
June 2010
Sverre Hendseth, ITK

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

A Concurrency Oriented Real-Time
Language

Jon Tore Hafstad

Problem Description
Create a real-time language focusing on concurrency and parallelization, which can utilize the
potential of a
 multiprocessor system:

- Research what language features concurrency oriented language offer, and present them.
- Investigate how the design of their run-time architecture support the concurrency oriented
language.
- Define a subset of the grammar to a concurrency oriented language. Limit the language to only
include those mechanism necessary for demonstrating communication and concurrency
mechanisms.
- Create a compiler based on the defined grammar, and a scalable run-time system.
- Investigate if dependency analysis can be utilized by a multiprocessor real-time scheduler. If
possible implement a scheduler utilizing these principles.

Assignment given: 11. January 2010
Supervisor: Sverre Hendseth, ITK

Abstract

In this report we will present a concurrency oriented real-time language we
have created. We will present the parallelization patterns applied, and the
structure of the compiler. The language is based on a sub-set of occam’s
grammar, it includes features such as fine grained parallelism and message
passing between processes. During compilation the compiler generates pro-
cesses, and maps how they depend how they depend on each other.
This is made possible by limiting the ways processes can communication
with each other. The language runs on a multiprocessor run-time system.
It has one worker thread pr. processor, which executes processes created
by the compiler. The processes are scheduled with a multiprocessor earliest
deadline first (EDF) scheduler. Two different versions of the EDF sched-
uler were implemented: One pure EDF scheduler and one modified EDF
scheduler that utilize the dependency analysis performed by the compiler.
The dependency analysis based scheduler runs the process with the earliest
deadline concurrently with the processes it depends on. This enables the
workers to work together towards the deadline of the process with the ear-
liest deadline. This is an implementation that enables real-time application
to utilize the power of multiprocessor systems.
Performance data and examples is also presented. The examples demon-
strate how scheduling based on dependency analysis is able to reach dead-
lines, which the pure EDF scheduler does not reach. Standard performance
tests was performed on our language and several other languages, it showed
surprisingly that our system performed as well and even better than some
of the other languages. This is likely due to the simple and light structure
of our system.

Preface

This report, A concurrency Oriented Real-Time Language, is the written
fulfillment of a Master Degree completed at the Department of Engineering
Cybernetics, at the Norwegian University of Science and Technology. It
describes the language created during this project. Most work was put in to
the implementation of the language, and hopefully this report reflects the
work done in the implementation.
I would like to use this opportunity to thank some people that supported
me during this project.
I would like to thank my supervisors Sverre Hendseth and Martin Korsgaard,
for there good advice and criticism. I have to give a special thanks to Martin
for always taking the time to help me with Haskell problems.
And a special thanks to my father for supporting and believing in me, during
this project.
Jon Tore Hafstad

Trondheim June 5, 2010

Contents

1 Introduction 2
1.1 Problem Description . 3
1.2 Initial Status of the Project 3

2 Background 6
2.1 The Structure of a Compiler 7

2.1.1 Lexical Analysis . 7
2.1.2 Syntax Analysis / Parser 8
2.1.3 Grammar . 10
2.1.4 Semantic Analysis . 13
2.1.5 The Intermediate Code Generator 14
2.1.6 Optimization . 15
2.1.7 Run-time Environment 16

2.2 Compiler Generator Tools . 17
2.3 Parallelization . 23

2.3.1 Exploitable Concurrency 23
2.3.2 Amdahl’s and Gustafson’s Law 23
2.3.3 Concurrency in a Language vs Concurrency in a OS . 24
2.3.4 Parallelization Patterns 25
2.3.5 Automatic Parallelization 30
2.3.6 Dependency Analysis 32
2.3.7 Communication Between Concurrent Components . . 33

iv

2.3.8 Concurrency Oriented Programming Languages 35
2.4 Parallel Run-Time Environments 42

2.4.1 GO’s Run-Time System 42
2.4.2 Erlang’s Run-Time System 43
2.4.3 JIBU’s Run-Time System 44
2.4.4 occam’s/CCSP’s Run-Time System 44

2.5 Multiprocessors Scheduling 47
2.5.1 Partitioned Schedulers 47
2.5.2 Global Schedulers . 47
2.5.3 Interlocking Protocol 49
2.5.4 Batch Scheduling . 50
2.5.5 Real-Time Schedulers 51

3 Experimental Language Grammar 54
3.1 Language family . 54
3.2 Layout . 55
3.3 Hello World . 55
3.4 Procedure Declaration . 56
3.5 〈SingleBlock 〉/Procedure Block 57
3.6 Expressions . 58
3.7 Statements . 58

4 Compiler Generated Code 66
4.1 Processes Generation . 66
4.2 Duff’s Device/Co Routines . 67
4.3 The Stack . 70
4.4 Stack Inheritance . 70
4.5 Process Status . 71
4.6 Process Initiation . 72
4.7 Channel Communication . 72
4.8 Dependency Analysis . 73

v

5 The Run-Time System 76
5.1 Scheduler . 76
5.2 Stack . 79
5.3 Channel Communication . 79
5.4 Advanced Data Structures . 80

6 Examples and Performance 84
6.1 Concurrent Hello World . 84
6.2 Pure EDF Multiprocessor Scheduling 86
6.3 EDF Multiprocessor Scheduling With Dependency Analysis . 88
6.4 Performance . 90

7 Missing Features in Language and Run-Time System 96
7.1 Missing Language Features 96
7.2 Stronger Type Checking . 101
7.3 Asynchronous Communication 101
7.4 Garbage Collection . 102
7.5 Missed Deadline Handling . 102

8 Discussion 104
8.1 The Language Grammar . 104
8.2 How to Distribute Processes Among Processors 105
8.3 Global or Partitioned Run Queue 106
8.4 Preemptive or Non-Preemptive 106
8.5 Dependency Analysis . 107
8.6 Pure EDF Scheduler . 108

9 Conclusion 110
9.1 Further Work . 111

A BNF grammar 112

vi

Chapter 1

Introduction

The scope of this report is the present the experimental real-time language
we have created. The language is based on known concurrency oriented
languages. We will also present the multiprocessor run-time system created
to support the experimental language. The run-time system uses two real-
time schedulers implemented, where one of the utilizes compile time analysis
to improve scheduling. We will present how these two schedules differently,
and their supporting features.
The focus of this project has been to let real-time systems utilize multipro-
cessor systems. As the multiprocessor architectures has become more and
more common, and can be found in desktop machines, laptops and even
embedded systems. The focus on utilizing the new architecture has grown.
Within the real-time community there has also been done more research on
this field. Most of the multiprocessor real-time schedulers are still in the
experimental phase, and has been tested in experimental operating systems.
As far as we could find out there is no languages that support multiprocessor
real-time system as a part of their run-time system. There has essentially
been little focus on creating tailor made real-time languages.
The scope of this report is to explain how our language and run-time system
was designed and built. We will not go into specific details on the imple-
mentation, but give an overview and explain the design of different parts
of the system. Attached to this report is the complete source code of the
compiler and the run-time system, plus a few examples. For further details
on mechanisms presented in this report, please see the attached source code.
The report starts by giving a short introduction to compiler techniques, pat-
terns for parallel programming, and an overview of known concurrent lan-

2

guages new and old. Then a short introduction on real-time multiprocessor
schedulers based on our survey on Real-Time multiprocessor schedulers [17].
We will then present the grammar of the experimental language, compiler
generated code, and the design of the run-time system. The experimental
language will then be demonstrated, and performance results will be com-
pared with existing concurrent languages. At the end we will discuss the
results, and what we consider missing features in the language.

1.1 Problem Description

A problem description for our initial goals was formulated:
Create a real-time language focusing on concurrency and parallelization,
which can utilize the potential of a multiprocessor system:

(a) Research what language features concurrency oriented language offer,
and present them.

(b) Investigate how the design of their run-time architecture support the
concurrency oriented language.

(c) Define a subset of the grammar to a concurrency oriented language.
Limit the language to only include those mechanism necessary for demon-
strating communication and concurrency mechanisms.

(d) Create a compiler based on the defined grammar, and a scalable run-
time system.

(e) Investigate if dependency analysis can be utilized by a multiprocessor
real-time scheduler. If possible implement a scheduler utilizing these
principles.

1.2 Initial Status of the Project

This project is a continuation of our survey on multiprocessor real-time
scheduler and porting of the Linux Scheduler Simulator (LinSched). It pro-
vided us with vital knowledge about the challenges with utilizing multipro-
cessor systems in a real-time manner. Our experience with the Linux kernel
was also useful when it came evaluating OS performance versus, implement-
ing the mechanisms our self. We wanted to create a simple and effective
system, and get away from the complexity of the kernel.

3

We were also able to base parts of our project on observations and imple-
mentation done by Martin Korsgaards in his Time/occam language [?]. We
where able to use parts of the grammar specified, as we both had occam as
bases.
I already had some experience with compiler construction. In an earlier
projects in TDT4205, I had build a compiler using the compiler construction
tools lex & yacc. These tools however proved them self to be inadequate
when it came constructing a more complex compiler. We chose to use some
newer tools. They will be presented later in this report. It required that I
had to learn new tool (BNFC), and a new programming language (Haskell).

4

Chapter 2

Background

In this chapter compilers structure and parallelism will be emphasized. We
will also introduce multiprocessor real-time schedulers, based on our survey
on the subject [17], which contains further details on different algorithms.
In the section 2.1 language grammar, generated code, and compiler gen-
erator tools will be presented. Section 2.3 covers parallelization patterns,
and presents mechanisms for identifying parallelism at compile time. It also
includes a short introduction to a few concurrent programming languages.
The run-time systems of these languages is presented in section 2.4. To
be able to appreciate this part of the report, the reader must be familiar
with concurrency principles, such as processes, threads, mutual exclusion,
race condition (to get up to speed we recommend Patterns for Parallel
Programming [25]). The last section is a short summary of the real-time
multiprocessor schedulers presented in [17], with some new material.

6

2.1 The Structure of a Compiler

This section is based on the explanation and terms used in the ”dragon
book” [5]. The structure of a compiler described in this section is divided
into four parts, lexical analysis, syntax analysis, semantic analysis and code
generating. This is what is described as a complier front end. We will not
focus on the back end which generates computer instructions, as it is a very
complex system and not relevant for the rest of the report.

2.1.1 Lexical Analysis

Lexical analysis is the first part of a compiler. It identifies sequences of
characters that represent meaningful code, called lexmes. The lexical an-
alyzer or ”lexer” generates a token from each identified lexme, where each
token holds a value and a type.

token ¡token name, attribute value¿

The lexical analyzer is based on the grammar specified for the language.
For instance, a grammatical rule for declaring a variable:

1 i n t c

Listing 2.1: Int variable

In this example int is a type token with int as value, and c is of the type
variable and c is the value. Let us take a look at a bit more complex
example:

1 c = b + a

Listing 2.2: Summation

It consists of two operations; addition of b and c, and assigning the sum to
a. To interpret this as intended, we have to define rules for the lexer.
We define the rule for addition to:

identifier = identifier + identifier

7

The rule defines that on the left side of the equal sign there has to be an
identifier, and on the right hand side of the equal sign there must be a
summation expression. The summation expression consists of two identifiers
on each side of a plus sign. Without rules for what character an identifier
can consists of the grammar is ambiguous. As an expression such as a + b
either could be an identifier or an expression for a summation. To avoid
this we additionally say that a variable name has to consist of lower case
characters from [a-z]. This prevents the grammar from being unambiguous.
When running a lexer with the defined grammar on the addition in listing
2.2, it starts with identifying the a as an identifier, and maps it to a token
¡id, 1¿, where 1 corresponds to its position in the symbol table. Due to
our rule for what characters a identifier can consist of the lexer knows that
the equal can’t be a part of the identifier. = does not have any attributes
and is represented by the token ¡=¿. Again both a and b is mapped to an
id and its symbol table position. Due to our rule for the lexical structure of
a identifier the lexer knows what is a lexeme (a group of character that is
meaningful). The resulting token sequence generated by the lexer is then

1 <id , 1> <=> <id , 2> <+> <id , 3>

Listing 2.3: Summation token stream

To define a complete language grammar, rules such as the ones above has
to be defined for every single type of statement and expression in the pro-
gramming language. This can be done together with the syntactical rules,
in the grammar. Which we will demonstrate later in this chapter.

2.1.2 Syntax Analysis / Parser

Syntax analysis or parsing uses the token stream generated by the lexer to
create a representation of the operations, and groups the statements. This
is necessary to get an unambiguous interpretation of source code. The result
of parsing is a complete syntax tree and a symbol table. The syntax tree
consists of the tokens generated by the lexer grouped together by the parser.
The symbol table holds the corresponding values to the ids in the syntax
tree.
Let us take a look at a simple subtraction and multiplication, and see why
it can ambiguous:

8

<id, 1>

<id, 2> <id, 3>

<=>

<+>

Figure 2.1: Syntax tree produced of the token stream in listing 2.3

1 a = a − b ∗ c

Listing 2.4: Multiplication and subtraction

There is two way to perform calculation in the code in listing 2.4. Either do
the subtraction a - b and then multiply c with the result from the subtrac-
tion; or b * c can be calculated first and the result of this multiplication
is then subtracted from a. These two interpretation will cause different re-
sults. A language grammar therefor has to specify which of the operations
that has precedence over the other operations. The parser then groups the
tokens according to these rules.
Figure 2.1 shows the syntax tree generated by the parser from parsing the
token stream from the last section (listing 2.3). Where each inner node in
the tree represent an operation, and the children of these nodes represent
the arguments to the operation. The syntax tree holds two operations,
assign ¡=¿ and a summation ¡+¿. The summation operation is one of the
arguments of the assignment. The leaf nodes holds the rest of the arguments.
The parsing of the summation is pretty straight forward, because it is only
one way the token stream can be read.
When generating the syntax tree for the multiplication and subtraction pre-
sented in listing 2.4, the parsers has to use the preference rules to generate
the tree in figure 2.4. Multiplication ¡*¿ has a higher precedence than sub-
traction ¡-¿, and is a child node of the subtraction. If the semantic analyzer
reads from the bottom right (which is does in this case) the multiplication
is the first expression to be read.

9

<id, 1>

<id, 1>

<id, 2> <id, 3>

<=>

<->

<*>

Figure 2.2: Syntax tree produced of the source code from listing 2.4

2.1.3 Grammar

The rules defined for the lexer and parser, creates what we refer to as a
grammar. There exists several standards form for expressing the grammar
of a language. Some of these can be read by compiler generator tools, that
can generates parts of the compiler based on the grammar. The most used
standard grammar is called context free grammar, also known as Backus-
Naur Form (BNF).
A context free grammar consist of four elements

1. Terminal symbols or tokens, as shown in section 2.1.1. These are the
basic elements of the language. Such as numbers, variables, characters
etc.

2. Nonterminals are symbols that can be reduced. They can consist of
terminals or nonterminals. A nonterminal could for instance be a
definition of a list that is defined to consists of digits.

3. Productions, consists of a nonterminal that is the head of the produc-
tion; the head is placed on the left hand side of an arrow, on the right
hand side of the arrow there is a sequence of terminals and/or nonter-
minals describing what the terminal on the right hand side consists
of. The sequence on the right hand side is referred to as the body of
the production.

10

4. A definition of one of the nonterminals as start symbol, the highest
level of abstraction.

If we want to put these rules to use we can create a grammar that describes
a summation:

1 1 + 2 + 3

Listing 2.5: Summation

1 add −> d i g i t + d i g i t
d i g i t −> [0−9]

Listing 2.6: Simple context-free grammar

The grammar defined in listing 2.6 is very simple, it only supports sum-
mation of two digits. For instance, the operation in listing 2.5 would not
be accepted by this grammar, as both the left and right hand side of the
+ must be a digit. To be able to interpret such a summation correctly we
have to extend grammar to:

statement −> statement + d i g i t | d i g i t
2 d i g i t −> [0−9+]

Listing 2.7: Simple context-free grammar

In this grammar a statement can consists of either an statement and a
digit, or a single digit. The definition of a statement is recursive, which
means that a statement can be built up from a one or more statements.
Lets take a look at how the code in listing 2.5 will be reduced using the new
grammar. If we start reading the source code from the left (left associative)
we can see that the first character we encounter is 1. It matches the defi-
nition of a digit, and is reduced to a digit. A statement can consist of
a single digit, hence it can be further reduced to a statement. The next
character is +, there is no production that matches only a digit and a +. To
be able reduce it to an statement we have to shift the next character. The
next character is a 2, which we reduce to a digit. What we have so far is
then statement + digit, which can be reduced to a complete statement.
The rest of the source code + 3 can be reduced in the same manner as the
first summation. These reductions is done step by step in listing 2.8, and
gives us the syntax tree in figure 2.3

11

1 s h i f t 1
2 d i g i t reduce 1 −> d i g i t

statement reduce d i g i t −> statement
4 statement + s h i f t +

statement + 2 s h i f t 2
6 statement + d i g i t reduce 2 −> d i g i t

statement reduce statement −> statement +
d i g i t

8 statement + s h i f t +
statement + 3 s h i f t 3

10 statement + d i g i t reduce d i g i t −> 3
statement reduce statement −> statement +

d i g i t

Listing 2.8: Deriving listing 2.5 using the CFS in listing 2.7

If we want to expand this grammar to also support multiplication we have
to define what operation has precedence over the other in the grammar. So
we know if summation or multiplication should be reduced first. In listing
2.9 the grammar from listing 2.7 is modified to accept multiplication and
summation, defining multiplication to the highest precedence level.
Associativity is expressed by stating that the nonterminal expr must be on
the left hand side of ’+’, and a digit on the right, hence left associative.
The precedence level is expressed by defining two nonterminals expr and
term. A term must either consume a multiplication or the nonterminal
factor, which is either a digit or the nonterminal expr wrapped in paren-
thesis. The nonterminal expr can either consume a summation, or a term.
This production state that a expr must be reduced before a term can be
reduced, hence multiplication has the highest precedence.

1 statement −> expr | term
expr −> expr ’+ ’ term | term

3 term −> term ’∗ ’ f a c t o r | f a c t o r
f a c t o r −> d i g i t | (expr)

5 d i g i t −> [0−9+]

Listing 2.9: Grammar for multiplication and summation, with
precedence and associativity defined

12

1

2 3

<+>

<+>

Figure 2.3: Syntax tree produced when doing the reduction in listing
2.8

2.1.4 Semantic Analysis

Semantic analysis takes in the syntax tree produced by the parser and the
symbol table, and then check that if it corresponds to the languages seman-
tics. The most important part of the semantic analysis is usually type check-
ing. Depending on the language the type check can be strict or less strict.
A language that guarantees that a complied/type-checked program will run
without any type errors is a ”strongly” typed language. The opposite of a
”strongly” typed language is a ”weakly” typed language, where type errors
are allowed and can potentially crash the program. An additional classifi-
cation for type checking is ”dynamic” and ”static” type checking, which is
specified based on when the type checking is executed. If the type checking
is done at compile time (during compilation) it is ”statically” typed. If type
checking is done at run-time it is a ”dynamically” typed language. Table
2.1 shows different languages classified by the classification mentioned, the
table is based on information from [35].
Type check is an analysis of variables and values in statements, to check if
they corresponds to the semantic rules in the language. For instance, when
a variable int a is assigned through a = b + 10; b’s type also have to be
of the type int. It could be that b is a string, and then the addition would
not make any sense. Thus a type check has to performed. Other typical
semantic rules would be; a break statement is enclosed in a while, switch
or an if - else statement.
For the examples presented earlier in figure 2.2 and figure 2.1, the type check

13

Strong typing Weak typing
Static typing Pascal, Java, Modula-3 and ML C and C++
Dynamic typing Scheme, Postscript and Smalltalk assembly code

Table 2.1: Type checking classification

would depend on the type of the variable in ¡id, 1¿. In most languages
they would have to be of the same type, if not the semantic analyzer would
report an error or warning.

