
8-bit
Microcontroller

AT90CAN32
AT90CAN64
AT90CAN128
- - - - - - - - - -
ATmega16M1
ATmega32M1
ATmega32C1
ATmega64M1
ATmega64C1

4 Kbytes (Slim)
CAN
Boot Loader

Doc 8247A–CAN–08/09
AVR076: AVR® CAN - 4K Boot Loader

1. Features
• CAN Protocol

– Controller Area Network (CAN) used as Physical Layer
– 7 re-programmable ISP CAN identifiers
– Auto-bitrate

• In-System Programming
– Read/Write Flash and EEPROM memories
– Read Device ID
– Full chip Erase
– Read/Write configuration bytes
– Security setting from ISP command
– Remote application start command

• In-Application Programming
– Up to 255 nodes
– 16 Re-locatable Reserved Identifiers

• Application Programming Interface
– Write Flash API (application section)

• Opened for Other Protocols :
– LIN,
– RS232,
– SPI,
– TWI,
– ...

• Flip Interfacing

2. Description
This document describes the “Slim” CAN boot loader functionality as well as its
protocol to efficiently perform operations on the on chip Flash & EEPROM memories.

This boot loader implements the “In-System Programming” (ISP). The ISP allows the
user to program or re-program the microcontroller on-chip Flash & EEPROM
memories without removing the device from the system and without the need of a pre-
programmed application.

The CAN boot loader can manage a communication with an host through the CAN
network. It can also access and perform requested operations on the on-chip Flash &
EEPROM memories.

In-application programming feature is available to manage up to 255 CAN nodes.

A special entry (Flash API) is available for users.

3. Boot Loader Environment
The CAN boot loader is loaded in the “Boot Loader Flash Section” of the on-chip Flash mem-
ory. The boot loader size is less than 4K bytes, so the physical “Boot Loader Flash Section” only
is half-full. The application program size must be lower or equal the “Application Flash Section”
plus 4K bytes(c.f. Table 3-1 on page 2 and Table 3-2 on page 2).

Table 3-1. AT90CANxx Family - Memory Mapping (byte addressing)

Note: 1. The “Boot Loader Reset Address” depends on the fuse bits “BOOTSZ”.
Refer to the data sheet for more details on Flash memories (Flash, EEPROM, ...) behaviors.

2. CAN Boot Loader reset address.

Table 3-2. ATmegaxxM1/C1 Family - Memory Mapping (byte addressing)

Note: 1. The “Boot Loader Reset Address” depends on the fuse bits “BOOTSZ”.
Refer to the data sheet for more details on Flash memories (Flash, EEPROM, ...) behaviors.

2. CAN Boot Loader reset address.

Memory AT90CAN128 AT90CAN64 AT90CAN32

FLASH
Size 128 K bytes 64 K bytes 32 K bytes

Add. Range 0x00000 - 0x1FFFF 0x00000 - 0x0FFFF 0x00000 - 0x07FFF

“Application Flash
Section”

Size 120 K bytes 56 K bytes 24 K bytes

Add. Range 0x00000 - 0x1DFFF 0x00000 - 0xDFFF 0x00000 - 0x05FFF

“Boot Loader Flash
Section”

Size 8 K bytes

Add. Range 0x1E000 - 0x1FFFF 0x0E000 - 0x0FFFF 0x06000 - 0x07FFF

“Boot Loader
Reset Addresses”

(1)

Small (1st) Boot 0x1FC00 0x0FC00 0x07C00

Second Boot 0x1F800 0x0F800 0x07800

Third Boot 0x1F000 (2) 0x0F000 (2) 0x07000 (2)

Large (4th) Boot 0x1E000 0x0E000 0x06000

EEPROM
Size 4 K bytes 2 K bytes 1 K bytes

Add. Range 0x0000 - 0x0FFF 0x0000 - 0x07FF 0x0000 - 0x03FF

Memory ATmega64M1/C1 ATmega32M1/C1 ATmega16M1

FLASH
Size 64 K bytes 32 K bytes 16 K bytes

Add. Range 0x00000 - 0x0FFFF 0x00000 - 0x07FFF 0x00000 - 0x03FFF

“Application Flash
Section”

Size 56 K bytes 28 K bytes 12 K bytes

Add. Range 0x00000 - 0x0DFFF 0x00000 - 0x6FFF 0x00000 - 0x02FFF

“Boot Loader Flash
Section”

Size 8 K bytes 4 K bytes 4 K bytes

Add. Range 0x0E000 - 0x0FFFF 0x07000 - 0x07FFF 0x03000 - 0x03FFF

“Boot Loader
Reset Addresses”

(1)

Small (1st) Boot 0x0FC00 0x07E00 0x03E00

Second Boot 0x0F800 0x07C00 0x03C00

Third Boot 0x0F000 (2) 0x07800 0x03800

Large (4th) Boot 0x0E000 0x07000 (2) 0x03000 (2)

EEPROM
Size 2 K bytes 1 K bytes 512 bytes

Add. Range 0x0000 - 0x07FF 0x0000 - 0x03FF 0x0000 - 0x01FF
 2
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader
3.1 Device Fuse Setting
Please, refer to the device Data Sheet for further explanation.

Figure 3-1. Device Fuses Setting - Part 1

User setting

Always OFF

Always ON

Setting: 2048 words

AT90CANxx
family

User setting

Always OFF

Always ON

Setting: 2048 words

ATmegaxxM1/C1
family
 3
8247A–CAN–08/09

Figure 3-2. Device Fuses Setting - Part 2

Summary of mandatory fuse setting:

•Fuse High Byte: - BOOTRST programmed,
- BOOTSZ [1:0] programmed for 2048 words,
- WDTON unprogrammed.

•Fuse Low Byte: - CKSEL [3:0] programmed to select a clock with an high accuracy to match
 with CAN requirement (the internal RC oscillator doesn’t match).

User setting
Always OFF

Ext. Crystal Osc. ...

Setting: Ext. Clock ...

ATmegaxxM1/C1
family

(it depens on SUT_CKSEL setting)

or

User setting
Always OFF

Ext. Crystal Osc. ...

Setting: Ext. Clock ...

AT90CANxx
family

(it depens o UT_CKSEL setting)

or
 4
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader
3.2 Physical Environment
A generic boot loader deals with the host (or PC) through a CAN interface. The generic boot
loader is a service able to be connected to other interfaces (LIN, RS232, SPI, TWI, ...).

Figure 3-3. Physical Environment

CAN

Generic
BOOT LOADER

ISP

Auto-bit rate

Software ToolLIN

RS232

SPI

TWI

(not implemented)
 5
8247A–CAN–08/09

3.3 Boot Loader Description

3.3.1 Overview

Figure 3-4. Boot Loader Diagram

3.3.2 Entry Point
Only one “Entry Point” is available, it is the entry point to the boot loader. The “BOOTRST” fuse
of the device have to be set. After Reset, the “Program Counter” of the device is set to “Boot
Reset Address” (c.f. Table 3-1 ”AT90CANxx Family - Memory Mapping (byte addressing)” on
page 2 and Table 3-2 ”ATmegaxxM1/C1 Family - Memory Mapping (byte addressing)” on page
2). This “Entry Point” initializes the “boot process” of the boot loader.

Entry Point

Boot
Process

Boot Appli.

Protocol
Identification

LIN

CAN

CAN Init.
(Auto-bit rate)

CAN
Protocol

ISP Command

Start
Application

Yes

No

ISP

Management

Command
Start Application

Fl
as

h
Li

br
ar

y

EE
P

R
O

M
Li

br
ar

y

IS
P

Li
br

ar
y

 C
om

m
an

ds

Pr
ot

oc
ol

 C
AN

D
riv

er
s

 C
AN

Li
br

ar
y

 C
AN

RS232
SPI

TWI

Fl
as

h
D

riv
er

s

EE
P

R
O

M
D

riv
er

s

(not implemented)
 6
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

3.3.3 Boot Process

The “boot process” of the boot loader allows to start the application or the boot loader itself. This
depends on two variables:

• The “Hardware Condition”.
The Hardware Condition is defined by a device input PIN (named HWCB in this boot loader)
and its activation level (Ex: INT0/PIND.0, active low). It is set in the board header file.

