
Dynamic Computation of
Connectivity Data

Jon Arild Ekberg Meyer

Master of Science in Communication Technology
Submission date: February 2019
Supervisor: Peter Herrmann, IIK
Co-supervisor: Ergys Puka, IIK

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Dynamic Computation of Connectivity Data

Student: Jon Arild Ekberg Meyer

Problem description:

In the Intelligent Transport Systems (ITS) domain, the connectivity in certain
places is important since, of course, data can only be exchanged between vehicles
and their infrastructure (Vehicle-to-Infrastructure) if the cars have a wireless
connection. To make decisions in certain ITS applications and data forwarding
strategies, it is important with in-depth knowledge about the connectivity on the
road network. With this information, cars can for instance make decisions whether
to use V2I communication or use other cars as a relay (V2V – Vehicle-to-Vehicle)
in areas of low connectivity. This knowledge must be up-to-date since connectivity
may change dynamically and unpredictably.

In this master thesis we will develop a system in which cars regularly transmit
connectivity data to an external server that constantly aggregates the connectivity
status in certain areas. On request, the data for an area shall be transmitted to
the cars. This will then allow cars to make decisions about the best way to handle
communication in areas of low connectivity, e.g. dead spots.

As a platform, Android devices will be used in the cars. An app will be developed
for the Android platform that can perform various measurements regarding the
current connectivity (e.g. signal strength, round trip delay and bandwidth).
Different metrics to express the connectivity will be tested and chosen based on
what is feasible for the available equipment and appropriate for the application
domain.

A server application will be connected to the Android app (the client) using socket
programming. It will store measurements received from clients in a relational
database (spatial database tools/extensions might be used since clients will collect
location data) and aggregate these measurements into simpler information based
on the chosen metrics. This information can then be utilized by the clients for
communication decision making as described above.

Responsible professor: Peter Herrmann, IIK

Supervisor: Peter Herrmann, IIK

Co-supervisor: Ergys Puka, IIK

Abstract

The performance of the underlying communication technology plays an important
role in Vehicular Networks (VNs). Strict requirements must be met in order to
ensure necessary safety and robustness, as well as to provide user satisfaction. In
reality, however, the available connectivity performance often does not meet these
requirements. For instance, in rural areas the mobile network may still be using
2G or 3G technology, and dead spots can be present. In this thesis we focus on
the mobile network as the mode of communication in VNs, with emphasis on such
dead spots.

A client-server solution where connectivity data from sampling clients is processed
has been developed. Connectivity data is collected using Android devices and
uploaded to a central server. The devices may be used in different means of
transport, such as cars or bicycles as well as by pedestrians. In real-time, the server
processes and aggregates the data into structured data formats, which is also
presented as graphs and geographical maps showing dead spots and other areas of
low connectivity. These aggregated forms of data can then be requested by the
means of transport, which can use the data to decide where to communicate and
with which quality of service.

To build and test the system, we sampled data from two different geographical
areas of Norway: Lofoten and Trondheim. Over 130 000 samples were collected
from various types of networks. An in-depth analysis of these samples is provided.
The resulting system is a scalable solution for handling large volumes of
connectivity data from a multitude of sources.

Sammendrag

Ytelsen til den underliggende kommunikasjonsteknologien spiller en viktig rolle i
Vehicular Networks (VNs). Strenge krav må oppfylles for å sikre nødvendig
sikkerhet og robusthet, i tillegg til å gi brukertilfredshet. I virkeligheten er det
derimot ofte slik at tilgjengelig ytelse ikke oppfyller disse kravene. For eksempel,
i distriktene kan mobilnettet fortsatt være basert på 2G- eller 3G-teknologi, og
dødsoner kan forekomme. I denne oppgaven fokuserer vi på mobilnettet som
kommunikasjonsmodus i VNs, med vekt på slike dødsoner.

En klient-server-løsning der mobilnettverksdata leveres av målende klienter har
blitt utviklet. Nettverksdata blir samlet inn ved bruk av Android-enheter og lastet
opp til en sentral server. Enhetene kan brukes i forskjellige transportmidler, som
biler og sykler, men også av fotgjengere. I sanntid prosesserer og aggregerer
serveren dataene om til strukturerte dataformat, som også kan presenteres som
grafer og geografiske kart som viser dødsoner og andre områder med dårlig
forbindelse. Transportmiddel kan deretter forespørre disse aggregerte formene av
data, og bruke dem til å avgjøre hvordan det skal kommuniseres og med hvilken
tjenestekvalitet.

For å bygge og teste systemet ble det gjort målinger fra to forskjellige geografiske
områder i Norge: Lofoten og Trondheim. Over 130 000 målinger ble samlet fra
forskjellige typer nettverk. En dybdeanalyse av disse målingene er gitt. Det
resulterende systemet er en skalerbar løsning for å håndtere store volum av
måledata fra forskjellige typer kilder.

Preface

This master thesis was carried out by Jon Arild Ekberg Meyer during the fall
semester of 2018 into the beginning of 2019. It is the final work of the Master of
Science program in Communication Technology at the Department of Information
Security and Communication Technology at Norwegian University of Science and
Technology. Peter Herrmann acted as responsible professor and supervisor of the
project. Ergys Puka acted as co-supervisor of the project.

I would like to thank both Peter and Ergys for all feedback for the entire duration
of the project, both to practical work and to writing. Our meetings, described as
“longer than usual”, have been intriguing and of great value to my work. I’d also
like to thank my mother, Anne Ekberg Meyer, for familiarizing herself with the
client application I developed in the project, and then providing more than half of
the sample data of the entire project.

Contents

List of Figures ... xiv

List of Tables ... xvi

List of Acronyms ... xviii

Chapter 1 – Introduction ... 1

1.1 Problem area ... 1

1.2 Problem description and focus .. 1

1.2.1 Improving routing decisions and safety ... 2

1.2.2 Smarter media buffering ... 2

1.3 Methodology .. 4

1.4 Report structure .. 4

Chapter 2 – Background .. 5

2.1 Mobile network types ... 5

2.2 Vehicular Networks .. 6

2.3 Dead spots ... 6

2.4 Network measurements .. 7

Chapter 3 – Related work .. 9

3.1 A Way to Measure and Analyze Cellular Network Connectivity on the
Norwegian Road System .. 9

3.2 Message Forwarding between Vehicles in Dead Spots 9

3.3 Vehicular Communication Systems: Enabling Technologies,
Applications, and Future Outlook on Intelligent Transportation 10

3.4 NorNet project ... 11

3.5 Crowdsourced projects ... 11

3.6 Summary of related work ... 12

Chapter 4 – Design and implementation ... 13

4.1 Client application... 15

4.1.1 Measuring signal strength... 16

4.1.2 Measuring location ... 16

4.1.3 Measuring bandwidth ... 16

4.1.4 Probe traffic measurements .. 17

4.1.5 Using the application ... 22

4.2 Server application .. 24

4.2.1 Receiving and storing measurements .. 25

4.2.2 Aggregating measurements ... 26

4.2.3 Network performance model ... 28

4.2.4 Defining dead spots .. 29

4.2.5 Algorithm for finding dead spots .. 30

4.2.6 Providing connectivity information... 32

4.3 Tools and libraries ... 36

Chapter 5 – Results and discussion ... 39

5.1 Issues ... 39

5.1.1 Bandwidth measuring issues ... 39

5.1.2 Software library issues .. 40

5.1.3 GPS positioning issues ... 40

5.2 Collected data .. 41

5.2.1 Sample distribution between network types 42

5.3 Metric distributions ... 44

5.3.1 Round-trip time ... 44

5.3.2 Signal strength ... 47

5.4 Metric correlations ... 49

5.4.1 Findings for EDGE networks ... 50

5.4.2 Findings for HSPA networks .. 51

5.4.3 Findings for LTE networks .. 51

5.4.4 Summary of metric correlations .. 53

5.5 Dead spot algorithm outputs .. 53

5.5.1 Example with performance threshold .. 54

5.5.2 Example with gaps ... 55

5.5.3 Example with performance threshold and gaps 56

5.6 Server application scalability .. 57

Chapter 6 – Conclusion .. 59

Chapter 7 – Future work ... 61

7.1 Improving positioning .. 61

7.2 Improving network performance models ... 61

7.3 Security and message prioritization .. 61

7.4 The future role of 5G ... 62

References... 63

Appendix A – Source code ... 69

List of Figures

Figure 1.1: Adaptive streaming [3] ... 3

Figure 4.1: Architectural overview ... 13

Figure 4.2: Architecture from client point of view .. 15

Figure 4.3: Probe packet structure... 18

Figure 4.4: IPDV example ... 20

Figure 4.5: Android app interface .. 22

Figure 4.6: Server application overview ... 24

Figure 4.7: Database ER-model ... 25

Figure 4.8: Performance threshold example.. 29

Figure 4.9: Gap dead spot, a GPS (and possibly mobile network) dead zone in a

tunnel ... 30

Figure 4.10: Different components in dead spot finding algorithm 31

Figure 4.11: Example output for a map of a specified trip id............................ 34

Figure 4.12: Example output of a graph .. 35

Figure 5.1: Example of trip with poor positioning accuracy.............................. 41

Figure 5.2: Map of sample data from Lofoten area ... 42

Figure 5.3: High RTT in short timeframe .. 44

Figure 5.4: High RTTs reflected in performance function 45

Figure 5.5: RTT distribution for EDGE networks.. 46

Figure 5.6: RTT distribution for HSPA networks .. 46

Figure 5.7: RTT distribution for LTE networks ... 47

Figure 5.8: GSM ASU level distribution (EDGE) .. 48

Figure 5.9: GSM ASU level distribution (HSPA) ... 48

Figure 5.10: LTE ASU level distribution (LTE)... 49

Figure 5.11: Round-trip time (average, ms) as a function of LTE ASU 52

Figure 5.12: Round-trip time (average, ms) as a function of jitter (ms) (LTE) . 52

Figure 5.13: Dead spot algorithm output example 1 ... 54

Figure 5.14: Dead spot algorithm output example 2 ... 55

Figure 5.15: Dead spot algorithm output example 3 ... 56

List of Tables

Table 3.1: VC-enabled applications and their characteristics (excerpt) [19] 10

Table 4.1: Average round-trip time for different periodic send intervals 21

Table 4.2: Latency for different network generations [12] 27

Table 5.1: Sample distribution between network types..................................... 42

List of Acronyms

3GPP The 3rd Generation Partnership Project.

ASU Arbitrary Strength Unit.

CDMA Code-division multiple access

DBMS Database Management System.

DSRC Dedicated Short Range Communication.

EDGE Enhanced Data rates for GSM Evolution.

GPS Global Positioning System.

GSM Global System for Mobile communications.

HSDPA High Speed Downlink Packet Access.

HSUPA High Speed Uplink Packet Access.

HSPA High Speed Packet Access.

HSPA+ Evolved High Speed Packet Access.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IIK Department of Information Security and Communication Technology.

IPDV IP Packet Delay Variation.

ITS Intelligent Transportation Systems.

JSON JavaScript Object Notation.

RAN Radio Access Network.

REST Representational State Transfer.

RTT Round-trip time.