2.1.5 The Intermediate Code Generator

The intermediate code generator is the piece of the complier that turns the
syntax tree into code. Most modern compilers generates C code at this
stage, and uses known C compilers to generate machine code. C compilers
provide a stable and well known platform. C compilers are available for
several architectures, and it would require a great deal of work to generate
efficient machine code without a finished back end.
How advance the intermediate code generator is depends on the difference
between the language used when generating code and the language of the
source code. For some languages the level of abstraction between the lan-
guages can be high. The code generator can than be complex as a lot of
“work” has to be done to transform the code. This is especially true if the
defined language and the language of the generated code is from two differ-
ent language families, such as functional and imperative (more details on
this later).
Of the syntax trees in figure 2.2 and figure 2.1 we can generate one operation
for each operation in the syntax tree, and assigned the result to a temporary
variable. For the syntax tree in figure 2.2 we would get the code in listing
2.10

1 t1 = id3 ∗ id2
t2 = id1 − t1

3 id1 = t2

Listing 2.10: Intermediate generated code of the syntax tree in figure
2.1

This form is called three-address code, where each operation corresponds to
one statement.

14

2.1.6 Optimization

Generated code by the intermediate code generator is usually non-optimal,
and often a bit clumsy. Hence, many compilers has a code optimizers that
optimizes the code generated by the intermediate code generator, before it
is “sent” to the back end. The optimizer analyzes the generated code, and
applies optimization techniques to improve the code, either architecture
specific optimization or general techniques. For instance, it can remove
sequences of code that is unnecessary, or replaces it with code that would
run faster, or take up less memory, all depending on what the goal of the
optimization is.
One of the most common optimization techniques is dead code elimination.
The first step of dead code elimination is to analyse the flow of data in
the execution path. Based on the result from the analysis unused variables
and ”dead” (can’t be run) execution branches can be found. An example
of a ”dead” execution path in its simplest form is an if where the branch
condition always is false. The if block is then never executed and can be
removed without having any effect on the result of the program. A dead
variable is a variable that does not effect the program in any way.
For instance, the code sequence in listing 2.11 has two dead variables. a is
assigned twice in line 1 and in line 4. The first assignment have no affect as
it is overwritten before it is used. The same is true for b, which is assigned
in line 2 and in line 3. We can then remove the first assignment of both a
and b. The source code can then be reduced to the form in listing 2.12.

1 a = c + 3
b = 2

3 b = 2 ∗ c
a = 3

5 d = a + b

Listing 2.11: Dead variable it does not affect the program

1 b = 2
a = 3

3 d = a + b

Listing 2.12: Dead variable it does not affect the program

Most compilers does this optimization as a part of the type checking and
gives a warning when a unused variable is declared, or if an if statement

15

is always false. There are several other optimization techniques that are
much more complex than data-flow analysis. In section 2.3.5 we will briefly
look at some optimization techniques that tries to identify code that can be
parallelized.

2.1.7 Run-time Environment

A run-time environments is created together with the compiler and is the
environment where the compiled code is executed. It handles memory man-
agement, input/output, access of variables, communication etc. Exactly
what mechanisms a run-time has depends on the features of the compiled
language. We will take a look at the runtime for languages that focuses on
concurrency in section 2.4

Summary

In this section we have presented the structure of a compiler front end. It
consists of four parts :

• lexical analysis reads the source, identifies tokens, and generates a
token stream

• syntax analyzer reads the token stream,“sorts” the program, and gen-
erates a syntax tree

• semantic analyzer reads the syntax tree and performs checks, such as
type checking on the tree

• intermediate code generator reads the syntax tree and generates code
based on it

We also described how language grammar can specified on Backus-Naur
Form, and how this form is read.

16

2.2 Compiler Generator Tools

Creating a hand written compiler is a lot of work, big parts of the complier
is also quite static. Instead of rewriting the standard structure (presented
earlier in this chapter) the framework of a compiler can be auto generated
by using compiler generator tools. In this section we will take a look at such
tools.

lex and yacc

Lex is a tool for building a lexical analyzer, and yacc is a tool for creating a
parser (This section is based on the book lex & yacc [20]). With lex we can
specify a lexical definitions which are mapped to a specified block of code.
There exists different lex tools for different language, so the code block can
be either Haskell (Alex), Java (JLex) or C (flex). The lexical specification
are defined with a regular expression. In listing 2.13 we have written a lex
specification that accepts numbers.

1 [0−9+] { yy lva l = a t o i (yytext) ; r e turn NUMBER;}
[\ t] ; /∗ i gno r e whitespace ∗/

3 \n return 0 ; /∗ l o g i c a l EOF∗/
. re turn yytext [0] ;

Listing 2.13: Lexical specification for lex for numbers and varibales used
in listing2.14

The first regular expression [0-9+] accepts one or more digit in the range
0−9. It then converts the character string accepted (yytext) to an integer,
stores it in yylval, and returns the token for digits NUMBER.
In Yacc the syntactical rules for the language is defined. The syntactical
specifications uses tokens that corresponds to the tokens used in the lexical
specifications. The style used in yacc looks a lot like CFS (see section 2.1.3).
As with lex, each rule is linked to a block of code. In listing 2.14 we have
written simple yacc grammar supporting summation and multiplication,
such as the CFS grammar presented in listing 2.7. As we can see, it uses
the tokens specified used in the lex specification earlier. (Both examples
(2.13 & 2.14) is based on examples in [20]).

17

%token NUMBER
2 %l e f t ’+ ’

%l e f t ’∗ ’
4 %%

6 statement : exp r e s s i on { p r i n f (”Sum %d\n” , $1)) } ;
e xp r e s s i on : exp r e s s i on ’+ ’ exp r e s s i on { $$ = $1 + $3 ;
}

8 exp r e s s i on ’∗ ’ e xp r e s s i on { $$ = $1 ∗ $2 ;
| NUMBER { $$ = $1 ; }

10 ;

Listing 2.14: Yacc grammar for a simple calculator

In the beginning of the yacc specification we specify the tokens, followed
by definition of associativity, and precedence level of ’+’ and ”*”. These
definitions are necessary to avoid ambiguity, as described in section 2.1.3.
Yacc has its own syntax to refer to tokens in the token stream; $$ refers to
the value on the left hand side of the : (nonterminal), $1 the first argument
on the right hand side, $2 is the second argument etc. The grammar in
listing 2.14 specifies that a statement consists of an expression, and when
this reduction is done it should print out the value of $1. expression is
specified to either consist of two expressions which is added, or just a
NUMBER.
The lexer and parsers generated will analyze and calculate a simple sum-
mation. In listing 2.15 we demonstrate how the compiler reduces a simple
summation of 5 + 6 + 7.

−−− CHARACTER INPUT −−−−
2 ”5 + 6 + 7”

4 −−−−− LEXING −−−−−
NUMBER ”+ 6 + 7”

6 <NUMBER, 5> ’+ ’ <NUMBER, 6> ”+ 7”
<NUMBER, 5> ’+ ’ <NUMBER, 6> ’+ ’ ”7”

8 <NUMBER, 5> ’+ ’ <NUMBER, 6> ’+ ’ <NUMBER, 7>

10 −−−− PARSING −−−−−
<NUMBER, 5> | s h i f t NUMBER

18

12 exp r e s s i on | reduce expr e s s i on −>
NUMBER

expre s s i on ’+ ’ | s h i f t ’+ ’
14 exp r e s s i on ’+ ’ <NUMBER,6 | s h i f t NUMBER

expre s s i on ’+ ’ exp r e s s i on | reduce expr e s s i on −>
NUMBER

16 exp r e s s i on | reduce expr e s s i on −>
exp r e s s i on ’+ ’ exp r e s s i on

exp r e s s i on ’+ ’ | s h i f t ’+ ’
18 exp r e s s i on ’+ ’ <NUMBER, 7> | reduce expr e s s i on −>

NUMBER
expre s s i on ’+ ’ exp r e s s i on | reduce expr e s s i on −>

exp r e s s i on ’+ ’ exp r e s s i on
20 exp r e s s i on | reduce statement −>

exp r e s s i on
statement

Listing 2.15: Lexing and parsing of a simple summation

The BNF Converter

The BNF converter is a tool that generates the front-end of a complier,
based on a specified grammar like lex and yacc. BNFC uses LBNF (labeled
BNF) which is based on CFS or BNF, presented in section 2.1.3, with some
additional rules, such as each rule has to be given an unique label. These
labels are used when generating the syntax tree, and can also be used by
the intermediate code generator to identify nonterminals and productions.
BNFC can generate a fronted written in C/C++, Java or Haskell.
In LBNF both lexical and grammatical specification has to be defined. The
lexical specification is written with regular expression similar to lex. There
are, however, several predefined tokens which can be used when specifying
the grammar such as; Integer, Double, Char, String and Ident. They
are all converted to the corresponding type in the language converted to,
except Ident where a data type has to be defined (see [24] for more details).
In contrast to yacc where precedence and associativity is stated separately
and in the beginning of the grammar (see [20] p.61) precedence is expressed
through index variants in LBNF. Such as in listing 2.16, where multiplica-
tion has a higher precedence than summation.

19

1 EInt . Exp3 : := In t eg e r ;
EMult . Exp2 : := Exp2 ”∗” Exp3 ;

3 EPlus . Exp : := Exp ”+” Exp2 ;
c o e r c i on s Exp 3 ;

Listing 2.16: LBNF precedence and associativity defined for
multiplication and summation

In the grammar each production is given a label and a number. The number
is used in the definition of the rest of the expression to describe precedence.
In this example a EMult has to have a Exp3 on the left hand side, which is
an EInt. A summation EPlus, has to have a Exp2 on its right hand side,
which is a EMult. This is the same way to describe precedence as we saw
earlier in listing 2.9. The keyword coercions binds all the indexed Exp
together, and allows translation between the precedence levels.

Haskell

Haskell is a general purpose lazy functional programming language. It is
used for creating all types of applications, but in this section we will focus
on using haskell to write a compiler (This section is based [29]).
Haskell’s specification was published in 1990 by a committee of researchers.
It is one of the few functional languages from the nineties that survived,
and is still maintain today [29].
Functional languages is based on functions that take in values as input, and
gives out values as output. Instead of statements that modifies data, as
“conventional” imperative languages. A haskell program is a collection of
functions that are linked together to give an specific output. For a pro-
grammer used to “conventional” programming languages this way to design
languages can be a bit abstract.
Haskell is also additionally a lazy language, which means that it does not
execute anything that its not necessary. From a programmers perspective
this means an infinite behavior can be used without it ever being executing.
That might be a bit abstract. A typical example (by David Turner [36])
for this is an list containing prime numbers. The list in infinite, but a
calculation never happens until the program “asks” for a number in the list.

20

primes : : [Integer]
2 primes = s i e v e [2 . .]

where
4 s i e v e (p : xs) = p : s i e v e [x | x <− xs , x ‘mod‘ p

/= 0]

Listing 2.17: The classic Turner’s sieve [36]. A list containing every
possible prime number

The primes function in listing 2.17 does not begin to calculate the list before
it is called. The function is recursive and hence when looking for the 100th
prime number it has to calculates the 99th first. primes calls the function
sieve with a list from 2 → ∞. The function seieve takes in the list and
divides it into two parts, the first element and the remaining piece of the
list. It then builds a list of the first element, and the output of a recursive
call of itself. The input to the recursive call is the list generated by the list
comprehension [x — x ¡- xs, x ’mod’ p /= 0], x is the last output, it
consists of elements from the list xs (x ¡- xs) that has a remainder when
divided by the first element in the list (x ’mod’ p /= 0). The function will
recursively run through the whole list. What we are left with is a list of all
the prime numbers.
As we have seen earlier in this section a compiler describes the transition
from one level of abstraction to another. From a language written with
a predefined grammar, to machine code that runs on a specified architec-
ture. Lets take a look at how a functional language would describe such a
transition:
In a functional language the programmer writes function taking in a input,
and giving out an output. The same input always gives the same output.
If the input to the function is the assignment of a variable, the output
is generated code for the assignment. In a complier the transition from
assignment to generated code would not only be one function, but a number
of functions: first the lexical analyzer, the parser, the code generator etc.
The complete set of functions can been seen on as one function describing the
complete translation from source code to generated code. With a functional
language such as Haskell, such translations can be described quite naturally.
A combination of the tools mentioned earlier and Haskell is a powerful
combination for creating compilers. For additional details on Haskell and
building Haskell compilers we recommend “Real World Haskell” [29], which
this section is based on.

21

Summary

In this section we presented some tools for creating a complier, lex & yacc
and BNFC. They auto generate lexers and parsers. In the last section
Haskell was briefly presented, and a short introduction to how it can be
used to build a compiler was presented.

22

2.3 Parallelization

In the previous section the structure of a compiler was presented. The
compiler can generate code depending on the architecture of the target
machine. However, it can not always generate concurrent code that can
utilize the multiprocessor, and it is the programmer that essentially has to
write so it can run efficiently.
Today most mainstream CPUs is multicore, which is one microchip with
several cores on. The introduction of these processors in to the mainstream
market marks a paradigm shift in hardware and software development. Sud-
denly problems and techniques that only where relevant for systems running
server farms and super computers, where relevant for programmers working
on games, web-browsers mainstream application. As a result new languages
and run-time systems has been introduced (see 2.4). In this section we will
give an overview of some well known parallelization techniques, and par-
allelization patterns, which enables programmers and compilers to harness
the power of multiprocessor architectures. The patterns and definitions in
this section are based on patterns presented in “Patterns for parallel pro-
gramming” [25].

2.3.1 Exploitable Concurrency

The first step to writing parallel code is to identify patterns and tasks,
which has the potential to be done concurrently. A problem has exploitable
concurrency if it can be divided into subproblems, which can be executed
simultaneously. To be able to run simultaneously the subproblems has to be
isolated problem that does not interfere with any other of the subproblems.
A typical example of exploitable concurrency are for/while loops where an
section of code are done repetitively. In many cases the iteration in the
loop does not dependent on each other, hence it does not matter if the
100th iteration is done before the first, or at the same time as the first.
Identifying such exploitable concurrency requires a “trained” eye, so we will
not go into detail on techniques on how to identify exploitable concurrency,
but present design patterns which can utilizes it.

2.3.2 Amdahl’s and Gustafson’s Law

When talking about parallelism it it natural to describe the limitations of
parallelization. There are two laws formulated which describes the limita-

23

tions. The best known is probably Amdahl’s law.
Amdahl’s law state that; the performance improvement gained by paral-
lelization, is limited by the amount of sequential code. For instance, if half
of the code can be parallelized and distributed over n processors, and the
other half has to be run sequentially. The speedup will be limited by the
sequential code, no matter how many processors the parallel code can run
on the sequential part has will not run any faster.

Speedup = s+ p

s+ p/N

= 1
s+ p/N

Where s is the sequential part of the program, p the parallel part of the pro-
gram, and N the number of processors in the system. So when N increases
and p/N → 0 the speedup goes towards 1/s [26].
Amdahl’s law is often criticized for being pessimistic, due this limiting ef-
fect. Amdahl made two assumptions when formulating his law; the sequen-
tial part and the parallel part consists of a constant number of operations
independent of the number of processors, and the input size is fixed [26].
Later Gustafson observed that these assumptions where inappropriate for
massive parallel systems. He observed that the problem size could grow, and
that the sequential fraction of the program was dependent on the number
of processors in the system. He defined a new law, Gustafson’s law:

Scaled speedup = N + (1−N) ∗ s′

Where s′ is the serial fraction of the time spent on a parallel system [26].
This law is much less pessimistic, as the scaled speedup is not limited by
the sequential piece of the code. It has later been proved by Shi [32] that
Gustafson’s and Amdahl’s law are actually the same law, with different
definitions of the sequential part s. These laws can show the limitation
in performance gain for parallelized systems, and is hence important to
consider before applying a parallelization pattern.

2.3.3 Concurrency in a Language vs Concurrency in a OS

Although concurrency in programming languages and operating system is
essential the same, there are some important differences.

24

For an operating system it is important to keep the processor busy, and it
is the schedulers task to feed it with jobs to keep it busy (see section 2.5).
If a task is waiting on reading from I/O it is usually preempted, and a new
process is run. These processes has to be run in a safe environment, so if
one process crashes the rest of the processes running on the OS is not affect.
Handling concurrency in a programming language is a bit different. A pro-
grammer writing concurrent programs, want to minimize the code run se-
quentially, and try to run as much code in parallel as possible. They are not
concerned with the other programs running in the OS. A programming lan-
guage can not guarantee that the programmer does not write unsafe code.
What it can do is to offer safe mechanisms and tools, that makes it easier
write safe and parallel code. However, it is in the end the programmers
responsibility to write “good” code.
In essence a programming language puts the power in the hands of the
programmer, while an OS tries to keep everything safe. To keep everything
safe requires a lot of checks and clean up mechanisms, which introduces
overhead in the OS (see [25] for more details).

2.3.4 Parallelization Patterns

With mainstream programming languages such as C, Java, python the chal-
lenges is to identify code, which can be parallelized. With concurrent pro-
gramming languages, which strives to be parallel, concurrency and paral-
lelization occurs “naturally” through language mechanisms. We will take a
closer look at some of these languages is section 2.4. In this section we will
take a look at some of the most used design patterns enabling programmers
to write concurrent code (all of based on the pattern presented in [25]).

Single Program, Multiple Data (SPMD)

SPMD distributes one copy of the source code to each unit. In a cloud/server
farm this would mean a machine/unit, or on multiprocessor system one per
CPU. The code is executed independently on each unit with small varia-
tion, often using their ID to differentiate their behavior. This can be done
through branching condition, where the ID triggers different paths through
the source code. The stages of SPMD program are usually:

• Initialize; load program, usually also establishing connection between
the units

25

• Obtain unique identifier; usually a unique thread id, which can later
be used to determine the execution path of the program.

• Run the program; each unit runs the program using the ID to differ-
entiate its behavior.

• Distribute data; distribute the data that the source programs takes in
out to the units, and retrieve calculated data later.

• Finalize, clean up and shut down the programs on the different units.

This is a technique that easily can be transferred to very large systems
such as super computers, where its necessary to have highly scalable struc-
tures. The type of programs running on such computers are often indepen-
dent intensive computations, and can be distributed among the units in the
computer.
SPMD is often criticized for its complexity, especially when it comes to
defining behavior based on a unique id. It can make the source code complex
and it can be difficult to identify the sequential algorithm parallelized.

Master/Worker

The master worker principle is based on delegating tasks. The master cre-
ates tasks and distribute these among a set of workers. In many cases there
are functions in the program that are time consuming, and not necessarily
needs to be done in a particular order. With a master worker pattern such
a task can be identified, and run in the background.
Let’s say we get an sample of data as input. It consist of an array with
different measurements, which all have to be analyzed. The analysis is
independent, and is only based on a single measurement. So each of the
analysis can then be run as an independent tasks asynchronously. The
master then creates a task for each analysis, and queues them. The worker
created by the master, executes the queued tasks, and when the queue
is empty it notifies the master, which wakes up and continues (figure 2.4
illustrates the master/worker behavior).
This pattern enables the jobs to be run concurrently and distributed among
the processors in the system, instead of the master running all the analysis
on one processor. There are several different languages and run-time system,
which uses this pattern in their implementation, some examples of this we
will come back to in section 2.4.

26

master

worker 1->N

Initiate computation

set up problem

create bag of tasks

launch workers

sleep until work is done Initialize

collect result

terminate computation

compute results

done?

No

exit

Yes

Figure 2.4: Master worker pattern

27

The master worker pattern has a high grade of scalability, as long as the
number of tasks exceeds the number of workers. However, a known bot-
tleneck to this pattern is a shared data between the workers. Such as the
shared task queue, which may become a bottleneck if the number of workers
become large. A solution to prevent such problems is to have several queues,
and distribute the tasks among these queues, which is a well-known tech-
nique used in OS schedulers. This is something we will come back to in the
section on multiprocessor schedulers (section 2.5). Other shared data may
also become bottlenecks. Many of the systems based on the master/worker
pattern usually also support some sort direct communication between the
workers to prevent communication through shared data, and hence prevent
bottlenecks and consistency problems due to the shared data (see section
2.3.7).

