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Abstract

The presence of clustered micro-calcifications is an important indicator of early stage breast
cancers, and an efficient real-time ultrasound imaging support is needed for conducting needle
biopsies. SURF is a dual-frequency band ultrasound technique capable of imaging nonlinear
scattering using the superposition of a low-frequency pulse to manipulate the tissue charac-
teristics and an imaging pulse to extract the informations. This new technique has already
demonstrated its superiority in imaging high intensity nonlinear scatterers like ultrasound con-
trast agents compared to the classical methods. However, imaging lower intensity nonlinear
scatterers like micro-calcifications requires the use of higher manipulation pressures, causing the
apparition of complex distortions of the imaging pulse neglected hitherto. In order to achieve
a sufficient level of tissue suppression and detect the micro-calcifications using SURF imaging,
these nonlinear forward propagation effects must be characterized and corrected for.

In this thesis, simulations have been conducted based on the geometry of the first manufactured
prototypes of SURF probes, named Viglen and Okla.
The nonlinear propagation effects were described as the regroupment of a nonlinear propagation
delay due the average level of LF manipulation pressure experienced by the HF pulse, a mix of
compressions/expansions of the imaging pulse resulting from the fluctuations of the LF manipu-
lation pressure over the HF pulse, and a phenomenon of SURF aberration due to the difference
in the focusing and diffraction pattern of the HF and LF beams. The build-up of these nonlinear
propagation effects were shown to be fully characterized by the combination of the profiles of
the LF beam and the phase-relation between the two pulses.
The different beamforming strategies, with the superposition of a focused HF beam on a plane
or co-focused LF beam, were also discussed: a net trade-off appears between the minimization
of delays and SURF aberrations ensured by the co-focal configurations, and the minimization
of compressions/expansions effects by using plane LF beams. A strategy to limit the nonlinear
propagation effects would be the use of an especially designed transducer providing an excellent
HF focusing in the study range and a sufficiently large LF aperture.

A filter was then designed and tested to ensure a correction of the pulse-form distortions in the
received signals. The filter improved the level of suppression of the linear scattering from tissue
by 15 dB in the numerical simulations, allowing a theoretical detection of the micro-calcifications
and raising the resolution of the imaging system up to 1 dB close to the noise floor. The same
filter demonstrated a smaller suppression of only 7 dB with the experiments conducted on phan-
toms, 2 dB below the limit required for detecting the smallest micro-calcifications.
Further work studying the pulse-form correction filter should be conducted to understand this
difference in performances, along with a real-time implementation on the scanner, before achiev-
ing a correct detection of micro-calcification using SURF imaging.
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Chapter 1

Introduction

1.1 Background and motivation

In modern countries, mammography has become a common procedure for breast cancer screen-
ing followed by every women above age 40. Early detection of the development of tumors is
achievable by the research of micro-calcifications easily recognizable on x-ray pictures [1, 2],
and allows a simpler and safer treatment via needle biopsy. But this biopsy operation is still
needing for the assistance of an efficient, real-time, non-ionizing, flexible and cost-less imaging
technique.

Since their early introduction for medical diagnostic purposes in the 1940’s, it is precisely on
the above cited advantages that ultrasounds have built their reputation, nowadays being the
second most popular method for medical imaging. Ultrasounds, however, are also known to
produce noisy images, with poor resolution and many artifacts... not ideal when it comes to
detect micro-calcifications [3, 4].

But some recent improvements could reverse the deal. Nonlinear propagation of the ultrasound
pulses has been exploited in harmonic imaging for improving both the accuracy and the reso-
lution of the images [5]. The detection of ultrasonic contrast agents has motivated the study
of nonlinear scattering, bringing in the images what could not be seen before [6]. With these
discoveries, the complex theory of biomedical nonlinear acoustics had to be investigated formally
and revolutionized the old models used by the ultrasound scanner manufacturers for B-mode
imaging since the 1960’s.

Dual-frequency band techniques [7, 8] come as a step even further, allowing the imaging of
contrast agents to a higher frequency, by decoupling the ultrasound pulse into a low-frequency
manipulation pressure and a high-frequency imaging pressure. Second order UltRasound Field
(SURF) imaging is the concretization of such a dual-frequency method [9]. It has already
shown its superiority to classical methods when it comes to imaging contrast agents [10], and its
theoretical capabilities predict the possible detection and characterization of nonlinear scattering
in tissues, including the imaging of micro-calcifications.
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1.2 Purpose of this study

If the technological challenges of creating a dual-frequency band transducer have been accom-
plished [11], the possibilities offered by the SURF probes still have to be fully understood to be
used adequately. Imaging schemes based on the Pulse Inversion technique [12] have been estab-
lished, each of them exploiting a different possibility offered by the SURF method to improve
the image [10], reduce artifacts such as aberrations [13], estimate strains [14], detect nonlinear
scattering [15], or characterize the tissues [16]. But all these methods face a common problem.
In order to be optimal, they need to have some information about the eventual degradations of
the high-frequency imaging pulse [7].

The nonlinear propagation of a SURF pulse is the result of the complex interaction of two
ultrasound fields, where distortions of the high-frequency imaging pulse will happen in a non-
negligible way. It was first thought that the propagation of a SURF pulse could be summarized
in the creation of a delay due to the manipulation pressure dependance of the speed of sound
[17]. This model worked well for low levels of manipulation pressure, as the ones required for
the detection of contrast agents, and an estimation and correction algorithm for this delays was
designed and applied with success. However, for high levels of manipulation pressure such as the
ones required for detection of micro-calcifications, a distortion characterized as a complex mix
of compressions and expansions of the imaging pulse could not be neglected anymore [18].

The subject of this study is to characterize these complex distortions of the high-frequency
imaging pulses: how are they generated, what are their impact on the reconstructed image
when using the currently existing experimental SURF probes, and how can we minimize them?
A second and major goal of this thesis is to develop and test a filter capable of compensating
for this distortions, and allow a proper imaging of the nonlinear scattering from stiff particles
such as micro-calcifications.

1.3 Structure of this paper

This report is the direct continuation of my Master Project [18], and tries to propose some
solutions to the challenges raised in this previous paper. Even though this thesis has been built
to be read independently, several references are done on the work conducted previously and the
curious reader may be advised to briefly look at this production.

Chapter 2 introduces this paper on a theoretic level with a presentation of breast cancers and
micro-calcifications, followed by a formal treatment of nonlinear ultrasounds propagation. The
SURF technique and its abilities to image nonlinear scatterers are also presented.

Chapter 3 digs further into the mechanisms related to the SURF pulse complexes in order to
get a better understanding of the phenomenons investigated in this report, and presents the
theoretical aspects of the correction filters used in this study.

In Chapter 4, simulations of the nonlinear forward propagation of SURF pulse complexes were
conducted based on the geometry and characteristics of the existing dual frequency band trans-
ducers Viglen and Okla. Such simulations allow a better understanding the phenomenons
involved when using the SURF imaging techniques with high levels of manipulation pres-
sures.

The signal distortions characterized in these last simulations have been corrected for in Chapter 5

2



using a filter specially designed to this purpose. The correction process is shown to play a major
role in the imaging of micro-calcifications, while presenting some obvious limitations.

Due to the different problems they tackle, Chapters 4 and 5 may be considered as two papers
based on the same theoretical introduction, but containing each their own presentation of meth-
ods, their results, as well as a thorough discussion. A common conclusion to this thesis and
propositions for further work may be found in Chapters 6 and 7 respectively.

In the Appendixes, the attentive reader may found a presentation of additional results related
to Chapter 4, as well as a water-tank study of the Okla probe, and some of the Matlab scripts
created and used throughout this work.
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Chapter 2

Motivations

2.1 Breast cancer

In modern countries, medical statistics have estimated that one women on eight will contract a
breast cancer. Malign tumors are more likely to appear in breast tissues of women above age
40, and they represent 35% of the abnormalities detected in women breasts. Breast cancer is
currently responsible for more than 30% of death by cancer in women, which is about 1% of
all deaths worldwide. Men are also concerned by breast cancers since it represents 1.5% of all
cancer death in men [1, 19, 20].

Though no formal causes have yet been assigned to the development of malignant tumor in breast
tissues, numbers of treatments have been dedicated to cure breast cancer patients. Without
possible prevention, current cancer treatments rest on early detections for reducing the mortality
rate and the impact on the cured patients health. Early detection of breast cancer is especially
important because the treatment of an undeveloped and non-metastasized tumor will not require
massive surgical interventions.

(a) (b)

Figure 2.1: Anatomy of the human breast

Breast cancer is characterized by malignant cell growth in the glandular tissue. The most com-

4



mon types of malignant breast tumors originate from either the epithelial cells of the milk ducts
(ductal carcinoma, which represents 90% of all breast cancer) or lobules (lobular carcinoma)
[21]. See Figure (2.1).

In an early stage called in situ carcinomas, the cancerous cells lose their normal regulation of
differentiation and proliferation, but stay confined within the basement membrane of the duct or
lobule. Most of the breast tumors in this situation corresponds to benign tumors [21]. However,
approximately 35% of the malignant breast tumors will stay in this state of non-invasive cancers,
and take the form of clusters of abnormal cells increasing the tissue stiffness [22]. In most of the
malignant cases, though, the abnormal cells start to invade the surrounding breast tissue and
eventually metastasize to distant organs, forming an invasive cancer.

When the cancerous cells start to divide at an abnormal rate, the numerous divisions will
cause a residue in the form of specks of calcium, known as micro-calcifications [22]. These
micro-calcifications may be observed on a mammogram as tiny white spots, thin linear branch-
ing or shell-like (See Figure (2.2)). Both benign and malicious breast cancers produce micro-
calcifications, but in case of malignant tumors they are smaller, usually ≤ 0.5mm [23].

Clustered micro-calcifications is an important indicator of early stage breast cancers since it is
a common feature of tumors found in the breast. This makes detection of micro-calcifications
crucial for early breast cancer diagnosis, where lesions are still non-palpable by medical practi-
tioners.

Figure 2.2: Breast mammography presenting six microcalcifications in the mammary ducts (in
the areas circled in red).

Nowadays, mammography is the only standard tool used in breast cancer screening and is
able to detect up to 90% of the cancers even before the tumor shows some symptoms [21].
Although mammography is a highly sensitive technique, it can not differentiate between benign
and malignant breast micro-calcifications. Needle biopsy is therefore needed for extracting the
micro-calcifications and characterizing the cancers. In cases of an early detection, the same kind
of biopsy may be used to simply remove the cancerous clusters.
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X-Ray mammography is a technique which provides an excellent image resolution, but with the
drawbacks of being non-real-time, of being irradiating the breast tissues, and being uncomfort-
able for the patients. Needle biopsies currently lack for a safe, efficient, real-time imaging support
for visualizing the micro-calcifications during the operation. Therefore, the recent progress in
the field of ultrasound imaging, and especially in the study of the nonlinearities of the sound
wave propagation, let the searchers hope for developing a method for imaging the smallest
micro-calcifications in real-time.

2.2 Ultrasounds basic theory

Ultrasounds (US) waves is the name given to sound waves whith frequency over the humanly
ear-able frequency band. For medical purposes, ultrasounds have been used for the past half-
century for imaging the body and estimate organ and blood characteristics by using waves with
frequency usually in the range 1MHz-50MHz. Today, ultrasonic imaging has become a standard
medical procedure for patient diagnosis, and the recent developments in modern electronics offer
medical ultrasounds an ever growing field of applications (pre-natal imaging, cardiac imaging,
blood flow characterizations, ...).

The purpose of this report is not to describe the entire advancements in the field of ultrasound
imaging, and we will therefore restrict ourselves to a condensed modeling of the nonlinear prop-
agation and scattering of ultrasonic waves. The notations follow Angelsen [3]. A more thorough-
full background on the ultrasound imaging theory and the current technological methods used
clinically may be found in [3], [4] or [24].

Defining

ψ (r, t) , u (r, t) =
∂ψ (r, t)
∂r

, p (r, t) , (2.1)

where ψ (r, t) is the particle displacement vector from an equilibrium position r, u (r, t) the
particle velocity, and p (r, t) the acoustic pressure in a Lagrangian coordinate system.

The Newton acceleration law may be written for an ultrasonic plane wave:

ρ
∂u

∂t
= −∇p, (2.2)

where ρ is the mass density, and spatial and time coordinates are omitted for notational con-
venience. This equation is generally valid for beams with a smooth phase around the main
propagation direction [4].

Lets now establish the constitutive material equation for an isotropic material with nonlinear
elasticity. By doing a Taylor series expansion of the equation of state P = P (ρ, s) along an
isentrope s = s0, where P is the pressure, tissue nonlinearities can be taken into account.
Discarding terms of order higher than the second in the Taylor series expansion, the acoustic
pressure is

p = A
ρ1

ρ0
+
B

2
ρ2

1

ρ2
0

. (2.3)

Here, ρ0 is the density in the unstrained material while ρ1 = ρ − ρ0. The acoustic pressure is
defined as p = P −P0 where P0 is the ambient pressure, and the parameters A and B are defined
as

A = ρ0
∂P

∂ρ


0,s

, B = ρ2
0

∂2P

∂ρ2


0,s

(2.4)
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where the subscripts in the partial derivatives indicate that they are evaluated at the un-
strained state for an isentropic process. The following tissue elasticity equation may then be
derived:

p (r, t) = −A∇ · ψ (r, t) +Aβn
(
∇ · ψ (r, t)

)2 (2.5)

where βn is a nonlinearity parameter defined as

βn = 1 +
B

2A
(2.6)

Lets now introduce the linear bulk compressibility κ = 1/A, and notice that the relative com-
pression in an ultrasound wave is δV

∆V = −∇ψ (r, t), we may rewrite (2.5) as the constitutive
equation for the nonlinear tissue elasticity

− δV
∆V

= ∇ · ψ (r, t) = −K (p (r, t))− hp ⊗
t
κp (r, t) . (2.7)

whereK (p) is a nonlinear elastic compressibility function for isentropic (very rapid) compression
of the material and hp represents the absorption. This equation describes the relation between
the relative volume compression of a small volume of tissue with an applied acoustic pressure
p. The elasticity function is conveniently splitted into a linear component dominant for small
pressure amplitudes and a nonlinear component as

K (p) = κp−Kn (p) (2.8)

For fluid and soft tissue (which have elasticity close to water) we have seen that we could discard
terms of order higher than the second in the Taylor expansion. It leads to the expression for
K (p) and Kn (p) according to (2.5):

K (p) = (1− βnκp)κp (2.9)

Kn (p) = βnκ
2p2 (2.10)

Defining the momentum potential φ as

ρu (r, t) = −∇φ (r, t) (2.11)

yields from (2.2)

p (r, t) =
∂φ (r, t)
∂t

. (2.12)

Combining equations (2.7)-(2.12), the wave equation for a homogeneous nonlinear tissue becomes
the wave equation:

∇
(

1
ρ
∇φ (r, t)

)
−K ′ (p (r, t))

∂2φ (r, t)
∂t2

− hp ⊗
t
κ
∂2φ (r, t)
∂t2

= 0 (2.13)

This expression of the wave equation is quite unintelligible and in order to go further, we need
to characterize the tissue. We introduce spatial heterogeneity because soft tissues are composed
of different material types (fat, muscle, connective tissue, ...) which gives spatial variations of
the mass density and elasticity. We will model this heterogeneous material by separating the
material parameters into a slowly varying (scale ∼ λ) component (denoted with the subscript a
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for average) and a rapidly varying component (denoted with the subscript f for fluctuations),
i.e.

ρ (r) = ρa (r) + ρf (r) (2.14)
βn (r) = βna (r) + βnf (r) (2.15)

K (r; p) = Ka (r; p) +Kf (r; p) (2.16)
Ka (r; p) = κa (r) p−Kna (r; p) (2.17)
Kf (r; p) = κf (r) p−Knf (r; p) (2.18)

By introducing γ = ρf

ρ we see that

1
ρ

=
ρa
ρ · ρa

=
ρ− ρf
ρ · ρa

=
1
ρa
− γ

ρa
, (2.19)

and inserting this into (2.13) and approximating ∇ρa ≈ 0, we get

∇2φ (r, t)− 1
c2 (r; p)

∂2φ (r, t)
∂t2︸ ︷︷ ︸

Nonlinear propagation

− hp ⊗
t

1
c2

0

∂2φ (r, t)
∂t2︸ ︷︷ ︸

absorption

(2.20)

=
σl (r)
c2

0

∂2φ (r, t)
∂t2

+∇ (γ (r)∇φ (r, t))︸ ︷︷ ︸
Linear scattering source terms

− σn (p; r)
c2

0

∂2φ (r, t)
∂t2︸ ︷︷ ︸

Nonlinear scattering
source term

where c0 and c represent respectively the linear and nonlinear propagation velocities:

c0 (r) =
1√

ρa (r)κa (r)
(2.21)

c (r; p) =
1√

ρa (r)K ′a (r; p)
(2.22)

=
1√

ρaκa (1− 2βnκap)

≈ c0 (1 + βnκap)

and γ, σl and σn represent respectively the fluctuations in mass density, the linear and nonlinear
fluctuations in compressibility:

γ (r) =
ρf (r)
ρ (r)

σl (r) =
κf (r)
κa (r)

(2.23)

σn (r; p) =
K ′nf (r; p)
κa (r)

(2.24)

=
{

2βna (2 + σl)σl + βnf (1 + σl)
2
}
κap

≈ 4βnaσlκap

The terms on the left hand side of (2.20) represent the propagation of the wave, while rapid
spatial fluctuations of the coefficients of the right hand side are the sources for scattering. The
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(a)

(b)

Figure 2.3: Distortion of an ultrasound pulse due to nonlinear propagation measured by a
hydrophone in a water tank measurement: (a) change of shape of the ultrasound pulse as it
propagates through water, (b) corresponding normalized spectra at 0.2 cm (solid line) and 8 cm
(dashed line, with formation of higher harmonic) from the transducer. The transducer diameter
was 28 mm, the frequency was 2.5 MHz, the focus was 75 mm and the peak negative pressure
was 100 kPa. Figure is taken from [6].

wave velocity c (r; p) is pressure dependent, this implies that the high pressure in the oscillation
propagates with a higher velocity than the low pressure. This produces a nonlinear propagation
distortion of the wave oscillations which accumulate with propagation distance and introduce
higher harmonic frequency components in the propagation pulse. Figure 2.3 illustrates this
distortion phenomenon of a pulse.

The finite size of the transducer introduces phase variations between the fundamental frequency
and its harmonics, resulting in an asymmetry of the distorted wave (the peak compression
exceeds the magnitude of the peak rarefaction) [5].

From (2.20) we can split the scattering source terms into linear scattering −sl (terms in first
order of φ) and nonlinear scattering −sn (second order of φ),

−sl (r, t) =
σl (r)
c2

0

∂2φ (r, t)
∂t2

+∇ (γ (r)∇φ (r, t)) (2.25)

−sn (r, t) = −σn (p; r)
c2

0

∂2φ (r, t)
∂t2

. (2.26)

Linear scattering is the combination of a monopole scattering component due to the variations
in volume compressibility σl = κf/κa and a dipole scattering component due to the variations
in mass density γ = ρf/ρ. From (2.24), we may observe that the nonlinear scattering σn
is proportional to the linear scattering term σl with 4βnaκap = 4βnaκa ∂φ∂t as a proportional
constant.

The nonlinear heterogeneous wave propagation equation (2.20) is complex and must be solved
by numerical simulations, as we will see later when using ABERSIM. Typical values for the
different parameters presented above in soft tissue are given in Table 2.1.
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Table 2.1: Typical acoustic parameters values for soft tissues
c0 ρa ρf κa κf βna βnf σl
m/s kg/m3 kg/m3 10−12Pascal−1 10−12Pascal−1

1440 - 1560 1010 ± 60 450 ± 55 4.9 1.5 ± 0.12

2.3 SURF Imaging principles

Second-order UltRasound Field imaging , abbreviated SURF imaging, is a technique developed
at the Department of Circulation and Medical Imaging (ISB), NTNU. It is based on the trans-
mission of dual-frequency band pulses from the same acoustic source using a low-frequency (LF)
manipulation pulse and a high-frequency (HF) imaging pulse, typically having a frequency sep-
aration in the order of 1:8-10. The two pulses are wide-band, usually with a length less than 4
periods. The purpose of the LF pulse is to manipulate the scattering and propagation of the HF
imaging pulse, and is only transmitted and not received. The HF imaging pulse is then used to
image tissue or nonlinear scatterers under the influence of the manipulation pulse.

Dealing with a dual frequency ultrasound signal has been explored by some scientific teams dur-
ing the last decades without a net and clinically applicable success, mainly due to the complexity
of achieving the transmission of such a signal. However, dual-frequency techniques offers new
possibilities in reducing ultrasonic aberrations, improving image quality via synthetic beamform-
ing, characterizing tissues, or estimating the nonlinear scattering from sources such as contrast
agent (micro-bubbles) or micro-calcifications. In our study, we will restrict ourselves to the imag-
ing of nonlinear scatterers such as micro-calcifications with the SURF imaging technique.

Figure 2.4: Illustration of two different SURF-pulse complexes.

SURF imaging is based on the transmission of two overlapping wide-band pulses (see Figure 2.4).
In the upper panel, the imaging pulse is placed in a compression phase of the manipulation pulse,
while in the lower panel the imaging pulse is placed in a rarefaction phase of the manipulation
pulse. The combination of these two pulse schemes, where the HF pulse travels on the peak or
on the trough of the LF pulse is very important in SURF imaging and they will therefore be
called respectively positive and negative SURF-pulse complexes.

Imaging of nonlinear scatterers with SURF technique is done with a scheme inspired by the
Pulse Inversion technique done in ultrasound contrast agent imaging [12]:
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1. Transmit successively two successive pulse complexes where the high frequency imaging
pulse travels respectively on the peak and on the trough of the manipulation pulse.

2. Receive the scattered signal for each pulse complex as in classical B-mode imaging.

3. Apply a bandpass filter to keep only the high frequency signal components.

4. Subtract the two HF-filtered signals, this produces a signal which represents only the
nonlinear components of the scattered signals.

