
A
ndré N

ydegger W
erm

undsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g

M
as

te
r’

s
th

es
is

André Nydegger Wermundsen

Identification and Classification of
Electrical Loads in a Norwegian
Household Using Energy
Disaggregation Methods of Non-
Intrusive Load Monitoring.

Master’s thesis in Cybernetics and Robotics
Supervisor: Assoc. Prof. Frank Ove Westad

December 2018

André Nydegger Wermundsen

Identification and Classification of
Electrical Loads in a Norwegian
Household Using Energy Disaggregation
Methods of Non-Intrusive Load
Monitoring.

Master’s thesis in Cybernetics and Robotics
Supervisor: Assoc. Prof. Frank Ove Westad
December 2018

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering

Problem Description

Smart meters installed in Norwegian homes enable Norwegian consumers to monitor
their households’ total real-time electrical usage. Through Non-Intrusive Load Monitoring
(NILM), it would be possible to detail how much electricity is consumed by each electric
appliance in a household, thus permitting consumers to adopt a more energy-efficient be-
havior. However, the most common smart meter in Norway, the Kaifa Smart Meter, de-
livers consumption data only every two seconds. The methods used in the field of NILM
usually demand data at a higher frequency than two seconds in order to be able to provide
reliable appliance-specific electricity consumption data. To what extent is it possible to
gain reliable consumption data with the smart meters available in Norwegian households?
In this project, a data collecting experiment in a Norwegian household will be conducted
to assess the usability of NILM in this context. In the experiment, individual appliance
loads will be identified and classified using traditional NILM methods to disaggregate the
total energy consumption of a household.

Acknowledgment

I want to thank the following people for their help during this project. Frank Westad
for his guidance and great insights in big data. Joar Harkestad for introducing me to
NILM. Ørjan Svendsen at Hark Technologies for enthusiastically sharing his knowledge
of the Kaifa smart meter. Hallgeir Horne for the multiple phone calls discussing NILM.
Victoria Susanne Nydegger Schrøder and Thea Wehler Knudtzon for proofreading. Last,
but not least, I would like to thank my family for being supportive, especially my mother
for letting me (intrusively) monitor her electric consumption.

A.N.W

Abstract

The purpose of this thesis is to establish the level of benefit brought to the consumers by
the introduction of smart meters. An experiment was designed to collect total consumption
data and individual appliance data in a non-lab environment for training purposes. The
data collected is formatted to fit the standard set by the evaluation tool NILM-Eval and
evaluated with three algorithms: Weiss, Baranski and Voss and Parson. A detailed guide
for setting up the experiment and data structure is provided to aid further research. Results
show that the possibilities for a specified electricity bill are present but in need of further
studies and a substantial premade signature database to enable consumers to fully benefit
from NILM.

i

Sammendrag

Formålet med denne avhandlingen er å fastslå fordelene til forbrukerne ved innføring av
smart strømmålere. Et eksperiment ble utformet for å samle inn totalt forbruksdata samt
individuell apparatdata i et ikke-laboratoriemiljø til opplæringsformål. Dataene som er
samlet inn er formatert til å passe standarden satt av evalueringsverktøyet NILM-Eval og
evaluert med tre algoritmer: Weiss, Baranski og Voss og Parson. En detaljert veiledning
for oppsett av eksperiment og datastruktur er gitt for å støtte videre forskning. Resul-
tatene viser at mulighetene for en spesifisert strømregning er tilstede, men det er behov for
videre studier og en omfattende forhåndslagret signatur-database for å gjøre det mulig for
forbrukerne å dra full nytte av NILM.

i

Preface

The master thesis in front of you is the accumulation of my integrated Master of Science
in Engineering Cybernetics at the Department of Engineering Cybernetics at Norwegian
University of Science and Technology (NTNU). The idea for this thesis was conceived
over a cup of coffee with Joar Hark, CEO in the startup Hark Technologies. Joar in-
formed me about the law changes[1] made by the Norwegian Government resulting in the
introduction of smart meters and the possible benefits they bring to the consumer and the
environment. Hark Technologies are developing the EcoMonitor, a device to automatically
collect the consumption data from Norwegian smart meters, making it easily available for
the consumer. As a result, I decided to look into the the possibility to provide consumers
with an appliance-specified electricity bill by utilizing the previously unavailable data now
accessible through smart meters and the EcoMonitor.

The work was conducted mostly individually and has taken me on a journey through
all prior studies at NTNU, new studies in the field of Electric Power Engineering and
previously unfamiliar programming languages.

As a reader, it is helpful to have a certain level of scientific knowledge, but with the
thesis’s focus on consumers, I have tried to present the content in an accessible manner.

André Nydegger Wermundsen
Department of Engineering Cybernetics

18th of December 2018

ii

Contents

Problem Description 1

Acknowledgment 3

Abstract i

Sammendrag i

Preface ii

Table of Contents v

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Previous Work . 2
1.2 Problem formulation . 3

1.2.1 Objectives . 3
1.2.2 Norwegian Smart Meters . 3

1.3 Outline . 4

2 Non-Intrusive Load Monitoring 7
2.1 History of NILM . 7

2.1.1 The Essentials of NILM . 7
2.1.2 Evolution of NILM . 7

2.2 The Main Steps . 8
2.3 Device Signatures . 10

2.3.1 Advances in the Field . 10

iii

2.3.2 Appliance Categories . 12
2.4 Evaluation framework and Disaggregation Algorithms 13

2.4.1 Weiss’ Algorithm . 14
2.4.2 Parson’s Algorithm . 14
2.4.3 Baranski’s Algorithm . 14

2.5 Accuracy Metrics . 14

3 Experimental Design 17
3.1 Norwegian Household Experiment . 17

3.1.1 Initial Thoughts . 17
3.1.2 Choosing a Norwegian Household 17
3.1.3 Choosing appliances . 18

3.2 Data . 19
3.2.1 Collecting Data . 19

3.3 Hardware . 21
3.3.1 Kaifa Smart Meter . 21
3.3.2 Plugwise System . 21
3.3.3 Hark Technologies EcoMonitor 21
3.3.4 Raspberry Pi b+ 1.2v with microSD cars, WiFi USB dongle and

power supply . 21
3.4 Software . 23

3.4.1 Plugwise Source . 23
3.4.2 Raspberian Jessie . 23
3.4.3 Plugwise-2-py . 23
3.4.4 Node-RED . 25
3.4.5 Matlab . 25
3.4.6 Data formatting to fit NILM-Eval 25

4 Implementation 29
4.1 Kaifa Smart Meter and EcoMonitor . 29
4.2 Plugwise . 29

4.2.1 Source . 29
4.2.2 Pictures of Installation . 30

4.3 Raspberry Pi . 30
4.3.1 Raspberian Jessie . 31
4.3.2 Plugwise-2-py . 31
4.3.3 Node-RED . 32

4.4 Data Formatting . 32
4.5 NILM-Eval . 33

5 Results 35
5.1 Evaluation of the experiment . 35
5.2 Usability of the Weiss algorithm . 35

5.2.1 Finding the Signatures . 36
5.2.2 Fridge and TV . 36
5.2.3 Parameter Sensitivity . 39

iv

5.2.4 Overall Performance . 39
5.3 Baranski and Voss . 39

5.3.1 Parameter Sensitivity . 40
5.3.2 Overall Performance . 41

5.4 Parson . 41
5.4.1 Fridge . 43
5.4.2 Water Heater . 44
5.4.3 Microwave oven . 46
5.4.4 Electric Heater Terrace . 48
5.4.5 Parameter Sensitivity . 50
5.4.6 Overall Performance . 52

6 Discussion 55
6.1 Evaluating the Experiment as a whole 55
6.2 Three phases and type of electric distribution to households 55

6.2.1 Zero volts measured on phase 2 voltage 56
6.2.2 Separating phase current loads 56

6.3 Weiss . 58
6.4 Baranski . 58
6.5 Parson . 58

6.5.1 Training . 59
6.6 Tuning . 59

7 Conclusion 63
7.1 Conclusions . 63

Bibliography 65

Appendix A : Data collecting software installation guide 69

A Data collecting software installation guide 71

Appendix B : Data formatting 77

B Data formatting 79
B.1 Matlab Script for Data Formatting . 87

v

vi

List of Tables

1.1 Statutory rules for data measurements in Norwegian smart meters 4
1.2 Accessible active power data from the three different smart meters in Nor-

way. 4

2.1 Algorithms used to evaluate NILM potential by the author 13

3.1 Possible and chosen appliances to monitor and their class. 19
3.2 Accessible active power data from the three different smart meters in Nor-

way. 21
3.3 Smart Meter data as downloaded from EcoMonitor 27
3.4 NILM-Eval data structure . 28

5.1 Weiss signatures . 36
5.2 Barinski: 20 clusters . 40
5.3 Barinski 20 FSM for 20 clusters . 41
5.4 Barinski 50 clusters . 42
5.5 Barinski 20 FSM for 50 clusters . 43
5.6 Parson algorithm results . 53

A.1 Table of Smart Plug details in experiment 71

vii

viii

List of Figures

1.1 Possible consumer savings. 2
1.2 Gantt chart for project. 5

2.1 Load Disaggregation . 8
2.2 NILM steps. 8
2.3 Power signatures. 10
2.4 2D signature space. 11
2.5 3D signature space. 11
2.6 Electric kettle plot . 12
2.7 Washing Machine plot . 13
2.8 Laptop plot from the ECO dataset . 13

3.1 Apartment floor plan . 18
3.2 Previously used appliance meters. 20
3.3 The Plugwise Circle system. 22
3.4 Hark Technologies EcoMonitor . 22
3.5 System design overview . 24
3.6 Data flow in the system. 26

4.1 Plugwise Source . 30
4.2 Installation of hardware . 31
4.3 Plugwise-2-py web interface . 32
4.4 Node-RED interface . 33

5.1 Weiss: Fridge consumption detection 1 37
5.2 Weiss: TV consumption detection 1 . 37
5.3 Weiss: TV consumption detection 1 . 38
5.4 Weiss: TV consumption detection 2 . 38
5.5 Electric Heater Salong consumption . 39
5.6 Parson: Fridge consumption and detection 1 44
5.7 Parson: Fridge consumption and detection 2 44

ix

5.8 Parson: Actual fridge consumption and aggregated data 45
5.9 Parson: Identified fridge consumption and aggregated data 45
5.10 Parson: Water Heater consumption and detection 1 46
5.11 Parson: Water Heater consumption and detection 2 46
5.12 Parson: Water Heater consumption and detection 3 47
5.13 Parson: Water Heater consumption and detection 4 47
5.14 Parson: Microwave Oven and detection 1 48
5.15 Parson: Microwave Oven consumption and detection 2 48
5.16 Parson: Actual Microwave Oven consumption and aggregated data 49
5.17 Parson: Identified Microwave Oven consumption and aggregated data . . 49
5.18 Parson: Electric Heater Terrace consumption and detection 1 50
5.19 Parson: Electric Heater Terrace consumption and detection 2 50
5.20 Parson: Electric Heater Terrace consumption and detection 3 51
5.21 Parson: Electric Heater Terrace consumption and detection 4 51

6.1 TT-System . 56
6.2 Voltage phases . 57
6.3 Phases and circuits . 57
6.4 Current phases superimposed . 60
6.5 TN-System . 61
6.6 Current phases from a different network than TT 62

x

Abbreviations

ALM = Appliance Load Monitoring
ILM = Intrusive Load Monitoring
NILM = Non-Intrusive Load Monitoring
HAN = Home Area Network

xi

xii

Chapter 1
Introduction

The Norwegian government recently passed a law [1] declaring that Norwegian electricity
service providers are to install smart meters for all their consumers within 2019. The three
main reasons behind the law-passing were that "...it benefits the customers, society at large
and the environment."[2] . Service providers will also receive the consumer’s consumption
on an hourly basis, giving them valuable insight into real-time grid load.

The main benefit provided by smart meters is considered to be the consumer’s possi-
bilities in understanding their consumption through the available real-time consumption
data. This way, consumers will be more aware of their energy usage, and hopefully, make
their habits more energy saving. Earlier, the electric consumption was self-reported six
times a year by the consumer. With the installed smart meters, electricity providers re-
ceive an hourly report stating consumers current consumption giving them the advantage
to quickly, and more correctly, create load forecasts for the grid. Also, with the hourly re-
ports, the service providers will be able to determine which customers are contributing to
big surges throughout the day. Surges typically appear in the morning and late afternoon,
when people are using multiple appliances to cook, heat their houses and charge their
electric cars. The grid has to be dimensioned to handle the most significant surge, even
though this capacity is only needed a small percentage of the day making it unnecessary
powerful and expensive. To get fairer pricing, service providers are discussing introducing
rush-hour prices at the times of the day with high grid demand [3].

Many consumers consider the installation of smart meters by law negatively. With
their consumption data being delivered to service providers hourly, they feel a breach of
privacy at the same time as the hourly changing of kW prices seems unfair compared
today’s practice. After the law-passing, the focus on wards will lie on the advantages
smart meters bring to the consumer. Real-time consumption data gives an excellent way
for consumers to learn more about their consumption, hence balancing out their electricity
and acting more environmentally.

The smart meters deliver the total electricity consumption, but by solely looking at
the aggregated use, it can be difficult for the average consumer to understand which part
of their consumption is leading to a higher electricity bill. Research indicates that giving

1

Chapter 1. Introduction

Figure 1.1: Consumer savings potential possible with added feedback according to [4]. The three
left columns describe regular NILM with different channels of feedback, with real-time feedback on
the two right columns being more advanced methods or intrusive solutions.

appliance-by-appliance feedback can induce electricity savings by around 12 percent in an
average household [4]. One way to do this is to use NILM.

1.1 Previous Work
NILM is a technique for disaggregating the total energy load of a household into appliance-
specific categories and has been studied since its invention in the eighties by Hart et al, at
the Electric Power Research Institute Massachusetts Institute of Technology [5]. Hart et
al. showed that by mapping out a few appliance load characteristics, also called signatures,
one could deduct which appliances were responsible for the accumulation. After this dis-
covery there has been much research conducted on the topic and several new methods has
risen in the field, both supervised as Hart et al. presented and unsupervised, where no
appliance load characteristics, are needed. One thing they all have in common is three
main steps; data acquisition, extracting features from the data and classifying loads. In
NILM, the method should be non-intrusive, and the electric consumption data is therefore
collected at the service entry, in our case the Norwegian Smart Meter. Different methods
extract features in different ways, but the goal is always to determine when an appliance is
turned ON or OFF and to find the most describing features in the data during that period.
These features are used to classify the appliance that caused the step change in total con-
sumption. To successfully map features, information about the individual appliances can
either be estimated from their specifications or by individually monitoring their consump-
tion (intrusive monitoring).

In his thesis[6], Horne did not have the needed equipment available in time and there-
fore used downsampled data from an existing public data set to the following sampling
frequencies. Today, smart meters are widely installed in Norway, and an experiment with
actual smart meter data can be conducted. Previously data collecting done in the field of
NILM such as the ECO[7] and REDD[8] has not gone into detail about how their research
was set up making it harder to replicate for future studies.

2

1.2 Problem formulation

1.2 Problem formulation
Although there has been done much research in the field of NILM, not much information
is available on how to best set up a system to collect and store the consumption data in
an intrusive fashion. A feasibility study into the possibilities of understanding Norwegian
households electric loads through NILM, with the delivered smart meter aggregated data,
will hence be conducted focusing on the most installed smart meter, the Kaifa. To eval-
uate the NILM potential, the evaluation framework NILM-eval[9] created by Distributed
Systems Group[10] at ETH Zurich, will be used.

1.2.1 Objectives
The primary objectives of this master thesis are:

• Assess the feasibility of using NILM to provide appliance spesific consumtion data
to Norwegian households.

• Design and execute an experiment to collect both smart meter data and individual
appliance data in a Norwegian household.

• Analyze the collected data and assess its potential for NILM.

• Identify and classify individual home appliances using Non-Intrusive Load Moni-
toring methods on aggregated data provided by the Kaifa Smart Meter.

• Map the performance of different NILM approaches and identify shortcomings and
possible solutions.

Secondary objectives include:

• Produce a Data Collection Software Installation Guide to aid future experiments on
NILM.

1.2.2 Norwegian Smart Meters
According to Norwegian law, the smart meters installed in Norway has to [1]:

• "...store measurement values with a recording frequency of maximum 60 minutes,
and be adjustable down to a recording frequency of minimum 15 minutes."

• "...have a standardized interface that facilitates communication with external equip-
ment based on open standards."

• "...be able to connect and communicate with other smart meters."

• "...ensure that stored data is not lost in case of power failure."

• "...be able to break and limit power withdraw at the point of delivery, excluding
transformer-based facilities."