Loop Parallelism

Most of the execution time of a program is usually spent in a loop, hence
also an place of interest to“ unleash” exploitable concurrency. In many cases
the iterations of the loops are independent from each other, and could be
run on different processors. The first step when using loop parallelism is to
identify the loops in the sequential program. Where most of the execution
time is spent. Such an analysis can be done with a profiling tool (times the
loops in the program), or through using debugger tools and experience. If
each iteration is independent of each other the pattern can be applied. If
not check if the dependent part of the code can be moved out of the loops
body. In many cases such read/write dependencies can be moved to before
the loop. It is also necessary to evaluate if the sequential work done in each
iteration is intensive enough to compensate for the overhead of the loop
parallelism pattern.
When a suitable loop is identified it can be divided into parts, and run
concurrently on the processors in the system. For instance, lets say we have
a for loop iterating from 0 → 100 where loop parallelism can be applied.
It is run on a system with four processor, each processor runs 25 of the
iterations concurrently.
Memory locality can affect the performance of loops which are parallelized
negatively. Due to that most modern architectures has its memory struc-
tured as a hierarchy, the access time for each of the processors are not the
same in the shared memory. In other words, the one that has the “copy” of
shared data (such as an array where each is manipulated pieces of it) closest

28

has a faster access time than the others. Due to this effect systems using
the loop parallelism pattern gives each unit a copy of the shared memory
in the innermost loop.
For instance, let’s say that the loops manipulates an array. The array is
the located on a chunk of memory, which all the concurrent loops has to
access. The memory is then moved around between each processors cache,
and that the caches is constantly invalidated. To prevent this, process can
use a temporary array, and copy it to the original array when finishing the
loop, which is an easy way to avoid most of the negative effect due to shared
memory.

Fork/Join

Another and commonly used parallelization pattern is the fork/join pattern,
which is based on dynamic concurrency. Where conditions determined at
run-time, decides how much exploitable concurrency there is. These condi-
tions can be branch conditions in simple if/else branches, where each branch
can be done concurrently. Or an array with variable length, which deter-
mines how many threads can work on the array concurrently. Listing 2.18
is an example of a program that utilizes an if/else branch to do some work
concurrently.
It forks (creates a clone of the thread) the main thread. The child thread
created does merge sort on the lower half of the array, while the main thread
does merge sort on the upper half. When they are finished with their sorting
the threads are then joined again.

f o rk () ;
2 i f (c h i l d p roce s s) {

s o r t s the lower h a l f o f the array ;
4 }

e l s e {
6 s o r t s the upper h a l f o f the array ;
}

8

j o i n () ;

Listing 2.18: Pseudo code sorting an array

One of the pitfalls programmers fall in when using the fork/join pattern
is the running costs of the OS mechanisms used to implement a fork/join

29

pattern. If the work done in each branch of the fork is to small compared
to the job introduces trough creating and joining, then the pattern may
not increase efficiency at all. To avoid the overhead from the OS, some
run-time system provides a pool of worker OS-thread that can perform the
forked tasks. The threads in the pool runs queued processes created by
in a fork/join pattern, and returns to the pool when done executing the
process. This usage of thread pools can be seen on as a combination of
the master/worker pattern and fork/join. In many of the run-time systems
built to enable concurrency based on such a thread pool (for more details
see section 2.4).

2.3.5 Automatic Parallelization

Automatic parallelization is a term used to describe compiler optimization,
which identifies exploitable concurrency in sequential code, and generates
concurrent code. First an analysis is done at compile time, and then paral-
lelized code is generated. There are different types of analysis. It can either
be based on language specific keywords, which tells the compiler that this
section is independent and can be run in parallel. Or analysis done at com-
pile time, which maps dependencies in the code, and uses this to identify
exploitable concurrency.
Most of the compilers that support automatic parallelization, generates code
based on the patterns presented in the previous section. Later in this chapter
we will present some of these languages and their run-time systems.
The most used pattern of the one presented is probably loop parallelism,
mainly because loops are common and is where a program spend most of its
run-time. In many cases iterations is independent from each other, or it can
easily be modified to be independent. However, automatic parallelization is
complex and time consuming process. Additionally, there is no guarantee
that the run-time of the program is improved. In many cases this is due to
the overhead introduced through parallel patterns, as mentioned earlier.
We will now take a brief look at how exploitable code can be identified, and
how the code generated can look like. This section is based on the “dragon
book’[5], where more detailed exploration of automatic parallelization can
be found.

30

1 f o r (i = 0 ; i < n ; i++) {
Z [i] = X[i] − Y[i] ;

3 Z [i] = Z [i] ∗ Z [i] ;
}

Listing 2.19: A for loop with exploitable concurrency (example 11.1 in
[5])

In listing 2.19 a for loop doing array manipulation is presented. The block
in the for loop consists of two simple assignment, where one depend on the
other. However, there are no dependency between the iterations of the for
loop.
By using dependency analysis techniques such as data-flow analysis (see sec-
tion 2.1.6) the exploitable concurrency in the for loop can be identified. The
loop can then be parallelized easily using SPMD and loop parallelization.
First lets take a look at the loop parallelized by applying SPMD:

b = c e i l (n/M) ;
2 f o r (i = b∗p ; i < min(n , b∗(p+1)) ; i++) {

Z [i] = X[i] − Y[i] ;
4 Z [i] = Z [i] ∗ Z [i] ;
}

Listing 2.20: for loop parallelized with SPMD

In line 1 in listing 2.20 ceil determines the number of iteration each instance
of the SPMD program will do. It is then used together with the process
id p to define where the loop starts and the upper limit. To prevent the
“last” iteration from going over n, the minimum of n and the calculated
limit (based on process id and b) is found. The for loop can then be run
separately on multiple processors, and when they are all done the array can
be “glued” together.
It is not necessary to divide the for loop using process id dependent code.
It can also be parallelized using the loop parallelization pattern, the result
will be the same and the code is quite similar.

31

1 void independentCalc (i n t i) {
Z [i] = X[i] − Y[i] ;

3 Z [i] = Z [i] ∗ Z [i] ;
}

5

f o r (i = 0 ; i < n ; i++) {
7 run par(&indepentdentCalc , i) ;
}

Listing 2.21: A for loop parallelized with loop parallelization

In listing 2.21 a function is created with the body of the for loop. In the for
loop a function from the run-time system is called with the generated and
i as argument.
The function is then run in parallel in the background by the run-time
system (see section 2.4 for more details on how such a run-time system are
implemented). It generates n process that can be run concurrently. We
could also modify the code to run parts of the for loop concurrently, instead
of every single iteration. It would be a good idea, as the cost of generating
a process is high, and the work done in each process is small.
Pure automatic parallelization is difficult, so most concurrent languages and
run-time systems uses a combination of grammatical rules and libraries to
help simplify parallelization.

2.3.6 Dependency Analysis

As mentioned in the last section, dependency analysis is an important tool
when it comes to identifying exploitable concurrency. There are three types
of data dependency [5]:

• True dependence, a write is followed by a read.

• Antidependence, a read is followed by write to the same location.

• Output dependence, two writes to the same location.

A true dependency is what we usually consider a dependency; first a write
followed by a read that reads the written data. Antidependence is used
to check if it is possible to change the order, if there is an antidependence

32

the read must always happen before the write, or else the behavior of the
program might change. This is important to know for parallelization tech-
niques that might move dependent code, in order to enable a parallelization
pattern to be applied. Such techniques also has to be aware of output de-
pendency, as changing the order of two writes can change the behavior of
the program.
Data dependencies are especially important when it comes to parallelizing
loops. If each iteration is not completely independent, it might be that a
set are independent, and can be run in parallel.

f l o a t Z [1 0 0] ;
2 f o r (i = 0 ; i < 10 ; i++) {

Z [i + 10] = Z [i] ;
4 }

Listing 2.22: A for loop which can be run parallel

As we can see in the for loop in listing 2.22 the iterations are dependent on
each other. However, there are still exploitable concurrency which can be
harnessed.
By using a theory called “affine transform theory” (see chapter 11.1.5 in [5]
for details) the compiler can determine that this loop can be run in parallel.
Let us look at an example where it can be used:
Due to the for loops upper limit of i ¡ 10 there are no variables that are
dependent on each other. The reason for this is that the position of the
assigned element in the array has an offset of ten on i, and hence none of
the elements assigned is used again in a later iteration. But if the upper
limit is changed to i ¡ 100 there are dependencies between iterations, and
it is then necessary to map these. With i ¡ 100 as upper limit for the for
loop every tenth iteration is dependent on each other. Iteration 0 has to run
before iteration 10, which again has to be run before iteration 20 etc. Affine
transform theory can map such dependencies, which enables the compiler
to try to take advantage of it.

2.3.7 Communication Between Concurrent Components

Communication between the components can divide into two different clas-
sifications:

• Shared state communication.

33

• Message passing communication.

(Defined in [2])
Most conventional programming languages supports shared state commu-
nication. A typical example of an implementation that uses shared state
are processes that share variables, and by writing and reading the shared
variables the processes can communicate with each other. Shared state com-
munication is criticized for creating bottlenecks and difficult to keep safe.
As multiple concurrent components can manipulate the shared state, it is
important to make sure that only one writes at the time, so the data is
kept consistent. There are many different patterns and techniques to cre-
ate process safe data structures. In many cases such structures becomes
bottlenecks in the system as the only allow one process to access it at the
time.
Programming language, which support message passing communication,
does usually not allow shared state communication. This means that the
usage of shared variables is restricted, and in some cases not allowed at
all (such as in occam [21]). Instead they support communication between
the processes through messages, and there is usually grammar defined for
sending and receiving messages.
In some languages such as in Occam and GO the programmer can define
channels that messages can be sent through (see section 2.3.8for further
detail). The processes then listens or sends over these channels. In other
programming languages message passing is built in to the structure of a
process. Such as is Erlang, where each process has a mailbox, which other
processes can send messages to. When a new message arrives in its mailbox,
the process is notified [2]. The process then has to copy the message to a
variable if it wishes to use it further. Most run time systems that implement
such a behavior copies the message data from the senders stack to the
receivers, to prevent that there are any shared data among the processes.
Then their is no need for mutable data structures, and hence less chance of
creating data structure that becomes a bottleneck.
Message passing can be either asynchronous or synchronous. Synchronous
communication is blocking, which means that the sender and receiver must
execute the channel communication at the same time. Most programming
languages built on message passing offers synchronous and asynchronous
communication, through channels and buffered channels. The buffer holds
the message sent until a receiver comes and picks it up. If the channel can’t
buffer messages, the communication is synchronous. With asynchronous

34

communication parallelism improves, as processes can’t be blocked. There
are, however, several issues with asynchronous messaging, as the sender
never knows if it was actually received. To make sure critical messages comes
through, a three way handshake protocol has to be implemented, which
introduces extra communication. But with synchronous communication a
process might be blocked while waiting on a non critical message [11].

2.3.8 Concurrency Oriented Programming Languages

As mentioned earlier in this section, there are several concurrent program-
ming languages. That means that they are designed let the user easily write
concurrent programs without too much hassle. Later in the report (section
2.4) the run-time systems that support the language features is presented.
In this section we will present three concurrent languages, the new language
GO, and two old timers Erlang and Occam.

Erlang

Erlang is a language created by the telecom company Ericsson in 1986, and
a open source version was released in 1998. In many cases Erlang has set the
standard for what a concurrent language should offer and focus on. There
is later built several clones of Erlang, based on different languages, such as:

• Scala; running on the java platform

• Erlectricity; Ruby

• Retlang; C#

• Candygram; Python

Ericsson based their language on a combination of functional languages
(Haskell) and existing concurrent languages (such as Ada, Chill). They
designed a concurrent programming language, with asynchronous messag-
ing, which where robust, and ran on a virtual machine [8]. Erlang’s focus
on concurrency and scalability has made it popular for distributed systems
(running on several machines, and often with a varying number of machines
depending on the load on the system).
They argument strongly for choosing message passing over shared state
communication: channel communication limits the possibility of interference

35

between processes, and reduces the chance of operations having unwanted
side-effects. It also help improve efficiency on a multiprocessor system.
According to “Programming Erlang” [2] a multiprocessor program has to
fill the following criteria to be effective:

• Create/use lots of processes

• Avoid side effects

• Avoid bottlenecks

• Send a small amount of message compared to the amount of compu-
tations

The first goal means that the program has to be fine grained, and only have
a small pieces of sequential code. For instance, a program consisting of one
heavy processes doing a lot sequential computations, and a large number of
light processes “feeding” the sequential process. Will not be able to utilize
a multiprocessor system, as most of the light processes will be done quickly,
and just be waiting on the heavy process running on one processor. By
creating small and intensive processes of about the same size, it easier to
distribute the computational load over all the processors in the system.
Side effects can occur through shared state communication. Erlang does
not allow any shared data, all communication has to be performed through
messages to other processes. Which also reduces the chance of having bot-
tlenecks in the system, as each process has its own separate mailbox where
it keeps its messages. The language encourages programmers to note create
shard structures which can be become bottlenecks.
In most languages and systems based on message passing, communication
is fast but expensive compared to reading/writing to shared data. That
means that system that are message intensive can be slow. But by creating
processes that have a lot of computation compared to the number of message
helps reduce the load on message passing mechanisms. This problem is
closely connected to the first one discussed in this section. By focusing on
the parallelization techniques presented in section 2.3 such problems can be
avoided.
Ericsson designed Erlang for their own products such as tele switcher. It
was important for them that these systems where robust. For instance, if an
error occurs during a phone call, it is important that not the whole tele sys-
tems crashes and has to be rebooted. For a large company using an Ericsson

36

system for there internal phone network, a system where the whole system
crashes from time to time would be unacceptable. Therefor, in Erlang a
process can register as “dependent” on each other. If one process crashes
the “dependent” processes are notified, and can do correct measurements
to prevent further errors.
In the following example (listing 2.23 and listing 2.24) communication ex-
ample from [2] is presented. The server (listing 2.23) waits for an incoming
message from a client that is asking for the area of an object. It then
responds with the calculated area of the object. The client (listing 2.24)
starts by spawning the server, which then runs in parallel with the client.
It then asks for the area of a square with 10 sides. It sends its own PID
in the message as the return address. The PID is retrieved by the function
self().

−module(area)
2 −export ([loop /1])

4 loop (Tot) −>
receive

6 {Pid , {square , X}} −>
Pid ! X∗X;

8 loop (Tot + X∗X) ;
{Pid , { r e c tang l e , [X, Y]}} −>

10 Pid ! X∗Y,
loop (Tot + X∗Y) ;

12 {Pid , a reas} −>
Pid ! Tot ,

14 loop (Tot)
end

Listing 2.23: Erlang server in a client server example. The client asks
the server for the area of a square, rectangle etc (presented
in [2]).

37

1 Pid = spawn(fun () −> area : loop (0) end) ,
Pid ! { s e l f () , {square , 10}} ,

3 receive
Area −>

5 . . .
end

Listing 2.24: Erlang client in a client server example. The client asks
the server for the area of a square (presented in [2]).

occam

Appeared in 1983, and was originally created by IMNOS to run on their
transputer microprocessor. It has later been adapted to run on conventional
microprocessors, and there is currently several different “new” compilers
for occam [21]. occam is based on message passing concurrency through
CSP (communicating sequential process), which is a language for formally
describing interaction patterns in a concurrent system. Due to occam’s close
relation to CSP occam compilers generates code that runs on the CCSP
run-time system. The CCSP systems can also be used as an C library, to
implement CSP like features in C (more details on this is 2.4).
occam is very different then conventional languages, such as Java and C.
For instance, shared variables are not allowed. Data can only by shared
through messages. Unlike Erlang where each process has a mailbox, occam
has its own communication type CHAN(channel). A channel can either by
synchronous, or asynchronous. This is done by declaring if a channel is
buffered or not. A channel is also restricted to send one type of messages,
like only INT variables. occam’s strict rules when it comes to shared data
helps programs achieve the criteria for an effective multiprocessor program,
avoid side effects and avoid bottlenecks. As with Erlang this is achieved
through message passing concurrency.
occam also have some unique features, such as the PAR and SEQ keyword.
All statements has to be put in a statement block with a order stated;
SEQ the statements are run sequentially, as in an “ordinary” language, PAR
the statements are run concurrently. By running statements concurrently
creates a fine grained parallelism, which can easily be distributed. If we look
at the last two criteria for an effective multiprocessor program: create/use
lots of processes, and send a small of messages compared to the amount of
computations. The fine grained concurrency helps meet the first criteria,

38

as many processes are created as a consequence of the language. However,
occam’s fine grained concurrency may not help to meet the last criteria.
The cost of message passing is, however, low compared to other languages
supporting message passing, which is something we will come back to later
in the report (chapter 6).
These are only a couple of the unique features occam support, for more
details on occam please see [21]
A typical of occam design involves a client and a server, communication over
a channel. In the example in listing 2.25 there are two procedures, which is
run in parallel. The client sends the number 2 to the server, which receives
it.

2 PROC Cl i en t (CHAN OF INT c)
INT x :

4 SEQ
ch ! 2

6 :

8 PROC Server (CHAN OF INT ch)
INT x :

10 SEQ
ch ? x

12 :

14 PROC Main ()
CHAN OF INT s :

16 PAR
Cl i en t (s)

18 Server (s)
:

Listing 2.25: Occam client server example. Main starts two the client
and server as two processes. They communicate over the
channel s, client sending 2 over the channel to the server.

The Go Programming Language

GO was launched in October of 2009, and was created by Google. Its
main target was application running on their massive server farms. There

39

goal was to create a lightweight fast language, with good support for paral-
lelism. Google felt that none of the existing languages offered the support
they where looking for. By picking the best from different languages they
defined a language that support CSP channel communication, light weight
asynchronous parallel processes, and fast compilation [30]. This section will
be a short introduction to the language features, and in section 2.4.1 how
the run-time system works will be presented.
As Erlang, GO is based a message passing concurrency, and offers both syn-
chronous and asynchronous communication. This is done through channels,
much like occam’s channel. They can either be buffered (asynchronous) or
unbuffered (synchronous). It does not have any parallelization keyword, and
is neither as restricted as Erlang and Occam. However, functions can be
run concurrently through launching them with the Go keyword. They are
then run independently of the processes launching it (see [30] for further de-
tails). Except from these two features, GO looks remarkable like any other
programming language. It utilities its strong run-time environment, which
enables light concurrent processes to be run efficiently. GO programs helps
meet the criteria for multiprocessor programs, through message passing and
light concurrent processes.

1 c := make(chan i n t) ;
func wrapper (a int , c chan i n t) {

3 r e s u l t := longCa l cu l a t i on (a) ;
c <− r e s u l t ; \\ sends the r e s u l t over the channel

5 }

7 go wrapper (17 , c) ; \\ runs the wrapper func t i on in the
background

9 //do something f o r a whi l e ; then . . .
x := <− c \\ reads the r e s u l t form the channel

Listing 2.26: Go routine using a wrapper function to perform a
heavy calculation which sends the result over a channel
(presented in [30])

Summary

In this section has focused on concurrency in programming languages, and
how exploitable concurrency in a program can decrease of a program on a

40

multiprocessor system. A few parallel programming patterns was presented,
along with a brief introduction to how compilers can automatically generate
simple parallelization of the code.
In the last section three concurrent programming languages was presented,
Erlang, Occam and GO. We will in the next section present the design of
their run-time systems.

41

2.4 Parallel Run-Time Environments

In this section we will present how processes are created and run in different
run-time systems. Some of them are run-time systems that supports a
compiler such as Erlang, GO and Occam. Or through an API such as
JIBU and CCSP. Most of this section is based the run-times source code,
as all of the systems discussed are open-source, and there are few or no
article published on their architecture. We also got some help from the
communities, for instance, GOs mailing list. We will not go into detail on
how the systems are implemented, but give an overview of how processes are
created and run, and how communication between them is made possible.

2.4.1 GO’s Run-Time System

The GO run-time system is built on the master/worker pattern (see section
2.3.4). The run-time has a set of worker threads, which is defined defined by
the architectures it runs on. There should be one worker for each processors
in system. When a function is called with the GO keyword, a process is cre-
ated and queued. The worker threads then proceeds to execute the queued
processes (see function scheduler line 455 in src/pkg/runtime/proc.c
available at [9]).
The worker threads operates on a scheduler, which is non-preemptive. This
means that the GO processes will run until they voluntary yield. In GO this
happens on blocking systems calls such as a reading or writing to a channel,
and they can also be made to yield explicitly. GO has focused on light weight
process. For instance, by keeping information and process switching at a
minimum. This is done through having simple data structure containing
information about the process, which the worker thread can easily access.
The worker threads are OS-threads, and the reason for limiting the number
of OS-threads is due to there overhead and expensive context switches.
Instead it has its own processes with separate stacks and a scheduler.
Channel communication is either asynchronous through buffered channels,
or synchronous through non buffered channels. For Go synchronous commu-
nication means that a process is blocked until the receiver/sender is ready
on the other side with their message. Message passing is done through
calling the processes send/receive function, which stores the message as an
process argument in the processes stack, which then can be retrieved by
processes (see function chanrecv and chansend at line 275 and 172 in

42

src/pkg/runtime/chan.c available at [9]). The authors of GO argues that
CSP’s high level interface enables simpler code and better scalability [10].
GO’s architecture is similar to the other run-time systems discussed in this
section. However, it distinguishes itself through its simplicity and straight
forward approach in its implementation. GOs developer team is planning
on doing changes to the run-time environment to increase performance and
scalability.

