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Abstract 

 

The performance of the underlying communication technology plays an important 
role in Vehicular Networks (VNs). Strict requirements must be met in order to 
ensure necessary safety and robustness, as well as to provide user satisfaction. In 
reality, however, the available connectivity performance often does not meet these 
requirements. For instance, in rural areas the mobile network may still be using 
2G or 3G technology, and dead spots can be present. In this thesis we focus on 
the mobile network as the mode of communication in VNs, with emphasis on such 
dead spots.  

A client-server solution where connectivity data from sampling clients is processed 
has been developed. Connectivity data is collected using Android devices and 
uploaded to a central server. The devices may be used in different means of 
transport, such as cars or bicycles as well as by pedestrians. In real-time, the server 
processes and aggregates the data into structured data formats, which is also 
presented as graphs and geographical maps showing dead spots and other areas of 
low connectivity. These aggregated forms of data can then be requested by the 
means of transport, which can use the data to decide where to communicate and 
with which quality of service. 

To build and test the system, we sampled data from two different geographical 
areas of Norway: Lofoten and Trondheim. Over 130 000 samples were collected 
from various types of networks. An in-depth analysis of these samples is provided. 
The resulting system is a scalable solution for handling large volumes of 
connectivity data from a multitude of sources.  



 
 

 



Sammendrag 

 

Ytelsen til den underliggende kommunikasjonsteknologien spiller en viktig rolle i 
Vehicular Networks (VNs). Strenge krav må oppfylles for å sikre nødvendig 
sikkerhet og robusthet, i tillegg til å gi brukertilfredshet. I virkeligheten er det 
derimot ofte slik at tilgjengelig ytelse ikke oppfyller disse kravene.  For eksempel, 
i distriktene kan mobilnettet fortsatt være basert på 2G- eller 3G-teknologi, og 
dødsoner kan forekomme. I denne oppgaven fokuserer vi på mobilnettet som 
kommunikasjonsmodus i VNs, med vekt på slike dødsoner. 

En klient-server-løsning der mobilnettverksdata leveres av målende klienter har 
blitt utviklet. Nettverksdata blir samlet inn ved bruk av Android-enheter og lastet 
opp til en sentral server. Enhetene kan brukes i forskjellige transportmidler, som 
biler og sykler, men også av fotgjengere. I sanntid prosesserer og aggregerer 
serveren dataene om til strukturerte dataformat, som også kan presenteres som 
grafer og geografiske kart som viser dødsoner og andre områder med dårlig 
forbindelse. Transportmiddel kan deretter forespørre disse aggregerte formene av 
data, og bruke dem til å avgjøre hvordan det skal kommuniseres og med hvilken 
tjenestekvalitet. 

For å bygge og teste systemet ble det gjort målinger fra to forskjellige geografiske 
områder i Norge: Lofoten og Trondheim. Over 130 000 målinger ble samlet fra 
forskjellige typer nettverk. En dybdeanalyse av disse målingene er gitt. Det 
resulterende systemet er en skalerbar løsning for å håndtere store volum av 
måledata fra forskjellige typer kilder. 
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Chapter 1 – Introduction 

1.1 Problem area 

The work of this thesis falls within the domain of Intelligent Transportation 
Systems (ITS). ITS combines information and communications technology (ICT) 
with the conventional world of transportation infrastructure. It has been developed 
and deployed over the past few decades to improve transportation safety, reduce 
environmental impact, promote sustainability and enhance productivity [1]. The 
rate of advances in technology of today in combination with an increasing concern 
for the environment of the planet makes ITS a highly relevant field of research.  

 

1.2 Problem description and focus 

With the development of ITS, infrastructure plays an increasing role in 
communication with vehicles.  In a sophisticated scenario, routing, velocities of 
vehicles and distances between vehicles could be suggested by the infrastructure 
based on traffic conditions. This requires vehicles to have a wireless connection to 
the infrastructure, e.g. through the mobile network or with Dedicated Short Range 
Communication (DSRC). DSRC provides wireless communication capabilities for 
transportation applications within a 1000 m range in highway speeds [2]. The work 
of this thesis is concerned with the former: the mobile network. 

Throughout the mobile network, network performance will vary depending on 
coverage, but also the condition of the underlying network. Poor performance can 
still be experienced with excellent signal strength if the network is congested. 
Knowledge and mapping of such poor (and good) network conditions is, of course, 
of great value to vehicle communication. Additionally, coverage mapping of the 
mobile network alongside the road could be useful for other interest groups, such 
as telecom companies. This information must be up-to-date, since network 
conditions can change dynamically and unpredictably. The focus of this thesis is 
as such developing a system that can provide vehicles with real-time connectivity 
information and identify areas with poor network performance.  

There are many applications in ITS where vehicles communicate with each other, 
the infrastructure or a combination of both. Examples are intersection 
management, remote diagnosis/repair warnings, road conditions and media 
downloads. In the following sub sections, we present a few examples of how the 
work of this thesis could be used in real-world scenarios. 
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1.2.1 Improving routing decisions and safety 

With knowledge about a poor connection area in advance, systems for ad-hoc 
communication can be selected for use earlier. A car does not need to sense the 
network state itself before deciding whether to communicate with infrastructure 
or directly with other vehicles. Information about potential hazards on the road, 
such as a traffic accident or an icy road, could then potentially be delivered faster.  

If the mobile network is unavailable, being aware that direct communication with 
other vehicles is the only usable option could have other implications to safety. 
Without information also delivered from the infrastructure network, a car should 
operate safely within the latency constraints implied by ad-hoc communication. 
For instance, a self-driving car could adjust its speed accordingly. 

 

1.2.2 Smarter media buffering 

Adaptive streaming protocols (MPEG-DASH, HLS, …) are used by many media 
content providers today to deliver audio and video. In adaptive streaming the 
quality of for instance a video will be lowered if the client has a low bit rate. Users 
are more willing to accept a few minutes of bad quality video rather than an 
interrupted experience [3]. Also, to conserve bandwidth, only a certain amount of 
content will be buffered at a time. If the user decides to close a video before 
finishing watching it, downloading the entire video would be a waste. Adaptive 
streaming is illustrated in the following figure.  
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Figure 1.1: Adaptive streaming [3] 

 

In an area of very poor or no connectivity at all, even worst quality of content will 
not be delivered to the user. This is the case with mobile network dead spots. 
With prior knowledge of a dead spot, bandwidth can be utilized in a smarter 
manner to ensure a richer user experience with no interruptions. For instance, part 
of the bandwidth before the dead spot can be used for buffering more content. 
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1.3 Methodology 

A client-server software architecture is used. Cars are equipped with Android 
devices sensing the network performance of the current mobile network, measuring 
various performance metrics such as signal strength, round-trip time and packet 
loss. These measurements are uploaded to a server that processes them. Upon 
request, the server provides network performance information of specified 
geographical areas, by using the earlier measurements provided by other cars. 

 

1.4 Report structure 
 

Chapter 2 presents background material of relevance to studying the rest of the 
chapters. 

Chapter 3 presents and summarizes related work. 

Chapter 4 describes the design and implementation of the developed software. A 
sampling client application is first presented, then the server application that 
receives and processes these samples. 

Chapter 5 contain results and discussion. Issues faced during practical work are 
first shown. Then, a statistical analysis of results is performed and discussed. 
Application scalability is also addressed here. 

Chapter 6 is the conclusion of the thesis work. 

Chapter 7 contains proposed future improvements to our work. 
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Chapter 2 – Background 

This section provides background knowledge for the problem area. As we 
throughout the thesis perform network measurements in mobile networks, 
knowledge about different types of mobile networks and how they have developed 
is useful. Vehicular Networks (VNs) are an important part of network 
communication in the ITS domain and are also shortly introduced. Mobile network 
dead spots are then discussed, as we have a need of identifying them in this thesis. 
Lastly, different techniques for measuring network performance are introduced. 

 

2.1 Mobile network types 

Global System for Mobile communications (GSM) and Code-division multiple 
access (CDMA) are different channel access methods in mobile networks, where 
GSM is dominating the market share. Measurements performed in this thesis are 
done purely in GSM networks, and CDMA technology is therefore not addressed. 
However, note that a variant of CDMA (WCDMA) is used in Universal Mobile 
Telecommunications System (UMTS), a GSM 3G technology. 

The 3rd Generation Partnership Project (3GPP) is a collaboration between several 
telecommunication standard associations. The scope of 3GPP [4] includes: 

• GSM and related 2G and 2.5G standards 
• UMTS and related 3G (and 3.5G) standards 
• Long-Term Evolution (LTE) and related 4G standards 
• Next generation and 5G standards 

2G technologies became available in the 1990s, being enhanced with packet-data 
capabilities into so-called 2.5G. Enhanced Data rates for GSM Evolution (EDGE) 
is considered a 2.5G standard. 3G requirements were specified by the International 
Telecommunication Union (ITU) as part of the International Mobile Telephone 
2000 project. Enhancements to 3G standard were later made, being 3.5G 
technologies. The first enhancement was High Speed Downlink Packet Access 
(HSDPA). It was introduced in 3GPP Release 5, followed by High Speed Uplink 
Packet Access (HSUPA) in 3GPP Release 6. The combination of HSDPA and 
HSUPA is referred to as High Speed Packet Access (HSPA). HSPA+ (HSPA 
evolution, evolved HSPA) came in Release 7 with further improvements in later 
releases. 
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LTE was developed to ensure continuity and competitiveness of the 3G system, 
not being part of the fourth-generation mobile systems (4G). Further 
enhancements to LTE led to LTE-Advanced, that completely fulfilled the 
requirements set by ITU for 4G. Further enhancements to LTE-Advanced came 
in 3GPP Release 13 and 14, known as LTE-Advanced Pro.  

