance resampling filters described in the
following sections. Though these are widely used methods, and in many cases lead to
satisfactory results, it must be remembered that they are based on a restriction of the far
more general importance sampling framework.

An important fact related to choosing the prior as importance function, is that the
posterior distributions estimated in the resulting particle filtering algorithms are still an
approximation of the full joint density p(Xk|Zk). However, the state history Xk−1

of each sample x
(i)
k are not used in the updating procedure at time step k, so if one is

interested in the filtering density p(xk|Zk) only, the state history for each particle can
be safely thrown away to save memory requirements.

As mentioned above the choice of p
(
x

(i)
k |X(i)

k−1

)
as importance function is only

one of several possible choices. It can be shown (Doucet et al., 2000b) that, in terms
of minimizing the variance of the importance weights w

(i)
k conditioned upon the full

simulated trajectory X
(i)
k−1 and the measurements Zk, the optimal choice of importance

function is to let

q
(
x

(i)
k |X(i)

k−1,Zk

)
= p

(
xk|x(i)

k−1, zk

)
. (2.74)

Using this choice of importance function, the recursion formula for the importance
weights becomes w

(i)
k = w

(i)
k−1p

(
zk|x(i)

k−1

)
. However, there are two problems with

this optimal choice of importance function. First, in most cases it is difficult to sample
from the distribution p
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problem with such a generic algorithm, is that as time evolves, the distribution of the im-
portance weights becomes more and more skewed, until finally only one weight different
from zero exists among the importance weights, a phenomenon known as degeneration
of the particle set. Such a particle set will have a zero variance, and consequently not be
a realistic approximation to the posterior density. Only a system with perfect measure-
ments, i.e. zero measurement noise, can be estimated with no uncertainty, and perfect
measurements never occur in a real-world situation. The solution to this problem is to
introduce a resampling step into the algorithm, in the same manner as in the SIR algo-
rithm (Algorithm 2.1). This is the idea behind the Bayesian Bootstrap Filter (Gordon
et al., 1993), the first functional sequential Monte Carlo method that was presented.

Algorithm 2.2 The Bayesian Bootstrap Algorithm

1. 0 → k. Generate M samples {x(i)
k }M

i=1 from the initial distribution p(x0).
2. Calculate the importance weights p(zk|x(i)

k ) → wi for i = 1, . . . , M .

3. Normalize the weights, wi

(∑M
i=1 wi

)−1 → wi for i = 1, . . . , M .

4. Generate a new set {xi∗
k }N

i∗=1 from resampling with replacement N times from
{x(i)

k }M
i=1 where the probability of resampling particle xi is P (xi∗

k = x
(i)
k ) = wi.

5. Predict each of the resampled particles independently r times, where M = rN .
The new particle set {x(i)

k+1}M
i=1 is given by

x
(i∗−1)r+k
k ∼ p(xk+1|xi

k), for k = 1, . . . , N and i∗ = 1, . . . , M.

6. k + 1 → k and go to step 2.

The MMSE estimate and its covariance, or other estimates of interest can be calcu-
lated between step 3. and 4. in the Bayesian bootstrap algorithm, from

x̂MMSE
k =

M∑
i=1

wix
(i)
k , (2.76)

P̂MMSE
k =

M∑
i=1

wi(x
(i)
k − x̂k

MMSE)(x(i)
k − x̂k

MMSE)T . (2.77)

The Bayesian bootstrap algorithm resamples the particles at every time step. Thus, af-
ter the resampling step, all the particles in the new particle set {x(i)

k+1}M
i=1 have equal

weights. The importance weights are therefore not used at the next time step and do not
have to be stored.

The predicted estimate x̄k and the corresponding covariance P̄k, based on the prior
filter density p(xk|Zk−1), are sometimes of interest. These can also be computed from
the Bayesian bootstrap approximation, between step 1 and 2 in the algorithm. At this
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stage, all the particles have equal weights, due to the resampling at the last time step, so
the MMSE prediction and its covariance are found simply as

x̄MMSE
k =

1
M

M∑
i=1

x
(i)
k , (2.78)

P̄MMSE
k =

1
M

M∑
i=1

(x(i)
k − x̄k

MMSE)(x(i)
k − x̄k

MMSE)T . (2.79)

The resampling step is the computationally most demanding operation in the Bayesian
bootstrap filter and in the other SMC methods described below. Several resampling al-
gorithms exist, each with different properties related to the variability of the importance
weights. The most effective resampling algorithm is the classical method of Ripley
(1987), sometimes referred to as multinomial resampling. This algorithm implements
the resampling the particle set {x(i)

k }N
i=1 in O(N) time, utilizing the fact that it is possi-

ble to sample N ordered i.i.d. samples from a uniform distribution in O(N) operations.
These N uniform weights are then compared to the cumulative distribution of the im-
portance weights, in order to determine which particles are to be multiplied and which
are to be thrown away. The process is described in detail in Carpenter et al. (1999) and
Nordlund (2002). Examples of other resampling algorithms are stratified resampling
(Carpenter et al., 1999) and residual resampling (Liu and Chen, 1998).

When the particle set {x(i)
k }N

i=1 is resampled, the samples will no longer be statisti-
cally independent, as some of the samples are multiplied in the process. The theoretical
asymptotic convergence properties of the algorithms are based on the particles being
independent, so resampling will in some situations lead to poorer convergence proper-
ties, and in the worst case divergence, of the SMC algorithms. The frequency at which
the resampling should be done therefore becomes a trade-off between degeneracy of the
importance weights, and the convergence properties of the filter. Because of this, a de-
generacy measure for the particle set, the effective sample size was presented in Kong
et al. (1994) and Liu (1996),

Neff =
N

1 + varq(·|Zk)(w(Xk))

=
N

Eq(·|Zk)[w(Xk)]
. (2.80)

The quantity Neff in (2.80) can not be computed analytically, but a good estimate for the
effective sample size is given by

N̂eff =
1∑N

i=1

(
w(X(i)

k )
)2 , (2.81)
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k }N
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The quantity Neff in (2.80) can not be computed analytically, but a good estimate for the
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k )
)2 , (2.81)
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or in the specical case where the proposal distribution is chosen as q(x(i)
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k |X(i)

k ), the expression for the estimated effective sample says becomes simply
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The Sequential Importance Resampling Filter

In the Bayesian bootstrap filter, resampling is done at every time step. As discussed
above, this is not always beneficial, since too frequent resampling may lead to poorer
convergence properties of the SMCF. The Sequential Importance Sampling/Resampling
(SIS) framework is a general algorithm framework, which tries to minimize this effect
by using the expressions for the effective sample size (2.81) and (2.82). At each time
step, the effective sample size is compared to a threshold κN , where 0 < κ ≤ 1 is
predefined by the user. If Neff < κN , a resampling is done, otherwise the weights are
updated from the previous time step. The framework is given in Algorithm 2.3.

Algorithm 2.3 Sequential Importance Sampling/Resampling Framework

1. For i = 1, . . . , N , let 0 → k, 1
N → w

(i)
−1. Generate N particles xi

0 ∼ q(x0|z0).
2. For i = 1, . . . , N , evaluate the importance weights:

• Compute the weights from
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• Normalize the weights, w
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k .

3. 1∑N
i=1

(
w

(i)
k

)2 → N̂eff. If N̂eff < κ, go to step 5.

4. Generate a new set of samples {x(i∗)
k }N

i∗=1 from resampling with replacement N

times the set {x(i)
k }N

i=1 where the probability of resampling particle x
(i)
k is

P (xi∗
k = x

(i)
k ) = wi. Reset the weights 1

N → w
(i)
k .

5. For i = i∗ = 1, . . . , N , predict the resampled particles x
(i)
k+1 ∼

q
(
x

(i)
k+1|X(i∗)

k ,Zk+1

)
.

6. k + 1 → k and go to step 2.

The choice of the parameter κ in Algorithm 2.3 is crucial for the performance of the
algorithm. If a value of κ close to 1 is chosen, resampling will be performed at nearly
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every time step, whereas a lower κ-value will lead to less frequent resampling. The
choice of a good κ-value is dependent on the problem in question. If the tendency of
particle set degeneration is high, a large value should be chosen.

Algorithm 2.3 is very general, and it can be used with an arbitrary choice of im-
portance function q(x(i)

k |X(i)
k−1, Zk). It should be noted that the Bayesian bootstrap

filter (Algorithm 2.1) is actually a special case of the SIS framework, resulting from the
choices q(x(i)

k |X(i)
k−1,Zk) = p(x(i)

k |X(i)
k ) and κ = 1.

In the descriptions of the particle filters so far, the general discrete stochastic system
(2.12)–(2.13) has been considered. As was explained in Section 2.4.2, in the terrain
navigation problem a simplified filter model must often be used, due to the computational
complexity of the estimation methods. This is also the case for particle filters, though
they are generally not as computationally demanding as the PMF. The reformulation of
the particle filter algorithms when the discrepancy between the truth model and the filter
model is taken into account is trivial and mainly involves attaching asterisks to the state
variables. The same is true for the inclusion of the delta formulation (2.28).

2.4.6 The Rao-Blackwellized Particle Filter

The number of particles needed in the particle filters in order to effectively sample the
sample space increases with the dimension of the state-space. In particular, the mean
squared error matrix of the estimate, E[(xk − (x̂k))(xk − (x̂k))T ], where xk is the true
value of the stochastic vector to be estimated, increases in norm when the number of
particles is fixed, while the dimension of the state-space is increasing.

The Rao-Blackwell theorem, sometimes also known as the Rao-Blackwell-Kolmogorov
theorem (Blackwell, 1947; Rao, 1965), which in one of its forms states that, given an es-
timator θ̂(z) of a parameter θ, observed through a measurement z, for the mean squared
error of the Rao-Blackwell estimator θ̂RB(z) = E[θ̂(z) | T (z)], where T (z) is a suffi-
cient statistic (van Trees, 1968) for θ, the following inequality holds:

E[(θ − θ̂RB(z))2] ≤ E[(θ − θ̂(z))2]. (2.83)

This theorem can easily be extended to the vector case, where the inequality (2.83) takes
the form of an MSE matrix inequality.

In particle filtering, the Rao-Blackwell theorem is utilized in order to construct a
more effective filter, in terms of the number of samples needed, by marginalizing out a
subset of the state-space by defining

xk =
[
xn

k

xl
k

]
, (2.84)

where xn
k denotes the ’nonlinear’ states, which are to be estimated using a particle filter,

whereas xl
k are the ’linear’ states and are to be estimated using a conventional Kalman

filter. The full posterior density p(Xk|Zk) can now be written as

p(Xk|Zk) = p(Xn
k ,X l

k|Zk) = p(Xn
k |X l

k,Zk)p(X l
k|Zk). (2.85)
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When this marginalization is used, and the sub-vector xl
k can be described using a linear-

Gaussian state model, the density p(X l
k|Zk) can be updated analytically, and only the

xn
k states need to be sampled in the particle filter, estimating p(Xn

k |X l
k, Zk), using the

linear states computed in the KF as a parameter. This is the key idea behind the Rao-
Blackwellized particle filter (RBPF), sometimes also known as the marginalized particle
filter. According to the Rao-Blackwell theorem, the variance of the RBPF estimate is at
least as low as the variance of the full PF. As the particle filter target and proposal den-
sities have a lower dimension in the RBPF, fewer particles are needed, and the computa-
tional complexity will thus be lower. The concept of using the Rao-Blackwell theorem
for sampling schemes was discussed in Casella and Robert (1996), whereas the RBPF
was presented in Doucet (1998) and Doucet et al. (2000a), and has later been used in a
number of different applications, including terrain aided navigation (Schon et al., 2005;
Nygren, 2008).

In this thesis, the terrain navigation system is viewed as an external position aiding
system, providing the inertial navigation system (INS) with external position updates, as
will be explained in Section 3.4. A high quality INS is normally based on a Kalman filter
with a large number of states. One example is the HUGIN navigation system, described
in Jalving et al. (2003). To use an RBPF in such a navigation system would require reim-
plementation and redesign of the system, modeling the INS states in the linear part of the
RBPF. As this thesis was carried out in close cooperation with the HUGIN team at FFI
and Kongsberg Maritime, it was decided at an early stage to keep the terrain navigation
system as an external module, and consequently the RBPF has not been implemented in
this thesis. This choice also makes the terrain navigation system more portable, as it can
be easily integrated with other navigation systems. As an example, many vehicles have
black box navigation systems which only permit conventional position updates and in
which the user does not have access to raw inertial measurements. On the other hand,
keeping the TerrNav system as an external module limits the possibility to accurately
model the drift of the INS in the TerrNav algorithms, as will be thoroughly discussed in
later sections.

2.4.7 The Sigma Point Kalman Filter

In the EKF the recursive non-linear estimation problem is solved using linearization
of the nonlinear transformations. The Sigma Point Kalman Filter (SPKF), also called
the Unscented Kalman Filter (UKF), was first presented by Julier and Uhlmann (1997),
and is another approach for dealing with the nonlinearities of the problem. The SPKF
uses the so-called unscented transform, in which the underlying probability densities are
approximated by a set of deterministically chosen points, known as sigma points. The
nature of the SPFK is very different from that of the SMC methods discussed in previous
sections. Though both classes of methods represent probability densities using discrete
points, the sigma points are chosen in a pre-defined deterministic manner, as opposed
to the randomly chosen particles in the SMC methods. Typically, the number of sigma
points needed in order to represent a given density is much smaller than the number of

2.4 Bayesian Terrain Navigation 39

When this marginalization is used, and the sub-vector xl
k can be described using a linear-

Gaussian state model, the density p(X l
k|Zk) can be updated analytically, and only the

xn
k states need to be sampled in the particle filter, estimating p(Xn

k |X l
k, Zk), using the

linear states computed in the KF as a parameter. This is the key idea behind the Rao-
Blackwellized particle filter (RBPF), sometimes also known as the marginalized particle
filter. According to the Rao-Blackwell theorem, the variance of the RBPF estimate is at
least as low as the variance of the full PF. As the particle filter target and proposal den-
sities have a lower dimension in the RBPF, fewer particles are needed, and the computa-
tional complexity will thus be lower. The concept of using the Rao-Blackwell theorem
for sampling schemes was discussed in Casella and Robert (1996), whereas the RBPF
was presented in Doucet (1998) and Doucet et al. (2000a), and has later been used in a
number of different applications, including terrain aided navigation (Schon et al., 2005;
Nygren, 2008).

In this thesis, the terrain navigation system is viewed as an external position aiding
system, providing the inertial navigation system (INS) with external position updates, as
will be explained in Section 3.4. A high quality INS is normally based on a Kalman filter
with a large number of states. One example is the HUGIN navigation system, described
in Jalving et al. (2003). To use an RBPF in such a navigation system would require reim-
plementation and redesign of the system, modeling the INS states in the linear part of the
RBPF. As this thesis was carried out in close cooperation with the HUGIN team at FFI
and Kongsberg Maritime, it was decided at an early stage to keep the terrain navigation
system as an external module, and consequently the RBPF has not been implemented in
this thesis. This choice also makes the terrain navigation system more portable, as it can
be easily integrated with other navigation systems. As an example, many vehicles have
black box navigation systems which only permit conventional position updates and in
which the user does not have access to raw inertial measurements. On the other hand,
keeping the TerrNav system as an external module limits the possibility to accurately
model the drift of the INS in the TerrNav algorithms, as will be thoroughly discussed in
later sections.
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particles needed in a corresponding SMC method.
The idea behind the unscented transform is that the set of sigma points, representing

the prior probability distribution, is propagated through the nonlinearities of the prob-
lem, yielding a new set of sigma points. The sigma points are initially chosen in such
a manner that the important aspects of the probability distribution are maintained be-
fore and after applying the nonlinear transformation, and therefore the new set of sigma
points is a representation of the posterior probability distribution. For this idea to work,
it is crucial that the set of sigma points be able to capture certain important character-
istics of the underlying distribution. By tuning certain parameters in the computations
of the sigma points, the algorithm can be tailor-made to fit a number of well-known dis-
tributions. Because the sigma points can be chosen in a number of different ways, the
SPFK should be seen as a class of estimation methods, all based on various variants of
the unscented transform, rather than one single algorithm. It should also be noted that
although the SPFK framework is able to utilize more information about the underlying
distribution than solely the first and second moments, which is what is used in the normal
EKF, higher order information is in many cases unavailable. In such cases, using wrong
assumptions for the higher order methods may seriously degrade the performance of the
filter.

This section will proceed as follows. First, a general scheme for sigma point selec-
tion is presented and second, the actual filtering algorithm, in which the set of sigma
points is used in recursive non-linear estimation, is outlined.

The Unscented Transform

Let x ∈ R
nx be a general random vector, having a probability density function px(x)

and y ∈ R
ny another random vector, given by a transformation of the variable x,

y = h(x), (2.86)

where the function h : R
nx → R

ny is nonlinear. Consider the task of computing the
probability density function py(y) using the unscented transform. The pdf px(x) can
be represented by a set of sigma points S, which consists of p + 1 vectors and their
associated weights, i.e.

S = {x(i), W (i)}p
i=0. (2.87)

The weights W (i) can be positive or negative, as opposed to what is the case for the
weights in an SMC method. For the resulting estimates to be unbiased, the weights must
obey the unity sum condition, i.e.

p∑
i=0

W (i) = 1. (2.88)

The new set of sigma points, representing the pdf px(x) is now given by

y(i) = h(x(i)), (2.89)
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and the mean of y is given by

ȳ =
p∑

i=1

W (i)y(i). (2.90)

The covariance is calculated, in a similar manner, as the outer product of the transformed
sigma points, i.e.

Py =
p∑

i=1

W (i)
(
y(i) − ȳ

) (
y(i) − ȳ

)T
. (2.91)

The estimate of any other statistic of the transformed random vector y can be computed
in a similar manner. As mentioned above, the set of sigma points for a particular distri-
bution can be chosen in such a manner that the errors in the estimated moments of the
projected distributions are minimized. For a Gaussian, it is possible to construct a sigma
point selection scheme that matches the first four moments exactly, using 2n2

x +1 sigma
points (Julier and Uhlmann, 2004).

An example of a symmetric sigma point selection scheme, with 2nx + 1 points is
given by

x(0) = x̄,

x(i) = x̄ +
(√

nx

1 − W (0)
Px

)
i

,

W (i) =
1 − W (0)

2nx
,

x(i+nx) = x̄ −
(√

nx

1 − W (0)
Px

)
i

,

W (i+nx) =
1 − W (0)

2nx
, (2.92)

where i = 1, . . . , N , and the value of W (0) can be arbitrarily chosen. The expression
(
√

nx

1−W (0) Px)i denotes the i-th row or column of the matrix square root. The sigma

points in this set all lie on the
√

nx

1−W (0) Px-th covariance contour of the pdf p(x), except

for x(0), which coincides with the mean of the pdf. This set is accurate to the second
order, i.e. the first and second order moments of the UT approximated match those of
the true pdf exactly. The choice of W (0) determines the position of the non-mean sigma
points. Lowering the value of W (0), e.g. to a negative value, moves the non-mean sigma
points closer to the mean. A common choice is W (0) = 1 − nx

3 .
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Applying the UT to Recursive Estimation

The SPKF uses the unscented transform recursively to solve the general Bayesian state-
space model with additive noise (2.14)–(2.15). The most general formulation of the
SPKF starts with augmenting the state vector xk−1 with the process noise vk and mea-
surement noise wk terms, to obtain the (nx + nv + nw)-dimensional vector

x̂a,k−1 =

⎡⎣x̂k−1

vk

wk

⎤⎦ . (2.93)

The process and measurements equations can now be rewritten as

x̄a,k = fa(x̂a,k−1), (2.94)

z̄k = ha(x̂a,k), (2.95)

where the functions fa : R
nx+nv+nw → R

nx+nv+nw and ha : R
nx+nv+nw → R

nz

are simple reformulations of the process and sensor equations to fit the dimensions of
the augmented state vector. The overbar notation in x̄a

k and z̄k denotes the predicted
state and measurements, respectively. Using the augmented state vector framework, a
general recursive SPKF algorithm can be formulated as in Algorithm 2.4. In this general
case, where the time and measurement update equations are both linear, two sets of
sigma points are used. The augmented sigma point set {x(i)

a,k}p
i=1 is used for the time

update, whereas the set {z(i)
k }p

i=1 is used for the measurement update. The measurement
sigma points are propagated through the nonlinear measurement equation to obtain the
predicted innovation ν̄k, the corresponding innovation covariance matrix P̄νν,k and the
predicted cross-covariance matrix describing the correlation between the predicted state
and measurement. A special case of the innovation form of the standard linear Kalman
filter measurement update equations (Gelb, 1974; Bar-Shalom et al., 2001) is used for
the measurement update, with Hk = I , since the measurement function has already been
taken care of by the unscented transformation.