In order to understand this scheme, we must refer to (2.24) and (2.26) for expressing the nonlinear
scattering,

−sn (r, t) ≈ − 1
c2

0

[
4βna (r)σl (r)κa (r)

]
p (r, t)

∂2φ (r, t)
∂t2

. (2.27)

We remark that the nonlinear scattering sn is proportional to the second order product p · ∂
2φ
∂t2

.
For a better understanding of SURF imaging, we separate the pressure into two components,
p = pm + pi, where pm represents the low-frequency manipulation pulse pressure and pi the
high-frequency imaging pulse pressure. The momentum potential φ is directly linked to the
pressure via (2.11) and may also be separated in φ = φm + φi. The nonlinear scattering for a
SURF pulse complex is therefore proportional to the product

(pm + pi) ·
(
∂2φm
∂t2

+
∂2φi
∂t2

)
(2.28)

Due to the SURF frequency ratio of 1:8-10 and the HF bandpass filtering on receive, we may
neglect in our product the terms in ∂2φm

∂t2
= ∂pm

∂t compared to the terms in ∂2φi

∂t2
. Placing the

imaging pulse successively on the peak and on the trough of the manipulation pulse, i.e. inverting
the LF-pulse polarity, we will obtain two scattered signals proportional to the products

(pm + pi) ·
∂2φi
∂t2

and (−pm + pi) ·
∂2φi
∂t2

(2.29)

The scattering after subtraction of the two received signals will therefore be proportional to

2 · pm ·
∂2φi
∂t2

. (2.30)

The nonlinear scattering properties of the tissue are extracted by the imaging pulse (∂
2φi

∂t2
) with

the magnitude allowed by the manipulation pulse (pm).

2.4 Theoretical requirements for detection of micro-calcifications

Figure 2.5: Illustration of an incompressible micro-calcification in homogeneous soft tissue of
linear bulk compressibility κa.
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Micro-calcifications are incompressible clusters of calcium particles surrounded by compressible
tissue (see Figure 2.5). Our notation of of the linear bulk compressibility in the form κ (r) =
κa (r) + κf (r) will therefore be:

κ (r) = 0 ⇒ κf (r) = −κa (r) (2.31)

Using (2.31) and the usual values of the parameters for soft tissues listed in Table 2.1 we can
easily compute the scattering coefficients for a manipulation pulse of amplitude 1 MPa:

σl =
κf
κa

= −1 and σcalcifn ≈ 4βnaσlκap ≈ −8.82 · 10−3 (2.32)

The monopole and dipole sources of linear scattering of (2.25) can be merged in the study of
back-scattering according to [4, eq. (7.229) and (7.288)] in a single component:

υb (r) = σl (r)− γ (r) = (1− γσl
)σl (r) ≈ 1.3 · σl (r) (2.33)

For soft tissue, we know that σl ≈ 0.12 and therefore υtissueb ≈ 0.156. We can also compute the
average nonlinear scattering component for soft tissue, σtissuen ≈ 1.76 · 10−3.

Up to now, we have computed the intensity of the different scattering types (linear and quadratic)
for soft tissue and micro-calcification. In order to draw some conclusions from these values, a
comparison is needed. As human perception, the perception of a signal compared to an other
follows a logarithmic rule, and we will therefore compare the previous values as logarithmic
ratios of the received intensities:

nonlinear scattering of tissue
linear scattering of tissue

= 20 log
(
σtissuen

υtissueb

)
= −38.9 dB (2.34)

nonlinear scattering of micro-calcification
linear scattering of tissue

= 20 log
(
σcalcifn

υtissueb

)
= −24.9 dB (2.35)

(2.36)

The above ratios show that in order to extract all the nonlinear scattering components of the
received signal, we have to manage in suppressing the signal due to linear scattering of tissue
by at least 39 dB. For appropriate detection of micro-calcifications, however, the required linear
tissue suppression is reduced to 25 dB. If we manage to get this perfect suppression, the best
Contrast to Tissue Ratio (CTR) achievable will be 39 − 25 = 14 dB for micro-calcifications as
contrast agent.

Note also that in order to obtain a sufficient level of nonlinear scattering from the micro-
calcifications, a manipulation pressure of magnitude 1 MPa has been used. This level of low-
frequency amplitude is high compared to the 0.1MPa used for the detection of contrast agent,
and the consequences on the high-frequency pulse propagation are, as we shall see, not negligi-
ble.

These observations are quite drastic because the suppression of linear tissue in the SURF imaging
technique is based on the subtraction of the two HF bandpass-filtered signals as seen in the
previous section, and if the signals are not perfectly aligned (same pi in the left and the right
parts of (2.29)), the limit of 25 dB of suppression will never be reached. And unfortunately for
us, we will see in the next chapter that the nonlinear propagation of the SURF pulse complexes
makes it really hard to achieve a perfect alignment of the HF-filtered pulses.
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Chapter 3

Challenges of the current SURF
imaging method

3.1 Nonlinear propagation effects

In Chapter 2, we have seen that imaging nonlinearities using SURF is based on the subtraction of
two high-frequency bandpass filtered pulses of opposite manipulation polarity. In the absence of
nonlinear scatterers, these two HF-filtered received signals should be equal and perfectly aligned.
However, we will see that the nonlinear propagation of the imaging pulse on the peak or on
the trough of the manipulation pulse will induce delays, compression/expansion and focusing
aberration of the imaging pulse.

3.1.1 Nonlinear propagation delays

Using a dual-frequency band pulse, it is convenient to analyze the propagation velocity c(p) by
separating the pressure into two components, p = pm+pi, where pm represents the low-frequency
manipulation pulse pressure and pi the high-frequency imaging pulse pressure. Inserting this
components into the nonlinear propagation velocity (2.22), and discarding the spatial depen-
dency on r for readability, gives

c (pm, pi) ≈ c0 (1 + βnaκapm + βnaκapi) (3.1)

The two last terms in (3.1) generate nonlinear distortion of the manipulation and imaging pulses.
In addition to it’s own harmonic distortion, the imaging pulse will experience a local change in the
speed of sound proportional to the manipulation pulse pressure pm. By introducing the imaging
pulse intrinsic velocity as the velocity of an imaging pulse propagating without manipulation
pulse,

ci (pi) = c0 (1 + βnaκapi) , (3.2)

the nonlinear sound propagation velocity (3.1) may be reduced (by omitting second order terms)
to

ci (pm, pi) ≈ ci (pi) (1 + βnaκapm) . (3.3)

The pressure dependance of the propagation velocity has a direct impact on the propagation of
the SURF pulse complexes. An imaging pulse placed on a peak of the manipulation pulse will
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travel faster than the same imaging pulse placed on a trough of the manipulation pulse. The
two imaging pulses will thus be delayed from each other. See Figure 3.1.1.

Figure 3.1: Illustration of the nonlinear propagation delay τ (exaggerated here) between the
imaging pulse propagating on a peak and a trough of the manipulation pressure

This delay τ may be expressed mathematically, using the time/depth relationship of the HF-
imaging pulse

t(z) =
∫

Γ(z)

ds

ci (pm(s), pi(s))
= t0(z) + τ(z) (3.4)

where Γ(z) is the propagation path of the imaging pulse to and from a scatterer at depth z,
t0 is the propagation lag without LF manipulation, i.e., for conventional imaging, and τ is the
added nonlinear propagation delay due to the presence of an LF manipulation pressure pm.
For conventional back-scatter imaging, the unmodified propagation lag is given by the total
propagation length of 2z so that

t0(z) = 2
∫ z

0

ds

ci (pi(s))
(3.5)

For the added nonlinear propagation lag, however, the LF manipulation pressure drops so much
in the back-scattered direction that nonlinear propagation effects are negligible, and we thus only
get contribution as long as the HF-imaging pulse follows the high-amplitude forward-propagating
manipulation pulse:

τ(z) = −
∫ z

0

ds

ci (pi(s))
βna(s)κa(s)pm(s) (3.6)
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3.1.2 Compression / expansion of the imaging pulse

With a frequency ratio of 1:8-10 between the manipulation and imaging pulses, the low-frequency
pressure experienced by the high-frequency pulse will vary across the imaging pulse length. The
effect of the manipulation pulse on the imaging pulse will therefore not be uniform in all parts of
the pulse: this difference in the manipulation pressure pm will drive some parts of the imaging
pulse faster than others, and cause a relative compression/expansion of the pulse.

Figure 3.2: Illustration of the compression / expansion due to the propagation of the imaging
pulse on a varying manipulation pressure. The arrows represent the local increases in velocity
due to manipulation pressure. In this situation, the imaging pulse is located on a flank of the
manipulation pulse, and the positive gradient induced by the manipulation slope will here induce
an expansion of the pulse.

The compression / expansion effects occurring during the nonlinear propagation of a dual-
frequency band pulse has first been analyzed by H. Fukukita in [8], where it has been used for an
estimation of the nonlinearity parameter. In essence, the compression / expansion phenomenon
may be visualized as a displacement of the crossings (called nodes) of the filtered low-frequency
manipulation pressure by the the superposed high-frequency imaging pulse. This description is
illustrated in Figure 3.2, and allows a simple understanding of this complex phenomenon.

The imaging pulse is relatively short compared to the LF wavelength, we can therefore split the
manipulation pressure into two components, pm = pma + pmf . The average pressue pma will
contribute to an accumulated delay while the varying part will give compression expansion of
the pulse compared to a pulse propagating without any manipulation pressure. The delays and
compression/expansion can be denoted nonlinear propagation effects and are of special interest
for our study.

3.1.3 Aberration within the HF pulse

The term aberration is used in ultrasound imaging to describe the degradation of the beam
ideal focusing due to spatial variations in the ultrasound propagation velocity. This phase-front
aberration leads to a wrong focusing of the beam along with increased sidelobes, leading to the
reduction of both spatial and contrast resolution in the image.

Transmitting a composite band pulse, the difference between the focusing and diffraction pattern
from the LF and HF beams will introduce a similar phenomenon, called SURF aberration.
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(a) (b)

Figure 3.3: Illustration of the SURF aberration phenomenon. Abersim simulated positively
manipulated SURF pulses on an annular array transducer surface (depth z = 0), for a HF
beam focused at 20 mm and a (a) plane wave LF beam (b) a co-focused LF beam. White
parts correspond to positive pressures (compression) while darker parts correspond to negative
pressures (rarefaction). Figures are taken from [18].

In order to understand this phenomenon, consider the simulated SURF pulse in Figure 3.3(a),
where a setting using a focused high-frequency beam superposed on a plane low-frequency beam
is illustrated. The HF pulse is smaller and located on the middle of the LF pulse, mainly
on a compression phase. However, one can notice that along the azimuth direction, the high-
frequency pulse is not equally located on the LF peak: for azimuth x > 2mm, the HF pulse lies
on the LF pulse flank, and is even located on a trough of the LF pulse for x = ±5mm. This
difference in phase relation between the two pulses along the azimuth direction is due to the
different focusing pattern of the pulses. Such different experienced manipulation pressures by
the HF pulse along the azimuth direction will result in different nonlinear propagation delays:
the central part (in azimuth) of the HF pulse will travel faster than the sides of the pulse. The
difference in the focusing pattern of the two pulses introduce a difference in the propagation
speed inside the HF pulse, and thus result in an aberration phenomenon.

Consider now Figure 3.3(b), where a co-focused SURF pulse is presented. The HF pulse is now
located on the flank of the LF manipulation pulse, with a constant phase relation between the
two pulses along the azimuth direction: the two pulses have the same focusing pattern. However,
these pulses have a significant difference in center frequency, and thus a significant difference
in diffraction pattern. In order to put this remark on more formal terms, we can look at the
expression of the Fresnel parameter for an annular array given in [3, chap. 5].

S =
4f#

D/λ
, (3.7)

where f# = F/D is the f-number, D is the diameter (aperture) of the array, and λ is the ultra-
sound wavelength. The Fresnel parameter describes the diffraction and focusing characteristics
of an array. A low Fresnel parameter, practically in the order of 0.1 to 0.3, provides efficient
focusing of the array. In our example, the Fresnel parameters for the LF and HF arrays are
respectively {0.34, 0.15} (see [18, chap. 5.2]). Therefore, the HF beam is efficiently focused while
the LF beam has a poor focusing. The LF beam will thus result in an effective focus position
closer to the transducer than the geometric focus of the beam (depth z = 20mm). In this situ-
ation, the high-frequency pulse has a constant phase relation along the azimuth direction with
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the low-frequency pulse at the transducer surface (depth z = 0mm) ; but due to the difference
in the diffraction pattern of the two pulses, the perfect geometrical alignment of the pulses will
no longer exist for depths > 0mm, and the difference in phase-relation introduced across the
HF pulse will result once again in an aberration phenomenon.

These examples illustrated the formation of SURF aberrations when the LF and HF beams
present a difference in their focusing or diffraction patterns. The intensity of such aberrations will
be function of the manipulation pressure amplitude (introducing different propagation speeds)
as well as the difference in the type and quality of focusing between the two pulses.

3.1.4 Nonlinear propagation effects build-up and correction

We have described three nonlinear propagation effects in SURF pulses: propagation delays,
compressions/expansions and SURF aberrations. The magnitude of this effects have all been
shown to be dependent on the low-frequency manipulation pressure. As previously mentioned
for the propagation delays, the LF manipulation pressure drops so much in the back-scattered
direction that nonlinear propagation effects are negligible on the way back to the probe. The
study of nonlinear propagation effects can therefore be limited to the study of the forward
propagation of the SURF pulse.

In order to image nonlinearities in soft tissues, the ideal SURF imaging procedure has to be
adapted, otherwise it will mix up the nonlinear propagations effects and the nonlinear scattering,
producing an incorrect result. A compensation for the nonlinear propagation effects is introduced
before subtracting the signals from positive and negative pulse complexes in the SURF imaging
procedure presented in Chapter 2.3.

To illustrate this compensation mathematically, one may consider the following signal model for
a received echo from a HF pulse with no manipulation pressure:

s (t) = xl (t) + n (t) (3.8)

where n is uncorrelated noise. By applying a manipulation pressure and combining the nonlinear
wave equation (2.20) and (3.8), the received HF-filtered echo from a SURF complex can be
modeled as

sk(t) = hk (t)⊗ xl (t+ αkτn (t)) + αkhk (t)⊗ xn (t+ αkτn (t)) + nk (t) (3.9)

where αk is the polarity of the manipulation pressure for pulse k (α1 = 1 and α2 = −1 re-
spectively denoting the positively and negatively manipulated HF imaging pulses), τn is the
nonlinear propagation delay, hk is a filter which incorporates the compression/expansion of the
pulse and xl and xn is the linear and nonlinear scattered signal respectively.

If we want extract the nonlinear scattering as presented in the SURF imaging procedure, one
must compensate for the effects of both τn and hk before subtracting the signals s1 and s2. As
for a vast majority of cases in signal processing, this correction is more easily presented in the
Fourier domain. Taking the Fourier transform of the signals over an interval Ti around time
ti where the delay and pulse distortion are assumed to be approximately constant (∀t ∈ Ti,
τn (t) = τn,i and hk (t) = hk,i (t)), the signal in (3.9) becomes

Sk,i (ω) = Hk,i (ω)Xl,i (ω) ejαkωτn,i + αkHk,i (ω)Xn,i (ω) ejαkωτn,i +Nk,i (ω) (3.10)
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Applying the SURF imaging two pulse scheme, one may see that correction may be applied to
the received signals before subtraction, such as the linear scattering can be suppressed and the
nonlinear scattering detected:

X̂n,i (ω) =
1
2

[
Ĥ−1

1,i (ω)S1,i (ω) e−jα1ωτ̂n,i − Ĥ−1
2,i (ω)S2,i (ω) e−jα2ωτ̂n,i

]
(3.11)

In order to achieve such a correction, one must first estimate for each time/depth interval Ti the
nonlinear propagation delay τ̂n,i as well as the pulse-form distortion characteristics Ĥk,i (ω) for
k = 1, 2.

3.2 Phase relation: a key factor in understanding the nonlinear
propagation effects build-up

We already mentioned that the LF manipulation pressure contributed by it’s average pma value to
the formation of an accumulated delay, while the fluctuations pmf induced a complex distortion of
the imaging pulse shape as a mix of compressions and expansions. We shall call the fluctuations
pmf the gradient induced on the imaging pulse by the manipulation pulse. In order to fully
understand the build-up of the nonlinear propagation phenomenons, we need to be in measure of
estimating variations of the manipulation pressure along with the propagation depth z: pm(z) =
pma(z) + pmf (z).

SURF pulse complexes do not propagate from the transducer to the focus in their ideal shape
presented in Figure 2.4 (ideal in the sense that the imaging pulse is located perfectly on a peak
or trough of the manipulation pulse). In any focused system, the propagation will induce a
phase shift of the signal from the transducer to the signal. In the case of dual-frequency band
pulses, this will cause the imaging pulse to slide on the manipulation pulse, e.g. starting from
the flank to reach the peak or trough in focus.

In order to illustrate this phase-shift and the importance of following the alignment, i.e. the
phase relation, of the imaging and manipulation pulses, a good idea is to look at the linearized
and idealized expression of the pressure of a focused transducer. By dropping the nonlinear
terms and absorption in (2.20), the linear wave equation takes the form

∇2φ− 1
c2

0

∂2φ

∂t2
= 0 (3.12)

Working through Helmholtz-Kirchoff’s formula, the Rayleigh integral for a plane vibrating sur-
face in a rigid baffle can be written in the frequency domain as [3, chap. 4-5]

φ̂ (r, ω) = ĥ (r, ω) f̂ (ω) (3.13)

where

ĥ (r, ω) = ρUn

∫
A
dr2

0

e−ik|r−r0|

2π
∣∣r − r0

∣∣ (3.14)

Here, ĥ (r, ω) is the spatial frequency response, r the field coordinate, r0 a point on the vibrating
surface, f̂ (ω) the Fourier transform of the time excitation, k = ω/c the wave number, ρ the
homogeneous medium mass density, A the vibrating surface area, and Un the normal velocity
amplitude of the vibrating surface, assuming a constant velocity distribution (no apodization).
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At the focal point of the vibrating surface,
∣∣r − r0

∣∣ ≡ F the focal distance, and the saptial
impulse frequency response becomes

ĥ (F, ω) = ρUn
e−ikF

2πF

∫
A
dr2

0 = ρUn
e−ikF

2πF
A. (3.15)

Using the relation between the momentum potential and pressure (2.12)

p (r, t) =
∂φ (r, t)
∂t

←→ p̂ (r, ω) = iωφ̂ (r, ω) , (3.16)

gives the expression of the pressure in the focal point of the vibrating surface as

p (F, t) =
∂

∂t

{
f

(
t− F

c

)}
ρUnA

2πF
←→ p̂ (r, ω) = iωf̂ (ω) ρUn

e−ikF

2πF
A. (3.17)

Equation (3.17) shows that the time excitation at the focal point of a vibrating surface is the
derivative of the transmit excitation (or π/2 phase-shifted in the frequency domain).

This ideal linear situation presented above reflects the presence of a phase-shift in any focused
configuration. If we assume that the manipulation and imaging arrays are coaxial and have the
same focal point, (3.17) shows that in order to position the imaging pulse on a peak or a trough
of the manipulation pulse at the focal point of the array, the imaging pulse must be transmitted
on the flank of the manipulation pulse (in the idealized linear case, it should be in the position of
zero manipulation pressure). The imaging pulse will travel on a changing manipulation pressure
and experience the equivalent of a Tm/4 slide, where Tm is the period of the manipulation pulse,
from the array surface to the focal point. This initial placement of the imaging pulse on a flank
of the manipulation pressure is illustrated on Figure 3.4

(a) (b)

Figure 3.4: Illustration of the placement of the imaging pulse relative to the manipulation pulse
in an idealized situation, on the transducer (top) and in focus (bottom). The concept is presented
for an imaging pulse placed on (a) a positive gradient and (b) a negative gradient. The pressure
scale is not respected since the pulse pressures are normalized.

For the sequel, we shall call phase relation the distance between the maximum of the envelope
of the HF-imaging pulse and the nearest peak/trough of the LF-manipulation pulse. As we just
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showed, we should expect this phase relation to be in the range [0, Tm/4] between the transducer
surface and the focal distance F , for a situation where the LF array is focused.

The nonlinear propagation of a SURF pulse is quite complex. As we have already explored
in [18, chap. 5], the phase relation between the imaging and manipulation pulses depends on
the configuration setup used to transmit the pulse. In real cases, is not restricted to the ideal
[0, Tm/4] range, and may oscillate before reaching the goal presented in Figure 2.4. This will
cause the imaging pulse to slide back and forth relatively to the closest manipulation pressure
peak/trough, and will impose different experienced pressures and experienced gradients build-
ing up the complex distortion that we call usually call the delay and compression/expansion
phenomenons.

Along with the beam characteristics, the depth variation of the phase relation between the
HF and LF pulse contains all the information about the build-up of the nonlinear propagation
effects. However, the depth profile of the phase relation can only be established by simulation
or laboratory experiments such as water-tank recordings. If the phase relation is useful for us to
characterize the nonlinear propagation delays and the compression/expansion phenomenon, it
may not be estimated from conventional RF-data recorded by an ultrasound scanner. Since the
nonlinear propagation effects have a non negligible negative impact on the imaging resolution
of the system, they must be either minimized by looking for the best beam-configuration setup,
either estimated and corrected for using a "close to real-time" algorithm.

3.3 Estimation and correction of the propagation delays

We have seen that the nonlinear propagation of the manipulation pulse will induce a delay be-
tween the imaging pulses located in a compression phase (peak) and a rarefaction phase (trough)
of the manipulation pressure. We do only treat the high frequency band corresponding to scat-
tering created by the imaging pulse. Therefore, the two received signals in the SURF imaging
scheme will be delayed to each other with a delay varying with depth, i.e. with time.

In order to compensate for these nonlinear delays, a real-time algorithm has been established
([17] and [25]). The algorithm first estimates the nonlinear propagation delay at each time step
using a Weighted Least-Square (WLS) estimator described below and corrects the two signals
of this delay using a standard linear interpolation scheme.

We will now present the process used to estimate the nonlinear propagation delays.

