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Critical Speed for the Dynamics of Truck Events on Bridges with a Smooth Road 

Surface 

Arturo González 1, Eugene J. OBrien 2, Daniel Cantero 3, Yingyan Li 4, Jason 

Dowling 5, Ales Žnidarič 6  

 

Abstract: Simple numerical models of point loads are used to represent single and 

multiple vehicle events on two-lane bridges with a good road profile. While such 

models are insufficiently complex to calculate dynamic amplification accurately, they 

are presented here to provide an understanding of the influence of speed and distance 

between vehicles on the bridge dynamic response. Critical combinations of speed as a 

function of main bridge natural frequency and meeting point of two vehicles 

travelling in opposite directions are identified. It is proposed that such simple models 

can be used to estimate the pattern of critical speeds versus dynamic amplification for 

heavy trucks on a bridge with a relatively smooth surface. The crossing of a three-

dimensional spring-dashpot truck is simulated over a bridge plate model to test this 

hypothesis for a range of road roughness. Further validation is carried out using the 

site-specific mean pattern associated to field measurements due to the passage of a 

truck population. The latter is found to be closely resembled by the theoretical pattern 

derived from simple point load models.  

 

Keywords:  highway bridges; bridge loads; structural dynamics; traffic speed; 

dynamic amplification. 
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 Nomenclature 

 

a = roughness coefficient  

c 

C 

= 

= 

speed of the vehicle  

damping matrix of bridge model 

d = distance between reference masses for two vehicles travelling in opposite 

direction 

DAF = dynamic amplification factor 

E = Young’s modulus of beam 

f1 = first natural frequency of the bridge 

FR = frequency ratio 

g = acceleration due to gravity 

I = second moment of area of cross-section 

j = mode number 

k 

K 

= 

= 

vehicle number 

stiffness matrix of bridge model 

L = beam length 

Pik 

M 

= 

= 

constant point load representing axle force i in vehicle k 

mass matrix of bridge model 

( ),M    = dimensionless total bending moment 

( ),
ikRM    = dimensionless bending moment due to interaction forces Rik 

( ),M   
 

p
 

= 

= 

dimensionless bending moment due to bridge inertial forces 

forcing vector  

Pik = constant point load representing axle force i in vehicle k 

( )jq    = normalised deflection for mode j and instantτ 

ikR  = dimensionless force corresponding to axle load i in vehicle k 

t 

x 

= 

= 

time (t = 0 when the vehicle is located at the start of the bridge) 

location from the start of the bridge 

v(x,t) 

v 

𝐯̇ 

𝐯̈ 

= 

= 

= 

= 

deflection of the beam at position x and instant t 

vector of nodal displacements and rotations 

vector of nodal velocities 

vector of nodal accelerations 

xik 

 

W 

= 

 

= 

position of axle i in vehicle k  on the bridge (xik = 0 when the axle is located at 

the start of the bridge) 

bridge width 

α = 
speed parameter 

12

c

f L

 

= 
 

 

δ(x) = Dirac function (impulse, also known as delta function) 

εik = parameter indicating whether the axle i in vehicle k is on (εik = 1) or off (εik = 0) 

the bridge 

μ = mass per unit length of the bridge 
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   = normalised section location on the bridge. 
x

L
 =  (0 ≤  ≤ 1) 

ik   = 
normalised position of Pik along the bridge. ik

ik

x

L
 =  (0 ≤ 

ik ≤ 1). 

τ = 
normalised time 

ct

L



 

= 
 

 

ωb = circular damping frequency of the beam 

Ω = spatial natural frequency 

  = 
damping parameter 

1

b

f



 

= 
 

 

 

  

1.  Introduction 

 

For long-span bridges, the governing traffic loading condition consists of a queue of 

heavy vehicles on the bridge in congested or jammed conditions [1]. In such a case, it 

is assumed that there is no dynamic amplification of the static load. However, for 

short- to medium-span bridges, the governing condition is made of a small number of 

vehicles travelling at high speed and inducing vibration in the bridge. There is some 

debate as to whether bridge loading events involving three and four high-speed trucks 

can be expected to feature amongst the most critical loading conditions for two-lane 

medium-span bridges [2]. Even so, it is clear that single truck crossings and two-truck 

meeting events play an important role in the assessment of the traffic load for short 

and medium-span bridges.  

 

While considerable research has been carried out on single truck crossing events on 

bridges [3-10], the dynamics of two-truck meeting events has received less attention 

[11-16]. Finite Element (FE) Vehicle Bridge-Interaction (VBI) models of meeting 

events can be constructed but are computationally expensive and they include a 

degree of uncertainty on many of the vehicle dynamic parameters, and in particular, 

those intervening in the critical meeting events. However, vehicle dynamic parameters 

such as tire stiffness, suspension stiffness, damping or mass moment of inertia are less 

influential on the bridge response in the case of very good profiles and relatively long 

bridges. So, Brady and OBrien [12] have considered the case of two moving point 

(2P-) loads on a 1D simply supported beam. This is clearly simplistic as it fails to 

allow for the interaction between the truck and the bridge masses, the road surface 

profile and the truck suspension systems, to name just some parameters. Nevertheless, 

this simplified model can be used to find an explanation for the dynamic peaks 

generated at certain speeds. 