3

Chapter 1. Introduction

• "...be able to send and receive information regarding power prices and tariffs as well
as be able to transfer control and ground fault signals."

• "...provide security against abuse of data and unwanted access to control functions."

• "...register flow of active and reactive power in both directions."

The consumers in Norway will get one of three different smart meters installed de-
pending on which one their service provider decided to buy, e.i. depending on what part
of the country they live. One common thing for all the smart meters is that they have to
deliver data within the decided intervals ruled by Norwegian law, see figure 1.1. In the
case of NILM, higher data frequenzy equals better posibillity for identification and clas-
sification. The most significant difference between the selected smart meters is that they
deliver data at slightly different intervals, see figure 1.2. One of the benefits of getting the
smart meter installed is the access to the households consumption data, this difference in
data frequency between the different areas in Norway can be seen as unfair.

Frequenzy Data
Every 2.5 seconds Active power, import and export

Every 10 seconds
Reactive power, import and export
Current, all phases
Voltage, all phases

Every hour
Active energy, import and export
Reactive energy, import and export
Time and date

Table 1.1: Statutory rules for data measurements in Norwegian smart meters.

Smart Meter Active power obtained from HAN
Nuri Telecom LtD (Kaifa Smart Meter) Every 2 seconds
Kampstrup Smart Meter Every 2.5 seconds
Aidon Smart Meter Every 2 to 3 seconds

Table 1.2: Accessible active power data from the three different smart meters in Norway.

1.3 Outline
This thesis is organized in many ways the same as NILM is conducted, Data acquisition,
feature extraction, and appliance identification. First, the second chapter will examine the
research previously conducted in the field of NILM. Throughout the chapter, one will gain
a deeper understanding of feature extraction, appliance identification, and the different
approaches to successful disaggregation of smart meter data. Chapter three describes the
practical data acquisition, how to conduct a household experiment and the methods used

4

1.3 OutlineTabell 1

August September October November December
Activity 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9 26/9 3/10 10/10 17/10 24/10 31/10 7/11 14/11 21/11 28/11 5/12 12/12 19/12
Reviewing topic
Planning
experimentPhysical layout

System
architectureOrdering
hardwareHardware
installationSoftware
implementation
Data gathering
Data processing
NILM-eval
implementation
Analysis
Writing report

�1

Figure 1.2: Gantt chart for project.

to collect and process the data using theory from chapter two. Chapter four explains the
implementation of the experiment and the challenges that was faced, hopefully aiding
future experiments in the field. The results of the experiment, the data and the appliance
identification are presented in chapter five before they are discussed in chapter six. A
conclusion to this thesis’s objectives is then given in chapter seven.

5

Chapter 1. Introduction

6

Chapter 2
Non-Intrusive Load Monitoring

This chapter introduces NILM, beginning with the initial approach and ending with today’s
most used algorithms and their metrics.

2.1 History of NILM

2.1.1 The Essentials of NILM
The first mention of NILM was made at MIT in the 1980s by a research group led by
George Hart. They envisioned that it would be possible to use the known characteristics of
electrical appliances to disaggregate the total electric consumption of a household success-
fully. The idea was that by looking at the changes in total load, these step changes would
contain some characteristic values depending on the appliance changing state. NILM can
be formulated as

P (t) = P1(t) + P2(t) + P3(t) + ...Pn(t)

where the total electricity consumption is made up by the n amount of appliances in the
household. In total, all of the sockets in a household, including losses in the wiring, would
add to the consumption measured at the entry point of the house. By recognizing the
changing state of appliances, the goal was to identify the cause of total consumption as
shown in figure 2.1.

2.1.2 Evolution of NILM
Even though the idea was conceived decades ago, there was not much research done in
the following decades. At the time, smart meters such as the ones we have today were
not available, and a device would have to be retrofitted to the existing revenue meters.
The computing power needed to process data was also expensive, and the non-intrusive
method would, in reality, become dificult to implement. During the past decade, rapid de-
velopment in machine learning and artificial intelligence, combined with cheap computing

7

Chapter 2. Non-Intrusive Load Monitoring

Figure 2.1: Load Disaggregation as visualized by Hart[11] in 1992.

Figure 2.2: NILM steps as used by Wong [13]

power and available smart meters, has made NILM a much more researched field. In their
2014 paper "Non-intrusive load monitoring and supplementary techniques for home en-
ergy management"[12], Bahman Naghibi and Sara Deilamis proposed new learning meth-
ods based on machine learning, revealing a new potential of the field.

2.2 The Main Steps
Despite different new methods of NILM, most approaches are still based on the original
work[5] by Hart et al.. The main stages can be divided into three phases: Data acquisition,
feature extraction, and appliance identification.

Data acquisition

Obtaining aggregated data today is most easily done through smart meters. The downside
of using smart meters is that the available data is decided by the manufacturer or state,

8

2.2 The Main Steps

which in some cases can limit the NILM possibilities. E.g., the XXXXXX has the capa-
bility of delivering other measurements such as phase shifts between current and voltage
per phase[6]. These measurements are not available for the consumer. A positive exam-
ple is the Kaifa, which delivers data at a higher frequency than Kampstrup and Aidon (as
shown in table 1.2) due the inner workings making it difficult to measure correctly at a 2.5
interval. In this case, an exception made by the Norwegian Government[6]. The upside of
using smart meters is, of course, the smart meters availability, as they are to be installed in
all Norwegian households.

Feature extraction

Which features that needs to be extracted from the aggregated data differs in different
approaches. While most look at active or reactive power, there are also methods using
higher harmonics such as phase shifts caused by inductive components in the appliances.
It usually comes down to the amount of data available.

The next step is detecting an event, such as the change of state in an appliance. The
features can be extracted in different states and are classified as:

• Steady state features

Steady state is the time when an appliance is operating normally. The variations in
real and reactive power are typically used to recognize a change of state.

• Transient state features

Features extracted when the load is changing. Many inductive appliances have tran-
sient states when turned ON and OFF, and these fast-changing loads will be easier
to sort out from the total consumption, but also require a higher sampling rate.

• Non-traditional features

Features that are not directly connected to electric consumption. This could be the
number of people in the household, time of day or probability caused by the other
currently used appliances.

A challenge in event detection is the many changes that can occur in the aggregated
data due to instability in the grid or a load shift caused by a misbehaving appliance in
steady state. Another problem is that with low-resolution data, the event detection suffers.
If an event occurs between the measuring intervals, the event could be only partially caught
or even completely missed. Therefore it is also important to know if the event is caused in
the change of state, a steady state or a transient stage.

Appliance identification

The last step is to map the features found and identify the appliance which caused it.
Different approaches have different ways of doing this and will be discussed further in this
chapter.

9

Chapter 2. Non-Intrusive Load Monitoring

Figure 2.3: Power signatures for an iron (restive), vacuum cleaner (inductive) and LCD TV (capac-
itive). Illustration borrowed from Weiss [14]

2.3 Device Signatures
The signature in the aggregated data, often called an edge, is the step change when a load
is added or subtracted. These appear when either the state or load changes. The change
differs depending on the nature of the device and can be divided into three categories:
resistive (Watt), inductive (volts-amps-reactive, or VAR) and capacitive (Also VAR, but
opposite polarity of inductive). E.g., an incandescent light bulb is completely resistive
because it draws current and voltage in phase to heat the wire filament that immediately
dissipates light and heat. A vacuum cleaner is inductive because its motor demanding a
big current to create a magnetic field during startup. In contrast to resistive loads, this
magnetic field resists changes in current, resulting in a 90-degree phase shift between the
current and voltage. Lastly, a capacitive load such as a laptop charger contains capacitors
which can store a charge making it withstand voltage changes resulting putting it in an
opposite 90-degree phase shift. Figure 2.3 illustrates the different power signatures.

The initial approach made by Hart et al. was to use the real (P) and reactive (Q) power
in the aggregated data [5]. An edge detector would find the steady-state changes (steps)
and plot these in a two-dimensional plane ∆P and ∆ Q as shown in figure 2.4. By cluster-
ing these together, the appliances could be separated, and their state could be noted. The
signature space de-complicated the complex data into easily separatable clusters dynam-
ically, where negative responses would be matched or paired with their opposite positive
responses (for two state appliances). New, unmapped appliances, would then either show
up in existing clusters, or create new clusters that could be mapped at a later time. To calcu-
late their consumption, a premade table of each appliance would contain the consumption
details.

2.3.1 Advances in the Field
In the approach made by Hart et al., classifying other devices than the big appliances such
as refrigerators, washing machines and ovens, proved challenging, but not impossible. A
shortcoming was that some appliances would create similar signatures, making it difficult
to separate them in individual clusters. This problem is addressed in newer approaches
where a new dimension has been introduced to further isolate the signatures in higher
dimensional space, see figure 2.5. Another predicament is that even though this approach is
non-intrusive, it still requires the household appliance’s loads to be appropriately mapped

10

2.3 Device Signatures

Computer Turn-On
Incandescent Light Bulb Turn-On

Incandescent Light Bulb Turn-OFF
Computer Turn-Off

ΔQ : Var

 ΔP : W

Figure 2.4: Signatures from a computer and incandescent light bulb illustrated in 2D space. Notice
how the incandescent light bulb draws no reactive power due to being purely resistive.

beforehand. This could be difficult to do when a device has several operating states, e.i
an oven, creating numerous signatures in need of clustered in separate clusters, despite
only being one appliance. The newer articles by Hart, [11] and [15], tries to address these
problem, as well as [16] who introduced a new dimension,[16] who uses clustering through
advanced machine learning and [14] who isolates phases.

 Δ3rd : Harmonic in
phase component

 ΔP : W

Computer Turn-On
Incandescent Light Bulb Turn-On

Incandescent Light Bulb Turn-OFF
Computer Turn-Off

ΔQ : Var

Figure 2.5: Signatures from a computer and incandescent light bulb illustrated in 3D space. Notice
how the the two appliances are easily seperatable when adding a new dimension.

11

Chapter 2. Non-Intrusive Load Monitoring

2.3.2 Appliance Categories

When mapping events to appliances in standard NILM, the signatures have to be known.
For some appliances, finding the signatures is easier than for others depending on their
operation principle and load properties. By looking at the appliances’ operational states,
Hart et al. defined four different categories: USE THIS [17]

1. ON/OFF

Appliances that have two distinct operating states, ON and OFF. They either draw
power at a set level (e.g. a 60 watt light bulb) or nothing. A change of steady state in
this category will result in the same changing values every time, providing an easily
detectable signature as seen in figure 2.6.

2. Finite state machine (FSM)

While the "ON/Off" category only contains one discrete operational state, the FSM-
category contains appliances which have multiple discrete operational states, such
as a stove or a washing machine, see figure 2.7. These various power loads will
essentially be different "ON/OFF" appliances, but it is essential for the algorithms to
distinguish these two categories so to not misclassify the multiple states as separate
appliances.

3. Continuous state machine (CSM)

Continuous state machines are devices that due to their almost step-less states has
no fixed pattern to recognize. E.g., a battery charger, adjustable lights, and power
drills, see figure 2.8

4. Permanent consumer

The fourth category captures devices that by design always stay on, such as hard-
wired fire alarms and burglar alarms. These devices are still drawing power due to
their design. Instead of these being detected, they will typically add to the zero-level
of the household electrical consumption.

Figure 2.6: Class 1: Electric kettle consumption during one run.

12

2.4 Evaluation framework and Disaggregation Algorithms

Figure 2.7: Class 2: Washing Machine consumption during one cycle.

Figure 2.8: Class 3: Laptop consumption while charging. Data borrowed from the ECO dataset[7].

2.4 Evaluation framework and Disaggregation Algorithms

Today there are many approaches to disaggregate total electrical consumption data. While
many build upon the initial concept laid out by Hart et. al., some interesting machine
learning methods are used as well. Many of these produce good results, the problem is
to compare them in a good way. Usually, they use different measures of accuracy, and
each offers many different parameters for tuning. To ease the process of evaluating these
algorithms against each other, two frameworks, the NILM-eval[9] and NILMTK[18], have
been developed during earlier research. Neither of the evaluation tools had been updated
the last couple of years at the time of writing, but due to Hallgeir Horne’s previous choice
of using NILM-Eval, this Matlab toolkit was chosen for this thesis as well. NILM-eval
features four separate algorithms: Weiss, Barinski, Parson and Kolter. Due to missing
dependencies, Kolter does not work and only the remaining three will be evaluated.

Authors Learning Granularity Main features
Weiss et al. Supervised 1 second Real power and reactive power
Parson et al. Semi-supervised 1 minute Real power
Baranski and Voss Unsupervised 1 second Real power

Table 2.1: Algorithms used to evaluate NILM potential by the author

13

Chapter 2. Non-Intrusive Load Monitoring

2.4.1 Weiss’ Algorithm
Weiss’ [14] algorithm is based on the approach Hart proposed in the 1980s, where a sig-
nature describing active and reactive power is needed per appliance. As previously men-
tioned, the signature Hart created was made up by the appliance’s real and reactive power
when changing state. The events are then mapped on a two-dimensional plane and clus-
tered together. Instead of using two-dimensions, Weiss uses three: real power, reactive
power, and distortive power. Distortive power is a calculated component of reactive power
found by looking at the phase shift created by the load, and Weiss takes advantage of
the phases splitting each event into a detailed phase-view that further increase its preci-
sion. After finding these events, they get stored in a signature database where they can be
matched up to future events making this approach supervised.

2.4.2 Parson’s Algorithm
Parson’s algorithm[19] uses Hidden Markov Models (HMM) to disaggregate the house-
hold appliances one by one. HMM [20] observes a series of observations and find the most
probable state transitions. The key that a state is viewed as hidden for the observer, in this
case, the state of an appliance getting turned on or off being buried in the total consump-
tion data. During training, the algorithm finds periods where the pattern of the appliance
is apparent and uses this pattern to update a general model of the appliance. The general
model contains the means of individual appliance consumption at its states, e.g. how much
power a fridge usually consumes. After training, it removes devices, one by one, from the
aggregated data and continues the search for others. Due to its training model, Parson’s
algorithm is a semi-supervised method. The method stands out from the Weiss and Barin-
ski with its default granuality of 1/60Hz, meaning it only needs to know the aggregated
consumption delivered from Kaifa every 60 seconds.

2.4.3 Baranski’s Algorithm
Baranski’s[21] algorithm is designed to perform NILM on consumption data that is not as
detailed as the previous algorithms. Baranski’s algorithm takes in what it calls "rough data"
and " It is designed to detect frequently occurring patterns from the load trace of the active
power consumption without any a priori knowledge concerning special appliances."[22].
With the algorithm focusing on frequently reoccurring patterns, and appliances creating
significantly big loads, smaller appliances will not be prioritized. A discovered appliance
will be defined as a final state machine with a set number of states, where the states are
assumed to always repeat in the same sequence within the pattern. In their paper[21],
the authors conclude that "Typical patterns of ON-OFF appliances or finite state machines
with less than about five different states could be detected without any apriori knowledge."

2.5 Accuracy Metrics
Several different metrics measure the success of an algorithm. Although it is hard to
compare different approaches, there are a few metrics available cross-algorithm that are
good performance metrics used to evaluate machine learning which NILM-Eval offers.

14

2.5 Accuracy Metrics

Precision =
true positives

true positives + false positives
(2.1)

Precision measures the number of correct classifications done by the algorithm. A true
positive is a correctly identified change of state, event, in data and a false positive is when
the thought edge is not present. Precision is a useful metric for what works in the approach,
but in reality, it only tells half the story. E.g., if the water heater turns on ten times a day,
just one correctly identified edge will produce a precision score of 100%, granted no false
positives exist, possibly deceiving the algorithm’s machine learning. The precision alone
is hence not suitable as a sole parameter to evaluate the performance of the algorithm.

Addressing the problem of precision, recall is introduced. Recall tells the other half of
the story revealing the poor performance not seen by precision. In the case of the water
heater, precision rates the algorithm 100% successful while recall will rate it 1/10 = 10
percent.

Recall =
true positives

true positives + false negatives
(2.2)

By combining precision and recall in what is called an F-score, a more nuanced metric
appears.

F -score = 2 ∗ precision ∗ recall
precision + recall

(2.3)

F-score weights the two previously mentioned metrics equally by creating a harmonic
mean between them, punishing extreme values. E.g., if either one of them is extremely
low, the F-score will reflect it.

15

Chapter 2. Non-Intrusive Load Monitoring

16

Chapter 3
Experimental Design

This project aims to assess the feasibility of using NILM to provide real-time consumption
data to Norwegian households through mandatory state-approved smart meters. Since
being imposed by Norwegian law, smart meters are now widely installed in households
in Norway. This makes it possible to conduct an experiment with actual smart meter
data, as Horne[6] was not able to do at the time. With the previous work in the field
lacking a detailed guide for how to set up data acquisition, this chapter will provide in-
depth information about the planning of a data gathering experiment to aid future research.