3.3.1 Delayed received signals model

We represent our received signal as a complex band-limited 1D signal with real positive ampli-
tude, a, center frequency, ωc, modulating phase, ϕ, and time-varying subsample delay, τ(t),

s(t) = a(t) exp [i(ϕ(t) + ωct)] (3.18)

The instantaneous frequency θ(t) of the signal s(t) is defined as the time derivative of the
argument, i.e. θ(t) = d

dt [arg s(t)]. Thus, considering the definition (3.18) of our signal, we
have:

θ(t) =
d

dt
[ϕ(t) + ωct] = ϕ̇(t) + ωc (3.19)
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Without loss of generality, assume symmetric delay, and discretely sampled signals:

x(k) = s

(
k +

1
2
τ(k)

)
= a

(
k +

1
2
τ(k)

)
exp

[
i

(
ϕ

(
k +

1
2
τ(k)

)
+ ωck +

1
2
ωcτ(k)

)]
(3.20)

y(k) = s

(
k − 1

2
τ(k)

)
= a

(
k − 1

2
τ(k)

)
exp

[
i

(
ϕ

(
k − 1

2
τ(k)

)
+ ωck −

1
2
ωcτ(k)

)]
(3.21)

The signals x and y represent respectively the signals located on a trough and on a peak of the
manipulation pressure.

3.3.2 Estimation of the phase difference ψ

Cross-multiplication of the signals yields the phase difference:

ψ(k) = arg (x(k) · ȳ(k)) (3.22)

= ϕ

(
k +

1
2
τ(k)

)
− ϕ

(
k − 1

2
τ(k)

)
+ ωcτ(k) (3.23)

The definition of the derivative as

lim
∆x→0

f(x+ ∆x
2 )− f(x− ∆x

2 )
∆x

= f ′(x) (3.24)

yields the following result for a sufficiently small delay τ :

ψ(k) ≈ [ϕ̇(k) + ωc]︸ ︷︷ ︸
θ(k)

τ(k) (3.25)

The approximation of small delays is generally true with SURF imaging where delays are under
20 ns.

3.3.3 Estimation of the instantaneous frequency θ

Consider the general complex form of a signal s(t) = a(t) exp [iφ(t)]. Using the same definition of
the derivative as in (3.24), and considering a sufficiently short time sampling, we can approximate
the instantaneous frequency by:

φ(k + 1)− φ(k − 1) ≈ 2φ̇(k) = 2θ(k) (3.26)

Therefore,

θ(k) ≈ 1
2

[φ(k + 1)− φ(k − 1)] (3.27)

= arg [s(k + 1) · s̄(k − 1)] (3.28)

Using (3.27), we get:

θ

(
k +

1
2
τ(k)

)
≈ 1

2
arg [x(k + 1) · x̄(k − 1)] (3.29)

θ

(
k − 1

2
τ(k)

)
≈ 1

2
arg [y(k + 1) · ȳ(k − 1)] (3.30)
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Finally, we can approximate the instantaneous frequency by a local linear regression:

θ(k) ≈ 1
2

[
θ

(
k +

1
2
τ(k)

)
+ θ

(
k − 1

2
τ(k)

)]
(3.31)

≈ 1
4

[
arg [x(k + 1) · x̄(k − 1)] + arg [y(k + 1) · ȳ(k − 1)]

]
(3.32)

3.3.4 Weighted Least-Square estimator

Up to here, we have found that for a sufficiently small delay τ and for a sufficiently high sampling
frequency compared to the signal variations: phase difference ψ(t) and delay τ(t) are linearly
related through the instantaneous frequency θ(t):

ψ(k) ≈ θ(k)τ(k), (3.33)

where we can easily compute the the phase difference and the instantaneous frequency from the
received signals using:

ψ(k) ≈ arg [x(k)ȳ(k)], (3.34)

θ(k) ≈ 1
4

[
arg [x(k + 1)x̄(k − 1)] + arg [y(k + 1)ȳ(k − 1)]

]
. (3.35)

We only need to find the delay estimate τ̂ which minimizes

min
τ̂
‖ψ − θτ̂‖ (3.36)

Therefore, we can apply the system identification theory to (3.33) and easily compute a Weighted
Least-Square estimation of the delays τ(k).

The delay build-up is due to the nonlinear propagation of the manipulation pulse through soft
tissue, and may be expected to generate a smoothly varying delay along depth. We choose to
represent our delays with a locally linear model. For each sample k,

τ̂ (k + l) = ak + bk · l where l ∈ [0, 1] , (3.37)

we will minimize the WLS criterion

J ([ak, bk]) =
∑
l

|ψ(l)− θ(l) (ak + bkl)|2 c (k + l)w(l), (3.38)

where c is a weight function, and w is a window function (typically chosen around 1 mm length,
in order to have a delay varying slowly over the window size). In vector notation:

J (α) =
(
ψ − θ. [l1]α

)T
D
(
ψ − θ. [l1]α

)
(3.39)

= ψTDψ − 2αTΘTDψ + αTΘTDΘα (3.40)

where l = [−L, ..., L]T , 1 = [1, ..., 1]T , D = diag (c · w), α = [ab]T , Θ = [l.θ θ], and ’.’ is
element by element multiplication. J (α) is minimized when α̂ solves

ΘTDΘα̂ = ΘTDψ. (3.41)
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We have a two-by-two system for each k:

ΘTDΘ(k) =
[
S0(k) S1(k)
S1(k) S2(k)

]
, (3.42)

ΘTDψ =
[
T0(k)
T1(k)

]
, (3.43)

where

Sn(k) =
∑
l

c(k + l)θ(k + l)2w(l)ln (3.44)

Tn(k) =
∑
l

c(k + l)θ(k + l)ψ(k + l)w(l)ln (3.45)

Then

ak =
S0(k)T1(k)− S1(k)T0(k)
S0(k)S2(k)− S1(k)2

(3.46)

bk =
S2(k)T0(k)− S1(k)T1(k)
S0(k)S2(k)− S1(k)2

(3.47)

These two last computed estimates ak and bk represent from our model (3.37) accurate estimates
for the nonlinear propagation delays as:

τ̂(k) = ak
∂τ̂

∂k
(k) = bk (3.48)

Weighted least-square estimation is known for its computational efficiency using its recursive
form. Along with linear interpolation, it may therefore be implemented to run in real-time on a
ultrasound scanner. This algorithm has been adapted at ISB both for experimental probes and
on the modified Ultrasonix scanner [26] used for the experiments conducted in this project.

In [27], SURF imaging has been used in vivo in pigs to display contrast agents with contrast-to-
tissue ratios of micro-bubbles nonlinear scatterers ranging from 15-40 dB, with an up to 6 dB
increase due to the delay compensation algorithm. For applications like contrast agent imaging,
where the high intensity of the nonlinear scattering requires only a low manipulation pressure,
the level of suppression obtained with delay correction is sufficient. However, for applications
requiring the detection of low intensity nonlinear scatterers, where a high manipulation pressure
has to be used, e.g. detection of micro-calcifications, the level of tissue suppression achieved
with delay correction is not sufficient. It is therefore necessary to investigate and correct for the
other sources of distortion in the signal to improve tissue linear scattering suppression.

3.4 Estimation and correction of the pulse-form distortions

If the impact of the nonlinear propagation delays may be approximated as a simple accumula-
tive time-shift in the received signal, and corrected for, the effects of compressions/expansions
of the imaging pulse have a more complicated result on the received signal. During forward
propagation, the HF imaging pulse is manipulated with different gradients depending on the
evolution with depth of the phase relation between the HF and LF pulses.
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The result of this succession of compressions / expansions is a pulse-form distortion of the HF
imaging pulse. Such a distortion may be noticed in the scattered signal, and thus also in the
signal received by the scanner: e.g. if we consider the signals scattered from a homogeneous
phantom containing only linear scatterers for two successive SURF pulse complexes of inverse
manipulation pressure, the difference in the received delay-corrected HF-filtered signals corre-
sponds to the pulse-form distortion (as well as some eventual SURF aberration phenomenon in a
minor proportion). This distortion can also be noticed as a shift in the corresponding frequency
spectra.

In order to correct for this complex pulse-form distortion, one may try to design a filter which
will correct the changes in the pulse-form between the positively and negatively manipulated
HF scattered signals due to linear scattering, without suppressing the information about the
nonlinear scattering present in the signals. This approach as already been presented in equation
(3.11) with the estimation of an inverse filter Ĥ−1

k,i (ω) for the distortion in each of the two
received HF signals.

A best alternative to suppress linear scattering optimally will consist in the estimation of only one
filter transforming the delay-corrected negatively manipulated HF signal S2,i into the positively
manipulated signal S1,i, by minimizing the average mean square error:〈

|E (ω)|2
〉

Γ
=
〈∣∣∣S1,i (ω)− Ŝ1,i (ω)

∣∣∣2〉
Γ

(3.49)

where
Ŝ1,i (ω) = Gi (ω) (S2,i (ω) +N2,i (ω)) (3.50)

and N2,i (ω) is white noise. The filter which minimizes (3.49) is the Wiener filter given as:

Ĝi (ω) = Ki (ω)

〈
S1,i (ω)S∗2,i (ω)

〉
Γ〈

|S2,i (ω)|2
〉

Γ

(3.51)

where Ki (ω) is the Wiener gain

Ki (ω) =
1

1 + Ns

〈|S2,i(ω)|2〉
Γ

(3.52)

Ns is a noise parameter such as 〈|S2,i(ω)|2〉
Γ

Ns
is approximately the Signal-to-Noise Ratio (SNR).

We have already mentioned for the pulse-form estimation filter to be correct, the distortion
due to compression/expansion should be approximately equal on the time/depth interval Ti.
A good estimation of this filter may be obtained from equations (3.49)-(3.52) by selecting an
appropriate averaging domain. The average should be done on signal recordings where the
pulse-form distortion is approximately equal: one may therefore choose to do averaging on a Γ
as neighboring beams or successive frames.

An important remark is that using this single pulse-form correction filter, one do not estimate
anymore the exact nonlinear scattered signal X̂n,i (ω) as in (3.11), but rather a filtered version
of this signal corresponding to (1 +Ki (ω)) Ĥ1,i (ω) X̂n,i (ω).

Note that such a pulse-form correction filter has never been implemented before. It will then be
a challenge for this thesis to develop and test a correction filter.
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Chapter 4

Characterization of the propagation of
SURF pulse complexes from real
geometry transducers

4.1 Presentation of the simulations

4.1.1 Presentation of Abersim

Abersim [28] is an open-source toolkit for numerically simulating acoustic field propagation
developed at ISB. The software has an interface for MATLAB [29], which allows an easy access
to the processing of treated data, and graphic displays, as well as a pure C implementation for
computational speed purpose. Originally developed for the study of aberrations, the version
2.0 of the program allows complex simulations of 3D ultrasonic wave propagation in nonlinear,
heterogeneous and absorbing materials like soft tissue [30].

On a more physical point of view, Abersim is a program which solves numerically the wave
equation (2.20)

∇2φ (r, t)− 1
c2 (r; p)

∂2φ (r, t)
∂t2︸ ︷︷ ︸

Nonlinear propagation

− hp ⊗
t

1
c2

0

∂2φ (r, t)
∂t2︸ ︷︷ ︸

absorption

=
σl (r)
c2

0

∂2φ (r, t)
∂t2

+∇ (γ (r)∇φ (r, t))︸ ︷︷ ︸
Linear scattering source terms

− σn (p; r)
c2

0

∂2φ (r, t)
∂t2︸ ︷︷ ︸

Nonlinear scattering
source term

for a given wave field on the surface of the transducer. The wave equation has two solutions
propagating in opposite directions. Abersim will choose the solution only propagating into the
body, i.e. the positive z-direction, and solves it at a user-defined range of depth steps.

It has been shown in Chapter 3 that due to the low intensity of the scattered wave, nonlinear
propagation effects could be neglected on the way back to the transducer. Therefore, the forward
propagation simulations provided by Abersim will reflect the entire nonlinear propagation effects
of the SURF pulse complexes.
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Abersim is a very powerful tool when it comes to numerically simulating the propagation of
an ultrasound wave field. However, such computations are highly time consuming. In [18], the
study was of the SURF pulse propagation was restricted to flat annular arrays due to their
rotational axis of symmetry which reduced the simulation to a 1D problem. In this study, we
attached to reproduce the real probe geometries to be able simulate the full 3D propagation of
SURF pulses and to compare how those simulations differ from the idealized ones previously
conducted.

4.1.2 Presentation of the SURF probes

The SURF technology has been implemented at the ISB department on a modified Ultrasonix
SonixRP (Ultrasonix Medical Corp., Vancouver, Canada, [26]) scanner presented on Figure
4.1(a). The Ultrasonix Sonix RP scanner is a system designed for research and provides unfiltered
RF up to a 40 MHz framerate. The scanner was extended in order to drive the SURF dual-
frequency probes: a 128 channel LF pulser was built and attached to the scanner, along with a
new probe-connector board in order to support the extra number of channels.

The probes used, named Viglen and Okla, are respectively presented on Figures 4.1(c) - 4.1(d).
They are both based on dual-frequency linear arrays designed at ISB and manufactured by
Vermon (Tours, France, [31]). As depicted on Figure 4.1(b), the LF and HF piezoelectric
elements are organized in a stack, i.e. the LF elements are located behind the HF elements. The
aperture required for an adequate focusing of an ultrasound beam is in a general case wider for
the LF than for the HF. Therefore, the SURF probes possess either bigger LF elements in the
elevation direction (this is the case for Okla), either are divided in 3 elevation rows, where the
center row is constituted of both LF and HF element layers, while the outer rows only contain
LF elements. The outer LF rows are connected in parallel due to their symmetry (they transmit
with the same focusing delays). On the center row, each LF element covers 4 HF elements in
the azimuth direction except for the two outer ones. The probes exact dimensions may be found
in Table 4.1, and a more in depth description of the design of SURF probes is given in [11] and
[32].

Table 4.1: SURF probes characteristics
Viglen Okla

LF HF LF HF
# Elements Azimuth 192 52 192 52
# Elements Elevation 1 3 1 1
Elements Size Elevation 7 mm 7 mm 3.3 mm 9.9 mm

Pitch Azimuth 237 µm 948 µm 190 µm 720 µm
Radius of Curvature Azimuth ∞ 50 mm

Lens Size Elevation 3.5 mm 3.3 mm
Lens Focus Elevation 40 mm 20 mm

Viglen has been originally designed for transabdominal early fetal imaging, and its center fre-
quencies were set to 0.9 / 7 MHz for the LF and HF respectively, with an HF elevation focus
chosen at 40 mm. Okla is a curved linear array integrated into a prostatic probe, with frequency
bands physically centered on 1.25 / 10 MHz, and a closer HF elevation focus of 20 mm. Design-
ing a dual frequency band probe is not an easy task, and both probes have some manufacturing
drawbacks: a rather poor shielding as well as the creation of intermediate frequency in the probe
electronics have a destructive impact on the quality of the RF-data acquired by the scanner.
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(a) (b)

(c) (d)

Figure 4.1: (a) Modified Ultrasonix SonixRP scanner, (b) Description of the SURF dual-
frequency probes build-up (c) Picture of the Viglen dual-frequency linear probe, (d) Picture
of the Okla dual-frequency prostatic probe.
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However, such technical details are not the main purpose of this study, and we will concentrate
on the simulation of the ideal probes. None of these two probes were originally designed for
the study of breast tissues, where micro-calcifications must be detected mainly within the depth
range [0 25] mm, and therefore the resolution of the imaging system will not be optimal. How-
ever such an adequate probe, named Vora, is currently designed at ISB and will be manufactured
soon, promising better results in our case of study.

4.1.3 XdSim: a tool for the simulation of SURF pulses propagation on Aber-
sim

XdSim is a small MATLAB software newly designed by Thor A. Tangen for making full 3D
simulation of SURF pulses complexes propagation with Abersim easier. From the selection of
a pre-defined dual-frequency probe model and the configuration of the transmit parameters, it
generates the initial ultrasound field and the propagation parameters required to execute the
Abersim simulation.

XdSim was not designed to handle curved linear arrays. Therefore, I have modified the appli-
cation to take into account any azimuthal radius of curvature specified in the probe models.
As we mentioned above, Abersim only handle the propagation in the direction forward to the
probe elements plane. In the case of a curved linear array such as the Okla probe, where there
is no plane containing the array elements, the directivity of each individual elements could not
be respected. A solution to this problem was to find an equivalent aperture, called effective
aperture, perpendicular to the probe central axis, located at the point on the surface of the
probe the closest to the focus, with a width equal to the size of the real beam going through
this plane. This concept of effective aperture is illustrated on Figure 4.2.

(a)

(b)

Figure 4.2: Illustration of the concept of effective aperture for a linear curved array transducer.
(a) The effective aperture Aeff is located in the closest plane to the transducer surface being
perpendicular to the central axis of the transducer, covering the entire real beam width. (b)
Model used for finding an equation for Aeff dependent on the transducer parameters.
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The effective aperture size Aeff can be easily computed from the transducer parameters as

Aeff =
2 · Faz · r · sin (θ)

Faz + r · (1− cos (θ))
, with θ =

(2 · n+ 1) · pitchaz
2 · r

(4.1)

where Faz denotes the azimuthal focusing length, r the azimuthal radius of curvature, (2 · n+ 1)
the number of elements used for transmit, and pitchaz the pitch in azimuth of the transmitting
array.

4.2 Setup configurations used for the simulations

In [18], we explored the different SURF pulse configurations (with the possible combinations
of LF / HF pulses as plane / focused beams) that may be used on a conventional ultrasound
scanner. Two specific configurations appeared to be of a special interest when tested with an
idealized circular symmetric transducer:

• The HF beam is focused while the LF beam is set as plane wave beam, with the initial
phase-relation between the HF and LF pulses close to zero for having a perfect alignment of
the two pulses at the HF focal depth. This setup has the advantage of limiting the effect
of compression/expansion of the HF pulse while generating big nonlinear propagation
delays which are easier to correct for, with the drawback of producing important SURF
aberrations.

• both HF and beam LF beams are co-focused on the same focal point, with an initial phase-
relation between the HF and LF pulses of −Tm/4 such as the two pulses have a perfect
alignment in the selected focal depth. This setup limits the nonlinear propagation delays
as well as the SURF aberration phenomenon, with the drawback of generating important
compression/expansions of the HF pulse for which no real time correction algorithm has
been developed yet.

For both of this settings, the study in [18] has shown that using an LF aperture bigger than the
HF one (e.g. a LF relative aperture of 200% compared the the HF aperture) leaded to a better
focusing pattern of the LF beam, and limited the appearance of unexpected distortions of the
HF pulse during the forward propagation.

In this study, we want to characterize the full 3D propagation of SURF pulses from the real
probes Viglen and Okla, using these two main beamforming configurations.

The propagation has been simulated with diffraction in muscle at 37oC, which is a nonlinear,
attenuating (0.52 dB·MHz−1 ·mm−1), homogeneous medium. The speed of sound in this medium
is approximately 1490 m/s. The simulated data was saved for post-processing at every ∆z = 0.5
mm depth step with a sampling frequency fs = 160 MHz.

The propagation of the SURF pulses has been simulated with Abersim and pre-configured with
the transmit pulse configuration generator XdSim described above. The SURF pulse character-
istics were common for the simulations with Viglen and Okla in order to be able to compare
them, and are exposed in Table 4.2. The beamforming configurations selected are exposed in
Table 4.3. The configuration identification codes, e.g. (F-V) or (P-O), will be used in the sequel
to denote easily to the beamforming setups.

The given amplitudes of the LF and HF waves are amplitudes of the pulse on the surface of the
transducer, and were selected to represent pressures values that could be used for detection of
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Table 4.2: Simulated SURF pulses characteristics
Center freq. Bandwidth Number of Az. Aperture D Focal length F-number
fc [MHz] Br [%] periods Np [# elem.] [mm] F [mm] (F# = F

D )

V
ig

le
n LF 0.9 60 2.5 8 16.1 20 or ∞ 1.2 or ∞

HF 8 80 1.5 16 7.8 20 2.6

O
kl

a LF 0.9 60 2.5 12 15.8 20 or ∞ 1.3 or ∞
HF 10 80 1.5 20 7.6 20 2.6

Table 4.3: Description of the four beamforming configurations used for the Abersim simulations
Simulation Probe LF HF HF initial LF amplitude HF amplitude

position [ns] [kPa] [kPa]
(F-V) Viglen focused focused -188 0.39 0.49
(F-O) Okla focused focused -114 0.35 0.42
(P-V) Viglen plane focused -37 1.17 0.51
(P-O) Okla plane focused 0 0.95 0.41

micro-calcifications. Limits to the pressure amplitudes used in ultrasounds imaging are mainly
delimitated by the Mechanical Index (MI)

MI =
Pneg√
f
, (4.2)

where Pneg is the maximum negative pressure in MPa and f is the transmitted frequency in MHz.
The mechanical indexes is an indicator of the likelihood of undesired mechanical bioeffects that
could injure the patient (streaming and cavitation) and the MI values over 1.9 should not be used
in vivo [33]. A quick estimation shows that the MI imposes limits on the amplitude of the LF
manipulation wave since the maximum negative pressure should not be below -1.8 MPa.

• The amplitudes of the HF imaging pulse have been selected in order to reach an imaging
pressure pi of approximately 700 kPa at depth corresponding to the focus (20 mm).

• As seen in Chapter 2.4, the amplitude of the LF manipulation pulse should be as high
as possible. We have chosen to simulate a rather realistic case with pressure amplitude
arround 1 MPa at depth corresponding to the HF focus (20 mm).

The shape of the given pulses at depth z = 0 and in the focus (z = 20 mm) are presented for all
the configurations in the azimuth and elevation planes on Figures 4.3, 4.4, 4.5 and 4.6.

The post-processing of the simulated data was done using MATLAB. In the sequel, the LF
manipulation and HF imaging parts of the signals have been extracted using FIR bandpass
filters of 160 taps covering the respective frequency bands [0.1 2] MHz and [4 50] MHz.

4.3 Results

4.3.1 Results in focus

An example shape of a SURF pulse complex in focus is given in Figure 4.7 for the setup (C-V).
The power spectrum of the pulse confirms that even with the higher harmonics due to nonlinear
propagation, there is a clear separation between the imaging and manipulation pulses. This
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(a) (F-V)

(b) (F-V)

(c) (P-V)

(d) (P-V)

Figure 4.3: Simulated SURF pulses on
Viglen transducer surface (depth z = 0)
in the azimuth and elevation planes for the
different settings.