2.4.2 Erlang’s Run-Time System

In the same way as Java, Erlang code runs on a virtual machine, which
means that Erlang code can be run on multiple platforms.
As multiprocessor architecture has become more and more popular Erlang
has launched a virtual machine that supports multiprocessor systems. This
version has one scheduler for each CPU. Currently they are sharing a run
queue containing all the Erlang processes.
The scheduler is a round-robin scheduler operating with four priority levels
max, high, normal and low. It is preemptive, as a processes is suspended if
it waiting for a receive statement and their is no matching message in the
message queue. And waken up as soon as possible when a new messages
arrives [37]. It can also be interrupted if a message come through while
executing.
The Erlang team in Ericsson has proposed some modification to the multi-
processor virtual machine ([23]); partitioned scheduling with one run queue
pr scheduler. Using work stealing and a distribution algorithm to keep the
run queues balanced, this is due to that a shared run queues can become
a bottleneck with more than four schedulers [23]. With partitioned run
queues, this won’t be a problem anymore.
Channel communication in Erlang is done through stack manipulation.
Each processes has its own separate heap, stack and header. When a pro-
cess sends a message to another process a message and the receivers id has
to be specified. The virtual machine first checks that pid is valid, it then
proceeds to copy the message onto the process’ stack, and links it to the end
of the processes message-list. The virtual machine does not allow there to
be any pointer that points to other processes stacks. Hence if the message
contains any pointers the data that it points to is also copied [7].

43

2.4.3 JIBU’s Run-Time System

JIBU1 is a run-time system that offers a concurrency library for Java, C++,
.NET, and DELPHI. JIBU offers features like parallel execution , CSP chan-
nels, mailboxes etc. In this section we will focus on how processes is exe-
cuted, and the architecture of the run-time environment.
JIBU’s API functions generates processes, which is put in separate queues.
Each of the OS-thread executes processes from multiple separate queue [3].
If one of the worker threads runs out of tasks, it will start executing tasks
from one of the other worker-threads queue. This type of scheduler is known
as a partitioned work stealing scheduler, as it has a partitioned run queue
and the worker steals processes from each other. The schedulers is a non-
preemptive scheduler, which means that a process is not interrupted when
it first starts to execute (see function TaskScheduler::run() in
jibu˙c˙1.0.0/jibu˙1.0.0/libjibu/task˙scheduler.cpp and function
ThreadScheduler::createTaskScheduler in ../thread˙scheduler.cpp
available at [4]).
What differentiate JIBU from the other run time systems presented, is its
thread pool. It initially creates one OS-threads for each CPU, but more
threads is created if their is demand for it. These threads behaves just like
the worker threads created initially, executes task from the run-queues and
return to a thread pool when there is nothing to do.
Jibu also has support for synchronous channel communication, as well as
asynchronous communication like Erlang through processes mailboxes. These
communication tools enables the user to move away from concurrency based
on the shared state model in their chosen language.

2.4.4 occam’s/CCSP’s Run-Time System

Most of this section is based on the CCSP version presented in [27]. CCSP
is a run-time environment based on the communication language presented
by Hoare in [18]. It is a C run-time environment that supports channel
communication and concurrent processes execution. And is used as the
run-time environment for the occam compiler KROC (Kent Retargatable
Occam Compiler). In contrast to the SPOC (Southhamptons portable oc-
cam complier) it does not use a compiler generated scheduler, but uses a

1At the time of writing, JIBU’s website is no longer available. Hopefully it will be up
again soon. If not, please contact the author to retrieve JIBU’s source code. June 2010

44

predefined structure to create processes, and schedule them in a efficient
manner.
To avoid stack manipulation through assembly instruction CCPS imple-
ments its own stack. All the C function that is generated by the Occam
complier has to be wrapped by a stack function that uses the rules defined
by CCSP. By avoiding stack manipulation CCSP reduces the cost of context
switching. This is done through declaring explicit a list of input parameters,
output parameters, and a list of corrupted registers. The run-time system
can then reserve a specified amount of registers, and know which register
that is corrupted after the function has executed. Enabling safer stacks. In
addition to having its own stack structure, each function is split into parts
where each part is labeled by a C label. The Complier then generates a
table containing the labels, and can use these labels to jump back and forth
in a function, rather than saving the state of the function on a stack.
It is necessary for CCSP to have fast context switches due to the large
number of processes, which can be generated. For instance, Occam code
like

PAR i = 0 FOR 10

where ten processes is created. In a traditional C program ten threads would
be many. While Occam program can consist of hundred to thousands of
processes. It is clearly necessary that the cost of a switch between processes
is considerable lower in CCSP than for an OS-thread. CCSP hence has fast
context switches, fast communication operations and spawns processes fast.
The developers of CCSP has focused on non locking mechanisms, and ad-
vance pointer and assembly manipulation, to optimize critical mechanisms.
They also improve efficiency through better cache utilization, which is done
through batching process together and run them in groups (see section 2.5.4
for more details). CCSP has a non-preemtive scheduler. The scheduler is
based on that processes labels descheduling points, where it can safely be de-
scheduled. The advantage is that is reduces the overhead introduces through
a preemptive scheduler, and allows the complier to stay in control of the
amount of constants that need to be stacked when descheduled.
CCSP uses a similar approach as the other run-time kernels discussed in
this section. It has queues containing pending and waiting process, which
are executed by worker threads. As the other run time systems, CCSP
offers message passing. Messages can either be put on buffered and sent
asynchronously, or copied synchronously. The synchronous communication

45

methods are blocking, and the process was to wait until the processes it is
communicating with is ready. When they are both at the synchronization
point, the message is copied from the sender to the receiver atomically. This
solution is similar to how it is implemented in GO.
However, a lot of effort is put into making channel operation fasts. For in-
stance, in GO a channel is a struct holding a list of senders/receivers, the in-
terface of the element etc (for more details see go/src/pkg/runtime/chan.c:40
[9]). While in CCSP a channel is represented by a single machine word. It
uses the lowest bit to carry information, and holds a pointer to a process
descriptor (see [31] for more details). This is just one piece that has been
minimized, and shows the effort put in to optimizing the run-time system.

Summary

In this section we presented the design of four concurrent run-time sys-
tem. Two languages run-time system, and two APIs which can be used in
other languages (CCSP is used as run-time system for the Occam compiler
KROC). Most of them use the master/worker design pattern, and has one
worker pr. processor. This is due to large overhead on OS-threads. Most
of them also have separate memory for processes in the run-time system.
Communication is often done by copying data between the processes stacks.

46

2.5 Multiprocessors Scheduling

In this section we will present the architecture of two multiprocessor sched-
ulers, some techniques to help improve efficiency, and lastly two of the best
known real-time schedulers. This section is mainly based on our survey on
real-time multiprocessor schedulers [17].
Scheduling for a multiprocessor system raises a set of new challenges, which
uniprocessors scheduler can not meet. For a uniprocessor scheduler the
only focus is what process to run. However, a multiprocessor scheduler
does not only have to decide what process to run, it also have to utilize
all of the processor and distribute processes among them. The two most
common design for multiprocessor schedulers are: partitioned scheduler, and
the global scheduler.

2.5.1 Partitioned Schedulers

In a partitioned scheduler there is more than one run queue. Tasks are
distributed among these run queue when they arrive. Assignment is done
by evaluating the tasks and the state of the processor the run queue belongs
to. The goal is to distributed the tasks as fairly as possible.
The advantage with this approach is that it reduces multiprocessor schedul-
ing to a set of uniprocessor scheduling problems. Enabling the usage of
known optimal uniprocessor scheduling algorithms (can guarantee 100%
utilization). The distribution of tasks is a NP-hard problem, bin-packing.
Distribution of tasks can thus be an expensive operation. The extra cost
due to distributions can decrease the performance of such schedulers [28].
Load balancing is an additional problem for partitioned schedulers. The
number of tasks in each run queue has to be evenly distributed. When the
system has ran for a while it might be that some of the run queues are
empty, while others are full. So sometimes redistribution/load balancing
might be necessary. It is a time consuming operation, and the system has
to wait until the balancing is complete [28]. Global schedulers avoid this
altogether by using a different approach.

2.5.2 Global Schedulers

Global schedulers has one global run queue. A task from the global run
queue is assigned to a processor when it is idle, or when preemption occurs.

47

2

Reasoning from such examples is tempting to conjecture that
perhaps RM and EDF are not good or efficient scheduling
policies for multiprocessor systems. However, at the moment
this conclusions have not been formally justified [5].
The partitioning scheme has received greater attention than

the global scheme, mainly because the scheduling problem
can be reduced to the scheduling on single processors, where
at the moment a great variety of scheduling algorithms exist.
It has been proved by Leung and Whitehead [25] that the
partitioned and global approaches to static-priority scheduling
on identical multiprocessors are incomparable in the sense
that 1) there are task sets that are feasible on m identical
processors under the partitioned approach but for which no
priority assignment exists which would cause all jobs of all
tasks to meet their deadlines under global scheduling on
the same m processors, and 2) there are task sets that are
feasible on m identical processors under the global approach,
which cannot be partitioned into m distinct subsets such that
each individual partition is feasible on a single static-priority
uniprocessor.

LOCAL QUEUE

PROCESSOR

SCHEDULER

SCHEDULER

SCHEDULER

TASK SET
ADMISSION

 CONTROL

P.1

P.2

P.n

PROCESSOR

TASK SET
ADMISSION

 CONTROL

P.1

P.n

SCHEDULER

GLOBAL QUEUE

P.2

Fig. 1. (a). Partitioning and (b). Global Scheduling Schemes

III. SYSTEM MODEL

In this paper, the problem to be studied is to schedule a
set of n real-time tasks τ = {τ1, τ2, . . . , τn}, on a set of m
processors, P = {P1, P2, ..., Pm}. A task is usually a thread
or a process within an operating system. The parameters that
define a task are: the execution time Ci, the period Ti, and
the deadline Di. We will consider that only periodic and
preemptive tasks can execute in the system. Each periodic
task, denoted by τi is composed of an infinite sequence of
jobs. The period Ti of the periodic task τi is a fixed time
interval between release times of consecutive jobs in τi. Its
execution time Ci is the maximum execution time of all the

jobs in τi. The period and the execution time of task τi satisfies
that Ti > 0 and 0 < Ci ≤ Ti = Di, (i = 1, . . . , n).
ui = Ci/Ti is defined as the utilization factor of task τi.
The utilization factor of the set of tasks is the sum of the
utilizations of the tasks in the set, UTOT =

�n
i=1

Ci

Ti
. Let α

denote the maximum possible utilization of any periodic task
in the system, α = maxi=1,...,n (Ci / Ti). Following the
hard real-time scheme, in this paper we will consider that a
job in τi that is released at time t must complete at most Di

time units after t, that is, it must complete within the time
interval (t, t + Di].
In the model used in this paper, the following restrictions

also apply. The tasks are independent. That is, the arrival
of some task is not affected by arrival of any other tasks
in the system. The cost of the context switch of the tasks
is considered negligible. No resources, other than the CPU,
are shared among tasks. The cost of the admission control
mechanisms is considered null. The Rate Monotonic and
Earliest Deadline First scheduling policies will be considered
in this paper. The cost of migration is considered null and
every job is allocated to at most one processor at a time.
In this paper, a performance analysis of different scheduling

algorithms is carried out for identical multiprocessors (i.e.,
processors executing at the same speed), where the priorities
of the tasks are assigned statically (using RM) and dynamically
(using EDF). We will study algorithms that allow migration
(i.e, global schemes) together with the algorithms that do not
allow migration (i.e., partitioned schemes). For the partitioned
and the global schemes we will study those algorithms that
consider a fixed and an infinite number of processors. Also,
for the partitioned scheme we will study off-line and on-
line algorithms. A taxonomy of the multiprocessor scheduling
algorithms studied in this paper, is illustrated in Figure 2.

MULTIPLE PROCESSORS

GLOBAL
SCHEMEPARTITIONED

 SCHEME

FIXED NUMBER OF
 PROCESSORS

INFINITE NUMBER OF
 PROCESSORS

ALGORITHMS ALGORITHMSALGORITHMS ALGORITHMS

FIXED NUMBER OF
 PROCESSORS

INFINITE NUMBER OF
 PROCESSORS

SCHEDULING ON

ON!LINEOFF!LINEOFF!LINE ON!LINE

Fig. 2. (a). Taxonomy of Multiprocessor Scheduling Algorithms

IV. PARTITIONED SCHEDULING ON MULTIPROCESSORS

In the multiprocessor partitioning scheme it is necessary to
choose the scheduling algorithm on every processor, and the
allocation algorithm used to allocate tasks to processors. The
allocation problem has been solved assuming a fixed or an
infinite number of processors. It has been demonstrated that
the allocation problem is an NP-Hard problem [25].

Figure 2.5: (upper) Partitioned scheme and (lower) Global scheme. Il-
lustration from [28].

48

T1

T2

A

A

Release time Deadline

Figure 2.6: Process T2 must wait until T1 releases resource A, even
though T2 has higher priority

This scheme is much less complex then the partitioned scheduler. The
simplicity of the design reduces the overhead compared to a partitioned
scheme.
With a global scheduler there is no need for redistribution of tasks among
the run queues, because each processor now only have one task at the time.
However, the scheduler now have to consider what all the processors are do-
ing at once. Known optimal uni-processor schedulers are no longer suitable
[28].
The global run queue is a shared resource between the processors. As men-
tioned is the section on parallelism (section 2.3) shared resources can become
bottlenecks in parallelized systems. The global run queues has to guarantee
exclusive access. This means that some times processors will be idle while
waiting to access the run queue. To avoid this as much as possible complex
analyzing mechanism can be used. However, they increase the overhead and
complexity of the scheduler.

2.5.3 Interlocking Protocol

Interlocking protocols are techniques to prevent “important” tasks from
being blocked by “non” important tasks holding a resource it requires.
Interlocking can occur when two tasks share the same resource.
If T1 holds resource A and has a lower priority then T2, but T2 needs resource
A to run, we have a interlocking problem. The high priority task T2, must
wait until a low priority task T1 releases resource A (see figure 2.6). T1

49

might even be preempted to allow higher priority tasks to run, and make
T2 wait even longer.
One of the best known interlocking protocols (priority inheritance protocol
PIP [16]) uses priority inheritance to solve this problem, by giving T1 the
same priority as T2 for as long it holds resource A. It enables T1 to finish
faster and release A so that T2 can run. Guaranteeing that no task with a
priority higher than T1s initial priority can interrupt.
For a partitioned scheduler the interlocking problem is quite complex, due
to that their is no global priority. The tasks are run individually on each
processor, with its own run-queue. When a task needs a resource locked
by a task running on a different processor, all the run-queues has to be
evaluated. This is a complex and time consuming task. As interlocking
happens fairly often it can effect the overall efficiency of the scheduler.
Handling interlocking for global schedulers is easier, as the scheduler only
have to analyze the tasks lying in the one run queue, and the domain of the
priorities are global (More details on interlocking protocols can be found in
[16]).

2.5.4 Batch Scheduling

Batch scheduling is a technique to improve efficiency for schedulers schedul-
ing fine grained parallelism. With fine grained parallelism a large number
of light processes are created, which does a small amount work. This puts
more pressure on the scheduler and the run-time, because much more of
the execution time is now spent in scheduler and in run-time system mech-
anisms. Such as context switches, process creation, process destruction and
communication between the threads.
The idea behind batch scheduling is to better utilize cache. For instance, a
process that run repeatedly on the same processor has less chance for cache
miss, because less processes has run in between each time it executes. To
exploit this the scheduler groups processes together based on what variables
they share, and whom they communicate with. The groups are then run on
separate processors.
Batching of the processes requires dependency analysis to be performed [31],
to map the dependencies between the processes. Grouping based on depen-
dencies are, however, not a requirement for this technique to be efficient. As
long as there are processes which access the same memory repeatedly this
technique can help improve efficiency. The run queues holds the batches

50

processor 1 processor 2

batch

p4

p3

p2

p1

runnig process

batch

p4

p3

p2

p1

runnig process

run queue 1

b4

b3

b2

b1

run queue 2

b4

b3

b2

b1

new process

newest batch

Figure 2.7: Partitioned batch scheduler with one run queue pr processor.
Each run queue holds a set of batches.

and each batch is run until preemption or a task is blocked. Batch schedul-
ing can be used together with ordinary scheduling algorithms, such as work
stealing. The difference is that a “unit” is not an individual process but a
batch, as illustrated in figure 2.7.

2.5.5 Real-Time Schedulers

In this section we will present two of the best known real-time schedulers.
They schedule the processes based on a processes deadline, which is usually
specified explicit or based on analysis. And tries to schedule the processes
so they all meet their deadline. If it can guarantee that they all meet their
deadline it is known as an optimal scheduler.

51

Rate Monotonic (RM)

Rate monotonic is a non-optimal uni-processor algorithm presented by Liu
and Layland [22]. RM assumes that deadlines are equal to the period of
the task, and assigns priority according to the length of the period. A task
with a short period will get a high priority assigned. This is done under
the assumption that there is static priorities (the task with the highest
priority is always allowed to run), context switches times and other thread
operations are free (not causing any additional delay).
RM schedulability test is defined as:

U =
n∑
i=1

Ci
Ti
≤ n(n

√
2− 1) (2.1)

Where Ci is the computation time, Ti is the release period, n is the number
of task to be scheduled.
RM has been a popular uni-processor algorithm due to its simplicity, which
means that the overhead is low as the analysis necessary done for each
scheduling is low. In many cases this makes a RM scheduler faster and
more efficient then an optimal scheduler with large overhead.
It does, however, not scale well. Zapta and Alvarez did an extensive com-
parison of global and partitioned RM against partitioned and global EDF
schedulers [28]. Their study show that EDF generally outperforms RM both
partitioned EDF vs partitioned RM and global EDF vs global RM.

Earliest Deadline First (EDF)

Earliest deadline algorithm was presented by Liu and Layland [22]. Its a
simple and optimal uni-processor algorithm. As long as the total utilization
does not exceed a hundred percent of the system capacity the task set is
schedulable:

U =
n∑
i=1

ui =
n∑
i=1

Ci
Ti
≤ 1 (2.2)

Liu and Layland proves EDFs optimality by showing, that, if there exists a
set of task {τ1, ..., τn}, each characterized by arrival time Ti, computation
time Ci and deadline Di. If this task set can be scheduled by any algorithm

52

such that no deadlines are missed, it can also be scheduled by the EDF with
no deadline missed.
EDF assigns the task with the least time to its deadline the highest pri-
ority and is allowed to run first. Hence the name earliest deadline first.
It then continues to schedule tasks according to their deadline. EDF im-
plementations usually handles sporadic tasks (tasks that does not have a
fixed arrival time, not reoccurring) by giving them a static portion of the
resource, making the schedulability analysis easier.
The analysis and verification of schedulability is simple, as long as the uti-
lization is below 100% it is schedulable. This makes EDF a simple and
optimal uniprocessor scheduler.
A known issue is that EDF does not scale well, and is not optimal for a
multiprocessor systems. This was demonstrated by Dhall and Liu [15], and
the limiting effect is thus knows as “Dhall’s effect”. Due to combination of
both heavy and light tasks in scheduling the utilization bound is limited.
Andersson et al shows in [6] that the maximum utilization of global or
partitioned multiprocessor EDF scheduler is 50%
They show that if we have a task set τ = {(T1 = 2L − 1, C1 = L}, (T2 =
2L−1, C2 = L), ..., (Tm = 2L−1, Cm = L)), (Tm+1 = 2L−1, Cm+1 = L)} to
be schedulable on m processors, and all the tasks arrives at the same time
the utilization for this task set will be L/(2L−1)+(L/(2L−1)/m and they
proceed to show that static priority scheduler such as global or partitioned
EDF will not be able to schedule it. If τ is run in a global static priority
scheduler where m high priority tasks Ti..Tm will run in parallel and execute
in L time. There will then be L−1 time left for the low priority task m+1,
which is not enough as its execution time is L.
There exists several modified versions of EDF algorithms that tries to avoid
Dhall’s effect, by taking advantage of assumptions that there are always
light weight tasks and heavy weight tasks. They try to schedule the heavy
tasks individually, hence avoiding Dhall’s effect.