3GPP Release 15 saw the delivery of the first 5G specifications, including new 
work as well as the maturing of the LTE-Advanced Pro specifications. Release 16 
will be the second phase of 5G and was completed in December 2019 [5]. 

 

2.2 Vehicular Networks 

ITS involve both traffic management and vehicle communication capabilities. 
Regarding communications, Vehicular Networks (VNs) are wireless networks that 
support transportation safety, transportation efficiency, and user services delivered 
to the vehicle. VNs are divided into two forms of communication, Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I). The combination of V2V and 
V2I is commonly referred to as Vehicle-to-Everything (V2X) [6]. The solution 
discussed in this thesis uses V2I communication, but also seeks to aid in V2V 
communication, as cars can for instance switch to V2V if the connection to the 
infrastructure is poor. 

 

2.3 Dead spots 

Places where mobile networks fail to provide successful communication is often 
referred to as dead spots in literature [7] [8]. These dead spots may occur due to, 
for example, mobile devices being out of range of any cellular towers or the wireless 
signal being blocked by some material in the surroundings of the device (e.g. in a 
tunnel or a building). Mobile and Wi-Fi networks are often arranged to primarily 
serve inhabited areas but not the roads in between, particularly, when these are 
minor [9]. Dead spots or poor mobile signal strength more frequently occurs in 
rural areas. 

A different way to think of dead spots is also based on the area of application. As 
we will see in the next chapter, certain security related applications of vehicles 
have very strict latency requirements. The delay of the Radio Access Network 
(RAN) is much larger in for instance 2G networks than 4G networks [10] [11], and 
this delay alone may already exceed the requirements of such security related 
applications. That means, an area with only 2G access could be considered a dead 
spot even if the signal strength is satisfactory in that case.     
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It is also important to note the dynamic nature of dead spots. A breakdown in 
infrastructure because of a natural disaster could cause connectivity to change 
drastically. More commonly though, in the case of packet-switched networks, 
performance may vary because of network congestion. The real performance of the 
network will vary by network configuration, the radio environment of the location, 
the device in use, and number of active users [12]. 

 

2.4 Network measurements 

Measuring network performance is not a new phenomenon and is a wide area of 
research. Several research projects are available with different purposes regarding 
this subject [13] [14]. Network performance measuring can be divided into two 
categories: active and passive measurements [15] [16]. Passive measurements are 
carried out by observing network traffic flows and do not add to network traffic. 
It is well suited for traffic engineering, showing flow dynamics and distribution. 
But obtaining end-to-end measurements with passive measurements is hard as 
presence of traffic between to measurement points cannot be ensured and matching 
measurements from different nodes is challenging.  

Active measurements are on the other hand well suited for end-to-end 
measurements in a network and more feasible to implement in a client/server 
architecture (as we have in this thesis). As opposed to passive measurements, with 
active measurements probe packets are sent into the network and thus adds to 
the network traffic, potentially affecting the results.  

Common metrics measured actively are: 

• One-way delay 
• Round-trip time  
• Delay variation (commonly referred to as jitter) 
• Packet re-ordering 
• Packet loss 
• Bandwidth 

One-way delay measuring requires clock synchronization, as do most techniques 
for measuring delay variation. This is a complex problem that can be solved by 
using Global Positioning System (GPS) cards, radio clock receivers, or with 
Network Time Protocol (NTP) servers. Other metrics listed here generally do not 
imply constraints to the clocks of the end-systems. 
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For Transmission Control Protocol/Internet Protocol (TCP, TCP/IP) networks, 
TCP throughput is in [8] mentioned as a key bandwidth-related metric. TCP 
throughput is of interest to end users as TCP carries most of Internet traffic. 
Defining TCP throughput is however difficult, as several factors may influence it. 
This includes transfer size, number of competing TCP connections, socket buffer 
sizes, congestion along the reverse path, as well as variations in TCP 
implementations. Bulk transfer capacity defines a metric that represents the 
achievable throughput by a TCP connection, and is described by RFC 3148 [17]. 
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Chapter 3 – Related work 

There are multiple theses written at the Department of Information Security and 
Communication Technology (IIK), NTNU regarding communication in Vehicular 
Networks. Achieving V2V communication using peer-to-peer communication such 
as Wi-Fi Direct has been explored [18], among other topics. Solutions for 
measuring mobile network performance already exist, some also developed at IIK 
[9]. There are several mature, existing projects available where the mapping of 
network performance is the main objective. Identifying network performance 
constraints is an important subject in Vehicular Communications for the security 
of autonomous cars. 

 

3.1 A Way to Measure and Analyze Cellular Network 
Connectivity on the Norwegian Road System 

This paper [9] was written in 2017 at NTNU in collaboration with the Norwegian 
Public Road Administration (NPRA). The authors present a possible solution to 
collecting connectivity-data on the Norwegian road network on a big scale. 
Vehicles are equipped with Android devices that measure different network 
performance metrics, for instance round-trip time and signal strength. This data 
is then stored locally on the device together with GPS data of the location where 
measurements were performed. After completing measurements, the device can 
then be connected to a computer where the measurements can be uploaded and 
analyzed. 

 

3.2 Message Forwarding between Vehicles in Dead Spots 

As stated in [9], hybrid networks are a highly relevant research and development 
topic for academia, governments, automotive companies, and other stakeholders. 
They will combine mesh and cellular networks to utilize bandwidth efficiently. 
This master thesis by Jakobsen [18] (also written at IIK) uses such hybrid 
networks by showing how vehicles can switch to using vehicular ad-hoc networks 
(VANETs) in dead spots, to maintain the ability to forward important security 
messages between vehicles. The outlined solution uses Wi-Fi Direct in Android 
devices to accomplish this. It also discusses how a good power saving algorithm is 
essential to such a solution, as it is meant to be a full-time working system. 
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3.3 Vehicular Communication Systems: Enabling 
Technologies, Applications, and Future Outlook on 
Intelligent Transportation 

In [19], several practical applications of VNs are presented along with potential 
latency requirements for each application. A small excerpt of the table presented 
in the article is given below. Note how safety-oriented applications like pre-crash 
sensing much lower latency requirements (50 ms) than user services like media 
downloads (500 ms).  

 

Application 
name 

Communication Latency Other 
requirements 

Hazardous 
Location Warning 

Ad hoc, 
infrastructure I2V, 
V2V 

100 ms High priority 

Pre-Crash Sensing AD hoc 
V2V 

50 ms Range: 50 m 

Media Download Infrastructure; 
cellular, other 
broadcast network 

500 ms Internet access 
Server availability 

 

Table 3.1: VC-enabled applications and their characteristics (excerpt) [19] 

 

In “5GCAR Scenarios, Use Cases, Requirements and KPIs” [20] several safety-
oriented use-cases are also identified, with very strict latency and reliability 
requirements (less than 30 ms for all use-cases). The goal of the 5GCar project is 
to contribute to the specification of 5G to become a true enabler of V2X 
applications that are not realizable of today due to shortcomings of current 
communication networks. 
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3.4 NorNet project 

NorNet is a platform for experimental networking research. It is built and operated 
by the Simula Research Laboratory and financed by the Research Council of 
Norway [21]. NorNet Edge consists of a large number of nodes geographically 
spread across Norway, able to perform complex measurement experiments. 
Simultaneous access to mobile broadband connections from multiple operators is 
provided. Real-time visualizations from NorNet Edge are publicly available and 
provide, among other metrics, round-trip time and packet loss rate across multiple 
ISPs. On their website, several publications are listed where the NorNet platform 
has been used for coverage testing while driving. Simula’s Center for Resilient 
Networks and Applications (CRNA) publishes annual reports about the current 
state of Norwegian mobile networks based on measurements obtained using the 
NorNet infrastructure [22]. 

 

3.5 Crowdsourced projects 

There are several publicly available crowdsourced projects for mapping mobile 
network coverage. The main issues with such crowdsourced solutions are the lack 
of repeatability and having no control or knowledge about the measurement 
equipment. On the other hand, they are generally end-user-friendly which means 
more people can contribute measurements and thus offers very large amounts of 
data. 