(a) (F-V)

(b) (F-V)

(c) (P-V)

(d) (P-V)

Figure 4.4: Simulated SURF pulses on
Viglen HF focus (depth z = 20mm) in the
azimuth and elevation planes for the differ-
ent settings.
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(a) (F-O)

(b) (F-O)

(c) (P-O)

(d) (P-O)

Figure 4.5: Simulated SURF pulses on Okla
transducer surface (depth z = 0) in the az-
imuth and elevation planes for the different
settings.

(a) (F-O)

(b) (F-O)

(c) (P-O)

(d) (P-O)

Figure 4.6: Simulated SURF pulses on Okla
HF focus (depth z = 20mm) in the azimuth
and elevation planes for the different set-
tings.
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separation is even clearer with the Okla probe where the frequency separation between the LF
and HF is 2 MHz bigger.

(a) (b)

Figure 4.7: Example of an unfiltered positively manipulated SURF pulse complex and its power
spectrum in the center of the transducer surface and in focus for simulation setup (C-V). The
spectra were normalized independently of each other.

The distortions of the imaging pulse may be observed by looking at the filtered HF pulse charac-
teristics, as presented on Figures 4.8 and 4.9 for the different configurations. We clearly observe
distortion of the pulse shape due to compression/expansion, while delays can hardly be seen by
the eye on this graph (a few nanoseconds). The compression/expansion effect is characterized by
net shifts in the spectra. The pulses propagating on a peak of the manipulation pressure has its
spectrum shifted up in frequencies with an increase in bandwidth, while the pulse propagating
on a trough has its spectrum shifted down with a decrease in bandwidth. Change in the shape
of the spectra are also due to SURF aberrations and attenuation of the higher frequencies. This
explains that the intensity of the HF pulses is lower when manipulated by a plane LF wave.

4.3.2 Result on the central axis of the transducer

The phase relation was defined in Chapter 3 as the distance between the HF and LF pulses. It
was computed by localizing at each depth the maximum of the imaging pulse and measuring
the distance to the closest manipulation peak/trough. The evolution with depth of the phase
relation was told to characterize all the distortions applied to the HF pulse. The profile of the
phase relation on the central axis of the transducer for the different setups is presented in Figure
4.10. After a depth > 27 mm, the focus is far beyond and the central axis of the transducer
is the location of edges waves driving apart from each other. The HF imaging pulse maximum
is therefore difficult to locate because the pulse literally splits in two parts, and so does the
manipulation pulse when focused. Therefore, the values of the profiles presented in this section
relying on the phase relation (e.g. the experienced pressure) are not accurate for depths > 27
mm.

The experienced pressure pe is the pressure induced by the manipulation pulse on the imaging
pulse, and is computed as the pressure pm of the filtered LF manipulation pulse at the position
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.8: Filtered HF imaging pulses in
focus (depth z = 20 mm) for the different
manipulations pressures, for each configu-
ration setup.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.9: Filtered HF imaging pulses
spectra in focus (depth z = 20 mm) for the
different manipulations pressures, for each
configuration setup.
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Figure 4.10: Profiles of the phase relation between the HF and LF pulse along the transducer
axis for the different configurations (upper panel: focused LF beams, lower panel: plane LF
beams). The left scale is expressed in nanoseconds while the right scale is in degree of the LF
pulse phase.

of the maximum of the envelope of the HF imaging pulse. The maximal experienced pressure
difference ∆LF is an approximative indicator of the compression / expansion. It is computed by
taking the maximal difference of the manipulation pressures between the indexes corresponding
to the -6dB extrema of the imaging pulse. The experienced pressures and the maximal experi-
enced pressure differences are presented along with the manipulation pressure in Figure 4.11 for
the different configurations on the central axis of the transducer.

The filtered HF imaging pressure profiles along the central axis for the different configurations are
given in Figure 4.12. They were computed by taking at each depth the maximum of the envelope
of the filtered HF pulse. With the plane LF configurations, we observe a large attenuation of
the HF pulses, while the focused LF configurations induce a much smaller attenuation of the
imaging pressure.

Delay between the pulses at a certain depth may be computed by simply maximizing the Nor-
malized Correlation (NC) between the two signals x and y:

R[m] =
∑N

k=0 (x[k]y[k −m])√∑N
k=0 |x[k]|2

∑N
k=0 |y[k −m]|2

. (4.3)

Normalized correlation has values ranging between 0 and 1, where 0 means no correlation and
1 is a perfect match. Finding the delay between the signals is equivalent to determining the
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.11: Profiles of the manipulated
pressures, experienced pressures, and max-
imal experienced pressure difference for the
different configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.12: Profiles of the filtered HF
imaging pressures for the different config-
urations.
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location where the NC function is maximal. Due to discretization, the true maximum will
be located within the interval of indexes ]mmax − 1 mmax + 1[ where mmax is the index
maximizing the NC function. A parabolic interpolation of the Normalized Correlation function
is often used to get a better accuracy of the maximum, and allows an easy expression for the
delay estimate:

τ̂ = mmax + Ts ·
R[mmax − 1]−R[mmax + 1]

2 (R[mmax − 1]− 2R[mmax] +R[mmax + 1])
(4.4)

where Ts is of course the sampling time period. Evolution of the delays between the two pulses
along the central axis may be computed using the normalized correlation maximization (4.4) for
all the depths, and Figure 4.13 presents the delays estimated between imaging pulses positively
and negatively manipulated, for the different configurations. As explained above, the focusing
of the imaging pulse is replaced after the focal zone on the transducer axis by the edge waves,
and the doubled shape of the pulse on axis at each depth is not favorable to the estimation of a
correct delay. Therefore, values for depths > 27 mm should be considered with precautions, and
may be erroneous (see the discontinuities in the delay curves estimates for the plane LF beam
configurations).

Figure 4.13: Profiles of the nonlinear propagation delay estimates along the transducer axis for
the different configurations.

The phenomenon of compression / expansion was characterized as creating a net shift in the
HF pulse spectrum. The buildup of such distortions may be observed by estimating the the
center frequency and bandwidth of the filtered HF pulse at each depth, as presented in Figures
4.14 and 4.15. The spectra appears to present non negligible variations even in the absence of
absorptions due to the propagation in water. The total difference in the center frequency is over
0.8 MHz between positively and negatively manipulated pulses.

4.3.3 Results in the azimuth and elevation planes of the transducer

The transducers used in this study have a rectangular geometry, presenting two planes of sym-
metry of special interest: the so called azimuth (for elevation coordinate y = 0) and elevation
(for azimuth coordinate x = 0) planes.

Presenting the profiles of the different indicators in the azimuth and elevation planes represent
an important number of graphs. In order not to be submerged by a new succession of figures,
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.14: Profiles of the center frequency
estimates of the HF imaging pulse along the
transducer axis for the different configura-
tions.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.15: Profiles of the bandwidth es-
timates of the HF imaging pulse along the
transducer axis for the different configura-
tions.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.16: Profiles of the LF manipula-
tion pressure in the azimuth plane for the
different configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.17: Profiles of the LF manipula-
tion pressure in the elevation plane for the
different configurations.
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(a) (F-V)

(b) (F-O)

Figure 4.18: Profiles of the HF imaging
pressure in the azimuth plane for the fo-
cused configurations.

(a) (F-V)

(b) (F-O)

Figure 4.19: Profiles of the HF imaging
pressure in the elevation plane for the fo-
cused configurations.

only some interesting figures will be presented and discussed here, while the attentive reader
may refer to the Appendix A for an extensive presentation of the propagation in the azimuth
and elevation plane.

The computation of the beam profiles in the azimuth and elevation planes allows the understand-
ing of the diffraction pattern induced by the transducer geometries and setup configurations.
Such beam profiles have been computed by considering the maximum of the filtered pulses en-
velopes at each position, and are presented in Figures 4.16, 4.17, 4.18 and 4.19, with further
reference to Appendix A for the profiles not displayed. At first sight, a difference in the diffrac-
tion patterns of the Viglen and Okla probes exists for the LF beams, while the HF beams mainly
differ only in the elevation plane where two foci are present for the Viglen probe. Moreover, the
true focal zones are located before the pre-configured focal depth of 20 mm.

The SURF aberration phenomenon appears when the change in sound speed of the HF imaging
pulse due to the LF manipulation pressure has an impact on the focusing delays of the HF pulse.
The focusing delays may be determined using the normalized correlation technique described
above, by looking at the delay difference between the HF pulse at a specific location and on the
transducer central axis at the same depth. In the presence of SURF aberrations, the focusing
of the HF pulse will be altered by the manipulation pressure. Hence, in the presence of SURF
aberrations there will be a non negligible difference in the focusing delays between the positively
and negatively manipulated HF pulses. This indicator has been estimated only within the -6dB
boundaries of the HF beam profiles, where the SURF pulse complex is present in a significant
manner, and is displayed in Figures 4.20 and 4.21 for the different configurations in the azimuth
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.20: Profiles of the focusing de-
lays difference between positively and neg-
atively manipulated HF pulses, used to
quantify SURF aberrations, in the azimuth
plane for the different configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.21: Profiles of the focusing de-
lays difference between positively and neg-
atively manipulated HF pulses, used to
quantify SURF aberrations, in the eleva-
tion plane for the different configurations.

41



and elevation planes. We may observe the presence of higher differences in the focusing delays
between the transducer surface and the focal depth in the azimuth plane for the simulations
with plane wave LF beams.

Profiles in the azimuth and elevation plane of the phase relation, of the experienced pressure, and
of the maximum difference in experienced pressure within the HF pulse have all been computed
within the -6dB boundaries of the HF beam, and are presented in Appendix A.

4.3.4 Performances in the imaging of nonlinear scatterers

The efficient detection of nonlinear scatterers is conditioned by the suppression of the differences
in the positively and negatively manipulated imaging pulses. This difference is created by the
nonlinear propagation effects and may be measured at each depth from the delay-corrected
HF-filtered signals by two indicators:

• The Relative Amplitude Difference (RAD) measures the difference in the amplitude of the
positively and negatively manipulated pulses, either by considering the ratio between the
maxima of the HF pulse envelopes across the pulse, either by computing the ratio of the
root mean square (RMS) values the envelopes of the pulses:

RADmax =
maxt

(∣∣∣p̃⊕HF (t)
∣∣∣)

maxt
(∣∣∣p̃	HF (t)

∣∣∣) , RADrms =
rmst

(∣∣∣p̃⊕HF (t)
∣∣∣)

rmst
(∣∣∣p̃	HF (t)

∣∣∣) (4.5)

• The Relative Tissue Suppression (RTS) measures the level of suppression one may expect
from the probe without correcting for the distortions of the imaging pulse. It is computed
as the ratio between the difference of the two pulses and the positively manipulated pulse,
and may be expressed as above with maximal and RMS values:

RTSmax =
maxt

(∣∣∣∣ ˜{
p⊕HF − p

	
HF

}
(t)
∣∣∣∣)

maxt
(∣∣∣p̃⊕HF (t)

∣∣∣) , RTSrms =
rmst

(∣∣∣∣ ˜{
p⊕HF − p

	
HF

}
(t)
∣∣∣∣)

rmst
(∣∣∣p̃⊕HF (t)

∣∣∣)
(4.6)

The RAD and RTS are respectively presented for the different configurations in Figures 4.22
and 4.23.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.22: Relative Amplitude Difference
(RAD) simulated profiles along the trans-
ducer central axis for the different configu-
rations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure 4.23: Relative Tissue Suppression
(RTS) simulated profiles along the trans-
ducer central axis for the different configu-
rations.
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4.4 Discussion

4.4.1 On the results in focus

The SURF pulse complex in focus

The nonlinear forward propagation of the SURF pulses possess some general characteristics
(exposed in Figure 4.7). The pulse complexes on the transducer surface start as the superposition
of an HF pulse located on a slope of the LF pulse, and evolve up to the HF focal depth where
the superposition consist in a perfect alignment of the HF imaging pulse on a peak/trough of
the LF manipulation pressure. During all the propagation, the power spectra of the HF and
LF pulses present a net frequency separation. This spectral separation is important: if the
nonlinear propagation of the manipulation pulse causes the formation of LF higher harmonics
that contribute to the frequency band of the HF imaging pulse with a noticeable intensity, then
they will be kept in the received HF-filtered spectrum as distortions, having a direct impact
on the imaging system. Moreover, we denote that quite dramatic changes have happened to
the HF imaging frequency pulse spectrum compared to the LF spectrum. This is due to both
the frequency dependent attenuation during the propagation in the muscle tissue, which has
a bigger impact on the imaging pulse, and the distortions due to SURF aberrations and the
compression/expansion experienced by the HF pulse during the nonlinear propagation.

HF imaging pulses in focus

As mentioned above, the impact on imaging of the SURF pulse complex forward propagation
are limited to the changes happening to the HF imaging frequency band. Therefore, the study
of the consequences in focus of nonlinear forward propagation may be restricted in our case to
the study of the imaging pulse shape and spectrum as presented in Figures 4.8 and 4.9.

• For all the configurations presented, the filtered HF pulse spectra present some similarities.
The positively manipulated pulses possess a spectrum with a higher center frequency than
the non-manipulated pulse, while the negatively manipulated pulses have a spectrum that
is down-shifted in frequencies. This means that the overall result of compressions/expan-
sions of the imaging pulses during the forward propagation results mainly in a compression
of the HF pulse for the case of a positive LF pulse and an expansion of the HF pulse for
a negative LF pulse.

• When considering the intensity of the pulses spectra, we notice that the positively manip-
ulated HF pulse present more distortions compared to a similar non manipulated pulse
than the negatively manipulated pulse. This means that the HF pulses traveling close
to a peak of the manipulated pressure present more distortions when arriving in the HF
focus. Such phenomenon is the result of the frequency dependent attenuation, and was
not observed when simulations were conducted in water, like in [18, p. 36].

• If we now consider the situations with plane a LF beam (P-V) and (P-O), we denote
that the frequency spectra of the manipulated pulses have an intensity of 1 dB lower in
average compared to the frequency spectra of the manipulated pulses in the corresponding
configurations (F-V) and (F-O) where the LF beam is focused. This lower intensity may
also be noticed in the imaging pulses shapes in Figures 4.8(c) and 4.8(d), where the non-
manipulated pulse is predominant. This phenomenon is due, as we shall see later, to the
fact that SURF aberrations are more intense in the configurations with a plane LF beam,
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and produce a de-focusing of the HF imaging beam, lowering the intensity of the observed
signal in focus.

• It is also of interest to notice that the simulated HF filtered imaging pulses present some
similarities intrinsic to the probes, whatever the LF manipulation beam is focused or not.
For the configurations with the Viglen probe (F-V) and (P-V), the positively manipulated
pulse spectrum intensity is always far beneath the one of the negatively manipulated pulse
(from 2 to 3 dB), while the intensity between the spectra for the positively and negatively
manipulated pulses in the configurations with the Okla probe (F-O) and (P-O) only differs
in less than 1 dB. One may also notice that for the Viglen simulations, the negatively
manipulated pulses spectra are always closer in intensity to the non-manipulated pulse
spectrum than to the positively manipulated pulse spectrum ; this phenomenon will be
explained later.

4.4.2 On the results on the transducer central axis

Phase relation between the HF and LF pulses

In Chapter 3, we noticed that the buildup of distortions of the HF imaging pulse due to nonlinear
forward propagation could be studied if we had the knowledge of the manipulation pressure field
as well as the phase relation between the HF and LF pulses at all depths. First studies ([34], [18])
have shown that this phase relation was independent of the manipulation pressure for annular
array probes. Further studies of this phase relation as done in Appendix B or in [35] have shown
that, for real probes, the phase relation between the HF and LF pulses was actually dependent of
the intensity of the LF pressure field. The configuration setups chosen here have been calibrated
such as the phase relation was approximately null at the focal depth (i.e. that the HF pulse
is located either on a peak, either on a trough of the LF pulse). The resulting phase relation
profile may be observed in Figure 4.10.

Let’s remind first that the values of the phase relation on the transducer axis for depth z > 27 mm
are erroneous, since after the focus the imaging pulse splits in two distinct parts corresponding to
the edge waves, and that many different references may be chosen to compute the corresponding
phase relation.

• For the focused LF beam situations (F-V) and (F-O), the phase relation starts respectively
around -188 ns and -114 ns, which is far away from the initial value of −Tm/4 = −278 ns
obtained in the case of an ideal annular transducer in Chapter 3.2. The HF imaging pulse
then oscillates for the first 10 mm on the flank of the manipulation pulse. From this depth,
the phase relations starts to be reduced in a similar manner for the configurations (F-V)
and (F-O), to reach a perfect alignment in the focus. We remark that the phase relation
is nearly independent of the sign of the manipulating pressure before the focal depth,
meaning that the positively and negatively manipulated HF pulses slide in a similar way
up to the focus, experiencing close to symmetric manipulation pressures (and pressure
gradients).

• For the plane LF beams situations (P-V) and (P-O), values of the phase relation from
the transducer surface to the HF focal depth are smaller than for the focused LF beam
configurations. Before the focal depth, the phase relation is also very similar whatever the
sign of the manipulation pressure is (even though the change in the scale of the lower panel
in Figure 4.10 tends to think the opposite). For these configurations, the HF imaging pulse
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travel close to the peak/trough of the manipulation pressure, and will therefore create more
nonlinear propagation delays and less compression/expansion than with a focused LF.

Experienced pressure and maximum difference in the experienced pressure

The experienced pressure pe and the maximum difference in the experienced pressure ∆LF
(presented in Figure 4.11) are two interesting concepts when it comes to understand how delays
and compression/expansions are created during the pulse forward propagation, since they are
directly computed from the combination of the two key factors describing the forward propaga-
tion distortions buildup: the LF manipulation pressure and the phase relation between the HF
and the LF.

The experienced pressure pe is actually directly related to the buildup of nonlinear propagation
delays, since it represents the average amount of manipulation pressure across the HF pulse,
while the maximum difference in the experienced pressure ∆LF indicates the level of variations
of the manipulation pressure across the HF pulse, and therefore indicate the intensity of the
compression/expansion buildup at each depth. Let’s remind that these curves are not accurate
for depths z > 27 mm, since they are computed with the help of the phase relation.

A general and useful observation is that the maximum experienced pressure is close to 90% of
the maximum manipulation pressure for all the configurations, and that the maximum in the
experienced pressure profile is located a few millimeters after the maximum of the manipulation
pressure profile (5 mm for the focused LF situations, 1 mm for the plane LF). This lag time
between the variations of the two curves is directly related on the phase relation intensity.
Moreover, we see that the experienced pressure curve will tend towards the manipulation pressure
curve just after the focal point.

• For the focused LF configurations (F-V) and (F-O), the experienced pressure is small
(inferior to 320 kPa) until depth 10 mm where it suddenly increases as the phase relation
between the LF and HF decreases, to reach a maximum experienced pressure just before
the focal depth (around 19 mm, which correspond to the true focus of the HF beam). The
nonlinear propagation delay observed in focus will be mainly generated in the zone from
depth 15 mm to 20 mm where sufficient levels of experienced pressure are reached. The
maximum difference in experienced pressure along the HF imaging pulse ∆LF presents
small values compared to the manipulation pressure level when the phase relation is close
to zero while presenting high values compared to the manipulation pressure when the
pulse is on the flank (highest gradient) of the LF pulse. With Viglen (F-V), the HF pulse
oscillates on the flank of the manipulation pulse (phase relation between −50◦ and −70◦

for depth < 10 mm), and the ∆LF will be intense from the transducer surface until the
focus, thus creating a high level of compression/expansion. With Okla (F-O), the HF pulse
stays close to the top/peak of the LF pulse (phase relation of −50◦) until the manipulation
pressure raises (for depth from 10 to 20 mm), and the effects of compression/expansion
will be minimized in this situation compared to (F-V).

• For the plane LF configurations (P-V) and (P-O), we observe an experienced pressure
really close to the level of the manipulation pressure, due to the fact that the imaging
pulses stay always close to the peak/trough of the LF pulse. This causes the formation
of nonlinear propagation delays to be maximized from the very beginning of the pulse
propagation. The maximum difference in experienced pressure along the HF imaging pulse
∆LF is here also dependent on the probe used: with Viglen (P-V) the phase relation is
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bigger (up to −30◦ at depth 5 mm), causing the ∆LF to be important in the area 5-10
mm, and generating important level of compression/expansions, while this phenomenon is
nearly not existent with the Okla probe (P-O), were we can considered that the creation
of compression/expansion is minimized.

Filtered HF imaging pressure

The distortions in the filtered imaging pulses shapes and spectra observed previously may be
better understood with the help of the profiles of the maximal imaging pressures along the
central axis of the transducer presented in Figure 4.12. The profiles are presented with the
non-manipulated HF pulse as a reference.

• Let’s first remark by comparing Figure 4.12 with 4.11 that distortions of the manipulated
HF imaging pulses profiles only appear in a non-negligible manner when either the ex-
perienced pressure, either the maximum difference in experienced pressure ∆LF is above
600kPa.

• For the focused LF configurations (F-V) and (F-O), we observe an attenuation of the neg-
atively manipulated pulse compared to the positively manipulated one. This is mainly due
to the nonlinear propagation of the pulse [5]: we have an introduction of phase variations
between the fundamental frequency and its harmonics, which results in an asymmetry of
the distorted wave (the peak compression exceeds the magnitude of the peak rarefaction).
Put in other words, the negatively manipulated HF pulses are slightly attenuated as a part
of the trough of the LF manipulation pulse.

• The profiles of the imaging pressure when the LF is a plane beam (P-V) and (P-O), present
more drastic attenuations of the manipulated pulses. This difference with the focused LF
beam setting is mainly due to the importances of the SURF aberrations in these situations:
the difference in the diffraction pattern between the plane LF beam and the focused HF
beam causes a phase relation which is not constant across the HF pulse, and the resulting
focusing is weakened. Note that this phenomenon is more important for the positively
manipulated HF pulses. It is therefore of interest when investigating the SURF aberration
phenomenon to consider the positively manipulated pulse, since it represent the maximal
variations that may happen due to such aberrations. Moreover, this remark may be used
smartly to reduce the level of SURF aberrations: one may imaging a SURF imaging method
where the negatively manipulated is subtracted not to a positively manipulated pulse but
to a non-manipulated HF pulse... it reduces the nonlinear scattering in the received signal
by a factor 2, but also reduces the effect of SURF aberrations by 2, allowing an easier use
of the plane LF configurations.