When one of the process or measurement equations has a linear form the general
SPKF framework given in Algorithm 2.4 can be simplified, using the unscented trans-
form on the nonlinear transformation only and the conventional KF algorithms on the
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Algorithm 2.4 The Sigma Point Kalman Filter

1. Set 0 → k. Initialize the sigma points {x(i)
a,0}p

i=1 and their corresponding weights
{W (i)}p

i=1 using any sigma point selection scheme.

2. Calculate the predicted sigma point set, by propagating the sigma points through the pro-
cess model equation,

x
(i)
a,k+1 = fa(x(i)

a,k).

3. If desired, calculate the predicted mean and its covariance from

x̄a,k+1 =
p∑

i=1

W (i)x
(i)
a,k+1, (2.96)

P̄a,k+1 =
p∑

i=1

W (i)
(
x

(i)
a,k+1 − x̄a,k+1

) (
x

(i)
a,k+1 − x̄a,k+1

)T

. (2.97)

4. Set k + 1 → k.

5. Instantiate each of the predicted sigma points using the measurement model,

z̄
(i)
k = ha(x(i)

a,k). (2.98)

6. Calculate the predicted measurement,

z̄k =
p∑

i=1

W (i)z̄
(i)
k . (2.99)

7. Calculate the innovation covariance matrix,

P̄νν,k = Rk−1 +
p∑

i=1

W (i)
(
z̄

(i)
k − z̄k

) (
z̄

(i)
k − z̄k

)T

. (2.100)

8. Calculate the cross-covariance matrix,

P̄xz,k =
p∑

i=1

W (i)
(
x

(i)
a,k

) (
x

(i)
a,k − x̄a,k

) (
z̄

(i)
k − z̄k

)T

. (2.101)

9. Update the state estimate using the normal KF update equations,

ν̄k = zk − z̄k, (2.102)

Kk = P̄xz,kP̄−1
νν,k, (2.103)

x̂k = x̄k + Kkν̄k, (2.104)

P̂k = P̄k − KkP̄νν,kKT
k . (2.105)

10. Go to Item 2.
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2.5 Maximum Likelihood Terrain Navigation

All of the methods described in Section 2.4 use the Bayesian approach to the estimation
problem, i.e. it is assumed that information on the prior distribution is available before
incorporating the measurements to obtain the updated state estimate. The state of the sys-
tem to be estimated is considered a stochastic process evolving in time, in accordance
with the process model. The stochastic properties of the process model are assumed
known and incorporated into the state estimate through the time update or prediction
step. In the Fisher approach to estimation, on the other hand, no prior information is
used. The quantity to be estimated is considered to be an unknown constant, or at least
that its time variation is "slow" compared to that of the state variables of the system. The
position of an underwater vehicle is obviously not constant in time, and taking the Fisher
approach is therefore not possible if one wants to estimate the full position state of the
vehicle. However, when using the delta approach introduced in (2.28), it is possible to
formulate the terrain navigation problem in the Fisher framework. When doing so, the
position offset δx from the real-time navigation system is implicitly assumed constant,
and due to the drift in the INS, this assumption will be clearly be violated if the time
it takes to collect the terrain measurements and perform the terrain navigation compu-
tations is too long. However, if one for example is able to make several measurements
at the same time, as is the case for an AUV equipped with a multibeam echo sounder
(MBE), the drift of the INS during the measurement process is negligible and a Fisher
approach to the problem may be favorable. A Fisher estimator is normally not as math-
ematically and computationally complex as a Bayesian estimator, and especially if the
information about the process model is unknown or has a high uncertainty, considering a
Fisher estimator might be worthwhile. Due to the fact that the quantity under estimation
is assumed constant or slowly varying, Fisher estimation is often also known as param-
eter estimation. However, this term may be misleading, as it is sometimes also used for
the problem of estimating a parameter in the Bayesian framework. Some authors, e.g.
Bar-Shalom et al. (2001), refer to this case as random parameter estimation, as opposed
to nonrandom parameter estimation. To avoid confusion the terms Fisher estimation and
Bayesian estimation will be used in this thesis.

In the general vector case Fisher estimation deals with the problem of estimating
the unknown vector x ∈ R

Nx , which is observed through a set of measurements Z =
{z1, z2, . . . ,zN}, where each measurement vector zj ∈ R

nz is assumed to come from
a measurement model given by

zj = h(x,wj), j = 1, . . . , N, (2.106)

where the wj’s are the disturbances or measurement noises. Like in the Bayesian case,
a convenient and often sufficient assumption is that the noises be additive, i.e.

zj = h(x) + wj , j = 1, . . . , N. (2.107)

The only statistical information used in Fisher estimation is the likelihood function of
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the parameter vector, given by
L(x) = p(Z|x). (2.108)

In many situations, the measurements zj are assumed statistically independent, in which
case the likelihood takes the convenient form

L(x) =
N∏

j=1

p(zj |x). (2.109)

Under the assumptions wj ∼ pw(wj), where pw(·) is an arbitrary pdf, and the wj’s are
additive and independent, the likelihood function is given by

L(x) =
N∏

j=1

p(zj |x) =
N∏

j=1

pw(zj − h(x)). (2.110)

The most common Fisher estimator is the maximum likelihood estimator, which simply
maximizes the value of the likelihood function,

x̂ML(Z) = arg max
x

(L(x)). (2.111)

Despite its simplicity, the ML estimator can be shown to have a number of desirable
properties (van Trees, 1968; Bar-Shalom et al., 2001). Among these are its unbiasedness
and effiency. The efficiency of the ML estimator and its relation to the Cramér-Rao lower
bound is further discussed in Section 2.7. The ML estimator is the Fisher counterpart to
the Bayesian maximum a posteriori (MAP) estimate (2.24).

In the terrain navigation case, using the delta formulation, the measurement equation
at a time step j takes the form of (2.31), repeated here for convenience,

zj = h(x̃j + δxj) + wj . (2.112)

The likelihood function of each individual depth measurement vector zj is then given
by

Lj(δxj) = pwj (zj − h(x̃j + δxj)), (2.113)

Utilizing the assumed independency and additivity of the measurement noise, the total
likelihood at time step k is given by

L(δxk) =
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j=0

Lj(δxj) (2.114)

A recursive maximum likelihood terrain navigation estimator can now be formulated as
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ML
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Maximum likelihood terrain navigation can be seen as a limiting form of the optimal
Bayesian filter as the uncertainty in the prior tends to infinity. This can be easily derived
by introducing a so-called diffuse prior, i.e. a prior pdf over an interval which is large
compared to the support of the likelihood function (Bar-Shalom et al., 2001).

2.6 The Cramér-Rao Lower Bound

The Cramér-Rao lower bound (CRLB) gives a theoretical lower bound for how precisely
a quantity can be estimated. The CRLB was originally formulated for Fisher estimation,
but it can be easily generalized to hold also in a Bayesian framework.

2.6.1 Fisher Case

For a Fisher estimator θ̂(Z), where θ is an unknown, nonrandom vector, and Z is the
collection of measurements used by the estimator, the CRLB gives a minimum theoreti-
cally attainable mean square error matrix

E[(θ̂(Z) − θ)(θ̂(Z) − θ)T ]

of the estimator. The bound is named after Harald Cramér and Calyampudi Radakrishna
Rao, who were among the first to derive it (Rao, 1945; Cramér, 1946). The theory and
proofs of the CRLB can be found in most modern books on estimation and statistical
signal processing, e.g. van Trees (1968) and Kay (1993).

In the special case of an unbiased Fisher estimator, i.e. E[θ̂(Z)] = θ for all values
of θ ∈ R

n, the CRLB states that the covariance matrix of the unbiased estimator θ̂(Z)
is bounded from below as

E[(θ̂(Z) − θ0)(θ̂(Z) − θ0)T ] ≥ J−1, (2.116)

where θ0 is the true value of the unknown parameter vector and J is the Fisher informa-
tion matrix (FIM), defined as

J := −E[∇θ∇T
θ lnL(θ)|θ=θ0 ] = E[(∇θ lnL(θ))(∇θ lnL(θ))T ]|θ=θ0 , (2.117)

where L(θ) = p(Z|θ) is the likelihood function, as defined in Section 2.5 and ∇θ(θ) is
the gradient vector of θ. The two formulations of the FIM are equivalent. The matrix
inequality in (2.116) is to be understood in the sense that A ≥ B implies that the matrix
A−B is positive semi definite. It should be noted that the CRLB is dependent on the true
value θ0 of the unknown parameter vector and it can therefore only be calculated when
the true value is known. Consequently, estimator performance can only be analyzed
with respect to the CRLB in simulations in which the true value is known, or in real-
time situations under the assumption that an ‘almost perfect’ ground truth is available.

The CRLB given in (2.116) is the theoretical lower bound attainable for any unbiased
estimator of θ. If an estimator attains the CRLB, it is said to be an efficient estimator.
A corresponding property to (2.116) can be defined for the more general case of biased
estimators (van Trees, 1968).
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2.6.2 Bayesian Case

An extension of the CRLB for Bayesian estimators can also be formulated in which case
the matrix in question is the error correlation matrix of the Bayesian estimator θ(Z):

E[(θ̂ − θ)(θ̂ − θ)T ], (2.118)

where the expectation is to be taken with respect to both θ̂ and θ. The CRLB for random
parameters, sometimes referred to as the posterior CRLB, is a straight-forward gener-
alization of the nonrandom case (van Trees, 1968). The J matrix now consists of two
parts,

JT = JD + JP , (2.119)

where JD contains the information given in the data and is identical to the FIM defined
in (2.117). The matrix JP contains the information given in the prior data and is defined
by

JP = −E[∇θ∇T
θ lnP0(θ)|θ=θ0 ] = E[(∇θ lnP0(θ)(∇θ lnP0(θ)T ]|θ=θ0 ], (2.120)

where P0(θ) is the prior probability density function of the random vector θ. The pos-
terior CRLB can now be expressed by substituting JT for J in (2.116) to obtain

E[(θ̂(Z) − θ0)(θ̂(Z) − θ0)T ] ≥ J−1
T . (2.121)

Bergman (1999) developed a recursive formulation of the posterior CRLB for the
terrain navigation problem, and this was used to show that after convergence the PMF at-
tained the CRLB asymptotically in Monte Carlo simulations, using a real terrain database.
In other words, the PMF is an efficient estimator. The same was shown for a SIR particle
filter by Karlsson et al. (2003). The CRLB for the terrain navigation problem was also
thoroughly discussed in Nygren (2005).

Computing the CRLB in the terrain navigation problem involves computing the gra-
dient of the terrain database, which may be a difficult task in real terrain databases,
especially if the terrain data has a low sample resolution. To compute the CRLB, one
also needs to know the true position of the vehicle, which is never the case in a real-time
navigation system. Since this thesis is mostly concerned with applying terrain navigation
algorithms to real vehicle data, the CRLB will not be pursued much further here. But it
is a desirable property that the Bayesian estimators are efficient, at least asymptotically,
under the assumption that there is no discrepancy between the true system and the filter
model. As will be stressed later in the thesis, such a discrepancy often is a source of
error in a real-time terrain navigation system, and when such a discrepancy exists, the
estimators can not be expected to be efficient.

2.7 Relations to the Fokker-Planck Equation

So far in this thesis only discrete process models have been discussed. The discrete pro-
cess equation for an arbitrary state-space model is described by the Chapman-Kolmogorov
equation, given in (2.18), repeated here for convenience:
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p(xk+1|Zk) =
∫

Rnx

p(xk+1|xk)p(xk|Zk) dxk. (2.122)

Equation (2.122) is a special case of the general Chapman-Kolmogorov equation (Jazwin-
ski, 1970). Let {yi}n

i=1 be a set of general random vectors, having joint probability
density function

py1,...,yn(y1, . . . ,yn). (2.123)

The general Chapman-Kolmogorov equation can then be derived by doing a simple
marginalization over the random vector yn, i.e.

py1,...,yn−1(y1, . . . ,yn−1) =
∫

R
ny

py1,...,yn(y1, . . . ,yn) dyn. (2.124)

It should be noted that in the general Chapman-Kolmogorov equation (2.124), nothing
is assumed about the ordering of the stochastic vectors. It holds in general, for marginal-
ization over an arbitrary vector. Equation (2.122) can easily be obtained by applying the
general equation to the vectors xk+1 and xk, conditioned upon the measurements Zk,
which yields

p(xk+1|Zk) =
∫

Rnx

p(xk+1, xk|Zk) dxk (2.125)

=
∫

Rnx

p(xk+1|xk,Zk)p(xk|Zk) dxk (2.126)

=
∫

Rnx

p(xk+1|xk)p(xk|Zk) dxk, (2.127)

where the last equality follows from the assumption that the state xk+1 at time step k+1
is independent of the measurements Zk when the previous state xk is known.

The continuous counterpart to the Chapman-Kolmogorov equation is the Fokker-
Planck equation, a stochastic partial differential equation. This equation is also some-
times referred to as Kolmogorov’s forward equation.

In continuous time, a general stochastic model can be described as,

dx(t) = f(x(t), t) dt + G(x(t), t) dβ(t), (2.128)

where x ∈ R
nx , f : R

nx × R → R
nx , G : R

nx × R → R
nx×nx , and β(t) is an nx-

dimensional Brownian motion (Klebaner, 1998), with

E[ dβ(t) dβ(τ)T ] = Q̃(t)δ(t − τ), (2.129)

where δ(t − τ) denotes the Dirac delta distribution. The tilda above Q̃(t) indicates that
it is a spectral density matrix, contrary to the discrete case, where Qk is a covariance
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matrix. The first term on the right hand side of (2.128) known as the drift term, whereas
the second is called the diffusion term.

Equation (2.128) is a stochastic differential equation, written on differential form,
which is common for such equations. The differential form is just a short-hand notation
for the stochastic integral equation

x(t) = x(0) +

t∫
0

f(x(τ), τ) dτ +

t∫
0

G(x(τ), τ) dβ(τ). (2.130)

The last term in Equation (2.130) is a stochastic integral with respect to the Brownian
motion β(t). Such integrals need to be rigorously defined in order for (2.130) to make
sense mathematically. In general, several definitions of the stochastic integral exist, in-
cluding the Ito integral and the Stratanovich integral. It would lead too far to introduce
this theory here, as the major concern in this thesis is discrete state-space models. Thor-
ough introductions to the topics of stochastic calculus can be found e.g. in Øksendal
(1985) and Klebaner (1998).

If the initial probability density function of x(t) in (2.128) is given by px(x, 0), it
can be shown that the resulting pdf at time t is given by the n-dimensional Fokker-Planck
equation,

∂px(x(t), t)
∂t

= −
nx∑
i=1

∂

∂xi

(
fi(x(t), t)px(x(t), t)

)
+

nx∑
i=1

nx∑
j=1

∂2

∂xi∂xj

(
Gij(x(t), t)px(x(t), t)

)
. (2.131)

The Fokker-Planck equation is a partial differential equation (PDE) of parabolic type
(Renardy and Rogers, 1993), and it can be solved numerically using any kind of method
suited for this class of PDEs. Nygren (2005) proposes to use finite element methods
to solve the Fokker-Planck equation in terrain navigation applications. In the terrain
navigation problem, the general Fokker-Planck equation (2.131) can be simplified.

2.8 Feature-Based Navigation

This thesis concentrates on bathymetric terrain navigation, i.e. only pure terrain height
measurements are used. A related research area is that of feature-based navigation, in
which features in the terrain are utilized in order to obtain a position update. Possible
features include terrain features, such as characteristic land forms (e.g. valleys, rivers,
mountains), objects (rocks, wrecks etc.) or man-made structures. In principle any fea-
ture that can be identified by the relevant sensor can be used for navigation, provided the
position of the feature is known. Feature-based navigation can in general be performed
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using a number of different sensors types, e.g. lasers, radars, cameras or sonars. In un-
derwater applications one is often restricted to sonars, though camera-based navigation
is also an alternative (Eustice, 2005). However, the short range of the camera requires
the vehicle to operate within a few meters from the sea floor, which is in many cases
infeasible.

Essential to the success of feature-based navigation is feature extraction, i.e. the pro-
cess in which features are extracted from the sensor data. Feature extraction may involve
complex signal and image processing techniques. In man-made environments, e.g. in-
doors or in urban areas, there are typically numerous, sharply defined features that can
be used for navigation, for instance corners, doors, buildings etc. In more unstructured
environments, like non-urban areas and especially underwater, there are typically fewer
and less distinct features, making the task of feature extraction more difficult. Examples
of feature extraction techniques are presented in Roman (2005), Eustice (2005) and the
references therein.

After a feature has been extracted from the sensor data, it needs to be associated
to the correct feature in the map. This task is normally referred to as data association.
In some situations, the exact data association is known. This can for example be the
case in an underwater application using long base line transponder navigation (Milne,
1983), where the transponders are able to identify themselves uniquely. In most cases,
however, the data association is unknown and has to be estimated by the navigation
system. Numerous algorithms for data association in different applications exist.

Having identified a feature in the sensor data and associated it to a feature in the
map database, one is able to do a position update based on the location of the feature, its
position error and the predicted position of the vehicle itself. The errors in this process
typically come from

1. The error of the feature location in the map database.

2. Processing errors, resulting from coordinate transformations, sensor misalignment
etc.

3. Measurement errors, including errors due to erroneous attitude estimates of the
vehicle.

4. Data association errors.

Of the above error sources, the data association errors can be claimed to be the most
critical. If a feature is not associated correctly, break-down of the navigation algorithm
may occur.

The most straight-forward way to implement a feature-based navigation method is
to use the feature updates as measurement to a Kalman filter of some type, e.g. an
aided INS. Dependent on the sensor used, the measurement typically consist of range
only, bearing only or both range and bearing, where the range and bearing are measured
relative to the feature.
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Having identified a feature in the sensor data and associated it to a feature in the
map database, one is able to do a position update based on the location of the feature, its
position error and the predicted position of the vehicle itself. The errors in this process
typically come from

1. The error of the feature location in the map database.

2. Processing errors, resulting from coordinate transformations, sensor misalignment
etc.

3. Measurement errors, including errors due to erroneous attitude estimates of the
vehicle.

4. Data association errors.

Of the above error sources, the data association errors can be claimed to be the most
critical. If a feature is not associated correctly, break-down of the navigation algorithm
may occur.