Two examples of such projects are OpenSignal and Mobiperf. As opposed to drive-
testing with expensive test equipment, users’ smartphones are used for performing 
measurements. OpenSignal claims to receive data from more than 100 million 
devices worldwide, and capture over 3 billion measurements per day [23]. Network 
operators have criticized OpenSignal for being limited and non-scientific, not 
reflecting geographical coverage and only providing large amounts of data for 
downtown areas [24]. 
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3.6 Summary of related work 

ITS systems must work under tough latency constraints and ensure both security 
and user satisfaction. Studying network performance is a well-established area of 
research, and how measurements should be conducted is well-defined. Despite the 
increased interest in VNs and the ITS field in general, there seems to be little 
focus on the role of low connectivity areas in a future ITS world. This also applies 
to the dynamic nature of networks, and that cars need updated information in 
real-time. The authors were not able to find related work with a similar 
methodology in the same problem area. 
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Chapter 4 – Design and implementation 

Our centralized solution for handling connectivity information for vehicles are 
based on a client-server architecture. The clients perform measurements using 
Android devices and transmit them to a server that processes the data. Cars on 
the road network with an internet connection can then request connectivity 
information for a given location from the server. While the intended user of the 
system is a car, practically any device with an Internet connection can utilize it. 
The general architecture is illustrated in the following figure. 
 

 

Figure 4.1: Architectural overview 

 

Cars have their own complex computer systems, and most modern ones have their 
own SIM-cards. However, building the system around the computer systems of 
cars requires special insight, and could also limit the areas of use of the system. 
Android is a mature and widespread platform, that already in 2015 had over 1 
billion devices using it [25]. With using Android devices, measurements can also 
be obtained by other mediums than cars, such as trains or bicycles.  
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Android equipment was handily available, and a similar app which could be used 
as a basis for development already existed from the work in [9]. Based on the 
authors existing experience with app development on both Android and iOS 
(iPhone) devices, iOS would not be well suited for this project due to APIs being 
more closed and that distributing an unsigned app only for research purposes is 
timelier and more difficult. However, it should be entirely possible to develop a 
similar app for the iOS platform if necessary. 

Our centralized server approach provides more accurate dead spot information 
than the Vehicle-to-Vehicle methods we have investigated. Samples from several 
cars over a long period of time can be utilized, as opposed to only recent data from 
cars in proximity. Note how with our approach every vehicle potentially benefits 
from every measurement ever made for a certain location.  

However, this architecture comes with the cost of running a server and a cost of 
data traffic flowing to the server using the available mobile network. As the server 
must handle large amounts of data from potentially many cars, this is not a 
negligible cost. A general problem of the client-server architecture is also having 
a single point of failure. Server reliability and availability are however not the 
focus of the thesis. 

The centralized data may be of value to other interest groups. As mentioned in 
chapter 3, IIK has for instance already co-operated with the Norwegian Public 
Road Administration for measuring connectivity on the Norwegian road system. 
Telecom companies have access to the infrastructure to perform their own 
measurements for connectivity, but the data from our application could perhaps 
also be of interest if reaching a certain scale. 
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4.1 Client application 

The task of the client application is to perform measurements of the performance 
of the mobile network and upload them to the server application. As mentioned, 
the chosen approach for the client is developing it for Android platform. In section 
2.4, we introduced metrics that are commonly measured actively, such as round-
trip time and packet loss. A subset of these metrics has been implemented in the 
application. As will be explained, some metrics required the development of a 
measurement server to which probe packets could be sent to. With this additional 
component, the architecture from a client perspective is presented in the following 
figure. 

 

 

Figure 4.2: Architecture from client point of view 

 

Parameters measured by the client application are: 

• Signal strength 
• Location 
• Bandwidth 
• Round-trip time (RTT) 
• IP Packet Delay Variation (IPDV) 
• Packet loss 

 

Further details about parameters, their motivation and how they are implemented, 
and the use of the measurement server, are presented in the following sub-chapters. 
Lastly the interface of the application and how the application is used is shown. 
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4.1.1 Measuring signal strength 

Data communication in a mobile network is done wirelessly, and the signal 
strength may therefore affect the achieved performance.  

Android offers access to detailed information about the current mobile connection, 
such as network type (e.g. EDGE, HSPA and LTE) and signal strength. The 
Arbitrary Strength Unit (ASU) expresses signal strength as an integer. In GSM 
networks, the Received Signal Strength Indicator (RSSI) is used for calculating 
ASU. While in LTE networks, the Reference Signal Received Power (RSRP) is 
used. In the first case the ASU ranges from 0 to 31, and in the second from 0 to 
97. In both cases a value of 99 indicates the signal strength could not be 
determined. This information can be found in the relevant Android source code 
[26] [27], where it is also indicated that this is based on the technical specifications 
of 3GPP. We have implemented measuring of both the GSM ASU level and the 
LTE ASU level. CDMA mobile telephony standards are not covered. 

 

4.1.2 Measuring location 

The measurements obtained for the other listed parameters must of course be 
paired with the current location of the device. Determining location is done using 
the Fused Location Provider API, which provides simple methods of obtaining an 
Android device’s position given a specified quality [28]. In our case we request the 
highest accuracy possible and a frequent updating of position at a 1000 ms interval. 
GPS is the underlying technology used by this Android API in our case. 

 

4.1.3 Measuring bandwidth 

Bandwidth is notably more important when transferring larger amounts of data, 
such as when streaming media content. The available bandwidth limits the quality 
of the content the user receives. The Android API offers reading of total number 
of bytes received over all interfaces through “Android TrafficStats”. Bytes received 
are measured at the network layer, including both TCP and User Datagram 
Protocol (UDP) usage [29]. 

Bulk transfer capacity, as described in section 2.4, is not possible to measure 
correctly using only this data, as we would need to know of retransmissions and 
TCP traffic only. What we can measure with the Android API though, is bytes 
received (as described above) over time. Facebook have developed a library, 
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“Network Connection Class”, for classifying user’s internet connection and this is 
also what they use in their implementation [30]. They refer to this measurement 
as the “downstream bandwidth”. To obtain a more accurate measurement, there 
needs to be some traffic to the smart phone during the sampling period. To achieve 
this, we issue downloads of a fixed-size file of 10 MBs from an external web server.  

 

4.1.4 Probe traffic measurements 

Measurements for RTT, IPDV and packet loss are obtained by sending probe 
packets to a separate measurement server. Note that it is purely implemented for 
performing client measurements. When the term client-server is used for our 
general system architecture, the measurement server is not the indicated server. 

RTT limits how fast a response can be generated for a request and is therefore 
important for establishing connections. This makes round-trip time a key metric 
in VN applications. In related work in section 3.4, we saw some of the strict latency 
requirements of VNs. 

Packet loss is an important metric in several applications. In safety-oriented VN 
applications, such as a hazardous location warning, packets would have to be re-
transmitted in case of loss, drastically increasing any delays. Cisco state the 
following regarding packet loss in VoIP [31]: “The default G.729 codec requires 
packet loss far less than 1 percent to avoid audible errors. Ideally, there should be 
no packet loss for VoIP.” 

IPDV, more commonly referred to as jitter, is described in RFC 3393 [32]. The 
importance of jitter highly depends on the application. In a Skype call for instance, 
the tolerance for jitter is very low and jitter is easily noticeable. In media 
streaming, the tolerance is higher since more content can be buffered. 

Because of the connection-oriented mechanisms of TCP, such as slow start and 
flow control, interpreting TCP results require more careful inspection. For 
simplicity we instead use the UDP protocol. While today’s versions of Hypertext 
Transfer Protocol (HTTP) are built on top of the TCP protocol, the next version 
of HTTP, namely HTTP/3, will be built on top of UDP and not TCP [33]. The 
structure of our UDP probe packets is shown in the following figure. 
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Figure 4.3: Probe packet structure 

 

An “echo server” is a server that replies to a client with the same data as received. 
This is essentially what the measurement server does, except for the timestamp 
appended in reply packets. The timestamp indicates the time of which the server 
received the packet, and as will be explained shortly, is used for calculating IPDV. 
The “sequence number” is a number increased by one in the client each time a 
packet is sent. 

Note that even though the reply packet from the server has additional data, we 
have used the same packet length for packets flowing in each direction. The 
packets are of the same fixed data length of 32 bytes (in addition to the UDP 
header of 8 bytes). 20 extra bytes were added in case more information would be 
required later. The sections illustrated as “<Empty>” or “Padding” are filled with 
0s in the packet data. 

 

Measuring RTT 

For each sequence number, we store the corresponding send-time of the packet. 
When the client receives a reply packet, RTT can be calculated by using the 
sequence number to retrieve the send-time again and subtracting it from current 
time. 

 

Measuring packet loss 

Since the sequence number of all sent packets are stored, packet loss is easily 
determined by identifying packets that have received no reply.  
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Measuring IPDV 

RFC 3393 [32] defines packet delay variation as “the difference between the one-
way-delay of packets within a stream going from measurement point MP1 to 
measurement point MP2”.  

This implies that knowledge of the following is required for calculation: 

• Transmit time of first packet in a pair 
• Receive time of the first packet in a pair 
• Transmit time of second packet in a pair 
• Receive time of second packet in a pair 

It also implies that the clocks of the two measurement points are synchronized. 
However, if packets are transmitted periodically, two of the needed parameters 
are pre-determined and clock synchronization is not necessary. With packets being 
transmitted periodically, only the inter-arrival time of received packets are 
measured. If the packets are sent periodically, then the difference between the 
receiving times for two consecutive packets should be equal to the periodic send 
interval if there is no packet delay variation [34]. 

An accuracy flaw of measuring packet delay variation in this way occurs when a 
packet is lost. The inter-arrival time between two packets before and after the 
dropped packet will be large and could skew the data. We solved this in our 
implementation by only looking at consecutive packets, i.e. not using lost packets 
when calculating IPDV. 