 

The ratio of maximum total strain to maximum static strain is defined as Dynamic 

Amplification Factor (DAF). The goal of this paper is to use these simple P-load 

models to identify the speeds that will cause maximum DAFs in traffic loading 

events. A critical loading event is associated here to the simultaneous crossing of two 



 

 5 

5-axle semi-trailers over a two-lane simply supported bridge. This truck class is the 

most common heavy goods truck configuration on European and many international 

roads. The P-loads simulate vehicle forces of magnitude and spacing equivalent to 

those of the 5-axle vehicle, and they are crossed over two types of bridge models: a 

1D beam and a 2D FE isotropic plate. First, two groups of five point (5P-) loads 

travelling on a beam in opposite directions are used to represent the axle forces of two 

5-axle trucks meeting on a bridge. This is the first analysis which considers a full 

range of possible vehicle speeds and truck meeting points while taking account of the 

axle weight distribution in a large truck.  These critical speeds are also derived for the 

case of two groups of 10P-loads representing wheel forces of a 5-axle truck running 

on a FE plate model. The critical speeds estimated based on simulations of P-loads are 

compared to the results of more sophisticated 3D spring-dashpot vehicle dynamic 

models over a range of ‘good’ road profiles and three medium span lengths. Finally, 

the approach is tested with strain measurements from a bridge located in Vransko, 

Slovenia. This field data has been collected during the European FP6 project 

ARCHES (Assessment and Rehabilitation of Central European Highway Structures, 

2006-2009) [17]. Maximum total strain was measured on the site for single events of a 

truck fleet using the Bridge Weigh-In-Motion system known as Si-WIM [18]. For 

each traffic event, the static strain was extracted from the record of measured strain 

through a low-pass filtering technique. Finally, the experimental ‘DAF – speed’ 

pattern associated to a given vehicle subclass is compared to the theoretical pattern 

derived from equivalent P-load models. 

 

2.  Simulations using moving constant loads  

 

The influence of speed on DAF due to a typical European 5-axle truck is analysed for 

three medium-span bridge lengths. For this purpose, the passage of a series of P-loads 

is simulated over two types of bridge models: a 1D beam and a 2D isotropic plate.  In 

the bridge plate model, each P-load represents a wheel force of magnitude equal to 

half the static axle weight and the effect of transverse position on the critical speed is 

addressed. The plate width W is assumed to be 15 m, the spacing between wheels of 

the same axle is 2 m, and the path of the inner wheels is offset by 1 m from the bridge 

centreline. To get representative dimensions and relative weights between axles for a 

typical 5-axle European truck, weigh-in-motion data from the national road RN23 at 

Angers, France, is employed [2]. The recorded mean axle spacings were 3.0 m 

between 1st and 2nd axle, 5.1 m between 2nd and 3rd axle and 1.1 m between 

consecutive axles of the rear tridem. The mean axle weights were 12.70%, 27.70%, 

19.86%, 19.87% and 19.87% of the gross weight for axles 1 to 5 respectively. The 

total mass of a single truck is assumed to be 48440 kg. Bridge responses and ‘DAF-

speed’ patterns are also obtained for an articulated 5-axle sprung model running over 

a range of road profiles and allowing for VBI. These simulations are used to assess 

the influence of road roughness and VBI on the critical speed and how they compare 

to that ‘DAF-speed’ pattern suggested by simple P-load models. All vehicle and 

bridge simulation models have been built using Matlab [19]. 
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2.1 Dynamic model based on P-loads running in opposite directions 

Dynamic amplification is calculated for a series of moving point loads, Pik, 

representing the static component of force i exerted by vehicle k, travelling at a speed 

c towards one another over a simply supported bridge model of length L. The 

simulations are carried out using 1D beam bridge models where Pik will represent a 

vehicle axle force (Fig. 1(a)), and 2D plate bridge models where Pik
 will represent a 

vehicle wheel force (Fig. 1(b)). For comparison purposes, those beam and plate bridge 

models with the same length L, have similar mechanical properties and longitudinal 

frequencies of vibration. It is assumed that both vehicles have the same speed, axle 

weights and spacings. The ratio d/L is employed to define the relative position of the 

loads when they meet on the bridge, where d is given by the distance of the 3rd axle of 

the second truck from the 3rd axle of the first truck when the latter is located at 

midspan (this is, d is defined as shown in Fig. 1(a) when x31 = L/2). So, d/L = 0 

represents a situation where the first axle of each tridem meet at the center, d/L = 0.5 

is a situation where the tridem of the second truck is just arriving on the bridge while 

the tridem of the first vehicle is at midspan (so both tridems will meet at one quarter 

of the span), d/L = 1 is a situation where one tridem leaves the bridge at the time the 

other tridem is entering it, and for d/L > 1 the tridems will not meet on the bridge.   

 

 [FIG. 1 HERE] 

 

The solution for the case of a constant P-load moving over a 1D simply supported 

beam has been described in dimensionless modal form by Frýba [20], and for two 

vehicle models consisting of 5P-loads each (Fig. 1(a)), it is given by:  

 

  
( )

( ) ( )
( )2 2 22 5

4

2 2 2
1 1

sin
j j

ik ik ik j

k i

q q
R j j q

   
  

    = =

  
= − −   

     1,2,...j =    

(1) 

where ( )jq   is the jth modal coordinate of the beam deflection; j is the mode number; 

τ is the dimensionless time (
ct

L


 =  where t is time and L is bridge length ); α (

12

c

f L
=  

where f1 is the first natural frequency of the bridge) and   (
1

b

f


=  where b is circular 

damping frequency of the bridge) represent speed and damping parameters 

respectively; 
ik can be 1 or 0 depending if a particular load Pik is on or of the beam 

respectively; 
ik  is the dimensionless position of Pik ( ik

ik

x

L
 =  where xik is the position 

of Pik with respect to the point of entrance of the vehicle k on the bridge); and the 

dimensionless force ikR  is given by: 
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2 5

1 1

ik
ik

ik

k i

P
R

P
= =

=
 
 
 

 
            i = 1,2,…5;    k = 1,2  

(2) 

 

Eq. (1) is solved numerically using the Runge-Kutta-Nyström method with Rik 

estimated as in Eq. (2). Values for ( )jq  , ( )jq  , and ( )jq   are obtained for each 

mode of vibration j at each instant in time,  . The total dimensionless bending 

moment, ( ),M   at normalized beam location   and normalized time  can be 

obtained from the sum of two dimensionless bending moments: ( )
2 5

1 1

,
ikR

k i

M  
= =

 
 
 

 

due to the applied loads and ( ),M    due to the vibration of the bridge as defined in 

Eqs. (3), (4) and (5). 