3.1 Norwegian Household Experiment
When designing an experiment, there are many possible pitfalls. Determining the data
available, defining a typical household and deciding which hardware is available within
the budget are important information needed to base hardware and software choices.

3.1.1 Initial Thoughts
First and foremost, the quality of the data collected is of outmost importance. The quality
depends on several factors, and in this project, the aggregated data is only available through
the confinements of the Kaifa smart meter. The remaining choices will have to be made
based on this in order to assess the potential of NILM in a Norwegian household. What
data needs to be collected and what hardware does one need to collect it? Which electric
appliances does a Norwegian household usually contain?

3.1.2 Choosing a Norwegian Household
In previous research[7][8][23], houses occupied by small families or couples with heating
and cooking equipment typical for their country were used. For this experiment, the au-
thors mothers household was used, with two people occupying it during the whole time
period. The apartment is approximately 115m2 with the floor plan showed in figure 3.1.

17

Chapter 3. Experimental Design

7

RP

AppliancesAppliances
01 Electric heater Andre
02 Water Heater
03 Oven
04 TV
05 Coffee Maker
06 Electric kettle
07 Electric heater salong
08 Microwave oven
09 Electric heater terrace
10 Dishwasher
11 Refrigerator
12 Washing machine
RP Raspberry Pi

5

2

10

3
8

11
6

9

4

12

1
Bedroom 2

Bedroom 1
Bathroom

Hallway

Kitchen

Living room

Storage room

Bedroom 3

Figure 3.1: Floor plan of the apartment where the experiment was conducted with appliances and
Raspberry Pi marked.

3.1.3 Choosing appliances
For consumers, the biggest difference in consumption can be made by changing their
habits regarding the appliances used daily, especially the devices creating large loads.
Defining a Norwegian household was done by consulting the author’s peers, and it be-
came clear that the appliances shown in table 3.1 are the most common.

As mentioned in chapter two, some of these are more difficult to classify because
they have continuous states or are always ON. Some are also hard to measure because
of physical restrictions. To reduce electricity consumption and lowering the electricity
cost of a household, the most important appliances to monitor will as mentioned be the
largest consumers in the household. The biggest restrictions in this experiment were the
physical constraints for some appliances. The kitchen stovetop demands 25A of current
and uses a different plug than other appliances, hence it will not be included. Heated
floors are directly connected to the wiring and hard to measure without special equipment
and installation by authorized workers. The author’s mother did not use a laundry dryer
or a PC, and her laptop is rarely used, these will hence be excluded. Not measuring the
laptop is a drawback to the experiment since its charger is the only capacitive load in the

18

3.2 Data

Appliance Class Chosen for experiment
Kitchen oven 3 Yes
Kitchen stove top 2 No
Microwave 3 Yes
Refrigerator 1 Yes
Dishwasher 2 Yes
Electric Kettle 1 Yes
Coffee Maker 1 Yes
3 Electric heaters 3 Yes
Heated floors 3 No
Water heater 1 Yes
Washing machine 2 Yes
Dryer 2 No
TV 3 Yes
Stereo 3 No
Lights 1 No

Table 3.1: Possible and chosen appliances to monitor and their class.

household. On the upside, there are almost no capacitive loads in a regular household. The
appliances chosen to monitor were therefore the ones shown in table 3.1:

3.2 Data

3.2.1 Collecting Data

There are two types of data necessary, aggregated data and individual appliance data for
training and verification purposes depending on the algorithm used.

Total aggregated data

All Norwegian smart meters features a HAN-port where consumers can connect and read
their consumption data. Connecting, downloading and formatting this data is complicated
for the users, creating the need for a dedicated device. This thesis is in part written for Hark
Technologies, a company in the early stages of producing such a device. This experiment
will hence use Hark Technologies’s second prototype of the EcoMonitor, see figure 3.4 to
collect the household aggregated data. EcoMonitor formats and relays the aggregated data
to a web server available for customers through a website.

Individual Appliance Data

The Kaifa smart meter relays the data every 2 seconds. To achieve the best possible results
in NILM, the training data should also be sampled every 2 seconds. On the Norwegian

19

Chapter 3. Experimental Design

marked today, there are several different possibilities for monitoring the electricity con-
sumption of an individual appliance. Smart plugs such as the Fibaro Wall plug 2[24], TP-
Link WiFi Smart Plug[25], D-Link DSP-W115[26], Eve energy[27], and Belkin WeMo
Insight[28] are consumer based devices with its main focus on delivering services for au-
tomatization and remote triggering of devices through smartphones. Even though they
deliver load monitoring for the connected appliances to some degree, their sampling fre-
quency is far lower than the needed 0.5Hz.

In the 2017 Ph.D. Thesis Disaggregation of Domestic Smart Meter Energy Data[29]
the author compiled the data collection hardware used in earlier experiments, see figure
3.2. Due to the Enmetric PowerPort being discontinued and the IBM nPlug/jPlug, eGauge
meters and ’Watts Up?’ meters being very intrusive and expensive to install, the Plugwise
Circle was chosen for this experiment. One should note that there are some disadvantages
when deciding to use smart plugs instead of more intrusive systems. One is the physical
restriction mentioned, resulting in the kitchen stove top getting left out of the experiment.
They also have a maximum current measurement capability of around 16A and more noise
in the readings (the noise of Plugwise Circle is 5% ± 0,5 W. [30]). Fortunately, with
the stove already excluded, the remaining appliances all fit well within the current range.
However, the biggest drawback is the lacking measurement of reactive power, as will be
discussed in chapter five.

Figure 3.2: Previously used appliance meters, borrowed from [29].

20

3.3 Hardware

3.3 Hardware

3.3.1 Kaifa Smart Meter
The Kaifa smart meter used in the experiment is one of three different smart meters in-
stalled in Norway. In comparison to the other two, the Kampstrup and Aidon, the Kaifa
offers a better data resolution as seen again in figure 3.2. The choice of smart meter for this
thesis was based on this fact, to assess the possibilities of NILM on the best data available.

Smart Meter Active power obtained from HAN
Nuri Telecom LtD (Kaifa Smart Meter) Every 2 seconds
Kampstrup Smart Meter Every 2.5 seconds
Aidon Smart Meter Every 2 to 3 seconds

Table 3.2: Accessible active power data from the three different smart meters in Norway.

3.3.2 Plugwise System
The Plugwise Circle system consists of two types of smart plugs, the Circle and Circle+,
and a USB-stick named Stick, displayed in figure 3.3. The Circle+ has all the same fea-
tures as Circle but also includes an internal clock that is used to synchronize all of the
Circles in the household in a mesh network over a Zigbee wireless protocol. The Stick is
used for communication between the mesh network and a computer to control, monitor,
visualize and schedule the Circles power states (ON/OFF) and their consumption. The
smart plugs also have built-in memory to buffer the loads for re-transmitting should the
Zigbee connection drop. Although this function is not essential for gathering the data in
the case of the thesis, it could aid in the initial implementation described in chapter four.

The Plugwise system by standard does not provide the necessary sampling frequenzy[31]
and a workaround needed to resolve this problem will be laid out later in this chapter.

3.3.3 Hark Technologies EcoMonitor
The Hark Technologies EcoMonitor is connected to the household’s smart meter HAN-
port with a cat5 cable and is powered from an external power source. The communication
between the EcoMonitor and the consumer is through WiFi. In the chosen household, the
Kaifa smart meter was installed out of the household’s WiFi reach, Setting up a shared
internet connection from a smartphone in the proximity of the EcoMonitor solved this
problem, adding the need for a smartphone in the system. This kind of issue is something
that might affect the commercialization of the technology and should be addressed.

3.3.4 Raspberry Pi b+ 1.2v with microSD cars, WiFi USB dongle and
power supply

To communicate with the Plugwise system, and to store the consumption data collected, a
computer had to stay online during the experiment. Because of its small footprint, many

21

Chapter 3. Experimental Design

Figure 3.3: The Plugwise Circle+, Circle and Stick.

Figure 3.4: The Hark Technologies EcoMonitor.

possible configurations, and easy setup, the single board computer Raspberry Pi b+ 1.2 was
selected. One important thing to note is that the microSD card used with the Raspberry Pi
should be of high quality with fast read and write speed. Data will be processed at least
every 2 seconds, and the cheaper, slower cards will be a bottleneck in the system. It is
also imperative to use a power supply that delivers the correct voltage and current[32] to
make sure the Raspberry Pi does not underperform. A Wifi dongle is not necessary but
was added to extract the collected data easily. The following hardware is necessary for the
experiment. Figure 3.5 shows the components related to each other.

22

3.4 Software

• 1 Kaifa Smart Meter

• 1 Hark Technologies EcoMonitor

• 1 Plugwise Circle+

• 11 Plugwise Circle

• 1 Plugwise Stick

• 1 Raspberry Pi b+ with microSD cars,
WiFi USB dongle, and power supply

3.4 Software
With its default 10 second resolution, the Plugwise system does not provide data matching
the Kaifa smart meter, and a more custom approach had to be designed. Most of the soft-
ware used in this experiment is the publicly available software Plugwise-2-Py[33], a hack
created to communicate directly to the Plugwise system without using the Plugwise pro-
vided software. With additional software included, this section will lay out the programs
needed to run on the Raspberry Pi.

3.4.1 Plugwise Source
Plugwise Source is the software package that comes with the Plugwise system. Source
offers useful insight into the electrical consumption with adjustable graphs and estimations
of the individual appliances electrical cost, based on a given rate. All connected devices
can also be turned ON and OFF either manually or by time schedules. Unfortunately, the
sampling frequency is by the standard set to every 10 seconds, significantly lower than the
Kaifa Smart Meter. Hence, Plugwise Source was only used for the initial setup.

3.4.2 Raspberian Jessie
Raspberry Pi B+ can run several different operating systems based on Linux. For this
experiment, a light operating system with desktop-capabilities was wanted to comfort-
ably install software and being able to connect through VNC[34] remotely. Raspberian
Jessie[35] offered all the mentioned features and was deemed a good fit for the job with
its stable Debian Linux base.

3.4.3 Plugwise-2-py
Plugwise-2-py is built on the reverse engineering of the Plugwise system. By intersect-
ing the network packages, data being sent in-between the system components has been
recorded and mapped out into commands and data. With this information, one can control
and read the Circle+ and Circles in different ways than the Source software allows. By
repeatedly asking the smart plugs what their current electrical load is, the data could be
polled at a faster interval than every 10 seconds. When asked how much the sampling can
be increased by, the customer support at Plugwise answered that even though the Plugwise
smart plugs can send the actual power consumption every second, but is not designed for it
and the functionality is therefore not guaranteed. A value will always be sent if it is polled
every second, but it could in some cases be the the sample of the previous second. In other

23

Chapter 3. Experimental Design

H
ark Technologies

Plugw
ise

HAN-Interface
Zigbee

EcoM
onitor

Kaifa Sm
art M

eter
Kaifa Sm

art M
eter

Raspberry Pi B+

Internet
Galaxy Note S4

W
iFi

W
iFi

W
iFi

4G

Electricity in
Electricity
in house

M
acbook Pro

Electricity
consum

ption
data

Electricity out

Figure
3.5:

System
design

overview

24

3.4 Software

words, by polling more data one could, in the worst case, get duplicate messages if the
smart plug does not have new data. On the basis that this Plugwise setup worked in the
Trackbase experiment 3.2 and in other experiments [36] it was also chosen for this thesis.

3.4.4 Node-RED
Plugwise-2-py does not store any data, and since collecting and storing data is the purpose
of this experiments system, additional software is needed. "Node-RED is a programming
tool for wiring together hardware devices, APIs and online services in new and interesting
ways"[37]. The connection possibilities to, among others, Domoticz is widely used to
control and store historical data in the Plugwise-2-py community. This lightweight home
automation system was therefore chosen to relay data within the Raspberry Pi’s software
modules.

3.4.5 Matlab
For formatting raw data and utilizing the NILM-eval evaluation kit, the tool Matlab was
used. As mentioned in chapter 2, a second evaluation kit was available[18], but for this
report, the NILM-Eval software is used to assess the available algorithms. Hence, the main
software components of the system are:

• Plugwise source

• Raspberian Jessie

• Plugwise-2-py

• Node-Red

• Matlab

3.4.6 Data formatting to fit NILM-Eval
Hark Technologies informed the author that the data downloaded from their EcoMonitor
will appear as in table 3.3. NILM-eval requiers the data to be formattet to fit their structure,
see table 3.4. Preparing the data is hence also a task need to be done. For this, python and
matlab will be used. The flow of data in the experiment is as shown in figure 3.6

25

Chapter 3. Experimental Design

Plugw
ise-2-py

M
QTT

Raw
 plug

data from

Plugw
ise

system

Storing raw

data
to files

Transfering
files to M

acBook
through

filesharing

Node-RED
01.csv

02.csv

12.csv

01.csv

02.csv

12.csv

01.csv

02.csv

12.csv2018-11-05

pow
erallphases.csv

voltagel1.csv

Running
plugw

ise_to_csv.py

Running
convert_csvfiles_to_

m
at.m

 in M
atlab

Running algorithm
s

in N
ILM

-Eval

 O
ffl

ine system
 M

acbook Pro

EcoM
onitor

raw
 data from

w

eb site

EcoM
onitor.csv

Running
ecom

onitor_to_csv.
py

 O
nline system

 Raspberry Pi

currenl1.csv

sm
artm

eter

01

2018-11-05.m
at

2018-11-29.m
at

plugs0101

2018-11-05.m
at

2018-11-29.m
at

Plugwise

Figure
3.6:

T
he

data
flow

in
the

system
.

R
aw

plug-data
is

sent
from

the
Plugw

ise
system

into
the

online
system

of
the

R
aspberry

Pi
and

stored
in

C
SV

-files
before

needing
to

be
m

anually
processed.

T
he

raw
sm

artm
eter

data
is

collected
from

the
E

coM
onitor

w
ebsite

and
then

m
anually

processed.
Flow

w
ith

M
atlab

is
notillustrated,this

is
described

in
A

ppendix
C

.

26

3.4 Software

Name in EcoMonitor data Description Unit Sampling frequency
sID EcoMonitor ID - Every 2 seconds
DTM Timestamp - Every 2 seconds
Pi Active power imported KW Every 2 seconds
Pe Active power exported KW Every 10 seconds
Qi Reactive power imported kVAr Every 10 seconds
Qe Reactive power exported kVAr Every 10 seconds
I1 Current phase 1 Ampere Every 10 seconds
I2 Current phase 2 Ampere Every 10 seconds
I3 Current phase 3 Ampere Every 10 seconds
U1 Voltage phase 1 Volt Every 10 seconds
U2 Voltage phase 2 Volt Every 10 seconds
U3 Voltage phase 3 Volt Every 10 seconds
Ai Tota active energy imported KWh Every hour
Ae Total active energy exported KWh Every hour
Ri Total reactive energy imported kVArh Every hour
Re Total reactive energy exported kVArh Every hour

Table 3.3: Data downloaded from EcoMonitor website

27

Chapter 3. Experimental Design

N
am

e
D

escription
Available

R
ate

C
om

m
ent

pow
erallphases

Sum
ofrealpow

eroverallphases
Y

es
2s

pow
erl1

R
ealpow

erphase
1

Y
es

10s
P1

=
I1

*
U

1
pow

erl2
R

ealpow
erphase

2
Y

es
10s

P1
=

I2
*

U
2

pow
erl3

R
ealpow

erphase
3

Y
es

10s
P1

=
I3

*
U

3
currentneutral

N
eutralcurrent

N
o

currentl1
C

urrentphase
1

Y
es

10s
currentl2

C
urrentphase

2
Y

es
10s

currentl3
C

urrentphase
3

Y
es

10s
voltagel1

Voltage
phase

1
Y

es
10s

voltagel2
Voltage

phase
2

Y
es

10s
voltagel3

Voltage
phase

3
Y

es
10s

phaseanglevoltagel2l1
Phase

shiftbetw
een

voltage
on

phase
2

and
1

1
K

now
ledge

ofvoltage
star

phaseanglevoltagel3l1
Phase

shiftbetw
een

voltage
on

phase
3

and
1

1
K

now
ledge

ofvoltage
star

phaseanglecurrentvoltagel1
Phase

shiftbetw
een

current/voltage
on

phase
1

N
o

phaseanglecurrentvoltagel2
Phase

shiftbetw
een

current/voltage
on

phase
2

N
o

phaseanglecurrentvoltagel3
Phase

shiftbetw
een

current/voltage
on

phase
3

N
o

Table
3.4:

D
em

anded
N

IL
M

-E
val

data
structure

w
ith

added
availability

of
data

from
the

K
aifa

sm
art

m
eter.