The most straight-forward way to implement a feature-based navigation method is
to use the feature updates as measurement to a Kalman filter of some type, e.g. an
aided INS. Dependent on the sensor used, the measurement typically consist of range
only, bearing only or both range and bearing, where the range and bearing are measured
relative to the feature.
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Figure 2.3: Features on the sea floor, as observed from two different passes with an
AUV equipped with a synthetic aperture sonar (SAS). Corresponding features are
marked with corresponding colors. The task of feature association is crucial to the
success of feature-based navigation. Figure courtesy of FFI.

2.8 Feature-Based Navigation 51

Figure 2.3: Features on the sea floor, as observed from two different passes with an
AUV equipped with a synthetic aperture sonar (SAS). Corresponding features are
marked with corresponding colors. The task of feature association is crucial to the
success of feature-based navigation. Figure courtesy of FFI.

2.8 Feature-Based Navigation 51

Figure 2.3: Features on the sea floor, as observed from two different passes with an
AUV equipped with a synthetic aperture sonar (SAS). Corresponding features are
marked with corresponding colors. The task of feature association is crucial to the
success of feature-based navigation. Figure courtesy of FFI.

2.8 Feature-Based Navigation 51

Figure 2.3: Features on the sea floor, as observed from two different passes with an
AUV equipped with a synthetic aperture sonar (SAS). Corresponding features are
marked with corresponding colors. The task of feature association is crucial to the
success of feature-based navigation. Figure courtesy of FFI.



52 2 Terrain Navigation

2.9 Simultaneous Localization and Mapping

In recent years, the topic of Simultaneous localization and mapping (SLAM) has been
given a lot of attention within the robotics community. In essence SLAM deals with the
problem of mapping an area with a robotic vehicle, and utilize the map for navigation
simultaneously. The SLAM problem was formulated as a probabilistic estimation prob-
lem in the seminal paper by Smith et al. (1990), in which a feature-based approach is
taken. The map is represented as a set of features, whose location are estimated in a
extended Kalman filter. The state vector of the Kalman filter contains the position and
attitude of the vehicle, together with the locations of the features or landmarks. When
a new feature is discovered, the state vector is expanded, and the new feature is added
to the state vector. As in all feature-based approaches, the problem of data association
is crucial to the success of the algorithms. Each time a feature is sensed, the feature
has to be associated to a previous one or declared as a new feature. Errors in the data
association can be a source of failure and divergence of the SLAM algorithms (Neira
and Tardos, 2001). In addition to the feature-based SLAM solution, starting with Smith
et al. (1990) so-called featureless SLAM approaches have been developed, using e.g.
laser range scan matching (Lu and Milios, 1997).

The computational burden of EKF-based SLAM scales as O(n2), where n is the
number of states. Consequently the EKF becomes unattractive when mapping areas
with a large number of features. In addition, EKF is based on local linearization around
the estimated vehicle trajectory, leading to potential divergence when the linearization
is not accurate enough. Several alternatives to the EKF have been presented in order to
overcome these problems. Examples are particle filtering, using a Rao-Blackwellization
approach (Montemerlo et al., 2002), sparse information filters (Thrun et al., 2004; Eu-
stice et al., 2004), junction tree filters (Paskin, 2003) and constraint networks (Lu and
Milios, 1997). A different approach, using a set of local maps connected in a graph
structure was presented by Bosse (2004). A thorough tutorial of both basic and state-
of-the-art SLAM methods can be found in Durrant-Whyte and Bailey (2006) and Bailey
and Durrant-Whyte (2006).

Traditionally, SLAM was developed and used primarily for indoors and land robots.
However, a few results on underwater SLAM have been published during the recent
years. Williams et al. (2000) use point features extracted from sonar measurements,
whereas Newman and Leonard (2003) take advantage of pre-deployed acoustic beacons,
like in conventional LBL navigation, but without tedious pre-localization of the beacons.
Eustice et al. (2005) present a vision-based approach, using a camera for near-sea floor
ROV navigation. Fewer attempts have been published using a featureless bathymet-
ric approach. Roman (2005) uses small sub-maps built up using a multibeam imaging
sonar. The sub-maps are registered pairwise, using a correlation or iterative closest point
approach, to constrain the vehicle position estimates in accordance with the terrain.

In principle, the bathymetric terrain based navigation methods presented in this the-
sis can be used for SLAM. One possible solution is to do this in a sequential manner,
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in which the vehicles is alternating between map building mode, operation mode and
navigation mode. During map building mode the vehicle builds a map autonomously
while exploring an unknown area, using some kind of map creation algorithm. After the
map has been built, the vehicle switches to operation mode, conducting some operation
with or within the mapped area. During operation, the real-time navigation accuracy will
degrade, and a position fix is needed. This can be obtained by returning to the previously
mapped area and enter navigation mode, in which bathymetric terrain navigation algo-
rithm are used for navigation system aiding. Using this approach, the vehicle is able to
bound its real-time navigation error. The global position uncertainty after having made
a terrain navigation fix is bounded below by the vehicle position accuracy during the
map building phase. It may be argued, however, that this simple approach is not SLAM
in the sense defined in the aforementioned references, as the mapping an navigation is
performed sequentially, rather than simultaneously. Nevertheless, such a strategy would
be of great value when for instance performing submerged underwater operations in a
previously unmapped area.
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3
Underwater Terrain Navigation

IN the previous chapter, the principles and algorithms for terrain-based navigation in
general were described. In this chapter the special problems that arise when using

terrain based navigation underwater are discussed. First, the different sensors used in
underwater terrain navigation are described, before moving on to the stochastic models
describing the problem.

3.1 Depth Measurements

Underwater terrain navigation deals with the task of measuring a part of the sea floor,
and compare it to a terrain map of the area. Underwater maps give the depth at certain
points on the sea floor, relative to a defined vertical datum. Numerous vertical datums
exist, mean sea level (MSL) being the most widely used. Depth maps and their error
sources will be discussed in Chapter 4. However, it is important to bear in mind that map
databases are made from the same types of sensors that are being used for underwater
terrain navigation, sharing a lot of error characteristics. It is therefore desirable that dif-
ferent sensor types are used for mapping and navigation, e.g. multibeam echo sounders
with different frequencies, in order to minimize the statistical correlation between errors
of the map database and errors of the depth measurements used for navigation.

The total sea depth at the location of an underwater vehicle is a combination of the
vehicle depth below the surface, or more accurately, the depth below the vertical depth
reference used, and the distance from the vehicle to the sea floor. This can be written as

z = zv + hv + a, (3.1)

where zv denotes the depth of the vehicle, hv the height above the sear floor, and a
denotes the vertical distance between the depth and height sensors. Note that the distance
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56 3 Underwater Terrain Navigation

a is dependent on the orientation of the vehicle.
The depth of the vehicle, zv, is usually computed using a pressure sensor, through

a pressure to depth conversion, whereas the height above the sea floor, hv, is measured
using some kind of bathymetric sensor, usually an acoustic sensor. Different bathymetric
sensors and their characteristics are described in the subsequent subsections. Since the
total sea depth measurement contains contribution from the pressure sensor as well as
from the bathymetric sensor, the measurement error contains contribution from both of
these sensors.

3.1.1 Bathymetric Measurements

With the exception of laser, all underwater bathymetric sensors are acoustic sensors.
The principle of acoustic range measurements is simple. A sound pulse, with a known
frequency and pulse-length is sent from the sensor transmitter towards the sea floor. The
sound is reflected from the sea floor and back to the sensor. The time it takes from the
pulse is transmitted until the echo is received at the sensor receiver, is known as the
time-of-flight of the pulse. If the speed of sound c in the water is known, the range can
be computed as

r =
τc

2
, (3.2)

where τ is the two-way time-of-flight of the sonar pulse. In general the speed of sound
will not be constant throughout the water-column, so the range calculation is generally
more complex than in (3.2). In order to minimize the effects of sound speed errors,
sound velocity profiles should be taken frequently.

A number of different sensors can be used for terrain navigation. In principle, any
sensor measuring the depth below the vehicle can be used. However, the more infor-
mation one can get about the sea floor, the faster the convergence and the better the
robustness of the terrain navigation algorithms. It is therefore desirable to use sensors
that give several depth measurements in each ping, e.g. a multibeam echo sounder.

Single Beam Echo Sounder

As the name indicates, a single beam echo sounder (SBE) measures the depth in one
point only, usually directly below the vehicle. Before the advent of the multibeam echo
sounder, SBEs were the primary sensor used for sea bed mapping. Therefore, many of
the depth databases that exist today are made from single beam data.

For terrain navigation, one usually needs a profile consisting of a number of consec-
utive pings. Such a profile takes time to build up, and uncertainties in vehicle velocities
will contribute to errors in the profile. However, many underwater vehicles not primarily
intended for mapping, are equipped with single beam echo sounders e.g. for the purpose
of safe maneuvering. This is for example the case for many submarines, facilitating the
use of advanced terrain navigation.
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A number of different sensors can be used for terrain navigation. In principle, any
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mation one can get about the sea floor, the faster the convergence and the better the
robustness of the terrain navigation algorithms. It is therefore desirable to use sensors
that give several depth measurements in each ping, e.g. a multibeam echo sounder.

Single Beam Echo Sounder

As the name indicates, a single beam echo sounder (SBE) measures the depth in one
point only, usually directly below the vehicle. Before the advent of the multibeam echo
sounder, SBEs were the primary sensor used for sea bed mapping. Therefore, many of
the depth databases that exist today are made from single beam data.
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of safe maneuvering. This is for example the case for many submarines, facilitating the
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Multibeam Echo Sounder

A multibeam echo sounder (MBE) measures the depth in a fan of points beneath the ve-
hicle. Modern MBEs typically use several hundred beams, covering a large area beneath
the vehicle in an effective way. Because of their high resolution and accuracy, MBEs are
the primary sensor used in modern sea bed mapping.

An MBE consists of a transmitter array, aligned along the track of the vehicle, and
a receiver array aligned across the track of the vehicle. The resulting footprint consists
of a series of depth measurements arranged in a fan across the travel direction of the
vehicle.

All MBE data used in this thesis are from a Kongsberg Maritime EM3000 MBE,
which has a total of 128 beams and a frequency of 300 kHz. The beam width is 1.5×1.5
degrees, and the operating range is from 1 to 150 meters. It has a specified depth accu-
racy of 5 cm. The data are automatically roll and pitch compensated, using data from
the real-time navigation system. The data are output in the AAD (along-across-depth)
format, indicating the alongtrack distance, acrosstrack distance and depth measurement
of each individual ping. Before the measurements can be used for terrain navigation,
the MBE footprint has to be transformed into the coordinate system used in the map
database. This transformation is based on the estimated heading of the vehicle. Theoret-
ically, it would be possible to estimate the vehicle heading as an additional state in the
terrain navigation algorithms. However, as INS equipped underwater vehicles usually
have a very good heading estimate due to the implicit gyrocompassing capability of a
high-end INS, heading estimation in the terrain navigation system is not addressed in
this thesis.

By synthesizing consecutive pings from the MBE, a 3-dimensional profile can be
built up from the individual MBE fans. Often, one MBE sample is not enough to obtain
an accurate terrain navigation solution. This can for example be the case in flat areas. As
more MBE fans are put together, more information about the sea floor can be utilized.
However, it is important to be aware of the drift in the real-time navigation between
consecutive pings. If this is large, the resulting 3-dimensional profile will contain errors
leading to potential failure or inaccuracies in the terrain navigation solution. In such a
scenario, there will typically also be correlations between the measurements from ping
to ping, which should be incorporated in the algorithms. The difference in area coverage
between SBEs and MBEs is depicted in Figure 3.1.

3D Sonar

A 3D sonar has 2-dimensional arrays, giving a 3-dimensional measurement profile from
each ping. Thus the seafloor is sampled with an even higher efficiency than with an
MBE. There is no need for synthesizing consecutive pings; an accurate terrain navigation
estimate can be calculated as soon as the signal processing in the 3D sonar is done.

Nygren (2005) proposes the use of a 3D sonar for terrain navigation and derives
some favorable asymptotic properties of the terrain navigation measurement model as
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Figure 3.1: Difference between the area covered by an SBE (left) and an MBE
(right). Figure with permission from Jalving et al. (2004b).

the number of measurement points increases.

Doppler Velocity Log

A Doppler velocity log measures the 3-dimensional velocity of an underwater vehicle in
the vehicle body coordinate system, by measuring the Doppler shift of sound reflected
from the sea floor or from the water surrounding the vehicle. It is possible to measure
both the bottom relative and the water relative velocity, by pinging against the bottom or
a water layer, respectively. To measure bottom relative velocity, it is necessary that the
DVL has "bottom track", i.e. that the vehicle is so close to the bottom that the DVL is
able to detect the reflected sound. The maximum range of a DVL is dependent on the
frequency of the emitted sound; the lower frequency, the longer maximum range. How-
ever, lowering the frequency also lowers the resolution of the measurement, so choosing
the DVL frequency is a trade-off between range and resolution, a well-known principle
in underwater acoustics. Typical DVL frequencies used for underwater vehicles are 300,
600 and 1200 kHz.

Most commercially available DVLs today are so-called broadband DVLs, which
measure velocity from the time dilation of a series of sound pulses (RD Instruments,
1996), instead of using a continuous-tone signal for the computation of the Doppler
shift. A popular configuration, used i.e. in the RDI Workhorse Navigator DVLs, is the
Janus configuration, in which four transducers are mounted facing downwards, each with
an inclination of 30◦ to the vertical. Each of the beams measures the bottom referenced
velocity projected onto the centerline of the beam axis, i.e.

vDVL,raw(t) =

⎡⎢⎢⎣
vb1(t)
vb2(t)
vb3(t)
vb4(t)

⎤⎥⎥⎦ , (3.3)

where vbi
is a scalar measurement of the vehicle velocity vb

eb, decomposed along the
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principal direction of the i-th beam. Since there are four measured components of a
three-dimensional quantity, there is a redundancy in the measurement, which can be
utilized to get an estimate of the error in the velocity measurement. In the DVL sensor
coordinate system, the velocity measurement becomes

vbDVL
ebDVL

(t) = MvDVL,raw(t), (3.4)

where M is a transformation matrix. In order to use this measurement for navigation
purposes, it must be compensated for the roll, pitch and heading of the vehicle, i.e. it
must be transformed into a local, earth-referenced coordinate system.

As the DVL in bottom-tracking mode measures the velocity by analyzing the Doppler
shift of sound reflected from the bottom, it also provides depth measurements. Each of
the DVL beams gives rise to a depth measurement, so a DVL with four measurement
beams, like an RDI Workhorse Navigator DVL, yields four depth measurement at each
ping. The measured depth is the altitude above the sea-floor at each individual beam
footprint, and to compute the location of the footprint in a geo-referenced frame, the
attitude of the vehicle from the INS system should be used.

Most modern AUVs are equipped with a DVL to counter the drift in the INS system.
Lower-end AUVs sometimes also have navigation systems based solely on a DVL, a
pressure sensor and a compass, with no IMU. In either case, it is possible to utilize the
depth measurements of the DVL for terrain navigation. It should be stressed, however,
that both the range and the area of coverage are usually smaller than what is the case for
an MBE, making the DVL-based terrain-navigation less robust and slowing down the
convergence time. However, in the case where no more sophisticated depth sensors are
available, the DVL is a good alternative.

Sidescan Sonars

A traditional sidescan sonar ensonifies the sea floor to each side of the vehicle, using
fan-shaped pulses perpendicular to the path of the vehicle. The returned echoes are used
to create sea floor images, based on the echo strength of the returned sound. Side-scan
images are well-suited to identify features on the sea floor, like rocks or bathymetric
structures. These images can therefore be used in feature-based navigation, after the
images have gone through a feature extraction process. Traditional side-scan sonars
do not produce bathymetry of the sea-floor. However, so-called bathymetric sidescan
sonars, are equipped with two or more receiver arrays at each side of the vehicle or tow-
fish, placed horizontally above each other with a known vertical displacement. Such
systems are able to provide depth-measurements from interferometry techniques. The
principles of a side-scan sonar are described in Lurton (2002).

Since sidescan sonars cover a much wider area than multibeam echo sounders, using
sidescan bathymetry in bathymetric terrain navigation will make the algorithms more ro-
bust and effective. Combining sidescan and multibeam bathymetry, using the multibeam
bathymetry as a gap-filler between the two sidescan areas, enables the vehicle to utilize
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a large area for navigation, which is beneficial, especially in areas with flat topography
where convergence using MBE only may be slow.

Synthetic Aperture Sonars

A synthetic aperture sonar (SAS) is able to image the sea floor much more accurately
than a sidescan sonar. The principle is to illuminate each spot several times, and build
up a synthetic aperture as the vehicle is moving along a straight line, similar to what is
done in a synthetic aperture radar (SAR). By using sophisticated processing of the data,
the SAS is able to create images with typically ten times better resolution than a con-
ventional sidescan sonar. Interferometric SAS systems are equipped with two or more
receivers at each side of the system, in the same manner as an interferometric sidescan.
Interferometric SAS systems provide bathymetry with extremely high resolution. An
introduction to SAS technology can be found in Lurton (2002) and review of current
state-of-the-art is given in Hayes and Gough (2009).

SAS images are ideal for use in feature-based navigation, because of their high res-
olution. Likewise, the high resolution SAS bathymetry from an interferometric SAS
would be ideal for use in bathymetric terrain navigation. However, most commercially
available interferometric SAS systems available today do not provide real-time data pro-
cessing, which would be necessary for a real-time TerrNav system to take fully advan-
tage of the SAS results. Modern HUGIN AUVs can be delivered with HiSAS, a high
resolution interferometric SAS that providing high quality bathymetry as well as high
resolution sea floor images (Hagen et al., 2008). Figures 3.2 and 3.3 show examples of
SAS imagery and bathymetry obtained from the HiSAS.

Vision-Based Terrain Navigation

As cameras do not produce bathymetric measurements, they can not be used for bathy-
metric terrain navigation. However, cameras are well suited for feature-based navigation
which was explained in Section 2.8 and the references therein. Because of the short
range of a camera, the vehicle will have to operate close to the sea floor, and the camera
often needs to be equipped with its own light source.

3.1.2 Pressure-to-Depth Conversion

The total sea depth at the position of the vehicle is given as the sum of the vehicle altitude
and the vehicle depth, as shown in Equation (3.1). The depth of an underwater vehicle
is estimated using a pressure sensor. The pressure-to-depth conversion is an important
source of error in the terrain navigation algorithms, and care should therefore be taken
to minimize these error sources.

A map data base reports the total sea depth relative to some horizontal datum, e.g.
mean sea level (MSL) or WGS-84. When performing terrain navigation, it is important
that the measured depth is given in the same vertical datum as the map database. The
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Figure 3.3: Example of high resolution bathymetry obtained from the Kongsberg
Maritime HiSAS. Courtesy of FFI.

pressure measured by the pressure sensor is the absolute pressure at the depth of the
vehicle, as shown in Figure 3.4. The absolute pressure measured at the vehicle can be
written as

p̃ = ph + pw + p0 + e, (3.5)

where ph denotes the hydrostatic pressure, pw is the dynamic pressure induced by sur-
face waves, p0 is the atmospheric pressure and e is the pressure sensor measurement
error. The atmospheric pressure has a standard value of 101.325 kPa and varies with
different weather conditions. The accurate atmospheric pressure should be known, ei-
ther by letting the vehicle measure it itself before diving or by using some other kind
of pressure forecast for the operation area. The tidal wave term pw can be modeled as
an oscillating error, with parameters according to the sea state in the area of operation.
Modeling this term and filtering it in the INS Kalman filter, has proven useful and led to
better accuracy in sea bed mapping in the presence of waves (Willumsen et al., 2007).