( ) ( ) ( )
2 5

1 1

, , ,
ikR

k i

M M M     
= =

 
= + 

 
   (3) 

where: 

( )
( )

( )

4 1  for 
,

4 1  for ik

ik ik ik ik

R

ik ik ik ik

R
M

R

    
 

    

 = −  
=  

= −   
       (4) 

and 

( ) ( ) ( )2

2
1

1 1
, sin

12
j

j

M q j
j

     


=

= −   (5) 

Eq. (6) gives the total bending moment M (x,t) at beam position x and time t as a 

function of the normalized bending moment ( ),M    defined in Eq. (3). 

( ) ( )
2 5

1 1

, ,
4

ik

k i

P L
M x t M  

= =

 
=  

 
       (6) 

Eqs. (1) to (6) can then be solved to find the DAFs for mid-span bending moment. 

The problem can be extended to a series of P-loads moving over a plate model to 

allow for lateral effects and torsional modes of vibration. In the latter, the meeting of 

two 5-axle trucks in motion is simulated with a P-load model made of a series of ten 

loads, P1k, P2k, P3k, …, P10k, deemed to represent the forces exerted by the ten wheels 

of a truck k (Fig. 1(b)). The differential equations of motion of the plate model can be 

expressed in matrix form as in Eq. (7) and solved using a standard integration method 

such as Runge-Kutta. 
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+ + =Mv Cv Kv p       (7) 

 

where p is the forcing vector result of distributing the P-loads to the nodes of the 

underlying element at each point in time, v, v  and v  are the vectors that define the 

bridge displacements, rotations and their derivatives with respect to time, and  M, C 

and K are the mass, damping and stiffness matrixes of the bridge model respectively.  

In these P-load simulations, it is assumed the mass matrix of the bridge remains 

constant. This assumption will not be valid for extremely heavy loading events in 

short span bridges where high vehicle to bridge mass ratios may introduce significant 

changes in the mass matrix of the system. 

 

2.2 Influence of speed and meeting point on DAF 

A 25 m span simply supported bridge beam model is used first to illustrate the effect 

of truck speed on dynamics. The bridge properties are assumed to be those 

corresponding to a typical beam-and-slab concrete structure carrying two lanes of 

traffic, i.e., modulus of elasticity E = 35x109 N m-2, mass per meter µ = 18360 kg m-1 

and second moment of area I = 1.39 m4. The first natural frequency of the bridge is 

4.09 Hz and damping is assumed to be negligible. The static and total midspan 

bending moments due to crossings of single 5P-load trucks are shown in Fig. 2 for 

different speeds. For the truck travelling at 90 km h-1, the arrivals of the first and 

second axles at midspan are hardly noticeable while the tridem arrival at midspan 

denotes a prominent peak with a maximum total moment of 244.2 kN m and a 

maximum static moment of 227.7 kN leading to a DAF of 1.07. A sharp drop off in 

moment is evident as the tridem moves away from midspan and towards the end 

support. This effect is not surprising if it is taken into count that the tridem axles make 

up almost 60% of the total weight. Maximum total moments of 233.1 and 244.5 kN m 

result into DAFs of 1.02 and 1.07 for vehicle speeds of 70 and 110 km h-1 respectively. 

 

 [FIG. 2 HERE] 

 

Fig. 3(a) shows the results of DAF versus relative position (d/L) and frequency ratio 

(FR) for the case of zero damping and two 5P-load truck models running in opposite 

directions on a simply supported beam. FR is defined as the ratio of the load circular 

frequency (c/L) to the first circular frequency (2πf1). If the ‘DAF-FR-d/L’ 

relationship was derived for two 1P-loads, DAF would be uniquely defined by these 

two ratios, FR and d/L, and it would be valid for all bridges with the same damping, 

regardless the span length. The pattern of local peaks of DAF in Fig. 3(a) is quite 

similar to the case of two 1P-loads meeting on a 1D simply supported beam shown by 

Brady and OBrien [12], in spite of the difference in number of P-loads and axle 

weight distribution. Each peak corresponds to a matching of effects of bridge natural 

frequency with the speed and relative spacing of the loads. Speed (proportional to FR) 

and the parameter d, can compensate for each other in achieving the time match of 
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constructive/destructive interference that results into these peaks. So, there are critical 

points when the time interval between the first and second tridems arriving at the 

center of the bridge is such that the local peak due to the bridge inertial forces 

amplifies the maximum static response of the bridge due to the second tridem. For 

d/L > 0.5, the first tridem has passed midspan before the second tridem has reached it, 

and there is a clear pattern of repeating peaks. Statically, this does not tend to be the 

most critical case but it is significant in statistical calculations of loading probabilities. 

For any given speed within this region, the peaks are of equal height as no damping 

has been considered. When damping is allowed for, the peaks corresponding to d 

values in excess of 0.5L, are reduced as might be expected. This is illustrated in Fig. 

3(b) for the same bridge, but 5% damping. As in the case of zero damping, there 

appears to be a pattern of peaks linked in pairs.  

 

 [FIG. 3 HERE] 

 

When a single 5-axle truck is modelled using a 10P-load model travelling over one 

lane of a 2D isotropic plate model, it is possible to evaluate the transverse variation of 

moments for a given longitudinal section. The longitudinal properties of the plate 

model are selected to match those of the 1D simulation in Fig. 2. Figs. 4(a) and (b) are 

the maximum total and the maximum static moments across the midspan section. Fig. 