SQL Structured Query Language.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

V2I Vehicle-to-Infrastructure.

V2V Vehicle-to-Vehicle.

V2X Vehicle-to-Everything.

VANET Vehicular ad-hoc network.

VN Vehicular Network.

1

Chapter 1 – Introduction

1.1 Problem area

The work of this thesis falls within the domain of Intelligent Transportation
Systems (ITS). ITS combines information and communications technology (ICT)
with the conventional world of transportation infrastructure. It has been developed
and deployed over the past few decades to improve transportation safety, reduce
environmental impact, promote sustainability and enhance productivity [1]. The
rate of advances in technology of today in combination with an increasing concern
for the environment of the planet makes ITS a highly relevant field of research.

1.2 Problem description and focus

With the development of ITS, infrastructure plays an increasing role in
communication with vehicles. In a sophisticated scenario, routing, velocities of
vehicles and distances between vehicles could be suggested by the infrastructure
based on traffic conditions. This requires vehicles to have a wireless connection to
the infrastructure, e.g. through the mobile network or with Dedicated Short Range
Communication (DSRC). DSRC provides wireless communication capabilities for
transportation applications within a 1000 m range in highway speeds [2]. The work
of this thesis is concerned with the former: the mobile network.

Throughout the mobile network, network performance will vary depending on
coverage, but also the condition of the underlying network. Poor performance can
still be experienced with excellent signal strength if the network is congested.
Knowledge and mapping of such poor (and good) network conditions is, of course,
of great value to vehicle communication. Additionally, coverage mapping of the
mobile network alongside the road could be useful for other interest groups, such
as telecom companies. This information must be up-to-date, since network
conditions can change dynamically and unpredictably. The focus of this thesis is
as such developing a system that can provide vehicles with real-time connectivity
information and identify areas with poor network performance.

There are many applications in ITS where vehicles communicate with each other,
the infrastructure or a combination of both. Examples are intersection
management, remote diagnosis/repair warnings, road conditions and media
downloads. In the following sub sections, we present a few examples of how the
work of this thesis could be used in real-world scenarios.

2

1.2.1 Improving routing decisions and safety

With knowledge about a poor connection area in advance, systems for ad-hoc
communication can be selected for use earlier. A car does not need to sense the
network state itself before deciding whether to communicate with infrastructure
or directly with other vehicles. Information about potential hazards on the road,
such as a traffic accident or an icy road, could then potentially be delivered faster.

If the mobile network is unavailable, being aware that direct communication with
other vehicles is the only usable option could have other implications to safety.
Without information also delivered from the infrastructure network, a car should
operate safely within the latency constraints implied by ad-hoc communication.
For instance, a self-driving car could adjust its speed accordingly.

1.2.2 Smarter media buffering

Adaptive streaming protocols (MPEG-DASH, HLS, …) are used by many media
content providers today to deliver audio and video. In adaptive streaming the
quality of for instance a video will be lowered if the client has a low bit rate. Users
are more willing to accept a few minutes of bad quality video rather than an
interrupted experience [3]. Also, to conserve bandwidth, only a certain amount of
content will be buffered at a time. If the user decides to close a video before
finishing watching it, downloading the entire video would be a waste. Adaptive
streaming is illustrated in the following figure.

3

Figure 1.1: Adaptive streaming [3]

In an area of very poor or no connectivity at all, even worst quality of content will
not be delivered to the user. This is the case with mobile network dead spots.
With prior knowledge of a dead spot, bandwidth can be utilized in a smarter
manner to ensure a richer user experience with no interruptions. For instance, part
of the bandwidth before the dead spot can be used for buffering more content.

4

1.3 Methodology

A client-server software architecture is used. Cars are equipped with Android
devices sensing the network performance of the current mobile network, measuring
various performance metrics such as signal strength, round-trip time and packet
loss. These measurements are uploaded to a server that processes them. Upon
request, the server provides network performance information of specified
geographical areas, by using the earlier measurements provided by other cars.

1.4 Report structure

Chapter 2 presents background material of relevance to studying the rest of the
chapters.

Chapter 3 presents and summarizes related work.

Chapter 4 describes the design and implementation of the developed software. A
sampling client application is first presented, then the server application that
receives and processes these samples.

Chapter 5 contain results and discussion. Issues faced during practical work are
first shown. Then, a statistical analysis of results is performed and discussed.
Application scalability is also addressed here.

Chapter 6 is the conclusion of the thesis work.

Chapter 7 contains proposed future improvements to our work.

5

Chapter 2 – Background

This section provides background knowledge for the problem area. As we
throughout the thesis perform network measurements in mobile networks,
knowledge about different types of mobile networks and how they have developed
is useful. Vehicular Networks (VNs) are an important part of network
communication in the ITS domain and are also shortly introduced. Mobile network
dead spots are then discussed, as we have a need of identifying them in this thesis.
Lastly, different techniques for measuring network performance are introduced.

2.1 Mobile network types

Global System for Mobile communications (GSM) and Code-division multiple
access (CDMA) are different channel access methods in mobile networks, where
GSM is dominating the market share. Measurements performed in this thesis are
done purely in GSM networks, and CDMA technology is therefore not addressed.
However, note that a variant of CDMA (WCDMA) is used in Universal Mobile
Telecommunications System (UMTS), a GSM 3G technology.

The 3rd Generation Partnership Project (3GPP) is a collaboration between several
telecommunication standard associations. The scope of 3GPP [4] includes:

• GSM and related 2G and 2.5G standards
• UMTS and related 3G (and 3.5G) standards
• Long-Term Evolution (LTE) and related 4G standards
• Next generation and 5G standards

2G technologies became available in the 1990s, being enhanced with packet-data
capabilities into so-called 2.5G. Enhanced Data rates for GSM Evolution (EDGE)
is considered a 2.5G standard. 3G requirements were specified by the International
Telecommunication Union (ITU) as part of the International Mobile Telephone
2000 project. Enhancements to 3G standard were later made, being 3.5G
technologies. The first enhancement was High Speed Downlink Packet Access
(HSDPA). It was introduced in 3GPP Release 5, followed by High Speed Uplink
Packet Access (HSUPA) in 3GPP Release 6. The combination of HSDPA and
HSUPA is referred to as High Speed Packet Access (HSPA). HSPA+ (HSPA
evolution, evolved HSPA) came in Release 7 with further improvements in later
releases.

6

LTE was developed to ensure continuity and competitiveness of the 3G system,
not being part of the fourth-generation mobile systems (4G). Further
enhancements to LTE led to LTE-Advanced, that completely fulfilled the
requirements set by ITU for 4G. Further enhancements to LTE-Advanced came
in 3GPP Release 13 and 14, known as LTE-Advanced Pro.

3GPP Release 15 saw the delivery of the first 5G specifications, including new
work as well as the maturing of the LTE-Advanced Pro specifications. Release 16
will be the second phase of 5G and was completed in December 2019 [5].

2.2 Vehicular Networks

ITS involve both traffic management and vehicle communication capabilities.
Regarding communications, Vehicular Networks (VNs) are wireless networks that
support transportation safety, transportation efficiency, and user services delivered
to the vehicle. VNs are divided into two forms of communication, Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I). The combination of V2V and
V2I is commonly referred to as Vehicle-to-Everything (V2X) [6]. The solution
discussed in this thesis uses V2I communication, but also seeks to aid in V2V
communication, as cars can for instance switch to V2V if the connection to the
infrastructure is poor.

2.3 Dead spots

Places where mobile networks fail to provide successful communication is often
referred to as dead spots in literature [7] [8]. These dead spots may occur due to,
for example, mobile devices being out of range of any cellular towers or the wireless
signal being blocked by some material in the surroundings of the device (e.g. in a
tunnel or a building). Mobile and Wi-Fi networks are often arranged to primarily
serve inhabited areas but not the roads in between, particularly, when these are
minor [9]. Dead spots or poor mobile signal strength more frequently occurs in
rural areas.

A different way to think of dead spots is also based on the area of application. As
we will see in the next chapter, certain security related applications of vehicles
have very strict latency requirements. The delay of the Radio Access Network
(RAN) is much larger in for instance 2G networks than 4G networks [10] [11], and
this delay alone may already exceed the requirements of such security related
applications. That means, an area with only 2G access could be considered a dead
spot even if the signal strength is satisfactory in that case.

7

It is also important to note the dynamic nature of dead spots. A breakdown in
infrastructure because of a natural disaster could cause connectivity to change
drastically. More commonly though, in the case of packet-switched networks,
performance may vary because of network congestion. The real performance of the
network will vary by network configuration, the radio environment of the location,
the device in use, and number of active users [12].

2.4 Network measurements

Measuring network performance is not a new phenomenon and is a wide area of
research. Several research projects are available with different purposes regarding
this subject [13] [14]. Network performance measuring can be divided into two
categories: active and passive measurements [15] [16]. Passive measurements are
carried out by observing network traffic flows and do not add to network traffic.
It is well suited for traffic engineering, showing flow dynamics and distribution.
But obtaining end-to-end measurements with passive measurements is hard as
presence of traffic between to measurement points cannot be ensured and matching
measurements from different nodes is challenging.

Active measurements are on the other hand well suited for end-to-end
measurements in a network and more feasible to implement in a client/server
architecture (as we have in this thesis). As opposed to passive measurements, with
active measurements probe packets are sent into the network and thus adds to
the network traffic, potentially affecting the results.

Common metrics measured actively are:

• One-way delay
• Round-trip time
• Delay variation (commonly referred to as jitter)
• Packet re-ordering
• Packet loss
• Bandwidth

One-way delay measuring requires clock synchronization, as do most techniques
for measuring delay variation. This is a complex problem that can be solved by
using Global Positioning System (GPS) cards, radio clock receivers, or with
Network Time Protocol (NTP) servers. Other metrics listed here generally do not
imply constraints to the clocks of the end-systems.

8

For Transmission Control Protocol/Internet Protocol (TCP, TCP/IP) networks,
TCP throughput is in [8] mentioned as a key bandwidth-related metric. TCP
throughput is of interest to end users as TCP carries most of Internet traffic.
Defining TCP throughput is however difficult, as several factors may influence it.
This includes transfer size, number of competing TCP connections, socket buffer
sizes, congestion along the reverse path, as well as variations in TCP
implementations. Bulk transfer capacity defines a metric that represents the
achievable throughput by a TCP connection, and is described by RFC 3148 [17].

9

Chapter 3 – Related work

There are multiple theses written at the Department of Information Security and
Communication Technology (IIK), NTNU regarding communication in Vehicular
Networks. Achieving V2V communication using peer-to-peer communication such
as Wi-Fi Direct has been explored [18], among other topics. Solutions for
measuring mobile network performance already exist, some also developed at IIK
[9]. There are several mature, existing projects available where the mapping of
network performance is the main objective. Identifying network performance
constraints is an important subject in Vehicular Communications for the security
of autonomous cars.

3.1 A Way to Measure and Analyze Cellular Network
Connectivity on the Norwegian Road System

This paper [9] was written in 2017 at NTNU in collaboration with the Norwegian
Public Road Administration (NPRA). The authors present a possible solution to
collecting connectivity-data on the Norwegian road network on a big scale.
Vehicles are equipped with Android devices that measure different network
performance metrics, for instance round-trip time and signal strength. This data
is then stored locally on the device together with GPS data of the location where
measurements were performed. After completing measurements, the device can
then be connected to a computer where the measurements can be uploaded and
analyzed.