Let p denote the true absolute pressure at the vehicle, i.e. p = ph + pw + p0, the
depth z of the vehicle below the sea surface (in meters) can then be computed by the
following formula, taken from Fofonoff and Millard, Jr. (1983):

z =

∫ p
p0

V (35, 0, p) dp

g0(μ)
(
1 + 1

2γp(p − p0)
) +

1
9.8

p∫
p0

δ(S, T, p) dp, (3.6)
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where, V (S, T, p) = 1
ρ(S,T,p) is the specific volume of sea water as a function of salin-

ity S, temperature T and pressure, where ρ(S, T, p) is taken from the International
equation of state for sea water (EOS80), g0(μ) is the sea surface gravity at latitude
μ, γp is the mean vertical gradient of gravity with respect to pressure in the water
column. The integral

∫ p
p0

δ(S, T, p) dp of the specific volume anomaly δ(S, T, p) =
V (S, T, p)− V (35, 0, p) gives the geopotential anomaly ΔD and represents corrections
to the actual density profile of the water column compared to that of standard ocean
(S=35 psu and T=0◦C). This integral can be calculated from a CTD (conductivity, tem-
perature and density) profile of the water column, e.g. using a standard numerical inte-
gration procedure. The first integral in (3.6) also needs to be approximated. In Fofonoff
and Millard, Jr. (1983) a fourth order polynomial fit of this integral was presented, which
has become the standard method of calculating pressure from depth. The conversion for-
mula thus becomes

z =
c1p + c2p

2 + c3p
3 + c4p

4

g0(μ)
(
1 + 1

2γp(p − p0)
) +

1
9.8

ΔD, (3.7)

where the numerical values of the polynomial coefficients are c1 = 9.72659, c2 =
−2.25 · 10−5, c3 = 2.279 · 10−10 and c4 = −1.82 · 10−5, provided the pressure is
measured in decibars. A common model for the gravitation at sea surface is (in units of
m/s2)

g0(μ) = 9.780318(1 + 0.0052788 sin2 μ + 0.0000236 sin4 μ), (3.8)

where the latitude μ is measured in radians.
After the depth below the sea surface has been approximated using (3.7), the depth

has to be converted to the correct vertical datum, i.e. compensated for surface waves
and tidal effects. As mentioned above, the effect of surface waves should be attempted
filtered out by modeling it in the INS Kalman filter. The correct tide at the time of the
operation should be recorded and compensated for before sending the depth measure-
ments to the terrain navigation algorithms. However, as will be shown in later sections,
a depth bias due to incorrect tidal compensation or uncertainties in the pressure to depth
conversion, can be modeled and estimated in the terrain navigation algorithms, making
the terrain navigation algorithms more robust to such errors.

3.2 Process Model

In Section 2.4.2 the state-space model for terrain navigation in general was introduced,
together with the delta formulation of the estimation problem (2.28), in which the posi-
tion is estimated as an offset from the position given by the real-time navigation system,
which in the underwater case usually is an aided INS system. In the following, it is
assumed that vehicle real-time navigation system is indeed an INS system.

The filter model process equation, in the conventional 2-dimensional case, estimat-
ing north and east position offset, was given in (2.41), repeated here for convenience,
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3 + c4p
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g0(μ)
(
1 + 1

2γp(p − p0)
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1
9.8

ΔD, (3.7)

where the numerical values of the polynomial coefficients are c1 = 9.72659, c2 =
−2.25 · 10−5, c3 = 2.279 · 10−10 and c4 = −1.82 · 10−5, provided the pressure is
measured in decibars. A common model for the gravitation at sea surface is (in units of
m/s2)

g0(μ) = 9.780318(1 + 0.0052788 sin2 μ + 0.0000236 sin4 μ), (3.8)

where the latitude μ is measured in radians.
After the depth below the sea surface has been approximated using (3.7), the depth

has to be converted to the correct vertical datum, i.e. compensated for surface waves
and tidal effects. As mentioned above, the effect of surface waves should be attempted
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δx∗
k+1 = δx∗

k + v∗
k. (3.9)

The process noise v∗
k was considered a discrete white noise sequence having a covariance

matrix Q∗
k, i.e. it is uncorrelated between time steps. The process noise represents the

drift in the INS. Reiterating (3.9), one obtains
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= δx∗
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k−1∑
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which shows that the total drift at time step k is given as the sum of a white noise
sequence, i.e. the drift is a discrete-time random walk.

In an INS system, there are a number of different error contributions, both in the
inertial sensors and aiding sensors, each contributing to the overall drift of the naviga-
tion accuracy. For example, the gyroscopes and accelerometers measurements, i.e. the
angular rates and linear accelerations of the vehicle reference frame {b} relative to the
inertial reference frame {i}, include both biases and white noise. When white noises
present in the measured angular rates and linear accelerations are integrated, it results
in angular random walk (ARW) and velocity random walk (VRW), i.e. random walk in
angle and velocity. When velocity is integrated to obtain position, the resulting position
error is even more complex. An unaided inertial navigation system has a drift depen-
dent on the quality of the inertial sensors used. High-end AUV navigation systems are
typically based in so-called navigation grade IMUs, having an unaided drift of around 1
nautical mile per hour. To counter for this drift, aiding sensors are used, as explained in
Section 1.1.2. A DVL aided INS will typically counter the position drift to be approxi-
mately proportional to the distance traveled. As an example, a HUGIN AUV traveling at
2 m/s (≈ 4 knots) and equipped with a bottom-referenced 300 kHz DVL, is reported to
have a typical along track error of 4 % of traveled distance i.e. about 30 meters per hour
(Jalving et al., 2003). The across track drift will typically be smaller, around 1/3 of the
along-track drift. These errors can however be dramatically reduced by running certain
regular mission patterns, making some of the internal biases in the navigation system
observable. An example is the so-called lawn-mower pattern, which is widely used in
sea floor mapping surveys.

To model the drift of an aided INS properly, a large number of states are needed.
Most aided INS systems of today are based on an extended Kalman filter, estimating
the errors in the position and attitude computed from the navigation equations, a set of
differential equations from which the position, velocity and attitude of the vehicle can be
computed from the initial states and the IMU measurements. The Kalman filter usually
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includes 9 main states, 3 for position, 3 for velocity and 3 for attitude, plus a number
of additional error states, modeling noises and biases in the sensors. A modern AINS
for underwater vehicles, like the HUGIN navigation system described in Jalving et al.
(2003) typically has around 20 states in the state vector. Hence, in a stand-alone terrain
navigation algorithm, in which the number of states must be held low because of the
computational constraints, it is impossible to model the correct behavior of the AINS
drift.

The process model (3.9) was developed directly in the earth-referenced coordinate
frame {e}. Hence, the drift in the INS position, described by the possibly time-variant
covariance matrix Q∗

k, must be specified directly in {e}. However, for a real vehicle the
position drift is more easily characterized in the vehicle body-fixed coordinate system
{b}. For instance, when Doppler velocity aiding is used, the drift is typically larger in
the along track direction than in the across track direction. To be able to model this, the
noise should be specified in the {b} frame. This is further discussed in the following
section.
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Figure 3.5: Simulated position error in north and east direction using the simple
discrete random walk model, Equation (3.9), (blue line) and realistic AINS drift
obtained from NavLab (red line).

Figure 3.5 shows a realization of the north and east error obtained from the simpli-
fied process model (3.9) together with a corresponding realistic realization of the error
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from an AINS. The process noise in the discrete random walk model has been chosen
to be in accordance to the drift of the INS. The AINS realization was obtained using the
simulator and estimator part of the NavLab simulation and post-processing tool (Gade,
2004). Simulated DVL, depth sensor and compass measurements were used as aiding
sensors. The AINS realization is quite different from the discrete random walk realiza-
tion. Especially at the start of the simulation the AINS realization has a much smoother
trajectory. This is typical when using the simplified model; though the overall drift over
a longer period is fairly realistic, the short-time behavior is very different from that of
the full AINS model.

3.2.1 Extension of the State-Space Model

In this section an extension to the state-space model traditionally used in terrain naviga-
tion is developed. The focus is on the process model, and an alternative to the simple
position error random walk model (3.9) is presented. The work presented here was first
published in Ånonsen et al. (2007).

Coordinate Frames

A number of different coordinate frames are relevant in navigation problems. The co-
ordinate frames used in this thesis are listed in Table A.3 in Appendix A. Typically one
is interested in the position of the vehicle in a global coordinate frame. A common co-
ordinate frame is the {e} frame or ECEF (Earth-centered, Earth-fixed) system, which is
a cartesian coordinate system with its origin in the mass center of the earth, the z-axis
along the rotation axis of the earth pointing towards the north pole and the x-axis inter-
secting the surface of the Earth at 0◦ latitude and 0◦ longitude. The xy-plane coincides
with the equatorial plane. As the name ECEF suggests, the {e} frame rotates with the
Earth. The position of the vehicle relative to the {e} frame can be written as the position
vector peb, i.e. a position vector from the origin of the {e} frame to the origin of the
vehicle body frame {b}.

It is more common to specify the position of the vehicle relative to some reference
ellipsoid that approximates the surface of the earth. The position is then given as the
latitude and longitude degrees (in degrees or radians), as well as the height above/below
the reference ellipsoid. The most common reference ellipsoid today is that of the WGS-
84 (World Geodetic System) which is used e.g. in GPS systems. It should be noted that
the surface of the reference ellipsoid does not coincide neither with the earth geoid nor
with any of the common vertical references, like MSL. The vehicle depth must therefore
be transformed when going from WGS-84 to MSL or any other vertical datum. The
transformation from the ECEF system to WGS-84 is readily done using closed formulas
or iteration techniques.

The actual navigation computations are performed in a local coordinate frame, often
labeled the navigation frame (the {n} frame). Several variants exist, but in this thesis
the NED (North-east-down) frame will be used. In this frame, the x-axis points towards
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north, the y-axis towards east and the z-axis downwards. The frame is therefore moving
with the vehicle, and the origin is usually chosen to coincide with the vehicle’s center of
navigation (most commonly the position of the IMU). The orientation of the frame will
also change, in accordance with the curvature of the Earth. When approaching the poles,
the orientation will be changing infinitely fast, which is a problem in inertial systems.
In INS systems it is therefore common to use an alternative local frame, in which the x
and y axes are allowed to "rotate freely" around the z-axis. This system is known as the
wander azimuth system (Titterton and Weston, 2004) but is not used in this thesis.

Sensor errors, like velocity errors and inertial sensor errors, are naturally described
in the {b} frame, the body frame of the vehicle. For example, the DVL measures the
velocity vb

eb, i.e. the velocity of the vehicle {b} relative to the earth frame, decomposed
in the {b} frame.

The filter model (3.9) models the offset of the vehicle in the north and east direc-
tions. The model is therefore given in the {n} frame. In order to model the drift more
realistically, the filter model will now be reformulated in the {b} frame and later trans-
formed to the {n} frame. Since the measurements from the MBE are often given in a
roll and pitch compensated body system, it is actually easier to formulate the drift in this
system, labeled the {b′} system. Let φ, θ and ψ denote the roll, pitch and yaw angles of
the vehicle. The coordinate transformation matrix from the {b} frame to the {b′} frame
is then given by

Rb′
b =

⎡⎣ cos θ sin φ sin θ cos φ sin θ
0 cos φ − sinφ

− sin θ sinφ cos θ cos φ cos θ

⎤⎦ , (3.11)

whereas the coordinate transformation matrix from {b′} to {n} is given by a simple
heading compensation,

Rn
b′ =

⎡⎣cos ψ − sinψ 0
sinψ cos ψ 0

0 0 1

⎤⎦ . (3.12)

The coordinate transformation matrix from {b} to {n} is given as

Rn
b = Rn

b′R
b′
b (3.13)

=

⎡⎣cos θ cos ψ sinφ sin θ cos ψ − cos φ sinψ cos φ sin θ cos ψ + sinφ sinψ
cos θ sinψ cos φ cos ψ + sinφ sin θ sinψ cos φ sin θ sinψ + sinφ cos ψ
− sin θ sinφ cos θ cos φ cos θ

⎤⎦ .

Body-Relative Drift

In the conventional filter model (3.9) a white noise model was used for the drift. A
natural extension to this model is to use a first-order Markov model for the drift in the
{b′}-frame. Then, in continuous time, the horizontal drift vb′ ∈ R

2 is given by the
differential equation
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v̇b′(t) =
[− 1

τ1
0

0 − 1
τ2

]
vb′(t) + ζ(t), (3.14)

where τ1 and τ2 are positive time constants and ζ(t) is a 2-dimensional continuous-time
white noise. Discretizing this equation yields

vb′
k+1 = Gv(tk+1, tk)vb′

k + ζk. (3.15)

The matrix Gv(tk+1, tk) is given by

Gv(tk+1, tk) =

[
exp(− tk+1−tk

τ1
) 0

0 exp(− tk+1−tk
τ2

)

]
. (3.16)

The discrete white noise sequence ζk is related to the continuous white noise ζ(t) as

ζk =

tk+1∫
tk

Gv(tk+1, τ)ζ(τ) dτ, (3.17)

with the covariance matrix (assuming that E[ζk] = 0)

E[ζkζ
T
l ] = Qkδkl, (3.18)

where Qk is related to the spectral density matrix Q̃(t) of the continuous white noise as

Qk =

tk+1∫
tk

Gv(tk+1, τ)Q̃(t)GT
v (tk+1, τ) dτ. (3.19)

A more general treatment of the discretization of a continuous-time stochastic system
can be found in Gelb (1974) and Bar-Shalom et al. (2001).

The position offset, δxk ∈ R
2 is still given in the {n} system, so the drift vb′

k must
be transformed into the {n} system using the 2-dimensional rotation matrix

Rn
b′ =

[
cos ψ − sinψ
sinψ cos ψ

]
, (3.20)

i.e.
vn

k = Rn
b′v

b′
k . (3.21)

Extended State-Space Model

Defining the new state vector
[
δxn

k

vb′
k

]
∈ R

4, the new state-space model becomes[
δxn

k+1

vb′
k+1

]
=

[
I2×2 Rn

b′
02×2 Gv

] [
δxn

k

vb′
k

]
+

[
Rn

b′ 02×2

02×2 I2×2

] [
γb′

k

ζb′
k

]
, (3.22)
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where ζb′
k and γb′

k are white noise sequences with

E[ζb′
k (ζb′

k )T ] = Qb′
k δkl, (3.23)

(3.24)

and

E[γb′
k (γb′

k )T ] = Γb′
k δkl. (3.25)

This concludes the development of the new state-space model. Letting ξ∗ =
[
(δxn

k)∗

(vb′
k )∗

]
,

where the asterisks again indicate that this is a filter model, the model can be written on
the form

ξ∗k+1 = F ∗ξ∗k + ν∗
k, (3.26)

z∗
k = h∗(ξ∗k, x̃k) + w∗

k, (3.27)

which is standard state-space form with white noise

ν∗
k =

[
Rn

b′ 02×2

02×2 I2×2

] [
γb′

k

ζb′
k

]
, (3.28)

where

E[ν∗
k(ν∗

k)T ] =
[

Rn
b′ 02×2

02×2 I2×2

] [
Γ∗

k 02×2

02×2 Q∗
k

] [
Rb′

n 02×2

02×2 I2×2

]
. (3.29)

Because of high computational requirements, the 4-state extended state-space model
(3.22) is not well suited for point mass filter implementation. The model was therefore
implemented in a particle filter framework. Results from real AUV data are presented in
Chapter 5.

3.3 Measurement Model

In Section 2.4.2 the general truth model measurement equation was presented as

zk = h(xk) + wk = h(x̃k + δxk) + wk, (3.30)

where in underwater applications the function h(xk) denotes the true sea depth at po-
sition xk in some vertical datum. Since the true sea depth is not known, it has to be
approximated by a map data base, such that the corresponding filter model measurement
equation becomes

zk = h∗(x∗
k) + w∗

k, (3.31)
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zk = h(xk) + wk = h(x̃k + δxk) + wk, (3.30)

where in underwater applications the function h(xk) denotes the true sea depth at po-
sition xk in some vertical datum. Since the true sea depth is not known, it has to be
approximated by a map data base, such that the corresponding filter model measurement
equation becomes

zk = h∗(x∗
k) + w∗

k, (3.31)
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where the function h∗(·) is the map depth at the horizontal position in question. As
stated in (3.1), the measurements zk are given as a combination of the vehicle depth and
the vehicle altitude above the sensor footprint on the sea floor. The measurement noise
wk therefore includes contributions from

• The bathymetric sensor,

• Depth sensor noise, including pressure-to-depth conversion,

• Lever arm compensation between pressure sensor and bathymetric sensor,

• Map errors, including interpolation errors.

The following section will focus on the depth sensor noise. Since errors in the
pressure-to-depth conversion or erroneous tide compensation leads to a constant or slowly
varying depth error, the filter model measurement equation can be rewritten as

zk = h∗(x∗
k) + I · b∗k + w∗

k, (3.32)

where I is an appropriately sized identity matrix, and bk is a constant (or slowly varying)
depth bias. For the case of a constant depth bias, one has

b∗k+1 = b∗k. (3.33)

3.3.1 Dealing With the Depth Bias

Essentially, the depth bias can be dealt with in two ways. The more straight-forward
approach is to operate on relative depth profiles only, removing the mean from the mea-
sured depth profile as well as from the map profile. The second approach is to include
the depth bias in the state vector, such that it is estimated along with horizontal position.

Relative Depth Profiles

When this approach is taken, the algorithms are run on relative measurement profiles
only, i.e. the measurement vector zk is replaced by

zk,rel = zk − z̄k, (3.34)

where z̄k denotes the mean of the measurement vector, given by z̄k = 1
Nb

∑Nb
i=1 zi,k,

where Nb is the number of measurement beams. The corresponding depth map profile
is similarly replaced by

h∗
rel(·) = h∗(·) − h∗(·). (3.35)

Using relative depth profiles is a simple solution to the depth bias problem, and in
many cases it works well, as will be shown in Chapter 5. However, there are several po-
tential problems related to it. Most important, the use of relative depth profiles will not
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work in certain terrain types. One example is self-similar terrain, in which very similar
terrain profiles can be found at different depths. In many cases, the only way to distin-
guish such similar profiles would be to compare their absolute depth. In other words,
using relative depth profiles will increase the risk of multiple peaks in the posterior prob-
ability density. Another example of terrain not suited for relative terrain navigation is a
linear beach. If the profile is taken along the beach, i.e. perpendicular to the direction
of the slope, the relative profiles will be flat. On the other hand, if the profile is taken in
the direction of the slope, all relative profiles will be sloped and equal for any distance
to the shore. In either case, relative profile matching will not give any information about
the position of the vehicle along the slope. It should be noted that if there is no terrain
variations across the slope, it is not possible to determine the vehicle position in this
direction, regardless whether relative or absolute terrain profiles are used.

Another disadvantage with the relative approach is that the depth bias itself is not
estimated. The magnitude of the depth bias may be of interest in many cases. How-
ever, it would be possible to obtain a depth bias estimate by comparing the measured
depth profile with the profile from the map after convergence of the terrain navigation
algorithm.

Estimating the Depth Bias

The more general way of dealing with the depth bias is to estimate it as an additional
state in the state vector. Starting with the conventional 2-dimensional filter model (2.32)–
(2.33), the extended 3-dimensional state vector becomes

ξ∗k =

⎡⎣δx∗
N,k

δx∗
E,k

b∗k

⎤⎦ . (3.36)

Consequently, the new 3-dimensional process model becomes

ξ∗k+1 = ξ∗k + v∗
k, (3.37)

where the process noise vk ∈ R
3 is now a 3-dimensional white noise sequence with

covariance matrix Qk. Note that for the special case of constant depth bias, like in
(3.33), the third component of vk equals zero for all k, and (Qk)3,3 ≡ 0.