Nonlinear propagation delays

Nonlinear propagation delays between the positively and negatively manipulated imaging pulses
were already explained as resulting from the presence of a non negligible experienced pressure by
the HF pulse. We observed the presence of such high experienced pressures after depth z = 10
mm for the focused LF situation, and from the surface of the transducer for the plane LF cases.
The impact of this difference between the plane and focused LF configurations may be seen in
Figure 4.13: delays for the setups (P-V) and (P-O) are 3 times more important than delays for
(F-V) and (F-O) for depth z ≤ 10 mm, and 2 times more important for depth z > 10mm.
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When analyzing the build-up of the delay between the positively and negatively manipulated
imaging pulses with depth, one may easily qualify the curves shape of ’piecewise linear’ (term
first used in [36]). Such shapes include the presence of inflections points: the first one is located
at depth z = 14 mm and concerns both probes, while the second is located around depth z = 20
mm and only appears in the delay curves estimated from the Viglen simulations (F-V) and
(P-V).

As opposed to the simulations conducted with annular arrays in [18, chap. 5], the nonlinear delay
curves for the co-focused configurations (F-V) and (F-O) are no longer quasi-null (i.e. under 2
ns) until reaching depths close to the focal zone (for z < 15 mm). The special geometries of the
real rectangular probes do not allow the initial phase relation to be close to a quarter of the LF
period (Tm/4) in order to have a perfect alignment of the two pulses in focus (phase relation
equals to zero at depth z = 20 mm), as it was permitted for an ideal annular array (as presented
in Chapter 3.2). This will cause the HF pulse to propagate without starting in the middle of the
LF pulse flank, and such a propagation with a non negligible experienced pressure will lead to
the creation of propagation delays from the surface of the transducer (depth z = 0 mm).

Center frequency and bandwidth of the imaging pulse

Changes in the center frequency and bandwidth of the imaging pulse may have three main
causes: the frequency dependent attenuation, the compression/expansion of the pulse, and the
superposition in the signal of two pulses or more with a slight delay in time or in frequency.
The profiles of the center frequency observed in Figures 4.14 and 4.15 do illustrate all these
effects:

• In a general case, the non-manipulated as well as the manipulated pulses are affected by
the accumulation of HF pulses on the transducer axis due to focusing. Such accumulation
of signals with small delays in time or frequency causes the spectrum to oscillate in the
frequency domain, and this oscillations are recognizable on all the three curves (for the
non-, positively- and negatively-manipulated HF pulses). All the curves are also touched
by the frequency dependent attenuation, which causes the center frequency of the pulses
to decrease with increasing depth.

• For the focused LF configurations (F-V) and (F-O), the shifts in center frequency and
bandwidth correspond to the compression/expansions occurring in the HF pulse from
depth z = 0 mm. Positively manipulated pulses are compressed while negatively manipu-
lated pulses are expanded.

• For the plane LF configurations (P-V) and (P-O), a small amount of compression/ex-
pansion exists, while the SURF aberration phenomenon creates even bigger shifts in the
frequency spectra, causing bigger variations in the center frequency and bandwidth esti-
mates.

A general remark is that the shifts in center frequency and bandwidth are more important for
the Viglen probe than for the Okla probe. This is due to the better LF focusing capabilities on
the Okla probe, as the later analysis will confirm.

48



4.4.3 On the results in the azimuth and elevation planes of the transducer

Many results have been presented both in this Chapter and in Appendix A in the azimuth and
elevation planes of the transducers. Most of the propagation phenomenons have already been
observed and analyzed in details when discussing about the profiles on the central axis of the
transducer. It is therefore important to remember that all the results presented in the azimuth
and elevation planes were introduced in order to differentiate the effects hidden from us when we
only looked at the central axis profiles, if they exist. In the sequel, we will thus only comment
the phenomenons that have not been explained and discussed in the previous sections.

Pressure profiles

The imaging and manipulation pressure profiles produced by Viglen and Okla in the azimuth
and elevation planes are useful in understanding the exact impact of the probe geometries and
specifications on the resulting SURF pulse propagation.

• When transmitting a focused LF beam, as detailed for configurations (F-V) and (F-O)
in Figures 4.16 and 4.17, the manipulation pressure profiles look very similar for the two
probes. In the azimuth, both probes possess approximately the same aperture and the
same F-number, providing a quite similar focusing. A deeper study shows that he Fresnel
parameter of the LF beam, computed in the azimuth from equation (3.7), is respectively
{0.51, 0.53} for the configurations (F-V) and (F-O). This means that the focusing provided
in azimuth by the Viglen probe is slightly better, even though it is a generally "bad"
focusing. We can notice that in practice by observing that both focusing zone are located
around depth z = 16 mm, (and not at depth 20 mm where it should be focused) but that
the focal zone is less elongated for the Viglen probe (it finishes at depth 19 mm, compared
to 25 mm for the Okla probe). But this difference is only due to the number of elements
chosen in azimuth to transmit the beam, and the effect may be inverted by transmitting
the LF beam with one more element with Okla. In the elevation plane, however, we may
notice a bigger difference. First, the elevation aperture is clearly bigger in the Okla probe:
this is due to the fact that the Okla probe has LF elements covered by 3 rows of HF
elements, where the central row is itself covered by a physical lens of elevation focus at
depth 20 mm, while the Viglen probe is only used with one elevation row for both LF
and HF elements, entirely covered by a physical lens of elevation focus at depth 40 mm.
This causes the manipulation pressure profile to look less focused for the Okla probe, since
the LF elements are radiating as plane wave on the elevation extremities, while radiating
a focused beam on the central elevation row. The Fresnel parameter for the focused LF
parts of the transducer in the elevation plane is respectively {21.6, 12.16} for the Viglen
and Okla probes, and the focusing effect of these transducers in elevation is therefore very
poor. We actually notice wide (and poor) focal zones around depth 15 mm, far away from
the focal depth of the elevation lenses.

• For the situations with a plane LF beam (P-V) and (P-O), the manipulation pressure
present similar characteristics. In azimuth both the probes furnish a plane LF beam with
some regular characteristics. In elevation, however, the Okla probe is still the superposition
of a focused (at 20 mm) and a two plane beams, while the Viglen probe only consists of
a focused (at 40 mm) beam. The observed elevation profiles are really similar to the ones
observed for the focused LF, except that the pressure level is in average 400 kPa higher
with Viglen.
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• The study of the azimuth and elevation profiles for the focused HF beams is probably more
instructive. First, we may notice that the profiles are approximately similar whatever the
type (plane/focusd) of LF beam used, and therefore only the configurations (F-V) and (F-
O) have been presented in Figures 4.18 and 4.19 to distinguish between the HF pressure
field created with the Viglen and the Okla probes. The Fresnel parameter for the Viglen
and Okla probes are respectively {0.25, 0.21} in azimuth and {2.43, 1.37} in elevation.
This means that we may expect a good and sharp focusing in the azimuth plane, while
having a poor focusing situation in the elevation planes. The focusing capabilities of Okla
probe is exactly described by the precedent conclusion. However, the superposition for
the Viglen probe of a HF beam electronically focused at depth 20 mm in azimuth and
physically focused by a lens at depth 40 mm in elevation is responsible for the formation
of two foci in the elevation profile at depth 18 mm. This strange situation of a HF imaging
beam focused on two different locations at the same time has a dramatic impact on the
spatial resolution of the system, and will be responsible as well to the creation of many
distortions such as SURF aberrations for both focused and plane LF beams with the Viglen
probe.

SURF aberrations

By definition, in the presence of SURF aberrations, the focusing of the HF imaging pulse will
be altered by the LF manipulation pressure. Hence, the presence of SURF aberrations can be
quantified by studying the presence of high differences in the HF focusing delays between the
positively and negatively manipulated HF pules, as presented in Figures 4.20 and 4.21. This
difference in focusing delays, expressed in nanoseconds, has to be compared of course with the
HF pulse period: 125 ns for the Viglen probe, and 100ns for Okla probe. Hence, if such a
difference is contained within 2 ns, the focusing process will be negligibly affected by SURF
aberrations, while if the difference is above higher levels such as 5 or 10 ns, the delay between
the HF pulses will be big enough to play a significant part in focusing and create a SURF
aberration phenomenon.

The build-up of the SURF aberrations takes place in the depth range from the surface of the
transducers to the location of the foci (i.e. from depth z = 0 mm to 19− 20 mm), called in the
sequel the area of interest.

• In azimuth, for the configurations with focused LF beams (F-V) and (F-O), the difference
in focusing delays is bounded between -1.5 ns and 1.5 ns in the area of interest. There will
be a negligible level of SURF aberrations created in azimuth for (F-V) and (F-O). This
means that the difference in the azimuthal focusing patterns of the HF and LF beams are
not big enough to generate SURF aberrations.

• In azimuth, for the configurations with plane LF beams (P-V) and (P-O), high level of
difference in the focusing delays (8 ns to 17 ns) are observed on the sides of the HF
beam from depth 10 mm to 15 mm. Such delays are not negligible and will lead to the
creation of important SURF aberrations in azimuth for (P-V) and (P-O). This situation
was expected since the focusing pattern of a plane LF associated with a focused HF possess
big differences, and results in attenuated HF imaging pulses in the focal area, as observed
previously on the central axis of the transducers.

• In elevation, for the configurations with the Okla probe (F-O) and (P-O), the difference
in focusing delays are negligible in the area of interest. There will be a negligible level of
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SURF aberrations created in elevation for (F-O) and (P-O). The physical lens focusing
both LF and HF beams with Okla is the similar for both beams, and the resulting difference
in the focusing patterns is small enough not to generate SURF aberrations.

• In elevation, for the configurations with the Viglen probe (F-V) and (P-V), the presence
of two foci at depth 18 mm not aligned with the central axis of the transducer is generated
without the framework of the standard focussing process. The difference in focusing delays
when approaching these two focal zones coming from the surface of the transducer rapidly
reaches high levels (−10 ns), generating a high level of SURF aberrations in elevation for
(F-V) and (P-V). This creation of SURF aberrations in the elevation plane with Viglen
explains a lot of the disturbances that we observed on the central axis for the HF imaging
plot: disturbances in the center frequencies and bandwidth of the filtered HF pulses, bigger
attenuation of the HF pules close to the focus, ...

The study of the difference in focusing delays has shown that the generation of SURF aberration
has to be investigated both in the azimuth and elevation directions. Such aberrations impacting
in a non negligible manner on the resulting profiles on the central axis of the transducer, their
importance has to be characterized for every beamforming configuration used.

4.4.4 On the performances in the imaging of nonlinear scatterers

Relative Amplitude Difference (RAD)

The Relative Amplitude Difference (RAD) between the positively and negatively manipulated
pulses presented in Figure 4.22 is an indicator which may be compared to the experiments con-
ducted with a real scanner, by comparing the RAD of the two successively received signals.

The RAD has been here computed after nonlinear propagation delays correction, on the central
axis. This indicator therefore reflect the other distortions created by the nonlinear propagation
of the SURF pulse.

• SURF aberrations play in important role in the importance of the RAD. In the previous
section, we highlighted the fact that for the plane LF beam configurations (P-V) and (P-
O), the SURF aberration build-up could already be distinguished at depth z = 10 mm,
while this phenomenon only appeared close to the focus (near depth 14 mm) for the (F-
V) situation. The SURF aberration result in big shifts in the RAD curves (for both the
RMS- and maximum-based estimates), that can be clearly seen on the curves at the depths
indicated just above.

• Compression/expansion of the pulse will result in a change of shape of the HF pulse enve-
lope, but not in a dramatic change in the total pulse intensity (its RMS intensity). There-
fore, the compression/expansion appears in in Figure 4.22 as a separation of the "max"
curve from the "RMS" curve. One may notice that the effect of compression/expansion
of the HF pulse are distinguished on the RAD curves from the focused LF configurations
from the surface of the transducer (depth z = 0 mm) while it really appears for the plane
LF configurations only after depth 15 mm (where the maximum in experienced pressure
gradient has been reached).

From all the simulations, it appears that the configuration (F-O) is the one providing less
amplitude difference due to a restricted amount of compression/expansion balanced with the
absence of SURF aberrations.
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Relative Tissue Suppression (RTS)

The Relative Tissue Suppression (RTS) presented in Figure 4.23 is an indicator that easily
quantify the amount of suppression of linear scattering the SURF imaging process is capable to
ensure. It can also be computed easily on real experiments based on the received signals from
the scanner in the absence of nonlinear scatterers.

The levels of RTS, established here on the central axis of the transducers, quantify the ratio
of the linear scattering that can be suppressed to the total scattering. Such levels are directly
comparable to the results from Chapter 2.4, where we saw that a -24.9 dB level of RTS had
to be reached in order to conduct a valid imaging of the nonlinear scatterers such as micro-
calcifications.

A quick look at the curves presented in Figure 4.23 demonstrates that, even in the configuration
(F-O) where the pulse distortions are minimized until the focus (i.e. the RAD is small until
depth 20 mm), such levels of RTS can not be reached in the focus by a simple estimation and
correction of the nonlinear propagation delays. A pulse-form correction filter will therefore be
presented and tested in the next Chapter.
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Chapter 5

Pulse form correction for efficient tissue
suppression

5.1 Need for correcting the pulse-form distortions

The simulations of the propagation of SURF pulse complexes from Chapter 4 have shown that
the nonlinear propagation effects have two main effects on the imaging system:

• the spatial resolution of the imaging system is limited (a phenomenon generated by the
diffraction pattern of the LF manipulating beam as well as the SURF aberrations)

• the HF-filtered back-scattered signals from SURF pulses with different manipulation pres-
sure polarities present a difference even in the absence of tissue nonlinearities, due to the
existence of nonlinear propagation delays and the distortion of the pulse-form resulting
from compression/expansion.

In order to efficiently image nonlinear scatterers such as micro-calcifications, one must there-
fore choose a setup configuration where the spatial resolution is as less limited as possible by
the SURF propagation effects, and one must estimate and correct for delays and pulse-form
distortions.

Delay correction has already been tested and implemented in real-time, and has improved the
suppression of linear scattering with about 6 dB in vivo [27]. The experiments and simula-
tions presented in this chapter have been designed for testing the efficiency of a new procedure
correcting for the pulse-form distortions in the received signals.

5.2 Methods

In order to test the pulse-form correction filter, different data sets have been gathered, both
from experimentation and simulation. They correspond to the signal received from differently
manipulated SURF pulses propagating in an homogeneous tissue composed only of linear scat-
terers. The configuration setup with both LF and HF pulses co-focused on a same focal point has
shown to be affected mainly be delays and compression/expansion, while it minimizes the SURF
aberration phenomenon. Therefore, this configuration has been chosen to test our pulse-form
correction filter in this chapter.
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Simulations have shown that for detecting tissue nonlinearities for depth typically used in breast
scanning (up to 25 mm), the Okla probe presented a better spatial resolution and a higher
frequency separation than Viglen. Even though this inherent characteristics make the Okla
probe more capable of imaging micro-calcifications, this probe is experimental and presented a
non negligible amount of noise in the recorded signal due to a poor shielding of the electronic
parts of the probe, making the acquisition of data impossible at depth > 15 mm. In the sequel,
we shall therefore only test the pulse-form correction filter on data acquired with the Viglen
probe.

5.2.1 Phantom measurements

All the laboratory experiments completed in this chapter have been done using the modified
Ultrasonix SonixRP scanner presented in Chapted 4.1.2. For the phantom measurements, a
CIRS model 049 (CIRS, Virginia, USA, [37]) elastography phantom was used. There are no
wires or other resolution scatterers in the phantom, while the inclusions are located deeper than
30 mm, so the part of the phantom which is imaged is homogeneous with only ambient scattering.
The probe is fixed to a Physik Instruments (Karlsruhe, Germany) multistage robot.

For each setup, 100 images spaced 1.5 mm apart in elevation direction are recorded. For each
image, 50 frames are recorded and averaged to increase the SNR. Measurements consist of the
recording of three data sets of received RF-signal:

1. the positively manipulated SURF pulse echoes

2. the negatively manipulated SURF pulse echoes

3. echoes from classical B-mode imaging (SURF with no LF manipulation present) to serve
as a reference.

Only the 10 beams corresponding to the central part of the image were kept for processing, where
no side effects can be denoted. The received data corresponding to the first 4 mm has been left
because there are some near-field issues when receiving with the prototype probes.

5.2.2 Simulations of scattering from tissue

Data sets equivalent to the one acquired experimentally with Viglen have been simulated at
ISB by Thor Andreas Tangen. The nonlinear 3D forward propagation of the SURF pulses have
been simulated with the help of Abersim as described in Chapter 4.1. Scattering has been
introduced to this data via a convolution of the propagated beam field with randomly located
linear scattering source terms. Finally, the back-scattered signals are transformed into an RF-
signal, and thus an image’s beam, by numerically simulating the dynamic focusing of the probe.
For each setup, the final data set consists of 1 frame of 384 independent beams, to which gaussian
white noise is added with a SNR of 20 dB.

5.2.3 Processing before pulse-form correction

The processing was done on the received signal using MATLAB.

The received RF data was:

1. Filtered with a 60 taps bandpass filter with cutoff frequencies at 3 and 8 MHz.
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2. IQ data is extracted using a 5.5 MHz demodulation and a 50 tap lowpass filter with 4
MHz bandwidth.

3. The IQ data is decimated by 4 (down to a sampling frequency of 10 MHz). This process
was allowed by complex demodulation.

4. The delays between the positively and negatively manipulated pulses is estimated using
the algorithm described in Chapter 3. The window size was set to 2 mm.

5. The delays were compensated on the IQ signals using cubic spline interpolation.

We denote xk(t) and yk(t) the IQ signals corresponding to a positive and negative manipulation
pressure of the frame k in the elevation direction (0 ≤ k ≤ 100), and the respective delay-
compensated signals are denoted x̂k(t) and ŷk(t). ẑk(t) is formed by subtracting the two corrected
signals.

The Relative Tissue Suppression (RTS) is computed as

RTS =
100∑
k=1

|ẑk(t)|
|x̂k(t)|

. (5.1)

The Relative Amplitude Difference (RAD) is computed in a similar fashion

RAD =
100∑
k=1

|x̂k(t)|
|ŷk(t)|

. (5.2)

For the case where no LF manipulation pressure is transmitted, no delay estimation nor correc-
tion is done, since it is both useless and could hypothetically remove to this case it’s property
of the optimal level of suppression.

For the center frequency and bandwidth recordings, the data was first filtered as presented on
step 1 above. Then only a window of 1.5 mm around the focus was used. The data was windowed
with a hamming window before a 512 points FFT was computed. The estimated center angular
frequency ω̂c was computed as

ω̂c =

∫ ω2

ω1
ωp̄(ω)dω∫ ω2

ω1
p̄(ω)dω

(5.3)

where p̄(ω) is the average power spectrum on the 100 frames, and ω is the angular frequency.
The integration limits ω1, ω2 where chosen as the frequencies corresponding to the -6 dB values
of the power spectrum to each side of its maximum. The estimated bandwidth corresponds to
the spacing between these -6 dB limits.

5.2.4 Implementation of the pulse-form correction filter

The principle of the estimation of a correction filter for the distortions of the pulse form due to
compression/expansion was already presented in Chapter 3.4. Such filter has been implemented
in an iterative scheme on MATLAB. The complete code for the function may be found in
Appendix C.

According to [3, chap. 8.2], the received signal from two differently manipulated pulses may
be modeled as the convolution in real-time of the scanner transmit and receive spatial impulse
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responses, the pulse excitation, and the scattering pattern. Such a convolution may be easily
represented in the Fourier domain for the time/depth interval Ti:

X+,i (ω) = Ht,i (ω) ·Hr,i (ω) · U+,i (ω) · Σ+,i (ω) ,
X−,i (ω) = Ht,i (ω) ·Hr,i (ω) · U−,i (ω) · Σ−,i (ω) , (5.4)

where X±,i (ω) is the received signal spectrum (positively "+" or negatively "-" manipulated),
Ht/r,i (ω) are respectively the spatial impulse response of the transmit and receive chain of the
ultrasound scanner, U±,i (ω) is the excitation command of the positively/negatively manipulated
SURF pulse complex, and Σ±,i (ω) is the scattering.

Scattering from tissue may be separated into its linear and nonlinear components as

Σ±,i (ω) = Σl,±,i (ω) + Σn,±,i (ω) . (5.5)

In an ideal situation where the scattering observed is only linear and is the same for both the
negatively and positively manipulated SURF pulse complexes (Σ+,i (ω) = Σ−,i (ω) = Σl,±,i (ω))
on the time/depth interval Ti, the pulse-form correction filter established in (3.51) will be reduced
to

Ĝi (ω) = Ki (ω)

〈
X+,i (ω)X∗−,i (ω)

〉
Γ〈

|X−,i (ω)|2
〉

Γ

' Ki (ω)

〈
U+,i (ω)U∗−,i (ω)

〉
Γ〈

|U−,i (ω)|2
〉

Γ

. (5.6)

This means that the filter Ĝi (ω) is correcting exactly for the difference in the diffraction pattern
between the positively and negatively manipulated HF pulses, i.e. the difference in the pulse-
form distortions.

In order to implement this filter, one must determine:

• a time/depth interval Ti where the distortion due to compression/expansion should be
approximately constant, and where the linear scattering component should be equal for
both positively and negatively manipulated pulses,

• the averaging area Γ on which the filter must be estimated.

Estimating the correction filter on a time/depth interval Ti is equivalent in signal processing to
taking the estimate of a windowed version of the received signal, where the window contains Ti.
This estimation window was chosen as a Tukey window, as show on Figure 5.1. The estimation
window should be as small as possible to represent an interval where the compression/expansion
effects are approximately constant. However, the estimation window should be big enough to
contain sufficient information about the distortions to correct for: one will choose to consider
a window length of a few HF pulse lengths. Finally, the scatterers responsible for the signal
received on the extremities of the estimation window may not be the same for the positively and
negatively manipulated pulses. The filter estimation will therefore not be correct for the sides
of the window. One may limit this phenomenon by choosing the estimation window parameter
α such as the transition region of the Tukey window (i.e. the region where the window value
is different from 1) is bigger than the range resolution of the system: this leads to a transition
region bigger than half of the HF pulse length.