1:
A

ssum
ing

no
errors

in
the

electrical
system

,the
phase

voltage
is

alw
ays

separated
120

degrees.

28

Chapter 4
Implementation

This chapter will take the reader through the implementation of the planned experiment
covered in chapter 3. Installing the Plugwise-2-py software on the Raspberry Pi, and get-
ting it to work with the Plugwise hardware, proved more difficult than anticipated. The
data will go through multiple steps, and with one step failing, much debugging will re-
sult. Much time went into error searching both in code and in hardware before getting
everything interacting together. There are some online resources to find answers for the
Plugwise-2-py software, such as the forum https://www.domoticz.com/forum/
and of course the software’s GitHub repository https://github.com/SevenW/
Plugwise-2-py, but it could be made easier for future experiments. In appendix A
you will find a step-by-step guide explaining how to set up the software. This chapter will
go briefly through the highlights of each hardware and software module.

4.1 Kaifa Smart Meter and EcoMonitor

The EcoMonitor was connected through an ethernet cable to the Kaifa HAN-port, see
figure 4.2a. The smartphone with a shared network from its 4G cellular connection was
placed in close proximity.

4.2 Plugwise

4.2.1 Source

The smart plugs were initialized in a network created through a wizard with appliance
names and locations. During this process the smart plugs were connected to an extension
cord and labeled so to be completely configured before intrusively installing them. The set
up system is shown in screenshots in figure 4.2.

29

https://www.domoticz.com/forum/
https://github.com/SevenW/Plugwise-2-py
https://github.com/SevenW/Plugwise-2-py

Chapter 4. Implementation

(a) Settings for groups (b) Settings for appliances

(c) Report for TV on a given day (d) Report for usage

Figure 4.1: Screenshots from Plugwise Source software

4.2.2 Pictures of Installation

Installing the smart plugs went swiftly on the most part, as they are quick to plug in be-
tween the wall socket and appliance cord. Some installations proved to be more difficult
than expected with the wall mounted microwave and oven having to be partly disassem-
bled, as seen in figure 4.2b and 4.2d.

4.3 Raspberry Pi

The Raspberry Pi was connected to power supply, a WiFi dongle and the Plugwise Stick,
see figure 4.2c The power supply was a certified microUSB power supply that delivered
the needed voltage. This was important so that the Raspberry Pi’s performance was not
throttled by insufficient voltage.

30

4.3 Raspberry Pi

(a) Smart meter with EcoMonitor connected. (b) Removing microwave and oven to install smart
plugs.

(c) Raspberry Pi B+ in case with Plugwise Stick
connected in the top USB-socket

(d) Plugwise Circle connected to an electric kettle.

Figure 4.2: Installing the hardware

4.3.1 Raspberian Jessie

The newest versions at the time of writing, had problems connecting Plugwise-2-py to
node-RED. The complications are most likely due to updated packages handling web sock-
ets, which the Plugwise-2-py does not support. To get around this, the Raspberian Jessie
version from 2017-07-05 was chosen and flashed onto the microSD card with Etcher[38].

4.3.2 Plugwise-2-py

Installing the Plugwise-2-py python package is done by following the instructions in the
GitHub repo. Be sure to install it in the same path as described, making the installation
much easier. The rate of data pulling was changed to every two seconds to match data
provided by the Kaifa smart meter.

31

Chapter 4. Implementation

Mosquitto

When the active power has been received in Plugwise-2-py, it needed to be stored. The
software already includes Message Queuing Telemetry Transport (MQTT)[39], a proto-
col used for sending sensor data in a publish-subscribe-based fashion, and the library
Mosquitto was hence installed to broadcast messages in the local network.

Web Interface

When the Mosquitto software is installed and the Plugwise-2-py is running, the web in-
terface, see figure 4.3, will show the real-time active power used by each appliance. This
feature of the Plugwise-2-py software was helpful to see when the beginning data stream
is working.

Figure 4.3: Screenshot of the Plugwise-2-py web interface

4.3.3 Node-RED
The also included interface to Domoticz[40] was at the beginning of the project viewed
as a viable way of collecting the smart plug data, but showed to be insufficient because of
its long log intervals of 5 minutes. A direct save-to-file function in Node-RED was used
instead, to store the smart plug data. Note that the connection to Domoticz in Node-RED
was kept and is visible in the screenshot in figure 4.4. This was to quickly be able to check
the data whilst collecting and storing it in separate CSV-files.

4.4 Data Formatting
In this experiment, the data was formatted to fit the NILM-Eval framework which in turn is
based on the ECO dataset[7]. The structure for the dataset is found in both NILM-Eval[9]
and Appendix B and is brushed upon in figure 3.6 in the last chapter. The formatting itself

32

4.5 NILM-Eval

Figure 4.4: Screenshot of the setup in Node-RED. Orange rectangles are function blocks written in
javascript to filter process-data before storing it in separate CSV-files.

was done in three different steps: smart plug, smart meter, and combining those two to fit
the Matlab structure.

4.5 NILM-Eval
After copying the formatted files to NILM-Eval, a few config-files declaring the name of
appliances, thresholds, phases, and households was tailored for the gathered data. These

33

Chapter 4. Implementation

files and other alterations are covered in the guide and will be discussed in the discussion.

34

Chapter 5
Results

This chapter presents the results of the experiment, the data collected, and finally, the
identification and classification of appliances with the algorithms as presented forth in
chapter two.

5.1 Evaluation of the experiment
The system was implemented as planned and proved successful after the challenges de-
scribed in chapter 4 and Appendix A were solved. The data collected with the Kaifa smart
meter was not as expected. The voltage on phase 2 was measured as zero during the whole
experiment, and a solution was implemented by creating U2 based on U1 and U3. This
will be discussed in chapter 6.

The algorithms were trained on the first week of data and tested on the following 18
days. The data collected was dense with only a few hours of aggregated data missing in the
training period. The algorithm tuning was done to the best effort with the time available
but could be improved.

5.2 Usability of the Weiss algorithm
The Weiss algorithm proved difficult to use due to a lack of generalizations in the code.
E.g., the names of each appliance had to be manually written in different Matlab-files to
calculate and plot their consumption, and several errors occurred concerning matrices and
lists not being presumed sizes. The metrics seemed to suffer from these errors as well,
reporting high F-scores without evidence of this in the plots. This was not a problem when
testing the algorithm on the ECO dataset[7], showing that work needs to be done on im-
proving the NILM-Eval software when using new data. Therefore, the results of NILM
with the Weiss algorithm fell victim to poor implementation and deliver limited informa-
tion of its usability. Fortunately, some interesting plots and aspects were uncovered. These
will be presented in this section with a focus on visual inspection.

35

Chapter 5. Results

5.2.1 Finding the Signatures

The first step in Weiss is to train on the plug data to find signatures. In this run, a threshold
of 5W in the plug data was set as the limit to classify switching events. Weiss does not
read the reactive data directly from data but calculates it using the phase shift caused by
appliance loads. These being unavailable, the signatures created were one-dimensional, as
seen in 5.1. What is worth noticing is that the signatures are reasonably separated on the
one dimension available.

Appliance Active power Reactive power Phase
Dishwasher -2132.45 0.00 1
Dishwasher -2137.94 0.00 1
Washing Machine -605.98 0.00 1
Washing Machine -712.11 0.00 1
Water Heater -1920.23 0.00 2
Water Heater 1910.25 0.00 2
Oven -1985.49 0.00 2
Oven 2085.68 0.00 2
TV -44.44 0.00 2
TV 85.89 0.00 2
Electric Kettle -2071.35 0.00 2
Electric Kettle -1246.56 0.00 2
Electric Kettle 2110.84 0.00 2
Microwave Oven -1714.72 0.00 2
Microwave Oven 1780.44 0.00 2
Electric Heater Bedroom -948.47 0.00 3
Electric Heater Bedroom 957.78 0.00 3
Coffee Maker -1647.46 0.00 3
Coffee Maker 1420.00 0.00 3
Electric Heater Salong -956.54 0.00 3
Electric Heater Salong 956.72 0.00 3
Electric Heater Terrace -954.25 0.00 3
Electric Heater Terrace 953.84 0.00 3
Fridge -70.47 0.00 3
Fridge 104.69 0.00 3

Table 5.1: Signature database made by Weiss.

5.2.2 Fridge and TV

Although the algorithm could not be used to evaluate all the appliances, the Fridge and TV
produced plotted results. The Fridge is a Class 1 appliance with a clear pattern, and the
TV is Class 3 without a clear pattern, these provide a level of insight.

36

5.2 Usability of the Weiss algorithm

Fridge

The Fridge, seen in figure 5.1 and 5.2, is quite well captured by the Weiss algorithm.
Although the detection is shifted or missing in some cases, the algorithm is able to capture
a fair amount of events. This could be due to the Fridge always being ON, making it harder
for it to completely miss an event such as in the case of the TV.

Figure 5.1: Weiss: Fridge consumption detected on day 18, showed against the plug data.

Figure 5.2: Weiss: Fridge consumption detected on day 21, showed against the plug data.

37

Chapter 5. Results

TV

The identification of the TV’s events was poor, see figure 5.4. While the state change
from OFF to ON is sometimes detected, there are far more false positives. This is not very
surprising due to the TV drawing a much smaller active power load than other appliances
connected, such as the three Electric Heaters which are also Class 3. The variations in the
three Electric Heaters in its ON-state are smaller than its initial power change when turned
ON, see figure 5.5. This might a contributing factor to why the identification of a smaller
device, such as the TV, might get influenced.

Figure 5.3: Weiss: TV consumption detected on day 14, showed against the plug data.

Figure 5.4: Weiss: TV consumption detected on day 15, showed against the plug data.

38

5.3 Baranski and Voss

Figure 5.5: Electric Heater Salong consumption during day 14. One of three electric heaters moni-
tored in the experiment.

5.2.3 Parameter Sensitivity
Weiss contains many different parameters to tune. The most important ones to start with
are the evaluation thresholds (To not let ground errors interfere.) and event thresholds
found in the configuration files. When running individual test to identify appliances, the
parameters shown below proved decisive.

• r : Scaling parameter indicating the maximum distance of one event to the nearest
signature.

• osc : Scaling parameter for oscillations

• maxEventDuration : The maximal duration an event lasts

5.2.4 Overall Performance
Overall, the Weiss algorithm shows promise due to its reasonably spaced signatures mapped.
The results shown for the Fridge indicates that it is possible to achieve NILM for Class 1
appliances. The Class 3 appliance TV will have to be tuned more to conclude the possibil-
ities.

5.3 Baranski and Voss
The approach in Baranski is to cluster frequently occurring emerging patterns in the aggre-
gated data. With its design, the smaller appliances will not be prioritized. This is apparent
in the results as almost all the clusters found contained the three Electric Heaters. The
load caused by the heaters are both heavy and frequently occurring, leaving the infrequent

39

Chapter 5. Results

and rare appliances in the shadow. To get around this problem, the number of clusters was
increased from the recommended 20 to 50, and the threshold of the events was adjusted
in the interval [50W,500W] before setting it to 150W. The results were still mostly un-
changed with the electric heaters taking up all the space as seen in table 5.4. The FSMs
are consequently only electric heaters, as seen in table 5.5.

A theory to why the Electric Heater Salong appears more often is that because the
Electric Heater Terrace is placed under a wall with more windows (see floor plan 3.1) it is
therefore constantly running on maximum capacity, compared to Electric Heater Salong
which covers a smaller area with with new, recently installed windows. The FSMs are
overlapping, not knowing which of the electric heaters are turned ON or OFF. The confu-
sion is understandable since both of them are same make and model, and they could all be
classified as one oven in a heating category on the bill. The appliances are therefore not
seperatable.

Cluster ∆P Size App. 1 % App. 2 %
C1 -743 13698 Electric Heater Salong 0.61 Electric Heater Terrace 0.02
C2 752 9687 Electric Heater Salong 0.66 Electric Heater Terrace 0.01
C3 -744 4145 Electric Heater Salong 0.51 Electric Heater Terrace 0.05
C4 748 3910 Electric Heater Salong 0.79 Electric Heater Terrace 0.01
C5 719 3141 Electric Heater Salong 0.58 Electric Heater Terrace 0.01
C6 -641 2589 Electric Heater Salong 0.61 Electric Heater Terrace 0.01
C7 77 2353 Electric Heater Salong 0.71 Electric Heater Terrace 0.02
C8 -998 2191 Electric Heater Terrace 0.59 Electric Heater Salong 0.03
C9 649 1927 Electric Heater Salong 0.63 Electric Heater Terrace 0.01
C10 -65 1624 Electric Heater Salong 0.68 Electric Heater Terrace 0.04
C11 1731 1294 Electric Heater Salong 0.20 Electric Heater Terrace 0.10
C12 1024 1186 Electric Heater Terrace 0.33 Electric Heater Salong 0.09
C13 1032 1044 Electric Heater Salong 0.13 Electric Heater Terrace 0.06
C14 1710 983 Electric Heater Terrace 0.19 Electric Heater Salong 0.08
C15 1719 964 Electric Heater Salong 0.16 Electric Heater Terrace 0.15
C16 -1702 644 Electric Heater Salong 0.17 Electric Heater Terrace 0.03
C17 -1013 617 Electric Heater Terrace 0.12 Electric Heater Salong 0.11
C18 -1687 589 Electric Heater Salong 0.12 Electric Heater Terrace 0.03
C19 -1632 571 Electric Heater Salong 0.14 Electric Heater Terrace 0.02
C20 -2072 526 Electric Heater Salong 0.17 Water Heater 0.11

Table 5.2: Barinski clusters when run with 20 clusters and a threshold of 150W.

5.3.1 Parameter Sensitivity

In this experiment, the weights were not adjusted, but set to 1, due to the long algorithm
runtime. These weights adjust the length of the switching event, the electricity consump-
tion boost, and a more thorough test need to be conducted to map the full potential of
the algorithm. The maximum number of states per appliance was also set to 2, as recom-

40

5.4 Parson

FSM ∆P (C1) ∆P(C1) Appliance
1 748 -744 Electric Heater Salong
2 1710 -1702 Electric Heater Terrace or Electric Heater Salong
3 1719 -1702 Electric Heater Terrace or Electric Heater Salong
4 1024 -1013 Electric Heater Terrace or Electric Heater Salong
5 1710 -1687 Electric Heater Terrace or Electric Heater Salong
6 649 -641 Electric Heater Salong
7 1032 -1013 Electric Heater Terrace or Electric Heater Salong
8 1719 -1687 Electric Heater Terrace or Electric Heater Salong
9 1731 -1702 Electric Heater Terrace or Electric Heater Salong
10 1731 -1687 Electric Heater Terrace or Electric Heater Salong
11 1024 -998 Electric Heater Terrace
13 1032 -998 Electric Heater Terrace or Electric Heater Salong
14 1710 -1632 Electric Heater Terrace or Electric Heater Salong
15 1719 -1632 Electric Heater Terrace or Electric Heater Salong
16 1731 -1632 Electric Heater Terrace or Electric Heater Salong
17 752 -743 Electric Heater Salong
18 752 -744 Electric Heater Salong
19 719 -641 Electric Heater Salong
20 77 -65 Electric Heater Salong

Table 5.3: Barinski 20 FSM for 20 clusters: Here it is clear that the mapped appliances are wildly
crowded in the same clusters. Number 12 was not produced by the algorithm for unknown reasons.

mended, meaning that each appliance only has two states. This choice also contributes to
the multiple clusters of individual electric heaters.

The most important parameters to tune were found to be:

• numOfClusters : The number of clusters.

• threshold : The threshold for detecting events.

• maxNumOfStates : Number of states possible per appliance.

5.3.2 Overall Performance
Overall, the Barinski algorithm shows little promise in detecting other appliances than the
electric heaters with the tuning used in this experiment. The FSMs found could not be
used to classify a spesific appliance, only This will be discussed in chapter 6.

