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Abstract—Analyzing digital evidence has become a big data
problem, which requires faster methods to handle them on a
scalable framework. Standard k-means clustering algorithm is
widely used in analyzing digital evidence. However, it is a hill-
climbing method and it becomes slower with the increase of
data, its dimension, and the number of cluster centers. This
paper presents a framework to implement parallel k-means with
triangle inequality (k-meansTI) algorithm on Spark, which is
supposed to improve the speed of the standard k-means algorithm
by skipping many point-center distance computations, giving the
same clustering results. Our experimental results show that the
parallel implementation of k-meansTI on Spark can be faster
than the Spark ML k-means when a data set is large, does not
contain many sparse data, and is high dimensional. These results
are based on the experiments performed on six different data sets
that have variations on the number of features and the number
of data instances.

Index Terms—Digital Evidence, Analysis, Clustering, Triangle
Inequality, Spark

I. INTRODUCTION

Any digital data or information (audio, video, picture, or
text) that can be presented in the court of law is digital
evidence and it is increasing exponentially because of the
advancement in digital technologies such as mobiles, hard
disks, solid state memories, tablets, cloud services, and net-
work traffic. Analyzing such a big data requires faster methods
and highly scalable frameworks. There are many promising
methods for data analysis. However, they may not be suitable
to handle big data on a scalable framework. There is a need
of re-formulating promising algorithms to handle big data
problems and improve their performance on the scalable big
data frameworks such as Hadoop and Apache Spark.

Clustering algorithms have been widely used in analyzing
digital evidence. Text clustering [1], document clustering [2],
clustering digital forensic search [3], and log analysis [4] are
few of the examples. Standard k-means algorithm, also known
as Lloyd’s algorithm [5], [6], is one of the simplest and popular
partitional clustering algorithms used in data analysis. It helps
to group similar instances in one cluster and separate the
dissimilar instances in other clusters. The similarity of the
instances is usually measured by Euclidean distance metric.
The instances closer to each other are considered similar and
the instances that are far away from each other are considered
dissimilar.

Besides the simplicity of the k-means algorithm, it is a hill-
climbing method. Its time complexity is O(kne) [7] and is
highly affected by the number of clusters k, the number of
instances n, and the number of iterations e. k-means algorithm
becomes slower with the increase of k, n, e. Elkan’s k-means
with triangle inequality (k-meansTI) is one of the improved
versions of the standard k-means algorithm that improves its
performance by skipping many point-center distance com-
putations. This algorithm has possibility to reduce the time
complexity from O(kne) to O(n), giving the same clustering
results as standard k-means when the initial cluster centers for
both algorithms are the same [7].

Implementing parallel k-meansTI on a big data framework
to analyze digital evidence can speedup the process of analysis.
Apache Spark is one of such open source big data platforms,
which is in-memory persistent, fault tolerant, and provides
methods to process data in parallel. Spark can keep the dis-
tributed data in memory instead of writing to disk. This helps
in improving its performance. It has unique method for fault
tolerance. Instead of logging updates or duplicating data across
machines, it recalculates the partition based on the dependency
information stored in each partition whenever a partition is lost
[8]. Spark has Spark MLlib and Spark ML machine learning
libraries, which contain parallel implementation of popular
machine learning algorithms. They have a library for parallel
k-means but not for the parallel k-meansTI.

This paper presents a framework to implement parallel k-
meansTI on Spark and compare its performance with the Spark
ML parallel k-means algorithm by varying the number of
clusters and the number of iterations. It also shows how many
point-center distance computations the k-meansTI algorithm
can skip. Our experimental results show that the k-meansTI
algorithm can skip many distance computations and it can be
faster than the Spark ML k-means algorithm when the data
set is large, does not contain a lot of sparse data, and is high-
dimensional.

The structure of this paper is the following: Section 2
provides the background and related work required for this
paper. Section 3 presents a framework to implement parallel
k-meansTI on Spark and explains how to to implement it.
Section 4 shows the experimental work and results. Section
5 discuss about the experimental results and the paper is
concluded in Section 6.



II. BACKGROUND AND RELATED WORK

Parallel implementation of an algorithm is one of the
ways to improve the performance of the algorithm and there
already exist several parallel implementations of k-means
and k-meansTI algorithms by using various technologies. For
example, parallel k-means algorithm has been implemented
using shared-memory architectures such as multi-core CPU,
GPU, and multi-threaded Cray XMT platform [9], Message
Passing Interface (MPI) [10], MapReduce platform Hadoop
[11], and Apache Spark [12]. Only few of the academic papers
show the implementation of parallel k-meansTI algorithm. It
has been implemented by using multi-threaded architecture
[6], OpenMPI [13], and Hadoop MapReduce framework [14].
All these implementations reach a speedup by the parallel k-
meansTI algorithm over the parallel k-means algorithm.