• The “Boot Status Byte”.
The Boot Status Byte “BSB” belongs to the “Boot Loader Configuration Memory” (c.f. Section
4.5.4.1 ”Boot Status Byte - “BSB”” on page 13). Its default value is 0xFF. An ISP command
allows to change its value.

Figure 3-5. Boot Process Diagram

3.3.4 Protocol Identification

The “Protocol Identification“ of the boot loader select what protocol to use, CAN or other proto-
col. A polling of the physical lines is done to detect an activity on the media. These lines are:

• PORT_CAN_RX: The polling is be done on:
– RXCAN/PIND.6 for AT90CANxx Family,
– RXCAN/PINC.3 for ATmegaxxM1/C1 Family,

• (user defined interface).

A low level on PORT_CAN_RX line starts the initialization of the CAN peripheral.

Figure 3-6. Protocol Identification Diagram

RESET

PC= Boot Start Address

Hardware
Condition

False True

BSB=0xFF BSB=0xFF

Start BOOT LOADER Start APPLICATION

Yes

NoNo

Yes

(Protocol Identification)

Protocol Line xx
Low Level

PORT_CAN_RX
Low Level

Initialization of the detected peripheral
CAN Initialization

No

Yes

Identification

Yes

No

(not implemented)
 7
8247A–CAN–08/09

3.3.5 CAN Initialization
The CAN, used to communicate with the host, has the following configuration:

– Standard: CAN format 2.0A (11-bit identifier).
– Frame: Data frame.
– Bit rate: Depends on Extra Byte - “EB” (see “Extra Byte - “EB”” on page 14):

- “EB” = 0xFFH: Use the software auto-bit rate.
- “EB” != 0xFFH: Use Bit-Timing Control[1..3] bytes to set the CAN bit rate

(see “Bit-Timing Control [1..3] - “BTC[1..3]“” on page 14).
The initialization process must be performed after each device Reset. The host initiates the com-
munication by sending a data frame to select a node. In case of auto-bitrate, this will help the
boot loader to find the CAN bitrate. The CAN standard says that a frame having an acknowledge
error is re-sent automatically. This feature and the capability of the CAN peripheral to be set in
“LISTEN” mode are used by the auto-bitrate. Once the synchronization frame is received without
any error, a recessive level is applied on the acknowledge slot by releasing the “LISTEN” mode.

The software auto-bit rate supports a wide range of baud rates according with the system clock
(CKIO) set on the device (c.f. “FOSC“ definition in “config.h “ file). This functionality (auto-bit rate)
is not guaranteed on a CAN network with several CAN nodes. A fixed baud-rate (“EB” != 0xFFH)
is recommended in this case.

3.3.6 CAN Protocol Overview
The “CAN Protocol” is an higher level protocol over serial line (CAN Bus).

It is described in specific paragraphs in this document (See “CAN Protocol & ISP Commands” on
page 17.).

3.3.7 ISP Commands Overview
The “CAN Protocol” decodes ”ISP commands”. The set of ”ISP commands” obviously is inde-
pendent of any protocol.

It is described in a specific paragraph in this document (See “CAN Protocol & ISP Commands”
on page 17.).

3.3.8 Output From Boot Loader
The output from the boot loader is performs after receiving the ISP command: “Start Application“
(See “CAN Protocol & ISP Commands” on page 17.).
 8
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader
4. Memory Space Definition
The boot loader supports up to six (6) separate memory spaces. Each of them receives a code
number (value to report in the corresponding protocol field) because low level access protocols
(drivers) can be different.

The access to memory spaces is a byte access (i.e. the given addresses are byte addresses).

Table 4-1. Memory Space Code Numbers

Note: 1. Sometimes, the discriminating is not physical (ex: “Signature” is a sub-set of the code of the
boot loader Flash Section” as well as “Boot Loader Information”).

4.1 Flash Memory Space
The Flash memory space managed by the boot loader is a sub-set of the device Flash. It is the
“Application Flash Section”.

Table 4-2. Flash Memory Space (Code Number 0)

Note: 1. Page parameter is different in the boot loader and in the device itself.

4.1.1 Reading or Programming
The “ISP Read” or “ISP Program” commands only access to Flash memory space in byte
addressing mode into a page of 64K bytes (c.f. Table 4-2 ”Flash Memory Space (Code Number
0)” on page 9). Specific ISP commands allows to select the different pages.

The boot loader will return a “Device protection” error if the Software Security Byte “SSB” is set
while read or write command occurs (c.f. Section 4.5.4.2 ”Software Security Byte - “SSB”” on
page 13).

4.1.2 Erasing
The “ISP Erase” command is a full erase (all bytes=0xFF) of the Flash memory space. This
operation is available whatever the Software Security Byte “SSB” setting. A the end of the opera-
tion, the Software Security Byte “SSB” is reset to level 0 of security (Section 4.5.4.2 ”Software
Security Byte - “SSB”” on page 13).

Space (1) Code Number Access
Flash Memory 0 Read & Write

EEPROM Data Memory 1 Read & Write

Signature 2 Read only

Boot Loader Information 3 Read only

Boot Loader Configuration 4 Read & Write

Device registers 5 Read only

Flash Memory Space AT90CAN128
AT90CAN64

ATmega64M1
ATmega64C1

AT90CAN32
ATmega32M1
ATmega32C1

ATmega16M1

Size 124 K bytes 60 K bytes 28 K bytes 12 K bytes

Address Range 0x00000 - 0x1EFFF 0x0000 - 0xEFFF 0x0000 - 0x6FFF 0x0000 - 0x2FFF

Number of page(s)(1) 2 1 1 1
 9
8247A–CAN–08/09

4.1.3 Limits
The ISP commands on the Flash memory space has no effect on the boot loader (no effect on
“Boot Loader Flash Section”).

The sizes of the Flash memory space (code number 0) for ISP commands are given in Table 4-
2 ”Flash Memory Space (Code Number 0)” on page 9.

4.2 EEPROM Data Memory
The EEPROM data memory space managed by the boot loader is the device EEPROM.

Table 4-3. EEPROM Data Memory Space (Code Number 1)

4.2.1 Reading or Programming
The EEPROM data memory space is used as non-volatile data memory. The “ISP Read” or “ISP
Program” commands access byte by byte to this space (no paging).
The boot loader will return a “Device protection” error if the Software Security Byte “SSB” is set
while read or write command occurs (c.f. Section 4.5.4.2 ”Software Security Byte - “SSB”” on
page 13).

4.2.2 Erasing
The “ISP Erase” command is a full erase (all bytes=0xFF) of the EEPROM Data Memory space.
This operation is available whatever only if the Software Security Byte “SSB” is reset (Section
4.5.4.2 ”Software Security Byte - “SSB”” on page 13).

4.2.3 Limits
The sizes of the EEPROM Data Memory space (code number 1) for ISP commands are given in
Table 4-3 ”EEPROM Data Memory Space (Code Number 1)” on page 10.

4.3 Signature
The Signature space managed by the boot loader is included the code of the boot loader. It is in
the “Boot Loader Flash Section”.

EEPROM Data
Memory Space

AT90CAN128
AT90CAN64

ATmega64M1
ATmega64C1

AT90CAN32
ATmega32M1
ATmega32C1

ATmega16M1

Size 4 K bytes 2 K bytes 1 K bytes 512 bytes

Address Range 0x0000 - 0x0FFF 0x0000 - 0x07FF 0x0000 - 0x03FF 0x0000 - 0x01FF

Number of page(s) -- No paging --
 10
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

Table 4-4. Signature Space (Code Number 2)

4.3.1 Reading or Programming
The “ISP Read” command accesses byte by byte to this space (no paging).

No access protection is provided on this read only space.