The measurement equation in the new 3-dimensional filter model can be written as

zk = h̃
∗
(ξ∗k; x̃k) + w∗

k, (3.38)

where the sea map function h̃∗ : R
3 → RNb

is defined as

h̃
∗
(ξk; x̃k) = h∗

([
x̃k,N + δxk,N

x̃k,E + δxk,E

])
+ INb×Nb

· bk, (3.39)

where h∗(·) is the same 2-dimensional map function that was used in the previous mod-
els.
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Using the new filter model, the optimal Bayesian filter equations are now readily de-
rived using the general Bayesian equations (2.18) and (2.19). The time update equations
in the 3-dimensional model becomes

p(δξ∗k+1|Zk) =
∫
R3

pv∗
k
(δξ∗k+1 − δξ∗k)p(δξ∗k|Zk) dδξ∗k, (3.40)

which is identical to the corresponding 2-dimensional equation (2.44), except that the
integral is now 3-dimensional, representing a 3-dimensional convolution.

The corresponding time update equation becomes

p(δξ∗k|Zk) = α−1
k pw∗

k
(zk − h̃

∗
(δξ∗k; x̃k))p(δξ∗k|Zk−1), (3.41)

where

αk =
∫
R3

[
pw∗

k
(zk − h̃

∗
(δξ∗k; x̃k))p(δξ∗k|Zk−1)

]
dδξ∗k.

The 3-Dimensional Point Mass Filter

Having extended the 2-dimensional filter model to three dimensions, it is natural to ex-
tend the 2-dimensional point mass filter of Section 2.4.4. The derivation is straight-
forward and starts with defining the 3-dimensional search grid, using M , N and Q grid
points in each spatial direction. Let Δ be the resolution of the grid, which is assumed to
be equal in all 3 directions. It should be noted that this assumption is not necessary, and
relaxing this assumption would simply result in a substitution of Δ3 by ΔNΔEΔD in
the equations below. Here the resolution is kept uniform simply for notational simplic-
ity. As before, at each grid point the density p(ξ∗k|Zk) is approximated by a probability
mass weight

p(ξ∗k(i, j, l)|Zk) i = 1, . . . , M, j = 1, . . . , N, l = 1, . . . , Q. (3.42)

The PMF measurement update equation now becomes

p (ξ∗k (i, j, l) |Zk)

= α−1
k pw∗

k

(
zk − h̃∗ (δξ∗k (i, j, l) ; x̃k (i, j, l))

) · p (ξ∗k (i, j, l) |Zk−1) , (3.43)

where

αk =
M∑
i=1

N∑
j=1

Q∑
l=1

[
pw∗

k

(
zk−h̃∗ (δξ∗k (i, j, l) ; x̃k (i, j, l))

)·p (ξ∗k (i, j, l) |Zk−1)
]
Δ3.
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Likewise, the PMF time update now becomes
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which is a discrete 3-dimensional convolution. The (MMSE) position estimate is com-
puted as
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and x̂k,P = x̃k + δx̂k,P . The corresponding error covariance matrix is given by
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Δ3. (3.46)

3-Dimensional Particle Filters and Sigma Point Kalman Filters

The equations for the particle filters in Section 2.4.5 and the Sigma Point Kalman Filter
in Section 2.4.7 were presented for an arbitrary number of states in the state vector. These
general algorithms are readily applied to the 3-dimensional state-space model. However,
one should bear in mind that in the case of the particle filters, the number of particles
needed in order to represent the probability distributions increases as the dimension of
the state space model increases. The same is true in the SPKF; the number of sigma
points required increases with the state vector dimension.

3.4 Integration of the Terrain Navigation System and the
Main Navigation System

As stated in Section 1.3, the focus of this thesis is on the terrain navigation algorithms
and how these can be utilized in a loosely-coupled terrain navigation system. However,
for the terrain navigation results to be of use to the main navigation system, be it an INS
system or another kind of navigation system, the terrain navigation updates have to be
integrated into the main system. The principle is outlined in Figure 3.6. Navigation data
from the main system are used as input to the TerrNav system and combined with the
bathymetric data to obtain measurements in a geographic measurement frame. These
measurements, together with the position from the main navigation system (what has
been labeled x̃k in previous sections) are used in the terrain navigation algorithms in the
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box labeled ‘Terrain Correlator’. Finally, when the terrain navigation algorithms have
converged, the position update is sent back the navigation system, where it is treated in
the same manner as another position update.

Terrain Correlation Processor (TerrP)
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Map
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Figure 3.6: Integration of the TerrNav and INS system. The blue boxes are the
bathymetric measurement sensors, the yellow box is the TerrNav system and the
green box is the main navigation system. Figure with permission from Jalving et al.
(2004b)

There are several possible problems with the integration scheme outlined above. As
the main system is in most cases Kalman filter based, it is assumed that the measurements
fed into it are uncorrelated with the errors in the main navigation system. However, as
input from the main system is used in the terrain navigation algorithms, the TerrNav
update will be correlated with the error states of the main system. Such a feedback loop
may cause instabilities and inaccuracies in the main Kalman filter. Another problem
is that only Gaussian measurement updates can be modeled in the Kalman filter. In
the terrain navigation problem, non-Gaussian densities are commonplace. For example,
multimodal posteriors sometimes occur, especially in less suited terrain.

A number of ad hoc measures can be taken in order to minimize the effects men-
tioned above. First of all, a proper convergence criterion must be defined, such that
a TerrNav update is not sent to the main navigation system until the algorithms report
that the uncertainty in the measurement is acceptable. The convergence criterion can be
formulated such that only updates which have a “near Gaussian” posterior are used in
the main system. In addition, integrity checks, based on the statistics of the differences
between the measured map profile and the map profile at the converged TerrNav solution
can be formulated. Also, in order to minimize effects of correlations between consecu-
tive TerrNav fixes, the algorithms should be restarted whenever a fix is used in the main
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navigation system.
The issues related to the integration between the two systems have not been the

main focus of this doctoral work. However, these issues are extremely important when
implementing a real-time terrain navigation system, especially due to the fact that the
TerrNav algorithms sometimes are overconfident and yield false fixes, as will be shown
in Chapter 5.

3.5 Terrain Dependency

An important prerequisite for TerrNav methods to work, is that the terrain has a sufficient
amount of terrain variation. The degree of terrain variation needed varies with the quality
of the sensors and with the resolution of the map. A terrain that looks flat with a crude
terrain sensor may possess a lot of terrain information when a high resolution sensor is
used. At the same time, a high sensor resolution is of little value if the map resolution is
not comparable. In AUV terrain navigation scenarios using MBEs, the map is often the
limiting factor, as sea maps are often created using measurements from surface vessels.

The task of assigning a measure for the suitability of a certain terrain for TerrNav is
a difficult one. This topic is not among the main focus areas of this thesis, so it will only
be briefly commented on here.

One obvious way to investigate the suitability of the terrain before planning a mission
would be to do TerrNav simulations in different areas of the terrain and investigate the
accuracy and precision of the solution. As this may be a time consuming approach,
it would be desirable to develop a measure for the suitability, assigning to each point
in the database a score for the terrain information. An obvious difficulty with such an
approach is that the suitability varies with the nature of the trajectory of the vehicle.
When crossing a valley, for example, the direction at which the vehicle approaches the
valley is crucial to the quality of the TerrNav position fix that can be obtained. One
single numerical value for the terrain suitability at each map cell is not able to reflect
this trajectory dependency.

Several attempts of characterizing the terrain information exist in the literature. Both
Bergman (1999) and Nygren (2005) propose to use an information measure derived from
the CRLB (see Section 2.6). If the true sea depth at position x is denoted by h(x), and
this is measured by a single measurement

z = h(x) + w, (3.47)

where the meaurement noise is assumed to be Gaussian, w ∼ N (0, q), the Fisher infor-
mation matrix at the true position x0 can be written as (Bergman, 1999)

J(x) =
1
q
E[∇xh(xk)∇xh(xk)T ], (3.48)

which means that the average value of the norm of the gradient vector ∇xh(x) can be
taken as a measure for the terrain information in an area. There are, however, some
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z = h(x) + w, (3.47)

where the meaurement noise is assumed to be Gaussian, w ∼ N (0, q), the Fisher infor-
mation matrix at the true position x0 can be written as (Bergman, 1999)

J(x) =
1
q
E[∇xh(xk)∇xh(xk)T ], (3.48)

which means that the average value of the norm of the gradient vector ∇xh(x) can be
taken as a measure for the terrain information in an area. There are, however, some
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obvious disadvantages with this approach. The trajectory dependence is not accounted
for. Also, in the extreme case of a constant, linear slope, the average gradient component
in the direction of the slope, and hence also the average gradient norm, will be constant
and possibly large, indicating good TerrNav properties. However, in such a terrain,
the TerrNav accuracy in the direction perpendicular to the slope will be very low. The
gradient norm is also unable to tell if the terrain is self-similar, i.e. if similar terrain
repeats itself at different depths. As discussed in Section 3.3.1, such a terrain is not well
suited when relative depth measurements are used.

Frequency content of the terrain is another natural approach when characterizing the
terrain. Bar-Gill et al. (1994) define an entropy function for the terrain information,
based on a Fast Fourier Transform (FFT) analysis of the terrain. This analysis is used
for improving the performance of TerrNav in an aircraft/missile application.

In Mandt (2001), an additional simple terrain information measure is introduced,
based on the uniqueness of the different depth values in the area. Some simulations
using a real underwater map are reported, indicating that the uniqueness measure actu-
ally outperforms both the gradient and frequency approaches described above. A more
thorough analysis on more depth data is however needed in order to draw any definitive
conclusions.

Figure 3.7: Terrain from the Ormen Lange area off the west coast of Norway. This
is an example of self-similar terrain. Courtesy Norsk Hydro ASA.
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4
Map Databases

MAP databases are essential to the success of terrain navigation. The accuracy and
resolution of the map database clearly restrict the obtainable navigation accuracy

in an area. As most terrain maps have been created using many of the same sensors
as those used in terrain navigation, in modern map databases usually multibeam echo
sounders, many of the database error contributions are of the same type as those of the
bathymetric measurements of the vehicle itself. In this chapter, different types of map
databases are first discussed. Then the different error sources in gridded map databases,
the map representation used in this thesis, are identified and described.

Sea floor mapping and geographical information systems (GIS) constitute a research
area of their own. This thesis does not primarily focus on mapping, and consequently
only a high-level description of the various ideas and algorithms of mapping is provided,
concentrating on the issues relevant to terrain navigation.

4.1 Map Representations

Modern sea maps are based on measurements from a wide range of different origins,
from low-quality manual measurements to high-quality multibeam echo sounder data.
It is important to distinguish between sea maps and digital terrain models (DTMs). Sea
maps are conventional maps used for ship navigation and contain a wide variety of in-
formation relative to mariners, like the locations of lights and beacons, geographical
names, depth contours, depth soundings etc. Digital sea maps are digitalized versions of
conventional paper charts and are based on data from a number of different sources. The
quality of the depth information in these maps may vary, and often it is simply a digi-
talization of depth information from old paper charts. The International Hydrographic
Organization (IMO) has defined the S-57 data exchange standard (International Hydro-
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graphic Organization, 1992), which is the governing data exchange standard for digital
hydrographic data today.

DTMs, on the other hand, are digital models of the actual terrain. Although one often
speaks of terrain maps when discussing terrain aided navigation, the algorithms actually
use DTMs. In this thesis, the term ‘map databases’ refers to DTMs, or more specificly
gridded DTMs in most cases. The term DTM was originally introduced by two American
engineers at the Massachusetts Institute of Technology in the 1950s, and their definition
of the term was: A “DTM is simply a statistical representation of selected points with
known X , Y , Z coordinates in an arbitrary coordinate field” (Miller and LaFlamme,
1958). A thorough discussion on digital terrain modeling can be found in El-Sheimy
et al. (2005).

A DTM can have several different data structures, the two most common being the
grid data structure and the Triangular Irregular Networks (TINs). In the terrain navi-
gation examples in this thesis only gridded maps are used, but the algorithms are not
restricted to any particular type of data structure. However, a disadvantage with TINs
is the time required when looking up the depth at an arbitrary point. In many cases,
the large number of map look-ups needed in terrain navigation would take too long to
process in a TIN-based data structure.

4.1.1 Gridded Maps

A gridded DTM simply consists of the sea depths at fixed horizontal grid points. The
grid cells may be rectangular, square or curvilinear, which is the case when the grid
points are defined by latitude and longitude coordinates. In most cases, however, the
grid cells are squares.

The advantage of gridded maps is that the data structure is similar to the array storage
structure of digital computers. Looking up a depth in the grid, storing and manipulating
data can therefore be done quite efficiently. Each grid point is surrounded by a corre-
sponding grid cell, and the grid point is defined to be at the center point of the cell. This
is illustrated in Figure 4.1. Several interpretations concerning the depth values in the grid
cells are possible. In this thesis, the depth at each grid node is interpreted to correspond
to the sea depth at the grid point only. Depths between the grid points are estimated
using interpolation, cf. Section 4.3. Another common interpretation is that of category
grids, in which the depth is considered constant within each grid cell. The terrain model
is in this case built up of a number of squares (or rectangles) with constant depth.

The accuracy of a gridded DTM representation of the terrain is highly dependent on
the resolution of the grid. Because of this, certain terrain forms such as ridges, small
peaks etc. may be between grid points and consequently poorly represented. The only
way to increase the ability of representing such features is to refine the resolution of the
grid. However, in flat areas this leads to a number of unnecessary grid points. Gridded
DTMs may therefore be ineffective with regards to data storage. One possibility to get
around this problem is to use subgrids with higher resolution in areas with large terrain
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Figure 4.1: Illustration of DTM grid cells and grid points.

variations. However, this increases the complexity of the model, and the grid size is
therefore normally held constant throughout large areas.

Gridding Algorithms

The raw measurements from a mapping surface consists of a number of more or less ir-
regularly spaced depth measurements. Modern mapping surveys are usually conducted
using multibeam echo sounders, either from a surface ship or from a towed fish or un-
derwater vehicle. The survey is usually executed using a regular trajectory (e.g. a lawn-
mower pattern) in order to cover the survey area entirely. The process of data gridding
involves making a regular grid based on these raw measurements. Usually some kind of
a wild point filter is applied first. The resolution of the grid must be chosen such that
each grid cell contains a sufficient number of raw grid points.

The most direct approach to data gridding, is the moving average approach, in which
the depth value at the grid point is taken as a (possibly weighted) average of neighboring
measurement points. The points to be included in the averaging are determined by some
kind of search algorithm (El-Sheimy et al., 2005). Two examples of search algorithms
are the n-nearest neighbor algorithm, which simply chooses the n measurement points
closest to the grid point, and the radius approach, which include all measurements with
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a distance below a certain value. A variation of this approach is to choose all grid points
within the grid cell surrounding the grid point. The averaging is normally done such that
points close to the grid point are assigned a higher weight than those farther away.

An alternative to the moving average approach is linear projection gridding (El-
Sheimy et al., 2005), in which local trend surfaces at the locations of the measurement
points are first made, using the surrounding measurement points. The depth at the grid
point is then calculated as a weighted average of the trend surfaces from the n nearest
measurement points, projected to the location of the grid point.

4.1.2 Triangulated Irregular Networks

The Triangulated Irregular Network model is an alternative to grid based DTMs. It
was developed in the early 1970s (Peucker et al., 1978) as an attempt to facilitate more
efficient storage of DTMs. The idea behind TIN is to build a surface based on irregularly
sampled points. The points are connected by lines to form triangles and within each
triangle the surface is usually represented using a plane. In this way, the model is built
up using the actual measurement points, or a subset thereof. The triangulation can be
found using a Delaunay triangulation (El-Sheimy et al., 2005, Sec. 3.7).

The advantage of TINs is that terrain can be sampled more efficiently, using a high
number of nodes in areas with rough terrain and fewer nodes in flat areas. A lot of
research has been done in order to choose which points to include in the TIN, as well as
how to store the TIN efficiently, (Peucker et al., 1978; El-Sheimy et al., 2005).

Although TINs are able to store the terrain model efficiently, they are less suited for
looking up arbitrary depths effectively. Algorithms for computing slopes and trends are
also more complex for TINs than for grid models. Because of this, TINs are not very
well suited for terrain navigation and will not be discussed further in this thesis.

4.1.3 Contour Based Map Representations

Contours, i.e. depth isocurves, are probably the most used terrain representation tech-
nique. Traditional sea charts are mostly contour based, possibly with some additional
depth soundings. Contour maps are usually good for human visualization of the terrain,
but their disadvantage is that they contain no information on the terrain between the
contours. Methods for digitizing contour-based paper charts, as well as converting from
digitized contour maps to grid models have been developed. Some of them are described
in El-Sheimy et al. (2005).

In order to use the algorithms described in this thesis on contour based map data,
the contours must first be converted to a gridded DTM. The problem with most com-
mercially available contour maps, however, is that the resolution and quality is not good
enough to be used for precise terrain navigation.
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4.2 Error Sources in Map Databases

An underwater terrain database is the result of an advanced processing chain, from the
data collection, via wild point filtering, to data gridding. It is natural to divide the error
sources into two groups: those related to the raw data measurements and those related to
the algorithms used for building the DTM.

4.2.1 Errors in Raw Measurement Data

The errors in the raw measurement data are often subdivided into systematic errors,
random errors, and gross errors or outliers (Bjørke and Nilsen, 2007), according to their
nature of origin. The following is a brief description of these error types.

Systematic Errors

Systematic errors are errors that influence all or parts of the measurements in the survey.
Typical examples are errors due to incorrect roll and pitch compensation, mounting er-
rors, incorrect sound velocity profile and incorrect tide compensation. Systematic errors
are often possible to compensate for by using calibration. An example of a calibration
method is given in Bjørke (2005).

Random Errors

Random errors are errors due to the measurement uncertainty of the bathymetric sensor
and are assumed to be spatially uncorrelated. The random errors can be estimated if one
has several different terrain models of the same area, provided other error sources have
already been compensated for. A lot of research efforts have been put into estimating
random errors in DTMs. Examples are Jakobsson et al. (2002) and Bjørke and Nilsen
(2007).

Gross Errors

Gross errors or outliers are statistically unsound measurements. The source of these
errors may for example be multipath reflection, i.e. sound pulses that are not direct
returns from the sea floor. Gross errors should be removed from the data set before
generating the terrain model. Traditionally this was done manually, but over the last two
decades, several methods for automatic cleaning of the data sets have been proposed,
e.g. Huang et al. (1999) and Debese (2001).

4.2.2 Algorithmic Error Sources

Algorithmic error sources stem from the algorithm that has been used for creating the
DTM. In gridded DTMs the gridding algorithm generally smoothes the surface by weight-
ing the grid cells within the cell. If the same measurement point is used to compute the
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grid value in several grid nodes, as is the case for example in the n-nearest neighbor
selection scheme, correlations between the grid nodes are also introduced.

4.3 Interpolation Techniques in Gridded Map Databases

In a gridded DTM, the depth between the grid points are estimated using some kind of
interpolation technique. It should be noted that interpolation can also be used as part
of the gridding algorithm, in order to compute the depths at the grid nodes from the
raw data. In this case, errors resulting from this interpolation are part of what was here
defined as algorithmic error sources in Section 4.2.2. When interpolation has been used
during the gridding process, there will consequently be error contributions from two
types of interpolation in the final terrain navigation solution; gridding interpolation and
DTM look-up interpolation.

Interpolation is the task of estimating the depth at a point between the reference
points by using the depth values at the reference points. In gridded DTMs, the term
reference points refers to the grid points, whereas when interpolation is used directly on
raw data, it refers to the raw measurements.