3.2 Message Forwarding between Vehicles in Dead Spots

As stated in [9], hybrid networks are a highly relevant research and development
topic for academia, governments, automotive companies, and other stakeholders.
They will combine mesh and cellular networks to utilize bandwidth efficiently.
This master thesis by Jakobsen [18] (also written at IIK) uses such hybrid
networks by showing how vehicles can switch to using vehicular ad-hoc networks
(VANETs) in dead spots, to maintain the ability to forward important security
messages between vehicles. The outlined solution uses Wi-Fi Direct in Android
devices to accomplish this. It also discusses how a good power saving algorithm is
essential to such a solution, as it is meant to be a full-time working system.

10

3.3 Vehicular Communication Systems: Enabling
Technologies, Applications, and Future Outlook on
Intelligent Transportation

In [19], several practical applications of VNs are presented along with potential
latency requirements for each application. A small excerpt of the table presented
in the article is given below. Note how safety-oriented applications like pre-crash
sensing much lower latency requirements (50 ms) than user services like media
downloads (500 ms).

Application
name

Communication Latency Other
requirements

Hazardous
Location Warning

Ad hoc,
infrastructure I2V,
V2V

100 ms High priority

Pre-Crash Sensing AD hoc
V2V

50 ms Range: 50 m

Media Download Infrastructure;
cellular, other
broadcast network

500 ms Internet access
Server availability

Table 3.1: VC-enabled applications and their characteristics (excerpt) [19]

In “5GCAR Scenarios, Use Cases, Requirements and KPIs” [20] several safety-
oriented use-cases are also identified, with very strict latency and reliability
requirements (less than 30 ms for all use-cases). The goal of the 5GCar project is
to contribute to the specification of 5G to become a true enabler of V2X
applications that are not realizable of today due to shortcomings of current
communication networks.

11

3.4 NorNet project

NorNet is a platform for experimental networking research. It is built and operated
by the Simula Research Laboratory and financed by the Research Council of
Norway [21]. NorNet Edge consists of a large number of nodes geographically
spread across Norway, able to perform complex measurement experiments.
Simultaneous access to mobile broadband connections from multiple operators is
provided. Real-time visualizations from NorNet Edge are publicly available and
provide, among other metrics, round-trip time and packet loss rate across multiple
ISPs. On their website, several publications are listed where the NorNet platform
has been used for coverage testing while driving. Simula’s Center for Resilient
Networks and Applications (CRNA) publishes annual reports about the current
state of Norwegian mobile networks based on measurements obtained using the
NorNet infrastructure [22].

3.5 Crowdsourced projects

There are several publicly available crowdsourced projects for mapping mobile
network coverage. The main issues with such crowdsourced solutions are the lack
of repeatability and having no control or knowledge about the measurement
equipment. On the other hand, they are generally end-user-friendly which means
more people can contribute measurements and thus offers very large amounts of
data.

Two examples of such projects are OpenSignal and Mobiperf. As opposed to drive-
testing with expensive test equipment, users’ smartphones are used for performing
measurements. OpenSignal claims to receive data from more than 100 million
devices worldwide, and capture over 3 billion measurements per day [23]. Network
operators have criticized OpenSignal for being limited and non-scientific, not
reflecting geographical coverage and only providing large amounts of data for
downtown areas [24].

12

3.6 Summary of related work

ITS systems must work under tough latency constraints and ensure both security
and user satisfaction. Studying network performance is a well-established area of
research, and how measurements should be conducted is well-defined. Despite the
increased interest in VNs and the ITS field in general, there seems to be little
focus on the role of low connectivity areas in a future ITS world. This also applies
to the dynamic nature of networks, and that cars need updated information in
real-time. The authors were not able to find related work with a similar
methodology in the same problem area.

13

Chapter 4 – Design and implementation

Our centralized solution for handling connectivity information for vehicles are
based on a client-server architecture. The clients perform measurements using
Android devices and transmit them to a server that processes the data. Cars on
the road network with an internet connection can then request connectivity
information for a given location from the server. While the intended user of the
system is a car, practically any device with an Internet connection can utilize it.
The general architecture is illustrated in the following figure.

Figure 4.1: Architectural overview

Cars have their own complex computer systems, and most modern ones have their
own SIM-cards. However, building the system around the computer systems of
cars requires special insight, and could also limit the areas of use of the system.
Android is a mature and widespread platform, that already in 2015 had over 1
billion devices using it [25]. With using Android devices, measurements can also
be obtained by other mediums than cars, such as trains or bicycles.

14

Android equipment was handily available, and a similar app which could be used
as a basis for development already existed from the work in [9]. Based on the
authors existing experience with app development on both Android and iOS
(iPhone) devices, iOS would not be well suited for this project due to APIs being
more closed and that distributing an unsigned app only for research purposes is
timelier and more difficult. However, it should be entirely possible to develop a
similar app for the iOS platform if necessary.

Our centralized server approach provides more accurate dead spot information
than the Vehicle-to-Vehicle methods we have investigated. Samples from several
cars over a long period of time can be utilized, as opposed to only recent data from
cars in proximity. Note how with our approach every vehicle potentially benefits
from every measurement ever made for a certain location.

However, this architecture comes with the cost of running a server and a cost of
data traffic flowing to the server using the available mobile network. As the server
must handle large amounts of data from potentially many cars, this is not a
negligible cost. A general problem of the client-server architecture is also having
a single point of failure. Server reliability and availability are however not the
focus of the thesis.

The centralized data may be of value to other interest groups. As mentioned in
chapter 3, IIK has for instance already co-operated with the Norwegian Public
Road Administration for measuring connectivity on the Norwegian road system.
Telecom companies have access to the infrastructure to perform their own
measurements for connectivity, but the data from our application could perhaps
also be of interest if reaching a certain scale.

15

4.1 Client application

The task of the client application is to perform measurements of the performance
of the mobile network and upload them to the server application. As mentioned,
the chosen approach for the client is developing it for Android platform. In section
2.4, we introduced metrics that are commonly measured actively, such as round-
trip time and packet loss. A subset of these metrics has been implemented in the
application. As will be explained, some metrics required the development of a
measurement server to which probe packets could be sent to. With this additional
component, the architecture from a client perspective is presented in the following
figure.

Figure 4.2: Architecture from client point of view

Parameters measured by the client application are:

• Signal strength
• Location
• Bandwidth
• Round-trip time (RTT)
• IP Packet Delay Variation (IPDV)
• Packet loss

Further details about parameters, their motivation and how they are implemented,
and the use of the measurement server, are presented in the following sub-chapters.
Lastly the interface of the application and how the application is used is shown.

16

4.1.1 Measuring signal strength

Data communication in a mobile network is done wirelessly, and the signal
strength may therefore affect the achieved performance.

Android offers access to detailed information about the current mobile connection,
such as network type (e.g. EDGE, HSPA and LTE) and signal strength. The
Arbitrary Strength Unit (ASU) expresses signal strength as an integer. In GSM
networks, the Received Signal Strength Indicator (RSSI) is used for calculating
ASU. While in LTE networks, the Reference Signal Received Power (RSRP) is
used. In the first case the ASU ranges from 0 to 31, and in the second from 0 to
97. In both cases a value of 99 indicates the signal strength could not be
determined. This information can be found in the relevant Android source code
[26] [27], where it is also indicated that this is based on the technical specifications
of 3GPP. We have implemented measuring of both the GSM ASU level and the
LTE ASU level. CDMA mobile telephony standards are not covered.

4.1.2 Measuring location

The measurements obtained for the other listed parameters must of course be
paired with the current location of the device. Determining location is done using
the Fused Location Provider API, which provides simple methods of obtaining an
Android device’s position given a specified quality [28]. In our case we request the
highest accuracy possible and a frequent updating of position at a 1000 ms interval.
GPS is the underlying technology used by this Android API in our case.

4.1.3 Measuring bandwidth

Bandwidth is notably more important when transferring larger amounts of data,
such as when streaming media content. The available bandwidth limits the quality
of the content the user receives. The Android API offers reading of total number
of bytes received over all interfaces through “Android TrafficStats”. Bytes received
are measured at the network layer, including both TCP and User Datagram
Protocol (UDP) usage [29].

Bulk transfer capacity, as described in section 2.4, is not possible to measure
correctly using only this data, as we would need to know of retransmissions and
TCP traffic only. What we can measure with the Android API though, is bytes
received (as described above) over time. Facebook have developed a library,

17

“Network Connection Class”, for classifying user’s internet connection and this is
also what they use in their implementation [30]. They refer to this measurement
as the “downstream bandwidth”. To obtain a more accurate measurement, there
needs to be some traffic to the smart phone during the sampling period. To achieve
this, we issue downloads of a fixed-size file of 10 MBs from an external web server.

4.1.4 Probe traffic measurements

Measurements for RTT, IPDV and packet loss are obtained by sending probe
packets to a separate measurement server. Note that it is purely implemented for
performing client measurements. When the term client-server is used for our
general system architecture, the measurement server is not the indicated server.

RTT limits how fast a response can be generated for a request and is therefore
important for establishing connections. This makes round-trip time a key metric
in VN applications. In related work in section 3.4, we saw some of the strict latency
requirements of VNs.

Packet loss is an important metric in several applications. In safety-oriented VN
applications, such as a hazardous location warning, packets would have to be re-
transmitted in case of loss, drastically increasing any delays. Cisco state the
following regarding packet loss in VoIP [31]: “The default G.729 codec requires
packet loss far less than 1 percent to avoid audible errors. Ideally, there should be
no packet loss for VoIP.”

IPDV, more commonly referred to as jitter, is described in RFC 3393 [32]. The
importance of jitter highly depends on the application. In a Skype call for instance,
the tolerance for jitter is very low and jitter is easily noticeable. In media
streaming, the tolerance is higher since more content can be buffered.

Because of the connection-oriented mechanisms of TCP, such as slow start and
flow control, interpreting TCP results require more careful inspection. For
simplicity we instead use the UDP protocol. While today’s versions of Hypertext
Transfer Protocol (HTTP) are built on top of the TCP protocol, the next version
of HTTP, namely HTTP/3, will be built on top of UDP and not TCP [33]. The
structure of our UDP probe packets is shown in the following figure.

18

Figure 4.3: Probe packet structure

An “echo server” is a server that replies to a client with the same data as received.
This is essentially what the measurement server does, except for the timestamp
appended in reply packets. The timestamp indicates the time of which the server
received the packet, and as will be explained shortly, is used for calculating IPDV.
The “sequence number” is a number increased by one in the client each time a
packet is sent.

Note that even though the reply packet from the server has additional data, we
have used the same packet length for packets flowing in each direction. The
packets are of the same fixed data length of 32 bytes (in addition to the UDP
header of 8 bytes). 20 extra bytes were added in case more information would be
required later. The sections illustrated as “<Empty>” or “Padding” are filled with
0s in the packet data.