As mentioned, when the measurement server receives a packet from a client, a 
timestamp for when the packet was received is appended to the reply packet. For 
two consecutive (using the sequence number) packets p1 and p2 with receiving 
timestamps t1 and t2, and a periodic send interval p the packet delay variation 
then is: 

ipdv = t2 − t1 − p 

 

An example is illustrated in the following figure. 
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Figure 4.4: IPDV example 

 

In this example, the second packet of the pair takes longer to arrive at its 
destination. The result is then a positive IPDV, since: 

t2 − t1 − p > 0 

 

A negative value of IPDV would occur if packet 2 had a shorter transmit time 
than packet 1. Note that this is the packet delay variation for traffic flowing from 
the Android device to the measurement server, and not the other way around. For 
measuring the IPDV of packets flowing from measurement server to the Android 
device, the measurement server would be required to periodically send packets to 
the Android device instead.  
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Periodic measurements 

To able to calculate IPDV without clock synchronization, we use periodic 
sampling, i.e. packets are sent from the Android device to the measurement 
periodically. While periodic sampling provides a simpler way to calculate IPDV, 
it also comes with disadvantages. This is also discussed more in depth in RFC 
2330 [35]. Periodic sampling is more susceptible to manipulation, and repeated 
periodic injection of traffic could drive the network into a state of synchronization. 
If the measured metric exhibits periodic behavior, there is a possibility that the 
sampling only observes the part of the periodic behavior the periods agrees with. 
Given the very small traffic volume that our application generates (approximately 
160 byte/s), we assume these issues should not have a large impact on the 
measurements.  

Different sampling rates were tested to see if the round-trip time was affected. 
Measurements for RTT with different rates were made on the same network, 
within the same area and within a short timeframe and are presented in the 
following table. A lower average round-trip time was achieved when using a higher 
sampling rate (to a certain extent).  

 

Interval Average round-trip 
time 

Sample count 

10 ms 74 ms > 1000 
25 ms 59 ms 500 
250 ms 61 ms 600 
500 ms 92 ms 400 
1000 ms 103 ms 400 
2000 ms 94 ms 400 

 

Table 4.1: Average round-trip time for different periodic send intervals 

There appears to be a sudden increase in round-trip time when sampling at a lower 
rate than about every 250 ms. The reason behind this has not been investigated 
thoroughly, but a possible explanation could be how intermediate routers on the 
path between client and server treat different traffic patterns. NorNet suggests 
this idea on its web page for showing NorNet Edge details: “The mode of a 
connection again depends on the traffic pattern. Hence, sending more traffic can 
result in a lower RTT.” [36]. As explained later, since we aggregate measurements 
based on proximity, the sample rate also determines how many measurements are 
obtained per aggregated area. 
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4.1.5 Using the application 

The app provides a simple interface with 2 buttons, a “Start” and a “Stop” button, 
as shown in following figure. Sampling starts immediately when the “Start” button 
is pressed, and the user interface is continuously updated with location information 
and number of samples that are currently stored in memory. Once the “Stop” 
button is pressed, the sending of new probe packets stops immediately, but the 
app will continue to receive probe packets for 5 seconds before the measurement 
process is considered completed. This is to allow extra time for recently sent 
packets to be replied to, so the reply packet is not considered lost. Once the 
measurement process has completed, all measurements are reliably uploaded to 
the server using TCP.  

 

 

 

Figure 4.5: Android app interface 
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Uploading all measurements when the process is completed rather than 
continuously uploading them partly conflicts with the real-time aspect of the 
system. That is, cars would always have more recent information with a 
continuous upload. This was done to ensure that the uploading of samples did not 
affect measurements. As we will see in chapter 5, we found that using bandwidth 
affected for instance round-trip time measurements. Possible solutions to this 
problem could be either using a separate connection for uploading samples or 
making short pauses in measuring to upload samples. Sending the samples through 
the TCP socket usually took under 1 second, depending on the amount. 
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4.2 Server application 

The server application has mainly three responsibilities: 

1. Receiving measurements from clients 
2. Storing measurements 
3. Providing connectivity information 

To receive measurements, a TCP socket listens to incoming data from clients. 
Measurements are stored using a database management system (DBMS). A 
connection and an interface between our application and the DBMS are required 
for storing and retrieving data. To provide connectivity information, the server 
application also acts as a web server, exposing a Representational State Transfer 
(REST) API. This makes the server able to respond to HTTP requests, for 
instance requesting a list of measurements or a live map. A simple overview of the 
server functionality is shown below. 

 

Figure 4.6: Server application overview 

In the following sub-chapters, we will have a closer look at the different parts of 
the server application. First, how measurements are received and stored is 
discussed. We will then introduce how measurements can be aggregated and what 
types of aggregations are performed. Furthermore, we have developed a function 
for quantifying network performance based on aggregations. Using this function, 
dead spots in a mobile network can be identified. An algorithm for identifying 
these dead spots is then described in detail. Lastly, we show how the application 
is capable of presenting connectivity information in multiple ways, with both 
structured data formats and more human-readable formats like graphs and maps. 
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4.2.1 Receiving and storing measurements 

A TCP socket listens for new connections from clients. For each new client, a new 
thread is spawned to support concurrent receiving of measurements from multiple 
clients. Each set of measurements received from a client is assigned a separate 
“trip ID”, making it easier to separate data from different driving trips or sources. 
Note how the server application can potentially receive sample data from multiple 
types of clients. It is not dependent on the described Android application, only 
that received data is in expected format. 

Measurements are aggregated based on location proximity – samples within a 
radius of 50 meters of each other are considered to be part of the same area. 
Measurements and areas are the two entities in the database. The Entity-
Relationship model (ER model) of the database is shown in the figure below. 
 

 

Figure 4.7: Database ER-model 
 

Area radius and sample rate of the client application determines number of 
measurements per area on average. With an area radius of 50 meters, a sampling 
rate of 250 ms and a vehicle moving at 60 km/h, one should be able to obtain 
about 24 measurements for an area. Note that this only is true when the area is 
not yet created or when driving through the center of the area. The current 
balance between area size and sampling frequency should be sufficient for doing 
calculations without results being severely prone to outliers in the data. An area 
radius of 50 meters gives good locality in measurements, being able to state where 
the start and end point of a dead spot could be somewhat accurately. A more 
frequent sampling rate would give more data, but the variations in the data might 
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be small between samples. The increased data volume could also affect 
performance. 

For each measurement, the application checks whether an area for the 
measurement location exists, and if not, creates a new area. That is, the 
application needs to check whether an area within 50 meters of the measurement’s 
location already exists. With our measurements we had several thousand areas, so 
it is important that this is done efficiently. This is solved using spatial indexes, a 
property of an extension library to our DBMS, described shortly in section 4.3. 
Scalability and performance of the server application are addressed in section 5.6. 

 

4.2.2 Aggregating measurements 

With multiple measurements for each area, aggregations can be performed. 
Depending on the type of request, all measurements or only a subset of 
measurements in an area can be used for performing aggregations. For instance, a 
request may specify that only measurements from a certain trip (trip ID) or a 
certain network type (e.g. LTE) is of interest. More information about different 
types of requests is provided in section 4.2.6. For the selected measurements, the 
following aggregations are calculated:  

• Average round-trip time 
• Median round-trip time 
• Round-trip time quality* 
• Jitter ratio* 
• Average signal strength 
• Packet loss ratio 
• Most common network type (e.g. EDGE, HSPA, …) 

 

Round-trip time quality  

As mentioned in section 2.3, in 2G/3G data networks, usually the RAN latency 
dominates the overall end-to-end delay. The real performance of every network 
will vary by provider, their network configuration, active users within a given cell, 
the radio environment in the location etc. While there are no guarantees for 
latency in real environments, a simple strategy is to assume a higher bound for 
packet latency for every generation [12]. The following table shows latency for 
different network generations. 
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Generation Latency 
2G 300-1000 ms 
3G 100-500 ms 
4G < 100 ms 

 

Table 4.2: Latency for different network generations [12] 

Round-trip time quality simply means that we treat a measured round-trip time 
differently depending on the network type. We assign a value between 0 to 1, 
where 1 is the best quality. We use information from the table above, and the 
distributions of our actual RTT measurements (presented in chapter 5) to 
determine the value. The assignment of a value between 0 and 1 is done quite 
coarsely, as the variations in RTT can be large, especially for 2G networks. The 
correctness of this and what exact values should be used is arguable, but the point 
is that “how good” a measured RTT value is may depend on the network type. 

 

Jitter ratio 

As described in the client application section, we measure the IPDV of consecutive 
packets. This value can be both negative or positive. Jitter can be represented 
relative to the mean period [37]: 

jitter = mean jitter
mean period

 

In our case this means: how much is the mean jitter compared to the periodic send 
interval of 250 ms? Since IPDV can be both positive and negative, the absolute 
value of IPDV is used.  

 mean jitter = ∑abs(IPDV)
n

 

This is then divided by the periodic send interval of 250 ms. 
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Aggregations are calculated when relevant data is requested, rather than as an 
ongoing process and stored in the database. This means that all aggregations 
described above must be calculated for each area that is contained within a reply. 
Calculating aggregations on request comes with a flexibility advantage. New types 
of aggregations can easily be added without any structural changes to the 
database.  