4.3.2 Erasing
Not applicable for read only space.

4.3.3 Limits
Details on the Signature space (code number 2) for ISP commands are given in Table 4-4 ”Sig-
nature Space (Code Number 2)” on page 11.

4.4 Boot Loader Information
The Boot loader information space managed by the boot loader is included the code of the boot
loader. It is in the “Boot Loader Flash Section”.

Table 4-5. Boot Loader Information Space (Code Number 3)

4.4.1 Reading or Programming
The “ISP Read” command accesses byte by byte to this space (no paging).
No access protection is provided on this read only space.

4.4.2 Erasing
Not applicable for this read only space.

Signature Space

AT
90

C
A

N
12

8

AT
90

C
A

N
64

AT
90

C
A

N
32

AT
m

eg
a6

4M
1

AT
m

eg
a3

2M
1

AT
m

eg
a1

6M
1

AT
m

eg
a6

4C
1

AT
m

eg
a3

2C
1

Manufacturer Code Address: 0x00 (Read only) 0x1E

Family Code Address: 0x01 (Read only) 0x81 0x84 0x86

Product Name Address: 0x02 (Read only) 0x97 0x96 0x95 0x96 0x95 0x94 0x96 0x95

Product Revision Address: 0x03 (Read only) ≥ 0x00

Number of page(s) -- No paging --

Signature Space
AT90CAN128
AT90CAN64
AT90CAN32

ATmega64M1/C1
ATmega32M1/C1

ATmega16M1
Bootloader Revision Address: 0x00 (Read only) � 0x01

0xD1
0xD2

-- No paging --

Boot ID1 Address: 0x01 (Read only)

Boot ID2 Address: 0x02 (Read only)

Number of page(s)
 11
8247A–CAN–08/09

4.4.3 Limits
Details on the Boot loader information space (code number 3) for ISP commands are given in
Table 4-5 ”Boot Loader Information Space (Code Number 3)” on page 11.

4.4.4 Boot Loader Information Byte Description

4.4.4.1 Boot Revision
Boot Revision: Read only address =0x00, value � 0x01.

4.4.4.2 Boot ID1 & ID2
Boot ID1 & ID2: Read only addresses = 0x01 & 0x02, value = 0xD1 & 0xD2.

4.5 Boot Loader Configuration
The Boot loader configuration space managed by the boot loader is included in the “Boot Loader
Flash Section”.

Table 4-6. Boot Loader Configuration Space (Code Number 4)

Note: 1. See “Extra Byte - “EB”” on page 14. for validity.
2. See “Bit-Timing Control [1..3] - “BTC[1..3]“” on page 14. for validity.
3. See “(CAN) Node Number - “NNB”” on page 14. for validity.

4.5.1 Reading or Programming
The “ISP Read” command accesses byte by byte to this space (no paging).

Access protection is only provided on the Software Security Byte (c.f. Section 4.5.4.2 ”Software
Security Byte - “SSB”” on page 13).

4.5.2 Erasing
The “ISP Erase” command is not available for this space.

4.5.3 Limits
Details on the Boot loader configuration space (code number 4) for ISP commands are given in
Table 4-6 ”Boot Loader Configuration Space (Code Number 4)” on page 12.

Signature Space Default value
Boot Status Byte “BSB” Add.: 0x00 0xFF

Software Security Byte “SSB” Add.: 0x01 0xFF

Extra Byte “EB” Add.: 0x02 0xFF (1)

Bit-Timing Control 1 “BTC1” Add.: 0x03 0xFF (2)

Bit-Timing Control 2 “BTC2” Add.: 0x04 0xFF (2)

Bit-Timing Control 3 “BTC3” Add.: 0x05 0xFF (2)

Node Number “NNB” Add.: 0x06 0xFF (3)

CAN Re-locatable ID Segment “CRIS” Add.: 0x07 0x00

Start Address Low “SA_L” Add.: 0x08 0x00

Start Address High “SA_H” Add.: 0x09 0x00

Number of page(s) -- No paging --
 12
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

4.5.4 Boot Loader Configuration Byte Description

4.5.4.1 Boot Status Byte - “BSB”
The Boot Status Byte of the boot loader is used in the “boot process” (Section 3.3.3 ”Boot Pro-
cess” on page 7) to control the starting of the application or the boot loader. If no Hardware
Condition is set, the default value (0xFF) of the Boot Status Byte will force the boot loader to
start. Else (Boot Status Byte != 0xFF & no Hardware Condition) the application will start.

4.5.4.2 Software Security Byte - “SSB”
The boot loader has the Software Security Byte “SSB” to protect itself and the application from
user access or ISP access. It protects the Flash and EEPROM memory spaces and itself.

The “ISP Program” command on Software Security Byte “SSB” can only write an higher priority
level. There are three levels of security:

Table 4-7. Security levels

Level Security “SSB” Comment

0 NO_SECURITY 0xFF
- This is the default level.
- Only level 1 or level 2 can be written over level 0.

1 WR_SECURITY 0xFE

- In level 1, it is impossible to write in the Flash and
EEPROM memory spaces.

- The boot loader returns an error message.
- Only level 2 can be written over level 0.

2 RD_WR_SECURITY ≤ 0xFC

- All read and write accesses to/from the Flash and
EEPROM memory spaces are not allowed.

- The boot loader returns an error message.
- Only an “ISP Erase” command on the Flash memory

space resets (level 0) the Software Security Byte.
 13
8247A–CAN–08/09

The table below gives the authorized actions regarding the SSB level.

Table 4-8. Allowed actions regarding the Software Security Byte “SSB”

4.5.4.3 Extra Byte - “EB”
The Extra Byte is used to switch the CAN Initialization to auto-bitrate or to fixed CAN bit timing.

– “EB” = 0xFFH: Use the software auto-bitrate.
– “EB” != 0xFFH: Use CANBT[1..3] bytes of Boot loader configuration space to set the

CAN bit timing registers of the CAN peripheral (no auto-bit rate).

4.5.4.4 Bit-Timing Control [1..3] - “BTC[1..3]“
When “EB” != 0xFFH, Bit-Timing Control[1..3] bytes (“BTC1”, “BTC2” & “BTC3”) of Boot loader
configuration space are used to set the CAN Bit-Timing Registers of the CAN peripheral - no
auto-bit rate.
A way to setup these bytes is described in Section 4.6.4.1 ”CANBT[1..3] Registers” on page 16.

4.5.4.5 (CAN) Node Number - “NNB”
See “CAN Protocol & ISP Commands” on page 17.

4.5.4.6 CAN Re-locatable ID Segment - “CRIS”
See “CAN Protocol & ISP Commands” on page 17.

4.5.4.7 Start (application) Address High & Low- “SA_H” & “SA_L”
See “CAN Protocol & ISP Commands” on page 17.

ISP Command NO_SECURITY WR_SECURITY RD_WR_SECURITY
Erase Flash memory space Allow Allow Allow

Erase EEPROM memory space Allow - -

Write Flash memory space Allow - -

Write EEPROM memory space Allow - -

Read Flash memory space Allow Allow -

Read EEPROM memory space Allow Allow -

Write byte(s) in Boot loader
configuration (except for “SSB”) Allow - -

Read byte(s) in Boot loader
configuration Allow Allow Allow

Write “SSB” Allow only a higher level -

Read Boot loader information Allow Allow Allow

Read Signature Allow Allow Allow

Blank check (any memory) Allow Allow Allow

Changing of memory space Allow Allow Allow
 14
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

Figure 4-1. Start Application & Reset Diagram

4.6 Device Registers
The device registers space (Code Number 5) managed by the boot loader is the 64 I/O registers
and the 160 Ext. I/O registers of the device. They are accessed by the equivalent assembler
instruction:

Reset

Start
Application ?