Interpolation methods are often classified according to the following characteristics:

• Exact vs. inexact interpolation,

• Global vs. local interpolation,

• Deterministic vs. stochastic interpolation.

Exact interpolation methods yield surfaces that match the depth at the reference
points exactly, whereas inexact interpolation methods relax this requirement, allowing
deviations from the depth references in order to obtain a better overall solution. Local
interpolation methods use reference points close to the interpolation points only, whereas
global interpolation uses the all the reference points available, in order to estimate the
global trend of the terrain. Examples of global interpolation methods are trend surface
analysis (TSA), Fourier analysis and KRIGING (El-Sheimy et al., 2005). KRIGING is
also an example of a stochastic interpolation method in that it incorporates statistical
information on the terrain into the interpolation.

The following will focus on interpolation methods used in gridded maps, i.e. the grid
points are the reference points. In a gridded DTM the global trend has already been taken
care of during the gridding phase, so the focus will be on local interpolation methods.

4.3.1 Nearest Neighbor Interpolation

Nearest neighbor interpolation is the simplest possible interpolation scheme. The depth
at the interpolation point is simply found by choosing the depth value at the closest
of the four surrounding reference points. The nearest neighbor algorithm is computa-
tionally simple, but in areas with large variations between neighboring grid points, the
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interpolated depth value may be inaccurate. It is an example of an exact interpolation
method. The resulting interpolation surface, i.e. the surface obtained by interpolation of
the entire map region, is discontinuous and non-smooth.

4.3.2 Linear Interpolation

Linear interpolation uses the three nearest reference points to define a planar surface,
and the depth value at the interpolation point is taken as the depth of the planar surface
at this point. The principle is illustrated in Figure 4.2. If the interpolation point is above
the diagonal from reference point 1 to 2 (the area marked δ = 1 in the figure), the planar
surface is constructed from reference points 1, 3 and 4, otherwise points 1, 2 and 4 are
chosen. The interpolation value is then computed as

z(x, y) = δ
(
z1+(z4−z3)x̄+(z3−z2)ȳ

)
+(1−δ)

(
z1+(z2−z1)x̄+(z4−z2)ȳ

)
, (4.1)

where

x̄ =
x − x1

Δx
, (4.2)

ȳ =
y − y1

Δy
, (4.3)

and

δ =

{
1 if x̄ ≤ ȳ,
0 otherwise.

(4.4)

Linear interpolation is an exact interpolation method and the resulting surface is contin-
uous but not smooth.

z1 z2

z3 z4

δ = 1

δ = 0

Δx

Δy

Figure 4.2: Linear interpolation regions.
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4.3.3 Bilinear Interpolation

Bilinear interpolation constructs a bilinear polynomial of the form

z(x, y) = a0 + a1x + a2y + a3xy (4.5)

over the grid cell. The depth at the interpolation point is taken as the value of the poly-
nomial at the point. The coefficients a0, a1, a2, and a3 can be found using the values
at the four reference points together with the fact that the interpolator is required to be
exact. The resulting interpolation value becomes

z(x, y) = z1 + (z2 − z1)x̄ + (z3 − z1)ȳ + (z1 − z3 + z4 − z2)x̄ȳ, (4.6)

where x̄ and ȳ are again given by (4.2)–(4.3). The bilinear interpolation method is exact
by construction, and the resulting interpolation surface is continuous and non-smooth.

In the computational results in Chapter 5, bilinear interpolation has been chosen in
as map database lookup interpolation method.

4.3.4 Higher Order Interpolation

Higher order interpolation methods also exist, e.g. cubic interpolation (El-Sheimy et al.,
2005). Higher order interpolation methods are often computationally demanding and are
not discussed further in this thesis.

4.4 Using Error Models in TerrNav Algorithms

In Section 2.4.2 the traditional state space model for terrain navigation was presented,
and in Section 3.3.1 it was shown how the model could be extended in order to take the
effects of the depth bias into account. Although the map database also may include depth
bias error sources, the depth bias discussed in Section 3.3.1 is a relative bias between
the map and vehicle sensor vertical references. Consequently, for terrain navigation
purposes, all of the depth bias can be associated with the vehicle bathymetric sensor. It
is not possible for the terrain navigation algorithms to distinguish between constant or
slowly varying depth biases in the map and corresponding errors in the depth sensor.
In the following discussion, the map vs. sensor depth bias effect is therefore ignored,
concentrating on the pure map error sources only. It should be stressed, however, that in
applications in which one is interested in the absolute depth per se, bias error sources in
the map database may be of crucial importance.

The conventional terrain navigation filter measurement equation was given in (2.33),
repeated here for convenience:

zk = h∗(x∗
k) + w∗

k. (4.7)

The noise term w∗
k was assumed to be zero mean and white, with covariance matrix

E[w∗
kw

∗T
l ] = R∗

kδkl. (4.8)
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As the noise term w∗
k contains both map and sensor noise, it can be written

w∗
k = w∗

map,k + w∗
meas,k, (4.9)

and since map and measurement noise are assumed to be independent,

R∗
k = R∗

map,k + R∗
meas,k. (4.10)

All information about the map noise, i.e. all the error sources discussed in this chapter,
has to be incorporated into the white noise term w∗

map,k. Due to the different nature of all
the individual map error sources, it is difficult to model these realistically using a crude
white noise model. However, it is possible to model some of the main effects in this
simple error model. When using a multi-measurement sensor, i.e. an MBE, each row in
R∗

map,k corresponds to one measurement beam. The individual map error contributions
are modeled in the diagonal elements of R∗

map,k, whereas the off-diagonal elements take
care of the correlations between the beams within the same ping. Typically, neighboring
beams will hit the sea floor within the same or in neighboring grid cells. Consequently
the map database values for neighboring beams will be more correlated than for beams
that are farther away from each other.
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5
Computational Results

IN the previous chapters a number of different terrain navigation methods have been
presented. In this chapter results from the methods using real AUV data are shown.

The chapter is a recapitulation, and to some extent an elaboration of the results presented
in the papers Ånonsen et al. (2005), Ånonsen and Hallingstad (2006), Ånonsen et al.
(2007), and Ånonsen and Hallingstad (2007). In addition, a section on terrain navigation
using pockmarks is included, based on Ånonsen and Hagen (2009).

5.1 Presentation of the Data Sets

5.1.1 Breiangen Data Set

Most of the results presented in the aforementioned papers were obtained using a data set
from the HUGIN 1 AUV, collected on November 29, 2001 in the Breiangen area in the
Oslo fjord, close to Horten. The trajectory of the vehicle is shown in Figure 5.1, together
with depth contours from the area. The data set has a duration of around 4 hours, and the
vehicle travels through various terrain types during the run. It starts in an area with rather
rough terrain, continues through a typical underwater valley (the westernmost part of the
run), into a relatively flat area where it conducts a lawn-mower survey pattern, before
returning to the rough area again. The total sea depth during the run, computed the
pressure sensor and the DVL measurements is shown in Figure 5.2. The vehicle was
equipped with a Kongsberg Maritime EM 3000 300 kHz multibeam echo sounder. The
EM3000 uses up to 127 beams in each measurement ping, but in this particular data set
a maximum of 92 beams were used. A map database of the area exists, constructed from
depth measurements from an EM 1002 MBE mounted on a surface ship. The depth data
were cleaned, wild point filtered and used to construct a gridded map database with 10
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90 5 Computational Results

m horizontal resolution. The EM 1002 operates at a frequency of 95 kHz, which makes
the map data statistically independent from the vehicle EM3000 bathymetric data.

During the run, the AUV was followed closely by a surface ship, taking continuous
DGPS/USBL measurements. The vehicle navigation data were post-processed using the
post-processing navigation package NavLab (Gade, 2004), yielding a reference solution
with an expected position accuracy of 1 meter (1σ). This reference solution was used as
ground truth for all the terrain navigation tests and is shown in Figure 5.1.

As noted in Section 4.3.3, in the results presented here, bilinear interpolation was
used in the map lookups the terrain navigation algorithms. In the Bayesian methods,
unless otherwise stated, the MMSE estimate is taken as the terrain navigation estimate.
It should be noted, however, that this estimate in most cases coincides with the MAP
estimate after convergence of the algorithms.
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Figure 5.1: AUV trajectory and depth contours from Breiangen data set.

5.1.2 Pockmark Data Set

In the pockmark application to be presented in Section 5.2.5, a map constructed from
data from a Kongsberg Maritime EM710 MBE was used for terrain navigation simula-
tions. The data and the simulation process are further described in Section 5.2.5.
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Figure 5.2: Total sea depth during Breiangen run, computed from DVL and pres-
sure sensor measurements.
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5.2 Results

5.2.1 Comparison of the TERCOM and PMF algorithms in 2D

The results in this section are based on the paper Ånonsen et al. (2005), in which a
comparison between the TERCOM and PMF algorithms was presented. All the tests
were done offline in MATLABTM, using the data set described in Section 5.1.1. The EM
3000 MBE was used as bathymetric sensor. Both algorithms were run using absolute
depth profiles, ignoring potential depth offset problems.

In the implementation of the PMF, an adaptive grid approach was used (Bergman,
1999), utilizing the fact that many of the point masses will be very close to zero. By
setting all point masses below a certain threshold to zero at each time step, the number
of computations needed is effectively reduced, using sparse matrices in MATLABTM.
Each time the number of non-zero point masses gets above or below certain limits, the
PMF grid is decimated or refined, such that a fine grid is used in areas with low estimate
uncertainty, whereas in areas where the uncertainty is higher, a coarser grid is used.
However, as the map in this test had a resolution of 10 m, the PMF grid resolution was
not allowed to get below a certain predefined limit. The adaptive grid approach is very
useful when large search areas with high initial uncertainty are used, but for smaller
areas, like the one treated here, it is not strictly necessary.

In real-time applications the algorithms are typically restarted frequently, and an
estimate is computed from a series of MBE pings, cf. Section 3.4. The same approach
was therefore followed in these tests. To test the algorithm sensitivity to errors in the a
priori estimates, an artificial error was added to the initial INS estimate.

Table 5.1 shows a summary of the results obtained by the two algorithms in different
areas of the run. A measurement update frequency of 0.5 Hz was used, and the algo-
rithms were run on terrain profiles consisting of 100 pings each time they were restarted,
corresponding to a profile length of around 400 m. Position estimates from the real-time
navigation system, with an added error of 100 m in each horizontal direction were used
as initial estimates. A 5 m grid resolution was used for TERCOM, whereas the minimum
resolution of the adaptive PMF grid was set to 2 m. The final error after 100 time steps
was computed as the total horizontal error of the estimate compared to ground truth. The
errors listed in Table 5.1 are the minimum and maximum errors obtained among the dif-
ferent 400 m profiles in areas with different terrain characteristics. In most of the runs,
except in the flat area, the errors were closer to the minimum values. There were, how-
ever, occasional false fixes (wild points), with low estimated PMF variance (respectively
stable TERCOM estimates) but large errors, even in the well-suited areas.

Both algorithms performed quite well in the rough areas, with typical final errors
around the map resolution (10 m), and they converged rather quickly to a stable estimate,
typically after 30-40 time steps, sometimes after as few as 2-3 time steps. In the rough
areas the estimates from each method after convergence were quite similar, though the
nature of their estimates was very different. Figure 5.3 shows the errors from one of
the tests in the rough terrain. Notice that the PMF estimate is much smoother than the
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Time/s Terrain properties PMF error/m TCM error/m
644-1644 Rough, valley 6-13 8-13
1644-2843 Valley 15-82 15-86
2843-5443 Rough 6-14 6-25
5443-13440 Flat 30-120 30-120
13440-1441 Rough 7-15 7-20

Table 5.1: Summary of results from MBE data in different parts of the run.

TERCOM estimate, which has sudden jumps even after 90 time steps.
As expected, both algorithms performed poorly in the flat area, see Figure 5.4. Some

of the major disadvantages of the TERCOM algorithm were revealed here. The TER-
COM estimate is very unstable, and it has no mechanism for indicating that quality of the
estimate is poor. In contrast, PMF shows a much smoother behavior, and the covariance
matrix reflects the uncertainty in the estimate. Some of the same TERCOM problems
were also evident in the ‘valley’ area, where the error in the principal direction along the
valley was large, a known phenomenon for terrain navigation in valleys or near beaches.
Again, the PMF was able to detect this uncertainty through its covariance matrix.

A problem with the PMF throughout all these tests was that the estimate was over-
confident. Though the estimated covariance matrix was able to reflect uncertainty in the
estimate in different areas, as described above, the estimated variance in each direction
was generally too low. For example, in the rough area, where the accuracy of the es-
timates were typically around 10 m, the estimated standard deviation in each direction
was typically as low as 2 m. This is a serious problem if the PMF estimate is to be inte-
grated in a Kalman filter based navigation system. Simulations, in which process noise
and measurement noise were sampled from known distributions, suggested that this in-
consistency stemmed from mismatch between the filter model and the true system.

As mentioned above, the adaptive grid approach was used in the PMF implementa-
tion. Tests done without grid adaptation show that the quality of the estimates does not
suffer significantly from this approach, as long as the truncation threshold is not chosen
too high. There is, however, a slightly higher risk of converging to a wrong estimate,
and in real system this approach should be used with care.

Similar tests to the ones described here have been done with other data sets from
the same test area, with very similar results. Both methods are robust to errors in the
initial position given by the navigation system, as long as the correct position is within
the search area.

Summary

In summary, the results described here section demonstrate that the 2-dimensional TER-
COM and PMF algorithms both perform well in suited terrain and are able to obtain
position fixes with a horizontal accuracy around that of the map resolution. Both algo-
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Figure 5.3: TERCOM and PMF errors, 3797-3997 s from start of run.
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rithms show poor performance in flat area, as expected. The PMF estimate is generally
smoother and more robust to errors than the TERCOM estimate. The PMF is also su-
perior to TERCOM in that is able to estimate its own uncertainty to a certain extent.
However, it is generally overconfident. Both algorithms have rare occurrences of false
fixes, i.e. erroneous estimates with low estimated uncertainty. As such false fixes are
damaging if fed back to the navigation system, a real-time system should include a wild
point filter before accepting a terrain navigation position fix, as discussed in Section 3.4.

5.2.2 Point Mass and Particle Filters in 2D and 3D

The results in this section are based on the paper Ånonsen and Hallingstad (2006), in
which point mass and particle filters in 2D and 3D are compared. The tests are based
on the same HUGIN data set as in the previous section, again using the EM 3000 MBE
as bathymetric sensor. The tests were conducted in a similar manner as described pre-
viously, comparing the results using the different algorithms on sequences containing
1000 seconds of data, which corresponds to a profile length of 2 km, i.e. considerably
longer profiles than what was the case in Section 5.2.1. In order to counter for the over-
confidence of the PMF, which was observed in earlier tests, a sub-sampling procedure
was used, using only MBE beams with a footprint distance greater than 10 m. Since
the horizontal resolution of the depth map database was 10 m, beams with footprint dis-
tance less than 10 m will frequently hit the sea floor within the same grid cell, leading to
strong correlations between the corresponding map look-ups. As these correlations are
not modeled in the sensor model, they may lead to overconfident terrain navigation re-
sults. Sub-sampling was also used between pings, to prevent the beams from subsequent
pings to hit within the same grid cell.

The rest of this section will first consider the classic 2-dimensional version of the
PMF and the Bayesian Bootstrap particle particle filter, before moving on to the cor-
responding 3-dimensional versions described in Section 3.3.1. Relative and absolute
profile matching are also compared.

The terrain navigation performance in two different areas will be compared, the parts
of the trajectory from 3000–4000 and from 9000–10000 seconds from the start of the
run. The terrain in the former area has significant terrain variations, whereas the latter is
relatively flat. The locations of the two trajectory parts are shown in Figure 5.5.

2-Dimensional Algorithms

In suited terrain, both the PMF and the PF converged quite fast to a stable estimate,
sometimes after as few as 1-2 measurement updates. Since the Bayesian Bootstrap filter
is a Monte Carlo method, subsequent runs using the same data yield different results.
Because of this, Monte Carlo runs were conducted, and the mean estimates were com-
pared to those of single-run PMF estimates. Generally, both methods worked well in the
rough terrain, with typical errors after convergence of around 5-10 meters, i.e. around
the horizontal resolution of the map grid. As expected, the results in the flat area were
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Figure 5.5: Contour map and AUV trajectory. The parts of the trajectory from
3000–4000 s and 9000–10000 s are used as example areas in this section.

inaccurate for both methods. In this terrain, the estimated posteriors from both methods
typically stabilized rather slowly to distributions with standard deviations of about 50-
100 meters in each horizontal direction. The accuracy of the MMSE estimates in this
area were typically 20-100 meters, so the estimate covariance matrix adequately mea-
sured the uncertainty in the estimates for both methods. The overconfidence observed
in the previous tests was still present to some extent, both for the PMF and the PF, but
this problem was considerably reduced due to the sub-sampling of the measurements
both within and between pings, to minimize the correlations between the different MBE
beams.

Figure 5.6 and Figure 5.7 show typical horizontal errors for the two methods com-
pared to ground truth, when they are run using 1000 seconds of data in the rough and
flat area, respectively. A search area of ±300 meters in each direction was used. The
results shown for the PF are the mean errors from 50 Monte Carlo (MC) runs, using
1000 particles in each run. Larger particle clouds were also tested, without improving
the estimates significantly. The PMF results are from single-run PMF, using an adaptive
procedure with a maximum of 5000 non-zero point masses. These results are typical of
the overall behavior of both methods. Generally, the estimates of the PMF algorithm are
slightly more accurate than those of the PF, and the PMF also converges slightly faster
to a stable solution. As can be seen in Figure 5.6, both methods yield estimates with an
accuracy of around 10 meters in suited terrain. The PMF estimates are also smoother
than the PF MC mean estimates, and this is also the case for the individual MC runs.
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As noted in Section 5.2.1, false fixes may occur in terrain navigation. However, in
these tests, no false fixes occured in the rough area. In the flat area occasional false fixes
occurred in the PF results. Typically, of among 50 PF MC runs in the flat area, 1 or 2
diverged or resulted in false fixes. For the PMF, no false fixes occurred in either area.
This indicates that the sub-sampling procedure also has a positive effect on the false
fixes; in the tests described in Section 5.2.1 false fixes were observed also for the PMF.
Both methods were very robust to errors in the initial position. In the experiments shown
in Figure 5.6 and Figure 5.7, the methods were initialized with an error of 50 meters in
each horizontal direction. As long as the true position was within the search area, the
methods were able to effectively recover the correct position, provided the terrain was
suitable for terrain navigation.
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Figure 5.6: Horizontal error from PMF and PF Monte Carlo mean error, 3000-4000
s from start of run (rough terrain).

3-Dimensional Algorithms

Similar tests to the above, but with added depth biases, showed that the 2D methods
were very sensitive to such depth biases. Even with small depth errors of around 0.5–1.0
meters, the quality of the estimates was significantly degraded, and the errors often grew
from 5–10 meters to 40–50 meters. Depth biases of this magnitude are very realistic
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in real scenarios, for example due to wrong tidal estimates. Tests done with the 3D
versions of the PMF and PF showed that these versions were able to resolve the depth
error problem effectively. Since the depth biases are known to be relatively small, the
vertical search area in the 3D methods was typically set to ±10 meters. Even with no
added artificial depth biases, the 3D methods were generally more accurate than the 2D
methods. However, the frequency of false fixes appeared to be slightly higher for the 3D
methods, and even the PMF gave a false fix on one occasion.