5.4 Parson
With the key feature being recognizing patterns, and previous work including a fridge
with freezer and a microwave oven, these appliances were chosen for testing. While these
are appliances which have clear patterns of state changes throughout the day, one would

41

Chapter 5. Results

Cluster ∆P Size App. 1 % App. 2 %
C1 -751 8339 Electric Heater Salong 0.63 Electric Heater Terrace 0.01
C2 755 6308 Electric Heater Salong 0.68 Electric Heater Terrace 0.01
C3 736 4770 Electric Heater Salong 0.63 Electric Heater Terrace 0.00
C4 -729 4357 Electric Heater Salong 0.63 Electric Heater Terrace 0.00
C5 -678 1785 Electric Heater Salong 0.62 Electric Heater Terrace 0.01
C6 692 1728 Electric Heater Salong 0.59 Electric Heater Terrace 0.01
C7 -1004 1714 Electric Heater Terrace 0.62 Electric Heater Salong 0.03
C8 -616 1409 Electric Heater Salong 0.62 Electric Heater Terrace 0.02
C9 -741 1298 Electric Heater Salong 0.57 Electric Heater Terrace 0.01
C10 632 1271 Electric Heater Salong 0.60 Electric Heater Terrace 0.00
C11 747 1210 Electric Heater Salong 0.75 Electric Heater Terrace 0.01
C12 39 1087 Electric Heater Salong 0.82 Electric Heater Terrace 0.01
C13 749 1067 Electric Heater Salong 0.82 Electric Heater Terrace 0.00
C14 -751 1008 Electric Heater Salong 0.46 Electric Heater Terrace 0.08
C15 750 982 Electric Heater Salong 0.81 Electric Heater Terrace 0.02
C16 755 973 Electric Heater Salong 0.72 Electric Heater Terrace 0.05
C17 -744 880 Electric Heater Salong 0.52 Electric Heater Terrace 0.01
C18 -747 873 Electric Heater Salong 0.51 Electric Heater Terrace 0.05
C19 -29 789 Electric Heater Salong 0.83 Electric Heater Terrace 0.02
C20 1016 734 Electric Heater Terrace 0.39 Electric Heater Salong 0.08
C21 48 705 Electric Heater Salong 0.55 Electric Heater Terrace 0.02
C22 1740 643 Electric Heater Salong 0.18 Electric Heater Terrace 0.11
C23 1735 551 Electric Heater Terrace 0.16 Electric Heater Salong 0.15
C24 -1009 549 Electric Heater Terrace 0.53 Electric Heater Salong 0.05
C25 1024 471 Electric Heater Salong 0.14 Electric Heater Terrace 0.09
C26 1007 465 Electric Heater Salong 0.11 Electric Heater Terrace 0.08
C27 -898 464 Electric Heater Terrace 0.35 Electric Heater Salong 0.09
C28 2237 463 Electric Heater Salong 0.22 Water Heater 0.08
C29 -126 420 Electric Heater Salong 0.52 Electric Heater Terrace 0.07
C30 -1720 418 Electric Heater Salong 0.16 Electric Heater Terrace 0.03
C31 247 407 Electric Heater Salong 0.67 Electric Heater Terrace 0.02
C32 -73 406 Electric Heater Salong 0.56 Electric Heater Terrace 0.04
C33 951 390 Electric Heater Terrace 0.27 Electric Heater Salong 0.19
C34 -1716 371 Electric Heater Salong 0.18 Electric Heater Terrace 0.03
C35 1011 346 Electric Heater Salong 0.13 Electric Heater Terrace 0.05
C36 1735 341 Electric Heater Terrace 0.21 Electric Heater Salong 0.06
C37 -1743 338 Electric Heater Salong 0.17 Water Heater 0.15
C38 1663 325 Electric Heater Salong 0.22 Electric Heater Terrace 0.12
C39 1731 324 Electric Heater Terrace 0.23 Water Heater 0.01
C40 1734 321 Electric Heater Salong 0.18 Electric Heater Terrace 0.13
C41 487 304 Electric Heater Salong 0.68 Electric Heater Terrace 0.03
C42 1734 303 Electric Heater Salong 0.16 Electric Heater Terrace 0.15
C43 -1010 292 Electric Heater Terrace 0.18 Electric Heater Salong 0.08
C44 -1712 280 Electric Heater Salong 0.08 Electric Heater Terrace 0.04
C45 -1705 257 Electric Heater Salong 0.15 Electric Heater Terrace 0.03
C46 -1690 244 Electric Heater Salong 0.15 Electric Heater Terrace 0.03
C47 -1026 223 Electric Heater Salong 0.12 Electric Heater Terrace 0.05
C48 -988 180 Electric Heater Salong 0.13 Water Heater 0.01
C49 -2708 170 Electric Heater Salong 0.11 Electric Heater Terrace 0.03
C50 -2186 130 Electric Heater Salong 0.26 Dishwasher 0.06

Table 5.4: Barinski clusters when run with 50 clusters and a threshold of 150W.

42

5.4 Parson

FSM ∆P (C1) ∆P(C1) Appliance
1 750 -751 Electric Heater Salong
2 1011 -1010 Electric Heater Terrace or Electric Heater Salong
3 1007 -1009 Electric Heater Salong or Electric Heater Terrace
4 749 -751 Electric Heater Salong
5 1735 -1743 Electric Heater Terrace or Electric Heater Salong or Water Heater
6 1734 -1743 Electric Heater Terrace or Electric Heater Salong or Water Heater
7 1011 -1009 Electric Heater Terrace or Electric Heater Salong
8 1734 -1743 Electric Heater Salong or Electric Heater Terrace
9 1024 -1026 Electric Heater Salong or Electric Heater Terrace
10 1007 -1010 Electric Heater Salong or Electric Heater Terrace
11 755 -751 Electric Heater Salong
12 747 -747 Electric Heater Salong
13 749 -747 Electric Heater Salong
14 750 -747 Electric Heater Salong
15 1740 -1743 Electric Heater Terrace or Electric Heater Salong or Water Heater
17 1731 -1720 Electric Heater Terrace or Electric Heater Salong
18 1735 -1743 Electric Heater Terrace or Electric Heater Salong or Water Heater
19 747 -741 Electric Heater Salong
20 747 -751 Electric Heater Salong

Table 5.5: Barinski 20 FSM for 50 clusters: Here it is clear that the mapped appliances are crowded
in the same clusters. Number 16 was not produced by the algorithm for unknown reasons.

also want to identify other appliances as well. The author, therefore, looked at the Fridge
(Inductive, Class 1), Water Heater (Resistive, Class 1), Microwave Oven(inductive, Class
3) and Electric Heater Terrace (Resistive, Class 3).

As explained in chapter 3, the Parson algorithm needs to know the mean consumption
of the appliance being considered. There are three ways of finding these, manually, by
training on aggregated data or by training on plug data. NILM-Eval does not produce
plotted results when training, but provide a list of means and variances found to describe
the pattern best. These means and variances did not always give the best result when
testing and proved difficult to understand. The results below are therefore produced by first
manually inspecting the plug data for means and variances, then trained, before combined
to find the best results.

In general, the metrics are a good place to start for measuring the result of a test, but
they do not tell the whole story. As seen in the figures below, the F-score might catch the
total consumption to a degree, but the misclassified state changes are concerning.

5.4.1 Fridge

As seen in figure 5.6, the Fridge consumption is mostly correct, but the events are not
covered. In some cases, the algorithm overfits and end up saying that the Fridge switch
states multiple time during only one state, as seen in figure 5.7.

43

Chapter 5. Results

The actual Fridge pattern from plug data mapped against aggregated consumption. The
pattern is clearly repetitive and should be simple for the algorithm to map according to its
approach, but this is not the case as shown in figure 5.8 and 5.9.

Figure 5.6: Parson: Fridge consumption found on day 13.

Figure 5.7: Parson: Fridge consumption found on day 19.

5.4.2 Water Heater

The Water Heater has a somewhat clean state change as seen in figure 5.18. The consump-
tion mean and variance was set to 1900W after inspecting the raw data and consulting the

44

5.4 Parson

Figure 5.8: Parson: Actual consumption by Fridge against aggregated data found on day 23.

Figure 5.9: Parson: Identified Fridge consumption against aggregated data found on day 23.

algorithm training. When using a granularity of 60, the whole ON-state is mostly down
sampled to approximately 10 data points, possibly creating problems. The probabilities
in the Hidden Markov Model must be well tuned as well for the Parson to discover the
pattern.

As seen in figure 5.18, Parson shows promise at the beginning of the run, detecting the
water heater in both short and longer periods of consumption, but fails to classify 10 out
of 17 events while misclassifying one. The following day, seen in figure 5.19, the same
results can be found. Here, Parson works well picking up the rater long semi-steady state
between approximately 1 PM and 6 PM. Later in the experiment on day 20, seen in figure

45

Chapter 5. Results

5.20, Parson mostly produce false positives. On day 21, seen in figure 5.21, Parson not
only misclassifies several events not caused by the water heater but also combine six state
changes as one long event.

Figure 5.10: Parson Water Heater consumption and detection on day 13.

Figure 5.11: Parson: Water Heater consumption and detection on day 14.

5.4.3 Microwave oven

In contrast to the Fridge, the Microwave Oven’s load is irregular, and the duration of the
ON-state is short. The Microwave Oven has a significant load depending on the settings

46

5.4 Parson

Figure 5.12: Parson: Water Heater consumption and detection on day 20.

Figure 5.13: Parson: Water Heater consumption and detection on day 21

chosen by the user, with an additional heating element for alternative heating. This places
it in between Class 2 and 3, and the many operational modes create a larger variance, as
seen in figure 5.15. Training on its pattern is hence hard, as seen in the misclassifications
in figure 5.14.

The pattern is not repetitive will be hard for the algorithm to map, as seen in figure
5.16.

As seen in figure 5.17, Parson both miss the actual events and misclassifies two other
events.

47

Chapter 5. Results

Figure 5.14: Parson: Microwave Oven consumption and detection on day 13.

Figure 5.15: Parson: Microwave Oven consumption and detection on day 16.

5.4.4 Electric Heater Terrace

Using Parson for multi-state appliances in Class 2 is difficult, resulting in appliances in
Class 3, such as the Electric Heater Terrace, being more difficult. The Electric Heater
Terrace itself has many different states due to the thermostat producing different gains
in consumption and is essentially controlled by the weather. In the first seven days of
the data, the time that is used for training, the weather was warmer than the rest of the
period resulting in the Electric Heater Terrace not drawing as much power as possible. In
figure 5.18 the reader can see the consumption throughout day 12 when the weather was
warmer. Here, the plug-training suggested a mean of 560W for the ON-state, which can

48

5.4 Parson

Figure 5.16: Parson: The actual Microwave Oven pattern from plug data mapped against aggregated
consumption on day 16.

Figure 5.17: Parson: Identified Microwave Oven pattern and aggregated data on day 16.

be seen to fit rather well in general but increasing false state changes. In figure 5.20, the
consumption during the colder day 19, the mean is not fitting the consumption anymore.
Figure 5.19 and figure 5.21 shows the same two days with the mean for the ON-state set
to 1000W. Here, the state changes are covered to a higher degree, but the consumption is
most likely overestimated due to the high variance. When the mean for ON-state is set to
1000W, Parson still does not classify the events correctly, though it has less misclassified
step changes.

49

Chapter 5. Results

Figure 5.18: Parson: Electric Heater Terrace consumption and detection on day 12 with a ON-state
mean of 560W.

Figure 5.19: Parson: Electric Heater Terrace consumption and detection on day 12 with a ON-state
mean of 1000W.

5.4.5 Parameter Sensitivity
The most important parameters to tune in the Parson algorithm were found to be:

• meanOn : An appliance’s mean of Gaussian distribution describing the change in
power when switched ON

• meanOff : An appliance’s mean of Gaussian distribution describing the change in
power when switched OFF

50

5.4 Parson

Figure 5.20: Parson: Electric Heater Terrace consumption and detection on day 19 with a ON-state
mean of 560W.

Figure 5.21: Parson: Electric Heater Terrace consumption and detection on day 19 with a ON-state
mean of 1000W.

• varOn : An appliance’s variance of Gaussian distribution describing the change in
power consumption when switched ON

• varOff : An appliance’s variance of Gaussian distribution describing the change in
power consumption when switched OFF

• transOn : Transition probability from ’OFF’ state to ’ON’ state

• transOff: Transition probability from ’ON’ state to ’OFF’ state

51

Chapter 5. Results

• likThresh: Likelihood threshold

5.4.6 Overall Performance
Parson worked as expected with a heavy reliance on consistent patterns and constant
means. When appliances had a considerable variation, the chance of wrongly estimat-
ing the consumption increased. Still, the algorithm’s F-score is quite high, as seen in table
5.6. The Electric Heater has the highest score due to it being ON during most of the
experiment.

52

5.4 Parson

M
et

ri
cs

an
d

pa
ra

m
et

er
s

Fr
id

ge
W

at
er

H
ea

te
r

M
ic

ro
w

av
e

O
ve

n
E

le
ct

ri
c

O
ve

n
Te

rr
an

ce
(lo

w
m

ea
n)

E
le

ct
ri

c
O

ve
n

Te
rr

an
ce

(h
ig

h
m

ea
n)

F-
Sc

or
e

0.
66

02
0.

42
52

N
aN

0.
82

78
0.

86
90

Pr
ec

is
io

n
0.

57
86

0.
35

90
0

0.
80

05
0.

81
35

R
ec

al
l

0.
76

85
0.

52
15

0
0.

85
71

0.
93

26
T

PR
0.

76
85

0.
52

15
0

0.
85

71
0.

93
26

FP
R

0.
71

17
0.

12
48

0
0.

92
78

0.
92

85
m

ea
nO

N
[W

]
10

0
19

00
16

30
56

0
10

00
m

ea
nO

FF
[W

]
1

0
1.

35
0

0
va

rO
n

[W
]

10
0

55
10

00
35

0
35

0
va

rO
ff

[W
]

5
0

2
4

4

Ta
bl

e
5.

6:
Pa

rs
on

al
go

ri
th

m
re

su
lts

.

53

Chapter 5. Results

54

Chapter 6
Discussion

There are several possible pitfalls related to all steps in conducting a feasibility study as
done in this project. while it was possible to solve most of them during the implementation,
while it was possible to solve most of them during the implementation. In this chapter,
these challenges, along with the results found, will be discussed.

6.1 Evaluating the Experiment as a whole
The design and implementation of the experiment can overall be deemed successful, due
to system functioning and the data being collected from the Kaifa smart meter and the
individual appliances, but some aspects should be mentioned.

The data collected from the appliances was not as consistent as planned. Plugwise-
2-Py was set to poll data every two seconds, but the frequency of data received ranged
between two and seven seconds. The assumption that the data would be frequent enough
due to previous research using the same hardware might not have been correct, or there
might have been interference due to the WiFi dongle being connected directly beside the
Plugwise Stick. Another possibility is that the previous researchers might have smoothed
the data where the consumption was not read, something the author did in this experiment.

During the planning phase, it was much more time consuming than anticipated to
find suitable hardware, ordering the products and shipping them. This delay resulted in a
shorter analysis time making it challenging to tune the algorithms properly. The alterations
that needed to be done in NILM-Eval for Weiss was affected as well.

6.2 Three phases and type of electric distribution to house-
holds

Much work was needed to understand the data and the reason it appeared as it did. The
initial assumption was that Kaifa would deliver data according to the specifications set by

55

Chapter 6. Discussion

the Norwegian government. Although Kaifa did provide the data available, a challenge
appeared in the way the household was connected to the grid and what data was readable.

Depending on the city’s electric grid, there are different distribution systems for elec-
tricity. In the conducted experiment, the household was connected to a TT-system, see
figure 6.1, complicating the usability of NILM in two ways: missing data on phase two
voltage and separating phase current loads.

U1
I1

Phase 1

Phase 2

Phase 3

U2

U3

I2

I3

Figure 6.1: TT-System, same as used in household with load measured between two phases.

6.2.1 Zero volts measured on phase 2 voltage

Figure 6.2 shows how the voltage is set up. Here, the voltage on phase 1 and phase 3
deliver the normal 230V, with phase 2 being used as a neutral with 0V measured. Phase
2 is always zero because phase 1 and phase 3 are measured on opposite sides of phase 2,
making it appear as a having no voltage. The missing data was solved in the experiment
by giving U2 the average value of U1 and U3, which might not be the recommended way
of solving it.

6.2.2 Separating phase current loads

With its design, the TT-system rises a new problem in the data, separating the appliance
current loads. Typically, an appliance’s current load would show on one phase, but in
the case of this experiment, the appliance current load is observed in two, see figure 6.4.
This is because the circuits in the household are connected between two phases in a TT-
system, and with the Kaifa smart meter seemingly always showing the data as positive, the
current load caused by one appliance is added to two phases. Figure 6.3 illustrates this in
the household used in the experiment. The author’s hypothesis is that if the household is
connected to a TN- or TS-system, better results might be achievable. The reason behind
this hypothesis is that if the household is connected to a distribution system where the
phases are connected to a neutral line or ground, as shown in figure 6.5, the same would be

56

6.2 Three phases and type of electric distribution to households

U3

U1

U2

Figure 6.2: Voltage phases as read by Kaifa

true for the circuits in the household and the smart meter would then measure individual
current loads on the phases.

The hypothesis was developed during the final days of the research period, leaving
insufficient time to gather more data. However, the author did share this hypothesis in an
online forum for Norwegian home automation[41], the author got in contact with a person
from the electric service provider industry who had collected data from his smart meter on
a different system than TT. As hypothesized, the smart meter data received indicates that
each phase is measured individually, seen in figure 6.6.