Measuring RTT

For each sequence number, we store the corresponding send-time of the packet.
When the client receives a reply packet, RTT can be calculated by using the
sequence number to retrieve the send-time again and subtracting it from current
time.

Measuring packet loss

Since the sequence number of all sent packets are stored, packet loss is easily
determined by identifying packets that have received no reply.

19

Measuring IPDV

RFC 3393 [32] defines packet delay variation as “the difference between the one-
way-delay of packets within a stream going from measurement point MP1 to
measurement point MP2”.

This implies that knowledge of the following is required for calculation:

• Transmit time of first packet in a pair
• Receive time of the first packet in a pair
• Transmit time of second packet in a pair
• Receive time of second packet in a pair

It also implies that the clocks of the two measurement points are synchronized.
However, if packets are transmitted periodically, two of the needed parameters
are pre-determined and clock synchronization is not necessary. With packets being
transmitted periodically, only the inter-arrival time of received packets are
measured. If the packets are sent periodically, then the difference between the
receiving times for two consecutive packets should be equal to the periodic send
interval if there is no packet delay variation [34].

An accuracy flaw of measuring packet delay variation in this way occurs when a
packet is lost. The inter-arrival time between two packets before and after the
dropped packet will be large and could skew the data. We solved this in our
implementation by only looking at consecutive packets, i.e. not using lost packets
when calculating IPDV.

As mentioned, when the measurement server receives a packet from a client, a
timestamp for when the packet was received is appended to the reply packet. For
two consecutive (using the sequence number) packets p1 and p2 with receiving
timestamps t1 and t2, and a periodic send interval p the packet delay variation
then is:

ipdv = t2 − t1 − p

An example is illustrated in the following figure.

20

Figure 4.4: IPDV example

In this example, the second packet of the pair takes longer to arrive at its
destination. The result is then a positive IPDV, since:

t2 − t1 − p > 0

A negative value of IPDV would occur if packet 2 had a shorter transmit time
than packet 1. Note that this is the packet delay variation for traffic flowing from
the Android device to the measurement server, and not the other way around. For
measuring the IPDV of packets flowing from measurement server to the Android
device, the measurement server would be required to periodically send packets to
the Android device instead.

21

Periodic measurements

To able to calculate IPDV without clock synchronization, we use periodic
sampling, i.e. packets are sent from the Android device to the measurement
periodically. While periodic sampling provides a simpler way to calculate IPDV,
it also comes with disadvantages. This is also discussed more in depth in RFC
2330 [35]. Periodic sampling is more susceptible to manipulation, and repeated
periodic injection of traffic could drive the network into a state of synchronization.
If the measured metric exhibits periodic behavior, there is a possibility that the
sampling only observes the part of the periodic behavior the periods agrees with.
Given the very small traffic volume that our application generates (approximately
160 byte/s), we assume these issues should not have a large impact on the
measurements.

Different sampling rates were tested to see if the round-trip time was affected.
Measurements for RTT with different rates were made on the same network,
within the same area and within a short timeframe and are presented in the
following table. A lower average round-trip time was achieved when using a higher
sampling rate (to a certain extent).

Interval Average round-trip
time

Sample count

10 ms 74 ms > 1000
25 ms 59 ms 500
250 ms 61 ms 600
500 ms 92 ms 400
1000 ms 103 ms 400
2000 ms 94 ms 400

Table 4.1: Average round-trip time for different periodic send intervals

There appears to be a sudden increase in round-trip time when sampling at a lower
rate than about every 250 ms. The reason behind this has not been investigated
thoroughly, but a possible explanation could be how intermediate routers on the
path between client and server treat different traffic patterns. NorNet suggests
this idea on its web page for showing NorNet Edge details: “The mode of a
connection again depends on the traffic pattern. Hence, sending more traffic can
result in a lower RTT.” [36]. As explained later, since we aggregate measurements
based on proximity, the sample rate also determines how many measurements are
obtained per aggregated area.

22

4.1.5 Using the application

The app provides a simple interface with 2 buttons, a “Start” and a “Stop” button,
as shown in following figure. Sampling starts immediately when the “Start” button
is pressed, and the user interface is continuously updated with location information
and number of samples that are currently stored in memory. Once the “Stop”
button is pressed, the sending of new probe packets stops immediately, but the
app will continue to receive probe packets for 5 seconds before the measurement
process is considered completed. This is to allow extra time for recently sent
packets to be replied to, so the reply packet is not considered lost. Once the
measurement process has completed, all measurements are reliably uploaded to
the server using TCP.

Figure 4.5: Android app interface

23

Uploading all measurements when the process is completed rather than
continuously uploading them partly conflicts with the real-time aspect of the
system. That is, cars would always have more recent information with a
continuous upload. This was done to ensure that the uploading of samples did not
affect measurements. As we will see in chapter 5, we found that using bandwidth
affected for instance round-trip time measurements. Possible solutions to this
problem could be either using a separate connection for uploading samples or
making short pauses in measuring to upload samples. Sending the samples through
the TCP socket usually took under 1 second, depending on the amount.

24

4.2 Server application

The server application has mainly three responsibilities:

1. Receiving measurements from clients
2. Storing measurements
3. Providing connectivity information

To receive measurements, a TCP socket listens to incoming data from clients.
Measurements are stored using a database management system (DBMS). A
connection and an interface between our application and the DBMS are required
for storing and retrieving data. To provide connectivity information, the server
application also acts as a web server, exposing a Representational State Transfer
(REST) API. This makes the server able to respond to HTTP requests, for
instance requesting a list of measurements or a live map. A simple overview of the
server functionality is shown below.

Figure 4.6: Server application overview

In the following sub-chapters, we will have a closer look at the different parts of
the server application. First, how measurements are received and stored is
discussed. We will then introduce how measurements can be aggregated and what
types of aggregations are performed. Furthermore, we have developed a function
for quantifying network performance based on aggregations. Using this function,
dead spots in a mobile network can be identified. An algorithm for identifying
these dead spots is then described in detail. Lastly, we show how the application
is capable of presenting connectivity information in multiple ways, with both
structured data formats and more human-readable formats like graphs and maps.

25

4.2.1 Receiving and storing measurements

A TCP socket listens for new connections from clients. For each new client, a new
thread is spawned to support concurrent receiving of measurements from multiple
clients. Each set of measurements received from a client is assigned a separate
“trip ID”, making it easier to separate data from different driving trips or sources.
Note how the server application can potentially receive sample data from multiple
types of clients. It is not dependent on the described Android application, only
that received data is in expected format.

Measurements are aggregated based on location proximity – samples within a
radius of 50 meters of each other are considered to be part of the same area.
Measurements and areas are the two entities in the database. The Entity-
Relationship model (ER model) of the database is shown in the figure below.

Figure 4.7: Database ER-model

Area radius and sample rate of the client application determines number of
measurements per area on average. With an area radius of 50 meters, a sampling
rate of 250 ms and a vehicle moving at 60 km/h, one should be able to obtain
about 24 measurements for an area. Note that this only is true when the area is
not yet created or when driving through the center of the area. The current
balance between area size and sampling frequency should be sufficient for doing
calculations without results being severely prone to outliers in the data. An area
radius of 50 meters gives good locality in measurements, being able to state where
the start and end point of a dead spot could be somewhat accurately. A more
frequent sampling rate would give more data, but the variations in the data might

26

be small between samples. The increased data volume could also affect
performance.

For each measurement, the application checks whether an area for the
measurement location exists, and if not, creates a new area. That is, the
application needs to check whether an area within 50 meters of the measurement’s
location already exists. With our measurements we had several thousand areas, so
it is important that this is done efficiently. This is solved using spatial indexes, a
property of an extension library to our DBMS, described shortly in section 4.3.
Scalability and performance of the server application are addressed in section 5.6.

4.2.2 Aggregating measurements

With multiple measurements for each area, aggregations can be performed.
Depending on the type of request, all measurements or only a subset of
measurements in an area can be used for performing aggregations. For instance, a
request may specify that only measurements from a certain trip (trip ID) or a
certain network type (e.g. LTE) is of interest. More information about different
types of requests is provided in section 4.2.6. For the selected measurements, the
following aggregations are calculated:

• Average round-trip time
• Median round-trip time
• Round-trip time quality*
• Jitter ratio*
• Average signal strength
• Packet loss ratio
• Most common network type (e.g. EDGE, HSPA, …)

Round-trip time quality

As mentioned in section 2.3, in 2G/3G data networks, usually the RAN latency
dominates the overall end-to-end delay. The real performance of every network
will vary by provider, their network configuration, active users within a given cell,
the radio environment in the location etc. While there are no guarantees for
latency in real environments, a simple strategy is to assume a higher bound for
packet latency for every generation [12]. The following table shows latency for
different network generations.

27

Generation Latency
2G 300-1000 ms
3G 100-500 ms
4G < 100 ms

Table 4.2: Latency for different network generations [12]

Round-trip time quality simply means that we treat a measured round-trip time
differently depending on the network type. We assign a value between 0 to 1,
where 1 is the best quality. We use information from the table above, and the
distributions of our actual RTT measurements (presented in chapter 5) to
determine the value. The assignment of a value between 0 and 1 is done quite
coarsely, as the variations in RTT can be large, especially for 2G networks. The
correctness of this and what exact values should be used is arguable, but the point
is that “how good” a measured RTT value is may depend on the network type.

Jitter ratio

As described in the client application section, we measure the IPDV of consecutive
packets. This value can be both negative or positive. Jitter can be represented
relative to the mean period [37]:

jitter = mean jitter
mean period

In our case this means: how much is the mean jitter compared to the periodic send
interval of 250 ms? Since IPDV can be both positive and negative, the absolute
value of IPDV is used.

 mean jitter = ∑abs(IPDV)
n

This is then divided by the periodic send interval of 250 ms.

28

Aggregations are calculated when relevant data is requested, rather than as an
ongoing process and stored in the database. This means that all aggregations
described above must be calculated for each area that is contained within a reply.
Calculating aggregations on request comes with a flexibility advantage. New types
of aggregations can easily be added without any structural changes to the
database.

If we wanted to store calculated aggregations in the database, we would have to
store many aggregations for different input parameters. Storing the aggregations
should give increased performance, but so far performance has not been observed
to be an issue regarding this. A simpler approach could be using a cache, either
persistent storage or in memory. The cache would store aggregations for given
input parameters for a limited period of time.

4.2.3 Network performance model

Based on the different aggregations discussed in the previous section, we have
defined a function which uses these aggregations for generating a value between 0
and 1. This value indicates the general network performance of an area, where a
greater value means greater performance. The color of areas in any map figures to
be shown are based on the output value of this function, ranging from red (value
0) to green (value 1).

Given a packet loss ratio PLR, a jitter ratio JTR, a round-trip time quality RTTQ
and an average signal strength of AVG_SIG, the defined function is as follows:

p = (1 – PLR)(1 – JTR) ⋅ RTTQ ⋅ AVG_SIG

Since signal strength comes in the form of a GSM or LTE ASU level value (see
section 4.1.1), each value is normalized into a number between 0 and 1 and the
average of these values is then taken. This function models network performance
in a simple manner, with each metric being able to affect the output value. It is
rather meant as a tentative starting point of a proper model than a good, polished
model of network performance. It is for instance theoretically possible to score a
performance value of 0.5 with 50% packet loss with this function, where in practice
most applications would be unusable under such conditions. Parametrizing,
evaluating and testing such a function is rather encouraged as future work, and
also a bit further addressed in chapter 7.