Summary

This section was a summary of our survey on real-time multiprocessor
scheduling [17]. Two different multiprocessor designs was presented; par-
titioned and global. We also explained how shared resources can cause
problems for schedulers. Towards the end of the section two well known
real-time schedulers was presented, and a technique to improve cache reuse.

53

Chapter 3

Experimental Language
Grammar

In this chapter we will present our experimental concurrent real-time lan-
guage. We focused on creating a language where real-time requirements
could be described, and enable users to easily write concurrent code. Our
language supports a subset of occam’s grammar and is also extended to sup-
port new statements. The grammar is written in BNF, which was presented
in 2.1.3. It is used in BNFC to auto generate a Haskell lexer and parser.
The intermediate code generator was created entirely by us, and the code
generated based on the grammar is the subject of the next chapter.
The complete BNF grammar can be found in appendix A.

3.1 Language family

As mentioned earlier we wanted to create a language focusing on two fea-
tures; real-time support and concurrency. Our language is based on a sub-
set of occam’s grammar; it includes the features from occam we saw best fit
for our goals. We has excluded other features, either due to their complex-
ity or that they where unnecessary for demonstrating the principles of the
language.
occams fine grained concurrency was one of the features that was attracting.
This is something that can be utilized in a multiprocessor real-time scheduler
(P-fair see [17] for more details) to avoid Dhall’s effect, by only having
light processes there are no heavy blocking processes. With occam there

54

is no guarantee that heavy process is not created. But it makes it easier
to avoid it, if the user is aware of the problem. In occam it is easy and
natural to write concurrent code, due to it strict rules on shared variables
and keywords for expressing parallel code. Hence, reducing the sequential
part of the program. Amdahl and Gustaffson (see section 2.3.2) laws show
how the sequential part of the code affects the scaleup possibel through
parallelisme.
Synchronization between the fine-grained processes is done through com-
munication over channels. Channel communication in combination with
strict rules on how shared variables, is an attractive feature for a real-time
language. As channel communication is the only way to share data, it de-
scribed the dependencies between the processes. Clearly this is something
that can helpful when scheduling the tasks.
We used the BNF converter to generate an Alex lexer and a Happy parser.
Our BNFC grammar is based on the BNFC grammar of Martin Korsgaards
Time/occam language [19].
In this section we will describe the grammar of the language. First it is
nessary to clearify the relationship between occams description in the occam
2,1 reference manual [21] and our. In occam/CSP simple statements such as
an assigment is called a primitive process. More complex statement, which
is constructed from other statements, is called constructed processes. To
avoid confusion between by using process is in the language as describing a
statement, and using it when talking about the the run-time system system
another way. We will be using statement about what Occam calls processes.

3.2 Layout

Occam has a strict policy when it comes to indentation, exactly two spaces
extra for every nested block. Due to the implementation tools, we used C
like syntax on blocks, opening and closing brackets at the start and end of a
block. Every statement is ended by a semicolon. Indentation has no effect,
but is recommended.

3.3 Hello World

Every program has to at least consist of a main procedure, which is the
first procedure to be run. A procedure is declared with the keyword PROC,

55

followed by the procedure name Main, where the first letter has to be capi-
talized. Every procedure also has to have a deadline specified, which is used
when scheduling the procedure. The procedure declaration is followed by
a block that starts with a order keyword, which declares if the statement
should by run in parallel or in sequence. The statement run in “sequence”
is a print statement printing the string ”Hello World”. Later in this sec-
tion we will go more into detail on all the components in the hello world
program.

PROC Main : 4S : {
2 SEQ {

Print ” He l lo World ” ;
4 }
}

Listing 3.1: Hello World

3.4 Procedure Declaration

As shown in the Hello World example, a procedure has to be defined with the
PROC keyword, a name, and a deadline. As mentioned above, every program
must at least have a Main procedure which is the “start” procedure. Every
other procedure can be named anything as long at it starts with a capital
letter and uses only letters from the latin alphabet, digits and under score.
The regular expression used to describe the rules for a procedures name is:
〈upper 〉(〈upper 〉 | 〈digit 〉 | ‘ ’) ∗ 〈lower 〉(〈letter 〉 | 〈digit 〉 | ‘ ’)∗
A procedure declaration must also contain the procedures deadline; it is
specified after the procedure name with a colon as separator. A deadline
has to be specified with an integer, and the resolution of the time. The time
can be specified in resolution from seconds to nano second. The full list of
keywords is presented in listing 3.2.

1 S − Seconds
Ms − Mi l l i seconds

3 Us − Micro seconds
Ns − Nano seconds

Listing 3.2: Timer resolution keywords

56

The deadline and the procedure block is also separated by a colon. The
reason for adding time to an occam procedure is due to the real-time aspect
of the language. Instead of, expressing how important a task is through a
priority, developers can explicitly say that; this procedure must finish before
this deadline from the moment it is initiated. To think that all procedures
can be given a deadline no matter what, might be a bit naive. However, we
choose to disregard “general” procedures that might have no deadlines, and
solely focus on a concurrent real-time language.
The procedure grammar written on BNF:
〈GlobDecl 〉 ::= PROC 〈CapIdent 〉 : 〈DeadLine 〉 : 〈SingleBlock 〉

| 〈Chan 〉 ;

Where 〈Deadline 〉, 〈CapIdent 〉, and 〈SingleBlock 〉 is a nonterminals. 〈SingleBlock 〉
is a special procedure block. We will described how the specification for this
nonterminal in the next section.

3.5 〈SingleBlock 〉/Procedure Block

The block in a procedure declaration is different from a statement block,
such as a for loops. A procedure block is divided into two parts; a variable
declaration at the beginning, and a single statement block.
Written on BNF:
〈SingleBlock 〉 ::= { 〈ListVar 〉 〈StmtCompound 〉 }

〈ListVar 〉/Declarations To simplify the language all variables are inte-
gers in our language. A variable is declared with the keyword VAR.
In beginning of the statement block a list of variables and/or arrays can be
declared. They can not however be assigned. Assignment is considered a
statement, and has to be executed inside the statement block.
There were several reasons for limiting the variable types and declaration.
For instance, by limiting the amount of types both stack handling and
communication is easier, as variables can only by one size (see chapter 5).
By only having one type of variables we could also limit the expression and
statement necessary. This resultes in a simpler compiler, enabling us to
focus on concurrency and communication mechanisms.

57

PROC Main : 4S : {
2 VAR var ;

VAR array [1 0] ;
4 SEQ {

TestProc1 ;
6 TestProc2 ;

}
8 }

Listing 3.3: Decleration of a variable and an array, and a sequential
statement block where two procedurees are initiated.

〈StmtCompound 〉/Statement Compound After the variable has been
declared, the procedure block requires a statement compound. A statement
compound is a block with a list of statements. For every statement com-
pound there has to be specified the order the statements in the compound
are to be run in. This is specified through the order keyword, which specifies
if the statement is to be run sequential or in parallel. A typical statement
compound can be found in listing 3.3, where there are two procedure call
statements: first, TestProc1 is called, and secondly TestProc2.

3.6 Expressions

Expressions are quite similar to C expression, but again the number of
operators is very restricted. Our language supports subtraction and addi-
tion. The reasoning behind restricting the type expression, was that they
where not vital to demonstrate the concurrency features of the language.
〈Expr1 〉 ::= 〈Expr1 〉 + 〈Expr2 〉

| 〈Expr1 〉 − 〈Expr2 〉
| 〈Expr2 〉 [〈Expr2 〉]
| 〈Expr2 〉

3.7 Statements

Our languages statement is also limited, but supports enough statements
to demonstrate concurrency and real-time features. We chose to disregard

58

conditional statements such as WHILE and IF/ELSE. The argument for limit-
ing the number of statements is the same as for limiting the variable types.
By disregarding them the compiler implementation is simplified, and they
are not necessary to demonstrate the concurrency and real-time behavior of
the language.
The BNF grammar for the included statement is:
〈Stmt 〉 ::= 〈LowIdent 〉 〈AssignOp 〉 〈Expr 〉 ;

| 〈LowIdent 〉 〈Array 〉 〈AssignOp 〉 〈Expr 〉 ;
| DeSchedule ;
| 〈CapIdent 〉 ;
| 〈Expr 〉 ;
| Work ;
| 〈StmtCompound 〉
| Print 〈String 〉 〈ListExpr 〉
| 〈ChanCom 〉 ;
| 〈Stmt 〉 ;

Statement Compound/〈StmtCompound 〉

As mentioned statement compounds is a vital part of a procedure, and is
really where behavior of the program is written. In our language there
are two types of statement compounds, which both run statements in the
specified order. The first type is a statement block, and the second a for
loop.
The BNF description of statement compounds:
〈StmtCompound 〉 ::= 〈Order 〉 FOR 〈LowIdent 〉 〈AssignOp 〉 〈Integer 〉 TO 〈Integer 〉 : 〈StmtBlock 〉

| 〈Order 〉 〈StmtBlock 〉

Statement Block (SEQ and PAR)/〈Order 〉 〈StmtBlock 〉

In occam SEQ and PAR are placed in front of a statement block. The keywords
implies in what order the list of statement inside the block are to be ran in.
If it is a PAR block all the statements are run in parallel. The statements
in a SEQ block are run sequentially. This makes it possible to create fine
grained parallelism. A statement block is also a statement, so a statement
block can consist of several nested statement blocks.

59

For Loop/〈Order 〉 FOR 〈LowIdent 〉 〈AssignOp 〉 〈Integer 〉 TO 〈Integer 〉 :
〈StmtBlock 〉

For loops is just like for loops in any other language: where a counting
variable has to be declared an assigned to a value, and a limit to iterate to.
Except from it to that the initial counter value, and upper limit has to be
declared with integers. This is due to stack inheritance, which we will come
back to in the next chapter.

SEQ/PAR FOR i = 0 TO 10 : {
2 . . .
}

Listing 3.4: For loop declared

An order has to be specified at the beginning of a for loop declaration. It
specifies the order the for iterations of the loop is executed in, which is
different from a statement block where it is the order of each statement it
specifies. For instance, in a parallel for loop each of the iteration is run
concurrently. The body of the for loop can be seen on as a procedure. This
differentiates it self from pure parallel statemnts block where the statements
are run in parallel. This separates our language from occam, where a for
loop is followed by a procedure block. As before, this change is due to
simplification, and that this is a more natural way of describing concurrency.
With such a for loop, the parallelization pattern “loop parallelism” is easily
described (see chapter 2.3). Of course it is also possible as Occam to use a
single statement or statement blocks in the block of a for loop.

Procedure Call/〈CapIdent 〉

When a procedure has been declared, it can be called from inside a statement
compound. The procedure is then started and ran. If a procedure is called
within in a PAR compound, the procedure is run concurrently with other
statements in the block. A procedure can not take any arguments; hence a
procedure can be called by its name only, such as TestProc1; in listing 3.3.

Assignment/〈LowIdent 〉〈AssignOp 〉〈Expr 〉

Variables and arrays have to be assigned inside a statement block. Assign-
ment in our language is just like in C. On the left hand side of the equal sign
is the variable that is assigned, and on the right hand side an expression.

60

1 a = 3 ;
a = 2 + a ;

Listing 3.5: Variable being assigned

De Schedule/DeSchedule

In our language we have also introduced a new statement, DeSchedule,
which de schedules the process currently running. It was necessary to have
such as a statement when the scheduler is non-preemptive, as our is (see
section 5.1). It enables the programmer to explicit tell when a procedure
can de scheduled. A typical usage of the statement can be if procedure
comes to a computing intensive part of the code, which is not a critical
computation. By using the deschedule statement the scheduler can let time
critical processes run instead, before returning to the descheduled procedure.

PROC Main : 4S : {
2 Var a ;

SEQ {
4 Work ;

a = 3 ;
6 DeSchedule ;

Work ;
8 }
}

Listing 3.6: Descheduing a procedure “working”

Work/Work

Additionally to the deschedule statement we added a work statement. The
work statement is directly linked to a work function in run-time system,
which does a computational intensive task. The statement is useful in an ex-
perimental language such ours, enabling simulation of intensive algorithms,
without having it to implement again in every test case. It is especially
useful when creating a number of intensive task that interferes with time
critical processes, which will be demonstrated in chapter 6.

61

Print/Print

〈String 〉 〈ListExpr 〉 The last statement we added was Print. A Print
statement has to be followed by a string, or a list of expression or both
(demonstrated in listing 3.7). Each variable is separated by a space and a
comma, and ended with a newline. It simply utilizes print functions in the
generated language, and prints to the standard output.

1 Print ” He l lo World ” ;
Pr int ” He l lo World” var ;

3 Print ” He l lo World” var , 3 ;

Listing 3.7: Print statement printing a string and expressions

Channel Communication/〈ChanCom 〉

Channels are declared globally and shared by the procedures. They can,
however, only be used in two procedures. There are two symbols reserved
for channel communication send ! and receive ?. A procedure which uses
a channel can both send and receive on that channel multiple times, but
it can only communicate with one other procedure through this channel.
The reason for limiting channel communication is due to the dependency
analysis done at compile time. For the dependency analyzer it is necessary
that it can at compile time map which procedures depend on whom. When
a channel is shared by more than two procedures, sent messages has to be
broad casted to all the procedures sharing the channel. A procedure waiting
on receiving on a channel with multiple senders might depend on multiple
procedures, and we can never know which one will be the actual sender.
Such a solution will then result in a more complex dependency analysis.
The BNF description of channel communication is based on CSP channel
communication. Reserving ! and ? for send and receive messages over a
channel:
〈ChanCom 〉 ::= 〈ChanExpr 〉 ! 〈Expr 〉

| 〈ChanExpr 〉 ? 〈Expr 〉

1 CHAN chan a ;

3 PROC Test1 : 1S : {
VAR var1 ;

62

5 SEQ {a
var = 44 ;

7 chan a ! var1 ;
}

9 }

11 PROC Test2 : 1S : {
VAR var2 ;

13 SEQ {
chan a ? var2 ;

15 }
}

Listing 3.8: Two procedurees communication over a channel

In listing 3.8 there are two procedures communicating over a channel. Test1
assigns the variable var1, and then sends it over the channel chan˙a. Test2
waits on receiving on chan˙a, and then reads the data sent over the channel
into the variable var2.
It is also possible to declare channel arrays, and then use an element in
the array to communicate over. However, an element in a channel array
can only be referred to by the loop counter or a constant. The reason for
this restriction is that by allowing any type of expression as reference, the
dependency analysis gets very complex. Something we will come back to in
the next chapter.

Summary

In this chapter the grammar of our experimental languages has been pre-
sented. The grammar is written on BNF (Backus-Naur Form) and is based
on Martin Korsgaard Time/Occam grammar [19].
occam requires that statement is grouped together in blocks, and the order
the statement can be executed in. By SEQ the statements are executed
sequentially, PAR the statements are executed in parallel.
Additional to ordinary occam statements such as, assignment, print, pro-
cedure call, our language has the statement created for testing purposes,
DeSchedule and Work. DeSchedule stops and deschedules the process, and
Work triggers a work function in the run-time that does a computational
intensive task.

63

Last channel communication was described. Channels has to be declared
globally, and message can be sent on a channel with the keyword ! and
received with they keyword ?.

64

Chapter 4

Compiler Generated Code

In the previous chapter we presented the grammar of our language. In this
chapter we will present the code generated by the intermediate code gener-
ator in the compiler. Our compiler is written in Haskell and the lexer and
parser is generated with help of BNFC, and the grammar presented in the
previous chapter. The Haskell code generator reads the syntax-tree (see sec-
tion 2.1.2) and generates C code as output1. The generated code can then
be compiled with a C compiler, such as gcc. In some cases the relationship
between our language and C is close; this helps us to easier describe the
transition between them. For instance, an assignment statement a = 2
would be exactly the same in C. However, some of the features in our lan-
guage, such as PAR bocks, channel communication, concurrent execution of
processes; require more complex code to be generated.

4.1 Processes Generation

A process is piece of the program that can run on its own. Processes can be
generated by two statements in the language, procedures and PAR blocks.
Both statements are restricted by the grammar to only interact with other
processors in particular ways. For instance, in a PAR block a variable can
be read by all the concurrent processes, but only one of the processes can
write to it. A procedure on the other hand, can only interact with other
processes through channel communication.

1Please see the attached source code for specific details on the code generators imple-
mentation

66

Let’s take a look at how PAR generates processes. In a PAR block each
statement in the block is run in parallel, so each statement gets a C function
and a separate process that executes the C function. In a PAR FOR the
statement block is implicitly interpreted as a sequential block, where each
iteration of the loop is run parallel. Hence, each iteration is run as a separate
process, and a C function is generated based on the statement block in the
for loop.

4.2 Duff’s Device/Co Routines

To enable a processes to be run concurrently and be able to be descheduled
while running. It is necessary to know where the process stopped, so it can
continue from that point when run again.
An example of where a process is descheduled is; when a process is waiting
for a incoming message on a channel, it then has to wait on another process
to transmit the message before continuing execution. It is easy enough to
block a process if each process was run on an independent OS-thread, and
we let the operating system handle scheduling. However, if we want control
scheduling and process execution it is necessary to enable a blocked process
to be deschudeled until it is ready to execute again.
The problem is then: how do process know the state it was in when it
was descheduled? What where the values of its local variables? Which
instruction was it blocked on ? etc. The traditional solution to this problem
is to have a stack where the data is kept. The run-time system can pop and
push values and pointers that needs to be stored until the process is ready
to run again. However, a stack increases the compliers complexity, and a
stack must be used with care as the portion of memory it uses grows for
each time new data is added.

Duffs device A different approach to remember the state the process is by
using a design pattern known as Duff’s device (presented in [34]). It utilizes
high-level language mechanism to get a stack like functionality, without the
hassle of memory management.

2 i n t f u c t i on () {
s t a t i c i n t i = 0 ;

4 s t a t i c i n t pc= 0 ;

67

6 switch (pc) {
case 0 :

8 i++;
pc = 1 ;

10 re turn i ;
case 1 :

12 i−−;
pc = 2 ;

14 re turn i ;
case 2 :

16

18 }
}

Listing 4.1: Duffs device

So we wish to enable an implementation where we can deschedule a function,
and later return to the point where we last left of. The function above does
some simple incrementation and decrementation on a single variable.
A switch case such as the one in the example, “fall trough” and continues to
execute the next case if not “breaked”. We can use this to split our function
into parts. At a point where we wish to yield we simply save the pc of the
next case and return.
To store the local variables they can be defined as static, if the Duff’s device
is only used by one thread at the time. If the function is executed in
parallel/“shared”, the local variables and process counter has to be saved
externally. A good solution is to create a struct holding all the variables
and information of the Duff’s device, such as, pc and function pointer. All
references to variables in the function then have to be to the variables stored
in the struct.
CCSP/Kroc has a design similar to Duff’s device. It is a jump table, con-
sisting of pointers to labels in the function. The labels point to different
parts of the function. For instance, a label is placed where the process may
be blocked. If the process is blocked, it can jump directly there next time
it is run (for more details please see [27]).
In contrast to CCSP, JIBU has no deschudelings point, so once a process is
executed in will execute until it is done. It is up to the operating system to
schedule the different OS-threads created (see section 2.4).

68

GO uses a stack to hold process information. The scheduler in GO is non-
preemptive, so a process has to be yield to stop execution. When the process
is yield the program counter is set and stacked. The scheduler can then
retrieve another process. The stack given to each process is minimal only
a few kilobytes, but can be extended as the process needs more. By giving
each process a minimal stack the cost of context switch is less. GOs also
use assembly instructions to switch between processes, which helps decrease
the cost of a context switch (see our discussion with Russ Cox on GOs stack
[14]).