The difference between the systems and the data which is then available raise an in-
teresting question: Is the NILM potential for customers with a TN- or a TS-system larger
than for customers with a TT-system? This is something worth looking into in future work.

U1
I1

Phase 1

Phase 2

Phase 3

CircuitsAppliances on circuits
1: Washing machine.
2: Mikrowave, oven, Electric kettle, Refrigerator
and Water heater.
3: Dishwasher
4: Coffee maker

2 31

U2

U3

I2

I3

4

Figure 6.3: Circuits loads on phases in the experiment.

57

Chapter 6. Discussion

6.3 Weiss

Since the Weiss algorithm is based on active, reactive and distortive power, the data avail-
able from the Kaifa proved to be a problem. The active power is available every two sec-
onds, but the phase-specific current and voltage usage are only readable every ten seconds.
To account for this, the data was formatted so that the nine missing values in-between are
copies of the last know value. The resolution is then in reality between 0.1hZ and 1hZ
depending on when the event occurs.

In the supervised approach of Weiss, knowing the phase loads is part of creating signa-
tures and event detection. With the voltage on phase 2(U2) always being zero as mentioned
earlier, the resulting power on phase 2 would be calculated to zero (Power = current phase
2 + voltage phase 2). A simplified solution was to give U2 the average value between U1
and U3 (U2=(U1+U3)/2). While this temporarily satisfied the Weiss algorithm implemen-
tation, a second challenge arose.

There were in many errors when running Weiss with the data collected due to appliance-
specified if-statements in the code. The calculated consumption varies vastly depending on
the chosen appliance as some are set by a constant number and others calculated by Weiss,
others were not supported due to them not being recognized as an appliance. With these
challenges, the Weiss algorithm was not successfully evaluated, and a generalized ver-
sion should be implemented in the NILM-Eval framework to properly test the Norwegian
NILM potential. Most importantly, without measuring the current-voltage phase shift, the
Weiss algorithm will still not be able to calculate reactive power by solely looking at its
phase. If a new version is to be implemented, the possibility of somehow using the total
reactive power read by Norwegian smart meters should be looked into.

6.4 Baranski

The results in chapter five showed that it could be difficult to find appliances such as the
washing machines, coffee makers and other devices that are run occasionally, due to the
electric heaters which are constantly ON. This problem could potentially be solved by
more tuning and by filtering out the electric heaters after discovery, leaving the Baranski
algorithm to look for remaining appliances.

6.5 Parson

In general, Parson shows some promise when calculating the consumption, but it falsely
believes the states are changing when they are not. E.g., the fridge is changing states, turns
ON and OFF, multiple times while it is actually in one state. The F-score is slightly fooled
by the success of this, even though it only gets close to calculating the daily consumption
by saying its always on. In this experiment, the plug training conducted by Parson did
not always get close to the Gaussian spreads seen in the data, and further work and tuning
could improve the results of the algorithm.

58

6.6 Tuning

6.5.1 Training
The training period of this test was the first week, with the following 18 days as the test
period. With more data, the training done by the algorithms might improve, and catch the
more general signatures and means of the appliances, making them more robust.

6.6 Tuning
Due to the short time left in the research period, the tuning was not conducted as planned.
Time permitting, a sensitivity analysis would have been done to map the important pa-
rameters properly. This should be done in future work before dismissing any of the tested
approaches in this thesis.

59

Chapter 6. Discussion

2
.5

3
3
.5

4
4
.5

5
5
.5

6
6
.5

7
7
.5

8

T
im

e o
f d

ay
 in

 seco
n

d
s

1
0

4

0 5 1
0

1
5

2
0

2
5

3
0

3
5

Ampers

C
u

r
r
e
n

t o
n

 p
h

a
se

s

P
h
ase 1

P
h
ase 2

P
h
ase 3

Figure
6.4:

C
urrentphases

superim
posed.A

ppliance
loads

are
here

show
n

to
alw

ays
affecttw

o
phases

w
ith

the
synchronous

step
changes.

60

6.6 Tuning

Phase 1

Phase 2

Phase 3

N

PE

U1
I1

U2

U3

I2

I3

Figure 6.5: TN-System, a system where loads are measured between one phase and neutral.

61

Chapter 6. Discussion

Am
pe

r

0,000

7,500

15,000

22,500

30,000

Seconds

1 37 72 108 144 179 215 250 286 322 357 393 428 464 499 535 571 606 642 677 713 748 783 819 854 890 926 961 997 1032 1068 1103 1139 1175 1210 1246 1281 1317 1353 1388 1424 1459

I1 I2 I3

Figure 6.6: Current phases data from a different network than TT. The data given was not a long
period, but the current phases seem to be measured individually as they are appearing independent
of each other.

62

Chapter 7
Conclusion

7.1 Conclusions
The potential of NILM for Norwegian households using today’s standard algorithms is
present, but weak. This project’s results show that contrarily to initial assumptions, the
biggest challenge is not the low frequency of the smart meter data collected, but the lack
of individual phase measurements and the electric heaters. To improve the results of this
project, more tuning could be done, but the best solution would be to design a new NILM
algorithm specially tailored for Norwegian smart meter data. To enable consumers to fully
benefit from NILM, a substantial premade signature database is needed.

63

Chapter 7. Conclusion

64

Bibliography

[1] Ministry of Petroleum and Energy. For-2017-12-14-2019, 2017.
https://lovdata.no/forskrift/1999-03-11-301/\T1\
textsection4-2.

[2] Lyse: Reasons for installing smart meters. https://www.lysenett.no/
AMS-english/, 2018. Accessed: 2018-12-08.

[3] Surge pricing. https://www.distriktsenergi.no/artikler/2018/
6/12/smarte-strommalere-gir-mer-rettferdig-strompris/,
2018. Accessed: 2018-11-27.

[4] John A. “Skip” Laitner Karen Ehrhardt-Martinez, Kat A. Donnelly. Advanced me-
tering initiatives and residential feedback programs: A meta-review for household
electricity-saving opportunities. https://aceee.org/research-report/
e105, 2010. Accessed: 2018-10-09.

[5] Jr.Fred C. Schweppe George W. HartEdward C. Kern. U.s. patent 4,858,141.
https://patents.google.com/patent/US4858141, 1986. Accessed:
2018-10-09.

[6] Hallgeir Horne. Non-Intrusive Load Monitoring with Norwegian Smart Meters. PhD
thesis, Norwegian University of Science and Technology, 2018.

[7] Eco dataset. https://www.vs.inf.ethz.ch/res/show.html?what=
eco-data. Accessed: 2018-12-10.

[8] J Zico Kolter and Matthew J Johnson. Redd: A public data set for energy disaggre-
gation research. Artif. Intell., 25, 01 2011.

[9] ETH Zurich. Nilm-eval: An evaluation framework for non-intrusive load monitoring
algorithms. https://github.com/beckel/nilm-eval, 2015. Accessed:
2018-11-27.

[10] Distributed systems group. http://vs.inf.ethz.ch, 2014. Accessed: 2018-
11-27.

65

https://lovdata.no/forskrift/1999-03-11-301/\T1\textsection 4-2
https://lovdata.no/forskrift/1999-03-11-301/\T1\textsection 4-2
https://www.lysenett.no/AMS-english/
https://www.lysenett.no/AMS-english/
https://www.distriktsenergi.no/artikler/2018/6/12/smarte-strommalere-gir-mer-rettferdig-strompris/
https://www.distriktsenergi.no/artikler/2018/6/12/smarte-strommalere-gir-mer-rettferdig-strompris/
https://aceee.org/research-report/e105
https://aceee.org/research-report/e105
https://patents.google.com/patent/US4858141
https://www.vs.inf.ethz.ch/res/show.html?what=eco-data
https://www.vs.inf.ethz.ch/res/show.html?what=eco-data
https://github.com/beckel/nilm-eval
http://vs.inf.ethz.ch

[11] George Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80:
1870 – 1891, 01 1993. doi: 10.1109/5.192069.

[12] B. Naghibi and S. Deilami. Non-intrusive load monitoring and supplementary tech-
niques for home energy management. In 2014 Australasian Universities Power En-
gineering Conference (AUPEC), pages 1–5, Sept 2014. doi: 10.1109/AUPEC.2014.
6966647.

[13] YUNG FEI WONG. A non-intrusive load monitoring framework for robust
real-time disaggregation of smart meter data, Jan 2018. URL https://monash.
figshare.com/articles/A_Non-Intrusive_Load_Monitoring_
Framework_for_Robust_Real-Time_Disaggregation_of_Smart_
Meter_Data/5798574/1.

[14] Markus Weiss, Thorsten Staake, and Friedemann Mattern. Leveraging smart meter
data to recognize home appliances. 2012 IEEE International Conference on Per-
vasive Computing and Communications, PerCom 2012, 03 2012. doi: 10.1109/
PerCom.2012.6199866.

[15] George Hart and Anastasios T. Bouloutas. Correcting dependent errors in sequences
generated by finite-state processes. IEEE Transactions on Information Theory, 39:
1249–1260, 07 1993. doi: 10.1109/18.243442.

[16] Wesley A. Souza, Fernando P. Marafão, Eduardo V. Liberado, Marcelo G. Simões,
and Luiz C. P. Da Silva. A nilm dataset for cognitive meters based on con-
servative power theory and pattern recognition techniques. Journal of Con-
trol, Automation and Electrical Systems, 29(6):742–755, Dec 2018. ISSN 2195-
3899. doi: 10.1007/s40313-018-0417-4. URL https://doi.org/10.1007/
s40313-018-0417-4.

[17] Ahmed Zoha, Alexander Gluhak, Muhammad Imran, and Sutharshan Rajasegarar.
Non-intrusive load monitoring approaches for disaggregated energy sensing: A
survey. Sensors (Basel, Switzerland), 12:16838–16866, 12 2012. doi: 10.3390/
s121216838.

[18] Nilmtk. https://github.com/nilmtk/nilmtk. Accessed: 2018-11-14.

[19] Oliver Parson, Mark James Weal, and Alex Rogers. A scalable non-intrusive load
monitoring system for fridge-freezer energy efficiency estimation. 2014.

[20] Zoubin Ghahramani. An introduction to hidden markov models and bayesian net-
works. IJPRAI, 15:9–42, 02 2001. doi: 10.1142/S0218001401000836.

[21] M Baranski and J Voss. Genetic algorithm for pattern detection in nialm systems.
Conference Proceedings - IEEE International Conference on Systems, Man and Cy-
bernetics, 4:3462 – 3468 vol.4, 11 2004. doi: 10.1109/ICSMC.2004.1400878.

[22] M Baranski and J Voss. Genetic algorithm for pattern detection in nialm systems.
Conference Proceedings - IEEE International Conference on Systems, Man and Cy-
bernetics, 4:3462 Introduction, 11 2004. doi: 10.1109/ICSMC.2004.1400878.

66

https://monash.figshare.com/articles/A_Non-Intrusive_Load_Monitoring_Framework_for_Robust_Real-Time_Disaggregation_of_Smart_Meter_Data/5798574/1
https://monash.figshare.com/articles/A_Non-Intrusive_Load_Monitoring_Framework_for_Robust_Real-Time_Disaggregation_of_Smart_Meter_Data/5798574/1
https://monash.figshare.com/articles/A_Non-Intrusive_Load_Monitoring_Framework_for_Robust_Real-Time_Disaggregation_of_Smart_Meter_Data/5798574/1
https://monash.figshare.com/articles/A_Non-Intrusive_Load_Monitoring_Framework_for_Robust_Real-Time_Disaggregation_of_Smart_Meter_Data/5798574/1
https://doi.org/10.1007/s40313-018-0417-4
https://doi.org/10.1007/s40313-018-0417-4
https://github.com/nilmtk/nilmtk

[23] Lucas Pereira, Filipe Quintal, Rodolfo Gonçalves, and Nuno Nunes. Sustdata: A
public dataset for ict4s electric energy research. ICT for Sustainability 2014, ICT4S
2014, 07 2014.

[24] Fibaro wall plug 2. https://www.fibaro.com/us/products/
wall-plug/. Accessed: 2018-12-14.

[25] Tp-link wifi smart plug. https://www.tp-link.com/us/products/
details/cat-5516_HS100.html. Accessed: 2018-12-14.

[26] D-link dsp-w115. https://eu.dlink.com/uk/en/products/
dsp-w115-mydlink-wifi-smart-plug. Accessed: 2018-12-14.

[27] Eve energy. https://www.evehome.com/en/eve-energy. Accessed:
2018-12-14.

[28] Belkin wemo insight. https://www.belkin.com/us/p/P-F7C029/. Ac-
cessed: 2018-12-14.

[29] Jack (Daniel) Kelly. Disaggregation of Domestic Smart Meter Energy Data. PhD
thesis, University of London and the Diploma of Imperial College, 2017.

[30] Plugwise. Plugwise circle. https://www.plugwise.com/documents/
plugwise/product_documents/EN-plugwise-circlef-ts.pdf,
2018. Accessed: 2018-12-08.

[31] Plugwise datasheet. https://www.plugwise.com/documents/
plugwise/product_documents/EN-plugwise-circlef-ts.pdf.
Accessed: 2018-12-14.

[32] Raspberry pi power requirements. https://www.raspberrypi.org/
documentation/faqs/#pi-power, 2018. Accessed: 2018-11-13.

[33] SevenWatt. Plugwise-2-py. https://github.com/SevenW/
Plugwise-2-py. Accessed: 2018-11-13.

[34] Vnc. https://www.realvnc.com/en/, 2018. Accessed: 2018-11-13.

[35] Rasbian jessie. http://downloads.raspberrypi.org/raspbian/
images/raspbian-2017-07-05/, 2017. Accessed: 2018-11-13.

[36] Lucas Pereira and andNuno Nunes Miguel Ribeiro. Engineering and deploying a
hardware and software platform to collect and label non-intrusive load monitoring
datasets. 2017.

[37] Node-red. https://nodered.org. Accessed: 2018-11-14.

[38] Etcher. https://www.balena.io/etcher/, 2018. Accessed: 2018-11-13.

[39] Mqtt. http://mqtt.org. Accessed: 2018-11-14.

67

https://www.fibaro.com/us/products/wall-plug/
https://www.fibaro.com/us/products/wall-plug/
https://www.tp-link.com/us/products/details/cat-5516_HS100.html
https://www.tp-link.com/us/products/details/cat-5516_HS100.html
https://eu.dlink.com/uk/en/products/dsp-w115-mydlink-wifi-smart-plug
https://eu.dlink.com/uk/en/products/dsp-w115-mydlink-wifi-smart-plug
https://www.evehome.com/en/eve-energy
https://www.belkin.com/us/p/P-F7C029/
https://www.plugwise.com/documents/plugwise/product_documents/EN-plugwise-circlef-ts.pdf
https://www.plugwise.com/documents/plugwise/product_documents/EN-plugwise-circlef-ts.pdf
https://www.plugwise.com/documents/plugwise/product_documents/EN-plugwise-circlef-ts.pdf
https://www.plugwise.com/documents/plugwise/product_documents/EN-plugwise-circlef-ts.pdf
https://www.raspberrypi.org/documentation/faqs/#pi-power
https://www.raspberrypi.org/documentation/faqs/#pi-power
https://github.com/SevenW/Plugwise-2-py
https://github.com/SevenW/Plugwise-2-py
https://www.realvnc.com/en/
http://downloads.raspberrypi.org/raspbian/images/raspbian-2017-07-05/
http://downloads.raspberrypi.org/raspbian/images/raspbian-2017-07-05/
https://nodered.org
https://www.balena.io/etcher/
http://mqtt.org

[40] Domoticz. https://nodered.orghttps://www.domoticz.com/
wiki/Main_Page. Accessed: 2018-11-14.

[41] Hjemmeautomasjon. www.hjemmeautomasjon.no. Accessed: 2018-12-18.

68

https://nodered.orghttps://www.domoticz.com/wiki/Main_Page
https://nodered.orghttps://www.domoticz.com/wiki/Main_Page
www.hjemmeautomasjon.no

Appendix

69

70

Appendix A
Data collecting software
installation guide

No previous research described the experiment design in detail. To aid in research dissem-
ination, this step-by-step guide covering how to install the data collecting system used in
this thesis was written. All files and code made by the author can be found on the github
repo https://github.com/powermundsen/NILM. There are often many ways
of installing and running software. The steps described in this appendix are the ones that
worked for the author, and hopefully, they will work for the reader as well. Good Luck!

1. Set up the Plugwise system on a Windows machine to make sure the plugs and the
Plugwise Stick is working correctly.

2. Make a spreadsheet of the MAC-addresses and corresponding given plug numbers,
names, locations, type and a short version of the MAC, as shown in table A.1.