29

4.2.4 Defining dead spots

Being able to quantify the network performance of each aggregated area, a
threshold value for a required performance can be specified. When the performance
value falls under this threshold value for an area, that area can then be considered
a dead spot. An example of this is described below.

Figure 4.8: Performance threshold example

The red area in the figure has the worst performance of all areas shown with a
value of 0.1. The surrounding yellow areas all have a value of at least 0.3. If a
threshold value of 0.2 is specified, this red area would then be considered a dead
spot, and the rest of the areas would be considered to have sufficient performance.

The other way a dead spot may occur is if there is a gap between areas. This
happens when the client is unable to identify its current location, for instance in
tunnels where GPS services could be unavailable. This is a weakness of the client
sampling application, as the mobile network could still be available even though
GPS services are not. As we do not know if only GPS services, or both GPS
services and the mobile network that are unavailable, it is treated as a dead spot.
Positioning issues and potential solutions are also addressed in section 5.1 and
chapter 7. An example of a gap dead spot is shown in the following figure.

30

Figure 4.9: Gap dead spot, a GPS (and possibly mobile network)
dead spot in a tunnel

4.2.5 Algorithm for finding dead spots

To provide vehicles on the road with up to date information about dead spots, an
algorithm to identify them based on our network data has been developed. The
input to the algorithm is a route from a specified origin point (latitude, longitude)
to a specified destination point and a minimum desired performance value. The
route must be described by a polyline, which is a continuous line composed of one
or more segments.

To obtain such a polyline route, we utilize the Google Directions API in our
implementation. This API is a service that calculates directions between locations.
It can be used for directions search for several modes of transportation, including
driving, walking and cycling. Based on origins, destinations and waypoints it
returns multi-part directions using a series of waypoints [38].

31

Figure 4.8 below is used to describe the algorithm. A route polyline is illustrated
in (1). First, the polyline is segmented so that no line segment is longer than a
maximum length as shown in (2). The smaller the segments, the more accurate
the algorithm is, but the costlier the computations. An area with a performance
value less than the specified minimum performance value is considered a dead
spot. In (3) in Figure y we see corresponding hypothetical sample data for the
polyline route, with an indicated dead spot area.

Figure 4.10: Different components in dead spot finding algorithm

A proximate area is an area within the distance r from a vertex in (2). For each
vertex on the polyline in (2) we check if there are no proximate areas, or if the
performance of proximate areas is insufficient. The first is illustrated in (4), and
the latter in (5). As seen in (3), the last area before the dead spot starts will be

32

area 2, and the first one found with sufficient performance after the dead spot
began will be area 4. The dead spot is then said to be between area 2 and area 4.
The distance r must be chosen with the line segment length chosen for (2) in mind.
Testing and outputs of the algorithm is presented in chapter 5.

4.2.6 Providing connectivity information

The application provides connectivity information in a variety of ways. As
mentioned, this is enabled by the application acting as a web server and exposing
a REST API. The following types of requests are supported:

1. Show measurement data
2. Show aggregated area data
3. List all dead spots on a route given a start and destination point
4. Show statistical correlations in aggregated data
5. List all trips and their most common network type
6. Show live map of measurements
7. A variety of (live) graphs depending on input parameters

Note that every response is based on live data, including maps and graphs. For
instance, if viewing a map in a web browser and new measurements are received
from a client, the new measurements are reflected in the map when refreshing the
page. This conforms to the real-time requirement of the application.

With this wide array of functionality, users of the application have large flexibility
in how they choose to interpret information. 6 and 7 are mainly for human
readability, while the output for other types of requests can be used as input to
other information systems. For instance, listing of dead spots can be directly used
by a video streaming application to schedule its bandwidth usage. The structured
data format generally used is JavaScript Object Notation (JSON).

Maps and graphs are very helpful to studying the sample data, for instance looking
at the statistical distributions for different metrics. As we will see, we use these
tools extensively in chapter 5 for analyzing results. More details for each request
type and some examples are provided on the following 3 pages.

33

Show measurement data

Outputs raw measurement data in JSON format for given parameters.

Supported parameters: Area ID, network type, trip ID(s).

Example: http://address:port/measurements?tripId=59,60&networkType=LTE

Show aggregated area data

Performs aggregations (average signal strength, round-trip time quality etc., see
section 4.2.2) for each relevant area and outputs result in JSON format.

Supported parameters: Area ID, network type, trip ID(s).

Example: http://address:port/areas?tripId=59,60&networkType=LTE

List all dead spots given a start and destination point

Given an origin point (latitude, longitude) and a destination point (latitude,
longitude), outputs all dead spots on a route between the two points and the dead
spots respective lengths in meters.

Example:
http://address:port/dead-spots?origin=63.3975,10.5480&destination=63.3774,10.
6019

Show statistical correlations in aggregated data

Calculates and outputs correlations between different metrics for given
parameters.

Supported parameters: Network type, trip ID(s).

Example: http://address:port/correlations?tripId=43,45&networkType=EDGE

34

List all trips and their most common network type

Outputs a list of all trips, their IDs and the most common network type for each
trip.

Example request: http://address:port/trips

Show map of measurements

Shows a geographical map of areas for the given parameters. The color of an area
is based on the calculated performance for the area using the function described
in section 4.2.3. Uses Google JavaScript Maps API for geographical data. Example
output shown below.

Supported parameters: Area ID, network type, trip ID(s).

Example: http://address:port/map?tripId=16

Figure 4.11: Example output for a map of a specified trip id

35

Graphs

A variety of different graphs of the measurement data or aggregations of them
based on the input parameters can be displayed. This includes statistical
distributions of metrics, showing a metric Y as a function of metric X and
variations in a metric over time for a specified trip. When calculating a metric Y
as a function of metric X, the average or the median value for metric Y is
calculated. Supported metrics are round-trip time, signal strength (GSM ASU
level or LTE ASU level) and IPDV. Example output of a graph showing median
round-trip time as a function of LTE ASU level for a specified set of trips in LTE
networks is shown below. Statistical analysis is further explored in chapter 5.

Figure 4.12: Example output of a graph

Example:

http://address:port/chart?tripId=24,27,28&metric=roundTripTime&networkTy
pe=LTE&type=distribution

36

4.3 Tools and libraries

Except for the HTML and JavaScript usage in the server application, Kotlin has
been the programming language of choice for both client and server. Kotlin is a
new (first appearance 2011) statically typed programming language fully
interoperable with Java. Since the release of Android Studio 3.0, Kotlin has also
been fully supported by Google for use with their Android mobile phone operating
system [39]. In comparison to Java, Kotlin offers null safety, more concise syntax
and less boilerplate code. However, Java popularity and its community is still
much larger than of Kotlin.

While the Android application only uses the Android framework, the server
application uses a variety of different libraries. Multiple programming languages
and script languages were used to create its different components.

The underlying database management system (DBMS) chosen is PostgreSQL
(Postgres). Postgres has many extensions, one of them being PostGIS. PostGIS is
a spatial database extender for Postgres adding support for geographic objects.
This allows location queries to be run in Structured Query Language (SQL), and
tree-structured indexes (which are common in any DBMS) can be utilized for
location queries improving the performance significantly. For instance, with over
3000 areas in the database, finding if a given pair of coordinates (latitude,
longitude) belongs to an existing area is done within the range of 10 ms. PostGIS
as an extension and its good documentation was the main motivating factor for
choosing Postgres as a DBMS for the project.

Exposed (see https://github.com/JetBrains/Exposed), a lightweight SQL
framework written over the JDBC (Java Database Connectivity) driver acts as
the interface between the application and the DBMS. With its small requirements
for configuration, Exposed is quick to set up. In addition to taking advantage of
the library functions of this library some traditional SQL has also been used.

Opening and creating new connections to a database can be expensive, especially
if the database is hosted on a different computer than which the application is
running on. Connection pooling allows database connections to be reused by
multiple clients, improving performance. In the case of our project the database
was actually hosted on the same machine as the running application, but to ensure
scalability and in case the database would later be moved to a remote server,
connection pooling was implemented. For this, the library HikariCP (see
https://github.com/brettwooldridge/HikariCP) was used.

37

To enable the application as a web server, the library Ktor (see
https://github.com/ktorio/ktor) was used. Ktor is a framework for creating web
applications in Kotlin programming language and runs an embedded web server
on the host machine.

As mentioned in section 4.2.6, most response data the application generates to
received HTTP requests is in JSON format. But there are a few exceptions, namely
the maps and graphs. Responses to these requests are web pages, containing both
HTML and JavaScript. Maps use the Google JavaScript Maps API, and graphs
functionality is provided by the JavaScript library C3.js. The maps web page also
fetches JSON data from the REST API itself, and for this jQuery, a JavaScript
library for simplifying syntax, was used.

39

Chapter 5 – Results and discussion

In this chapter we first address issues faced during the development and sampling
process, since they influence what results we are able to present. We then have an
in-depth look at how our measurements are distributed across different metrics.
We proceed to calculate and discuss relationships between different metrics.
Lastly, we address the scalability of the application and provide examples that
show that the implemented dead spot identification algorithm can handle a variety
of cases.

When using the term “correlation” or “correlation coefficient”, the Pearson
correlation coefficient (PCC) is implied. Its value r lies between -1 and +1 and
measures the strength of the relationship between the relative movements between
variables.

Note how all figures and calculations we present here are based on the live
database, as opposed to for instance outputting a subset of data to Comma-
separated values (CSV) format and using additional software to interpret it. We
simply access the REST API through the web browser and provide the desired
parameters to the application. The application uses our parameters to extract the
relevant information from the DBMS and presents it.

5.1 Issues

Challenges faced during the development and sampling are addressed here. Some
of the issues presented have rendered small parts of our samples difficult to use,
such as GPS positioning issues. We have also not been able to take advantage of
the bandwidth metric.

5.1.1 Bandwidth measuring issues

In the process of developing and testing the client application, it was found that
bandwidth measurements had a significant impact on the other metrics while being
performed. While downloading test files, the round-trip times would more than
double in most cases. An attempt to solve this was made by pausing measurements
for other metrics while bandwidth measurements were being made. This however
resulted in very few measurements for some areas, as these bandwidth

40

measurements take several seconds to perform. Decreasing the file size would help
with this issue since the bandwidth measurement time would then be shorter, but
this would make the bandwidth measurements more inaccurate.

Another issue with measuring bandwidth is cost-efficiency. The subscription for
the test equipment SIM-card quickly ran out of allocated mobile data traffic (this
is the model most operators use today). Because of these issues, bandwidth
measurements were unfortunately abandoned in the development and testing
process. Ideally one would want a SIM-card with no data volume limit and use a
separate connection for sampling bandwidth data to not interfere with other
metrics.