Figure 5.8 and Figure 5.9 show typical errors for both the 2D and 3D methods in the
rough area, without and with an added depth bias of 1 meter, respectively. As before, the
results from the PMF are single-run results, whereas those from the PF are the mean
errors from 50 Monte Carlo runs. The accuracy of the 3D methods are superior in
both cases, and their robustness to depth biases is clearly shown. Even with such small
depth biases as 1 meter, the performance of the 2D methods is significantly degraded.
This strongly advocates the use of 3D methods in real terrain navigation systems. The
same conclusions could be drawn from all of the experiments in the rough area; the 3D
methods were generally at least as accurate, and in most cases more accurate than the 2D
methods. As in the 2D case, the results from PMF3D were also slightly more accurate
than those from PF3D.
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Figure 5.8: Horizontal errors from 3D and 2D methods 3000–4000 s from start of
run. No added depth bias.
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This strongly advocates the use of 3D methods in real terrain navigation systems. The
same conclusions could be drawn from all of the experiments in the rough area; the 3D
methods were generally at least as accurate, and in most cases more accurate than the 2D
methods. As in the 2D case, the results from PMF3D were also slightly more accurate
than those from PF3D.
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Figure 5.10 and Figure 5.11 show corresponding results from the flat area. Though
the errors are quite large for all methods, the 3D methods are again more accurate, both
with and without added depth errors. The covariance matrices reflect the high uncer-
tainty in the estimates, so the estimates are still useful to some extent. The 3D methods
were in most cases more accurate also in the flat area, but both PMF3D and PF3D had a
slightly higher rate of false fixes or divergence than the corresponding 2D methods.

The main disadvantage with the 3D methods is that they are extremely computa-
tionally expensive. This is particularly true for PMF3D. In a straight-forward MATLAB
implementation of PMF3D, processing 1000 seconds of real data took around 6 hours
on a 3.6 gigahertz computer with 2.0 gigabytes of RAM. This yields a real-time factor
of around 20, when the real time factor is defined as

cRT = tp/ti, (5.1)

where tp is processing time and ti is input time. In comparison, for the adaptive grid
version of the PMF2D and the PF2D (with 1000 particles) the real-time factors were
typically around 0.05. For PF3D, the computational demands did not increase signifi-
cantly when extending them from 2D to 3D; the real-time factor was still around 0.05.
Theoretically, one should need more particles to obtain the same level of accuracy in a
3D problem as in a 2D problem. However, 1000 particles turned out to be sufficient also
in the 3D case. This is probably due to the relatively small vertical search area and due
to the fact that the particles converge quickly to the correct vertical offset. Again, these
results strongly advocate the use of 3D particle filters, as opposed to 2D. At virtually no
extra computational cost, the accuracy is improved by extending the PF from 2D to 3D. It
should be noted that not much work has been done in order to reduce the computational
cost of PMF3D. An adaptive grid implementation of PMF3D is expected to significantly
reduce the computational demand. However, computation times comparable to those of
PF3D can not be expected for PMF3D. An adaptive grid implementation is also more
difficult in 3D than in 2D, due to the 3D convolution that is involved.

Another way to resolve the depth bias problem without using a full 3D model is,
as explained in Section 3.3.1, to use relative profiles, by subtracting the profile means
and still work in a 2D setting. Similar tests to those above were conducted using this
approach, and the results were generally very good. The quality of these estimates were
very similar to those of the full 3D estimates. Figure 5.12 and Figure 5.13 show results
from PMF3D and from PMF2D with and without subtracted mean. Both in the flat and
the rough area, the performance of PMF2D with subtracted mean is comparable to that of
PMF3D. This shows that using relative profiles is a good alternative to 3D methods, and
this is also computationally less burdensome. However, one should bear in mind that in
certain terrain types, the use of relative profiles may be dangerous. An example of this is
so-called self-similar terrain, in which the terrain has similar local variations at different
depths. This results in a high risk of convergence to erroneous position estimates in such
terrain, and relative methods should therefore be used with care. Another disadvantage
with relative methods is that they do not estimate the depth bias, which in itself can be
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Figure 5.10: Horizontal errors from 3D and 2D methods 9000–10000 s from start
of run. No added depth bias.
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of run. 1 m depth bias.
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Figure 5.12: Horizontal errors from PMF3D and PMF2D with and without sub-
tracted mean, 3000–4000 s from start of run. 1 m added depth error.

5.2.3 Extension of the Process Model

The results in Section 5.2.1 and 5.2.2 showed the behavior of the TERCOM, PMF and
PF algorithms, and how the Bayesian methods were superior to the TERCOM algorithm.
However, a problem with the Bayesian methods was that the reported variance of the
estimates were too low. This problem was partially solved in Section 5.2.2 by using sub-
sampling of the bathymetric data, to prevent unmodeled effects stemming from several
measurement beam footprints within the same map grill cell. In order to try to reduce
this effect further, particle filter implementations of the approach presented in 3.2.1 were
developed, i.e. the process model was extended to use a first order Markov model for the
drift, instead of the traditional plain white noise approach. The results presented in this
section are based on the paper Ånonsen et al. (2007). As opposed to Section 5.2.2, in this
section it is assumed that the depth bias has been properly compensated for, in order to
limit the computational burden of the algorithms. The resulting state vector is therefore
4-dimensional. If needed, it is straightforward to implement 5-dimensional versions of
the algorithms, estimating the depth bias also.

104 5 Computational Results

useful.

t (s)

H
or

iz
on

ta
le

rr
or

(m
)

PMF2D (subtracted mean)
PMF3D
PMF2D

0 200 400 600 800 1000
0

10

20

30

40

50

60

Figure 5.12: Horizontal errors from PMF3D and PMF2D with and without sub-
tracted mean, 3000–4000 s from start of run. 1 m added depth error.

5.2.3 Extension of the Process Model

The results in Section 5.2.1 and 5.2.2 showed the behavior of the TERCOM, PMF and
PF algorithms, and how the Bayesian methods were superior to the TERCOM algorithm.
However, a problem with the Bayesian methods was that the reported variance of the
estimates were too low. This problem was partially solved in Section 5.2.2 by using sub-
sampling of the bathymetric data, to prevent unmodeled effects stemming from several
measurement beam footprints within the same map grill cell. In order to try to reduce
this effect further, particle filter implementations of the approach presented in 3.2.1 were
developed, i.e. the process model was extended to use a first order Markov model for the
drift, instead of the traditional plain white noise approach. The results presented in this
section are based on the paper Ånonsen et al. (2007). As opposed to Section 5.2.2, in this
section it is assumed that the depth bias has been properly compensated for, in order to
limit the computational burden of the algorithms. The resulting state vector is therefore
4-dimensional. If needed, it is straightforward to implement 5-dimensional versions of
the algorithms, estimating the depth bias also.

104 5 Computational Results

useful.

t (s)

H
or

iz
on

ta
le

rr
or

(m
)

PMF2D (subtracted mean)
PMF3D
PMF2D

0 200 400 600 800 1000
0

10

20

30

40

50

60

Figure 5.12: Horizontal errors from PMF3D and PMF2D with and without sub-
tracted mean, 3000–4000 s from start of run. 1 m added depth error.

5.2.3 Extension of the Process Model

The results in Section 5.2.1 and 5.2.2 showed the behavior of the TERCOM, PMF and
PF algorithms, and how the Bayesian methods were superior to the TERCOM algorithm.
However, a problem with the Bayesian methods was that the reported variance of the
estimates were too low. This problem was partially solved in Section 5.2.2 by using sub-
sampling of the bathymetric data, to prevent unmodeled effects stemming from several
measurement beam footprints within the same map grill cell. In order to try to reduce
this effect further, particle filter implementations of the approach presented in 3.2.1 were
developed, i.e. the process model was extended to use a first order Markov model for the
drift, instead of the traditional plain white noise approach. The results presented in this
section are based on the paper Ånonsen et al. (2007). As opposed to Section 5.2.2, in this
section it is assumed that the depth bias has been properly compensated for, in order to
limit the computational burden of the algorithms. The resulting state vector is therefore
4-dimensional. If needed, it is straightforward to implement 5-dimensional versions of
the algorithms, estimating the depth bias also.

104 5 Computational Results

useful.

t (s)

H
or

iz
on

ta
le

rr
or

(m
)

PMF2D (subtracted mean)
PMF3D
PMF2D

0 200 400 600 800 1000
0

10

20

30

40

50

60

Figure 5.12: Horizontal errors from PMF3D and PMF2D with and without sub-
tracted mean, 3000–4000 s from start of run. 1 m added depth error.

5.2.3 Extension of the Process Model

The results in Section 5.2.1 and 5.2.2 showed the behavior of the TERCOM, PMF and
PF algorithms, and how the Bayesian methods were superior to the TERCOM algorithm.
However, a problem with the Bayesian methods was that the reported variance of the
estimates were too low. This problem was partially solved in Section 5.2.2 by using sub-
sampling of the bathymetric data, to prevent unmodeled effects stemming from several
measurement beam footprints within the same map grill cell. In order to try to reduce
this effect further, particle filter implementations of the approach presented in 3.2.1 were
developed, i.e. the process model was extended to use a first order Markov model for the
drift, instead of the traditional plain white noise approach. The results presented in this
section are based on the paper Ånonsen et al. (2007). As opposed to Section 5.2.2, in this
section it is assumed that the depth bias has been properly compensated for, in order to
limit the computational burden of the algorithms. The resulting state vector is therefore
4-dimensional. If needed, it is straightforward to implement 5-dimensional versions of
the algorithms, estimating the depth bias also.



5.2 Results 105

t (s)

H
or

iz
on

ta
le

rr
or

(m
)

PMF2D (subtracted mean)
PMF3D
PMF2D

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

Figure 5.13: Horizontal errors from PMF3D and PMF2D with and without sub-
tracted mean, 9000–10000 s from start of run. 1 m added depth error.
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The algorithms were tested in the same manner as before, using profiles of approx-
imately 2 km, each with 1000 seconds of AUV data. Again the EM 3000 was used as
bathymetric sensor, and sub-sampling both within and between pings was used. Monte
Carlo runs were conducted, using both the traditional 2D approach and the new 4D ap-
proach, and the mean results from the Monte Carlo runs were compared. Table 5.2 shows
the drift noise parameters used in the filters in the various runs. Notice the low white
noise parameters used in the extended model.

Table 5.2: Filter drift noise parameters used in Monte Carlo runs.

Method τ1[s] τ2[s] White noise parameters
ID [

√
q11

√
q22] [m/s]

PF2D – – [0.5 0.5] (north, east)
PF4 10 10 [0.001 0.0005] (surge, sway)
PF4 100 100 [0.001 0.0005] (surge, sway)

Figure 5.14 shows the average horizontal errors from 25 Monte Carlo runs 1000–
2000 seconds after the start of the run, when the vehicle is in an area well suited for ter-
rain navigation. The red line, labeled ‘PF2D’, shows the results using the 2-dimensional
model, whereas the blue and black lines, labeled ‘PF4’, are the results obtained from the
improved state-space model, with drift parameters τ1 = τ2 = 10 s and τ1 = τ2 = 100
s, respectively. As can be seen in Figure 5.14, the improved filter models seem to yield
a more stable solution than the conventional one, which has a tendency of fluctuations.
This is particularly evident in the interval between 200 and 400 seconds, where the esti-
mate error from the conventional model suddenly increases for a while, before returning
to approximately 5 meters after around 500 seconds. This behavior is also seen to some
extent in the results from the extended model, but especially in the τ = 10 s case the
fluctuations are of much smaller magnitude, yielding smoother estimates. The reason for
this fluctuating behavior is mainly that one has to use a much higher white noise parame-
ter for the drift in the particle filter for the conventional model than what is the case in the
extended model, which has some time correlation in the process noise. This effect was
evident throughout all the tests in the suited areas; the improved filter model estimates
are smoother and have a lower tendency of fluctuations and hence a lower probability of
filter divergence.

Similar results can be seen in Figure 5.15, where corresponding results 3000–4000
seconds from the start of the run are shown. Here the tendency of fluctuations in the
conventional results are even more evident. Though all of the variants yield estimates of
high accuracy, within 10 meters, which is the horizontal map resolution, the results from
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algorithms. It turns out, however, that the covariance problem is not solved by the ex-
tended model. In fact, the estimated variances and covariances are much lower when the
improved filter model is used. Figure 5.16 and 5.17 show the estimated north and east
offsets and their standard deviations for the conventional and extended models, respec-
tively. These results are from one single run with the particle filters. For a consistent
estimate, the estimate should lie within the 1σ bounds around 68% of the time, if a
Gaussian distribution is assumed. This is achieved for the conventional model, but for
the extended model it is far from true. This means that there is still a discrepancy be-
tween the true system and the model. The improved smoothness of the estimates when
using the extended model therefore comes at the cost of poorer covariance estimates. A
higher covariance in the extended model can be attained by using a higher white noise
parameter, but this severely degrades the stability and smoothness of the estimates.
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Figure 5.16: Estimated north and east offsets (blue lines) and standard deviations
(green lines), conventional filter model (single run).

The behavior of the two models in flat terrain is shown in Figure 5.18. Here the ve-
hicle is traversing the flat terrain in a lawn-mower pattern, as can be seen in Figure 5.1.
Neither the conventional nor the extended model does well here, as the terrain does not
have enough variation for the terrain navigation algorithms to obtain distinct fits. None
of the results are accurate in this area, with typical horizontal uncertainties of 50–100
meters. It should be noted, however, that to some extent the covariance matrices esti-
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Figure 5.17: Estimated north and east offsets (blue lines) and standard deviations
(green lines), improved filter model with τ1 = τ2 = 10 s (single run).
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mated by the particle filter are able to reflect the uncertainties in the estimates both for
the conventional and the extended model. However, there is a tendency of overconfi-
dence in both cases. From these results it can be concluded that nothing is gained in the
flat area by using the extended model. On the other hand, nothing is lost either. The
terrain simply does not contain enough information within the current sensor and map
accuracy for terrain navigation to work satisfactorily.
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Figure 5.18: Computational results from 25 MC runs, 9000-10000 seconds from
start of run.

5.2.4 Sigma-Point Kalman Filter Results

This section is based on Ånonsen and Hallingstad (2007), where offline terrain naviga-
tion results from a 3-dimensional Sigma-Point Kalman Filter (SPKF) were presented,
using the same data set as in the previous sections. In Lang (2006), the SPFK was used
for terrain navigation on simulated data, but to the best knowledge of the author, Ånon-
sen and Hallingstad (2007) was the first publication presenting results using the SPFK
on real underwater vehicle data.

In Section 2.4.7 it was shown how the general SPFK framework is simplified us-
ing the usual linear process model for terrain navigation. The unscented transform
only needs to be used in the measurement update. In the time update, the conven-
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tional Kalman filter update equations are used. The prediction of the state vector and
covariance matrix simply become

ξ̄k = ξ̂k−1, (5.2)

P̄ k = P̂ k−1 + Q∗
k−1, (5.3)

where the overbar denotes the one step ahead predicted state and covariance, and the hat
denotes the filtered state and covariance. The matrix Q∗

k−1 is the filter model covariance
matrix of the process noise. In the implementation of the SPKF, the depth bias was
included in the filter, resulting in a 3-dimensional state-vector. The results of the SPFK
were compared to those of a 3-dimensional Bayesian Bootstrap particle filter, i.e. what
was called PF3D in Section 5.2.2. The methods were tested in the same manner as in the
previous sections, using 1000 seconds of AUV data in each profile.
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Figure 5.19: Comparison of SPKF and PF 1000–2000 s from start. The time axis
shows the time after restart of the algorithm

.

Figure 5.19, 5.20 and 5.21 show horizontal errors from the SPKF and the PF (using
1000 particles) in three different areas of the test run. The results in Figure 5.19 and
5.20 are from rather rough areas, well suited for terrain navigation, whereas the results in
Figure 5.21 are from a flat area. As can be seen in Figure 5.19 and 5.20, the results from
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Figure 5.19, 5.20 and 5.21 show horizontal errors from the SPKF and the PF (using
1000 particles) in three different areas of the test run. The results in Figure 5.19 and
5.20 are from rather rough areas, well suited for terrain navigation, whereas the results in
Figure 5.21 are from a flat area. As can be seen in Figure 5.19 and 5.20, the results from
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tional Kalman filter update equations are used. The prediction of the state vector and
covariance matrix simply become

ξ̄k = ξ̂k−1, (5.2)

P̄ k = P̂ k−1 + Q∗
k−1, (5.3)

where the overbar denotes the one step ahead predicted state and covariance, and the hat
denotes the filtered state and covariance. The matrix Q∗

k−1 is the filter model covariance
matrix of the process noise. In the implementation of the SPKF, the depth bias was
included in the filter, resulting in a 3-dimensional state-vector. The results of the SPFK
were compared to those of a 3-dimensional Bayesian Bootstrap particle filter, i.e. what
was called PF3D in Section 5.2.2. The methods were tested in the same manner as in the
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the SPKF are relatively accurate in the well suited terrain, even though in Figure 5.19 the
SPKF is less accurate than the PF, with a final horizontal error of around 22 m, compared
to around 6 m for the PF. However, the typical behavior is more like that in Figure 5.20,
where the accuracy of the SPKF is comparable to that of the PF. In Figure 5.22 the
corresponding horizontal trajectory can be seen. In the flat area, neither method works
satisfactorily, as expected. The performance in a flat area is shown in Figure 5.21, where
large errors are seen for both methods. The covariances obtained from the SPKF are
very similar to those from the PF, both in the rough and flat terrain.

Both algorithms can easily be implemented in real time, the SPKF being slightly
faster than the PF for this 3D model. The CPU times of the MATLAB implementations
of the algorithms when running 1000 s of real-time data on a 2.66 GHz computer with
4.00 GB of RAM were typically around 30 s for the SPKF and 45 s for the PF. However,
not much effort has been put into optimization of the algorithms, and they can probably
easily be made more effective.
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Figure 5.20: Comparison of SPKF and PF 3000–4000 s from start.

5.2.5 Pockmark Area Results

This section is based on the paper Ånonsen and Hagen (2009), in which terrain navi-
gation performance in an area with pockmarks was investigated. Pockmarks are craters
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Figure 5.22: SPKF, PF and post-processed trajectories (Latitude-Longitude) 3000–
4000 s from start.
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on the sea floor resulting from the release of gas or liquid (Hovland and Dudd, 1988).
Pockmarks of various sizes, ranging from a few meters to several hundred meters in di-
ameter, occur worldwide. Since pockmarks often occur in areas where the sea floor is
otherwise relatively flat, utilization of pockmarks for terrain-navigation purposes would
facilitate terrain navigation in areas where it would otherwise not be suited.

To investigate the behavior of terrain navigation in a pockmark area bathymetric data
from an area outside the Norwegian west coast were used. The data were collected by
a surface vessel using a Kongsberg Maritime EM710 multibeam echo sounder, post-
processed and converted to a grid format suitable for terrain navigation. A 3D plot of the
terrain in the area is shown in Figure 5.23. The pockmarks in this area vary in size, with
diameters from about 50 to 200 meters. The depth of the craters are typically between 3
and 10 meters. The total sea depth in the area is about 300 meters.

AUV navigation data and vehicle multibeam echo sounder data were simulated in a
number of different scenarios, to investigate the performance of terrain navigation in the
area. The post-processed EM710 data were chosen as the “true” terrain, and a new map,
to be used as the terrain navigation map database, was created, adding white noise to the
depth nodes in the true terrain map. This was done in order to emulate a true situation,
in which the surveyed terrain map used by the terrain navigation methods is imperfect
and includes noise from the survey sensor. The horizontal grid resolution of the depth
map was 10 meters. AUVs are typically equipped with MBEs of different types than
survey vessels. For example, the HUGIN AUV family (Kongsberg Maritime AS, 2009)
is typically equipped with MBEs like the EM3000, EM3002 or EM2000. The simu-
lated vehicle MBE data in this section use typical noise parameters from the EM3000
300 kHz MBE. The measurements consist of the vertical distance from the AUV to the
MBE footprint, taken from the “true” terrain data, plus measurement noise. Navigation
parameters used in the simulations are based on typical HUGIN 1000 parameters.