MAC Plug number Name Location Type Short MAC
000D6F0003BD6969 01 Electric heater Andre Bedroom Circle BD6969
000D6F0003BD8974 02 Water Heater Shed/Storeroom Circle BD8974
000D6F0002C0DDDB 03 Oven Kitchen Circle C0DDDB
000D6F000416DD83 04 TV Livingroom Circle 16DD83
000D6F0003BD5FE2 05 Coffee Maker Shed/Storeroom Circle BD5FE2
000D6F0003561FC7 06 Electric kettle Kitchen Circle 561FC7
000D6F0004B1EC41 07 Electric heater salong Livingroom Circle B1EC41
000D6F0002C0E746 08 Microwave oven Kitchen Circle C0E746
000D6F0000469B3E 09 Electric heater terrace Livingroom Circle+ 469B3E
000D6F0004B613A8 10 Dishwasher Kitchen Circle B613A8
000D6F0004A29FA3 11 Refrigerator Kitchen Circle A29FA3
000D6F0002C0EFF3 12 Washing machine Shed/Storeroom Circle C0EFF3

Table A.1: Smart Plug details in experiment.

3. Use a Raspberry Pi with a correct power supply to make sure it runs as it should. If
a power supply with lower power is used, the CPU will be throttled.

71

https://github.com/powermundsen/NILM

4. Use a high class SD card that will not throttle the Raspberry Pi’s performance.

5. Download an operating system for the Raspberry Pi. In my case i used the Raspian
Stretch Desktop (https://www.raspberrypi.org/downloads/raspbian/)

6. Flash the SD-card with the OS just downloaded using Etcher (https://www.
balena.io/etcher/)

7. Plug the SD-card into the Raspberry Pi and connect a keyboard, mouse, Ethernet
internet or WiFi dongle and a display for initial setup.

8. In the desktop menu, open "Raspberry Pi Configuration". Under "Interfaces", enable
SSH and VNC for best remote access.You should also change the default password
to a more secure one.

9. Download and install RealVNC (https://www.realvnc.com/en/connect/
download/vnc/). Open RealVNC and configure a remote connection to the
Raspberry Pi. Since I have not configured a static IP-address I made a free account
and made the Raspberry Pi accessible through their cloud service.

10. To connect to the Raspberry Pi within your local network, go to terminal and type
one of the two commands:

$ ssh pi@<raspberry ip>
$ ssh pi@raspberrypi.local

Then log in with your password.

11. To enable file sharing on the Raspberry Pi, follow this guide (http://raspberrypituts.
com/access-raspberry-pi-files-in-your-os-x-finder/)

$ sudo apt-get install netatalk
$ ifconfig
$ open afp://192.168.0.10

12. Plugwise-2-py (http://github.com/SevenW/Plugwise-2-py)

13. Installing the software. To make it easier for yourself, install it in the /home/pi
folder.

$ sudo python get-pip.py
$ git clone https://github.com/SevenW/Plugwise-2-py.git
$ cd Plugwise-2-py
$ sudo pip install .

14. Moving the config-files. From Plugwise-2-py folder, copy the config-files to the
main folder:

$ cp -n config-default/pw-hostconfig.json config/
$ cp -n config-default/pw-control.json config/
$ cp -n config-default/pw-conf.json config/

72

https://www.raspberrypi.org/downloads/raspbian/
https://www.balena.io/etcher/
https://www.balena.io/etcher/
https://www.realvnc.com/en/connect/download/vnc/
https://www.realvnc.com/en/connect/download/vnc/
http://raspberrypituts.com/access-raspberry-pi-files-in-your-os-x-finder/
http://raspberrypituts.com/access-raspberry-pi-files-in-your-os-x-finder/
http://github.com/SevenW/Plugwise-2-py

15. Configuring pw-hostconfig.json:

• Open the config/pw-hostconfig.json and check if it has the correct paths.

• If Plugwise-2-py was installed in the /home/pi the file should be contain the
right path:

{"permanent_path":"/home/pi/datalog","tmp_path":"/tmp","log_path":"/home/pi/pwlog",
"serial":"/dev/ttyUSB0","log_format":"epoch","mqtt_ip":"127.0.0.1","mqtt_port":"1883"}

Note that:

• "Serial" might not point to the Plugwise stick in all cases. Check therefore if
this is correct for you.

• To enable MQTT messaging later the "log_format", "mqtt_ip" and "mqtt_port"
is added.

• Editing JSON files is error-prone. Use a JSON Validator such as http://jsonlint.com/
to check the config files.

16. Configuring pw-conf.json:

• Here you add the plugs values created in step 1.

• Be sure to use the JSON Validator!

• Example data:

{"static": [
{"mac":"000D6F0003BD5FE2","category":"Coffee-maker","name":"Coffee-maker",
"loginterval":"60","always_on":"False","production":"False","location":"Shed/Storeroom"},
{"mac":"000D6F0004B613A8","category":"Dishwasher","name":"Dishwasher",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0003BD6969","category":"Electric heater","name":"Electric heater Andre",
"loginterval":"60","always_on":"False","production":"False","location":"Bedroom Andre"},
{"mac":"000D6F0004B1EC41","category":"Electric heater","name":"Electric heater salong",
"loginterval":"60","always_on":"False","production":"False","location":"Living room"},
{"mac":"000D6F0000469B3E","category":"Electric heater","name":"Electric heater terrace",
"loginterval":"60","always_on":"False","production":"False","location":"Living room"},
{"mac":"000D6F0003561FC7","category":"Electric kettle","name":"Electric kettle",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0002C0E746","category":"Microwave oven","name":"Microwave oven",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0002C0DDDB","category":"Oven", "name":"Oven",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F0004A29FA3","category":"Refrigerator","name":"Refrigerator",
"loginterval":"60","always_on":"False","production":"False","location":"Kitchen"},
{"mac":"000D6F000416DD83","category":"TV","name":"TV",
"loginterval":"60","always_on":"False","production":"False","location":"Living room"},
{"mac":"000D6F0002C0EFF3","category":"Washing machine","name":"Washing machine",
"loginterval":"60","always_on":"False","production":"False","location":"Shed/Storeroom"},
{"mac":"000D6F0003BD8974","category":"Water heater vessel","name":"Water heater vessel",
"loginterval":"60","always_on":"False","production":"False","location":"Shed/Storeroom"}
]}

17. Configuring pw-control.json: - Here you also plug in values from step 1. - Be sure
to use the JSON Validator! - Example data:

73

{"dynamic": [
{"mac": "000D6F0003BD5FE2", "switch_state": "on", "name":"Coffee-maker",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0004B613A8", "switch_state": "on", "name":"Dishwasher",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0003BD6969", "switch_state": "on", "name":"Electric heater Andre",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0004B1EC41", "switch_state": "on", "name":"Electric heater salong",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0000469B3E", "switch_state": "on", "name":"Electric heater terrace",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0003561FC7", "switch_state": "on", "name":"Electric kettle",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0002C0E746", "switch_state": "on", "name":"Microwave oven",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0002C0DDDB", "switch_state": "on", "name":"Oven",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0004A29FA3", "switch_state": "on", "name":"Refrigerator",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F000416DD83", "switch_state": "on", "name":"TV",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0002C0EFF3", "switch_state": "on", "name":"Washing machine",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"},
{"mac": "000D6F0003BD8974", "switch_state": "on", "name":"Water heater vessel",
"schedule_state": "off", "schedule": "", "savelog": "yes","monitor": "yes"}
], "log_level": "info", "log_comm": "no"}

18. Running plugwise-2-py: - To run, type the following in terminal (Plugwise-2-py
main directory):

$ sudo python Plugwise-2.py

- The first time it runs it collects the buffered data from the plugs. This might take
minutes, or hours. You can watch the progress by tailing the log:

$ tail -f /home/pi/pwlog/pw-logger.log

or look at the files updating in the Plugwise-2-py folder.

19. To run the web interface, type in terminal (Plugwise-2-py main directory):

$ sudo python Plugwise-2-web.py

- You can access the web interface at http://localhost:8000/pw2py.html.
I got the web interface running, but at this point it didn’t update the values. The val-
ues showed up after implementing the MQTT service. - Beacuase of the changes
in sockets, the smart plug values might not show up in Safari web browser until the
protocol version in modified in swutil/HTTPWebSocketsHandler.py: After the line
with

"_opcode_pong = 0xa"

add

"protocol_version = 'HTTP/1.1'"

and restart Plugwise-2-web.py

74

http://localhost:8000/pw2py.html

20. Check the log-files to see if you receive data - If you receive data and the system is
initialized correctly the following log files should be updated:

• /home/pi/datalog/2018/pwact/pwact-2018-10-25-000D6F0003BD6969.log (One
file per plug per day)

• /home/pi/datalog/2018/pwlog/pw-000D6F0002C0E746.log (One file per de-
vice)

• /home/pi/datalog/pwlastlog.log (Contains the last values for each device)

• /home/pi/pwlog/pw-logger.log (Logs the logging, should say save log for each
device)

• /home/pi/pwlog/pw-web.log (Logs the web-interface, should be filled with
MQTT-messages after step XX)

21. Installing mosquitto

• The terminal line below did not work for me and I installed using this guide:
http://mosquitto.org/blog/2013/01/mosquitto-debian-repository/

$ sudo apt-get install mosquitto

22. Installing Domoticz is not necessary to collect the smart meter data. The Do-
motics installation was a source to great frustration because the message handling in
Plugwise-2-py. At the time of writing the thesis, none of the Domoticz versions 4.X
worked and it is therefore necessary to Install a 3.X version of the software. The
easiest way to find a previous version is to compile and make it yourself from their
github repo https://github.com/domoticz/domoticz. You might also
be able to find an installation file online at https://egregius.be/2018/
previous-domoticz-versions/. When installed and running, Domoticz
can be reached at: http://127.0.0.1:8080

23. Node-RED To send the values to Domoticz, you have to use Node-RED to relay the
messages from Plugwise-2-py.

(a) Install node.js
https://www.instructables.com/id/Install-Nodejs-and-Npm-on-Raspberry-Pi/

(b) Install Node-RED (urlhttps://nodered.org/docs/getting-started/installation)

(c) Run Node-RED in terminal:

$ node-red

(d) Access at http://<Raspberrypiip>:1880

(e) Configure the flow by going to the top right corner and choose "Import".
The standard flow is found in /home/pi/Plugwise-2-py/domoticz/plugwise2py-
domoticz.nodered. The modified version also saves to file is found here: https:
//github.com/powermundsen/thesis.

75

http://mosquitto.org/blog/2013/01/mosquitto-debian-repository/
https://github.com/domoticz/domoticz
https://egregius.be/2018/previous-domoticz-versions/
https://egregius.be/2018/previous-domoticz-versions/
https://www.instructables.com/id/Install-Nodejs-and-Npm-on-Raspberry-Pi/
http://<Raspberry pi ip>:1880
https://github.com/powermundsen/thesis
https://github.com/powermundsen/thesis

(f) Deploy! You should now see the messages being sent in the terminal. To
double check you can download a more graphical version like https://
mqttfx.jensd.de.

(g) To make Node-RED start at boot, do the following (https://nodered.
org/docs/hardware/raspberrypi)

NOTE: Node-RED warns about errors when you try to deploy, these disappeared
when I clicked on the nodes and changed the server address. However, this is not a
problem because when set up correctly it will work either way.

NOTE 2: It became clear at a later point that the best way to log the consumption
is not in Domoticz, but directly in Node-RED. I expanded the flow above to do this
and it is saved as a new flow in the "Master" folder (scripts for) .

24. Connecting Domoticz and Node-RED

(a) Follow the guide in /home/pi/Plugwise-2-py/domoticz/README.md

(b) I have not yet gotten this connection to work but I can see that the messages
are being sent out on the network.

• To change the sampling time, change the following line in /home/pi/Plugwise-2-
py/Plugwise-2.py to the time you want:

proceed_at = ref + timedelta(seconds=(2 - ref.second%2), microseconds=-ref.microsecond)

NOTE: Even though the polling frequency was changed to 1 second, the values
received was usually between 2-3 seconds apart. I think this is because Plugwise-2-
py filters out duplicate messages.

• Make a backup of the Raspberry Pi disk:

1. Check disk utility to see which disk the Raspberry Pi SD card has

2. In terminal:

$ mkdir raspberry_backup
$ cd raspberry_backup/
$ sudo dd if=/dev/disk3 of=~/Desktop/raspberrypi.dmg

• Congratulations, the system should now be functional! When starting up, run the
following commands (in separate terminal windows):

$ sudo python /home/pi/Plugwise-2-py/Plugwise-2.py
$ sudo python /home/pi/Plugwise-2-py/Plugwise-2-web.py
$ node-red
$./domoticz_3.8153_linux_armv7l/domoticz

Note: In this experiment, the Raspberry Pi rebooted itself periodically. This was
circumvented by executing the commands on the Pi itself through VNC.

76

https://mqttfx.jensd.de
https://mqttfx.jensd.de
https://nodered.org/docs/hardware/raspberrypi
https://nodered.org/docs/hardware/raspberrypi

77

78

Appendix B
Data formatting

79

Ecomonitor data converter
This program has been written to convert the available consumption data from the NURI smart meter to the
preferred structure for NILM-Eval (https://github.com/beckel/nilm-eval (https://github.com/beckel/nilm-eval)). The
data is received from the EcoMonitor smart meter data collector made by Hark Tech by downloading a CSV-file
from the customer website.

Input: 1 CSV-file from EcoMonitor from the path data/rawdata/smartmeter/ecomonitor.csv.

Output: 7 separated consumption CSV-files in folders based on the date of data collection in the path:
/data/powermundsen_data/smartmeter/YYYY-MM-DD

Removing unwanted colums
In []: import csv

import pandas as pd
from pylab import *
import datetime
import time
import os

Setting some variables
mpl.rcParams['agg.path.chunksize'] = 10000
plt.rcParams["figure.dpi"] = 600
plt.rcParams.update({'font.size': 22})
current_directory = os.getcwd()
household = '01'
plotvalues = {'Pi':'Active power in [W]',
 'Pe':'Active power out [W]',
 'Qi':'Reactive power in [VAr]',
 'Qe':'Reactive power out [VAr]',
 'I1':'Current phase 1 [A]',
 'I2':'Current phase 2 [A]',
 'I3':'Current phase 3 [A]',
 'U1':'Voltage phase 1 [V]',
 'U2':'Voltage phase 2 [V]',
 'U3':'Voltage phase 3 [V]',
 'Ai':'Accumulated active power in [KW]',
 'Ae':'Accumulated active power out [KW]',
 'Ri':'Accumulated reactive power in [VArh]',
 'Re':'Accumulated reactive power out [VArh]'}
units = {'Pi':'W',
 'Pe':'kW',
 'Qi':'VAr',
 'Qe':'VAr',
 'I1':'Amper',
 'I2':'Amper',
 'I3':'Amper',
 'U1':'Volt',

 'U2':'Volt',
 'U3':'Volt',
 'Ai':'KW',
 'Ae':'KW',
 'Ri':'VArh',
 'Re':'VArh'}
filenames = {'Pi':'powerallphases',
 'I1':'currentl1',
 'I2':'currentl2',
 'I3':'currentl3',
 'U1':'voltagel1',
 'U2':'voltagel2',
 'U3':'voltagel3'}

Import the CSV
df = pd.read_csv('data/rawdata/smartmeter/ecomonitor.csv')

Renaming columns
df.rename(columns={'DTM':'time'}, inplace=True)

Converting from kW to W
df.loc[:,'Pi'] *= 1000
df.loc[:,'Pe'] *= 1000
df.loc[:,'Qi'] *= 1000
df.loc[:,'Qe'] *= 1000
df.loc[:,'Ri'] *= 1000
df.loc[:,'Re'] *= 1000

Making new columns for date and time
df['year'] = df['time'].str.slice(0,4)
df['month'] = df['time'].str.slice(5,7)
df['day'] = df['time'].str.slice(8,10)
df['time_of_day'] = df['time'].str.slice(11,16)

Adding seconds count
for index, row in df.iterrows():
 timestamp = row['time']
 time_reduced = timestamp[-8:]
 x = time.strptime(time_reduced.split(',')[0],'%H:%M:%S')
 second = datetime.timedelta(hours=x.tm_hour,minutes=x.tm_min,seconds=x.
tm_sec).total_seconds()
 df.set_value(index,'second',second)

#print(df)

Finding unique days
unique_years = df.year.unique()
unique_months = df.month.unique()
unique_days = df.day.unique()
print('Unique years: %s, Unique months: %s, Unique days: %s' %(unique_years
, unique_months, unique_days))

print('\t\t Staring day iteration')
for year in unique_years:
 for month in unique_months:
 for day in unique_days:
 print('\t\t\t Working on day %s-%s-%s' %(year, month, day))

 df_temp = df.loc[(df['day'] == day)] # Locks the rows with this
value
 #print(df_temp)