Our implementation To avoid the complexity of complete stack manip-
ulation, we chose to use Duff device when implementing processes in the
run-time system. Variables and data is kept in a struct we call a stack.
It holds the information about what state the current processes is in, and
its variables. However, it is important to note that it is not a stack in
a traditional sense. The two main reasons for choosing this implementa-
tion were; it reduces complexity, and it makes stack inheritance between
processes easier.
As described earlier the compiler generates C function that processes runs.
During compilation when the compiler comes across a statement where the
process can be descheduled it generates a new case in Duff’s device. A
typical example of such statement is channel communication. Additionally
they can be explicit introduced by the programmer trough the Deschedule
statement:

1 DeSchedule ;

3 \\Generated code

5 stack−>pc = 1 ;
procStatus = ProcReady ;

7 goto f i n a l i z e ;
case 1 :

Listing 4.2: The generated code generated of a DeSchedule statement

We will in the remaining part of this explain some of the code generated to
support the concurrent execution of the processes.

69

4.3 The Stack

As mentioned earlier, a stack struct holds all the variables and the infor-
mation about the state of a process. At compile time when a procedure is
parsed the number of variables declared is counted. A variable count vari-
able are then generated together with the C function. Both the function
and the variable is used as argument when a new process is created.
The variable count is necessary when the size of the processors stack is
allocated. The variables are stored in an array of the specified size. Each
variable name is then linked to its position in the array. The first variable
declared lies in position one, the second in position two etc. To avoid
explicitly link each variable name to their number in the generated code,
the compiler keeps a list over the names and numbers, and inserts the array
reference where the variable is used. The stack also contains the process
counter, which controls which case to run in the co routine generated, and
a pointer to a copy of its parent’s stack.

4.4 Stack Inheritance

As mentioned earlier, a process is generated for each statement in a PAR
block, and each iteration in a PAR FOR. These statements are parts of a
procedure and can access the variables declared in the procedure. Hence,
a process has to be able to access its parent’s variables. Each process is
therefor given a copy of the parent process. Processes generated of PAR
statements is handed a copy of the stack of the processes they are in.
PAR block can be nested, a PAR inside a PAR block. Therefor, it is necessary
to keep track of on what level the variable are declared, and on what level
they are used. The compiler does this by having a status variable for each
block. The status is changed each time a new block inside the original is
parsed, and when it is done. Each time a variable reference occurs; the level
the variable is declared on, and the current level is checked. It then uses the
difference between the levels to generate a reference to the correct parent
stack at the correct level.
For instance, in a procedure with two nested block, as the one in listing 4.3.

70

1 PROC Test : 4S : {
VAR a ;

3 PAR {
PAR {

5 a = 2 ;
}

7 }
}

9

\\ Generated va r i ab l e ass ignment
11

parent −> parent −> vars [2] ;

Listing 4.3: Compiler generates reference to the parent stack at
procedure level

Where the assignment of a is inside two nested block, hence the correct
parent stack is two levels up.
Each process is given separate copies of the parents stack. The reason for
this is that; with no pointer interaction there is no unwanted side effects,
and no need for guards to protect the memory. It however, requires synchro-
nization of the memory when all the children processes are done executing,
which is something we will come back to in section 5.2.

4.5 Process Status

To tell the run-time system what state the processes is in when the C
function returns. We have defined a set of statuses a processes can have
(see listing 4.4).

enum ProcStatus {
2 ProcWaiting = 0 ,

ProcReady ,
4 ProcRunning ,

ProcDone ,
6 ProcMainDone ,
} ;

Listing 4.4: Processes statuses

71

If the process is blocked, either due to waiting on synchronous communica-
tion, or on children processes to complete. It returns the status ProcWaiting.
If it is descheduled voluntarily through a DeSchedule statement it has
the status ProcReady. A process should never return with the status
ProcRunning, it is only used in the run-time, which is only set when a
process is run.
When a process is complete it returns ProcDone or ProcMainDone depending
on if its the Main procedure or not. When the process is done it triggers
cleaning mechanisms in the run-time system, cleaning up the memory after
a process.

4.6 Process Initiation

We have now explained how processes are created, but not how they are
initiated. A new processes is initiated by a procedure call or through PAR
statement compounds. A procedure call results in that the run-time process
creation function is called, with the function name, variable count, deadline,
and dependency functions, and the process that created it as arguments.
This process is then run as an individual process, and scheduled based on
its own deadline.

1 newProc (Test , Test var count , Tes t var dead l ine ,
stack , Test chan dep , proc) ;

Listing 4.5: A new process is created

As mentioned processes are also created for PAR statement blocks, the pro-
cess is then initiated where the PAR statement is is the code. It uses the
same run-time function, but with the auto generated function as argument.

4.7 Channel Communication

Our language support synchronous communication. In listing 4.6 we can
see code generated from a channel send statement. It first checks the status
of the channel. If there is a waiting process it sends on channel, and notifies
the waiting process, if not it register as a waiting process and returns.
The code would look almost the same for a receive statement, except using
the run-time receive functions.

72

The example in listing 4.6 is a bit simplified; the generated code would also
have to use a channel lock to make sure that the channel is not compromised.
We will in the next chapter explain how the run-time system is designed to
support synchronous communication.

1 chan a ! a ;

3 \\Generated code

5 int chan s ta tus ;
chan s ta tus = channelReady (chan a) ;

7 i f (chan s ta tus) {
sendOnChannelSynch (a , chan a) ;

9 }
else {

11 {
sendOnChannel (a , chan a) ;

13 deschedule and wait ;
}

Listing 4.6: Simplified compiler generated C code of a channel send
statement

4.8 Dependency Analysis

Besides generating code our compiler also does dependency analysis to im-
prove deadline misses. Due to the strict language grammar and communi-
cation, can almost only occur through channel communication. The result
of these strict rules is that a process is directly dependent on others through
channel communication occurs. By analyzing and mapping channel commu-
nication, the compiler can get a complete “picture” which process depends
on whom.
There is, however, one other way a process can be dependent on other
processes, this is through parent child relationship. As explained earlier, if
a process contains a PAR block it has to wait for all the children process to
complete before it is complete. This dependency relationship can not be
exploited to improve efficiency, as a PAR block can not be executed earlier
than when it is called inside the parent process. Such a behavior could

73

potentially change the behavior of the program, which has to be avoided
when optimizing the code (see section 2.3.6).
The compiler saves the procedures using a channel, on channel communica-
tion statement. It has a list over all the channels declared in in program,
and saves the two belonging procedures when the code is compiled. The
compiler then generates dependency functions for each process, using the
information. The generated function is called when the processes is initi-
ated. The function creates a list over which channels a process depend on,
and a list of the processes that uses a channel (Listing 4.7 is an example of
such a auto generated function). These lists are used by the scheduler, as
we will see in the next chapter.

void Proc0 chan dep (s t r u c t Proc ∗ proc) {
2 addProcAsDep (chan a , proc) ;

addProcAsDep (chan b , proc) ;
4 }

Listing 4.7: An auto generated channel dependency function

Summary

In this chapter the code generated by the compiler was presented. First how
a process is structured was presented. How Duff’s device enables processes
to continue where they left of after being descheduled. The compiler also
generates a variable count, which determines the size of a process’ stack. We
briefly explain how the complier from a channel communication statement
generates a channel check to determine if there is a waiting process on the
other end of the channel, and sends or receives on the channel.
In the last section we presented how dependency analysis is performed was.
It maps the usage of the channels in the program, and generates functions
adding the according processes to the channel they use. The functions are
run when the process is created.

74

Chapter 5

The Run-Time System

When the compiler has generated runnable code of source code it is run
in the run-time system. Its job is to perform language mechanisms such as
channel communication, memory handling, creating, destroying and schedul-
ing processes. Our run-time system utilizes parallel programming patterns
(presented in section 2.3), and mechanisms from the run-time systems to
known concurrency oriented languages such as GO, Erlang, and occam (see
section 2.4).
In this section we will present how the scheduler works, how stack inheri-
tance is performed and how we organize processes.

5.1 Scheduler

The run-time system is built around a multiprocessor EDF scheduler. We
based our choice of scheduler on our conclusion from our real-time multipro-
cessor scheduling survey [17]. The scheduler is a plain EDF scheduler which
later can be extended to a modified EDF scheduler, which is discussed in
chapter 8. For testing purposes two versions of it was implemented; one
using the dependency analysis performed during compilation (see section
4.8), and one scheduling only based on deadlines. We will first present the
pure EDF scheduler.

Pure EDF Scheduler The scheduler is based on the master/worker pat-
tern. The number of worker threads is specified in a macro and has to be
one pr. CPU. This is due that each worker is locked to a CPU with Linux

76

specific mechanisms. The worker threads retrieves the process with the ear-
liest deadline from a shared run queue (ready queue) holding all the ready
processes. It then executes the process generated C function. Depending
on the process status returned by the function, the process is either put
back on the ready queue (ProcReady), put on the waiting processes queue
(ProcWating), or cleans up after the process (ProcDone) by freeing used
memory etc.
When a process is complete all processes which are waiting on it are notified.
A process may wait on more than one process, and each process has counter
that is decremented each time a process it depends on notifies it. When the
counter reaches zero, the process is moved from the waiting queue to the
ready queue, and retrieves the changes done in the stack copies the children
process held. How this mechanisms work we will come back to in next
section.
When the worker has completed the task related to the processes status
returned, it retrieves the next process with shortest deadline from the ready
queue.

Dependency Based EDF Scheduler The dependency based multipro-
cessor EDF scheduler is based on the pure EDF scheduler, and uses the
same framework. It starts by choosing the processes with the lowest dead-
line, as the pure EDF would. Based on the dependency lists generated by
the compiler a separate run queue is filled with the dependent processes of
the process with the earliest deadline. These processes is then run by the
workers in the system.
As long as this run queue contains processes the workers execute them, as
illustrated in figure 5.1. When the run queue is empty, and there are no
dependent processes it starts over; by retrieving the next process with the
lowest deadline from the ready queue.
Each process contains a list of the channel they use and depend on. The
list is a FIFO list, which means that the first channel in the list is the first
channel used in the process. Each of these channels contains a list over
the processes which use it. By combining the information in both these
list the scheduler can map all the processes the current process depends on,
directly and indirectly. The worker then starts to execute all the dependent
processes concurrently, working “together” to meet the earliest deadline.

77

Waiting queue Ready queue

Worker 0 Worker N

Depdent proc queue

Figure 5.1: Worker and process queues

78

5.2 Stack

The stack holds information about the state of a process, and all the vari-
ables used in the process. As mentioned in the previous chapter (see section
4.3), each process generated from a PAR block is given a copy of its parent
stack, enabling concurrent read and write. Because each child process has
a copy, it is necessary to synchronize them with the parent when they are
done. So the parent can preserve the changes done in the child processes.
When a child process is done, the parent is notified, and queues the child’s
copy of its stack. Then as the “last” child process completes stack merging
is triggered. All the children stacks are compared with the parent stack,
and changes copied. Due to the strict grammar, not more than one of the
child process can write to a variable, which makes the merging easier.
These rules would also make it easier to hand each child process only the
pointer to the parents stack instead of a copy. However, separate copies
means that there is no need for locks in the stacks, and a “shared” stack
will not become a bottleneck.
Separate memory is also beneficial for multiprocessor systems. As memory
does not need to be synchronized across cache (please see [17] for more
details).
In all the run-time systems presented earlier in section 2.4 processes have
separate stacks, and does not allow stacks to contain pointers to other stacks.
There arguments for this is the same as our. Shared data increases com-
plexity and can become bottlenecks (as argued by Armstrong in [2]).

5.3 Channel Communication

Channel communication is made possible through run-time mechanisms,
and compiler generated code. The compiler generates code that checks the
state of the channel, and uses run-time functions to perform the communi-
cation (see section 4.7).
There are two different versions of each of the communication functions, one
pure that copies the message, and one that additionally synchronizes with
the waiting process. These functions are simple, because most of the work
is either done in the compiler, or in scheduler.
Let us take a look the code generated from a channel communication state-
ment:

79

i n t chan s ta tus ;
2 chan s ta tus = channelReady (chan a) ;

i f (chan s ta tus) {
4 sendOnChannelSynch (a , chan a) ;
}

6 e l s e {
{

8 sendOnChannel (a , chan a) ;
deschedule and wait ;

10 }

Listing 5.1: Simplified compiler generated C code of a channel send
statement

Both of the functions take the message and the channel as argument. The
channel holds the data to be sent, and a pointer to the sender and receiver
process. It also contains a flag used to notify if there is any processes waiting
for channel communication, and a list over the process using the channel.
If there is no waiting process on the “other” side of the channel, the process
writes its message to the channels data variable, sets the waiting flag, and
sets its status to waiting and deschedules. The scheduler then puts the
process in the waiting queue, and retrieves a new process.
However, if there is a waiting process on the “other” side of the channel,
the process has to be notified that a message is ready to be sent. The
process then uses the Sync version of the sender function, which stores the
message and than moves the process waiting from the waiting queue to the
ready queue. The process that was waiting to receive on the channel is then
scheduled normally. And retrieves the message next time it is run.

5.4 Advanced Data Structures

In our run-time system we have implemented two different queue structures;
a linked list, which can hold both channels and processes, and a red-black
tree that holds all the processes in the run-time system. In this section we
will present how they are used in the run-time system, but not present how
they are implemented. This is because they both are based on well known
designs.

80

Linked List

Linked-lists are used in dependency analysis to hold processes using chan-
nels, and the channels a process uses. These lists are only used to hold data
where the run-time system only accesses the first element. Queuing and
dequeuing can be done in constant time O(1) disregarding the size of the
list [13]. Searching a linked list can be done in linear O(n) disregarding if
it is sorted or not. This is why such lists are only used in a FIFO manner.
Searching the list with many elements can quickly become time-consuming.

Red-Black Trees

To avoid the search time of linked lists we chose to implement red-black
trees to hold the process in the wait queue and ready queue.
A red-black tree is a tree that is always balanced. It guarantees that the
length of the left sub-tree of a node is always ±1 the length of the right sub-
tree. This enables such trees to have a worst case run-time for insert, delete
and search of O(log(n)) [13]. This is very good when we want a predicable
and fast search.
Red-black trees are complex and can be difficult to implement. Therefor, we
chose to use the red-black framework from the Linux kernel. The framework,
however, requires that a large part of the code has to be implemented. Such
as, search, insertion, deletion, the reason for this is that the sorting criteria
have to be based on what the tree contains [12].
In our case there are two different trees sorted with different criteria. The
ready queue is sorted by their deadline and process id (PID), and the waiting
queue is sorted based only on PID. The queues can then be searched based
on deadline, or PID depending on the queue. The kernel framework provides
functions for inserting and deleting nodes, and keeps the tree balanced (for
more details on the framework and how to use it please see [12]).

Summary

In this chapter the design of our run-time system was presented. We built
two multiprocessor EDF scheduler based on the master/worker principle,
one pure and one utilizing the data from the dependency analysis done
during compilation.

81

How stacks are copied and merged was presented. We also explained how
channel communication uses scheduling mechanisms to notify waiting pro-
cesses. And in the last section we briefly described that data structures
used to store processes and channels in the run-time system.

82

Chapter 6

Examples and Performance

In this section we will present an example where process dependencies affect
the scheduling, and explain how it reduces deadline misses. At the end we
will present the results of performance tests done on, Erlang, GO, occam
and our system.

6.1 Concurrent Hello World

In this section we will present a modified Hello World program, which shows
the main features of our experimental language. Readers that feel comfort-
able with the language grammar can jump a head to the next section.

CHAN chan [1 0] ;
2

PROC Hel lo : 1S : {
4 VAR a ;

PAR FOR i = 0 TO 10 : {
6 chan [i] ? a ;

Pr int ” He l lo World” a ;
8 }
}

10

PROC World : 1S : {
12 PAR FOR i = 0 TO 10 : {

chan [i] ! i ;
14 }

84

}
16

PROC Main : 500 Ms : {
18 PAR {

Hel lo ;
20 World ;

}
22 }

Listing 6.1: Concurrent Hello World example

The program consists of three procedures Hello, World and Main. The Main
procedure is a required procedure that always has to be declared, it is also
the first procedure to be run. It has a deadline of 500 Ms. It consists of one
PAR block, where the two produces Hello and World are called. Because the
procedures are called inside a PAR block the procedures are run concurrently
as separate processes, both with a deadline of 1 second.
World is the simplest procedure. It is made up of one PAR FOR loop, that
goes from 0 to 10. Each iteration in the PAR FOR is run as a separate
process concurrently with the others. The body of the PAR FOR consist of
one channel communication statement, sending the loop counter i over a
channel chan[i].
The procedure Hello starts with declaring the variable a. All variables
which is going to be used in a procedure has to be declared at the beginning
of the procedure, such as a. The statement block in the procedure is the
same PAR FOR as in World. But instead of sending over a channel in the
channel array, it receives a message. The message is read into the variable
a, and is then printed together with the string “Hello World”.
The channel array is declared globally, and each element can only be used
by two procedures at the time. This is due to the dependency analysis
performed by the compiler.
The output from this program is ten “Hello World” messages with the re-
ceived number at the end:

85

. .
2 Hel lo World5 ,

He l lo World6 ,
4 Hel lo World7 ,

He l lo World8 ,
6 . . .

Listing 6.2: Concurrent Hello World output

6.2 Pure EDF Multiprocessor Scheduling

In listing 6.3 the example code is presented. It consists of five procedures
and two channels.
The Main procedure is the first to be called, and it is the only procedure
that uses a PAR block. It calls the procedure Proc1, Proc2, Proc0 and runs
a PAR FOR block in parallel. For each statement in the PAR block a new
process is generated. Of the PAR block in the Main procedure four processes
is generated, all of them inheriting the parents deadline. Tree of the process
runs the procedures calls, which are run as independent processes with their
own deadlines.
The last process runs the PAR FOR, which runs ten Proc3 calls in parallel, as
with the other procedure calls they are run as independent processes with
their specified deadline.
The Main creates in all twenty six processes, but only only half of them
are independent processes running source code procedures, the other half is
compiler generated processes that enable the first half to be created concur-
rently. These processes only execute one statement and are blocked until
the procedures are complete. We therefor disregard them from now on.
The processes created operates with three different deadlines, the process
running Proc0 has the shortest deadline of 1Ms, the processes running proce-
dure Proc3 has a deadline of 500Ms, and process running Proc1 and Proc2
has a deadline of 2S. Only based on their deadline the process running
Proc0 should finish first, then the processes running Proc3 and last Proc1
and Proc2.
However, in figure 6.1 we can see that this is not how the program is actually
is run. This is due to the synchronous communication between Proc0, Proc1
and Proc2. Proc0 communicates with Proc1 through channel chan˙b, and

86

with Proc2 through channel chan˙a. Proc0 is run concurrently with one of
the processes running Proc3, but is blocked when sending on chan˙b. It has
to wait until Proc1 is run and receives on chan˙b. Due to the late deadline
of Proc1, it run last and Proc0 misses its deadline.

CHAN chan a ;
2 CHAN chan b ;

4 PROC Proc0 : 1Ms : {
VAR a ;

6 SEQ {
chan b ! a ;

8 chan a ? a ;
}

10 }

12 PROC Proc1 : 2S : {
VAR a ;

14 SEQ {
chan b ? a ;

16 }
}

18

PROC Proc2 : 2S : {
20 SEQ {

chan a ! 33 ;
22 }
}

24

PROC Proc3 : 500Ms : {
26 VAR a ;

SEQ {
28 SEQ FOR i = 0 TO 10 : {

Work ;
30 }

}
32 }

34 PROC Main : 10S : {
PAR {

87

36 PAR FOR i = 0 TO 10 : {
Proc3 ;

38 }
Proc2 ;

40 Proc1 ;
Proc0 ;

42 }
}

Listing 6.3: Procedures depending on each other through synchronous
channel communication

Proc 0

Proc 1

Proc 2

Proc 3.0

Proc 3.9

chan_b

Blocked

Executing

chan_b

chan_a

chan_a

chan_b

chan_a

Process complete - Deadline missed
Process complete - Deadline met

Figure 6.1: GANTT chart for channel dependency example without de-
pendency analysis. Run on a system with two processors

6.3 EDF Multiprocessor Scheduling With Depen-
dency Analysis

With dependency analysis enabled the dependencies between Proc0, Proc1
and Proc2 is mapped by the compiler. When the scheduler retrieves the
process with lowest deadline from the ready queue a run-queue is filled with
its directly and indirectly dependent processes. The worker threads than
runs all the processes in this run-queue before retrieving the process with
second shortest deadline. Let us take a look at how:

88

Proc0 is the process with the lowest deadline in listing 6.3, and is the first
process to be run after the main process. The procedure does two chan-
nel operations in sequence; it sends the variable a on channel chan˙b and
receives a message on channel chan˙a.
The compiler maps that chan˙a is used by Proc0 and Proc1, and chan˙b by
Proc2 and Proc0. By combining the information about the channel usage
and the process that uses the channels a run queue for Proc0 in created. In
this case the run queue holds first Proc1, as Proc0 first communicates over
chan˙b, and last Proc2.
Figure 6.2 shows how the processes are scheduled in a dual processor system.
Proc2 can then be run concurrently with Proc0 and can communicate with
it without having to wait. The end result is that every one of the processes
reaches their deadline, unlike without dependency analysis where Proc0
misses its deadline (figure 6.1).