4(c) is the ‘DAF-speed’ pattern for each transverse location of the midspan section. 

DAF is obtained dividing the z-ordinate of Fig. 4(a) by the corresponding ordinate of 

Fig. 4(b). The critical speeds causing large DAFs at midspan vary between 90 and 105 

km h-1 depending on the transverse location. 

 

[FIG. 4 HERE] 

 

DAF and maximum total moment are also obtained as a function of d/L and speed 

when two 10P-load models are driven over different lanes of a 25 m simply supported 

plate model with a 1.5% modal damping. Figs. 5(a) to 5(d) show the DAF and total 

moment values corresponding to three specific transverse locations within the bridge 

midspan cross-section, i.e., the bridge centreline and 6 m to the left and to the right of 

the bridge centreline. The critical static loading cases are those where the two trucks 

meet near midspan. So, Figs. 5(b), (d) and (f) show that the most important moments 

develop for d/L < 0.5. Hence it is reasonable to assume that the peaks of greatest 

interest are in the range of d/L  0.5, even although higher DAFs develop outside this 

region. It can be seen that maximum DAFs are normally associated to small values of 

total bending moments. In the d/L  0.5 region, there are two important zones: a peak 

in the interval 0.2  d/L  0.4 and FR between 0.14 and 0.16 (A FR of 0.15 is 

associated to a speed 𝑐 = 2𝑓1𝐿FR  = 2x4.09x25x0.15 = 30.7 m s-1 or 110.4 km h-1), 

and a peak at d/L = 0 corresponding to both tridems meeting at the centre and FR 

between 0.12 and 0.14 (A FR of 0.13 is associated to 96 km h-1). It can be seen that 

the simplified 1D P-load model of Fig. 1(a) used to generate Fig. 3(a) is sufficient to 
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capture the overall pattern due to a 2D P-load model. There are only small differences 

between Figs. 3(a) and 5(a) regarding the level of dynamic amplification and the 

transverse location under investigation.  

  

[FIG. 5  HERE] 

 

The maximum total moment generally decreases as the transverse location gets closer 

to the edges of the plate model. It is interesting to observe there is not an identical 

behaviour in the points symmetrically located with respect to the bridge centreline 

(Figs 5(a) and 5(d)). For the results of the transverse location in Figs. 5(a) and (b) and 

for any value of d/L larger than 0.8 (i.e., both tridems meeting far from the midspan 

section), there appears to be a constant value of total moment and DAF for a given 

vehicle speed (or FR), that does not appear in the symmetric transverse location given 

in Figs. 5(e) and (f). This region of constant values is due to the fact that the 

maximum total moment will occur when the tridem of the first vehicle is driving over 

the same lane where the bending moment is being investigated. Nevertheless, the 

symmetric transverse location will experience maximum moments when the tridem of 

the second vehicle drives over its side of the cross-section (Figs. 5(e) and (f)), leading 

to values affected by pre-existing vibrations induced by the first vehicle (only very 

large values of d/L could facilitate the bridge to completely damp the vibrations of the 

first vehicle out). This phenomenon of an initial vibratory condition of a bridge prior 

to traffic loading has been investigated in detail by Rattigan et al [21]. 

 

Fig. 6 illustrates the maximum static bending moment, maximum total bending 

moment and DAF versus d/L that has been found within a highway speed range (40 to 

120 km h-1). Here, DAF has been defined as the maximum total moment divided by 

the maximum static moment taking into count 7 transverse locations across the 

midspan section (i.e., at the bridge centreline and at 2, 6 and 7.5 m from the centreline 

on both sides). The maximum total and maximum static moments may not correspond 

to the same transverse location. It can be seen the largest moment takes place for d/L 

= 0, when both tridems meet at midspan, and the analysis in the following sections 

will focus on this critical meeting point. 

 

[FIG. 6 HERE] 

 

2.3 Influence of bridge length on DAF 

To encompass a typical range of designs and to analyse the influence of other axle 

spacing to span length ratios, two additional spans are considered, 17 m and 35 m, all 

15 m wide. The 17 m bridge was assumed to be of beam-and-slab construction, i.e., 

precast Y-beams with an in-situ slab [22,23], µ = 15000 kg m-1 and I = 0.49 m4 (f1 = 

5.82 Hz). The 35 m span was assumed to be of similar form but with super-Y beams 

(µ = 21750 kg m-1, I = 3.42 m4, f1 = 3.01 Hz). Due to the nature of Eq. (1), for a 

bridge with a given span length and a P-load meeting event with fixed axle spacings 

and axle weight distribution, the DAF-FR-d/L contour plots are identical regardless 
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the bridge section properties. I.e., if the 17 m bridge was assumed to be of solid 

construction (precast inverted T-beam with in-situ concrete fill), and the mass per 

meter and second moment of area were µ = 31875 kg m-1 and I = 0.77 m4 respectively 

(f1 = 4.99 Hz), the DAF-FR-d/L contour plot would be the same as the one given for a 

17 m beam-and-slab construction slab. When analyzing DAFs, the critical FR values, 

as opposed to critical speeds, have the benefit of remaining constant for a given span 

length. However, the critical speed associated to the dynamic peaks will vary since the 

two bridge types have different natural frequencies. I.e., in the 17 m bridge, a typical 

speed of 80 km h-1 corresponds to a FRs of 0.112 and 0.131 for the beam-and-slab and 

solid cross-sections respectively. Beam and isotropic plate models have been built for 

the 17 m solid slab, and the 17 m, 25 m and 35 m beam-and-slab simply supported 

bridges. Table 1 shows the values used in the four plate models under investigation. In 

all plate models, it has been assumed a 1.5% modal damping applied to all modes of 

vibration. 