 # Setting second to be index
 df_temp.set_index("second")
 new_index = pd.Index(arange(1,86401), name="second")
 df_temp = df_temp.set_index("second").reindex(new_index)
 #print(df_temp)

 # Plot graphs and save to
 print('\t\t\t Making daily plots')
 for value in plotvalues:
 df_print = df_temp.dropna(subset=[value])
 plot = df_print.plot(x = 'time_of_day', y = value, label= p
lotvalues[value], figsize=[20,10]);
 plot.set_xlabel('Smart meter measurements %s-%s-%s' %(year,
month, day))
 plot.set_ylabel(units[value])
 fig = plot.get_figure();

 plotpath = current_directory + '/data/plots/smartmeter/'
 if not os.path.exists(plotpath):
 os.makedirs(plotpath)
 filename = year+'-'+month+'-'+day+':'+ value +'-'+plotvalue
s[value]
 fig.savefig(plotpath + filename +'.png')
 plt.clf()
 plt.close('all')

 # Adding value -1 in power to rows with NaN to please matla
b program
 df_temp[value].fillna('-1', inplace=True)
 print('Check value change on NaN in value %s' %value)
 #print(df_temp)

 # Save to file with a filename that includes: date, value,
household.
 print('\t\t\t Saving to file')

 path = current_directory + '/data/powermundsen_data/smartme
ter/' + household + '/' + year + '-' + month + '-' + day
 if not os.path.exists(path):
 os.makedirs(path)

 if value in filenames:
 df_temp.to_csv(os.path.join(path, r'%s' %(filenames[val
ue]) + '.csv'), columns=[value], index=True, header=False)

 # Adding the remaining files the add on uses (These have no val
ue since we dont have the data)

 print('Making the empty files...')
 path = current_directory + '/data/powermundsen_data/smartmeter/
' + household + '/' + year + '-' + month + '-' + day
 others = ['currentneutral','powerl1', 'powerl2', 'powerl3', 'ph
aseanglevoltagel2l1', 'phaseanglevoltagel3l1', 'phaseanglecurrentvoltagel1'
, 'phaseanglecurrentvoltagel2', 'phaseanglecurrentvoltagel3']
 for element in others:
 df_temp[element] = -1
 df_temp.to_csv(os.path.join(path, r'%s' %element +'.csv'),
columns=[element], index=True, header=False)

 print('\t\t\t Finished processing day %s ' %day)

print('Finished processing all smart meter data')

Plugwise data converter
This script has been written to convert the logged consumption data from the Plugwise Circle to the preferred
structure for NILM-Eval (https://github.com/beckel/nilm-eval (https://github.com/beckel/nilm-eval)). The data has
been received from the Plugwise-2-py MQTT messages in Node-Red and saved in CSV files.

Input: CSV-files from the Plugwise-2-py setup on the raspberry pi. By default, the files are saved to
/home/pi/logging/plugs/ with the filename <numberOfPlug.csv>. Example: /home/pi/logging/plugs/01.csv

The file contains the columns: MAC-address, Timestamp, Power usage.

Output: 1 CSV-file per day with the plug's consumption 8with the columns: Second of the day, Consumption).

Removing unwanted colums
In []: import csv

import pandas as pd
import datetime
import time
from pylab import *
import os
import matplotlib.pyplot as plt

Adding some variables
TODO: HOUSEHOLD NEEDS TO BE GENERELIZED
household = '01'
appliances = {
'01':'Electric heater Andre',
'02':'Water Heater',
'03':'Oven',
'04':'TV',
'05':'Coffee Maker',
'06':'Electric kettle',
'07':'Electric heater salong',
'08':'Microwave oven',
'09':'Electric heater terrace',
'10':'Dishwasher',
'11':'Refrigerator',
'12':'Washing machine'}
current_directory = os.getcwd()
mpl.rcParams['agg.path.chunksize'] = 10000
plt.rcParams["figure.dpi"] = 600
plt.rcParams.update({'font.size': 22})

for plug in appliances:
 print('*Starting work on %s - %s' %(plug, appliances[plug]))
 plugnumber = plug

 # Import the plug CSVs
 print('\t Importing CSV...')

 try:
 df = pd.read_csv('data/rawdata/plugs/'+ plug + '.csv', header=None)
 print('\t Import ok')
 except :
 print('Did not find file %s.csv, this will be excluded' %plug)
 continue

 # Renaming columns
 df.columns = ['mac', 'time', 'power']

 # Saving the plug's mac
 mac = df.at[1,'mac']

 # Removing possible duplicates in the data
 df = df[~df.time.duplicated()]

 # Removing negative-valued noise in data
 df.power[df.power < 0] = 0

 # Making new columns for date and time
 df['year'] = df['time'].str.slice(0,4)
 df['month'] = df['time'].str.slice(5,7)
 df['day'] = df['time'].str.slice(8,10)
 df['time_of_day'] = df['time'].str.slice(11,16)

 # Adding seconds count
 for index, row in df.iterrows():
 timestamp = row['time']
 time_reduced = timestamp[-8:]
 x = time.strptime(time_reduced.split(',')[0],'%H:%M:%S')
 second = datetime.timedelta(hours=x.tm_hour,minutes=x.tm_min,second
s=x.tm_sec).total_seconds()
 df.set_value(index,'second',second)

 # Finding unique days
 unique_years = df.year.unique()
 unique_months = df.month.unique()
 unique_days = df.day.unique()

 print('\t\t Unique years: %s, months: %s, days: %s' %(unique_years, uni
que_months, unique_days))

 print('\t\t Staring day iteration for: %s' %appliances[plugnumber])
 for year in unique_years:
 for month in unique_months:
 for day in unique_days:
 print('\t\t\t Working on day %s' %day)

 df_temp = df.loc[(df['day'] == day)] # Locks the rows with
this value
 #print(df_temp)

 # Setting second to be index
 df_temp.set_index("second")
 new_index = pd.Index(arange(1,86401), name="second")
 df_temp = df_temp.set_index("second").reindex(new_index)

 # Plot graphs and save to
 print('\t\t\t Making daily plot')
 plot = df_temp.dropna().plot(x = 'time_of_day', y = 'power'
, label='Power [W]', figsize=[20,10]);
 plot.set_xlabel('%s on %s-%s-%s' %(appliances[plugnumber],
year, month, day))
 plot.set_ylabel('Watt')
 fig = plot.get_figure();

 plotpath = current_directory + '/data/plots/plugs/'
 if not os.path.exists(plotpath):
 os.makedirs(plotpath)
 filename = year+'-'+month+'-'+day+':'+plugnumber+'-'+applia
nces[plugnumber]
 fig.savefig(plotpath + filename +'.png')
 plt.clf()
 plt.close('all')

 # Adding value -1 in power to rows with NaN to please matla
b program
 df_temp.power = df_temp.power.fillna(-1)

 # Save to file with filename that inclueds: Plug number, da
te, household.
 print('\t\t\t Saving to file')
 path = current_directory + '/data/powermundsen_data/plugs/'
+ household + '/' + plugnumber
 if not os.path.exists(path):
 os.makedirs(path)

 cols_with_data = ['power']
 for col in cols_with_data:
 df_temp.to_csv(os.path.join(path, r'%s-%s-%s' %(year, m
onth, day) + '.csv'), columns=[col], index=True, header=False)
 print('\t\t\t Finished processing day %s ' %day)

print('Finished processing all plugwise data')

B.1 Matlab Script for Data Formatting
% This script will create .mat files of the data so that the NILM-eval kit
% can process it. It should be placed and run from the folder above /data/powermundsen_data/

current_directory = pwd;
% Setting paths to data
path_smart_plugs = fullfile(current_directory, '/data/powermundsen_data/plugs/');
path_smart_meter = fullfile(current_directory, '/data/powermundsen_data/smartmeter/');
sp_households = string.empty();
sm_households = string.empty();
plugs = string.empty();
meters = string.empty();

% Finding household folders for plugs
files = dir(path_smart_plugs);
dirFlags = [files.isdir] & ~strcmp({files.name},'.') & ~strcmp({files.name},'..');
subFolders = files(dirFlags);
disp('Households for smart plugs found: ');
for k = 1 : length(subFolders)

sp_households = [sp_households, subFolders(k).name];
fprintf('Household #%d = %s\n', k, subFolders(k).name);

end

% Finding plugs
files = dir(strcat(path_smart_plugs, sp_households{1}));
dirFlags = [files.isdir] & ~strcmp({files.name},'.') & ~strcmp({files.name},'..');
subFolders = files(dirFlags);
disp('Smart plugs found: ');
for k = 1 : length(subFolders)

plugs = [plugs, subFolders(k).name];
fprintf('Plug #%d = %s\n', k, subFolders(k).name);

end

% Iterate through smart plug folders to make mat-files
disp('Start: Iterate through smart plug folders to make mat-files')
for h = 1 : length(sp_households)

for p = 1 : length(plugs)

% Setting variables
household = char(sp_households(h));
plug = char(plugs(p));
csv_files = string.empty();
fprintf("Working on household %s plug %s \n", household, plug)

%path = strcat(path_smart_plugs, sp_households(h), '/', plugs(p));
folder = fullfile(path_smart_plugs, household, plug);

% Finding dates
files = dir(folder);
dirFlags = ~strcmp({files.name},'.') & ~strcmp({files.name},'..');
subFolders = files(dirFlags);
for k = 1 : length(subFolders)

if endsWith(subFolders(k).name, '.csv')
csv_files = [csv_files, subFolders(k).name];

end
%fprintf('Date %s \n', k, subFolders(k).name);

end
fprintf('Date found %s \n', csv_files)

% Importing CSV
for k = 1: length(csv_files)

fprintf('%s : Reading CSV file for plug: %s\n', csv_files(k), plug);
filepath = fullfile(folder, char(csv_files(k)));
[file_path_function, name, ext] = fileparts(filepath);
consumption = csvread(filepath,0,1);

87

% Making struct
% Variables
date = regexprep(csv_files(k),'[-]','');
date = regexprep(date, '[.csv]', '');
struct_filename = char(strcat('Appliance', household, plug, date));
consum = consumption;

% Creating main struct
s = struct();
% Creating struct for text variables
j = struct();

% Adding data to main struct
s.household = household;
s.plug = plug;
s.consumption = consumption;

% Solving the naming problem
j = struct(struct_filename, s);

% Exporting to .mat file
%name = '2018-11-09';
name = regexprep(csv_files(k), '[.csv]', '');
filename = strcat(name, '.mat');
savepath = strcat(file_path_function, '/', filename);
save(savepath, '-struct', 'j');
fprintf('Saved file \n');

% Showing the contents
%whos(filepath, '2018-11-09.mat')

end
end

end

% Finding household folders for smart meters
folders = dir(path_smart_meter);
dirFlags = [folders.isdir] & ~strcmp({folders.name},'.') & ~strcmp({folders.name},'..');
subFolders = folders(dirFlags);
disp('Households for smart meter found: ');
for k = 1 : length(subFolders)

sm_households = [sm_households, subFolders(k).name];
fprintf('Household #%d = %s\n', k, subFolders(k).name);

end

% Finding dates
disp('Iterating through households');
for h = 1 : length(sm_households)

fprintf('Household %s : Started \n', sm_households(h));
household = subFolders(k).name;
folder = fullfile(path_smart_meter, household);
sm_folders = dir(folder);
dirFlags = [sm_folders.isdir] & ~strcmp({sm_folders.name},'.') & ~strcmp({sm_folders.name},'..');
subFolders = sm_folders(dirFlags);
fprintf('Household %s : Dates found \n', household);
fprintf('%s, ', subFolders.name);

% For each folder in subFolders
for day = 1 : length(subFolders)

fprintf('\n Household %s : Reading files for day %s \n', household, subFolders(day).name);

% Variables
date = subFolders(day).name;
path_files = fullfile(folder, subFolders(day).name);
filepath = fullfile(folder,char(subFolders(day).name));
[file_path_function, name, ext] = fileparts(filepath);

88

% Creating main struct
s = struct();

% Saving files to main struct
s.powerallphases = csvread(fullfile(path_files,'/powerallphases.csv'),0,1);
s.powerl1 = csvread(fullfile(path_files,'/powerl1.csv'),0,1);
s.powerl2 = csvread(fullfile(path_files,'/powerl2.csv'),0,1);
s.powerl3 = csvread(fullfile(path_files,'/powerl3.csv'),0,1);
s.currentneutral = csvread(fullfile(path_files,'/currentneutral.csv'),0,1);
s.currentl1 = csvread(fullfile(path_files,'/currentl1.csv'),0,1);
s.currentl2 = csvread(fullfile(path_files,'/currentl2.csv'),0,1);
s.currentl3 = csvread(fullfile(path_files,'/currentl3.csv'),0,1);
s.voltagel1 = csvread(fullfile(path_files,'/voltagel1.csv'),0,1);
s.voltagel2 = csvread(fullfile(path_files,'/voltagel2.csv'),0,1);
s.voltagel3 = csvread(fullfile(path_files,'/voltagel3.csv'),0,1);
s.phaseanglevoltagel2l1 = csvread(fullfile(path_files,'/phaseanglevoltagel2l1.csv'),0,1);
s.phaseanglevoltagel3l1 = csvread(fullfile(path_files,'/phaseanglevoltagel3l1.csv'),0,1);
s.phaseanglecurrentvoltagel1 = csvread(fullfile(path_files,'/phaseanglecurrentvoltagel1.csv'),0,1);
s.phaseanglecurrentvoltagel2 = csvread(fullfile(path_files,'/phaseanglecurrentvoltagel2.csv'),0,1);
s.phaseanglecurrentvoltagel3 = csvread(fullfile(path_files,'/phaseanglecurrentvoltagel3.csv'),0,1);
s.household = household;

% Creating second struct
j = struct();

% Solving the naming problem by nesting
struct_filename = char(strcat('Appliance', household, '00', regexprep(date, '-', '')));
j = struct(struct_filename, s);

% Exporting to .mat file
filename = strcat(date, '.mat');
savepath = strcat(file_path_function, '/', filename);
save(savepath, '-struct', 'j');
fprintf('Saved file \n');

end
end

89

90

A
ndré N

ydegger W
erm

undsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g

M
as

te
r’

s
th

es
is

André Nydegger Wermundsen

Identification and Classification of
Electrical Loads in a Norwegian
Household Using Energy
Disaggregation Methods of Non-
Intrusive Load Monitoring.

Master’s thesis in Cybernetics and Robotics
Supervisor: Assoc. Prof. Frank Ove Westad

December 2018

	Problem Description
	Acknowledgment
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Previous Work
	Problem formulation
	Objectives
	Norwegian Smart Meters

	Outline

	Non-Intrusive Load Monitoring
	History of NILM
	The Essentials of NILM
	Evolution of NILM

	The Main Steps
	Device Signatures
	Advances in the Field
	Appliance Categories

	Evaluation framework and Disaggregation Algorithms
	Weiss' Algorithm
	Parson's Algorithm
	Baranski's Algorithm

	Accuracy Metrics

	Experimental Design
	Norwegian Household Experiment
	Initial Thoughts
	Choosing a Norwegian Household
	Choosing appliances

	Data
	Collecting Data

	Hardware
	Kaifa Smart Meter
	Plugwise System
	Hark Technologies EcoMonitor
	Raspberry Pi b+ 1.2v with microSD cars, WiFi USB dongle and power supply

	Software
	Plugwise Source
	Raspberian Jessie
	Plugwise-2-py
	Node-RED
	Matlab
	Data formatting to fit NILM-Eval

	Implementation
	Kaifa Smart Meter and EcoMonitor
	Plugwise
	Source
	Pictures of Installation

	Raspberry Pi
	Raspberian Jessie
	Plugwise-2-py
	Node-RED

	Data Formatting
	NILM-Eval

	Results
	Evaluation of the experiment
	Usability of the Weiss algorithm
	Finding the Signatures
	Fridge and TV
	Parameter Sensitivity
	Overall Performance

	Baranski and Voss
	Parameter Sensitivity
	Overall Performance

	Parson
	Fridge
	Water Heater
	Microwave oven
	Electric Heater Terrace
	Parameter Sensitivity
	Overall Performance

	Discussion
	Evaluating the Experiment as a whole
	Three phases and type of electric distribution to households
	Zero volts measured on phase 2 voltage
	Separating phase current loads

	Weiss
	Baranski
	Parson
	Training

	Tuning

	Conclusion
	Conclusions

	Bibliography
	Appendix A : Data collecting software installation guide
	Data collecting software installation guide
	Appendix B : Data formatting
	Data formatting
	Matlab Script for Data Formatting