Jump Application With Reset

Hardware
Reset

Watch Dog
Reset

CAN_xx
Boot Loader

Jump to the

Hardware
Reset ?

No, jump to

Yes

User

word address of

Application

the command (*)

Boot Start Address

Boot Loader

Hardware
Condition

True False

BSB=0xFF BSB=0xFF

Yes

NoNo

Yes
Jump to

Boot Loader

User IAP Section
Clear All Reset Flags

(MCUSR=0)

Jump Application
(SA_H:SA_L)

Jump to Boot Start Address

(*) It is recommended
to jump at SA_H:SA_L
 15
8247A–CAN–08/09

LDS Rxx, REG_ADD
where REG_ADD is in the address range:

• 0x20 (PINA) up to 0xFA (CANMSG) for AT90CANxx Family,
• 0x23 (PINB) up to 0xFA (CANMSG) for ATmegaxxM1/C1 Family.

4.6.1 Reading or Programming
The “ISP Read” command accesses byte by byte to this space (no paging).

No access protection is provided on this read only space.

4.6.2 Erasing
Not applicable for this read only space.

4.6.3 Limits
This space is not bit addressing and an unimplemented register returns 0xFF.

4.6.4 Device Registers Description
c.f. appropriate data sheet for information.

4.6.4.1 CANBT[1..3] Registers
The CANBT[1..3] Registers are at the addresses 0xE2 to 0xE4.

They can be read before disabling the auto-bit rate (EB != 0xFFH) and re- copied into “ BTC1”,
“BTC2” & “BTC3” of the Boot loader configuration space (see “Bit-Timing Control [1..3] -
“BTC[1..3]“” on page 14). . Then, the Boot loader will always start with this Bit-Timing (while
EB != 0xFFH !!!). Is very useful in case of IAP.
 16
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader
5. CAN Protocol & ISP Commands
This section describes the higher level protocol over the CAN network communication and the
coding of the associated ISP commands.

5.1 CAN Frame Description
The CAN protocol only supports the CAN standard frame (c.f. ISO 11898 for high speed and
ISO 11519-2 for low speed) also known as CAN 2.0 A with 11-bit identifier.

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)", this is fol-
lowed by the "Arbitration field" which consist of the identifier and the "Remote Transmission
Request (RTR)" bit used to distinguish between the data frame and the data request frame
called remote frame. The following "Control field" contains the "IDentifier Extension (IDE)" bit
and the "Data Length Code (DLC)" used to indicate the number of following data bytes in the
"Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data
field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following
"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK
slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as
a dominant bit by the receivers which have at this time received the data correctly.

The ISP CAN protocol only uses CAN standard data frame.

Figure 5-1. CAN Standard Data Frame

To describe the ISP CAN protocol, a symbolic name is used for Identifier, but default values are
given within the following presentation.

Table 5-1. Template for ISP CAN command

Because in a point-to-point connection, the transmit CAN message is repeated until a hardware
acknowledge is done by the receiver.

The boot loader can acknowledge an incoming CAN frame only if a configuration is found.

This functionality is not guaranteed on a network with several CAN nodes.

Identifier
11 bits

Length
4 bits

Data[0]
1 byte

... Data[n-1]
1 byte

Description

SYMBOLIC_NAME
(“CRIS”<<4) + x n (≤8) Value or meaning Command description
 17
8247A–CAN–08/09

5.2 CAN ISP Command Data Stream Protocol

5.2.1 CAN ISP Command Description
Several CAN message identifiers are defined to manage this protocol.

Table 5-2. Defined CAN Message Identifiers for CAN ISP Protocol

It is possible to allocate a new value for CAN ISP identifiers by writing the “CRIS” byte with the
base value for the group of identifier.

The maximum “CRIS” value is 0x7F and its the default value is 0x00.

Figure 5-2. Remapping of CAN Message Identifiers for CAN ISP Protocol

Example: “CRIS” = 0x28

– “ID_SELECT_NODE” = 0x280
–
– “ID_ERROR” = 0x286

Identifier ISP Command Detail Value

ID_SELECT_NODE Open/Close a communication with a node (“CRIS” << 4) + 0

ID_PROG_START Start Memory space programming (“CRIS” << 4) + 1

ID_PROG_DATA Data for Memory space programming (“CRIS” << 4) + 2

ID_DISPLAY_DATA Read data from Memory space (“CRIS” << 4) + 3

ID_START_APPLI Start application (“CRIS” << 4) + 4

ID_SELECT_MEM_PAGE Selection of Memory space or page
(“CRIS” << 4) + 6

ID_ERROR Error message from boot loader only

CAN Identifiers

0x000

0x7FF
CAN ISP Identifiers

(“CRIS”<<4)+ 0

ID_SELECT_NODE

ID_PROG_START

ID_PROG_DATA

ID_DISPLAY_DATA

ID_WRITE_COMMAND

ID_SELECT_MEM_PAGE

Group of 6
CAN Mes-

sages Used
to Manage
CAN ISP

Commands

ID_ERROR
 18
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

5.2.2 Communication Initialization

The communication with a device (CAN node) must be opened prior to initiate any ISP commu-
nication. To open communication with the device, the Host sends a “Connecting” CAN message
(“ID_SELECT_NODE”) with the node number “NNB” passed as parameter. If the node number
passed is 0xFF then the CAN boot loader accepts the communication (Figure 5-3). Otherwise
the node number passed in parameter must be equal to the local “NNB” (Figure 5-4).

Figure 5-3. CAN Boot Loader First Connection

Figure 5-4. CAN Boot Loader Network Connection

Before opening a new communication with another device, the current device communication
must be closed with its connecting CAN message (“ID_SELECT_NODE”).

Host

Node

“NNB”=0xFF (Default Value)

Interface between
PC & CAN network

In Situ Programming - ISP

Host

Node: 0

“NNB”=0x00

Interface between
PC & CAN network

Node: 1

“NNB”=0x01

Node: 2

“NNB”=0x02

Node: n

“NNB”=0xnn

In Application Programming - IAP
 19
8247A–CAN–08/09

5.3 CAN ISP Commands

5.3.1 CAN Node Select
A CAN node must be first opened at the beginning and then closed at the end of the session.

5.3.1.1 CAN Node Select Requests from Host

Table 5-3. CAN Node Select Requests from Host

5.3.1.2 CAN Node Select Answers from Boot Loader

Table 5-4. CAN Node Select Answers from Boot Loader

5.3.2 Changing Memory / Page
To change of memory space and/or of page, there is only one command, the switch is made by
“Data[0]” of the CAN frame.

5.3.2.1 Changing Memory / Page Requests from Host

Table 5-5. Changing Memory / Page Requests from Host

5.3.2.2 Changing Memory / Page Answers from Boot Loader

Table 5-6. Changing Memory / Page Answers from Boot Loader

5.3.3 Reading / Blank Checking Memory
These operations can be executed only with a device previously open in communication. This
command is available on the memory space and on the page previously defined.

Identifier L Data[0] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 1 Node Number (“NNB”) Open or close communication with a specific node

Identifier L Data[0] Data[1] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 2 “Boot Loader

Revision”

0x00 Communication closed

0x01 Communication opened

Identifier L Data[0] Data[1] Data[2] Description

ID_SELECT_MEM_PAGE
((“CRIS”<<4)+ 6) 3

0x00

Memory
space Page

No action

0x01 Select Memory space

0x02 Select Page

0x03 Select Memory space & Page

Identifier L Data[0] Description

ID_SELECT_MEM_PAGE
((“CRIS”<<4)+ 6) 1 0x00 Selection OK (even if “Data[0]”=0 in the request frame)
 20
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

To start the reading or blank checking operation, the Host sends a CAN message
(“ID_DISPLAY_DATA”) with the operation required in Data[0], the start address and end
address are passed as parameters.