Once the time interval Ti has been selected, one must determine on which data set Γ the esti-
mation will be based, i.e. on which data set the averaging of equation (3.51) will be done.

• If we choose to estimate the filter for one specific beam on a specific frame, the filter
estimate will be equivalent to a filter transforming the negatively manipulated received
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Figure 5.1: Illustration of the implementation of the pulse-form correction filter on a step around
depth 20 mm in the absence of nonlinear scatterer. The estimation and correction windows
(respectively denoted wine and winc) are Tukey windows. The transition region of the estimation
window is chosen to be bigger than the range resolution of the system. Some example HF-filtered
IQ-demodulated signals are presented for both positive and negative LF-manipulations (only the
normalized absolute values of the IQ-signals are displayed here). The corrected signal for the
negatively manipulated pulse is shown to be close to the signal from the positively manipulated
pulse within the step limits.

signal in the positively manipulated signal. Such perfect filter will be useless since it
will compensate for all the differences in the two received signals, and will therefore also
remove the difference in the signals due to nonlinear scatterers. In order to correct for
the distortions in the signal while saving the differences due to the nonlinear scatterers,
one must estimate the Wiener filter on a larger data set Γ presenting the same kind of
distortions due to compression/expansion, but resulting from different scatterers.

• A natural choice may be to estimate the filter by averaging on the different beams from
the image. This has the advantage of allowing a filter to be estimated within only one
frame, and therefore to have a quasi-real-time correction scheme. However, the real probes
usually contains anomalies such as dead piezoelectric elements, and the resulting SURF
pulse characteristics (delays, compression/expansion) may be different from beam to beam.
In such cases, averaging on the different beams may provide for a bad estimate of the filter.

• Finally, the estimate may be computed by averaging on the successive frames. This method
has the advantage of being independent of the probe defects, but requires similar types of
tissues to be imaged at each frame. A change in the nature of the object imaged (due to
a probe shift for example) will cause the received signals to be intrinsically different: the
distortions present in the HF-imaging pulse will be different on the successive frames due
to a change in the propagation medium that is imaged.

In the sequel, the method of averaging on the different beams will be used for correcting for
pulse-form distortions in the simulated RF data sets (since no defects are present in the simulated
probe), while averaging on the successive frames will be done for the experimentally acquired
data (since the phantom imaged is supposed to be homogeneous).

When averaging, some of the samples may present some big variations between the positively
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and negatively manipulated signal compared to most of the other samples. Such samples usually
do not correspond to the distortions due to compression/expansion, and they will may lead to
an inaccurate estimate of the pulse-form correction filter if they are taken into account when
averaging on Γ during the estimation scheme. A way to remove for these samples in the es-
timation scheme is to implement a weighting average. The weighting coefficients must have a
high values for signals with small distortions while being close to zero when the positively and
negatively manipulated signals do not seem similar. Such weighting coefficients may be com-
puted by considering the cosinus of the difference in phase angle of the two signals: for normal
distortions, the signals may present difference in amplitudes, but their fluctuations should be
close, and therefore the difference in their phase angle should be small ; while two signals not
correlated would present high differences in phase angle. The weighting coefficients wi, cosinus
of phase angle difference, may be computed for each sample as:

wi =
<
{
X+,i (ω)X∗−,i (ω)

}
∣∣∣X+,i (ω)X∗−,i (ω)

∣∣∣
=
<
{
|X+,i (ω)| expj∠X+,i · |X−,i (ω)| exp−j∠X−,i

}∣∣∣X+,i (ω)X∗−,i (ω)
∣∣∣

=
|X+,i (ω)| · |X−,i (ω)| · <

{
expj(∠X+,i−∠X−,i)

}∣∣∣X+,i (ω)X∗−,i (ω)
∣∣∣

= cos (∠X+,i − ∠X−,i) (5.7)

The correction filter has been estimated on a set of beams/frames using an estimation window
as depicted on Figure 5.1. But we have seen that due to the presence of different scatterers on
the sides of the estimation windows, the filter estimate could not be optimal for these depths. A
solution to this problem has been found by applying the estimated correction filter on a wider
window, the correction window, and by then extracting the corrected signal as the very central
part of the estimation window, called the step. A bigger correction window allows the scatterers
located just outside the borders of the estimation window to be filtered and corrected for, and
the "correction step by step" approach allows to keep only the best corrected part of the signal.
Such notions are presented on Figure 5.1. In our results, only one step around the focal depth
(20 mm) has been corrected to show the influence of the pulse-form correction filter. A further
approach would be to correct the entire signals using overlapping steps (implemented in the code
furnished in Appendix C), but is not of interest for the present study.

The filter obtained after estimation on a specific time/depth interval as described above is usually
not optimal. Thus, an iteration scheme has been implemented in order to improve the estimate
of the pulse-form correction filter. The filter estimate Ĝn,i (ω) at step n on the time/depth
interval Ti is computed from the weighted iterative scheme:

Ĝn,i (ω) = Ĝn−1,i (ω) · (1− λ (n)) + Ĝn−1,i (ω) ·Gn,i (ω) · λ (n) (5.8)

where Ĝn−1,i (ω) is the filter estimated at the previous step, Gn,i (ω) is the filter estimated based
on the signals already corrected using Ĝn−1,i (ω), and λ (n) is a weighting function usually equals
to 1 for n = 0 and decreasing with n. In order to limit the influence of noise in the iteration
scheme, the signals are filtered using a FIR bandpass filter (denoted RF-filter in the sequel) after
each step to remove the creation of harmonics outside the frequency band of interest.
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Finally, one may find interesting to determine at which time we should correct for the pulse-form
distortions. Should this processing be done before or after the delay correction ? We have seen
when discussing on the choice of the estimation window that the window should be as small
as possible while containing sufficient information about the variations of both positively and
negatively manipulated signals. Correcting for the delays will reduce the difference in the phase
angle between these two signals, and therefore allow the use of a smaller estimation window.
Hence, the correction of pulse-form distortions will be executed only at the end of the processing,
after correcting for the nonlinear propagation delays.

In order to summarize the configuration used for the pulse-form correction filter in the further
presented results, some key facts have been gathered in Table 5.1.

Table 5.1: Configuration used for estimation of the pulse-form correction filter
Estimation window 4 HF pulse lengths, α-parameter 0.5 so that the transition regions

equal 1 HF pulse length (twice the range resolution) on each side
Correction window 6 HF pulse lengths, the α-parameter has no influence

Step 2 HF pulse lengths, only one step around focal depth (20 mm)
Noise parameter Ns = 0 (used in the Wiener gain)
Averaging area • averaging on successive frames for experimental data

• averaging on the different beams for simulated data
Iterations 10 iterations

weighting function: λ (n) = max (0.9n, 0.05)
RF-filter:
• FIR filter with 60 taps and bandpass [3.5, 9] MHz for experimental data
• FIR filter with 60 taps and bandpass [4.5, 10] MHz for simulated data

5.3 Results

5.3.1 Results of the Tissue Suppression general procedure

All the results presented in this section are computed and displayed in a similar and comparable
way for both experimental and simulated data.

Figure 5.2 shows the nonlinear propagation delays estimates, along with the superposition of the
standard deviation of these estimates on the same graph (dashed green lines). We observe that
the delays curves estimated for simulated and experimental data have the same shape "piecewise
linear", with an inflection point around depth z = 12 mm. The delays obtained with the scanner
are in average 1-2 ns higher than the ones obtained from simulated data, while the variance of
the delay estimate is higher in the simulations. The delay curve for the non-manipulated HF
pulse (also called B-mode in the graph legend) is really close to the zero value, as it was expected
since the manipulation pressure is at the origin of the propagation delays.

The shifts in the center frequency of the received HF imaging pulse are presented in Figure
5.3, before and after the pulse-form correction filtering. All the curves are decreasing due to
the frequency dependent attenuation of the propagating material. The non-corrected center
frequency estimates have higher values and oscillate more for the simulation data than for
the experimental measurements. Only the negatively manipulated HF-filtered received signal
has been corrected with the pulse-form correction filter to look like the positively manipulated
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(a) from simulation data (b) from experimental measurements

Figure 5.2: Nonlinear propagation delays estimates for (a) the simulated and (b) the experimen-
tal results.

(a) from simulation data (b) from experimental measurements

Figure 5.3: Center frequency of the HF imaging pulse before and after the pulse-form correction
for (a) the simulated and (b) the experimental results.

(a) from simulation data (b) from experimental measurements

Figure 5.4: Relative Amplitude Difference (RAD) between the positively and negatively ma-
nipulated pulses at the different steps of the imaging process for (a) the simulated and (b) the
experimental results.
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(a) from simulation data (b) from experimental measurements

Figure 5.5: Relative Tissue Suppression (RTS) at the different steps of the imaging process for
(a) the simulated and (b) the experimental results.

received signal. The pulse-form correction takes place on the interval [19.4, 20.6], and may be
seen as a positive shift in the center frequency estimate on the curve of the corrected signal.
This shift is bigger for the experimental data set. The corrected signals center frequency doesn’t
reach, however, the level of the center frequency of the positively manipulated pulse.

In Figure 5.4 the Relative Amplitude Difference (RAD) between the positively and negatively
manipulated pulses is displayed at the different steps of the imaging process (on the raw received
HF signal, after nonlinear propagation delays estimation and correction, and after the pulse-form
correction filter). The RAD of the non-manipulated signal (B-mode) is close to zero, and gives
an idea of the level of noise in the imaging system. As a general rule, the RAD curves increase
in intensity with depth, and are very noisy. For both experimental and simulated data, we may
observe that the propagation delay correction worsen the RAD slightly (about 0.1 dB), whereas
the pulse-form correction applied on the interval [19.4, 20.6] create a clear diminution of the
RAD. The corrected amplitude difference is inferior to 0.2 dB in intensity for the real phantom
measurements, while it has RAD values comparable to the one of the B-mode for the simulation
data.

Figure 5.5 presents the Relative Tissue Suppression (RTS) resulting from the imaging process
after the different corrections applied to the received signals. Even though they are computed
as an average over a high number of samples (100 frames for the experiments, 384 beams for
the simulations), the curves are quite noisy. The RTS curve for the B-mode imaging gives an
idea of the noise level present in the imaging system: there is clearly a higher intensity of noise
in the simulation data (noise floor at -30 dB), while the noise floor for the experimental data is
down to -40 dB for depths < 20 mm. The RTS curves for the manipulated signals (before and
after delay correction) for simulations and experiments look very similar in shape and levels,
even though they present a small 2-3 dB difference, especially close to the transducer surface
where the scanner is known to have some issues. The biggest difference lie in the RTS curves
from the pulse-form corrected signals. In the corrected depth interval, the level of suppression
is close to the noise floor (at -29 dB) for the simulated data, while we only obtain -22 to -23 dB
of tissue suppression with the experimental setup.
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(a) from simulation data (b) from experimental measurements

Figure 5.6: Power spectrum of the pulse-form correction filter estimated, presented at different
iterations, for (a) the simulated and (b) the experimental results, along with the RF-filer used
for stabilization of the iterative process.

(a) from simulation data (b) from experimental measurements

Figure 5.7: Relative Tissue Suppression (RTS) in the corrected depth interval, presented at
different iterations of the pulse-form correction process, for (a) the simulated and (b) the exper-
imental results.

Figure 5.8: Effects of the pulse-form correction filter on the signals received from the scanner
(experimental data). A comparable graphic has already been presented in Figure 5.1 for the
simulation data, along with more explanations on which curves are displayed.
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5.3.2 Results detailing the working of the pulse-form correction filter algo-
rithm

The evolution during the iterative process of the power spectrum of the estimated pulse-form
correction filter is presented in Figure 5.6 for both experimental and simulation setups. The
bandpass RF-filter, applied after each iteration on the signals in order to remove the noise
generated outside the imaging frequency band is also depicted (dashed black curve). One may
observe a bigger evolution of the pulse-form correction filter estimate between the iterations
for the simulation data than for the experimental data set, where the filter seems to converge
more quickly. For the simulation setup, the filter estimated at the first iteration amplifies the
frequencies around 4.2 MHz, which is out the imaging frequency band, and we can see that this
amplification is reduced in importance over the different iterations.

Within the corrected depth interval, it may be of interest to look at the impact of the pulse-form
correction filter after each iteration on the Relative Tissue Suppression (RTS), as presented in
Figure 5.7. We can see that the curves for the iterations 6 and 10 are really close to each other:
the RTS indicator converges quickly for both the simulated and experimental data sets. The
level of correction is from the first iterations higher for the simulations, as already presented
in the previous section (-30 dB of RTS for simulations compared to -23 dB for data from the
scanner). On the opposite of the curves for the RTS of the simulations, which improve at each
iteration, the curves of tissue suppression of the experimentally acquired data converge into a
curve that do not provide a better correction at all depth compared to the previous iterations
(especially around depth z = 20.1 mm).

The impact of the pulse-form correction filter on the processed signals is presented for the
simulation and experimental data sets respectively in Figures 5.1 and 5.8. Along with the
received and corrected signals, the depth delimitations of the correction step, as well as the
correction and estimation windows winc and wine. The difference in the quality of correction of
the negatively manipulated signal between the experimental and simulation setups can be easily
seen by the human eye. If the corrected curve seems to fit properly the positively manipulated
curve on the correction step/interval for the simulation data, we can observe big differences in the
experimentally-acquired signals on the same interval (e.g. around depth z = 19.5 mm).

5.4 Discussion

5.4.1 On the possibility of comparing between the experiments and the sim-
ulations

The estimated profiles of the nonlinear propagation delays (Figure 5.2) and of the imaging pulse
center frequency (Figure 5.2) confirm the similarity of the experimental and simulation setups.
But, even though the simulation has been designed to imitate the experiment by selecting similar
apertures on the transducer, approximatively similar pressure levels, and approximatively similar
initial phase relation between the HF and the LF pulses, we can of course denote some differences
between the setups:

• First, we noticed that the level of the estimated nonlinear propagation delays was higher
in the experiments. This means that the pressure experienced by the HF pulse in the
experiments is slightly higher than in the simulations, and therefore the phase relation
between the HF and LF pulse has not been the same in the two setups. In Appendix B,
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we evoke the fact that the phase relation between the HF and LF pulses is dependent of
both the level of manipulation pressure and the propagating material (via the speed of
sound). If the exact evolution of the phase relation may be known for the simulations,
the phase relation is rather uncertain with the scanner (it has been calibrated based on
water-tank measurements, but this makes the calibration wrong when scanning a phantom
which possess different material characteristics, and therefore a different speed of sound).
Hence, a small variation in the phase relation between the experiments and the simulations
may exist, creating a slight change in the values of the propagation delays, but without
affecting too much the study of the pulse-form correction filter via a comparison of the
experiments to simulations.
A higher standard deviation in the estimates of the nonlinear delay had also been observed
for the simulation. A key requirement for simulating some received data to test the pulse-
form correction mechanism was to simulate a data set with at least as much noise as in
the experimentally acquired data. Such higher standard deviation is just confirming that
we have achieved the requirements, and that pulse-form correction on the simulated data
should be a more difficult task to complete. This higher level of noise can also be observed
via the "noise floor" in the RTS curves in Figure 5.5: the RTS curve computed based on
two successive non-manipulated (B-mode) pulses is representative of the level of noise in
the system. The SNR was found to be higher for experiments than for simulations. A
good explanation to the presence of such a low level of noise in the experimental data sets
is that each RTS curve is computed based on 100 frames, which are themselves the mean
of 50 frames automatically done by the experimental acquisition procedure, whereas the
RTS curves of the simulations are only based on 384 independent beams.

• The center frequency estimates of the HF pulse were following a comparable decline due to
the frequency dependent absorption, but the center frequency curves from the simulated
data sets oscillated a lot and were located at a higher level (around 7.4 MHz compared
to the 6 MHz of the scanner). This observation doesn’t mean that we made a huge
mistake when completing the simulations, but is the result of the filtering happening in
the scanner receiver chain. The scanner is not an ideal system, and the receiving electronics
components (the probe, the coaxial cables, as well as the received board inside the scanner)
induce a filtering of the received signals. Such a phenomenon has already been explained
and commented in [18, chap. 4.4] where a transfer function of the receiving chain was
presented. Since the experiments conducted in [18], the electronics of the scanner have
been modified, and some of the negative effects of the transfer function have been limited.
However, some frequency filtering is still happening to the data received with the scanner
which suppress some informations such as the oscillations in the HF pulse center frequency,
and reduces the center frequency of the imaging signal down to 6 MHz.

To summarize, the experimental and simulation setups have their own singularities due to the
intrinsic difference between data acquired and data simulated, but we are facing two similar
data sets, where a reasonable and advised comparison should be possible.

5.4.2 On the efficiency of the pulse-form correction filter

The Relative Amplitude Difference (RAD) and Relative Tissue Suppression (RTS) are two useful
indicators when it comes to the study of the impact of nonlinear propagation effects on a SURF
imaging system. The goal of the ideal SURF imaging system in the presence of linear scattering
only is to obtain a RAD as close to 0 dB as possible, while getting a RTS ratio as small as
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possible, i.e. having RTS values as close as possible from the noise floor. We defined this noise
floor as the curve obtained when computing the RTS for two consecutive non-manipulated (B-
mode) pulses. It should theoretically be only affected by the thermal noise in the electronics,
that can not be removed, and therefore correspond to the minimal RTS values achievable.
In our study, the RAD and RTS presented in Figures 5.4 and 5.5 showed that we obtained better
results when applying pulse-form correction on the simulated data:

• On the corrected depth-interval from simulations, the level of the RAD is close to 0 dB,
with variations equal in intensity to the noise in the RAD curve for the B-mode ; while
the RTS curve is located around −29 dB only 1 dB above the noise floor. Such good
results mean that for the simulation data sets, we corrected the signal with a pulse-form
correction filter which is really close to ideal correction filter.

• The results obtained for the experimental data sets are however not as good: even though
the RAD curve over the corrected depth-interval is close to zero (contained between ±0.15
dB), the level of variations is sensibly higher than the noise level. This is conformed by
the RTS curve which only performs a correction up to −23 dB of tissue suppression, far
from the −38 dB of the noise floor.

While the algorithm for estimating and compensating for the nonlinear propagation delays gave
an average diminution of 8 dB of linear scattering from tissue, the pulse-form correction filter
provides an additional diminution of respectively 7 dB and 15 dB of the linear scattering com-
ponent for experimental and simulated data sets. Such results have to be compared with the
considerations on the level of tissue suppression required for detecting nonlinear scattering from
incompressible particles such as micro-calcifications surrounded by linear scattering from tissue,
established in Chapter 2.4. A level of RTS of −24.9 dB was required in order to ensure the
detection of even the smallest micro-calcifications. This detection is performed around depth 20
mm by the SURF imaging method with the new pulse-form correction filter when it is applied on
the simulation data sets, but not on the measurements conducted with the scanner on the phan-
tom. It is of interest to investigate why the pulse-form correction filter acts with such limitations
when applied on experimentally acquired data.

5.4.3 On the iterative pulse-form correction scheme

By applying the same pulse-form correction filter on two approximatively similar data sets, we
observed two radically different results. The study of the iterative scheme may give some clues
of why the filter is not correcting the experimental data correctly.

If we compare the shape of the power spectra of the pulse-form correction filters estimated in
Figure 5.6, we observe a similar shape of a "tilted plateau" between the frequency bands [5.5, 9.5]
MHz for the simulations and [3.5, 8.5] MHz for the experimental data. This plateau has the effect
of attenuating with a linear inverse frequency dependance in the above-cited frequency bands.
By doing this, the filter increases the center frequency of the corrected negatively manipulated
pulse, such as it goes closer to the spectrum of the original positively manipulated HF pulse
spectrum, as we already observed in Figure 5.3.
In the case of the simulations, we may observe a zone of important magnitude at the left of
the "plateau" (in the frequency band [3.5, 5] MHz), but this zone has a tendency to enhance
some frequency components of the signal outside the imaging frequency band, and is highly
attenuated by the iterative process (and nearly entirely removed by the RF-filter), while the
"plateau" is not affected by the iterations.
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In both setups, we observe that the shape of the "plateau" zone of the pulse-form correction filter
is not affected in a significant manner by the iterative process, and that these iterations converge
to a filter where this "plateau" plays a significant role. We can therefore deduce that this specific
tilted "plateau" shape is an effective compensation of the nonlinear propagation effects.

The convergence process may also be observed when comparing the RTS ratio on the corrected
depth interval for the different iterations, as presented in Figure 5.7. For both the simulation
and the experimental data sets, the RTS curves converge to a limit curve, which is a maximal
improvement close to the noise floor for the simulated data, and a stabilization around -23 dB
for the data from the scanner. The iterative scheme is estimating a pulse-form correction filter
with a pretty similar shape in the two setups, and leads to a convergence of the RTS indicator.
This last observation leads to the conclusion that the iterative scheme is working correctly for
both the simulation and experiments, but some limitations external to the pulse-form correction
filter estimation are generating the difference.