Proc 0

Proc 1

Proc 2

Proc 3.0

Proc 3.9

Blocked

Executing

chan_b

chan_b

chan_a

Process complete - Deadline missed
Process complete - Deadline met

chan_a

Figure 6.2: GANTT chart for channel dependency example with depen-
dency analysis, run on as system with 2 CPUs

Example Evaluation

In chapter 2.5 two techniques to improve the schedulers efficiency was pre-
sented, interlocking protocols and batch scheduling. Our dependency based
scheduling is a combination of these two techniques. Dependent processes

89

are grouped together as in batch scheduling, not to improve cache affinity,
but to enable distribution among the workers to make sure they are working
together to reach the earliest deadline. This is similar to the interlocking
protocols, which tries to schedule tasks together to reach deadlines.
Interlocking protocols are there to prevent processes being blocked on shared
resources. They operate solely at run-time. Usually they are based on pro-
cesses locking a resource, and the other processes that needs the locked
resource queues up. There are several advanced techniques to prevent “im-
portant” processes from waiting to long, such as PIP (Priority Inheritance
Protocol) ??. However, none of the common interlocking protocols uses
compile time knowledge, which is also rare for batch scheduling (CCSP uses
compile time knowledge). This is due to the fact that dependency analysis
in “ordinary” languages is very complex, such as in C where pointers and
pointers manipulation make it impossible for the compiler, at compile time
map how a variable are shared.
Due to our language strict grammar, we can utilize compile time analysis
to minimize deadline misses. However, it increases the complexity of the
compiler, and the time used at compiling. For instance, for a for loop using
an array of channels the compiler has to iterate over the whole loop to map
all the channels used at compile time. If the number of iteration gets large
enough, compilation can be slow.
The scheduling techniques also result in higher complexity in the run-time
system, such as analysis done when retrieving a new process from the ready
queue. In most cases the cost of this operation is minimal compared to the
work done in the process.

6.4 Performance

We have performed two different performance tests on our language and
three well known concurrent languages, occam(SPOC), GO, and Erlang. We
have tested two features; process creation and synchronous communication.
All the test programs can be found attached to this report.
The testes where performed on this system:

• OS: Ubuntu 9.10, Kernel Linux 2.6.31

• Hardware: 3.2 GiB memory, Intel R©CoreTM2 Duo CPU 3.00 GHz

• Erlang: Erlang R13B01 (erts-5.7.2)

90

Process creation (per process) Commstime
(per communication)

Erlang 3.0 µS 0.62µS
GO 4.5 µS 1 µS
occam (SPOC) 0.00155 µS 0.0039 µS
Our system 2.2 µS 0.125 µS

Table 6.1: Results from test of the different run-time systems

• GO: Commit hash 0be68ce1d89d from [9]

• occam: SPOC Version 1.3

Process Creation The first test was creating 20000 processes. A test
inspired by Joe Armstrong benchmarks in [2]. He wanted to prove that an
Erlang processes was light and was created fast. We replicated the test from
[2] in GO, occam, and our own language. The tests where timed, and the
results from the test can be found in table 6.1.
During design and implementation of our system we have not focused on
optimizing mechanisms. It was more important to get the right functionality
in place. Therefore, the results that was achieved was quite surprising. Our
system was faster than both Erlang and GO, only occam was considerably
faster (1400 faster) than our system. This is probably due to the work
put into optimizing occam’s run-time system. The reason that our system
out performance GO and Erlang is probably due to that is is very simple
and light. There is no complex register and allocation operations which has
to be run for each process creation. The scheduler is small compared to
GO and Erlang. In our run-time system there is therefor less operations
involved in creating a process, than in the Erlang and GO.

Commstime The second test performed, was a performance test com-
monly used for CSP frameworks [33]. It tests the communication time by
sending message in a ring. There are four processes in the ring: Prefix,
Delta, Succ and Consume. Prefix starts communication by sending a value
over the channel to delta. The messages is copied, and sent to Consume and
Succ. Succ increments the value received by one, and sends it back to
Prefix. It then passes the message through to Delta (The communication
ring is illustrated in figure 6.3).

91

By timing each time Consume receives a message, we can determine how
long a complete round of the ring takes.
A complete round requires four channel communications, so it also possible
to determine how long an individual channel operation takes. By having
multiple processes communicating it is easier to distribute the processes
in a multiprocessor system, it also invokes context switches, which is then
indirectly tested.
The design and implementation is based on the commstime test presented
in [33].

Prefix

Delta

a

Succ

b

Consume

c

d

Figure 6.3: Process network for the communication benchmark

We implemented the commstime test in GO, occam(SPOC), Erlang1 and
our language. Listing 6.4 contains the commstime test implemented in our
language.
We timed each round of the ring, and then found time pr. channel commu-
nication. In table 6.1 the results from the test is presented.
The result from the commstime test was a bit surprising. occam was clearly
the fastest as it where in the first test, and again it is likely this is due to
the highly optimized run-time system. But our system performed a channel
operations faster than GO and Erlang.

1The Erlang test is a modified ring test from http://projects.cs.kent.ac.uk/
projects/kroc/svn/kroc/trunk/tests/ccsp-comparisons/(May, 2010)

92

http://projects.cs.kent.ac.uk/projects/kroc/svn/kroc/trunk/tests/ccsp-comparisons/
http://projects.cs.kent.ac.uk/projects/kroc/svn/kroc/trunk/tests/ccsp-comparisons/

Commstime 20000 rounds
Erlang 0.0136S
GO 0.038 S - 0.050S
occam (SPOC) 0.007S
Our system 0.050 S - 0.070S

Table 6.2: Results from running the complete commstime test

These results where intriguing. Again we think that the good results can
be explained by that our system is simple and light.
The commstime benchmark was based on a implementation where 20000
rounds of the ring where made. We wanted to see what the total run-time of
the system where, instead of single rounds. The results are presented in table
6.2. Based on the two first tests, we would expect that our systems would
be faster also when the complete program was run. It has faster channel
communication, and creates processes faster, but it did not. It is likely that
our small and simple mechanisms perform better individually, then when
the system is tested as a whole and all the unoptimized mechanisms makes
its impact on performance.

93

1 CHAN chan a ;
CHAN chan b ;

3 CHAN chan c ;
CHAN chan d ;

5

7 PROC Pre f i x : 4S : {
VAR a ;

9 SEQ {
a = 1 ;

11 SEQ FOR i = 0 TO 20000 : {
chan a ! a ;

13 chan d ? a ;
}

15 }
}

17

PROC Delta : 4S : {
19 VAR a ;

SEQ FOR i = 0 TO 20000 : {
21 chan a ? a ;

chan b ! a ;
23 chan c ! a ;

}
25 }

27 PROC Succ : 4S : {
VAR a ;

29 SEQ FOR i = 0 TO 20000 : {
chan b ? a ;

31 a = a + 1 ;
chan d ! a ;

33 }
}

35

PROC Consume : 4S : {
37 VAR a ;

SEQ FOR i = 0 TO 20000 : {
39 chan c ? a ;

94

}
41 }

43 PROC Main : 2S : {
PAR {

45 Pre f i x ;
Delta ;

47 Succ ;
Consume ;

49 }
}

Listing 6.4: The process network test (commstime) implemented in our
language

Summary

In this chapter we have demonstrated how dependency analysis affects the
EDF scheduler. Results from two performance tests were then presented,
and in both tests our system did surprisingly well.

95

Chapter 7

Missing Features in
Language and Run-Time
System

As mentioned earlier, in chapter 3, we have restricted the number of state-
ments in our language severely. There has been a combination of reasons to
disregard them; most of all that we did not see them necessary to demon-
strate the real-time and concurrency principles in our language. However,
we will in this chapter discuss which features necessary to add to make it a
”usable” language, and possible designs for their implementation.

7.1 Missing Language Features

We will start with whats missing from the language, and then discuss some
of the features missing from the run-time system.

Types

It is quite clear that it in necessary to add type declaration, so a variable
can be something else than an int. The type declaration is put in front
of the variable being declared, to specify the type of the variable. Some of
the most common types in other languages are int, double, char, string
and bool. Supporting types would require some changes in the compiler,
and some changes in the run-time system. The grammar would have to be

96

extended to accept types, and require them to proceed variable and array
declarations. The type would have to be mapped to the variable during
compilation, which would be used in type checking and size calculation.
The run-time system would then check the type size, and allocate the correct
size to the variable or array. Implementation should be relatively easy as
the run-time system and compiler already uses a compiler generated size
measurement. It would require that the variables no longer was stored in
one array, but in separate pieces of memory. And the array array in the
stack held pointers to the memory.
Channel declaration would then also have to require a type being specified
for the data that could be sent over the channel. The type could also be
used to allocate the size of the channel.

Procedure Arguments

There is currently no support for procedure arguments. This is something
that would be natural to add. A procedure declaration would have to accept
a list of variables it would take as arguments. The variables could then be
used in the procedure body, as in a “normal” programming language such
as C.
Because our compiler generates a C function from a procedure. Supporting
arguments for procedures would not require a lot of work. When a procedure
is called with arguments the data has to be copied on to the process stack,
and later used in the C function.
If channels also where to be supported as arguments as well. It would
be necessary to map who “owns” the channel to be able to map process
dependencies. It would make the compile time analysis more complex, as
it might be necessary to run parts of the procedure to determine ownership
of a channel.

Conditional Statements

Our language does not support any conditional statements. This is some-
thing critical to add support for to make it usable language.
First support for boolean expression has to be added, which is used by as
the condition in the statement. A typical example of such an expression
is equal == or unequal !=, which can compare two variables. Then add
support for the statements IF/ELSE, WHILE and ALT.

97

Adding support for boolean expression would require that we extend the
number of expression supported in the grammar. The compiler can for
most of the expressions directly translated to C expressions.

ALT The alternation(ALT) statement is a special occam statement (see
[21] for details). It consists of several guards that all are evaluated con-
currently. The first one to be true is run. A typical usage of ALT is when
waiting on messages on multiple channels. When a message comes through,
one of the guards becomes true and the belonging statements are executed.
Such as in listing 7.1, where the process can receive on two channel, right
and left and in both cases the message is to be sent out on the channel
stream.
A possible run-time design for ALT statement could be to have one indepen-
dent process waiting on the each branch. As soon as one becomes true and
continues to execution, the rest of the waiting ALT processes are killed.

ALT
2 l e f t c h an ? packet {

stream ! packet ;
4 }

r i gh t chan ? packet {
6 stream ! packet ;

}

Listing 7.1: Waiting on channels and sends the incoming packet to the
output packet (found in [21])

WHILE WHILE statements also needs support for boolean expressions.
However, there are no branches in WHILE statements, so branch handling
such as with ALT is not necessary. Our scheduler is is non-preemptive. This
means that an eternal WHILE can occupy a single worker thread on its own.
The DeSchedule keyword is therefor important to use in a WHILE, to not
block other processes. Especially if the WHILE does not do any blocking
channel communication where it can be descheduled in its own.
The potential of eternal WHILEs would require a new way for specifying
deadlines, for a procedure with an eternal WHILE it is impossible to give
a deadline. Hence, a TIME keyword can be a solution, such as in Martins
Korsgaards Time/occam [19]. Or it could no longer be required to specify a

98

procedures deadline. Deadlines where voluntary and could for instance be
specified for a WHILE iteration instead.
Except from this WIHLE loops are similar to the ones used in C, and the
compiler can simply generate a C while.

1 PROC Test : {
. . .

3 WHILE : 3S {
. . . .

5 }
}

Listing 7.2: Deadline specified for one iteration in an eternal WHILE
loop

IF IF statements could be implemented quite similar to how they are in
C. All the guards in a IF statement is checked sequentially, and only one
of them can be true, if none of them is, the process stops. A IF could then
generate a if else block, which deschedules on the last else.
One of the “problems” with conditional statements is that they make the
program less deterministic. It can be difficult to determine which branch
that will be run at compile time. Techniques such a branch prediction
“choose”the branch the program is likely to take. Most branch prediction
techniques is based on run-time statistics, the branch that has run the most
earlier, is the one “chosen” (see [1] for more details).

chan a ? ready ;
2 IF :

ready {
4 . . .

chan b ! b ;
6 . . .

}
8 ! ready {

. . .
10 chan c ? c ;

. . .
12 }

99

Listing 7.3: IF/ELSE statement where the branches communicate over
different channels

Due to the nondeterministic behavior of conditional statements the depen-
dency analysis gets difficult. For instance, in listing 7.3 there is a IF state-
ment with two branches: both guards checks the variable ready, which is
assigned earlier by a incoming message on the channel chan˙a. In the first
branch a message is sent over channel chan˙b, and in the second a message
is received on channel chan˙c. At compile time it is almost impossible to
know which branch will be taken, hence impossible to know if it depends
on the procedure communicate over chan˙b, or on the procedure communi-
cating over chan˙c.
From a real-time perspective it is not efficiency that is the most critical
criteria, but reaching deadlines. A solution to the get around using branch
prediction in the example in 7.3 could be forking the process on the con-
ditional statement and run both branches. Then there are two processes
ready for communication on either chan˙b or chan˙c. The processes run-
ning the “wrong” branch will be terminated when the process running the
other branch continues beyond the guard. Dependency wise the process
running the code in listing 7.3 is dependent on both chan˙b and chan˙c
(and off course chan˙a).
Branch prediction on conditional statements is an interesting problem. It
could be interesting to implement a solution in our run-time system. Al-
though it is not essential to prove the real-time and concurrency principles
in our language, it is rather a project on its own.

Functions

occam additionally supports function, which is a named value statement.
A function can take an input argument and give an output. Functions are
restricted compared to procedures, as they can not have any side effects.
Therefor, the statements allowed in a function is restricted; no parallel
statements, no input output (channel communication), and no alternations.
occam functions are much like ordinary functions is other programming lan-
guages, so adding support for function declaration should be fairly simple.
The compiler can simply translate a function to a C function, and a function
call can be a ordinary C function call. Due to the strict grammatical rules,
dependency is not a problem, as a function can not have any side effects.

100

7.2 Stronger Type Checking

To easier find errors in a program written in our language implementing
type checking would be a good idea. However, type checking can be complex
and time consuming task. As mentioned in the section (2.1.4) on semantic
analysis types has to be checked with the operation they are used in. Luckily
the BNF converter creates a syntactical and semantic check. However, it
does not check grammatical rules such as; variables can only be written to
by one of the statements in PAR block. Implementing stronger type checking
will require some work, because we have had no focus on it so far.
But our compiler already has error handling, it will make implementation
a bit easier. Because the compiler is written in Haskell, it is easy to throw
error messages during compilation. This is made possible through Haskell
monads (see [29] for more details on monads). The compilers error handling
is for instance used to check that no more than two processes uses a channel.
The monad “lies” above the parse tree, in abstraction level. So when an
error occurs, the error is lifted up to the monad, the compiling stops, and
returns an error message.

7.3 Asynchronous Communication

Support for buffered channel and asynchronous communication is something
that also would be natural to add. As both the language and the run-time
system already supports synchronous communication, only minor changes
would be necessary to support asynchronous communication. The grammar
has to be extended to define a buffer size on asynchronous channels. The
run-time system each channel can have a buffer assigned to it. The size the
buffer would then also depend on the type of data sent over the channel, as
we discussed earlier.
Channel communication on buffered channels would be none blocking. On
send, data is read into the buffer, and on receive it is read from the buffer.
The channel could also have a counter to determine if the buffer is full or
not, if it is send would be blocking. This design is similar to how buffered
channels are handled in GO (see /src/pkg/runtime/chan.c:275 chanrecv and
231:chansend in the GO source [9]).

101

7.4 Garbage Collection

Currently variables can only be declared once in a process, which makes it
impossible for the process to accumulate more memory. However, if WHILE
and the other statements mentioned earlier where to be supported it would
be natural to let the programmer create variables inside different scopes.
To avoid programs to run out of memory. Such as in an eternal WHILE
that for each iteration declares one variable. The garbage collector would
analyze the stack in iterations, removing/“freeing” unused variables. There
is several different garbage collection algorithms, GO uses a mark and sweep
collector. It stops the program in specified intervals, marks the memory on
the stack, each time a memory is accessed it is unmarked. Last the garbage
collector removes/“frees” the cells which have not been unmarked since last
iteration (src/pkg/runtime/mgc0.c gc:209 in [9]);

7.5 Missed Deadline Handling

Currently there is no handling for a process that misses its deadline, the
scheduler blindly choses the process with the lowest specified deadline. It
disregards what the time is when the process is retrieved, and if it possible
to reach the deadline at all. Implementing a behavior that disregards all
processes that has missed their deadline already is easy; it would just require
that the deadline is compared to the current time. However, implementing
an intelligent scheduler that sees that the process will not be able to reach
is deadline, and handle it in a good way is not that easy.
Our proposal is that each procedure also has to specify a slack time, which
is the amount of time it can miss its deadline with. This would improve the
scheduler ability to decide if it should let the process run, even though it
will not be able to reach its deadline.
The scheduling would also be based on a WCET (worst case execution time)
analysis, which can be both unreliable and complex. If the scheduler where
to interrupt a process that will not reach its deadline, we would also have
to make the scheduler preemptive. This would require that a lot of work
and most of the scheduler has to be rewritten.
Our suggestion is to simplify the problem, and say there are two types of
process: a process where meeting the deadline is not critical and the process
can complete, or reaching their deadline is critical and measurement have
to be taken. When the scheduler is about to run a process it checks what

102

kind of process it is noncritical or critical. If it is a critical process it starts a
timer concurrently with the process, which timeout at the process deadline.
The timer holds a pointer to the process, and changes a flag in the pointer
which triggers the “deadline not met” part of the process.
Because our system runs on top of an OS, it can never guarantee hard real-
time requirements. A systems running on our system has to be of the type
where a deadline miss is not very critical, but hopefully can the solution
such as the one discussed above improve usability for semi-critical process
a bit.

Summary

In this section what we consider as missing features in the language was
presented. One of the major missing language features is conditional state-
ment. We presented a possible design for implementation for it and other
missing features.

103

Chapter 8

Discussion

In this section we will discuss the major design choices met during construc-
tion of the experimental language and the run-time system.

8.1 The Language Grammar

We chose to base our language on occam, which is a concurrency oriented
language. As we have presented earlier there are several concurrent lan-
guages around. We could have based our language on any of these, or a C
like grammar with some special keywords.
What makes occam so special; is its focus on fine grain concurrency. With
occam the developer is able to explicitly express how statements are to be
run. None of the other languages presented has this ability. The grammar is
also very strict due to this fine grained concurrency. With so many processes
running concurrently it would be impossible to write an efficient program
with shared data. Imagine a PAR FOR loop running 20000 iterations in
parallel all sharing sharing one variable and all of them has to wait on its
turn to read/write. It would just not work.
As we have seen, having strict rules makes dependency analysis easier, as
there is only a number of specific ways processes can depend on each other.
One of our initial goals was to utilize compile time knowledge about de-
pendencies in the scheduler. We saw that only trough strictly limiting the
language was this a plausible task within the timespan of the project. occam
was the only language, which was so limited in its original grammar. We
could have chosen a language as C, and put hard strains on how it could

104

be used, but then it would no longer look like C. A C programmer would
not be able to program naturally. Although the grammar we have specified
is much more limited than occam’s, it still keeps the essence of occam. By
having fine grained parallelism, channel communication and independent
procedures.

