
Pecc communication

Tore Skjellnes
torsk@elkraft.ntnu.no

January 7, 2000

Abstract

This document describes communication with Peccros, a tiny operating system used by
microcontroller applications for communication.

First, the general abstract layers are explained. Second, each layer is described separately.
Finally, examples of communication and implementation details are given.

1 Introduction

The communication with Peccros can be divided into three abstraction layers. The first layer is
the low-level communication layer. It describes how the data is transmitted through a transmission
media. The second layer is the protocoll layer. It is responsible for encoding arbitrary packets
of data into a form that can be transmitted safely and reliably by the low-level layer. The third
layer is the command layer. It describes the shape of the actual command packets which the two
communication systems exchange. The layer stucture is designed such that the individual layers
can be replaced fairly independently.

2 The low-level layer

The low-level layer is responsible for the actual data transfer.

2.1 Standard RS232

This layer implements the asynchronus serial communcation standard RS232. The data is sent at
9600 baud using 8 data bits, 1 stop bit and no parity. No handshaking is used.

3 The protocoll layer

The protocoll layer is responsible for encoding an arbitrary packet into a form that can be trans-
mitted by the low-level layer.

3.1 The Pecc protocoll, version 5.0

Some of the features of this protocoll includes:

• It is a byte oriented, self synchronizing protocoll.

• It has a theoretical maximum number of data bytes in a packet of 254 bytes.

• It has a maximum number of bytes in a encoded package of 512 bytes.

• It uses two simple additive checksums to ensure data integrity, one for the package header,
and one for the data.

1

• It uses a lone byte value 0xFF as a special value to synchronize packages. A byte value of
0xFF used in any other context is encoded as two consecutive bytes with value 0xFF.

3.1.1 The protocoll format

An encoded packet uses the following format:

0xFF N
header

checksum data1 · · · dataN
data

checksum

3.1.2 Data byte encoding

If any byte value, except for the header byte of a packet, is 0xFF, it is encoded as two consecutive
bytes with value 0xFF.

3.1.3 Checksumss

The checksums are simple additive checksums. If all the decoded bytes and the checksum are
added, the lower 8 bits of the sum should be zero. Any other results indicates an error. To
calculate a checksum, all the bytes can be added, then negated, and then anded with 0xFF.

3.1.4 Header

The first two bytes, 0xFF and N , always begins a new package. Here N is the number of decoded
data bytes in the package in the range 0x01 to 0xFE. This means that a package always start with
a “lone” byte value of 0xFF.

The header checksum is the checksum of these two bytes. Note that if N is 2, the header
checksum is 0xFF, and is encoded as two consecutive bytes of 0xFF.

As N is constricted to the range 0x01 to 0xFE, the byte sequence 0xFF 0x00 is not part of any
valid package. Thus it can be used as a error indication (e.g. frame error) at the receiving end.

3.1.5 Data

The header is followed by the encoded packet data and the data checksum. The maximum number
of bytes are 254 · 2 + 1 = 509. This worst case is 254 0xFFs, followed by the checksum = 0xFE,
or 253 0xFFs and a 0xFE, followed by the checksum = 0xFF. Thus the maximum package size is
509 + 3 = 512.

However, to conserve buffer space on the microcontroller, the sender and receiver might agree
upon a smaller maximum package size.

4 The command layer

The command layer defines the actual command packets which the two communication systems
exchange.

4.1 Command packets
New: The
virtual
address
command
packets have
changed
number and
format.

A standard command packet is made up by a byte identifying the command, possibly followed by
a byte with a sub command, followed by the command data bytes. A summary of command bytes
is shown in table 1. The receiver responds by sending an acknowledge packet. This acknowledge
contains an error code, denominated in this document by EC. A summary of all error codes is
shown in table 2.

2

Command Description
0x01 Ping
0x02 Start
0x03 Start possible
0x04 Stop
0x05 Reset
0x06 Run function
0x07 Put variable
0x08 Get variable
0x0C Initialize

0x10
Virtual address command
packet:

0x10 0x01 Run virtual function
0x10 0x02 Put virtual variable
0x10 0x03 Get virtual varibale

Table 1: A summary of all commands

EC Description
0x00 No error
0xFF General error
0xFE Timeout
0xFD Break
0xFC Not found
0xFB Null pointer
0xFA Wrong magic number
0xF9 Wrong data length
0xF8 Unknown command id
0xF7 Program is running
0xF6 Program is not running
0xF5 Unknown virtual address
0xF4 Permission denied

Table 2: A summary of all error codes

3

4.1.1 Ping

Command: 0x01 0x00

Answer: 0x01 EC

The ping packet is used to ask the receiver if it is “alive.”