5.1.2 Software library issues

The SQL framework library, Exposed, was found to have a few bugs regarding
batch insertion to the database. The developers of the library were notified and
luckily the issues were fixed in less than 24 hours (see
https://github.com/JetBrains/Exposed/issues/388). Because of the quick
reaction, this did not halt the development process, but it suggests perhaps a more
stable SQL framework should have been utilized. The framework also proved to
be a bit limited for taking advantage of SQL functions of extensions like PostGIS.
In these cases, raw SQL was used instead of the library functions.

5.1.3 GPS positioning issues

Any measurement taken with very poor positioning accuracy or without any
positioning information at all is difficult to use. One could possibly use positioning
data from earlier samples with a better positioning accuracy to accommodate for
this, but it would require a more sophisticated implementation. On the road
network, GPS is unavailable in most tunnels. Gaps in the measurement data
happens because of this, as also shown in chapter 4.2.4.

For one Android device the positioning accuracy was occasionally very poor. This
could be an issue with the device itself or with the used Fused Location API, but
more testing would be required to identify the actual cause. Data from trips with
such poor accuracy are filtered out when further studying the data. An example
of such a trip is shown below. Addressing positioning issues is further discussed in
future work.

41

Figure 5.1: Example of trip with poor positioning accuracy

5.2 Collected data

Throughout this thesis we have collected more than 130 000 samples. More than
half of these samples are from vehicle trips in Lofoten. This area is rather rural
with very mountainous terrain. Samples from the Trondheim city area have also
been collected, where most of the trips where done by walking or by bicycle. A
vehicle trip from Trondheim to rural areas north of Lensvik has also been sampled.
In addition to samples made during this thesis, datasets used in [9] from the
Jonsvatnet area were imported to aid in developing performance models and the
dead spot identification algorithm. These datasets do however not contain data
for all metrics since a different application was used for sampling.

Figure 5.2 shows sampled data in the Lofoten area. The colored line consists of
circle areas with a radius of 50 meters, where each of these areas on average have
90 measurements. Over 80 000 samples are represented in this map. The map is
produced by the discussed REST API and this data is returned in less than 1
second - this also includes performing all aggregations discussed in chapter 4.2.2
for each area in the dataset.

42

Figure 5.2: Map of sample data from Lofoten area

5.2.1 Sample distribution between network types

The distribution of measurements by network type are shown in the following
table.

Network type % of total
LTE 72 %
EDGE 19 %
HSPA 8 %
HSPA+ < 1 %
HSUPA < 1 %

Table 5.1: Sample distribution between network types

43

The majority of measurements are from LTE networks. In Lofoten, no other
network type was observed. Some non-LTE network type measurements in
Trondheim originate from the imported datasets from the work in [9], sampled in
2017. In these datasets all measurements were in fact from EDGE, HSUPA and
HSPA+ networks, even the samples from non-rural areas such as university
campus. 4G coverage in Trondheim appears to have improved since then, as we
throughout this thesis did not observe any central area without 4G coverage.

Expanding access to LTE has been the focus of the global mobile industry for
years, and OpenSignal with over 58 billion measurements from all over the world
claims 4G availability is over 90 % in several countries [40]. Note that these
numbers only mean users have access to 4G networks 90% of the time, and do not
show what is the geographical coverage.

In [41], the authors conclude that it may be economically unfeasible for network
operators to deploy LTE networks in rural areas in Spain and that the results
might be applicable to other big European countries with similar characteristics.
These rural areas are where intuitively one would find dead spots, so
measurements from older generation network types could be more relevant to
consider regarding dead spots.

On Android devices, the user can select a preferred network type, being 2G, 3G
or 4G. Using this feature, measurements for 2G and 3G network types were
obtained in areas with 4G coverage. This was done to get more measurements
from non-LTE network types. Telenor, the largest telecom company in Norway,
has however started shutting down 3G networks [42], so this method may not
work in the future. Shutting down 2G networks is also a long-term goal, but this
can be more complicated. 2G networks are in many places a rigid part of
infrastructure, being part of for instance card terminals or car systems where
emergency services are automatically contacted in case of collision [43].

44

5.3 Metric distributions

Metric distribution reveals coverage for different values of a metric. We mainly
address round-trip time and signal strength here. IPDV (jitter) and packet loss
are more interesting to see in relation to other metrics and will be further discussed
in the next section, section 5.4. We will show the mean (average) and median
values together with the distributions. Median values are of interest since they are
not as affected by extreme values as the mean.

5.3.1 Round-trip time

In statistics, the term right-skewed (positive skew) is often used for distributions
having a lower median value than mean value. These distributions have a long
tail on the positive direction on the number line. RTT values can be expected to
be right-skewed, because RTT is lower bound by the underlying network
technology but have no upper bound. High values occasionally occur, but most
values are concentrated around a smaller range.

We found the high values of RTTs to occur in bursts. An example of this in an
LTE network is shown in the figure below. The represented data is a selection of
500 consecutive packets from one specific trip, with RTT on the y-axis, and the
packet index (the i-th packet sent on that trip) on the x-axis. The high RTTs in
this example occur over 16 around seconds.

Figure 5.3: High RTT in short timeframe

45

The corresponding area data of the figure above is shown below. The bursts in
RTTs result in our performance function outputting a lower value for the
corresponding areas, as can be seen by the red areas in the figure.

Figure 5.4: High RTTs reflected in performance function

46

In the following three figures, selections of the distributions of RTTs are shown
for EDGE, HSPA and LTE networks. That is, occurred values are on the x-axis
and number of occurrences for each value are on the y-axis. The mean and median
values are indicated in each figure. The selections are made around where the mass
of the distribution is concentrated, but mean and median values are calculated
using all values. In addition to what is shown there are values with very few
occurrences (generally one occurrence) on the far right of the distribution, which
is what makes the mean higher than the median.

Figure 5.5: RTT distribution for EDGE networks

Figure 5.6: RTT distribution for HSPA networks

47

Figure 5.7: RTT distribution for LTE networks

As expected, all distributions are right-skewed. HSPA networks have the least
amount of samples of the three, and we can see in the figure that the distribution
shape is different from the other two. We believe this indicates that more samples
from HSPA networks should be gathered, rather than the network behavior being
different. On the other hand, the count for each occurrence are higher than of
EDGE networks, perhaps suggesting more stability in HSPA than in EDGE.

5.3.2 Signal strength

First off, when connected to an LTE mobile network, the Android device can
provide the LTE ASU level instead of the GSM ASU level, and sometimes both
GSM and LTE ASU levels (see section 4.1.1). This could be dependent on the
operator network configuration, as we found that when connected to LTE in the
Trondheim area one would only get the LTE ASU level, while in the Lofoten area
one gets both. The LTE ASU has been chosen as a basis for signal strength levels
when available in an LTE network. From the dataset we find a strong correlation
between LTE and GSM ASU levels (r = 0.86), so perhaps either one can be used.

Since we are trying to identify and learn more about mobile network dead spots,
having a fair number of samples with low signal strength is ideal. In the case of
2G or 3G networks, we are unfortunately lacking measurements on the lower end
of the scale. GSM ASU level distributions for EDGE and HSPA networks, and
LTE ASU level distributions for LTE networks are shown in the following three
figures. Recall from chapter 4.1.1 that GSM ASU levels range from 0 to 31, and
LTE ASU levels from 0 to 97.

48

Figure 5.8: GSM ASU level distribution (EDGE)

Figure 5.9: GSM ASU level distribution (HSPA)

49

Figure 5.10: LTE ASU level distribution (LTE)

For GSM ASU levels, it is indeed evident that more measurements are needed,
especially from poor connection areas. In EDGE networks, we have no
measurements with a lower ASU level than 13. In HSPA networks we have
measurements with a value as low as 2, but no measurements between values 2
and 11. As most of these measurements are from a small area of Trondheim this
does not come as a surprise. We further inspected the dataset for HSPA and found
that the GSM ASU value of 2 in HSPA networks originates from mainly one
specific area from one trip. For LTE though, our coverage is better. The LTE ASU
level distribution resembles a normal distribution, with samples both in the low
and high end of the spectrum.

5.4 Metric correlations

For the network types discussed above (i.e. EDGE, HSPA and LTE), we present
the correlation coefficients for:

• RTT and signal strength
• RTT time and IPDV
• Average RTT and packet loss

Signal strength is either calculated from the GSM ASU or LTE ASU levels. IPDV
can be both positive or negative and is unwanted in both cases. Since we here are
interested in correlations, we take the absolute value of the IPDV (hereby referred

50

to as jitter). Packet loss has been low in our measurements overall; < 1% with
about 500 packets per 100 000. The behavior of packet loss is similar to high
round-trip times, where it occurs in short bursts. Per sample, packet loss is either
true or false (the packet is either lost or not). Point-biserial correlation can be
used for finding correlations between a numeric and a boolean value, but instead,
we treat packet loss as an aggregated metric, calculating packet loss ratio per area.
We therefore also aggregate the round-trip times of the corresponding areas into
averages to obtain the correlations.

5.4.1 Findings for EDGE networks

As mentioned, in addition to our own measurements, some of the datasets used in
[9] have also been imported. These datasets do not contain information needed to
calculate IPDV. They do however contain samples from actual areas where there
is poor network performance and where older network types like EDGE are
present. Excluding imported datasets, about 26 000 measurements from EDGE
networks have been collected. These measurements are from the same small,
general area of Trondheim and were obtained using a preferred network type on
the Android device.

 The correlations are as follows:

• RTT and signal strength: r = 0
• RTT and jitter: r = 0.64
• Average RTT and packet loss: r = 0.51

In the work of [9], a relationship between round-trip time and signal strength was
present especially for GSM ASU levels less than 15. For our measurements, the
correlation coefficient (r = 0) indicates that there is no such relationship. But as
we saw in the previous sub-chapter, we lack measurements with poor signal
strength in EDGE networks - our measurements had no GSM ASU value less than
13. It is therefore difficult to draw any conclusions for an RTT and signal strength
correlation from our measurements. We do see that a high RTT is associated with
both jitter and packet loss - a moderate positive relationship (r > 0.5) is present.

51

5.4.2 Findings for HSPA networks

As the number of measurements for HSPA+ and HSDPA is very low, we
specifically look at the HSPA network type. As with measurements from 2G
networks, these are also obtained using preferred network type on the Android
device.

• RTT and signal strength: r = 0.05
• RTT and jitter: r = 0.51
• Average RTT and packet loss: r = 0.47

The correlation coefficients suggest a relationship between RTT and packet loss,
and RTT and jitter. There appears to be no correlation between average round-
trip time and signal strength (p = 0.05). But as with EDGE networks, no
conclusions should be drawn for the latter relationship, as measurements from
poor signal strength areas are lacking. Compared to EDGE networks, the span
between minimum average round-trip time and maximum is however found to be
much smaller, which suggest that HSPA networks are more stable (at least in
terms of this metric).

5.4.3 Findings for LTE networks

The sample size for LTE networks is close to 100 000, all which were sampled with
the Android device automatically selecting the best available network type. The
LTE ASU level is used as an indicator of signal strength for this network type.