5.3.3.1 Reading / Blank Checking Memory Requests from Host

Table 5-7. Reading / Blank Checking Memory Requests from Host

5.3.3.2 Reading / Blank Checking Memory Answers from Boot Loader

Table 5-8. Reading / Blank Checking Memory Answers from Boot Loader

5.3.4 Programming / Erasing Memory
These operations can be executed only with a device previously open in communication. They
need two steps:

• The first step is to indicate address range for program or erase command.
• The second step is to transmit the data for programming only.

To start the programming operation, the Host sends a “start programming” CAN message
(ID_PROG_START) with the operation required in “Data[0]”, the start address and the end
address are passed as parameters.

5.3.4.1 Programming / Erasing Memory Requests from Host

Table 5-9. Unit. Programming / Erasing Memory Requests from Host

Identifier L Data[0] Data[1] Data[2] Data[3] Data[4] Description

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3) 5

0x00
Start Address
(MSB, LSB)

End Address
(MSB, LSB)

Display data of selected
Memory space / Page

0x80 Blank check on
selected Memory space / Page

Identifier L Data[0] Data[1] ... Data[7] Description

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3)

up to 8 Up to 8 Data Bytes Data Read

0 - - - - Blank check OK

2 First not blank address - - Error on Blank check

ID_ERROR
((“CRIS”<<4)+ 6) 1 0x00 - - -

Error
Software Security Set
(“Display data” only)

Identifier L Data[0] Data[1] Data[2] Data[3] Data[4] Data[5..7] Description

ID_PROG_START
((“CRIS”<<4)+ 1)

5 0x00 Start Address
(MSB, LSB)

End Address
(MSB, LSB) - Init. prog. the selected

Memory space / Page

3 0x80 0xFF 0xFF - - - Erase the selected
Memory space / Page

ID_PROG_DATA
((“CRIS”<<4)+ 2) n data[0..(n-1)] (n≤8) Data to program
 21
8247A–CAN–08/09

5.3.4.2 Programming / Erasing Memory Answers from Boot Loader

Table 5-10. Programming / Erasing Memory Answers from Boot Loader

5.3.4.3 Programming Memory Examples

Table 5-11. Programming Memory Examples

Figure 5-5. Result of the Above Programming Memory Example (1)

Note: 1. AVR Studio® Program Memory display

Identifier L Data[0] Description

ID_PROG_START
((“CRIS”<<4)+ 1) 0 - Command OK

ID_PROG_DATA
((“CRIS”<<4)+ 2) 1

0x00 Command OK and end of transfer

0x02 Command OK but new (other) data expected

ID_ERROR
((“CRIS”<<4)+ 6) 1 0x00 Error - Software Security Set (“Init. program” only)

Request/
Answer

CAN Message (hexadecimal)
Description

Identifier L Data[..70]

R (>>) 000 1 FF CAN Node Select

A (<<) 000 2 03 01 Communication opened

Default Memory space = Flash, default Page = page_0

R (>>) 001 5 00 00 02 00 12 Prog. Add 0x0002 up to 0x0012

A (<<) 001 0 0 Command OK

R (>>) 002 8 01 02 03 04 05 06 07 08 1st Data transfer

A (<<) 002 1 02 Command OK, new data expected

R (>>) 002 8 11 12 13 14 15 16 17 18 2nd Data transfer

A (<<) 002 1 02 Command OK, new data expected

R (>>) 002 1 20 3rd Data transfer

A (<<) 002 1 00 Command OK, end of transfer
 22
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

5.3.5 Starting Application

This operation can be executed only with a device previously open in communication.

5.3.5.1 Starting Application Requests from Host
To start the application, the host sends a start application CAN message with the “way of”
selected in “Data[1]”. The application can be start by a watchdog reset or by jumping to the
defined word address. The jump word address can be differ from SA_H:SA_L (Boot Loader Con-
figuration Space).

Table 5-12. Start application Requests from Host

5.3.5.2 Starting Application Answer from Boot Loader
No answer is returned by the boot loader.

Identifier L Data[0] Data[1] Data[2] Data[3] Description

ID_START_APPLI
((“CRIS”<<4)+ 4)

2

0x03

0x00 - - Start application with watchdog reset

4 0x01 Jump W-Add.
(MSB, LSB)

Start Application at
W-Add. (MSB : LSB) without reset
 23
8247A–CAN–08/09

6. API - Application Programming Interface

6.1 API Definition
An application programming interface (API) is a source code interface that a computer system or
program library provides in order to support requests for services to be made of it by a computer
program.

6.2 API Implementation
The specificity of Atmel® AVR 8-bit microprocessors is that the code providing the writing in flash
needs to be located in the boot loader section. If the "Slim" CAN Boot Loader is flashed in a part,
the boot loader section is already occupied and unavailable for user.

The solution that allows the user to write in flash is to “open” the “flash_wr_block()” routine
contained in the "Slim" CAN Boot Loader. Then the user could call it from its own application
(and use a well-tried piece of code).

6.3 API - Limitation of Use
The CAN Boot Loader flashed was developed and compiled with IAR™. Only a user program
also compiled with IAR can access to (call) the "Slim" CAN Boot Loader API.

6.4 API Details

6.4.1 Function Name
flash_wr_block()

Note: This function is located in “flash_boot_lib.c” file.

6.4.2 Features
This function allows to write up to 65535 bytes (64K Bytes-1 byte) in the Flash memory. This
function manages alignment issue (byte and flash-page alignments).

Note: 1. This function is not able to address the fully 65535 bytes in one time because we cannot find in
the device a source buffer up to 64K bytes !

2. For Flash memory size greater than 64K, the page setting must be done before (ex: setting or
clearing the RAMPZ register). The default setting is 0.

6.4.3 Warning
Bytes to program must be in a different page that “flash_wr_block()” function.

6.4.4 Function Parameters
1. * src: Pointer on unsigned char - Source buffer (in SRAM),
2. dest: unsigned short - Destination, start address value in Flash memory

where data must be written,
3. byte_nb: unsigned short - Number of bytes to write.

6.4.5 Function Return
(none)
 24
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader
6.5 Entry Point
Because the user application and the "Slim" CAN Boot Loader are not compiled together, an
entry point is used. Regardless the device part number, the entry point is fixed to:

API_ENTRY_POINT = (FLASH_SIZE - FLASH_BOOT_SIZE(1)) + 4 bytes

Note: 1. FLASH_BOOT_SIZE = 4 Kilo Bytes

The following table gives the API entry point address versus used device.

Table 6-1. API Entry Point Versus Device Part Number.

6.6 API Call Example with IAR
The user program can call the API used the following code (1):

• In the driver (*.c) file - Function
void (*flash_write) (unsigned char* src, \

 unsigned short dest, \

 unsigned short byte_nb) \

 = (void (*)(unsigned char*, \

 unsigned short, \

 unsigned short)) \

 (API_ENTRY_POINT) ;

Note: Here, ENTRY_POINT is a byte address

• In the header (*.h) file - Function prototype
extern void (*flash_write) (unsigned char* src, \

 unsigned short dest, \

 unsigned short byte_nb);

Note: 1. Only available for IAR C Compiler.

Part Number API_ENTRY_POINT - Word Address API_ENTRY_POINT - Byte Address

AT90CAN32 0x03802 0x07004

AT90CAN64 0x07802 0x0F004

AT90CAN128 0x0F802 0x1F004

ATmega16M1 0x01802 0x03004

ATmega32M1 0x03802 0x07004

ATmega32C1 0x03802 0x07004

ATmega64M1 0x07802 0x0F004

ATmega64C1 0x07802 0x0F004
 25
8247A–CAN–08/09

6.7 API Call Example with Other C Compilers

6.7.1 Passing Variables Between IAR C-compiler and Other Compiler or Assembler
When the IAR C-compiler is used for the AVR the Register File is segmented as shown in Figure
6-1.