4.1.2 Start

Command: 0x02 0x00

Acknowledge: 0x02 EC

The start packet is used to start the user application.

4.1.3 Start possible

Command: 0x03 0x00

Acknowledge: 0x03 EC

The start possible packet is used to check if starting the user application is possible.

4.1.4 Stop

Command: 0x04 0x00

Acknowledge: 0x04 EC

The stop packet is used to stop the user application.

4.1.5 Reset

Command: 0x05 0x00

Acknowledge: 0x05 EC

The reset packet is used to reset the processor. The acknowledge packet is only sent in the
event of an error, as the reset is immediate.

4.1.6 Run function

Command: 0x06 addr0..7 addr8..15 addr16..23 addr24..31

Acknowledge: 0x06 EC

The run function packet is used to run an arbitrary function. addr gives the address of the
function. The function is run immediately, and the acknowledge packet is sent after it has returned.

4.1.7 Put variable

Command:
0x07 id Nd addr0..7 addr8..15

addr16..23 addr24..31 data1 · · · dataNd

Acknowledge: 0x07 id EC

The put variable function packet is used to put arbitrary data in any memory location. id is
a id used to identify this package, and is returned in the acknowledge package. Nd is the number
of data bytes. addr gives the address of the memory location.

4

4.1.8 Get variable

Command:
0x08 id Nd addr0..7 addr8..15

addr16..23 addr24..31

Acknowledge: 0x08 id EC 6= 0

Acknowledge:
0x08 id 0x00 Nd
data1 · · · dataNd

The get variable function packet is used to get arbitrary data from any memory location. id is
a id used to identify this package, and is returned in the acknowledge package. Nd is the number
of data bytes. addr gives the address of the memory location.

4.1.9 Initialize

Command: 0x0C 0x00

Acknowledge: 0x0C EC

The initialize packet is used to initialize the user application after downloading.

4.1.10 Run virtual function
Updated

Command: 0x10 0x01 vaddr0..7 vaddr8..15

Acknowledge: 0x10 EC 0x01

The run virtual function packet is used to run a function identified by vaddr. The function is
run immediately, and the acknowledge packet is sent after it has returned.

4.1.11 Put virtual variable
Updated

Command:
0x10 0x02 id Nd vaddr0..7

vaddr8..15 data1 · · · dataNd

Acknowledge: 0x10 EC 0x02 id

The put virtual variable function packet is used to put arbitrary data in a memory location
identified by vaddr. id is a id used to identify this package, and is returned in the acknowledge
package. Nd is the number of data bytes.

4.1.12 Get virtual variable
Updated

Command: 0x10 0x03 id Nd vaddr0..7 vaddr8..15

Acknowledge: 0x10 EC 6= 0 0x03 id

Acknowledge:
0x10 0x00 0x03 id
Nd data1 · · · dataNd

The get virtual variable function packet is used to get arbitrary data in a memory location
identified by vaddr. id is a id used to identify this package, and is returned in the acknowledge
package. Nd is the number of data bytes.

5

5 Examples

5.1 Example packages

Some examples of encoded packages are shown below:

Ping:
0xFF 0x02 0xFF 0xFF
0x01 0x00 0xFF 0xFF

Ping ack.:
0xFF 0x02 0xFF 0xFF
0x01 0x00 0xFF 0xFF

Start:
0xFF 0x02 0xFF 0xFF
0x02 0x00 0xFE

Start ack.:
0xFF 0x02 0xFF 0xFF
0x02 0x00 0xFE

5.2 Example decoder

The following code is an example package decoder. The function decodes a single data byte and
updates the decoder state saved in the PECCP50 structure accordingly. If the input value data is
outside the byte region of 0x00 to 0xFF, it represents a faulty character (e.g. frame error). The
decoder is reset to the synchronization state on errors. If the decoding is successful, the length of
the packet is returned (≤ 254). The structure PECCP50 must be initialized to state PECCP50_SYNCH New
before it is used for the first time.

The function returns:

N > 0 if the decoding was successful. N is the length of the data packet.

= 0 if there was not enough data avaiable (yet).

EC < 0 on error, in particular

-1 lost synchronization. The last character read was not part of a valid package.
Expect a lot of these after other errors.

-2 data error. A FF 00 or error was received.

-3 header checksum error.