• RTT and signal strength: r = 0
• RTT and jitter: r = 0.60
• Average RTT and packet loss: r = 0.58

The findings for LTE networks are generally the same as the other types in terms
of correlations between metrics: no relationship between RTT and signal strength,
and a moderate positive correlation between RTT and jitter, and RTT and packet
loss. With a much larger sample size than of previously discussed network types,
we can with more certainty say there is no relationship between RTT and signal
strength for LTE networks. This is also illustrated in Figure 5.11, with average
round-trip time for each distinct LTE ASU value shown as a graph. The RTTs do
not seem to be higher for lower ASU values. The high average RTT on the right
of the figure was further investigated and found to originate from around the
opening of a tunnel for a specific trip.

52

Figure 5.11: Round-trip time (average, ms) as a function of LTE ASU

Below the relationship between RTT and jitter (r = 0.60), using average round-
trip time as a function of jitter, is shown.

Figure 5.12: Round-trip time (average, ms) as a function of jitter (ms) (LTE)

53

5.4.4 Summary of metric correlations

Overall, we have not found a relationship between RTT and signal strength. We
can say this with more certainty for LTE networks, but for EDGE and HSPA
networks we should be more careful as we lack measurements on the low end of
signal strength scale. Additionally, in the related work in [9], such a relationship
was quite clear. The packet size for measuring RTT is fixed and is very small (40
bytes). Measuring with varying packet sizes could perhaps be a next step. We
generally encourage obtaining more measurements from poor signal strength areas,
preferably not using Android’s preferred network type selection, but rather
selecting best available to also get a better view of the actual coverage of different
areas.

For all network types, relationships between RTT and jitter and average RTT
and packet loss are evident. For RTT and jitter, the correlation coefficients are
r = 0.64, r = 0.51 and r = 0.60 for EDGE, HSPA and LTE respectively. For
average RTT and packet loss the values are r = 0.51, r = 0.47 and r = 0.58. As
discussed, high values of RTT occur occasionally in bursts. This is generally when
it gets coupled with packet loss and jitter. If this is not a result of poor signal
strength, this could occur due to underlying temporary network performance
degradation, such as network congestion.

5.5 Dead spot algorithm outputs

Recall that dead spots could occur in two different ways, either as insufficient
performance or as a gap. Here we present various examples that prove that our
application and algorithm can handle both cases. We also show computation times
for the application to produce the outputs.

The input is an origin and a destination point in coordinates, and the output is a
list of dead spots and their respective lengths in meters. Lengths are calculated
using the PostGIS function ST_Distance. The specified start and end points of
the dead spots are IDs of the corresponding areas and coordinates. The area IDs
makes it easier to identify the location on the map, since our application logs area
information to the web console when clicking on areas on the map.

54

5.5.1 Example with performance threshold

In this example there is a clear segment on the route from origin to destination
that has worse performance. The performance of the yellow/green areas are around
0.5, and of the orange/red areas around 0.3. We specify a minimum performance
of 0.4. The output then is:

Dead spot between
5151 (68.2682342, 14.1607782),
5176 (68.2815844, 14.1596285),
length: 1490 m

Area 5151 and 5176 are marked in the figure. The application used around
1 second to produce this output.

Figure 5.13: Dead spot algorithm output example 1

55

5.5.2 Example with gaps

In this example it is demonstrated how gaps are handled by the algorithm. To
avoid any yellow/red areas to be identified as dead spots in this case, a very low
minimum performance threshold of 0.01 has been specified. The output is:

Dead spot between
4072 (63.5874921, 9.6065109),
4073 (63.5830124, 9.5895948),
length: 977 m

The application used around 0.2 seconds to produce this output.

Figure 5.14: Dead spot algorithm output example 2

56

5.5.3 Example with performance threshold and gaps

In this last example there is a combination of poor performance areas and gaps. A
minimum performance value of 0.3 is used, which excludes red and darker orange
areas. The few orange areas between area 2494 and area 2518 happen to all have
a performance value greater than 0.3, but the areas between 2518 and 2529 have
a lower value. The output is:

Dead spot between
2488 (63.38390300050378, 10.572601994499564),
2494 (63.38578310329467, 10.585130006074905),
length: 661 m

Dead spot between
2518 (63.377765603363514, 10.601147320121527),
2529 (63.374154679477215, 10.61115799471736),
length: 642 m

Figure 5.15: Dead spot algorithm output example 3

57

5.6 Server application scalability

Scalability has not been the main focus when developing this application but has
still been addressed by several steps and seems to have paid off well. Database
indexes, simultaneous client handling with threading and connection pooling are
now essential parts of the application.

As mentioned at the end of chapter 4.2.2, aggregations are calculated when data
is requested, rather than pre-calculated. There is also no caching of aggregated
data involved. One reason for this is the complexity involved in implementing this,
as many types of aggregations with different parameters would have to be stored.
Throughout the work of the thesis, we for instance often wanted to only view data
for a specified range of trips or a certain network type. Caching would potentially
involve storing all combinations of trips and network types, which there are many
of.

As the database grew to over 130 000 samples, there was no noticeable increase in
the time it took for retrieving data from the DBMS. As explained in chapter 4.2.1,
for every single new measurement, the application needs to check whether an area
with that location within 50 meters already exists. From going from 0 to more
than 3000 such areas throughout sampling, this check is still done in about 10 ms.
Since samples are received in batch (the client uploads all samples when the stop
button is pressed), this time does however add up. Receiving a batch of 10 000
measurements, this would be around 10 seconds just for calculating what area ID
a sample should have. The insertion process itself and creating potential areas that
do not exist would also add to this time. The application is by no means
unresponsive during this time, data can still be accessed. Read-write safety is of
course handled by the underlying DBMS.

The general performance and the scalability of the application seems to be quite
good for its current use. Recall that performing and presenting aggregations for
the over 80 000 samples in the Lofoten area was done in less than 1 second. The
most complex calculations are performed when requesting dead spot information.
For practical reasons, we have not been able to test how the application performs
several clients request such information simultaneously. Having implemented
connection pooling to the database and proper threading, this should however not
be expected to be an issue.

59

Chapter 6 – Conclusion

A substantial amount of work in this project has been design, implementation and
sampling. Having a few years of experience with software development from the
industry was very helpful. A server that receives, stores and presents connectivity
data has been successfully developed. A sampling application for Android has also
been developed. The intended use for this application is in cars, but it is not
limited to that mode of transportation. Walking and bicycle trips were also used
for sampling data in this project. Recall that the server application is not
dependent on the developed Android application – any client using the expected
format of data can potentially be used. Cars on the road network can request both
aggregated or raw versions of data to improve their communication decisions. The
information can also be used to strategize communication by the infrastructure on
the reverse path, i.e. in Infrastructure-to-Vehicle communication.

The metrics provided by the sampling application, such as round-trip time, signal
strength and packet delay variation, are incorporated into a simple model for
calculating the overall “network performance” of an area. With a minimum desired
value for network performance, our application can identify so-called dead spots
on the road network with an accuracy down to about 50-100 meters.

Quantifying network performance with multiple parameters is not an easy task,
and different models for different areas of applications should perhaps be used.
Investigating such models further is encouraged as future work. Measuring
bandwidth proved to be more challenging than what we initially thought, as
downloading files influence measurements of other metrics such as round-trip time.
We also faced issues regarding positioning with Android devices, and general
limitations of GPS. Suggestions for improvements to positioning issues are also
addressed in the next chapter.

With the work of this thesis, we have arrived at a scalable software system for
measuring and analyzing mobile network performance. The system provides maps
and various statistics and is able to output subsets of the stored data based on
several input parameters, such as network type(s) and specified trips. The software
can be useful for further works in the problem area, at least at IIK, NTNU to
begin with. Source code for all developed applications will be passed on for research
purposes. It is shortly discussed and provided in Appendix A.

61

Chapter 7 – Future work

7.1 Improving positioning

As mentioned in chapter 5.1.3, measurements with no positioning data or with
poor accuracy are unwanted. There exist several off-the-shelf products for
positioning that utilize for instance speed, bearing and last position to be able to
still determine position accurately (for limited periods of time) when GPS services
are unavailable. An example of such equipment is positioning chips provided by
u-blox, a company delivering positioning and wireless communication technologies
(see https://www.u-blox.com/en). Their equipment can be connected to another
device using a USB-connection. If decided to use such equipment, it would perhaps
be better to use a laptop computer for running client software instead of a smart
phone, as such external equipment is then easier to connect.

7.2 Improving network performance models

In section 4.2.3, we introduced a “performance function” as a model for
representing network performance of areas in an aggregated manner. In practice,
perceived network performance depends on the application. Different applications
imply different requirements for each type of metric. As such, different models
should be developed for a wide array of applications. For instance, one could have
one model for “vehicle safety critical information”, with emphasis on low delay,
and another model for “end user experience”, focusing on bandwidth and jitter.
Parametrizing these models properly would require extensive testing and good
knowledge about the requirements of the relevant application. Machine learning
techniques could potentially be used to evaluate which parameters are important.

7.3 Security and message prioritization

In the current solution, any client with the correct message format and the server
address information can deliver data to the server. This type of security might
suffice for small-scale research purposes such as a master thesis, but addressing
security more explicitly on a larger scale is crucially important. Without proper
authorization, server data could become contaminated.

Currently, all requests to the application for network performance data and dead
spots are treated equally. In a real-world system, prioritization of delivering safety

62

critical information to vehicles on the road would be an important aspect.
Applications concerning for instance video streaming should have a lower priority.
Avoiding malicious use of the priority system would then be an aspect of security.
The topic of net neutrality could then potentially also play a part.

Third, depending on the source of measurements, privacy could become a concern.
Data could potentially be misused to find detailed information about the
whereabouts of vehicles and when they have visited certain places. With the
increased focus on privacy in recent times, with for instance the introduction of
the General Data Protection Regulation (GPDR), addressing this issue responsibly
in further development is encouraged.

7.4 The future role of 5G

The fifth generation of mobile networks, 5G, will also shape the future of
communication in VNs. Several telecom companies are currently doing trials for
5G networks, and 3GPP has entered the second phase of standardizing them [5].
The ultra-low latencies of these networks will help to meet the low latency
requirements of some security applications of VNs and be of great value to ITS
applications in general. However, the first LTE standards were released over 10
years ago, and even in a developed country like Norway, older network types are
still prevalent in some rural areas. In these networks, the latency of the RAN alone
can be larger than the latency requirements of VN applications for road safety.
Knowledge of these poor performance areas will still be important in many years
to come.

63

References

.

[1] Y. Lin, P. Wang and M. Ma, "Intelligent Transportation System(ITS):
Concept, Challenge and Opportunity," ieee 3rd international conference on
big data security on cloud (bigdatasecurity), ieee international conference
on high performance and smart computing (hpsc), and ieee international
conference on intelligent data and security (ids), Beijing, 2017.

[2] C. M. Silva, B. M. Masini, G. Ferraria and I. Thibault, "A Survey on
Infrastructure-Based Vehicular Networks," Mobile Information Systems,
2017.

[3] Bitmovin, "Adaptive Streaming," [Online]. Available:
https://bitmovin.com/adaptive-streaming/. [Accessed 28 September 2018].

[4] 3GPP, "3GPP Scope and Objectives," 31 August 2007. [Online]. Available:
http://www.3gpp.org/ftp/Inbox/2008_web_files/3GPP_Scopeando310807
.pdf. [Accessed 10 November 2018].