• Scratch Registers are not preserved across functions calls.
• Local registers are preserved across function calls.
• The Y Register (R28:R29) is used as Data Stack Pointer to SRAM.
• The Scratch Registers are used to passing parameters and return values between functions.

When a function is called the parameters to be passed to the function is placed in the Register
File Registers R16-R23. When a function is returning a value this value is placed in the Register
File Registers R16-R19, depending on the size of the parameters and the returned value.

Figure 6-2 shows example placement of parameter when calling a function:

Figure 6-1. Segments in the Register File.

Table 6-2. Placement and Parameters to C-functions.

For complete reference of the supported data types and corresponding sizes, see the AVR® IAR
Compiler Guide from IAR Systems, Data Representation section.

6.7.2 Registers used in “flash_wr_block()” API
• Function parameters:

Function Parameter 1 Registers Parameter 2 Registers

func (char, char) R16 R20

func (char, short) R16 R20, R21

func (short, long) R16, R17 R20, R211, R22, R23

func (long, long) R16, R17, R18, R19 R20, R21, R22, R23

Scratch Registers R0-R3

Local Registers R4-R15

Scratch Registers R16-R23

Local Registers R24-R27

Data Stack Pointers (Y) R28-R29

Scratch Register R30-R31
 26
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

– *src : R17:R16 then => R9:R8 => and transferred in Z(R31:30)
– dest : R19:R18 then => R25:R24 => R27:R26(address)
– nb_bytes : R21:R20 then => R5:R4

• Other resources:
– Y(R29:R28) is used as “Data Stack Pointer”
– Z(R31:30) is used with “LPM” & “SPM”
– Clear R0 using “LPM” and (R0:R1) is used in “fill_temp_buffer”

• Summary of registers used:
R0, R1, R4, R5, R6, R7, R8, R9, R10, R11, R16, R17, R18, R19, R20, R21, R24, R25,
R26, R27, R28, R29, R30, R31

• “flash_boot_lib.lst” file extract:
138 //--

 139 #pragma location ="API_FLASH"

 \ In segment API_FLASH, align 2, keep-with-next

 140 void flash_wr_block(U8* src, U16 dest, U16 byte_nb)

 \ flash_wr_block:

 141 {

 \ 00000000 92BA ST -Y, R11

 \ 00000002 92AA ST -Y, R10

 \ 00000004 929A ST -Y, R9

 \ 00000006 928A ST -Y, R8

 \ 00000008 927A ST -Y, R7

 \ 0000000A 926A ST -Y, R6

 \ 0000000C 925A ST -Y, R5

 \ 0000000E 924A ST -Y, R4

 \ 00000010 93BA ST -Y, R27

 \ 00000012 93AA ST -Y, R26

 \ 00000014 939A ST -Y, R25

 \ 00000016 938A ST -Y, R24

 \ 00000018 REQUIRE ?Register_R4_is_cg_reg

 \ 00000018 REQUIRE ?Register_R5_is_cg_reg

 \ 00000018 REQUIRE ?Register_R6_is_cg_reg

 \ 00000018 REQUIRE ?Register_R7_is_cg_reg

 \ 00000018 REQUIRE ?Register_R8_is_cg_reg

 \ 00000018 REQUIRE ?Register_R9_is_cg_reg

 \ 00000018 REQUIRE ?Register_R10_is_cg_reg

 \ 00000018 REQUIRE ?Register_R11_is_cg_reg

 \ 00000018 0148 MOVW R9:R8, R17:R16

 \ 0000001A 01C9 MOVW R25:R24, R19:R18

 \ 0000001C 012A MOVW R5:R4, R21:R20

 142 U8 save_i_flag;

 143 U16 u16_temp, nb_word;

 144 U16 address;

 145 U16 save_page_addr;

 146

 147 //--- Special for API's ------------------------

 148 //- First of all, disabling the Global Interrupt

 149 save_i_flag = SREG;

 \ 0000001E B6AF IN R10, 0x3F

 150 Disable_interrupt();

 \ 00000020 94F8 CLI

Note: For more details, please refer to the following *.lst files (if generated ! - (compiler option)):
- “flash_boot_lib.lst” file,
- “flash_boot_drv.lst” file.
 27
8247A–CAN–08/09

7. Appendix A: #define’s

7.1 Processor Definition
//---------------- BOOT LOADER DEFINITION --------------------------------------
#define BOOT_LOADER_SIZE 0x1000 // Size in bytes: 4KB
#define MAX_FLASH_SIZE_TO_ERASE (FLASH_SIZE - ((U32)(BOOT_LOADER_SIZE)))

//---------------- PROCESSOR DEFINITION --

#define XRAM_END XRAMEND // Defined in "ioxxx.h"
#define RAM_END RAMEND // Defined in "ioxxx.h"
#define E2_END E2END // Defined in "ioxxx.h"
#define FLASH_END FLASHEND // Defined in bytes in "ioxxx.h"
#define FLASH_SIZE ((U32)(FLASH_END)) + 1 // Size in bytes

// Switches for specific definitions
#if defined(__AT90CAN128__) // __HAS_ELPM__ defined by IAR
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x81 // AT90CANxxx family
define PRODUCT_NAME 0x97 // 128 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 256 // Size in bytes
define _BOOT_CONF_TYPE_ __farflash // Bootloader mapped above 64K
define _RAMPZ_IS_USED_ // RAMPZ register used if Flash memory
used is upper than 64K bytes

#elif defined(__AT90CAN64__) // __HAS_ELPM__ not-defined by IAR
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x81 // AT90CANxxx family
define PRODUCT_NAME 0x96 // 64 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 256 // Size in bytes
define _BOOT_CONF_TYPE_ __flash // Bootloader mapped below 64K

#elif defined(__AT90CAN32__) // __HAS_ELPM__ not-defined by IAR
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x81 // AT90CANxxx family
define PRODUCT_NAME 0x95 // 32 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 256 // Size in bytes
define _BOOT_CONF_TYPE_ __flash // Bootloader mapped below 64K

#elif defined(__ATmega16M1__) // __HAS_ELPM__ not-defined by IAR
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x84 // ATmegaxxM1C1 family
define PRODUCT_NAME 0x94 // 16 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 128 // Size in bytes
define _BOOT_CONF_TYPE_ __flash // Bootloader mapped below 64K

#elif defined(__ATmega32M1__) // __HAS_ELPM__ not-defined by IAR
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x84 // ATmegaxxM1C1 family
define PRODUCT_NAME 0x95 // 32 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 128 // Size in bytes
define _BOOT_CONF_TYPE_ __flash // Bootloader mapped below 64K

#elif defined(__ATmega32C1__) // __HAS_ELPM__ not-defined by IAR
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x86 // ATmegaxxM1C1 family
define PRODUCT_NAME 0x95 // 32 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 128 // Size in bytes
define _BOOT_CONF_TYPE_ __flash // Bootloader mapped below 64K

#elif defined(__ATmega64M1__) // __HAS_ELPM__ not-defined by IAR
define MANUF_ID 0x1E // ATMEL
 28
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader

define FAMILY_CODE 0x84 // AATmegaxxM1C1 family
define PRODUCT_NAME 0x96 // 64 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 256 // Size in bytes
define _BOOT_CONF_TYPE_ __flash // Bootloader mapped below 64K

#elif defined(__ATmega64C1__) // __HAS_ELPM__ not-defined by IAR
define MANUF_ID 0x1E // ATMEL
define FAMILY_CODE 0x86 // ATmegaxxM1C1 family
define PRODUCT_NAME 0x96 // 64 Kbytes of Flash
define PRODUCT_REV 0x00 // Rev 0
define FLASH_PAGE_SIZE 256 // Size in bytes
define _BOOT_CONF_TYPE_ __flash // Bootloader mapped below 64K