If we wanted to store calculated aggregations in the database, we would have to 
store many aggregations for different input parameters. Storing the aggregations 
should give increased performance, but so far performance has not been observed 
to be an issue regarding this. A simpler approach could be using a cache, either 
persistent storage or in memory. The cache would store aggregations for given 
input parameters for a limited period of time. 

 

4.2.3 Network performance model 

Based on the different aggregations discussed in the previous section, we have 
defined a function which uses these aggregations for generating a value between 0 
and 1. This value indicates the general network performance of an area, where a 
greater value means greater performance. The color of areas in any map figures to 
be shown are based on the output value of this function, ranging from red (value 
0) to green (value 1).  

Given a packet loss ratio PLR, a jitter ratio JTR, a round-trip time quality RTTQ 
and an average signal strength of AVG_SIG, the defined function is as follows:  

p = (1 – PLR)(1 – JTR) ⋅ RTTQ ⋅ AVG_SIG 

Since signal strength comes in the form of a GSM or LTE ASU level value (see 
section 4.1.1), each value is normalized into a number between 0 and 1 and the 
average of these values is then taken. This function models network performance 
in a simple manner, with each metric being able to affect the output value. It is 
rather meant as a tentative starting point of a proper model than a good, polished 
model of network performance. It is for instance theoretically possible to score a 
performance value of 0.5 with 50% packet loss with this function, where in practice 
most applications would be unusable under such conditions. Parametrizing, 
evaluating and testing such a function is rather encouraged as future work, and 
also a bit further addressed in chapter 7. 
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4.2.4 Defining dead spots 

Being able to quantify the network performance of each aggregated area, a 
threshold value for a required performance can be specified. When the performance 
value falls under this threshold value for an area, that area can then be considered 
a dead spot. An example of this is described below. 

 

 

Figure 4.8: Performance threshold example  

 

The red area in the figure has the worst performance of all areas shown with a 
value of 0.1. The surrounding yellow areas all have a value of at least 0.3. If a 
threshold value of 0.2 is specified, this red area would then be considered a dead 
spot, and the rest of the areas would be considered to have sufficient performance. 

The other way a dead spot may occur is if there is a gap between areas. This 
happens when the client is unable to identify its current location, for instance in 
tunnels where GPS services could be unavailable. This is a weakness of the client 
sampling application, as the mobile network could still be available even though 
GPS services are not. As we do not know if only GPS services, or both GPS 
services and the mobile network that are unavailable, it is treated as a dead spot. 
Positioning issues and potential solutions are also addressed in section 5.1 and 
chapter 7. An example of a gap dead spot is shown in the following figure. 
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Figure 4.9: Gap dead spot, a GPS (and possibly mobile network)  
dead spot in a tunnel 

 

4.2.5 Algorithm for finding dead spots 

To provide vehicles on the road with up to date information about dead spots, an 
algorithm to identify them based on our network data has been developed. The 
input to the algorithm is a route from a specified origin point (latitude, longitude) 
to a specified destination point and a minimum desired performance value. The 
route must be described by a polyline, which is a continuous line composed of one 
or more segments.  

To obtain such a polyline route, we utilize the Google Directions API in our 
implementation. This API is a service that calculates directions between locations. 
It can be used for directions search for several modes of transportation, including 
driving, walking and cycling. Based on origins, destinations and waypoints it 
returns multi-part directions using a series of waypoints [38].  
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Figure 4.8 below is used to describe the algorithm. A route polyline is illustrated 
in (1). First, the polyline is segmented so that no line segment is longer than a 
maximum length as shown in (2). The smaller the segments, the more accurate 
the algorithm is, but the costlier the computations. An area with a performance 
value less than the specified minimum performance value is considered a dead 
spot. In (3) in Figure y we see corresponding hypothetical sample data for the 
polyline route, with an indicated dead spot area. 

 

 

Figure 4.10: Different components in dead spot finding algorithm 

 

A proximate area is an area within the distance r from a vertex in (2). For each 
vertex on the polyline in (2) we check if there are no proximate areas, or if the 
performance of proximate areas is insufficient. The first is illustrated in (4), and 
the latter in (5). As seen in (3), the last area before the dead spot starts will be 



32 
 

area 2, and the first one found with sufficient performance after the dead spot 
began will be area 4. The dead spot is then said to be between area 2 and area 4. 
The distance r must be chosen with the line segment length chosen for (2) in mind.  
Testing and outputs of the algorithm is presented in chapter 5. 

 

4.2.6 Providing connectivity information 

The application provides connectivity information in a variety of ways. As 
mentioned, this is enabled by the application acting as a web server and exposing 
a REST API. The following types of requests are supported: 

1. Show measurement data 
2. Show aggregated area data 
3. List all dead spots on a route given a start and destination point 
4. Show statistical correlations in aggregated data 
5. List all trips and their most common network type 
6. Show live map of measurements 
7. A variety of (live) graphs depending on input parameters 

Note that every response is based on live data, including maps and graphs. For 
instance, if viewing a map in a web browser and new measurements are received 
from a client, the new measurements are reflected in the map when refreshing the 
page. This conforms to the real-time requirement of the application. 

With this wide array of functionality, users of the application have large flexibility 
in how they choose to interpret information. 6 and 7 are mainly for human 
readability, while the output for other types of requests can be used as input to 
other information systems. For instance, listing of dead spots can be directly used 
by a video streaming application to schedule its bandwidth usage. The structured 
data format generally used is JavaScript Object Notation (JSON). 

Maps and graphs are very helpful to studying the sample data, for instance looking 
at the statistical distributions for different metrics. As we will see, we use these 
tools extensively in chapter 5 for analyzing results. More details for each request 
type and some examples are provided on the following 3 pages. 
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Show measurement data 

Outputs raw measurement data in JSON format for given parameters. 

Supported parameters: Area ID, network type, trip ID(s). 

Example: http://address:port/measurements?tripId=59,60&networkType=LTE 

 

Show aggregated area data 

Performs aggregations (average signal strength, round-trip time quality etc., see 
section 4.2.2) for each relevant area and outputs result in JSON format. 

Supported parameters: Area ID, network type, trip ID(s). 

Example: http://address:port/areas?tripId=59,60&networkType=LTE 

 

List all dead spots given a start and destination point 

Given an origin point (latitude, longitude) and a destination point (latitude, 
longitude), outputs all dead spots on a route between the two points and the dead 
spots respective lengths in meters. 

Example: 
http://address:port/dead-spots?origin=63.3975,10.5480&destination=63.3774,10.
6019 

 

Show statistical correlations in aggregated data 

Calculates and outputs correlations between different metrics for given 
parameters. 

Supported parameters: Network type, trip ID(s). 

Example: http://address:port/correlations?tripId=43,45&networkType=EDGE 
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List all trips and their most common network type 

Outputs a list of all trips, their IDs and the most common network type for each 
trip. 

Example request: http://address:port/trips 

 

Show map of measurements 

Shows a geographical map of areas for the given parameters. The color of an area 
is based on the calculated performance for the area using the function described 
in section 4.2.3. Uses Google JavaScript Maps API for geographical data. Example 
output shown below. 

Supported parameters: Area ID, network type, trip ID(s). 

Example: http://address:port/map?tripId=16 

 

 

Figure 4.11: Example output for a map of a specified trip id 
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Graphs 

A variety of different graphs of the measurement data or aggregations of them 
based on the input parameters can be displayed. This includes statistical 
distributions of metrics, showing a metric Y as a function of metric X and 
variations in a metric over time for a specified trip. When calculating a metric Y 
as a function of metric X, the average or the median value for metric Y is 
calculated. Supported metrics are round-trip time, signal strength (GSM ASU 
level or LTE ASU level) and IPDV. Example output of a graph showing median 
round-trip time as a function of LTE ASU level for a specified set of trips in LTE 
networks is shown below. Statistical analysis is further explored in chapter 5. 

 

Figure 4.12: Example output of a graph 

 

Example:  

http://address:port/chart?tripId=24,27,28&metric=roundTripTime&networkTy
pe=LTE&type=distribution 
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4.3 Tools and libraries 

Except for the HTML and JavaScript usage in the server application, Kotlin has 
been the programming language of choice for both client and server. Kotlin is a 
new (first appearance 2011) statically typed programming language fully 
interoperable with Java. Since the release of Android Studio 3.0, Kotlin has also 
been fully supported by Google for use with their Android mobile phone operating 
system [39]. In comparison to Java, Kotlin offers null safety, more concise syntax 
and less boilerplate code. However, Java popularity and its community is still 
much larger than of Kotlin. 

While the Android application only uses the Android framework, the server 
application uses a variety of different libraries. Multiple programming languages 
and script languages were used to create its different components.  

The underlying database management system (DBMS) chosen is PostgreSQL 
(Postgres). Postgres has many extensions, one of them being PostGIS. PostGIS is 
a spatial database extender for Postgres adding support for geographic objects. 
This allows location queries to be run in Structured Query Language (SQL), and 
tree-structured indexes (which are common in any DBMS) can be utilized for 
location queries improving the performance significantly. For instance, with over 
3000 areas in the database, finding if a given pair of coordinates (latitude, 
longitude) belongs to an existing area is done within the range of 10 ms. PostGIS 
as an extension and its good documentation was the main motivating factor for 
choosing Postgres as a DBMS for the project.  