[5] 3GPP, "Releases," [Online]. Available:
http://www.3gpp.org/specifications/releases. [Accessed 20 November 2018].

[6] J. Barrachina, J. A. Sanguesa, M. Fogue, P. Garrido, F. J. Martinez, J.-C.
Cano, C. T. Calafate and P. Manzoni, "V2X-d: A vehicular density
estimation system that combines V2V and V2I communications," 2013
IFIP Wireless Days (WD), Valencia, 2013, pp. 1-6.

[7] G. Neonakis Aggelou and R. Tafazolli, "On the relaying capability of next-
generation GSM cellular networks," IEEE Personal Communications, vol.
8, no. 1, pp. 40-47, 2001.

[8] R. Prasad, C. Dovrolis, M. Murray and K. Claffy, "Bandwidth estimation:
metrics, measurement techniques, and tools," IEEE Network, vol. 17, no. 6,
pp. 27-35, 2003.

[9] E. Puka, P. Herrmann, T. Levin and C. B. Skjetne, "A Way to Measure
and Analyze Cellular Network Connectivity on the Norwegian Road
System," 2018 10th International Conference on Communication Systems
& Networks (COMSNETS), Bengaluru, 2018, pp. 595-600.

64

[10] J. Huang et al., "An In-depth Study of LTE: Effect of Network Protocol
and Application Behavior on Performance," ACM SIGCOMM 2013, 2013.

[11] Q. Xu et al., "Cellular data network infrastructure characterization and
implication on mobile content placement," Proceedings of the ACM
SIGMETRICS joint international conference on Measurement and
modeling of computer systems, 2011.

[12] I. Grigorik, High Performance Browser Networking, O'Reilly Media, 2013,
pp. 103-104.

[13] "Center for Applied internet Data Analysis," [Online]. Available:
http://www.caida.org. [Accessed 10 October 2018].

[14] "RIPE NCC," [Online]. Available: https://www.ripe.net/. [Accessed 14
September 2018].

[15] J. Corral, G. Texier and L. Toutain, "End-to-end active measurement
architecture in IP Networks (SATURNE)," IP networks (SATURNE),” in
PAM2003 - A workshop on Passive and Active Measurements, 2003.

[16] F. Michaut and F. Lepage, "Application-oriented network metrology:
metrics and active measurement tools," IEEE Communications Surveys &
Tutorials, vol. 7, no. 2, pp. 2-24, 2005.

[17] M. Mathis and M. Allman, "A Framework for Defining Empirical Bulk
Transfer Capacity Metrics," RFC 3148, July 2001. [Online]. Available:
https://www.rfc-editor.org/info/rfc3148.

[18] R. H. Jakobsen, "Message Forwarding between Vehicles in Dead Spots,"
2018.

[19] P. Papadimitratos, A. D. La Fortelle, K. Evenssen, R. Brignolo and S.
Cosenza, "Vehicular communication systems: Enabling technologies,
applications, and future outlook on intelligent transportation," IEEE
Communications Magazine, vol. 47, no. 11, pp. 84-95, November 2009.

[20] A. E. Fernandez et al., "5GCAR Scenarios, Use Cases, Requirements and
KPIs," 2017.

[21] "NorNet," [Online]. Available: https://www.nntb.no/. [Accessed 10
January 2019].

65

[22] "Norwegian mobile broadband - fourth annual report from CRNA,"
Simula.no, 2017. [Online]. Available:
https://www.simula.no/news/norwegian-mobile-broadband-fourth-annual-
report-crna. [Accessed 3 February 2019].

[23] OpenSignal, "Methodology," [Online]. Available:
https://opensignal.com/methodology. [Accessed 18 October 2018].

[24] K. Majithia, "Verizon slams latest OpenSignal study on 4G networks,"
Mobile World Live, 10 February 2017. [Online]. Available:
https://www.mobileworldlive.com/featured-content/home-banner/verizon-
slams-latest-opensignal-study-on-4g-networks/. [Accessed 12 January 2019].

[25] J. Callaham, "Google says there are now 1.4 billion active Android devices
worldwide," Android Central, 2015. [Online]. Available:
https://www.androidcentral.com/google-says-there-are-now-14-billion-
active-android-devices-worldwide. [Accessed 1 February 2019].

[26] Google Git, "Android Source Code: SignalStrength.java," [Online].
Available:
https://android.googlesource.com/platform/frameworks/base/+/master/tel
ephony/java/android/telephony/SignalStrength.java. [Accessed 20 October
2018].

[27] Google Git, "Android Source Code: CellSignalStrengthLte.java," [Online].
Available:
https://android.googlesource.com/platform/frameworks/base/+/master/tel
ephony/java/android/telephony/CellSignalStrengthLte.java. [Accessed 20
October 2018].

[28] Google Developer, "Fused Location Provider API," [Online]. Available:
https://developers.google.com/location-context/fused-location-provider/.
[Accessed 15 September 2018].

[29] Android developer reference, "TrafficStats," [Online]. Available:
https://developer.android.com/reference/android/net/TrafficStats.html.
[Accessed 21 September 2018].

[30] "Facebook Network Connection Class on GitHub," [Online]. Available:
https://github.com/facebook/network-connection-class/. [Accessed 8
September 2018].

66

[31] Cisco, "Quality of Service for Voice over IP," 2001. [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/qos_solutions
/QoSVoIP/QoSVoIP.pdf. [Accessed 20 January 2019].

[32] D. C. and P. Chimento, "IP Packet Delay Variation Metric for IP
Performance Metrics (IPPM)," RFC 3393, November 2002. [Online].
Available: https://www.rfc-editor.org/info/rfc3393.

[33] H. Brombach, "Vraker TCP i neste versjon av HTTP," digi.no, [Online].
Available: https://www.digi.no/artikler/vraker-tcp-i-neste-versjon-av-
http/451076. [Accessed 15 November 2018].

[34] J. Anuskiewicz, "Measuring jitter accurately," 2008. [Online]. Available:
https://www.lightwaveonline.com/articles/2008/04/measuring-jitter-
accurately-54886317.html. [Accessed 25 October 2018].

[35] V. Paxson et al., "Framework for IP Performance Metrics," RFC 2330,
May 1998. [Online]. Available: https://www.rfc-editor.org/info/rfc2330.

[36] "Resilient Networks Mobile Broadband Measurements," [Online]. Available:
http://robustenett.no/map. [Accessed 10 December 2018].

[37] J. M. Hillenbrand, "Lecture on jitter," [Online]. Available:
https://homepages.wmich.edu/~hillenbr/501/PerturbationDemo.ppt.

[38] Google Maps Platform, "Directions API Developer Guide," [Online].
Available:
https://developers.google.com/maps/documentation/directions/intro.
[Accessed 16 September 2018].

[39] M. Shafirov, "Kotlin on Android. Now official," Kotlin Blog, 2017. [Online].
Available: https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-
now-official. [Accessed 2 September 2018].

[40] OpenSignal, "The State of LTE (February 2018)," [Online]. Available:
https://opensignal.com/reports/2018/02/state-of-lte. [Accessed 20
November 2018].

[41] C. Ovando, J. Pérez and A. Moral, "LTE techno-economic assessment: The
case of rural areas in Spain," Telecommunications Policy, vol. 39, no. 3, 4,
pp. 269-283, 2015.

67

[42] J. Nyquist, "Nå er det snart slutt for 3G – dette betyr det for deg,"
online.no, December 2018. [Online]. Available:
https://www.online.no/dekning/3g-fases-ut-4g-overtar. [Accessed 20
December 2018].

[43] M. Lorentzen, "Mobilgiganter stengte GSM-nettet for å gi plass til mer 4G:
Det vil ta årevis før Norge følger etter," e24.no, 2017. [Online]. Available:
https://e24.no/digital/telenor/mobilgiganter-stengte-gsm-nettet-for-aa-gi-
plass-til-mer-4g-det-vil-ta-aarevis-foer-norge-foelger-etter/23910642.
[Accessed 5 January 2018].

69

Appendix A – Source code

The source code of the Android application, the measurement server and the server
application combined contain (only) about 2000 lines of code. Including the web
pages with HTML and JavaScript replied by the web server, closer to 2500. Note
that compared to for instance Java, Kotlin is quite concise in syntax, and saves a
lot of code lines when it comes to boilerplate code like data classes. Functional
programming idioms are used extensively in the code for handling measurement
data and also saves a lot of space compared to more “traditional” methods.
Consider for instance the following example that calculates the most common
network type among result rows:

data.commonNetworkType = rows
 .map { it[Measurements.networkType] }
 .groupingBy { it }
 .eachCount() // gives Map<String, Int> with counts
 // for each value.
 .maxBy { it.value }?.key

Since the measurement server and server application were hosted on the same
machine during the thesis, they are contained in the same project file. They can
be found at:

https://github.com/jameyer/connectivity-data-server

The source code for the Android application can be found at:

https://github.com/jameyer/connectivity-data-android-client

	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1 – Introduction
	1.1 Problem area
	1.2 Problem description and focus
	1.2.1 Improving routing decisions and safety
	1.2.2 Smarter media buffering

	1.3 Methodology
	1.4 Report structure

	Chapter 2 – Background
	2.1 Mobile network types
	2.2 Vehicular Networks
	2.3 Dead spots
	2.4 Network measurements

	Chapter 3 – Related work
	3.1 A Way to Measure and Analyze Cellular Network Connectivity on the Norwegian Road System
	3.2 Message Forwarding between Vehicles in Dead Spots
	3.3 Vehicular Communication Systems: Enabling Technologies, Applications, and Future Outlook on Intelligent Transportation
	3.4 NorNet project
	3.5 Crowdsourced projects
	3.6 Summary of related work

	Chapter 4 – Design and implementation
	4.1 Client application
	4.1.1 Measuring signal strength
	4.1.2 Measuring location
	4.1.3 Measuring bandwidth
	4.1.4 Probe traffic measurements
	4.1.5 Using the application

	4.2 Server application
	4.2.1 Receiving and storing measurements
	4.2.2 Aggregating measurements
	4.2.3 Network performance model
	4.2.4 Defining dead spots
	4.2.5 Algorithm for finding dead spots
	4.2.6 Providing connectivity information

	4.3 Tools and libraries

	Chapter 5 – Results and discussion
	5.1 Issues
	5.1.1 Bandwidth measuring issues
	5.1.2 Software library issues
	5.1.3 GPS positioning issues

	5.2 Collected data
	5.2.1 Sample distribution between network types

	5.3 Metric distributions
	5.3.1 Round-trip time
	5.3.2 Signal strength

	5.4 Metric correlations
	5.4.1 Findings for EDGE networks
	5.4.2 Findings for HSPA networks
	5.4.3 Findings for LTE networks
	5.4.4 Summary of metric correlations

	5.5 Dead spot algorithm outputs
	5.5.1 Example with performance threshold
	5.5.2 Example with gaps
	5.5.3 Example with performance threshold and gaps

	5.6 Server application scalability

	Chapter 6 – Conclusion
	Chapter 7 – Future work
	7.1 Improving positioning
	7.2 Improving network performance models
	7.3 Security and message prioritization
	7.4 The future role of 5G

	References
	Appendix A – Source code