#else
error Wrong device selection in IAR Embedded Workbench IDE
#endif

#define FOSC 8000 // 8 MHz External crystal

7.2 CAN Link Definition
//---------------- CAN DEFINITION -------------
#define CAN_BAUDRATE CAN_AUTOBAUD

#if defined(__AT90CAN128__) || \
 defined(__AT90CAN64__) || \
 defined(__AT90CAN32__)
define CAN_PORT_IN PIND
define CAN_PORT_DIR DDRD
define CAN_PORT_OUT PORTD
define CAN_INPUT_PIN 6
define CAN_OUTPUT_PIN 5
define NB_MOB 15
#elif defined(__ATmega16M1__) || \
 defined(__ATmega32M1__) || \
 defined(__ATmega32C1__) || \
 defined(__ATmega64M1__) || \
 defined(__ATmega64C1__)
define CAN_PORT_IN PINC
define CAN_PORT_DIR DDRC
define CAN_PORT_OUT PORTC
define CAN_INPUT_PIN 3
define CAN_OUTPUT_PIN 2
define NB_MOB 6
#else
error Wrong device selection in IAR Embedded Workbench IDE
#endif

7.3 Boot Loader Definition
//-------------- BOOTLOADER CONFIGURATION -------------
#define BOOT_LOADER_SIZE 0x1000 // Size in bytes: 4KB
#define MAX_FLASH_SIZE_TO_ERASE (FLASH_SIZE - ((U32)(BOOT_LOADER_SIZE)))

#define BOOT_VERSION 0x03
#define BOOT_ID1 0xD1
#define BOOT_ID2 0xD2

#define BSB_DEFAULT 0xFF
#define SSB_DEFAULT 0xFF
#define EB_DEFAULT 0xFF
#define BTC1_DEFAULT 0xFF
#define BTC2_DEFAULT 0xFF
#define BTC3_DEFAULT 0xFF
#define NNB_DEFAULT 0xFF
#define CRIS_DEFAULT 0x00
#define SA_H_DEFAULT 0x00
#define SA_L_DEFAULT 0x00

#define BSB ((U16) &boot_conf[0])
 29
8247A–CAN–08/09

#define SSB ((U16) &boot_conf[1])
#define EB ((U16) &boot_conf[2])
#define BTC1 ((U16) &boot_conf[3])
#define BTC2 ((U16) &boot_conf[4])
#define BTC3 ((U16) &boot_conf[5])
#define NNB ((U16) &boot_conf[6])
#define CRIS ((U16) &boot_conf[7])
#define SA_H ((U16) &boot_conf[8])
#define SA_L ((U16) &boot_conf[9])

#define BOOT_CONF_SIZE 10
#define SSB_INDEX 0x01
#define SSB_NO_SECURITY 0xFF
#define SSB_WR_PROTECTION 0xFE
#define SSB_RD_WR_PROTECTION 0xFC

7.4 Memory Definition
//-------- MEMORY DEFINITION -----------------
#define MEM_FLASH 0
#define MEM_EEPROM 1
#define MEM_SIGNATURE 2
#define MEM_BOOT_INF 3 // Boot Loader information
#define MEM_BOOT_CONF 4 // Boot Loader configuration
#define MEM_HW_REG 5
#define MEM_DEF_MAX MEM_HW_REG
#define MEM_DEFAULT MEM_FLASH

#define PAGE_DEFAULT 0x00
#define ADD_DEFAULT 0x0000
#define N_DEFAULT 0x0001

7.5 CAN Protocol Definition
//------ IAP data --------------------------
#define MAX_BASE_ISP_IAP_ID 0x7F0
#define MIN_BASE_ISP_IAP_ID 0x000

//------ Protocol commands -----------------
#define CAN_ID_SELECT_NODE 0x00

#define CAN_ID_PROG_START 0x01
define CAN_INIT_PROG 0x00
define CAN_FULL_ERASE_1 0x80
define CAN_FULL_ERASE_2 0xFF
define CAN_FULL_ERASE_3 0xFF

#define CAN_ID_PROG_DATA 0x02

#define CAN_ID_DISPLAY_DATA 0x03
define CAN_READ_DATA 0x00
define CAN_BLANK_CHECK 0x80

#define CAN_ID_START_APPLI 0x04
define CAN_START_APPLI 0x03
define CAN_RESET_APPLI 0x00
define CAN_JUMP_APPLI 0x01

#define CAN_ID_SELECT_MEM_PAGE 0x06
define CAN_NO_ACTION 0x00
define CAN_SEL_MEM 0x01
define CAN_SEL_PAGE 0x02
define CAN_SEL_MEM_N_PAGE 0x03

#define CAN_ID_ERROR 0x06

#define COMMAND_OK 0x00
#define OK_END_OF_DATA 0x00
#define OK_NEW_DATA 0x02

#define LOCAL_BUFFER_SIZE 0x100
 30
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader
8. Appendix B: CAN Protocol Summary
Table 8-1. CAN Protocol Summary - Requests from Host

Table 8-2. CAN Protocol Summary - Answers from Boot Loader

ISP Command Request
Identifier L Data

[0]
Data
[1]

Data
[2]

Data
[3]

Data
[4]

Data
[5]

Data
[6]

Data
[7] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 1 Node - - - - - - - Open or close communication

ID_PROG_START
((“CRIS”<<4)+ 1)

5 0x00 Start Address End Address - - - Initialization of programming

3 0x80 0xFF 0xFF - - - - - Erasing

ID_PROG_DATA
((“CRIS”<<4)+ 2) n data[0..(n-1)] (n≤8) Data to program

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3) 5

0x00
Start Address End Address

- - - Display (read) data

0x80 - - - Blank check

ID_START_APPLI
((“CRIS”<<4)+ 4)

2
0x03

0x00 - - - - - - Start Application with reset

4 0x01 0x0000 - - - - Start Application jump add. 0

ID_SELECT_MEM_PAGE
((“CRIS”<<4)+ 6) 3

0x00

Memory
space Page

- - - - - No action

0x01 - - - - - Select Memory space

0x02 - - - - - Select Page

0x03 - - - - - Select Memory space & Page

ISP Command Answer
Identifier L Data

[0]
Data
[1]

Data
[2]

Data
[3]

Data
[4]

Data
[5]

Data
[6]

Data
[7] Description

ID_SELECT_NODE
((“CRIS”<<4)+ 0) 2

Boot
loader

revision

0x00 - - - - - - Communication closed

0x01 - - - - - - Communication opened

ID_PROG_START
((“CRIS”<<4)+ 1) 0 - - - - - - - - Command OK

ID_PROG_DATA
((“CRIS”<<4)+ 2) 1

0x00 - - - - - - - Cmd. OK & end of transfer

0x02 - - - - - - - Cmd. OK & new data expected

ID_DISPLAY_DATA
((“CRIS”<<4)+ 3)

n data[0..(n-1)] (n≤8) Data Read

0 - - - - - - - - Blank check OK

2 1st Failed Address - - - - - - Error on Blank check

ID_SELECT_MEM_PAGE
or ID_ERROR

((“CRIS”<<4)+ 6)
1 0x00 - - - - - - - Selection OK or

Error Software Security Set
 31
8247A–CAN–08/09

9. Appendix C: Flip Interface
FLIP is a flexible PC-application which lets you program and configure Atmel's microcontroller
devices in-system. This new major version of FLIP offers the following capabilities :

• Perform In-System Programming through RS232, USB or CAN interfaces.
• May be used through its intuitive Graphical User Interface or launched from a DOS® window

(see the batchisp manual), from an embedded software IDE like KEIL's uVision2, or even
from your own application (see the ISP Functions Library manual).