Exposed (see https://github.com/JetBrains/Exposed), a lightweight SQL 
framework written over the JDBC (Java Database Connectivity) driver acts as 
the interface between the application and the DBMS. With its small requirements 
for configuration, Exposed is quick to set up. In addition to taking advantage of 
the library functions of this library some traditional SQL has also been used. 

Opening and creating new connections to a database can be expensive, especially 
if the database is hosted on a different computer than which the application is 
running on. Connection pooling allows database connections to be reused by 
multiple clients, improving performance. In the case of our project the database 
was actually hosted on the same machine as the running application, but to ensure 
scalability and in case the database would later be moved to a remote server, 
connection pooling was implemented. For this, the library HikariCP (see 
https://github.com/brettwooldridge/HikariCP) was used.  
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To enable the application as a web server, the library Ktor (see 
https://github.com/ktorio/ktor) was used. Ktor is a framework for creating web 
applications in Kotlin programming language and runs an embedded web server 
on the host machine.  

As mentioned in section 4.2.6, most response data the application generates to 
received HTTP requests is in JSON format. But there are a few exceptions, namely 
the maps and graphs. Responses to these requests are web pages, containing both 
HTML and JavaScript. Maps use the Google JavaScript Maps API, and graphs 
functionality is provided by the JavaScript library C3.js. The maps web page also 
fetches JSON data from the REST API itself, and for this jQuery, a JavaScript 
library for simplifying syntax, was used. 
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Chapter 5 – Results and discussion 

In this chapter we first address issues faced during the development and sampling 
process, since they influence what results we are able to present. We then have an 
in-depth look at how our measurements are distributed across different metrics. 
We proceed to calculate and discuss relationships between different metrics. 
Lastly, we address the scalability of the application and provide examples that 
show that the implemented dead spot identification algorithm can handle a variety 
of cases. 

When using the term “correlation” or “correlation coefficient”, the Pearson 
correlation coefficient (PCC) is implied. Its value r lies between -1 and +1 and 
measures the strength of the relationship between the relative movements between 
variables. 

Note how all figures and calculations we present here are based on the live 
database, as opposed to for instance outputting a subset of data to Comma-
separated values (CSV) format and using additional software to interpret it. We 
simply access the REST API through the web browser and provide the desired 
parameters to the application. The application uses our parameters to extract the 
relevant information from the DBMS and presents it. 

 

5.1 Issues 

Challenges faced during the development and sampling are addressed here. Some 
of the issues presented have rendered small parts of our samples difficult to use, 
such as GPS positioning issues. We have also not been able to take advantage of 
the bandwidth metric. 

 

5.1.1 Bandwidth measuring issues 

In the process of developing and testing the client application, it was found that 
bandwidth measurements had a significant impact on the other metrics while being 
performed. While downloading test files, the round-trip times would more than 
double in most cases. An attempt to solve this was made by pausing measurements 
for other metrics while bandwidth measurements were being made. This however 
resulted in very few measurements for some areas, as these bandwidth 
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measurements take several seconds to perform. Decreasing the file size would help 
with this issue since the bandwidth measurement time would then be shorter, but 
this would make the bandwidth measurements more inaccurate.  

Another issue with measuring bandwidth is cost-efficiency. The subscription for 
the test equipment SIM-card quickly ran out of allocated mobile data traffic (this 
is the model most operators use today). Because of these issues, bandwidth 
measurements were unfortunately abandoned in the development and testing 
process. Ideally one would want a SIM-card with no data volume limit and use a 
separate connection for sampling bandwidth data to not interfere with other 
metrics.  

 

5.1.2 Software library issues 

The SQL framework library, Exposed, was found to have a few bugs regarding 
batch insertion to the database. The developers of the library were notified and 
luckily the issues were fixed in less than 24 hours (see 
https://github.com/JetBrains/Exposed/issues/388). Because of the quick 
reaction, this did not halt the development process, but it suggests perhaps a more 
stable SQL framework should have been utilized. The framework also proved to 
be a bit limited for taking advantage of SQL functions of extensions like PostGIS. 
In these cases, raw SQL was used instead of the library functions. 

 

5.1.3 GPS positioning issues 

Any measurement taken with very poor positioning accuracy or without any 
positioning information at all is difficult to use. One could possibly use positioning 
data from earlier samples with a better positioning accuracy to accommodate for 
this, but it would require a more sophisticated implementation. On the road 
network, GPS is unavailable in most tunnels. Gaps in the measurement data 
happens because of this, as also shown in chapter 4.2.4. 

For one Android device the positioning accuracy was occasionally very poor. This 
could be an issue with the device itself or with the used Fused Location API, but 
more testing would be required to identify the actual cause. Data from trips with 
such poor accuracy are filtered out when further studying the data. An example 
of such a trip is shown below. Addressing positioning issues is further discussed in 
future work. 
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Figure 5.1: Example of trip with poor positioning accuracy 

 

5.2  Collected data 

Throughout this thesis we have collected more than 130 000 samples. More than 
half of these samples are from vehicle trips in Lofoten. This area is rather rural 
with very mountainous terrain. Samples from the Trondheim city area have also 
been collected, where most of the trips where done by walking or by bicycle. A 
vehicle trip from Trondheim to rural areas north of Lensvik has also been sampled. 
In addition to samples made during this thesis, datasets used in [9] from the 
Jonsvatnet area were imported to aid in developing performance models and the 
dead spot identification algorithm. These datasets do however not contain data 
for all metrics since a different application was used for sampling.  

Figure 5.2 shows sampled data in the Lofoten area. The colored line consists of 
circle areas with a radius of 50 meters, where each of these areas on average have 
90 measurements. Over 80 000 samples are represented in this map. The map is 
produced by the discussed REST API and this data is returned in less than 1 
second - this also includes performing all aggregations discussed in chapter 4.2.2 
for each area in the dataset. 
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Figure 5.2: Map of sample data from Lofoten area 

 

5.2.1 Sample distribution between network types 

The distribution of measurements by network type are shown in the following 
table. 

Network type % of total 
LTE 72 % 
EDGE 19 % 
HSPA 8 % 
HSPA+ < 1 % 
HSUPA < 1 % 

 

Table 5.1: Sample distribution between network types 
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The majority of measurements are from LTE networks. In Lofoten, no other 
network type was observed. Some non-LTE network type measurements in 
Trondheim originate from the imported datasets from the work in [9], sampled in 
2017. In these datasets all measurements were in fact from EDGE, HSUPA and 
HSPA+ networks, even the samples from non-rural areas such as university 
campus. 4G coverage in Trondheim appears to have improved since then, as we 
throughout this thesis did not observe any central area without 4G coverage.  

Expanding access to LTE has been the focus of the global mobile industry for 
years, and OpenSignal with over 58 billion measurements from all over the world 
claims 4G availability is over 90 % in several countries [40]. Note that these 
numbers only mean users have access to 4G networks 90% of the time, and do not 
show what is the geographical coverage.  

In [41], the authors conclude that it may be economically unfeasible for network 
operators to deploy LTE networks in rural areas in Spain and that the results 
might be applicable to other big European countries with similar characteristics. 
These rural areas are where intuitively one would find dead spots, so 
measurements from older generation network types could be more relevant to 
consider regarding dead spots.  

On Android devices, the user can select a preferred network type, being 2G, 3G 
or 4G. Using this feature, measurements for 2G and 3G network types were 
obtained in areas with 4G coverage. This was done to get more measurements 
from non-LTE network types. Telenor, the largest telecom company in Norway, 
has however started shutting down 3G networks [42], so this method may not 
work in the future. Shutting down 2G networks is also a long-term goal, but this 
can be more complicated. 2G networks are in many places a rigid part of 
infrastructure, being part of for instance card terminals or car systems where 
emergency services are automatically contacted in case of collision [43].  
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5.3 Metric distributions 

Metric distribution reveals coverage for different values of a metric. We mainly 
address round-trip time and signal strength here. IPDV (jitter) and packet loss 
are more interesting to see in relation to other metrics and will be further discussed 
in the next section, section 5.4. We will show the mean (average) and median 
values together with the distributions. Median values are of interest since they are 
not as affected by extreme values as the mean.  

 

5.3.1 Round-trip time 

In statistics, the term right-skewed (positive skew) is often used for distributions 
having a lower median value than mean value. These distributions have a long 
tail on the positive direction on the number line. RTT values can be expected to 
be right-skewed, because RTT is lower bound by the underlying network 
technology but have no upper bound. High values occasionally occur, but most 
values are concentrated around a smaller range. 

We found the high values of RTTs to occur in bursts. An example of this in an 
LTE network is shown in the figure below. The represented data is a selection of 
500 consecutive packets from one specific trip, with RTT on the y-axis, and the 
packet index (the i-th packet sent on that trip) on the x-axis. The high RTTs in 
this example occur over 16 around seconds.  

 

Figure 5.3: High RTT in short timeframe 
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The corresponding area data of the figure above is shown below. The bursts in 
RTTs result in our performance function outputting a lower value for the 
corresponding areas, as can be seen by the red areas in the figure.  