 

[TABLE 1 HERE] 

 

Figs. 7(a) and (b) show the speeds causing higher DAF for the loading case 

corresponding to both tridems meeting at the center (d/L = 0) and the three bridge 

spans being analyzed using beam and plate bridge models respectively. Although a 1D 

beam model is too simple to find DAF directly, here it is shown to give a good 

approximation of the critical vehicle speeds found in isotropic plate models. Larger 

differences are expected between both models when allowing for a lower stiffness in 

the transverse direction than in the longitudinal direction and a higher influence of the 

transverse modes of vibration. These P-load based simulations can clearly save 

computational time for a series of more elaborate analyses to be focused on the 

critical speeds.   

 

[FIG. 7 HERE] 

 

For the case of the 35 m beam model, the maximum DAF is 1.09 and it takes place for 

FR = 0.129, corresponding to a critical speed of 98 km h-1. The 35 m plate model 

gives a maximum DAF of 1.07 for the same FR of 0.129 (98 km h-1). The 25 m bridge 

beam and plate models both have critical FRs of 0.130 which corresponds to a speed 

of 98 km h-1 (as result of covering for many possible transverse locations, the plate 

model also provides a second peak at 105 km h-1 that it is not as significant in the 

beam model) and although higher DAFs can be achieved at FR over 0.203 (speeds 

over 150 km h-1), they are unlikely to occur in a critical two-truck meeting event. In 

the 17 m bridge, both beam and plate bridge models identify an intermediate critical 

speed at about FR = 0.137. This FR corresponds to a vehicle speed of 84 and 98 km h-

1 for the solid and beam-and-slab cross sections respectively. Then, for the beam 

model, DAF decreases down to a point of about FR = 0.163, and then DAF increases 

again reaching at FR = 0.185 (corresponding to vehicle speeds of 113 km/h and 133 

km h-1 for the solid and beam-and-slab cross bridge sections respectively) the same 
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level of DAF as the intermediate critical FR of 0.137. For values of FR higher than 

0.185, the pattern shows a continuous increase in DAF in both beam and bridge 

models, so the speed limit is likely to define one of the critical speeds of the pattern.  

 

While Fig. 7 shows the DAF resulting from taking the maximum total and maximum 

moment across the plate width regardless its transverse location, Fig. 8 shows ‘DAF-

FR’ patterns for two individual transverse locations: the bridge centreline and 6 m 

from the centreline.  The critical speed is sensitive to the transverse location as it was 

observed for one 5-axle truck (Fig. 4). For both the 25 and 35 m bridges, the critical 

speeds for the centreline and 6 m from centreline locations are 100 km h-1 and 94 km 

h-1 respectively. In the case of the 17 m bridge, the intermediate critical FR for the 

centreline is 0.144 (88 km h-1  if a solid slab or 103 km h-1 if a beam-and-slab 

construction) while the other location has an intermediate critical FR of 0.134 (82 km 

h-1  and 96 km h-1 for solid slab and beam-and-slab constructions respectively). For all 

bridge lengths, there is a difference of about 6 km h-1 between the critical speeds 

associated to the two transverse locations. 

  

[FIG. 8 HERE] 

 

2.4 Influence of differences in vehicle speeds 

In Fig. 9(a), the meeting point is fixed at d/L = 0 and vehicle speeds (different for both 

vehicles) are varied for two trucks driving in opposite directions on a two-lane 25 m 

plate model. The DAF patterns of the first vehicle are shown for fixed speeds of the 

second vehicle of 55, 70, 85 and 100 km h-1 in Fig. 9(b). The ‘DAF-speed’ patterns 

are found to be very similar to those of both vehicles travelling at the same speed with 

the highest DAFs occurring for the fixed speed of 100 km h-1. This similarity in 

patterns is a result of the quasi-symmetric behaviour with respect to the 45º line that 

can be observed in Fig. 9(a). From Fig. 9(b), it is possible to obtain critical speeds for 

the first vehicle of 98, 105, 96, and 98 km h-1, when the speeds of the second vehicle 

are fixed to 55, 70, 85 and 100 km h-1 respectively. These values of critical speeds are 

very close to the 98 km h-1 obtained in Fig. 7 using the same speed in both vehicles.  

 

[FIG. 9 HERE] 

 

2.5 Influence of the road profile 

An articulated 5-axle sprung vehicle model and an isotropic plate of a 25 m bridge 

allowing for VBI, are used here to test the ability of the P-load model in predicting the 

critical speeds. The bridge has the mechanical characteristics defined in Table 1. The 

truck have the same axle spacing and weight distribution used throughout Section 2. 

The P-loads represent the static weights of the wheels (Fig. 1(b)) that should be 

located along the wheel path at each point in time. The ‘DAF-FR’ pattern suggested 

by the P-loads has been given in Fig. 4(c). Nevertheless, this pattern ignores the 

variation in dynamic forces caused by the interaction with the road surface and the 

bridge.  
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A truck FE dynamic model made of a set of lumped masses, springs and dampers is 

employed to assess how far the P-load critical speed is from the true critical speed. 

This vehicle model has 15 independent degrees of freedom: vertical displacement and 

rotations of the tractor body mass, rotations of the trailer body mass, and the vertical 

displacements of the 10 axle masses (Fig. 10). Static axle weights and axle spacings 

match those defined for the P-load model. A Montecarlo simulation is carried out 

varying the truck dynamic parameters based on assumed normal distributions for the 

suspension and tire systems as defined in Table 2 [24-27]. There are two types of 

suspensions and the values and variability are different for steer, drive and trailer 

axles. The dynamic interaction between bridge and truck is implemented in Matlab 

using an iterative procedure described by Green et al [6] and Cantero et al [28]. The 

iterative procedure has been found in agreement with an alternative VBI procedure 

based on Lagrange multipliers using MSc/NASTRAN [11], and it has been preferred 

because of its flexibility and savings in computational time. 