• Runs under Windows® 9x / Me / NT® / 2000 / XP®

• Supports Intel® MCS-86 Hexadecimal Object, Code 88 file format for data file loading and
saving.

• Buffer editing capabilities : fill, search, copy, reset, modify, goto address.
• Target device memory control : erase, blank check, program, verify, read, security level and

special bytes reading and setting.
• Parts serialization capability (from batchisp only).
• ISP hardware conditions may be set by software.
• The demo mode emulates ISP operations without any target hardware.

Figure 9-1. Flip Window Examples

Flip link: http://www.atmel.com/dyn/resources/prod_documents/Flip_Installer_3_3_4.exe

AT90CAN128

ATmega32M1
 32
8247A–CAN–08/09

"Slim" CAN Boot Loader

 "Slim" CAN Boot Loader
10. Appendix C: Compiling Notes vs Targeted Devices
References : - IAR C/C++ Compiler for AVR 5.20.1 (5.20.1.50092)

- Platform selection in “..\$PROJ_DIR$\config.h” file

10.1 Targeted Selection
Project -> Options -> General Options -> Target -> Processor Configuration

• either: --cpu=can128, AT90CAN128
• either: --cpu=can64, AT90CAN64
• either: --cpu=can32, AT90CAN32
• either: --cpu=32m1, ATmega32M1
• or: --cpu=32c1, ATmega32C1

 (not yet implemented - 13 April 2009)

• ... : --cpu=64m1, ATmega64M1
• ... : --cpu=64c1, ATmega64C1
• ... : --cpu=16m1, ATmega16M1

10.2 Optimizations
Project -> Options -> C/C++ Compiler -> Optimizations

• Speed: High(Maximum optimization)
• Number of cross-call passes: Ulimited
• Always do cross call optimization: ON

10.3 Selection of the Corresponding Linker Command File
Project -> Options -> Linker -> Config -> Linker Command File

• Override default
• either: ..\$PROJ_DIR$\can128_iar_can_bootloader_link.xcl
• either: ..\$PROJ_DIR$\can64_iar_can_bootloader_link.xcl
• either: ..\$PROJ_DIR$\can32_iar_can_bootloader_link.xcl
• either: ..\$PROJ_DIR$\m64m1c1_iar_can_bootloader_link.xcl
• either: ..\$PROJ_DIR$\m32m1c1_iar_can_bootloader_link.xcl
• or: ..\$PROJ_DIR$\m16m1c1_iar_can_bootloader_link.xcl

10.4 Compiling
1. Project -> Clean
2. Project -> Rebuilt All

Production of: "IAR_can_boot_loader.a90" (equ. "*.hex") and "IAR_can_boot_loader.dbg"
located in: ..\$PROJ_DIR$\output_iar\debug\exe\

10.5 Pre Compiled Hexa Files
Some pre compiled hexa files (depending of the platform used) has been produced in:
 ..\$PROJ_DIR$\output_iar\debug\exe\pre_compiled_hex_file\

• for AT90CAN128 : IAR_can_boot_loader_dvk90can1_at90can128.hex
 or IAR_can_boot_loader_stk600_at90can128.hex

• for AT90CAN64 : IAR_can_boot_loader_stk600_at90can64.hex
• for AT90CAN32 : IAR_can_boot_loader_stk600_at90can32.hex
• for ATmega32M1/C1 : IAR_can_boot_loader_stk600_atmega32m1c1.hex

 or IAR_can_boot_loader_mc310_atmega32m1c1.hex
 33
8247A–CAN–08/09

8247A–CAN–08/09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft
Corporation in US and/or other countries. Other terms and product names may be trademarks of others.

	1. Features
	2. Description
	3. Boot Loader Environment
	3.1 Device Fuse Setting
	3.2 Physical Environment
	3.3 Boot Loader Description
	3.3.1 Overview
	3.3.2 Entry Point
	3.3.3 Boot Process
	3.3.4 Protocol Identification
	3.3.5 CAN Initialization
	3.3.6 CAN Protocol Overview
	3.3.7 ISP Commands Overview
	3.3.8 Output From Boot Loader

	4. Memory Space Definition
	4.1 Flash Memory Space
	4.1.1 Reading or Programming
	4.1.2 Erasing
	4.1.3 Limits

	4.2 EEPROM Data Memory
	4.2.1 Reading or Programming
	4.2.2 Erasing
	4.2.3 Limits

	4.3 Signature
	4.3.1 Reading or Programming
	4.3.2 Erasing
	4.3.3 Limits

	4.4 Boot Loader Information
	4.4.1 Reading or Programming
	4.4.2 Erasing
	4.4.3 Limits
	4.4.4 Boot Loader Information Byte Description
	4.4.4.1 Boot Revision
	4.4.4.2 Boot ID1 & ID2

	4.5 Boot Loader Configuration
	4.5.1 Reading or Programming
	4.5.2 Erasing
	4.5.3 Limits
	4.5.4 Boot Loader Configuration Byte Description
	4.5.4.1 Boot Status Byte - “BSB”
	4.5.4.2 Software Security Byte - “SSB”
	4.5.4.3 Extra Byte - “EB”
	4.5.4.4 Bit-Timing Control [1..3] - “BTC[1..3]“
	4.5.4.5 (CAN) Node Number - “NNB”
	4.5.4.6 CAN Re-locatable ID Segment - “CRIS”
	4.5.4.7 Start (application) Address High & Low- “SA_H” & “SA_L”

	4.6 Device Registers
	4.6.1 Reading or Programming
	4.6.2 Erasing
	4.6.3 Limits
	4.6.4 Device Registers Description
	4.6.4.1 CANBT[1..3] Registers

	5. CAN Protocol & ISP Commands
	5.1 CAN Frame Description
	5.2 CAN ISP Command Data Stream Protocol
	5.2.1 CAN ISP Command Description
	5.2.2 Communication Initialization

	5.3 CAN ISP Commands
	5.3.1 CAN Node Select
	5.3.1.1 CAN Node Select Requests from Host
	5.3.1.2 CAN Node Select Answers from Boot Loader

	5.3.2 Changing Memory / Page
	5.3.2.1 Changing Memory / Page Requests from Host
	5.3.2.2 Changing Memory / Page Answers from Boot Loader

	5.3.3 Reading / Blank Checking Memory
	5.3.3.1 Reading / Blank Checking Memory Requests from Host
	5.3.3.2 Reading / Blank Checking Memory Answers from Boot Loader

	5.3.4 Programming / Erasing Memory
	5.3.4.1 Programming / Erasing Memory Requests from Host
	5.3.4.2 Programming / Erasing Memory Answers from Boot Loader
	5.3.4.3 Programming Memory Examples

	5.3.5 Starting Application
	5.3.5.1 Starting Application Requests from Host
	5.3.5.2 Starting Application Answer from Boot Loader

	6. API - Application Programming Interface
	6.1 API Definition
	6.2 API Implementation
	6.3 API - Limitation of Use
	6.4 API Details
	6.4.1 Function Name
	6.4.2 Features
	6.4.3 Warning
	6.4.4 Function Parameters
	6.4.5 Function Return

	6.5 Entry Point
	6.6 API Call Example with IAR
	6.7 API Call Example with Other C Compilers
	6.7.1 Passing Variables Between IAR C-compiler and Other Compiler or Assembler
	6.7.2 Registers used in “flash_wr_block()” API

	7. Appendix A: #define’s
	7.1 Processor Definition
	7.2 CAN Link Definition
	7.3 Boot Loader Definition
	7.4 Memory Definition
	7.5 CAN Protocol Definition

	8. Appendix B: CAN Protocol Summary
	9. Appendix C: Flip Interface
	10. Appendix C: Compiling Notes vs Targeted Devices
	10.1 Targeted Selection
	10.2 Optimizations
	10.3 Selection of the Corresponding Linker Command File
	10.4 Compiling
	10.5 Pre Compiled Hexa Files