 

Figure 5.4: High RTTs reflected in performance function 
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In the following three figures, selections of the distributions of RTTs are shown 
for EDGE, HSPA and LTE networks. That is, occurred values are on the x-axis 
and number of occurrences for each value are on the y-axis. The mean and median 
values are indicated in each figure. The selections are made around where the mass 
of the distribution is concentrated, but mean and median values are calculated 
using all values. In addition to what is shown there are values with very few 
occurrences (generally one occurrence) on the far right of the distribution, which 
is what makes the mean higher than the median.  

 

Figure 5.5: RTT distribution for EDGE networks 

 

Figure 5.6: RTT distribution for HSPA networks 
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Figure 5.7: RTT distribution for LTE networks 

As expected, all distributions are right-skewed. HSPA networks have the least 
amount of samples of the three, and we can see in the figure that the distribution 
shape is different from the other two. We believe this indicates that more samples 
from HSPA networks should be gathered, rather than the network behavior being 
different. On the other hand, the count for each occurrence are higher than of 
EDGE networks, perhaps suggesting more stability in HSPA than in EDGE.  
 

5.3.2 Signal strength 

First off, when connected to an LTE mobile network, the Android device can 
provide the LTE ASU level instead of the GSM ASU level, and sometimes both 
GSM and LTE ASU levels (see section 4.1.1). This could be dependent on the 
operator network configuration, as we found that when connected to LTE in the 
Trondheim area one would only get the LTE ASU level, while in the Lofoten area 
one gets both. The LTE ASU has been chosen as a basis for signal strength levels 
when available in an LTE network. From the dataset we find a strong correlation 
between LTE and GSM ASU levels (r = 0.86), so perhaps either one can be used. 

Since we are trying to identify and learn more about mobile network dead spots, 
having a fair number of samples with low signal strength is ideal. In the case of 
2G or 3G networks, we are unfortunately lacking measurements on the lower end 
of the scale. GSM ASU level distributions for EDGE and HSPA networks, and 
LTE ASU level distributions for LTE networks are shown in the following three 
figures. Recall from chapter 4.1.1 that GSM ASU levels range from 0 to 31, and 
LTE ASU levels from 0 to 97. 
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Figure 5.8: GSM ASU level distribution (EDGE) 

 

 

Figure 5.9: GSM ASU level distribution (HSPA) 
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Figure 5.10: LTE ASU level distribution (LTE) 

 

For GSM ASU levels, it is indeed evident that more measurements are needed, 
especially from poor connection areas. In EDGE networks, we have no 
measurements with a lower ASU level than 13. In HSPA networks we have 
measurements with a value as low as 2, but no measurements between values 2 
and 11. As most of these measurements are from a small area of Trondheim this 
does not come as a surprise. We further inspected the dataset for HSPA and found 
that the GSM ASU value of 2 in HSPA networks originates from mainly one 
specific area from one trip. For LTE though, our coverage is better. The LTE ASU 
level distribution resembles a normal distribution, with samples both in the low 
and high end of the spectrum.  

 

5.4 Metric correlations 

For the network types discussed above (i.e. EDGE, HSPA and LTE), we present 
the correlation coefficients for: 

• RTT and signal strength  
• RTT time and IPDV 
• Average RTT and packet loss 

Signal strength is either calculated from the GSM ASU or LTE ASU levels. IPDV 
can be both positive or negative and is unwanted in both cases. Since we here are 
interested in correlations, we take the absolute value of the IPDV (hereby referred 
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to as jitter). Packet loss has been low in our measurements overall; < 1% with 
about 500 packets per 100 000. The behavior of packet loss is similar to high 
round-trip times, where it occurs in short bursts. Per sample, packet loss is either 
true or false (the packet is either lost or not). Point-biserial correlation can be 
used for finding correlations between a numeric and a boolean value, but instead, 
we treat packet loss as an aggregated metric, calculating packet loss ratio per area. 
We therefore also aggregate the round-trip times of the corresponding areas into 
averages to obtain the correlations.  

 

5.4.1 Findings for EDGE networks 

As mentioned, in addition to our own measurements, some of the datasets used in 
[9] have also been imported. These datasets do not contain information needed to 
calculate IPDV. They do however contain samples from actual areas where there 
is poor network performance and where older network types like EDGE are 
present. Excluding imported datasets, about 26 000 measurements from EDGE 
networks have been collected. These measurements are from the same small, 
general area of Trondheim and were obtained using a preferred network type on 
the Android device. 

 The correlations are as follows: 

• RTT and signal strength: r = 0 
• RTT and jitter: r = 0.64 
• Average RTT and packet loss: r = 0.51 

In the work of [9], a relationship between round-trip time and signal strength was 
present especially for GSM ASU levels less than 15. For our measurements, the 
correlation coefficient (r = 0) indicates that there is no such relationship. But as 
we saw in the previous sub-chapter, we lack measurements with poor signal 
strength in EDGE networks - our measurements had no GSM ASU value less than 
13. It is therefore difficult to draw any conclusions for an RTT and signal strength 
correlation from our measurements. We do see that a high RTT is associated with 
both jitter and packet loss - a moderate positive relationship (r > 0.5) is present. 
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5.4.2 Findings for HSPA networks 

As the number of measurements for HSPA+ and HSDPA is very low, we 
specifically look at the HSPA network type. As with measurements from 2G 
networks, these are also obtained using preferred network type on the Android 
device. 

• RTT and signal strength: r = 0.05 
• RTT and jitter: r = 0.51 
• Average RTT and packet loss: r = 0.47 

The correlation coefficients suggest a relationship between RTT and packet loss, 
and RTT and jitter. There appears to be no correlation between average round-
trip time and signal strength (p = 0.05). But as with EDGE networks, no 
conclusions should be drawn for the latter relationship, as measurements from 
poor signal strength areas are lacking. Compared to EDGE networks, the span 
between minimum average round-trip time and maximum is however found to be 
much smaller, which suggest that HSPA networks are more stable (at least in 
terms of this metric). 

 

5.4.3 Findings for LTE networks 

The sample size for LTE networks is close to 100 000, all which were sampled with 
the Android device automatically selecting the best available network type. The 
LTE ASU level is used as an indicator of signal strength for this network type.  

• RTT and signal strength: r = 0 
• RTT and jitter: r = 0.60 
• Average RTT and packet loss: r = 0.58 

The findings for LTE networks are generally the same as the other types in terms 
of correlations between metrics: no relationship between RTT and signal strength, 
and a moderate positive correlation between RTT and jitter, and RTT and packet 
loss. With a much larger sample size than of previously discussed network types, 
we can with more certainty say there is no relationship between RTT and signal 
strength for LTE networks. This is also illustrated in Figure 5.11, with average 
round-trip time for each distinct LTE ASU value shown as a graph. The RTTs do 
not seem to be higher for lower ASU values. The high average RTT on the right 
of the figure was further investigated and found to originate from around the 
opening of a tunnel for a specific trip. 
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Figure 5.11: Round-trip time (average, ms) as a function of LTE ASU  

 

Below the relationship between RTT and jitter (r = 0.60), using average round-
trip time as a function of jitter, is shown. 

 

 

Figure 5.12: Round-trip time (average, ms) as a function of jitter (ms) (LTE) 
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5.4.4 Summary of metric correlations 

Overall, we have not found a relationship between RTT and signal strength. We 
can say this with more certainty for LTE networks, but for EDGE and HSPA 
networks we should be more careful as we lack measurements on the low end of 
signal strength scale. Additionally, in the related work in [9], such a relationship 
was quite clear. The packet size for measuring RTT is fixed and is very small (40 
bytes). Measuring with varying packet sizes could perhaps be a next step. We 
generally encourage obtaining more measurements from poor signal strength areas, 
preferably not using Android’s preferred network type selection, but rather 
selecting best available to also get a better view of the actual coverage of different 
areas. 

For all network types, relationships between RTT and jitter and average RTT 
and packet loss are evident. For RTT and jitter, the correlation coefficients are  
r = 0.64, r = 0.51 and r = 0.60 for EDGE, HSPA and LTE respectively. For 
average RTT and packet loss the values are r = 0.51, r = 0.47 and r = 0.58. As 
discussed, high values of RTT occur occasionally in bursts. This is generally when 
it gets coupled with packet loss and jitter. If this is not a result of poor signal 
strength, this could occur due to underlying temporary network performance 
degradation, such as network congestion. 

 

5.5 Dead spot algorithm outputs 

Recall that dead spots could occur in two different ways, either as insufficient 
performance or as a gap. Here we present various examples that prove that our 
application and algorithm can handle both cases. We also show computation times 
for the application to produce the outputs.  

The input is an origin and a destination point in coordinates, and the output is a 
list of dead spots and their respective lengths in meters. Lengths are calculated 
using the PostGIS function ST_Distance. The specified start and end points of 
the dead spots are IDs of the corresponding areas and coordinates. The area IDs 
makes it easier to identify the location on the map, since our application logs area 
information to the web console when clicking on areas on the map.  
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5.5.1 Example with performance threshold 

In this example there is a clear segment on the route from origin to destination 
that has worse performance. The performance of the yellow/green areas are around 
0.5, and of the orange/red areas around 0.3. We specify a minimum performance 
of 0.4. The output then is: 

Dead spot between  
5151 (68.2682342, 14.1607782),  
5176 (68.2815844, 14.1596285),  
length: 1490 m 
 
Area 5151 and 5176 are marked in the figure. The application used around  
1 second to produce this output. 
 