 

[FIG. 10 HERE] 

 

[TABLE 2 HERE] 

 

The magnitude of the vehicle forces strongly depends on the road unevenness. In this 

paper, the road profile is assumed to be a random process described by a power 

spectral density function that depends on the road condition and it is implemented 

using the inverse Fast Fourier Transform as described by Cebon and Newland [29]. 

The profiles are also passed through a moving average filter to emulate the tyre 

contact patch [27]. Values of the power spectral density function for each spatial 

natural frequency are adopted according to ISO specifications [30]. The road 

condition is characterised by the roughness coefficient a (m3cycle-1) or value of the 

spectral density at the spatial frequency discontinuity Ω =
2

1
cycle m-1. So, the 

intervals a < 8x10-6 and 8x10-6 ≤ a ≤ 32x10-6  fall within ‘very good’ and ‘good’ road 

classes respectively, which would be expected in well maintained highway surfaces. 

Fig. 11 illustrates one of the generated road carpets for a roughness coefficient of 

8x10-6 m3cycle-1. Each vehicle wheel has a path that is selected from the carpet. 

 

[FIG. 11 HERE] 

 

Profiles with roughness coefficients of 1x10-6, 4x10-6, 8x10-6, 16x10-6 and 32x10-6 

m3cycle-1 are used to obtain the bridge response to the single 5-axle truck event. 100 

m of approach length are allowed to initially excite the vehicle before entering the 

bridge. Therefore, 8384 different truck dynamics and road profiles are generated for 

each roughness coefficient a (a total of 41920 simulations for all five roughness 

coefficients being tested). The profile is varied in each simulation by randomly 

generating the array of numbers defining the phase of each road wavelength. This 
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variation is important because it is not only the height of the road irregularities but 

also its specific location on the bridge that affect the bridge dynamic response [31]. 

Figs. 12(a) and (b) show the results of the Monte Carlo simulation for the lowest and 

higher roughness coefficients respectively. Each point represents the ratio of the 

maximum total moment to the maximum static moment found at the midspan section. 

The solid line represents the mean pattern, which has been calculated using a moving 

average of 100 points. In spite of the variation in road irregularities and truck 

dynamics, there is a ‘DAF-speed’ pattern. This pattern is clearer for the smooth profile 

(Fig. 12(a)) that exhibits less scatter than the rough profile of Fig. 12(b)). Fig. 12(b) 

contains more uncertainty in the level of dynamic amplification due to a strong 

influence of road roughness and truck dynamics, but if there is sufficient number of 

points, an underlying mean pattern can still be detected.   

 

[FIG. 12 HERE] 

 

Fig. 13 compares the ‘DAF-speed’ pattern by P-load and sprung models for the five 

roughness coefficients under investigation. Although the level of dynamic 

amplification varies, the pattern remains and the critical speeds are only slightly 

shifted as the roughness coefficient varies. There is also a widening of the peaks as 

the road roughness increases. The height and location of the road irregularities will 

become more important in ‘DAF-speed’ patterns for poor profiles and short bridges. 

But for the 25 m bridge of Fig. 13, once the roughness coefficient remains below the 

‘good’ condition boundary, there is a critical speed of about 105 km/h using sprung 

models, that can be closely approximated by the P-load model (two peaks in the P-

load pattern with critical speeds of 99 km h-1 and 105 km h-1). It must be noted the 

similarities between the ‘DAF-speed’ patterns predicted by a P-load model for a 

single 5-axle truck (Fig. 13) and for a two 5-axle truck meeting event with d/L = 0 

(Fig. 7(b)). As the road profile gets poorer and the bridge span gets shorter, it is 

expected that the P-load model will gradually lose accuracy in the prediction of a 

pattern that will become governed by the road profile.  

 

[FIG. 13 HERE] 

 

Fig. 14 shows the bending moments at the midspan bridge centreline for a critical 

speed of 105 km h-1 due to the P-load model and to a random sprung model on the 

road carpet of Fig. 11. This figure illustrates why the P-load model is able to predict 

the pattern found in more complex VBI models with a ‘good’ road profile. The total 

moment by both models oscillate around the bridge static response. These dynamic 

oscillations may have different amplitudes depending on the road roughness and level 

of VBI, but for a given vehicle speed, the peaks of the oscillations hardly vary their 

location with respect to the location of the maximum static. As result, the P-load 

model is able to identify the speeds when the maximum dynamic peak develops over 

the location of the maximum static moment with the potential of leading to a large 

DAF. 



 

 15 

 

[FIG. 14 HERE] 

 

3.  Experimental testing 

 

Strain measurements due to the passage of traffic have been collected in a bridge 

located in Vransko, Slovenia, during the ARCHES project [17]. SiWIM [18] has been 

employed to provide vehicle speed, number of axles, weights and axle spacings for 

each traffic event using the strain measured under the bridge soffit. This modern 

Bridge Weigh-In-Motion system can also estimate the maximum static strain using a 

low-pass filter that removes the dynamic component of the measured strain. The ratio 

between maximum measured strain and maximum static strain gives a value of DAF 

for the crossing of each vehicle that can be used to obtain the mean ‘DAF-speed’ 

pattern of a particular truck population.  

 

3.1 Field measurements 

The bridge is a two-lane simply supported structure with traffic in opposite directions 

and 24.8 m span length. Single events of two modes of a 2-axle rigid truck population 

were selected for monitoring of their DAF and speed because of its high number of 

occurrences on the Vransko site. A total of 7603 and 8913 2-axle trucks were 

recorded for the light and heavy modes respectively between the 25th September 2006 

and the 21st November 2006 . Mean and standard values for axle spacings and weights 

are defined in Table 3.  

 

[TABLE 3 HERE] 

 

Fig. 15 shows the histograms of speed for the two truck modes under investigation. 