In the following the performance of terrain navigation in two different scenarios is
presented. Both the PMF and several variants of the PF were used as terrain navigation
algorithms. The terrain navigation solutions from both methods were very similar and
nearly identical in most cases. The PMF showed a slightly more robust behavior, and the
following subsections focus on the results from this algorithm. Unless otherwise stated,
the results presented are based on the posterior mean, i.e. the MMSE estimate.

Scenario 1

In this scenario, the vehicle travels from a flat area and directly over a pockmark, with
a speed of 2 m/s (≈ 4 knots). The depth variation of the pockmark directly underneath
the vehicle is about 3 meters. The total duration of the trajectory is approximately 210
seconds, corresponding to a traveled distance of about 400 m, and the AUV altitude is
30 meters. The trajectory in the map is shown in Figure 5.24.

The PMF was initialized with an initial error of 100 meters in the north and east
direction, respectively. This was done in order to test the ability of the terrain navigation
system to identify a large error in the navigation system. A standard deviation of 500
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Figure 5.23: Overview of the area with pockmarks.

meters in each direction was used in the initial probability density function, together with
a search area of ±3σ (±1500 m) around the initial position and a fixed grid resolution
of 5 meters.

The terrain navigation results from the PMF in this scenario are shown in Figures
5.25 and 5.26. Figure 5.25 shows the estimated north and east position offset from the in-
ertial navigation system, together with their estimated standard deviations. The standard
deviations have been plotted around the true offset at [−100 m,−100 m]. Figure 5.26
shows the total horizontal error of the terrain navigation position estimate from the PMF.
The total sea depth directly beneath the vehicle is shown in Figure 5.27. After 160 sec-
onds, the pockmark is in the footprint of the vehicle MBE. The results clearly shows
how the terrain variations around the pockmark can be utilized by the terrain navigation
system. In the beginning of the scenario, where the terrain is flat, the terrain navigation
estimate has a high uncertainty, with errors from 50 to 350 meters. This uncertainty is
reflected in the estimated standard deviation. As can be seen in Figure 5.25, the esti-
mated offsets stay within the 1σ band. In the flat area, the estimated probability density
function is actually multimodal. As soon as the vehicle travels above the pockmark, this
changes dramatically, and the terrain navigation system quickly finds the correct posi-
tion. This is also reflected in the estimated uncertainty. It should be noted that even
though there are several similar pockmarks within the search area, the algorithm finds
the correct one.

Scenario 2

In this scenario, the vehicle passes two pockmarks. The trajectory in the map is shown
in Figure 5.28. The first pockmark is rather deep, with a depth variation of 8–9 meters.
The second pockmark is smaller; the depth variation directly underneath the vehicle is
1–2 meters. The vehicle does not pass directly over the deepest part of this pockmark,
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meters in each direction was used in the initial probability density function, together with
a search area of ±3σ (±1500 m) around the initial position and a fixed grid resolution
of 5 meters.

The terrain navigation results from the PMF in this scenario are shown in Figures
5.25 and 5.26. Figure 5.25 shows the estimated north and east position offset from the in-
ertial navigation system, together with their estimated standard deviations. The standard
deviations have been plotted around the true offset at [−100 m,−100 m]. Figure 5.26
shows the total horizontal error of the terrain navigation position estimate from the PMF.
The total sea depth directly beneath the vehicle is shown in Figure 5.27. After 160 sec-
onds, the pockmark is in the footprint of the vehicle MBE. The results clearly shows
how the terrain variations around the pockmark can be utilized by the terrain navigation
system. In the beginning of the scenario, where the terrain is flat, the terrain navigation
estimate has a high uncertainty, with errors from 50 to 350 meters. This uncertainty is
reflected in the estimated standard deviation. As can be seen in Figure 5.25, the esti-
mated offsets stay within the 1σ band. In the flat area, the estimated probability density
function is actually multimodal. As soon as the vehicle travels above the pockmark, this
changes dramatically, and the terrain navigation system quickly finds the correct posi-
tion. This is also reflected in the estimated uncertainty. It should be noted that even
though there are several similar pockmarks within the search area, the algorithm finds
the correct one.

Scenario 2

In this scenario, the vehicle passes two pockmarks. The trajectory in the map is shown
in Figure 5.28. The first pockmark is rather deep, with a depth variation of 8–9 meters.
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Figure 5.25: Estimated north and east offset from PDF (solid line) and estimated
uncertainty plotted around true offset (dash-dot), Scenario 1. The true offset is
[−100 m,−100 m]. The PMF was initialized with an initial standard deviation of
500 meters in each direction.
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but the MBE swath covers the entire pockmark. Between the two pockmarks, the sea
floor is relatively flat, as can be seen in Figure 5.31. Like in the first scenario, an error of
100 meters in each direction was added to the position of the inertial navigation system.
The same parameters as before were used for the initial probability density, search grid
and PMF noise parameters.

The terrain navigation results from the PMF in this scenario are shown in Fig-
ures 5.29 and 5.30. The terrain navigation position estimate has a large error in the
start of the scenario, but as soon as the first pockmark is reached, the correct position
is found. Between the two pockmarks, the terrain is less informative, and in this area
the estimated offset does not change much. There is a slight increase in the estimated
uncertainty of the terrain navigation solution in this area, due to the drift modeled in
the process model of the PMF. When the vehicle reaches the second pockmark, a small
decrease can be observed, both in the actual error and in the estimated uncertainty.

Again, the terrain navigation algorithm was able to locate the correct pockmark, even
though several pockmarks of approximately the same size were present in the search
area. This appeared to be typical for all of the simulations that were done in this partic-
ular terrain. Even though the shapes of the pockmarks are similar, they seem to contain
enough information to provide a unique match in the terrain navigation methods.
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Figure 5.28: Trajectory of Scenario 2. The direction of travel is from left to right
in the figure.
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Figure 5.29: Estimated north and east offset from PDF (solid line) and estimated
uncertainty plotted around true offset (dash-dot), Scenario 2. The true offset is
[−100 m,−100 m]. The PMF was initialized with an initial standard deviation of
500 meters in each direction.

Summary

The simulations presented above indicate that terrain with pockmarks is suited for under-
water terrain navigation using MBEs. In both scenarios presented, the terrain navigation
algorithm was able to estimate the correct position of the vehicle within an accuracy
comparable to that of the horizontal resolution of the depth map, 10 meters in this case.
The presented results were from the PMF algorithm, but nearly identical results were
obtained from particle filtering methods. In the terrain used in this paper, the pockmarks
seem to be sufficiently different for the terrain navigation methods to obtain a unique
match. However, when used in a real system, care should be taken in the case of multi-
modal estimated probability density functions. If possible, the terrain navigation solution
should not be used until a unimodal density is obtained. If problems with multimodal
densities occur, it would be advantageous to include several pockmarks in the measured
terrain profile, such that the relative locations of the pockmarks are used, together with
the shapes of the individual pockmarks.

The use of pockmarks for underwater terrain navigation facilitates the use of this
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Figure 5.30: Horizontal error in PMF estimate, Scenario 2.
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Figure 5.31: Sea depth along vehicle trajectory, Scenario 2.
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Figure 5.31: Sea depth along vehicle trajectory, Scenario 2.



126 5 Computational Results

navigation technique in new areas. As pockmarks often occur in areas with relatively
flat terrain, where terrain navigation would otherwise be difficult, pockmark utilization
extends the application possibilities of terrain navigation considerably. Pockmarks can
also be used when planning an operation. If an area is known to contain pockmarks, it
could be included in the path plan in order to obtain position fixes in this area. In areas
with modest terrain variations but where distinct features are present, feature-based nav-
igation methods have traditionally been thought of as the only option. Using traditional
bathymetric terrain navigation instead may in some cases eliminate some of the prob-
lems related to feature-based navigation, e.g. the data association problem, the problem
of correctly determining which of the observed features correspond to the same physical
object.

5.3 Conclusions

The results in this chapter have demonstrated the performance of a suit of different ter-
rain navigation algorithms on real AUV data. The performance in various terrain types,
from rough areas, through valleys, pockmark areas and flat areas have demonstrated the
terrain dependence of the algorithms. Through the estimated covariance matrix, all the
methods, except for the TERCOM algorithm, are able to asses the quality of their own
estimates.

The main problem throughout all the tests in this chapter is the tendency of over-
confidence in the algorithms, due to the discrepancy between the true system and the
filter model as a consequence of the limited number of states that are possible to esti-
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6
Concluding Remarks

6.1 Main Conclusions

This thesis has dealt with the problem of utilizing terrain measurements for navigation of
underwater vehicles. A number of different estimation algorithms have been presented,
and their performance on real AUV data have been compared. Various aspects specific
to the application on these methods in an underwater environment have been discussed.
Throughout the thesis, the terrain navigation system has been treated as an external mod-
ule, providing measurement updates for the main navigation system in a loosely coupled
manner. This approach makes the terrain navigation module more portable and the over-
all system more robust to errors in the terrain navigation updates, although it is more
difficult to exploit the internal states of the main navigation system in the terrain naviga-
tion algorithms.

The thesis started with a chapter on the general concepts and earlier work on terrain
aided navigation (Chapter 2). Most of the effort was put on the class of Bayesian terrain
navigation methods, in which the problem is formulated in a state space model. Due
to the nonlinear nature of the problem, which stems from the terrain dependency of the
measurement function, nonlinear estimation methods are needed. The Bayesian estima-
tion methods point mass filters (PMFs), particle filters (PFs) and Sigma Point Kalman
filters (SPKFs) were discussed in the framework of terrain aided navigation. Special at-
tention was given to the fact that, due to the computational complexity of the estimation
methods, discrepancies between the true system and the filter model arise and may be a
source of inaccuracies in the terrain navigation results.

In Chapter 3, the special problems that arise when using terrain navigation underwa-
ter were discussed, including a presentation of various sensors used for terrain measure-
ments. As most modern underwater vehicles carry a multibeam echo sounder (MBE),
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128 6 Concluding Remarks

and this sensor is well suited for terrain navigation, a lot of the issues discussed were for-
mulated with the MBE in mind. Section 3.2.1 dealt with a possible extension of the state
space model, in an attempt to minimize the effects of the discrepancies between the true
system and the filter model process equation. It was also shown, in Section 3.3.1, how
unknown depth biases can be dealt with in the algorithms, either by estimating the depth
bias as an additional state or by using relative profiles, in which the mean is subtracted.
The chapter concluded with a brief discussion on the terrain dependency of terrain navi-
gation algorithms; in order for the methods to be of use, a degree of terrain variation that
is observable both in the sensor data and in the map database must be present.

Chapter 4 gave an introduction to various forms of map databases, the process of
converting raw bathymetric data to a gridded DTM (digital terrain model), as well as
listing the various error sources present in terrain models. The effects of all these dif-
ferent error sources have to be modeled in the terrain navigation measurement equation,
which can be challenging, especially when there is little room for extra states in the state
vector.

In Chapter 5, results from all of the previously discussed algorithms, using data
from sea trials with a HUGIN AUV, equipped with an MBE, were presented. First, in
Section 5.2.1 the performance of the TERCOM (Terrain Contour Matching) and that
of the PMF algorithm were compared. It was concluded that both algorithms yielded
position estimates within the resolution of the map in suited terrain, but that the PMF
was more stable and robust. However, the PMF suffered from overconfidence due to
unmodeled correlations.

Section 5.2.2 showed the effects of estimating the depth bias, and results using the
PMF and a PF with 2 and 3-dimensional state vectors were presented. The results re-
vealed a considerable gain in robustness and accuracy from taking the depth bias into
account. The 3-dimensional PMF algorithm yielded the best results, both in terms of ac-
curacy and robustness, though some of the same improvements could be accomplished
by using relative profiles. In addition, the problem of overconfidence was significantly
reduced by sub-sampling of the MBE beam, minimizing the effects of correlated mea-
surements.

In Section 5.2.3, results from a particle filtering implementation of the extended
state-space model of Section 3.2.1 were presented. Though the accuracy and stability of
the position estimates were slightly improved, it turned out that the overconfidence prob-
lem was not solved by the process model extension. On the contrary, the new algorithm
was even more overconfident than the original one.

Section 5.2.4 showed the behavior of the SPKF algorithm on the same data set used
in the previous tests. Though the results showed that the SPFK can indeed be used for
underwater terrain navigation, the results were not as accurate and robust as those of the
PF and PMF.

Chapter 5 concluded with some simulations done on real bathymetric data from an
area with pockmarks, i.e. small craters on the sea floor. The simulations indicated that
such pockmarks contain enough terrain information for terrain navigation to be feasible.
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As pockmarks often occur in areas where the terrain is otherwise flat, these results show
that terrain navigation can be used in terrain types previously thought of as unsuited.

Based on all the different algorithms tested on real AUV data in Chapter 5, it can
be concluded that the 3-dimensional PMF showed the best behavior, both in terms of
accuracy and robustness. The main problem with this algorithm is its computational
complexity, which might prohibit its use in a real-time application. It should be noted,
however, that it has not been the focus of this thesis to make the implementation of
this algorithm more efficient. An adaptive grid version would make it more efficient.
The PMF is also well-suited for parallelization. The constant development of computer
technology will also reduce this problem in the years to come.

The single most important conclusion of this thesis is the problem of overconfidence
in the terrain navigation algorithms, which remains partially unsolved. When using
terrain navigation updates in real-time navigation system, the overconfidence must be
kept in mind. On the other hand, this problem does not prevent the use of the terrain
navigation algorithms discussed in this thesis. As long as one is aware of the problem,
the system can be tuned conservatively, in such a way that the performance of the overall
system is not degraded. Nevertheless, such ad hoc tuning prevents the system from
utilizing the available terrain information in an optimal manner.

6.2 Suggestions for Future Work

A number of challenges that arise in underwater terrain navigation have been pointed
out in this thesis, and due to the time limitations present in a doctoral project, not all of
them have been addressed properly. Some problems that should be investigated further
are listed below, though this list is by no means complete:

• Gain a better understanding of the overconfidence effects, possibly by integrating
the terrain navigation updates more tightly in the inertial navigation system. One
approach would be to implement a Rao-Blackwellized particle filter like in Schon
et al. (2005) and Nygren (2008). None of these mention the overconfidence effect.

• Implement the algorithms outlined in this thesis in a real-time system. This is
actually an on-going research effort at FFI.

• Investigate the different integrity tests and convergence criteria for the terrain nav-
igation results. These are important issues when it comes to implementing a robust
real-time terrain navigation system.

• Implement more effective versions of the 3-dimensional and higher-dimensional
PMF, possibly through adaptive grid approaches or parallelization.

• Use the algorithms in a simultaneous localization and mapping (SLAM) setting.
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kept in mind. On the other hand, this problem does not prevent the use of the terrain
navigation algorithms discussed in this thesis. As long as one is aware of the problem,
the system can be tuned conservatively, in such a way that the performance of the overall
system is not degraded. Nevertheless, such ad hoc tuning prevents the system from
utilizing the available terrain information in an optimal manner.

6.2 Suggestions for Future Work

A number of challenges that arise in underwater terrain navigation have been pointed
out in this thesis, and due to the time limitations present in a doctoral project, not all of
them have been addressed properly. Some problems that should be investigated further
are listed below, though this list is by no means complete:

• Gain a better understanding of the overconfidence effects, possibly by integrating
the terrain navigation updates more tightly in the inertial navigation system. One
approach would be to implement a Rao-Blackwellized particle filter like in Schon
et al. (2005) and Nygren (2008). None of these mention the overconfidence effect.

• Implement the algorithms outlined in this thesis in a real-time system. This is
actually an on-going research effort at FFI.

• Investigate the different integrity tests and convergence criteria for the terrain nav-
igation results. These are important issues when it comes to implementing a robust
real-time terrain navigation system.

• Implement more effective versions of the 3-dimensional and higher-dimensional
PMF, possibly through adaptive grid approaches or parallelization.

• Use the algorithms in a simultaneous localization and mapping (SLAM) setting.
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A
Notation

Abbreviations and Acronyms

Table A.1: Abbreviations and acronyms

Abbreviation Explanation

AUV Autonomous Underwater Vehicle
CRLB Cramér-Rao Lower Bound
CTD Conductivity, temperature and density
DGPS Differential GPS
DTM Digital Terrain Model
EKF Extended Kalman Filter
FFI Forsvarets Forskningsinstitutt (Norwegian Defence Research Establish-

ment)
FIM Fisher Information Matrix
GIS Geographical Information System
GPS Global Positioning System
i.i.d Identically and independently distributed
IHO International Hydrographic Organization
IMO International Maritime Organization
IMU Inertial Measurement Unit
INS Inertial Navigation System
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142 A Notation

Table A.1 – continued from previous page

Abbreviation Explanation

KF Kalman Filter
LBL Long Base Line
MAP Maximum A Posteriori
MBE Multibeam Echo sounder
MC Monte Carlo
MCMC Markov Chain Monte Carlo
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSE Mean Square Error
MSL Mean Sea Level
PDE Partial Differential Equation
PDF Probability Density Function
PF Particle Filter
PMF Point Mass Filter
psu Practical Salinity Unit
RBPF Rao-Blackwellized Particle Filter
RMS Root Mean Square
ROV Remotely Operated Vehicle
RTK GPS Real Time Kinematic GPS
SBE Single Beam Echo sounder
SITAN Sandia Terrain Aided Navigation
SMCF Sequential Monte Carlo Filter
SPKF Sigma Point Kalman Filter
TERCOM Terrain Contour Matching
TerrNav Terrain (aided) Navigation
TIN Triangular Irregular Network
TRIN Terrain Referenced Integrated Navigation
UKF Unscented Kalman Filter
USBL Ultra Short Base Line
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Mathematical Notation

Table A.2: Mathematical symbols used in the thesis

Symbol Explanation

v Vector quantity
s Scalar quantity
A Matrix, A = [aij ]
AT Matrix transpose
f(x) Vector valued function f : R

nx → R
nf

vf Vector decomposed in frame f

Rb
a Coordinate transformation matrix, vb = Rb

av
a

dx Multidimensional differential, dx = dx1 dx2 . . . dxnx

px(x) Probability density function of the stochastic vector x. With a slight
abuse of notation the subscript is often omitted, e.g. p(x) �= p(y)

E[x] Expectation of the stochastic vector x, E[x] =
∫

xpx(x) dx
x̂ Estimate of quantity x
x̄ Mean or prediction of quantity x
σx(x) Variance of one-dimensional stochastic variable x, σx(x) = E[x − x̄]
P x(x) Covariance matrix of stochastic vector x, P x(x) = E[(x−x̄)(x−x̄)T ]
xk Quantity at time step k
x∗

k Quantity in filter model
Xk Collection (history) of quantities, Xk = {x0, x1, . . . ,xk}
N (x̄,C) Multidimensional normal/Gaussian pdf with mean x̄ and covariance

matrix C
φ Roll angle
θ Pitch angle
ψ Yaw angle

Table A.3: Coordinate systems used in the thesis

Symbol Description

e Earth-centered, Earth-fixed (ECEF) coordinate system
n Local north, east down (NED) coordinate system
b Body fixed coordinate system
b′ Body fixed, roll and pitch compensated coordinate system
m Map coordinate system (earth fixed)
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