The pulse-form estimation has been based on the Wiener filter, which estimates a filter mini-
mizing the difference between the two signals on an averaging area Γ. This averaging area Γ
is constituted of successive frames spaced 1.5 mm apart in elevation for the experimental data,
and of entirely independent beams for the simulations. We ensured that the pulse-form correc-
tion filter was also independent of the transducer specificities (anomalies, dead elements, ...) by
estimating the filter on the frames for the experiments.
Therefore, the pulse-form correction filter efficiency can only be limited by two factors left to
discussion:

• The first limitation may be due to the speckle nature of the signal received from an ul-
trasound imaging system: the interferences in the scattered ultrasound field from different
scatterers will lead to the creation of artifacts, called speckles, in the received signal ([4,
chap. 7]). The speckles are dependent of the geometrical repartition of the scatterers in the
observed tissue, and of the ultrasound beam. Thus, the differences between the positively
and negatively manipulated HF beams from SURF pulse complexes denoted in Chapter
4 will lead to a difference in the back-scattered components Σl,+,i (ω) and Σl,−,i (ω) of
our model from equations (5.4) and (5.5). Such a difference between the linear scatter-
ing sources is a contradiction with the hypothesis necessary to establish the ideal filter in
equation (5.6). In other words, the presence of different speckle patterns for the positively
and negatively manipulated pulses, which are independent on each frame, will lead to the
estimation of a pulse-form correction filter which do not correct for this difference in the
speckle pattern (but just in the difference in the average speckle pattern), since the correc-
tion has to be common to all the averaging area Γ (i.e. all the frames).
Speckles are present naturally in the experimental measurements while only gaussian dis-
tributed scatterers have been added to the simulations, creating a speckle pattern with a
null average when compared to a high number of beams. This means that the filter esti-
mated for the experimental measurements is impacted in its performances by the presence
of this speckle pattern, while it is not for the simulations. One may easily imagine some
solutions to minimize the presence of speckles and, thus, improve the filter: the use of
techniques such as spatial compounding, with both LF and HF plane wave beams steered
in successively different directions, and associated in receive to a Multiple Line Acquisition
(MLA) system, may be implemented on the scanner. Frequency compounding may also
be investigated. Such techniques are currently at a stage of development, and their early
applications still need to be improved to obtain a sufficient reductions of the speckles.

• A second limitation, which may explain a lot of the limitations of the pulse-form correction
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in the experimental data, is the level of nonlinear scattering from the phantom. The elas-
ticity phantom used in the experiments, a CIRS model 049 (CIRS, Virginia, USA, [37]),
is mainly composed of small Sephadex ([38]) balls, and the exact properties of this ma-
terial such as the nonlinear scattering component is unknown. The presence of nonlinear
scattering from the Sephadex balls may simply lead to a reduced level of RTS, since it is
a part of the normal working of pulse-form correction filter not to remove the nonlinear
scattering used by the SURF imaging procedure. Hence, the presence of nonlinear scat-
tering from the Sephadex balls may explain the difference in the observed performances of
the pulse-form correction filter between the experiments and the simulations.
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Chapter 6

Conclusion

The real-time detection of nonlinear scattering from stiff particles such as micro-calcifications
based on ultrasounds is a goal that may be reached soon with the help of dual frequency
band techniques such as SURF imaging. The study of the interaction between two frequency-
independent forward propagating ultrasound beams led to the discovery and first quantifications
of the complex distortions experienced by the HF pulse. Such distortions appeared to become
relatively important when the LF manipulation pressure reached high intensity levels such as the
ones required for the detection of micro-calcifications. Further studies were required to predict
how these distortions are dependent of the beamforming configuration, as well as the geome-
try of the transmitting transducer and the propagating medium characteristics. Moreover, if
the nonlinear propagating delay have been characterized and successfully corrected for in the
presence of low levels of manipulation pressures, the other distortions still require an efficient
correcting process that may run in real-time on the SURF scanners.

Throughout this Master Thesis, the nonlinear propagation effects have been more extensively
investigated. Numerical simulations based on the geometrical specifications of the first manu-
factured experimental SURF probes have been conducted to test if the first "rules of thumbs"
extracted from theoretical and idealized models (for some of them still used in the daily develop-
ment of the SURF methods), may be or not trusted. The results permitted the characterization
for the real applications of the nonlinear propagation distortions as well as the importance of
their impact on the received signal:

• The importance of using a SURF probe dedicated to the exact desired application has
been highlighted by the simulations on Viglen, where the resolution of the system is highly
impacted by the presence for the HF beam of two foci separated from the transducer axis
in the elevation direction. This situation is the result of the presence of a physical lens on
the surface of the transducer focused at 40 mm in elevation, and leads to the creation of
important distortions such as SURF aberrations.

• A big challenge in the dual frequency band methods is to control the timing between the
LF and HF pulses throughout the propagation of the pulse complex. The study of the
profiles of the phase relation has shown a dependency of this timing to the manipulation
pressure level, to the apertures geometries and to the speed of sound in the propagating
medium.

• The phenomenon of compression/expansion and its effects on the HF pulse shape and
spectrum result from the manipulation pressure difference over the imaging pulse. Such
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distortions may be limited with the use of sharply focused HF beams, and/or the super-
position on a plane LF beam. However, their existence can not be avoided if the difference
in experienced pressure is above 600 kPa among the HF pulse.

• The SURF aberration phenomenon results from a difference in the focusing and diffraction
patterns of the HF and LF beams. The level of aberration may be quantified in simula-
tions by the computation of the difference in the focusing delays between positively and
negatively manipulated pulses. It appears that SURF aberrations could be neglected for
the co-focused situations (for probes adapted to the conducted study, in the opposite of
Viglen). In the configurations where a plane LF beam is used in superposition to a focused
HF beam, the level of SURF aberrations was such that it reduced the level of suppression
from linear scattering by 3 dB.

This report was also the occasion to present and test the design and implementation of a new
pulse-form correction filter compensating for the distortions induced by a different manipulation
pressure on the HF pulse. The pulse-inversion scheme used by the SURF imaging technique
has shown to furnish an 8 dB level of suppression of the linear scattering from tissue in the
typical applications (with a manipulation pressure level around 1 MPa and an low level of
SURF aberrations), far from the 25 dB theoretical level of suppression required for the efficient
detection the smallest micro-calcifications.
While the nonlinear propagation delay estimation and correction algorithm has shown to improve
this previous level by 8 dB in average, the new pulse-form correction filter has demonstrated to
give an additional 7 dB of suppression on the experimentally acquired data sets, bringing the
total level of reduction of the linear scattering up to 23 dB.
This same pulse-form correction filter applied on simulated data sets has performed a more
proper correction of 15 dB, reducing the linear scattering components in the image of 29 dB
(only 1 dB close to noise floor), ensuring a 4 dB contrast level between the micro-calcifications
and the surrounding tissue.
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Chapter 7

Further work

The simulations conducted in this report have shown that of the SURF probes, neither Viglen,
neither Okla did provide a sufficiently good spatial resolution combined with a minimization
of the nonlinear propagation effects when the manipulation pressure is around 1 MPa. The
detection of micro-calcifications require a probe with frequency and focal capabilities adapted
to this specific application. Such a probe, named Vora, is already under design, and further
simulations and investigations of this probe capabilities will require to be conducted.

The pulse-form correction filter developed in in this paper appeared to present several limitations.
The possibilities of improvement of this filter must be explored: adaptation of the algorithm
to a quasi-real-time application, implementation of a nicer correction on a big depth interval
using overlapping steps, apply the filter in different directions (e.g. on both azimuth and range
directions) to reduce the spatial (and speckle) dependency, increase the understanding of the
estimation process and improve it...

Some improvements may also be done on the SURF scanner: implementation of frequency and
spatial compounding allowing the transmission of dual frequency band pulse complexes with
HF and LF as both plane wave beams, for reducing the speckle dependancy of the images and
increasing the framerate (which is a big deal with SURF imaging where twice the usual number
of beams must be transmitted) while in the meantime limiting the compressions/expansions
and the SURF aberrations; introduce a better configuration of the initial phase relation, with
an automatic calibration dependent on the manipulation pressure level and a specified speed of
sound; limit the current issues with the level of noise introduced by the poor shielding of the
probes or the creation of intermediate frequencies and attenuation of the high frequency band
by the electronics of the receive chain; and test the new SURF imaging schemes including non-
manipulated pulses, or negative HF pulses associated to negatively manipulated pulses...

A further investigation of the phantoms also requires to be conducted: throughout this project,
a phantom containing micro-calcifications has been realized following the recipe in [15] to test
the pulse-form correction algorithm. However, the micro-caclifications have shown to be too big
and detectable on a classical B-mode image, removing the possibilities to see the improvements
the SURF imaging may give.
An other problem encountered with phantoms was the unknown level of nonlinear scattering of
the Sephadex balls. This must be investigated further, for example once the SURF procedure
for characterization of tissues (and thus, of the nonlinear compressibility parameter βnaκa) has
been developed as described in [7].
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Finally, the water-tank studies conducted on the Okla probe have shown that the simulations
conducted with Abersim were not exact since it did not take into account the directivity of the
elements, which caused some problems when simulating the propagation of fields from curved
transducers. A way to solve this problem is to adapt the XdSim software for the generation of
the initial pulse field by the Field II framework, and then to complete the nonlinear propagation
with Abersim. An alternative to Abersim for the propagation of SURF pulses has also been
proposed in [39] using the power GPUs, improving the simulation speed sensitively.
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Appendix A

Additional results to the Abersim
simulations conducted in Chapter 4

The simulations conducted in Chapter 4 of the nonlinear forward propagation of SURF pulse
complexes from the Okla and Viglen probes in muscle provided an important amount of data.
Most of the interesting results have been presented and discussed in Chapter 4.3 and 4.4, but
many of them haven’t, in a concern to keep a minimum of clarity in the presentation.

These unpublished results are presented here in the absence of any discussion, and the reader
may refer to the extensive discussion previously conducted to easily understand the phenomenons
involved.

A.1 Results in the azimuth and elevation planes of the trans-
ducer

The computation of the beam profiles in the azimuth and elevation planes allow the under-
standing of the diffraction pattern induced by the transducer geometries and setup configu-
rations. Such beam profiles have been computed by considering the maximum of the filtered
pulse envelopes at each position, and are presented in Figures A.1, A.3, A.5 and A.7. The
depth-normalized profiles were also computed by normalizing the computed values with the
maximum found in the plane corresponding to each depth. So called "boundaries" were dis-
played on the graphs corresponding to the -6dB limits of the beam profiles at each depth. Such
depth-normalized pressures are presented in Figures A.2, A.4, A.6 and A.8. At first sight, a big
difference in the diffraction patterns of the Viglen and Okla probes exists for the LF beams,
while the HF beams mainly differ only in the elevation plane. Moreover, the true focal zones
are located before the pre-configured focal depth of 20 mm.

The phase relation between the HF and LF pulses may also be computed in the elevation and
azimuth planes, and may be observed in Figures A.9 and A.10 for the different configurations.
The profiles exposed here have been computed only within the -6dB boundaries of the beam
profiles, where the SURF pulses are notably present. Inhomogeneities in the phase relation
in these planes explain the complexity of the distortions observed in focus. We denote that
the configurations with focused LF beams have a more homogeneous phase relation up to the
focus than the configurations using plane LF beams. Once again, the phase relation can not
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be estimated after the focus (depth > 27 mm), so the presented values have a high risk of
inaccuracy, and will not be taken into account for the discussion of the results.

Different phase relations implies different manipulation pressures experienced by the HF imaging
pulse. The profiles of the pressures experienced by the HF pulse, as well as the maximal difference
in manipulation pressure experienced by the HF imaging pulse, are presented in the azimuth
and elevation planes for the different configuration setups in Figures A.11, A.12, A.13 and A.14.
The profiles computations were limited to the zone within the -6dB boundaries of the HF beam
profiles, and the values presented may be erroneous in the zone where the phase relation may
not be correctly determined (depth > 27 mm).

73



(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.1: Profiles of the LF manipula-
tion pressure in the azimuth plane for the
different configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.2: Normalized profiles of the LF
manipulation pressure in the azimuth plane
for the different configurations.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.3: Profiles of the LF manipula-
tion pressure in the elevation plane for the
different configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.4: Normalized profiles of the
LF manipulation pressure in the elevation
plane for the different configurations.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.5: Profiles of the HF imaging
pressure in the azimuth plane for the dif-
ferent configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.6: Normalized profiles of the HF
imaging pressure in the azimuth plane for
the different configurations.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.7: Profiles of the HF imaging
pressure in the elevation plane for the dif-
ferent configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.8: Normalized profiles of the HF
imaging pressure in the elevation plane for
the different configurations.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.9: Profiles of the phase relation
between the LF and the HF in the azimuth
plane for the different configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.10: Profiles of the phase relation
between the LF and the HF in the elevation
plane for the different configurations.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.11: Profiles of the manipulation
pressure experienced by the HF-imaging
pulse in the azimuth plane for the different
configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.12: Profiles of the manipulation
pressure experienced by the HF-imaging
pulse in the elevation plane for the different
configurations.
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(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.13: Profiles of the maximal differ-
ence of manipulation pressures experienced
by the HF-imaging pulse in the azimuth
plane for the different configurations.

(a) (F-V)

(b) (F-O)

(c) (P-V)

(d) (P-O)

Figure A.14: Profiles of the maximal differ-
ence of manipulation pressures experienced
by the HF-imaging pulse in the elevation
plane for the different configurations.
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Appendix B

Water tank investigation of the Okla
probe for co-focused SURF pulses

The purpose of this appendix was to verify and document the timing between the high-frequency
(HF) and low-frequency (LF) pulses using Okla probe for a situation were both HF and LF are
co-focused, and it may be considered as an complement of [40] and [35]. The measurements
were performed on march 8th, 2010. This appendix is mainly here to help future students at
ISB, and the presented results may be out of date, since both scanner’s hardware and software
are continuously updated.

B.1 Measurements setup and processing

B.1.1 Water tank

The watertank setup at ISB was used for the measurements. A MATLAB software, ProbeLab
(http://svn.isb.medisin.ntnu.no/svn/ProbeLab/trunk) was used for control of the measurement
setup, with the Precision Acoustics 200µm SN 1237 needle hydrophone. Water temperature
was measured to 21.7◦C, corresponding to a sound speed of 1487,6 m/s. The scope was set to
average 64 steps.

There has been recorded both axis scans and point scans. The recorded axis scans span from 5
to 35 mm with increment of 0.5 mm.

B.1.2 General Ultrasonix settings

The most important Ultrasonix settings that will affect the measurement for these application
are detailed in Table B.1. Unless otherwise specified, these are the settings used.

B.1.3 Processing

The processing of the observed SURF pulses has been done on MATLAB. First, the HF is filtered
using a 600 tap bandpass filter with cutoff frequencies at 3 and 30 MHz, while the LF is filtered
with an equal length filter with cutoff frequencies at 0.1 and 2 MHz.

81



Table B.1: Ultrasonix system settings
Tx Frequency B 10 MHz
HF Pulse + - +
Tx Aperture Curve [27 57 100 48]
Tx Aperture Depth 60 mm
Tx Aperture Max 46
LF Tx Frequency 0.9 MHz
LF Number of half cycles 5
LF Tx Rel Apt Size 110% or 200%
LF Tx Aperture Max 20

The presented axis profiles were calculated by taking the maximum of the envelope at each
depth.

B.2 Timing between LF and HF pulses using confocal waves

B.2.1 finding initial probe stack delay

In order to find the correct position of the HF pulse, the probe stack delay was determined
according the the scanner timing definition in [41]:

• for a focus depth of 15 mm, the probe stack delay was found to be -225 ns

• for a focus depth of 20 mm, the probe stack delay was found to be -157 ns

These values have been observed to be correct for both the 110% and 200% relative aperture
settings, as depicted in Table B.2.

Table B.2: Settings for defining the probe stack delays for the SURF TCI application
LF HF

Wave Sign Voltage [V] fc [MHz] Nc Focus [mm] HFpos [ns] Power [dB]
CF + 50 0.9 5 15 or 20 0 -16

B.2.2 Phase change between HF and LF as a function of LF voltage

Recordings were performed to check the voltage dependency of the phase relation between the
HF and LF. The results are presented on Figure B.1 as well as the scanner error definition of ±
two samples at 80 MHz (the precision of the delays the scanner is able to handle).

One may see that even though the timing seems adequate for a LF voltage of ±50V, a compen-
sation system similar to the probe stack delay may have to be implemented for use of the SURF
probes at different voltages.
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(a) (b)

Figure B.1: Observed phase relation between LF and HF pulses in focus for varying LF voltage.
The LF and the HF beams are co-focused at depth 20 mm, and the relative aperture is 110% in
(a) and 200% in (b).

B.3 Pressure calibration curves

When dealing with nonlinear scattering, it is useful to know which are the pressure levels in-
volved, since the received signal with be directly related to the pressure experienced by the
tissue. Therefore, pressure calibration curves have been established for the LF pressure in focus
(20 mm) in water, and are reported in Figure B.2

The HF pressure has been measured in focus (20 mm) in water are reported in Table B.3.

(a) (b)

Figure B.2: LF pressure calibration curves in water, at focal depth (20 mm), when the relative
aperture is 110% in (a) and 200% in (b). The pressure is computed as the maximum of the
LF-filtered pulse envelope.

The pressures values obtained for real tissues at focal depth in focus may be extracted from
the presented results by computing the derated pressures for the desired medium (i.e. taking

83



Table B.3: HF pressure calibration in water at focal depth (20 mm). The pressure is computed
as the maximum of the HF-filtered pulse envelope

Power [dB] Pressure [MPa] Derated pressure [MPa]
0 6.62 2.25
-16 1.05 0.36

frequency dependent attenuation into account). For muscle, this may be easily computed using
the formula

pderated (zmm) = p (zmm) · 10−
A
20
·fLF,MHz·zmm (B.1)

where A is the attenuation constant (which has for value 0.52 dB ·MHz−1 ·mm−1 for muscle at
37◦C [42, tab. 4.16]), fLF,MHz is the center frequency of the LF pulse (expressed in MHz), and
zmm is the depth (expressed in millimeters).

One may notice that for the use of Okla for imaging of nonlinear scatterers, one must use LF
voltages superior to 50V in order to obtain a sufficiently important manipulation pressure at
depths such as 20 mm in tissue. Such an important LF voltage is known to create high important
distortions of the HF pulse, as well as important heating of the probe surface.

B.4 Comparison of between measured and simulated axial pro-
files

Numerical simulations have been conducted in order to compare the results from Abersim with
the results from the water tank. The simulated propagation was conducted with a strict respect
of the scanner configuration (propagation in water at 21.7◦C, same apertures, same pressure
levels observed in focus...), and the parameters used in the XdSim software are presented in
Table B.4.

Table B.4: Parameters used to configure a simulation equivalent to the water tank measurements
LF HF

Center frequency fc [MHz] 0.9 10
Bandwidth Br [%] 60 80
Number of periods Np 2.5 1.5
Az. Aperture [# elem.] 12 20
Az. Aperture [mm] 15.8 7.6
Focal lengthF [mm] 20 20
F-number (F# = F

D ) 1.3 2.6
Initial position [ns] 0 -49
Amplitude [kPa] 0.38 0.15

Some profiles along the transducer central axis allow a comparison between the simulations and
the water tank measurements. The range evolution of the phase relation between the HF and
LF pulses is presented in Figure B.3, the LF manipulation pressure pm as well as the pressure
pe experienced by the HF pulse are presented in Figure B.4, and the positively manipulated
HF pulse profiles are presented in Figure B.5. The pressure profiles were computed in a similar
way for the water tank measurements and the simulations, by taking the maximum of the pulse
envelope.
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Figure B.3: Comparison between the phase relation between the LF and HF pulses obtained
with numerical simulations and water tank measurements.

Figure B.4: Comparison between the LF manipulation pressure profiles and the experienced
pressure profiles obtained with numerical simulations and water tank measurements.

Figure B.5: Comparison between the positively manipulated HF pressure profiles obtained with
numerical simulations and water tank measurements.
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On the presented profiles, we clearly observe that the difference between the water tank exper-
iments and the simulations reside in the quality of the focusing of the beams. The simulated
curves present a better focusing both for the HF and LF beams. This difference can be observed
more easily for the LF manipulation pressure profiles.
Such differences between water tank experiments and simulations had not been observed for the
previously investigated probes. The difference with Okla reside in its curved shape, and the
trick used in Chapter 4.1.3 present clearly some limits: the method using an effective aperture
to replace a curved transducer by an equivalent plane transducer do not take into account the
directivity of the elements on the curved array. The directivity of each individual elements in a
curved array is not the same that the other elements on the probe surface (as it is the case for
linear probes such as Viglen), and the resulting beam in the direction of the transducer central
axis will be reduced in intensity and in focusing quality for a curved probe compared to a linear
probe.

Therefore, the results obtained in Chapter 4 for the Okla probe have to be nuanced, since the
quality of the beam focusing is poorer in reality, increasing the nonlinear propagations effects
by increasing the compression/expansions as well as the level of SURF aberrations. Two main
conclusions can be drawn from this discussion:

• The setup (C-O) in Chapter 4 is not as efficient as presented when it comes to limiting the
. Therefore, a linear probe specially designed for focal depths around 15 - 20 mm (already
being designed at ISB with the name of Vora) could provide even better limitations of
the pulse-form distortions for applications in the detection of breast micro-calcifications.
Before getting this probe in the laboratory, I have chosen to use the Viglen probe in
Chapter 5 because it generated less noise due to a better shielding than the Okla probe.

• One may generate better simulations of the Okla probe by taking the directivity of the
elements into account. This may be done by generating the initial pressure field with the
framework Field II, and then simulating the pulse propagation with Abersim. A coupling
of Field II with Abersim via the XdSim software is a good project for the future.

86



Appendix C

Matlab code of the pulse-form
correction filter

This appendix includes the listing of the Matlab function for the pulse-form correction filter pre-
sented and used in Chapter 5. The source file is also available for further work in the continuation
of this thesis in the Arkiv directory of the BMT common server at the ISB department.