As expected, lighter vehicles tend to travel faster as shown by the higher number of 

occurrences of mode 1 over mode 2 between 100 and 120 km h-1. 

 

[FIG. 15 HERE] 

 

The points in Fig. 16 represent all the measured DAFs. The figure also shows the 

mean ‘DAF-speed’ pattern, which is obtained from averaging every 10 km h-1  while 

progressing in steps of 2 km h-1.  

  

[FIG. 16 HERE] 

 

It would be expected to have a better definition of the pattern in those speed regions 

where there is a more dense truck population (i.e., between 80 and 90 km h-1 

according to histogram of Fig. 15). Fig. 17 compares both modes for three sample 

sizes: the full sample size, and the first 2/3 and 1/3 of the sample entering the bridge. 

It can be seen how the pattern converges faster towards the pattern of the full sample 

in those intermediate speed regions with many truck occurrences. It is evident a 
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minimum number of trucks is needed to characterise the mean ‘DAF-speed’ pattern of 

a given sample and an extended measurement period would be needed to characterize  

the least frequent lower and upper speed ranges. It can also be observed there are only 

small differences in the ‘DAF-speed’ pattern of both truck modes. 

 

[FIG. 17 HERE] 

 

3.2 Theoretical and experimental critical speeds 

The mean values for axle spacing and axle weights from Table 3 are used as 

parameters for a 4P-load vehicle model representing the 4 wheels of a 2-axle rigid 

truck. An orthotropic bridge plate model is built based on the experimentally validated 

FEM of the Vransko bridge described by Cillian et al [32]. The longitudinal and 

transverse moduli of elasticity of the bridge model are 3.5x1010 and 1.4x1010 N m-2 

respectively, and the first longitudinal and transverse modes of vibration have 

frequencies of 5.32 Hz and 13.76 Hz respectively. Numerical simulations of the 

bridge response of the Vransko bridge model to moving P-loads are used to predict 

the critical speeds associated to the 2-axle truck using Eq. (7). The patterns due to the 

P-load model associated to the 2 modes under investigation are compared to those 

found experimentally in Fig. 18. For the heavy 2-axle truck mode, the P-load model 

correctly estimates the maximum critical speed in 87 km h-1, while for the light mode 

there is a small discrepancy with the P-load model giving a critical speed of 86 km h-1 

compared to the measured 89 km h-1. Other features of the pattern are recognised in 

the theoretical model, i.e., both experimental and theoretical patterns have a higher 

trough to the left of the central peak than the trough to the right of the DAF peak.  

 

[FIG. 18 HERE] 

 

The dynamic patterns of both truck modes are very similar but they appear slightly 

shifted with speed. The direction of the shift differs in the theoretical and 

experimental patterns. It must be noted that the population of the light truck mode is 

smaller than the heavy mode, and the measured mean pattern may not be as reliable as 

for the heavy mode. Therefore, there will generally appear differences between the 

measured and predicted pattern to some extent as a result of a limited sample size 

within some speed ranges, relatively large standard deviations of gross weights and 

their distribution (there will be a different ‘DAF-speed’ response for each specific 

vehicle), the road roughness, variations in the lateral position of the vehicle or 

discrepancies between the mathematical bridge model and reality. Nevertheless, it has 

been shown that a simulation model based on P-loads is a valuable tool to 

approximate the location of peaks and troughs found in an experimental pattern.  

 

4.  Conclusions 

 

When simulating the dynamic interaction between a vehicle and a bridge, there are 

many uncertainties involving parameters of difficult estimation on the field. A model 
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consisting of a series of moving constant point loads (P-loads) has been employed 

here to identify the critical speeds that place the bridge under highest total moment. 

This simple model only takes into count bridge dynamics, but if the road profile was 

relatively smooth, it can be used to predict the worst speed scenarios derived from 

complex VBI models or from bridge measurements.  

 

The values and spacings of the P-loads must be adjusted to be in agreement with the 

static weights and spacings of the vehicles being modeled. Contour plots of maximum 

dynamic amplification versus frequency ratio and normalized relative distance 

between trucks have been obtained using simulations of P-loads over two types of 

bridge models: a 1D beam and a 2D FE isotropic plate.  2D/3D bridge models are 

necessary to allow for the effect of the transverse position of the vehicle and to 

analyse the load effect at different transverse locations across the width. Nevertheless, 

it has been shown that a 1D beam model may provide a first approximation of the 

critical speeds. Critical meeting events of typical 5-axle trucks travelling in opposite 

directions have been simulated over four medium-span bridges. Truck speeds have 

been varied resulting into contour plots that reveal a clear pattern consisting of a 

series of dynamic peaks and troughs associated to different speeds and distances 

between trucks. As speed increases, the peaks tend to be wider and higher, i.e., more 

significant dynamics. This trend is limited by the maximum speeds to be expected on 

a motorway, and so, four main critical peak speeds have been identified within a 

motorway speed range. If a frequency ratio parameter relating vehicle speed and 

bridge frequency was employed, the resulting ‘DAF-FR’ pattern is found to be less 

sensitive to changes in span length than the ‘DAF-speed’ pattern. Therefore, for a 

given span length and traffic event, the critical speed will vary with the properties of 

the cross-sectional bridge, but the critical FR relating vehicle speed and bridge natural 

frequency will remain the same.  