8.2 How to Distribute Processes Among Proces-
sors

There where many ways processes could be implemented and run in our
run-time system. As we have seen in the chapter on parallelism (see section
2.3) there are several parallel design patterns that could be utilized.
The main purpose of the run-time was to schedule processes and run them as
efficient as possible on the processors. The easiest solution would be to run
each processor on a separate OS-thread, and control scheduling through
OS-signals. However, we knew that OS-thread was slow and OS-thread
operations came with a large amount of overhead (see [17]). It would also be
difficult to control scheduling exactly like we wanted. When we examined
the run-time system of the other concurrent oriented languages, we saw
that they all tried to minimize the amount of OS-thread used. There where
different approaches and different designs, but they all clearly tried to avoid
having to many OS-threads.
Most of the run-time system used the master/worker pattern, where there
was a set of worker threads executing the processes and doing other run-
time tasks. The master/worker pattern was implemented using mainly two
designs: one thread pr. processor that did all the work in the run-time
system or a pool of worker threads, where workers were “called” to do
different work. In the pool solution the number of worker was not fixed,
and more worker threads could be created dynamically. This is to reduce
startup/shutdown cost of threads.
With one worker thread pr. processor the number of OS-threads was kept at
a minimum, it also requires less mechanisms to handle the worker threads.
We therefor chose to fix a thread to a specific processor through Linux
mechanisms. Keeping the number of context switches down.
We can see from the results in chapter 6 that our design was comparable
with other run-time systems. Clearly showing that with a simple design has
its benefits.

105

8.3 Global or Partitioned Run Queue

When choosing a multiprocessor scheduler design, there two different ap-
proaches, global or partitioned run queue. As presented earlier global vs
partitioned scheduler is one of the major debates in the scheduler commu-
nity. Both of them have advantages over each other (see section 2.5).
Partitioned scheduler is scalable; it focuses on minimal shared data between
the processors. Because partitioned scheduler has one run queue pr. pro-
cessor, none of them has to wait to retrieve a task from a shared run queue.
And in the global scheduler the run queue is shared between all the pro-
cesses. However, a real-time system is rarely run on systems on with a huge
number of processors. Usually they will be run on standard or specialized
platforms with something like one to sixteen processors, and not on server
farms with 1024 nodes.
We ended up choosing a global scheme mainly due to dependency analysis.
Defining dependency among distributed processes would be complex. It
would require that dependencies was mapped across different run-queues.
The processes the process with the earliest deadline is dependent has to be
run first of the processes in the local run queue, even if there is longer time
to their deadline then the “local” tasks.
As presented, the global scheduler design in our run-time system uses an
separate run queue for the dependent processes. This run queue is then
used as the “primary” run queue as long as there is processes in it, and
when it its empty it uses the normal ready run queue. This is a very simple
solution to the problem that works very well with a low number of workers,
such as in our system.

8.4 Preemptive or Non-Preemptive

Another design choice was if we where to create a preemptive or a non-
preemptive scheduler. The choice was based on that the scheduler was a
pure EDF scheduler. Where there are really one scenario where a task can
be preempted, and that is when a new task arrives with an even shorter
deadline than the currently running. However, in our system where there
are no conditional statements it in unlikely that such a process is created. A
preemptive scheduler is also much complex than a non-preemptive scheduler,
as a process can be interrupted at any time. It requires that the process is
able to save its state before it is descheduled. This means that we would no

106

longer be able to use Duff’s device, and it would be necessary to implement
a traditional stack. Most of the concurrent run-time systems that we have
presented have also a non-preemptive scheduler.
We chose implement a non-preemptive scheduler because it would require
less from our run-time system, and it was not necessary to demonstrate the
real-time and concurrency principles of our language.

8.5 Dependency Analysis

One of our initial goals was to utilize dependency analysis to improve
scheduling. As we presented earlier in the section on multiprocessor sched-
ulers (see sec 2.5.4) dependent processes can be grouped together and run
on the same processor, to improve cache reuse. This approach will increase
the efficiency of the scheduler as it can better utilize the hardware.
But for a real-time scheduler increasing efficiency is not the primary goal,
it is to reduce deadline misses. So we wanted to see if we could utilize
dependency analysis to decrease deadline misses.
We concluded with that the best way to utilize dependency was to combine
interlocking with batch scheduling, and group dependent processes together
and run them concurrently. This let the worker threads then work together
to reach the deadline of the running process. As we demonstrated in chapter
6 this approach help processes reach their deadline, when they depend on
other processes.
The cost of this approach is that it increases complexity and overhead for
each time a new process is retrieved from the ready queue. But as explained
earlier the work at run-time is minimal, most of the work is done at compile
time and when a process is created.
Due to the focus on dependency analysis we have restricted our language
in many ways. This has been necessary to make the dependency analysis
possible. The more the complex the language is the more complex the
dependency analysis is. Through limiting the language we were able to
demonstrate how dependency analysis could be utilized by a multiprocessor
real-time scheduler.

107

8.6 Pure EDF Scheduler

Another major design choice was what which real-time scheduler to use. Our
choice was based on the scheduler survey done in [17]. Most of the scheduler
discussed variations of the global EDF-scheduler that tries to avoid Dhall’s
effect, which limits the performance of multiprocessor EDF. Dhall’s effect
only occurs when there exists blocking heavy processes. Due to the structure
of our language the number of blocking heavy processes is less than in an
“ordinary” language. occam is focused on fine-grained concurrency, and
hence generates a large number of light processes, instead of a few intensive
tasks.
If we where to implement an modified EDF scheduler a WCET analysis has
to be performed on all the tasks, to know if they met the additional con-
straints of the modified EDF schedulers (for more details on modified EDF
please see [17]). We chose to only implement a simple pure multiprocessor
EDF due to its simple and rigid design. The scheduler can also later be
extended to support different modified multi processor EDF schedulers.

Summary

In this section we have discussed some of our design choices, and what was
achieved.

108

Chapter 9

Conclusion

Our language is a concurrency oriented real-time language, built to run on
multiprocessor systems. We have shown that the language grammar focuses
on statements generating fine-grained parallelism, was designed based on
occam. They main features of our language is parallel statement blocks,
and synchronous channel communication.
The processes created in the language are run on a run-time system built
on the master/worker principle. This is to reduce the amount of OS added
overhead, and makes us able to stay in complete control of process scheduler.
The scheduler in the run-time system is a multiprocessor EDF scheduler,
where there are one OS-thread per. processor executing the processes.
Performance comparison with other concurrent oriented languages, show
that our implementation is comparable with them. Although, optimiza-
tion and run-time costs have been a secondary priority to deadline misses.
The major priority was to try to limit deadline misses through dependency
analysis.
This was achieved through doing compile time analysis of channel commu-
nication, the compiler than generated lists over processors communicating
with each other. The information found by the compiler is utilized by the
scheduler to let all the workers work towards a common deadline. Each
worker executes process that the process with the earliest deadline is de-
pendent on. Minimizing the time the process with earliest deadline has to
wait on messages from other processes. We illustrated such a scenario where
the earliest deadline process was dependent on two processes. Without de-
pendency analysis it missed its deadline due to the processes running in
between it and the dependent processes. However, with dependency anal-

110

ysis it reached its deadline, due to the dependent processes was running
concurrently with it.
Our language and run-time system show how compile time knowledge can
be utilized by a multiprocessor real-time scheduler. Although, our language
is limited it proves the design principles and can be a foundation for further
development.

9.1 Further Work

Earlier we described what we consider as missing features in the language
and run-time system. The list is long, and even creating some of the basic
parts can be time consuming. The most pressing and interesting aspect
would be to explore, how conditional statements can be handled. We al-
ready proposed one possible design, but more research has to be done before
implementing a solution. Clearly dependency analysis and branch predic-
tion go hand in hand in this case and are closely linked together.
Other aspects we found interesting is Erlang’s robustness, and error han-
dling. Such as that a process can register as dependent on other processes.
If a process then crashes, all the dependent process gets notified. From a
real-time aspect this is interesting, and it should be possible to implement
such a solution in our run-time system.

111

Appendix A

BNF grammar

〈ProgramSpec 〉 ::= 〈ListGlobDecl 〉

〈GlobDecl 〉 ::= PROC 〈CapIdent 〉 : 〈DeadLine 〉 : 〈SingleBlock 〉
| 〈Chan 〉 ;

〈ListGlobDecl 〉 ::= ε
| 〈GlobDecl 〉 〈ListGlobDecl 〉

〈SingleBlock 〉 ::= { 〈ListVar 〉 〈StmtCompound 〉 }

〈StmtCompound 〉 ::= 〈Order 〉 FOR 〈LowIdent 〉 〈AssignOp 〉 〈Integer 〉 TO 〈Integer 〉 : 〈StmtBlock 〉
| 〈Order 〉 〈StmtBlock 〉

〈ListStmtCompound 〉 ::= ε
| 〈StmtCompound 〉 〈ListStmtCompound 〉

〈StmtBlock 〉 ::= { 〈ListStmt 〉 }

〈Order 〉 ::= PAR
| SEQ

〈ListOrder 〉 ::= ε
| 〈Order 〉 〈ListOrder 〉

〈DeadLine 〉 ::= 〈Integer 〉 S
| 〈Integer 〉 Ms
| 〈Integer 〉 Us
| 〈Integer 〉 Ns

112

〈ListDeadLine 〉 ::= ε
| 〈DeadLine 〉 〈ListDeadLine 〉

〈Stmt 〉 ::= 〈LowIdent 〉 〈AssignOp 〉 〈Expr 〉 ;
| 〈LowIdent 〉 〈Array 〉 〈AssignOp 〉 〈Expr 〉 ;
| DeSchedule ;
| 〈CapIdent 〉 ;
| 〈Expr 〉 ;
| Work ;
| 〈StmtCompound 〉
| Print 〈String 〉 〈ListExpr 〉
| 〈ChanCom 〉 ;
| 〈Stmt 〉 ;

〈ListStmt 〉 ::= ε
| 〈Stmt 〉 〈ListStmt 〉

〈Chan 〉 ::= CHAN 〈LowIdent 〉
| CHAN 〈LowIdent 〉 〈Array 〉

〈ListChan 〉 ::= ε
| 〈Chan 〉 ; 〈ListChan 〉

〈Var 〉 ::= VAR 〈LowIdent 〉
| VAR 〈LowIdent 〉 〈Array 〉

〈ListVar 〉 ::= ε
| 〈Var 〉 ; 〈ListVar 〉

〈Array 〉 ::= [〈Expr 〉]

〈ListArray 〉 ::= ε
| 〈Array 〉 〈ListArray 〉

〈AssignOp 〉 ::= =

〈ChanCom 〉 ::= 〈ChanExpr 〉 ! 〈Expr 〉
| 〈ChanExpr 〉 ? 〈Expr 〉

〈ListChanCom 〉 ::= ε
| 〈ChanCom 〉 ; 〈ListChanCom 〉

〈ChanExpr 〉 ::= 〈LowIdent 〉
| 〈LowIdent 〉 [〈Expr 〉]

113

〈ListChanExpr 〉 ::= ε
| 〈ChanExpr 〉 ; 〈ListChanExpr 〉

〈Expr1 〉 ::= 〈Expr1 〉 + 〈Expr2 〉
| 〈Expr1 〉 − 〈Expr2 〉
| 〈Expr2 〉 [〈Expr2 〉]
| 〈Expr2 〉

〈Expr4 〉 ::= 〈Integer 〉
| 〈Expr5 〉

〈Expr5 〉 ::= 〈LowIdent 〉
| (〈Expr 〉)

〈ListExpr 〉 ::= ε
| 〈Expr 〉 ; 〈ListExpr 〉
| ε
| 〈Expr 〉
| 〈Expr 〉 , 〈ListExpr 〉

〈Expr 〉 ::= 〈Expr1 〉

〈Expr2 〉 ::= 〈Expr3 〉

〈Expr3 〉 ::= 〈Expr4 〉

114

Bibliography

[1] Computer Architecture, Fourth Edition: A Quantitative Approach.
Morgan Kaufmann, September 2006.

[2] Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, July 2007.

[3] Jibu in depth. http://www.axon7.com/flx/home/jibu˙in˙depth/,
April 2010.

[4] jibu source. http://www.axon7.com/flx/downloads/, April 2010.

[5] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, 2 edition, August 2006.

[6] Bjorn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority
scheduling on multiprocessors. In Proceedings of the 22nd IEEE Real-
Time Systems Symposium, pages 193–202, Washington, DC, USA,
2001. IEEE Computer Society.

[7] J.L Armstrong, S.R Virding B.O Däcke and, and M.C. Williams. Imple-
menting a functional language for highly parallel real time applications.
SETSS, 1992.

[8] Joe Armstrong. A history of erlang. In HOPL III: Proceedings of the
third ACM SIGPLAN conference on History of programming languages,
pages 6–1–6–26, New York, NY, USA, 2007. ACM.

[9] The Go Authors. Google go compiler. https://go.googlecode.com/
hg, January 2010.

[10] The Go Authors. Language design faq. http://golang.org/doc/go˙
lang˙faq.html, April 2010. Why build concurrency on the ideas of
CSP?

116

http://www.axon7.com/flx/home/jibu_in_depth/
http://www.axon7.com/flx/downloads/
https://go.googlecode.com/hg
https://go.googlecode.com/hg
http://golang.org/doc/go_lang_faq.html
http://golang.org/doc/go_lang_faq.html

[11] A. Burns and A. Wellings. Real-Time Systems and Programming Lan-
guages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-
Wesley Educational Publishers Inc, USA, 2001.

[12] corbet. Trees ii: red-black trees. http://lwn.net/Articles/184495/,
June 2006.

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. McGraw-Hill Science / Engi-
neering / Math, 2nd edition, December 2003.

[14] Russ Cox. Function generation. http://groups.google.com/
group/golang-nuts/browse˙thread/thread/880511ed74498e24/
f99f2f29a1166f0a?lnk=gst&q=jon+tore#f99f2f29a1166f0a, 2010.

[15] S.K Dhall and C. L. Liu. On a real-time scheduling problem. Operations
Research, pages 127–240, 1978.

[16] Dario Faggioli, Giuseppe Lipari, and Tommaso Cicinotta. An efficient
implementation of the bandwidth inheritance protocol for handling
hard and soft real-time applications in the linux kernel. OSPERT,
2008.

[17] Jon Tore Hafstad. Real time schedulers for multiprocessor systems
survey, and the linux scheduler simulator. 2009.

[18] C. A. R. Hoare. Communicating sequential proocesses. Commun.
ACM, 21(8):666–677, August 1978.

[19] Martin Korsgaard. Introducing time driven programming using csp/oc-
cam and wcet estimates. august 2007.

[20] John Levine, Tony Mason, and Doug Brown. lex & yacc, 2nd Edition
(A Nutshell Handbook). O’Reilly, October 1992.

[21] SGS-THOMSON Microelectronics Limited. occam 2.1 reference man-
ual, 1989.

[22] C.L Liu and J.W Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time enviroment. JACM 20.1, 1973.

[23] Kenneth Lundin. Inside the erlang vm with focus on smp. Erlang user
conference, 2008.

117

http://lwn.net/Articles/184495/
http://groups.google.com/group/golang-nuts/browse_thread/thread/880511ed74498e24/f99f2f29a1166f0a?lnk=gst&q=jon+tore#f99f2f29a1166f0a
http://groups.google.com/group/golang-nuts/browse_thread/thread/880511ed74498e24/f99f2f29a1166f0a?lnk=gst&q=jon+tore#f99f2f29a1166f0a
http://groups.google.com/group/golang-nuts/browse_thread/thread/880511ed74498e24/f99f2f29a1166f0a?lnk=gst&q=jon+tore#f99f2f29a1166f0a

[24] Aarne Ranta Markus Forsberg. The labelled bnf grammar formalism.
Chalmers University of Technology and the University of Gothenburg,
2005.

[25] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns
for parallel programming. Addison-Wesley Professional, 2004.

[26] C. Meenderinck and B. Juurlink. (When) Will CMPs Hit the Power
Wall? In Euro-Par 2008 Workshops-Parallel Processing, pages 184–
193. Springer, 2009.

[27] James Moores. Csp - a portable csp-based run-time system supporting
c and occam. 1999.

[28] Pedro Mejia Alvarez Omar U. Pereia Zapata. Edf and rm multiproces-
sor scheduling, algorithms: Survey and performance evaluation. 2007.

[29] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.
O’Reilly Media, Inc., 1 edition, December 2008.

[30] Rob Pike. The go programming language. http://www.youtube.com/
watch?v=rKnDgT73v8s, april 2009.

[31] Carl G. Ritson, Adam T. Sampson, and Frederick R. Barnes. Multi-
core scheduling for lightweight communicating processes. In COOR-
DINATION ’09: Proceedings of the 11th International Conference on
Coordination Models and Languages, pages 163–183, 2009.

[32] Yuan Shi. Reevaluating Amdahl’s Law and Gustafson’s Law. Computer
Sciences Department, Temple University (MS: 38-24), 1996.

[33] Bernhard Sputh, Oliver Faust, and Alastair R. Allen. Portable CSP
Based Design for Embedded Multi-Core Systems, sep 2006.

[34] Simon Tatham. Coroutines in c. http://www.chiark.greenend.org.
uk/˜sgtatham/coroutines.html, March 2008.

[35] Tim Teitelbaum. Types and type-checking. http://www.cs.cornell.
edu/courses/cs412/2007sp/schedule.html, 2007.

[36] Unknown. Prime numbers. http://www.haskell.org/haskellwiki/
Prime˙numbers#The˙Classic˙Turner.27s˙Sieve, May 2010.

[37] Ulf Wiger. Erlang scheduler: What does it do? http://www.erlang.
org/pipermail/erlang-questions/2001-April/003131.html,
2001.

118

http://www.youtube.com/watch?v=rKnDgT73v8s
http://www.youtube.com/watch?v=rKnDgT73v8s
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.cs.cornell.edu/courses/cs412/2007sp/schedule.html
http://www.cs.cornell.edu/courses/cs412/2007sp/schedule.html
http://www.haskell.org/haskellwiki/Prime_numbers#The_Classic_Turner.27s_Sieve
http://www.haskell.org/haskellwiki/Prime_numbers#The_Classic_Turner.27s_Sieve
http://www.erlang.org/pipermail/erlang-questions/2001-April/003131.html
http://www.erlang.org/pipermail/erlang-questions/2001-April/003131.html

	Title Page
	Problem Description
	Introduction
	Problem Description
	Initial Status of the Project

	Background
	The Structure of a Compiler
	Lexical Analysis
	Syntax Analysis / Parser
	Grammar
	Semantic Analysis
	The Intermediate Code Generator
	Optimization
	Run-time Environment

	Compiler Generator Tools
	Parallelization
	Exploitable Concurrency
	Amdahl's and Gustafson's Law
	Concurrency in a Language vs Concurrency in a OS
	Parallelization Patterns
	Automatic Parallelization
	Dependency Analysis
	Communication Between Concurrent Components
	Concurrency Oriented Programming Languages

	Parallel Run-Time Environments
	GO's Run-Time System
	Erlang's Run-Time System
	JIBU's Run-Time System
	occam's/CCSP's Run-Time System

	Multiprocessors Scheduling
	Partitioned Schedulers
	Global Schedulers
	Interlocking Protocol
	Batch Scheduling
	Real-Time Schedulers

	Experimental Language Grammar
	Language family
	Layout
	Hello World
	Procedure Declaration
	"426830A SingleBlock "526930B /Procedure Block
	Expressions
	Statements

	Compiler Generated Code
	Processes Generation
	Duff's Device/Co Routines
	The Stack
	Stack Inheritance
	Process Status
	Process Initiation
	Channel Communication
	Dependency Analysis

	The Run-Time System
	Scheduler
	Stack
	Channel Communication
	Advanced Data Structures

	Examples and Performance
	Concurrent Hello World
	Pure EDF Multiprocessor Scheduling
	EDF Multiprocessor Scheduling With Dependency Analysis
	Performance

	Missing Features in Language and Run-Time System
	Missing Language Features
	Stronger Type Checking
	Asynchronous Communication
	Garbage Collection
	Missed Deadline Handling

	Discussion
	The Language Grammar
	How to Distribute Processes Among Processors
	Global or Partitioned Run Queue
	Preemptive or Non-Preemptive
	Dependency Analysis
	Pure EDF Scheduler

	Conclusion
	Further Work

	BNF grammar