-4 body checksum error.

typedef struct PECCP50_ PECCP50;

struct PECCP50_

{

enum {

PECCP50_SYNCH,

PECCP50_LEN,

PECCP50_LSUM,

PECCP50_DATA,

PECCP50_ESUM,

PECCP50_VALID

} state;

int pos;

int len;

Bool lastff;

Byte8 *iter;

Byte8 buf[254];

6

Byte8 sum;

};

int

PECCP50Decode(PECCP50 *p, int data)

{

if (data < 0 || data > 0xFF) {

/* Resynch on <error> */

p->state = PECCP50_SYNCH;

return -2;

}

switch (p->state) {

case PECCP50_VALID:

p->state = PECCP50_SYNCH;

/* fallthrough */

case PECCP50_SYNCH:

if (data == 0xFF)

p->state = PECCP50_LEN;

else

return -1;

break;

case PECCP50_LEN:

if (data > 0 && data < 0xFF) {

/* Valid length */

p->len = data;

p->lastff = FALSE;

p->state = PECCP50_LSUM;

} else if (data == 0xFF) {

/* FF FF - last FF might be a synch, continue in

LEN state */

return -1;

} else {

/* FF 00 - resynch */

p->state = PECCP50_SYNCH;

return -2;

}

break;

case PECCP50_LSUM:

case PECCP50_DATA:

case PECCP50_ESUM:

if (p->lastff) {

if (data > 0 && data < 0xFF) {

/* A synch (!) */

p->len = data;

p->state = PECCP50_LSUM;

return -1;

} else if (data == 0xFF) { /* FF FF -> FF */

p->lastff = FALSE;

} else {/* FF 00 - resynch */

p->state = PECCP50_SYNCH;

return -2;

}

} else if (data == 0xFF)

p->lastff = TRUE;

7

if (!p->lastff) {

switch (p->state) {

case PECCP50_LSUM:

if (((0xFF + p->len + data) & 0xFF) != 0) {

/* Checksum error -> resynch */

p->state = PECCP50_SYNCH;

return -3;

} else {

p->iter = &p->buf[0];

p->pos = 0;

p->sum = 0;

p->state = PECCP50_DATA;

}

break;

case PECCP50_DATA:

*p->iter++ = data;

p->sum += data;

if (++p->pos == p->len)

p->state = PECCP50_ESUM;

break;

case PECCP50_ESUM:

if (((p->sum + data) & 0xFF) == 0) {

/* Packet done ! */

p->state = PECCP50_VALID;

return p->len; /* ...and there were much rejoicing */

}

/* Checksum error -> resynch */

p->state = PECCP50_SYNCH;

return -4;

default:

p->state = PECCP50_SYNCH;

}

}

break;

default:

p->state = PECCP50_SYNCH;

}

return 0;

}

8

A Control of SMART-motor

The SMART-motor controller card uses the Peccros kernel for communication. This section
describes commands available for users of this card.

A.1 Ping

The ping packet can be used as a communcation check. It can also be used repeatedly to regain
synchronization.

A.2 Initialization

As the program is resident on the card, the initialization of the program is done automatically at
reset. Thus, no initialize packet is needed.

A.3 Start and stop

The start and stop packets are used for starting and stopping the controller. If two start packets
are sent in a row, or stop is sent without the controller being started, an error will be returned.

A.4 Setting speed reference and reading actual speed

Two virtual variables are used for controlling the controller. The speed reference has virtual
number 0. It can be set with the put virtual variable packet. This is an example that sets the
speed reference to 0x0105. Error fixed.

Reference is
sent in little
endian for-
mat.

Command (raw):

0xFF 0x08 0xF9 0x10 0x02
0x3F 0x02 0x00 0x00 0x05
0x01 0xA7

Acknowledge (raw):
0xFF 0x04 0xFD 0x10 0x00
0x02 0x3F 0xAF

This example uses the get virtual variable packet to read the speed reference (=0x1005): Updated

Command (raw):
0xFF 0x06 0xFB 0x10 0x03
0x55 0x02 0x00 0x00 0x96

Acknowledge (raw):

0xFF 0x06 0xFB 0x10 0x00
0x03 0x55 0x02 0x05 0x01
0x90

The actual speed measurement is a read only variable with virtual number 1. This example
uses the get virtual variable packet to read the speed (=0x00FF): Updated

Command (raw):
0xFF 0x06 0xFB 0x10 0x03
0x56 0x02 0x01 0x00 0x94

Acknowledge (raw):

0xFF 0x07 0xFA 0x10 0x00
0x03 0x56 0x02 0xFF 0xFF
0x00 0x96

9

	Introduction
	The low-level layer
	Standard RS232

	The protocoll layer
	The textsc {Pecc} protocoll, version 5.0
	The protocoll format
	Data byte encoding
	Checksumss
	Header
	Data

	The command layer
	Command packets
	Ping
	Start
	Start possible
	Stop
	Reset
	Run function
	Put variable
	Get variable
	Initialize
	Run virtual function
	Put virtual variable
	Get virtual variable

	Examples
	Example packages
	Example decoder

	Control of SMART-motor
	Ping
	Initialization
	Start and stop
	Setting speed reference and reading actual speed