 

Figure 5.13: Dead spot algorithm output example 1 

 



55 
 

5.5.2 Example with gaps 

In this example it is demonstrated how gaps are handled by the algorithm. To 
avoid any yellow/red areas to be identified as dead spots in this case, a very low 
minimum performance threshold of 0.01 has been specified. The output is: 

Dead spot between  
4072 (63.5874921, 9.6065109),  
4073 (63.5830124, 9.5895948),  
length: 977 m 
 
The application used around 0.2 seconds to produce this output. 
 

 

Figure 5.14: Dead spot algorithm output example 2 
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5.5.3 Example with performance threshold and gaps 

In this last example there is a combination of poor performance areas and gaps. A 
minimum performance value of 0.3 is used, which excludes red and darker orange 
areas. The few orange areas between area 2494 and area 2518 happen to all have 
a performance value greater than 0.3, but the areas between 2518 and 2529 have 
a lower value. The output is: 

Dead spot between  
2488 (63.38390300050378, 10.572601994499564),  
2494 (63.38578310329467, 10.585130006074905),  
length: 661 m 
 
Dead spot between  
2518 (63.377765603363514, 10.601147320121527),  
2529 (63.374154679477215, 10.61115799471736),  
length: 642 m 
 

 

Figure 5.15: Dead spot algorithm output example 3 
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5.6  Server application scalability 

Scalability has not been the main focus when developing this application but has 
still been addressed by several steps and seems to have paid off well. Database 
indexes, simultaneous client handling with threading and connection pooling are 
now essential parts of the application. 

As mentioned at the end of chapter 4.2.2, aggregations are calculated when data 
is requested, rather than pre-calculated. There is also no caching of aggregated 
data involved. One reason for this is the complexity involved in implementing this, 
as many types of aggregations with different parameters would have to be stored. 
Throughout the work of the thesis, we for instance often wanted to only view data 
for a specified range of trips or a certain network type. Caching would potentially 
involve storing all combinations of trips and network types, which there are many 
of.  

As the database grew to over 130 000 samples, there was no noticeable increase in 
the time it took for retrieving data from the DBMS. As explained in chapter 4.2.1, 
for every single new measurement, the application needs to check whether an area 
with that location within 50 meters already exists. From going from 0 to more 
than 3000 such areas throughout sampling, this check is still done in about 10 ms. 
Since samples are received in batch (the client uploads all samples when the stop 
button is pressed), this time does however add up. Receiving a batch of 10 000 
measurements, this would be around 10 seconds just for calculating what area ID 
a sample should have. The insertion process itself and creating potential areas that 
do not exist would also add to this time. The application is by no means 
unresponsive during this time, data can still be accessed. Read-write safety is of 
course handled by the underlying DBMS.  

The general performance and the scalability of the application seems to be quite 
good for its current use. Recall that performing and presenting aggregations for 
the over 80 000 samples in the Lofoten area was done in less than 1 second. The 
most complex calculations are performed when requesting dead spot information. 
For practical reasons, we have not been able to test how the application performs 
several clients request such information simultaneously. Having implemented 
connection pooling to the database and proper threading, this should however not 
be expected to be an issue. 
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Chapter 6 – Conclusion 

A substantial amount of work in this project has been design, implementation and 
sampling. Having a few years of experience with software development from the 
industry was very helpful. A server that receives, stores and presents connectivity 
data has been successfully developed. A sampling application for Android has also 
been developed. The intended use for this application is in cars, but it is not 
limited to that mode of transportation. Walking and bicycle trips were also used 
for sampling data in this project. Recall that the server application is not 
dependent on the developed Android application – any client using the expected 
format of data can potentially be used. Cars on the road network can request both 
aggregated or raw versions of data to improve their communication decisions. The 
information can also be used to strategize communication by the infrastructure on 
the reverse path, i.e. in Infrastructure-to-Vehicle communication.  

The metrics provided by the sampling application, such as round-trip time, signal 
strength and packet delay variation, are incorporated into a simple model for 
calculating the overall “network performance” of an area. With a minimum desired 
value for network performance, our application can identify so-called dead spots 
on the road network with an accuracy down to about 50-100 meters.  

Quantifying network performance with multiple parameters is not an easy task, 
and different models for different areas of applications should perhaps be used. 
Investigating such models further is encouraged as future work. Measuring 
bandwidth proved to be more challenging than what we initially thought, as 
downloading files influence measurements of other metrics such as round-trip time. 
We also faced issues regarding positioning with Android devices, and general 
limitations of GPS. Suggestions for improvements to positioning issues are also 
addressed in the next chapter.  

With the work of this thesis, we have arrived at a scalable software system for 
measuring and analyzing mobile network performance. The system provides maps 
and various statistics and is able to output subsets of the stored data based on 
several input parameters, such as network type(s) and specified trips. The software 
can be useful for further works in the problem area, at least at IIK, NTNU to 
begin with. Source code for all developed applications will be passed on for research 
purposes. It is shortly discussed and provided in Appendix A. 
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Chapter 7 – Future work 

7.1 Improving positioning 

As mentioned in chapter 5.1.3, measurements with no positioning data or with 
poor accuracy are unwanted. There exist several off-the-shelf products for 
positioning that utilize for instance speed, bearing and last position to be able to 
still determine position accurately (for limited periods of time) when GPS services 
are unavailable. An example of such equipment is positioning chips provided by 
u-blox, a company delivering positioning and wireless communication technologies 
(see https://www.u-blox.com/en). Their equipment can be connected to another 
device using a USB-connection. If decided to use such equipment, it would perhaps 
be better to use a laptop computer for running client software instead of a smart 
phone, as such external equipment is then easier to connect. 

 

7.2 Improving network performance models 

In section 4.2.3, we introduced a “performance function” as a model for 
representing network performance of areas in an aggregated manner. In practice, 
perceived network performance depends on the application. Different applications 
imply different requirements for each type of metric. As such, different models 
should be developed for a wide array of applications. For instance, one could have 
one model for “vehicle safety critical information”, with emphasis on low delay, 
and another model for “end user experience”, focusing on bandwidth and jitter. 
Parametrizing these models properly would require extensive testing and good 
knowledge about the requirements of the relevant application. Machine learning 
techniques could potentially be used to evaluate which parameters are important. 

 

7.3 Security and message prioritization 

In the current solution, any client with the correct message format and the server 
address information can deliver data to the server. This type of security might 
suffice for small-scale research purposes such as a master thesis, but addressing 
security more explicitly on a larger scale is crucially important. Without proper 
authorization, server data could become contaminated.  

Currently, all requests to the application for network performance data and dead 
spots are treated equally. In a real-world system, prioritization of delivering safety 
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critical information to vehicles on the road would be an important aspect. 
Applications concerning for instance video streaming should have a lower priority. 
Avoiding malicious use of the priority system would then be an aspect of security. 
The topic of net neutrality could then potentially also play a part. 

Third, depending on the source of measurements, privacy could become a concern. 
Data could potentially be misused to find detailed information about the 
whereabouts of vehicles and when they have visited certain places. With the 
increased focus on privacy in recent times, with for instance the introduction of 
the General Data Protection Regulation (GPDR), addressing this issue responsibly 
in further development is encouraged. 

 

7.4 The future role of 5G 

The fifth generation of mobile networks, 5G, will also shape the future of 
communication in VNs. Several telecom companies are currently doing trials for 
5G networks, and 3GPP has entered the second phase of standardizing them [5]. 
The ultra-low latencies of these networks will help to meet the low latency 
requirements of some security applications of VNs and be of great value to ITS 
applications in general. However, the first LTE standards were released over 10 
years ago, and even in a developed country like Norway, older network types are 
still prevalent in some rural areas. In these networks, the latency of the RAN alone 
can be larger than the latency requirements of VN applications for road safety. 
Knowledge of these poor performance areas will still be important in many years 
to come. 
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Appendix A – Source code 

The source code of the Android application, the measurement server and the server 
application combined contain (only) about 2000 lines of code. Including the web 
pages with HTML and JavaScript replied by the web server, closer to 2500. Note 
that compared to for instance Java, Kotlin is quite concise in syntax, and saves a 
lot of code lines when it comes to boilerplate code like data classes. Functional 
programming idioms are used extensively in the code for handling measurement 
data and also saves a lot of space compared to more “traditional” methods. 
Consider for instance the following example that calculates the most common 
network type among result rows: 

 

data.commonNetworkType = rows 
        .map { it[Measurements.networkType] } 
        .groupingBy { it } 
        .eachCount() // gives Map<String, Int> with counts  
                     // for each value. 
        .maxBy { it.value }?.key 
 

Since the measurement server and server application were hosted on the same 
machine during the thesis, they are contained in the same project file. They can 
be found at: 

https://github.com/jameyer/connectivity-data-server 

 

The source code for the Android application can be found at: 

https://github.com/jameyer/connectivity-data-android-client 
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