Listing C.1: SURF pulse-form correction filter - surf_pulseform_correction.m
1 function [y_c,G] = surf_pulseform_correction(y, conf)
2 % [y_c,G] = surf_pulseform_correction(y, conf)
3 %
4 % Performs pulseform correction using wiener filtering. Uses a moving
5 % window at a certain step between two depth limits.
6 %
7 % Input:
8 % y − Signal to be filtered: y(range, beam, lf_polarity, frame)
9 % conf − configuration parameters

10 %
11 % Configuration structure 'conf' contains the fields:
12 % dim − dimension for average filter estimation (on beam / frame)
13 % Niter − number of iterations
14 % iter_w − Iteration weighting function handle
15 % win_c − Correction window length for fft
16 % win_e − Estimation window length for fft
17 % step − Step size ≤ win_e
18 % overlap − Percentage of step correction overlap (0 < overlap < 1)
19 % fs − Sampling frequency
20 % depth_axis − depth axis where to search for the depth limits
21 % depth_lim − depth limits inside which the filter will be applied
22 % Ns − Noise parameter for the Wiener filter
23 % alpha − Ratios parameter used for tukey windows shapping
24 % h − Filter to be applied at each iteration
25 %
26 % Output:
27 % y_c − Corrected signal
28 % G − Filters
29

30 [N B P F] = size(y);
31

32 y_c = y;
33
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34 if ¬isfield(conf, 'dim')
35 conf.dim = 4; % default filter averaging on frames
36 end
37 if ¬isfield(conf, 'Niter')
38 conf.Niter = 1; % one iteration by default
39 end
40 if ¬isfield(conf, 'iter_w')
41 conf.iter_w = @(it) 0.5^it; % iteration basic weighting function
42 end
43 if ¬isfield(conf, 'win_c')
44 conf.win_c = N; % entire signal as correction window
45 end
46 if ¬isfield(conf, 'win_e')
47 conf.win_e = N; % entire signal as estimation window
48 end
49 if ¬isfield(conf, 'step')
50 conf.step = N; % entire signal default step (gives the worst results)
51 end
52 if ¬isfield(conf, 'overlap')
53 conf.overlap = 0.5; % default overlap ratio of half a step
54 end
55 if ¬isfield(conf, 'fs')
56 conf.fs = 40e6; % 40 MHz default sampling frequency
57 end
58 if ¬isfield(conf, 'conf.depth_axis')
59 c0 = 1540;
60 conf.depth_axis = 1e3*c0/conf.fs*(0:(N−1))/2; % depth axis in [mm]
61 end
62 if ¬isfield(conf, 'depth_lim')
63 conf.depth_lim = conf.depth_axis([1 end]); % entire depth axis covered
64 end
65 if ¬isfield(conf, 'Ns')
66 conf.Ns = 0; % no noise power (unit Wiener gain)
67 end
68 if ¬isfield(conf, 'alpha')
69 conf.alpha = [0.5 0.5]; % default ratios for tukey windows
70 end
71 if length(conf.alpha) == 1
72 conf.alpha = conf.alpha([1 1]);
73 end
74

75 [win_c win_c_ix win_c_h] = prepare_window(conf.win_c);
76 [win_e win_e_ix] = prepare_window(conf.win_e);
77 [step step_ix] = prepare_window(conf.step);
78

79 fftwin_c = tukeywin(win_c, conf.alpha(1));
80 fftwin_c = fftwin_c(:, ones(1,B), [1 1], ones(1,F));
81

82 fftwin_e = tukeywin(win_e, conf.alpha(2));
83 fftwin_e = fftwin_e(:, ones(1,B), [1 1], ones(1,F));
84

85 fe = 1e−6 * linspace(−conf.fs/2, conf.fs/2, win_e);
86 fc = 1e−6 * linspace(−conf.fs/2, conf.fs/2, win_c);
87

88 dlim_ix = find_indx(conf.depth_axis, conf.depth_lim);
89

90 ov_step = ceil(step * (1 − conf.overlap));
91

92 Ndepth = dlim_ix(end) − dlim_ix(1) + 1;
93 Nstep = ceil( (Ndepth − win_c + 1) / ov_step );
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94

95 switch conf.dim
96 case 2
97 G = ones(win_c, F, Nstep);
98 case 4
99 G = ones(win_c, B, Nstep);

100 end
101

102 if ¬isfield(conf, 'h')
103 H = ones(win_c,1); % no extra filtering
104 else
105 if size(conf.h,1) == 1
106 conf.h = conf.h';
107 end
108 H = abs(fft(conf.h, win_c));
109 end
110

111 if isreal(y)
112 hfunc = @hilbert;
113 rfunc = @real;
114 else
115 hfunc = @noop;
116 rfunc = @noop;
117 end
118

119 the_y = zeros(Nstep,N,B,F);
120 the_w = zeros(Nstep,N,B,F);
121

122 % Estimate the correction filter step by step:
123

124 for k = 1:Nstep
125

126 n = dlim_ix(1) + win_c_h + (k−1)*ov_step;
127

128 y_s = y; % signal copy for this step
129

130 % Extract the windowed data at the current step
131 y_wc = fftwin_c .* y_s(n + win_c_ix,:,:,:);
132

133 for it = 0:(conf.Niter−1) % iterative correction
134

135 % Extract the windowed data at the current step
136 y_we = fftwin_e .* y_s(n + win_e_ix,:,:,:);
137

138 % Estimate the filter
139 lambda = conf.iter_w(it);
140

141 G_old = squeeze(G(:,:,k));
142 [G_new Kc] = estimate_pulseform_correction_filter(y_we, ...
143 conf.dim, conf.Ns, fe, fc);
144 G(:,:,k) = G_old * (1−lambda) + G_old .* G_new * lambda;
145

146 % Apply the filter to the step (no overlap)
147 y_s(n + win_c_ix,:,:,:) = apply_pulseform_correction_filter( ...
148 G(:,:,k), y_wc, conf.dim, rfunc, Kc, H);
149

150 end
151

152 y_c(n + step_ix,:,1,:) = y_s(n + step_ix,:,1,:);
153
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154 the_y(k,n + step_ix,:,:) = squeeze(the_y(k,n + step_ix,:,:)) ...
155 + squeeze(y_s(n + step_ix,:,2,:));
156 the_w(k,n + step_ix,:,:) = the_w(k,n + step_ix,:,:) + 1;
157

158 clear y_s;
159 end
160

161 y_ct = squeeze(wavg(the_y, the_w, 1));
162 c_ix = (dlim_ix(1) + win_c_h+step_ix(1)) : n+step_ix(end);
163 y_c(c_ix,:,2,:) = y_ct(c_ix,:,:);
164

165 end
166

167 function [Gc Kc] = estimate_pulseform_correction_filter(y_we, dim, Ns, fe, fc)
168 Y_we = fft(y_we,[],1);
169

170 % Wiener filter:
171 XY = Y_we(:,:,1,:) .* conj(Y_we(:,:,2,:));
172 YY = Y_we(:,:,2,:) .* conj(Y_we(:,:,2,:));
173 w = real(XY) ./ abs(XY);
174

175 Ke = squeeze(1 ./ (1 + Ns./YY));
176 Kc = interp1(fe, Ke, fc', 'linear', 0);
177

178 Ge = squeeze( wavg(XY,w,dim) ./ wavg(YY,w,dim) );
179 Gc = interp1(fe, Ge, fc', 'linear', 0);
180 end
181

182 function y_c = apply_pulseform_correction_filter(Gc, y_wc, dim, rfunc, Kc, H)
183 B = size(y_wc, 2);
184 F = size(y_wc, 4);
185

186 Y_wc = fft(y_wc,[],1);
187 switch dim
188 case 2
189 G = permute(Gc(:,:,ones(1,B)), [1 3 2]);
190 case 4
191 G = Gc(:,:,ones(1,F));
192 end
193

194 Y_wc(:,:,2,:) = Kc .* H(:,ones(1,B),ones(1,F)) .* G(:,:,ones(1,F)) ...
195 .* squeeze(Y_wc(:,:,2,:));
196 Y_wc(:,:,1,:) = Kc .* H(:,ones(1,B),ones(1,F)) .* squeeze(Y_wc(:,:,1,:));
197

198 % Reintroduce the filtered data into the corrected output
199 y_c = rfunc(ifft(Y_wc,[],1));
200 end
201

202 function [win win_ix win_h] = prepare_window(win)
203 win = win + (1−mod(win,2));
204 win_h = (win − 1) / 2;
205 win_ix = −win_h : win_h;
206 end
207

208 function x = noop(x)
209 % x = x;
210 end
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Appendix D

Matlab code used for SURF
post-processing of data from the
scanner

This appendix main purpose is to help the future student starting at ISB. It presents two
examples of listings used for:

• Acquisition of data with the scanner coupled to a displacement robot.

• Post-processing of the data collected in Chapter 5 through the usual SURF treatment:
reception of the RF-data, RF filtering, IQ demodulation, delay estimation and correction,
pulse-form correction.

The Matlab scripts use a framework developed at ISB for importing and handling RF-data from
the Ultrasonix scanner, and controlling the Physik instrument robot present in the laboratory.
The source files are also available for further work in the continuation of this thesis in the Arkiv
directory of the BMT common server at the ISB department.

Listing D.1: Example acquisition of data with the Ultrasonix scanner and the robot control
1 clear all; close all; clc;
2

3 ulterius_params;
4

5 general.param_ids = [...
6 FOCUS_DEPTH_ID,...
7 LF_FREQ_ID,...
8 LF_FOCUS_ID,...
9 LF_REL_APT_SZ_ID,...

10 DEPTH_ID...
11 SKINLINE_ZERO_RF_ID...
12 ];
13 general.param_values = [20e3,0.9e6,0,200,40,160];
14

15 % B−mode 0V
16 setup{1}.param_ids = [...
17 LF_CENTER_ACTIVE_ID,...
18 LF_OUTER_ACTIVE_ID,...
19 HF_POSITION_ID

91



20 ];
21 setup{1}.param_values = [0,0,0];
22

23 % Confocal 50V
24 setup{2}.param_ids = [...
25 LF_INDEP_FOCUS_ID,...
26 LF_CENTER_ACTIVE_ID,...
27 LF_VOLTAGE_ID
28 ];
29 setup{2}.param_values = [0,1,50];
30

31

32 ult = multerius;
33

34 if ¬ult.connect('localhost')
35 disp('Could not connect'); return;
36 end
37

38 % Connect to robot
39 rob = physik('COM1');
40 connect(rob);
41 % Set up general parameters
42 for kk=1:length(general.param_ids)
43 if ¬ult.set_int_param(general.param_ids(kk),general.param_values(kk))
44 fprintf('Could not set parameter with ID : %d and value : %d \n', ...
45 general.param_ids(kk),general.param_values(kk));
46 end
47 end
48

49 rob = move(rob,[0 0 0]);
50 while get(rob,'moving')
51 'Moving';
52 end
53 pos0 = get(rob,'position');
54 dr = [1e−3 0 0]';
55 Nimages = 100;
56

57 rob = set(rob,'maxpos',pos0 + (Nimages+1)*dr);
58

59 wh = waitbar(0,'Scanning');
60

61 tot_imgs = length(setup)*Nimages;
62 for kk=1:length(setup)
63

64 % Set the parameters
65 setup_kk = setup{kk};
66 for nn=1:length(setup_kk.param_ids)
67 if ¬ult.set_int_param(setup_kk.param_ids(nn),setup_kk.param_values(nn))
68 fprintf('Could not set parameter with ID %d and value %d \n', ...
69 setup_kk.param_ids(nn),setup_kk.param_values(nn));
70 end
71 end
72

73 ult.set_freeze_state(1);
74 cmd_str = sprintf('!GetParams.exe −f %s\\setup=%d.xml',pwd,kk);
75 eval(cmd_str);
76 disp('Parameters are set.')
77

78 ult.set_freeze_state(0);
79 pause;
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80 ult.set_freeze_state(1);
81

82 for img_num=1:Nimages
83 this_img = (kk−1)*Nimages + img_num;
84 waitbar(this_img/tot_imgs, wh, ...
85 sprintf('Recording img #%d of setup #%d',img_num,kk));
86

87 % Wait for images to be recorded
88 ult.set_freeze_state(0);
89 pause(4);
90 ult.set_freeze_state(1);
91

92 %[success data] = ult.get_cine_data(multerius.RF,50);
93 % Retrieve data
94 fname = sprintf('data\\rf_setup=%d_pos=%d.rf',kk,img_num);
95 cmd_str = ['!console.exe 51 ' fname];
96 eval(cmd_str);
97

98 % Move robot
99 rob = relmove(rob,dr);

100 while get(rob,'moving')
101 'Moving';
102 end
103 pause(0.5);
104 end
105

106 [success data_desc] = ult.get_data_desc(multerius.RF);
107 rf = zeros(data_desc.h,data_desc.w/2,2,Nimages);
108

109 disp('Averaging data');
110 for img_num=1:Nimages
111 fname = sprintf('data\\rf_setup=%d_pos=%d.rf',kk,img_num);
112 [tmp hdr] = load_ux_signal(fname);
113 rf(:,:,:,img_num) = mean(tmp,4);
114 clear tmp
115 delete(fname);
116 end
117 fname = sprintf('data\\data_setup=%d.mat',kk);
118 save(fname,'rf','hdr');
119 clear rf;
120

121 rob = move(rob,pos0);
122 while get(rob,'moving')
123 'Moving';
124 end
125 disp('Done with setup');
126 end
127 close(wh);
128 disconnect(rob);
129 ult.disconnect();
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Listing D.2: Example of the post-processing applied on a SURF signal

1 clear all; close all; clc;
2

3 setups = 1:2;
4 c0 = 1540;
5

6 %% −−−−−−−−−− Loading data −−−−−−−−−− %%
7

8 data = cell(1,length(setups));
9 beams = 70 + (−20:20); % [];

10

11 for kk=1:length(setups)
12 fname = fullfile('data',sprintf('data_setup=%d.mat',kk));
13 hh = load(fname);
14 data{kk}.fs_rf = hh.hdr.sf;
15 data{kk}.Ts_rf = 1/data{kk}.fs_rf;
16

17 if isempty(beams)
18 data{kk}.rf = hh.rf;
19 else
20 data{kk}.rf = hh.rf(:,beams,:,:);
21 end
22 disp(['RF data extracted for setup ' num2str(kk)]);
23 end
24

25 %% −−−−−−−−−− Filtering of data −−−−−−−−−− %%
26

27 Ntaps = 60;
28 fco = [4.5 9]*1e6;
29

30 for kk=1:length(data)
31 [data{kk}.rf data{kk}.h_rf] = rf_filtering(data{kk}.rf, Ntaps, fco, ...
32 data{kk}.Ts_rf);
33 data{kk}.z_rf = 1e3*c0*data{kk}.Ts_rf*(0:(size(data{kk}.rf,1)−1))/2;
34

35 disp(['RF data filtered for setup ' num2str(kk)]);
36 end
37

38 %% −−−−−−−−−− IQ demodulation −−−−−−−−−− %%
39 fdemod = 0;
40 cutoff = 3; % [MHz]
41 decimation = 1;
42

43 for kk=1:length(data)
44 iq_temp = zeros(size(data{kk}.rf));
45

46 for nn=1:size(data{kk}.rf,4)
47 for ii=1:size(data{kk}.rf,3)
48 iq_temp(:,:,ii,nn) = hilbert(data{kk}.rf(:,:,ii,nn));
49 end
50 end
51 data{kk}.iq = iq_temp(1:decimation:end,:,:,:);
52 clear iq_temp;
53

54 % % Alternative:
55 % [iq_temp, a, b] = demod_ustb(data{kk}.rf, data{kk}.fs_rf, fdemod, ...
56 % 'narrowband', Ntaps, cutoff);
57 % data{kk}.iq = iq_temp(1:decimation:end,:,:,:);
58

59 data{kk}.fs_iq = data{kk}.fs_rf/decimation;
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60 data{kk}.Ts_iq = 1/data{kk}.fs_iq;
61 data{kk}.z_iq = 1e3*c0*data{kk}.Ts_iq*(0:(size(data{kk}.iq,1)−1))/2;
62

63 disp(['IQ data extracted for setup ' num2str(kk)]);
64 end
65

66 %% −−−−−−−−−− Delay and center frequency estimation −−−−−−−−−− %%
67

68 dz_mm = 1e3 * c0 * data{1}.Ts_iq / 2;
69

70 % Delay estimation parameters
71 delay_win_mm = 3;
72 delay_win = ceil(delay_win_mm/dz_mm/2);
73 reg_meth = 'lin_conv';
74

75 % Frequency estimation parameters
76 fc = 6e6;
77 Tp = 1/fc;
78 freq_win_per = 22.5;
79 freq_win = floor(freq_win_per*Tp/data{1}.Ts_iq);
80 freq_step_per = 2.5;
81 freq_step = floor(freq_step_per*Tp/data{1}.Ts_iq);
82

83 for kk=1:length(data)
84 data{kk}.tau = zeros(size(data{kk}.iq,1), size(data{kk}.iq,2), ...
85 size(data{kk}.iq,4));
86 data{kk}.fc_est = zeros(size(data{kk}.iq,1), size(data{kk}.iq,3), ...
87 size(data{kk}.iq,4));
88

89 for nn=1:size(data{kk}.iq,4)
90 data{kk}.tau(:,:,nn) = delay_wls(data{kk}.iq(:,:,:,nn), ...
91 delay_win, data{kk}.fs_iq, fdemod, fdemod, reg_meth);
92

93 data{kk}.fc_est(:,1,nn) = freq_estimation(data{kk}.iq(:,:,1,nn), ...
94 data{kk}.fs_iq, freq_win, freq_step, 'fft');
95 data{kk}.fc_est(:,2,nn) = freq_estimation(data{kk}.iq(:,:,2,nn), ...
96 data{kk}.fs_iq, freq_win, freq_step, 'fft');
97 end
98

99 % Average tau over all frames and convert to seconds
100 data{kk}.tau = mean(data{kk}.tau,3) / data{kk}.fs_iq;
101

102 % Subtract signals to make simple suppression signal
103 data{kk}.iq_sup = squeeze(data{kk}.iq(:,:,1,:) − data{kk}.iq(:,:,2,:));
104

105 % Compute Relative Amplitude Difference and Relative Tisse
106 % Suppression (no correction)
107 data{kk}.RAD = squeeze(mean(mean(abs(data{kk}.iq(:,:,1,:)),4),2) ...
108 ./ mean(mean(abs(data{kk}.iq(:,:,2,:)),4),2));
109 data{kk}.RTS = squeeze(mean(mean(abs(data{kk}.iq_sup),3),2) ...
110 ./ mean(mean(abs(data{kk}.iq(:,:,1,:)),4),2));
111

112 disp(['Delays and center frequencies estimated for setup ' num2str(kk)]);
113 end
114

115 %% −−−−−−−−−− Delay correction −−−−−−−−−− %%
116

117 for kk=1:length(data)
118 if kk > 1
119 data{kk}.iq_dc = zeros(size(data{kk}.iq));
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120

121 % Correct delay
122 for nn=1:size(data{kk}.iq,4)
123 data{kk}.iq_dc(:,:,:,nn) = correct_delay(data{kk}.iq(:,:,:,nn), ...
124 data{kk}.tau, data{kk}.fs_iq, fdemod, 'linear');
125 end
126

127 else
128 data{kk}.iq_dc = data{kk}.iq;
129 end
130

131 % Subtract signals to make simple suppression signal
132 data{kk}.iq_sup_dc = squeeze(data{kk}.iq_dc(:,:,1,:) ...
133 − data{kk}.iq_dc(:,:,2,:));
134

135 % Compute Relative Amplitude Difference and Relative Tisse
136 % Suppression (delay correction only)
137 data{kk}.RAD_dc = squeeze(mean(mean(abs(data{kk}.iq_dc(:,:,1,:)),4),2) ...
138 ./ mean(mean(abs(data{kk}.iq_dc(:,:,2,:)),4),2));
139 data{kk}.RTS_dc = squeeze(mean(mean(abs(data{kk}.iq_sup_dc),3),2) ...
140 ./ mean(mean(abs(data{kk}.iq_dc(:,:,1,:)),4),2));
141

142 disp(['Delays corrected for setup ' num2str(kk)]);
143 end
144

145 %% −−−−−−−−−− Pulse form correction −−−−−−−−−− %%
146

147 depth_lim = [18 23.5]; %[5 30]; % correction depth interval
148 Ns = 1e4; % influence of the noise
149

150 Nc = 5; % number of cycles of the HF pulse
151 Tp_mm = 1e3 * c0 * (Nc/fc) / 2; % pulse length [mm]
152

153 for kk=1:length(data)
154

155 if kk > 1
156 clear conf;
157 data{kk}.iq_c = zeros(size(data{kk}.iq));
158

159 depth_axis = data{kk}.z_iq;
160 dz_mm = data{kk}.z_iq(2)−data{kk}.z_iq(1);
161 step = round(2 * Tp_mm / dz_mm);
162

163 conf.dim = 4; % filter averaging on frames
164 conf.Niter = 10;
165 conf.iter_w = @(it) max(0.9^it, 0.05);
166 conf.win_c = round(12 * Tp_mm / dz_mm);
167 conf.win_e = round(8 * Tp_mm / dz_mm);
168 conf.step = round(2 * Tp_mm / dz_mm);
169 conf.overlap = 0.45;
170 conf.fs = data{kk}.fs_iq; % 40 MHz default sampling frequency
171 conf.depth_axis = data{kk}.z_iq;
172 conf.depth_lim = [5 35];
173 conf.Ns = 1e5;
174 conf.alpha = [0.5 0.5];
175 conf.h = data{kk}.h_rf;
176 conf.do_plot = 1;
177

178 % Pulse−form correction
179 data{kk}.iq_c = surf_pulseform_correction(data{kk}.iq_dc, conf);
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180

181 else
182 data{kk}.iq_c = data{kk}.iq_dc;
183 end
184

185 % Subtract signals to make simple suppression signal
186 data{kk}.iq_sup_c = squeeze(data{kk}.iq_c(:,:,1,:) − data{kk}.iq_c(:,:,2,:));
187

188 % Compute Relative Amplitude Difference and Relative Tisse
189 % Suppression (pulse−form correction)
190 data{kk}.RAD_c = squeeze(mean(mean(abs(data{kk}.iq_c(:,:,1,:)),4),2) ...
191 ./ mean(mean(abs(data{kk}.iq_c(:,:,2,:)),4),2));
192 data{kk}.RTS_c = squeeze(mean(mean(abs(data{kk}.iq_sup_c),3),2) ...
193 ./ mean(mean(abs(data{kk}.iq_c(:,:,1,:)),4),2));
194

195 for nn=1:size(data{kk}.iq, 4)
196 data{kk}.fc_corr(:,nn) = freq_estimation(data{kk}.iq_c(:,:,2,nn), ...
197 data{kk}.fs_iq, freq_win, freq_step, 'fft');
198 end
199

200 disp(['Pulse−form corrected for setup ' num2str(kk)]);
201 end
202

203 %% −−−−−−−−−− Save processed data −−−−−−−−−− %%
204

205 save(fullfile(pwd,'processed_data.mat'), '−v7.3', 'data');
206 disp(['Processed data saved in ' fullfile(pwd,'processed_data.mat')]);
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