 

Then, the critical speeds have been obtained for a more realistic scenario using 

complex spring-dashpot truck models and allowing for interaction with the road and 

the bridge. The bridge has been idealised as an isotropic plate model. The 5-axle 

vehicle has been modelled as a 15 degree-of-freedom model consisting of mass, rigid 

and spring elements. Truck dynamic properties have been varied using MonteCarlo 

simulation, and road carpets have been randomly generated using power spectral 

density functions as defined by ISO standards. A large sample of ‘very good’ and 

‘good’ ISO road profiles have been used to derive their associated ‘DAF-speed’ 

patterns. In order to compare results from the VBI model to the P-load approach, 

allowance has been made for accurate transverse location of the P-load model on the 

bridge. It has been shown that for medium-span bridges, the P-load model can predict 

the number of peaks and troughs in the pattern and those critical speeds once the 

spatial geometric mean remains within ‘very good’ and ‘good’ road classes. The 

smoother the profile, the more accurate the predicted ‘DAF-speed’ pattern becomes. 

For traffic events made of other vehicle configurations, the values and spacings of the 
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P-loads will need to be readjusted and the number of peaks and their location will 

clearly be different. 

 

Finally, a field trial has been carried out on a bridge in Slovenia with the aim of 

comparing the critical speeds that a P-load model would suggest to those measured on 

site. Maximum total strain, static strain, vehicle speed, weights and axle spacings have 

been collected using Bridge Weigh-In-Motion technology. This data has been used to 

obtain the experimental ‘DAF-speed’ patterns for two 2-axle truck populations. Then, 

a theoretical FE plate model of the bridge has been built based on bridge drawings and 

measurements, and a 4P-load model has been defined for each vehicle population 

based on the average measured wheel static weights and axle spacings. It has been 

shown how the experimental critical speeds have compared well with those peaks in 

the theoretical ‘DAF-speed’ pattern using a simple P-load model.  
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Fig. 1 – Simple P-load simulation of two 5-axle vehicles travelling in opposite directions: (a) beam 

model, (b) plate model.  

Fig. 2 – Midspan bending moment due to a single 5P-load truck crossing a beam model at different 

speeds: static (solid line), 70 (dotted line), 90 (dashed-dotted line) and 110 (dashed line) km h-1. 

Fig. 3 – Dynamic amplification factor due to two 5P-load trucks meeting on a 25 m beam model: (a) 

zero damping, (b) 5% damping.  

Fig. 4 – Bridge response at midspan due to a single 10P-load truck crossing a plate model: (a) total 

moment (kN m) - transverse location - speed, (b) static moment - transverse location, (c) DAF - speed - 

transverse location. 

 Fig. 5 – Transverse variation of DAF and total moment (kN m) within the midspan cross-section: (a) 

‘DAF-d/L-FR’ at 6 m to the left of the bridge centreline, (b) ‘Maximum total moment -d/L-FR’ at 6 m 

to the left of the bridge centreline, (c) ‘DAF-d/L-FR’ at the bridge centreline, (d) Maximum total 

moment -d/L-FR’ at the bridge centreline, (e) ‘DAF-d/L-FR’ at 6 m to the right of the bridge centreline, 

(f) Maximum total moment -d/L-FR’ at 6 m to the left of the bridge centreline. 

Fig.6 - Maximum static bending moment (dotted line), maximum total bending moment (solid line) and 

DAF (dashed line) values at midspan versus d/L for a meeting event on a 25 m plate model. 

Fig. 7 – Dynamic amplification factor versus frequency ratio for 17 m solid slab ( ), and 17 

m ( ), 25 m ( ) and 35 m ( ) beam-and-slab bridges: (a) two 5P-loads meeting 

on a beam model, (b) two 10P-loads meeting on a plate model. 

Fig. 8 – Dynamic amplification factors for midspan of 17 m solid slab ( ), and 17 m 

( ), 25 m ( ) and 35 m ( ) beam-and-slab bridges: (a) bridge centreline; (b) 6 m 

from bridge centreline. 

Fig. 9 – Dynamic amplification factor due to vehicles travelling at different speeds: (a) contour plot of 

DAF versus combinations of vehicle speeds, (b) sections for speeds of the second vehicle of 55 (dashed 

line), 70 (dotted line), 85 (dashed-dotted line) and 100 (solid line) km h-1. 
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Fig. 10 – Sprung vehicle model: (a) elevation, (b) front view.  

Fig. 11 – Road profile carpet. 

Fig. 12 – Individual outputs (dots) and mean pattern (solid line) resulting from Montecarlo simulation 

for two roughness coefficients: (a) a = 1x10-6 m3cycle-1, (b) a = 32x10-6 m3cycle-1. 

Fig. 13 – Dynamic amplification factor versus vehicle speed by P-load model ( ) and by VBI 

model for a variety of road roughness: a = 1x10-6 ( ), a = 4x10-6 ( ), a = 8x10-6 

( ), a = 16x10-6 ( ) and a = 32x10-6 ( ) m-3cycle-1. 

Fig. 14 – Midspan static and total bending moments due to 5-axle truck event modelled as 10P-loads 

and as a sprung model: static (dashed line), total due to P-loads (solid line) and total due to VBI model 

(dotted line). 

Figure 15 – Speed histogram for 2-axle truck population: 1st mode ( ), 2nd mode ( ). 

Figure 16 – Measured DAF () and mean ‘DAF-speed’ pattern (__x__) for 2-axle trucks: (a) 1st mode, (b) 

2nd mode.  

Figure 17 – Influence of the sample size on the pattern: full sample of 1st mode (--Δ --), 2/3 of 1st mode 

sample (--•--), 1/3 of 1st mode sample (----), full sample of 2nd mode (__Δ__), 2/3 of 2nd mode sample 

(__•__) and 1/3 of 2nd mode sample (__ _).  

Figure 18 – ‘DAF-speed’ patterns:  theoretical 1st mode (---), theoretical 2nd mode (___), experimental 1st 

mode (-•-•-) and experimental 2nd mode (_x_ x_). 

 

 

Table 1 Characteristics of the bridge plate models 

Table 2 Parameters of 5-axle truck simulation 

Table 3 Weigh-In-Motion data on 2-axle truck population 

 

 

 

 

 

 