This section provides background about k-meansTI algo-
rithm in detail, Apache Spark, and a framework to implement
parallel k-means algorithm on Spark, which is a base for
designing a framework to implement parallel k-meansTI on
Spark.

A. k-means with Triangle Inequality (k-meansTI)

k-meansTI algorithm takes advantage of the fact that only
few data instances change their closest cluster center (centroid)
in the standard k-means algorithm when it reaches closer to
its convergence point. Therefore, instead of computing all the
point-center distances, it skips the distance computations based
on the upper bound, and lower bounds of the instances. Lower
bounds can be obtained by using lemmas as below, where p
is a data point, c is a cluster center to which p is currently
assigned, and c′ is any other cluster center [7].

Lemma 1: If d(c, c′) ≥ 2d(p, c) then d(p, c′) ≥ d(p, c).
Lemma 2: d(p, c) ≥ max{0, d(p, c′)− d(c, c′)}.

According to Lemma 1, d(p, c′) is computed only when
d(p, c) > 1

2d(c, c
′). If d(p, c) is unknown (happens after

updating the new cluster centers) but the upper bound (u)
is known then d(p, c′) and d(p, c) are computed when u >
1
2d(c, c

′). If u ≤ 1
2min(d(c, c′)), there is no need to compute

the distance of p with other cluster centers.
Lemma 2 is used when the cluster centers are updated. Let

c′′ be a cluster center of c cluster center from the previous
iteration. The lower bound of an instance p for c can be
inferred as l = max{0, d(p, c′′) − d(c′′, c)}. Here, d(c′′, c)
gives the distance moved by a cluster center from the previous
iteration to the current iteration.

B. Apache Spark

Spark currently supports three kinds of cluster managers:
Standalone Cluster Manager, Apache Mesos, and Hadoop
YARN and it provides APIs in Scala, Java, Python, and R high-
level programming languages. It includes components such as
Spark SQL, Spark MLlib, Spark ML, Spark Streaming, and
GraphX. Spark SQL improves the performance of Spark and it
handles data as DataFrames. Spark MLlib and Spark ML are
Spark’s two machine learning packages. Spark ML provides a

higher-level API than Spark MLlib that allows users to easily
create the machine learning pipelines. Spark streaming can be
used for streaming analytics on minibatches of data. GraphX
is used for graph computations [8].

When Spark is installed in a cluster, it allows users to write
a driver program in a master node that can perform parallel
operations. Data on Spark are represented as RDDs (Resilient
Distributed Datasets), which is a collection of data that are
stored in the executors or slave nodes. The Spark cluster
manager (in a master node) handles starting and distributing
the Spark executors across a distributed system.

Spark executes RDDs in a lazy way. It computes the
partitions only when an action such as write and collect is
called. These actions triggers the scheduler to build Directed
Acyclic Graph (DAG) and Spark evaluates these actions by
working backward following the DAG [8].

C. Parallel k-means on Spark

Fig. 1 depicts a framework to parallelize k-means based
clustering algorithms on Spark. In this framework, data from
Hadoop Distributed File System (HDFS) is loaded into RDDs.
This results in distributing the data across multiple machines.

Fig. 1. Framework Overview of Parallel k-means on Spark [15]

Selecting initial cluster centers (initializing centroids) is
done on a single machine. Wang et. al. [15] offered three
strategies for seeding: i) randomly selecting k data points,
ii) sequentially selecting k instances based on probability (k-
means++ [16]), and iii) selecting seeds in parallel (k-means‖
[17]). The initial cluster seeds are broadcast to all the nodes for
point-center distance computations and to assign the instances
to their closest cluster center, which are then aggregated in the



master node to update the new cluster centers. Broadcasting
wraps the value of a variable and makes sure that it is
distributed to the slave nodes only once [18]. This helps in
improving the speed of the algorithm. The process of assigning
the instances to their closest cluster center and updating the
new cluster centers is repeated until some stopping conditions
are met. During these iterations, the new cluster centers are
broadcast to all the nodes instead of the initial cluster centers.

Squared Euclidean distance, Cosine distance, and KL-
divergence distance are the distance functions that can be used
in the k-means algorithm, where squared Euclidean distance
is the most popular one. Computing the point-center distance
is the most time consuming step in the k-means algorithm.
However, its implementation on Spark is faster, if one of the
vectors in distance computation is sparse.

In Spark, all the instances of the data are converted to
VectorsWithNorm format before applying the algorithm.
This means, all the instances are in vector format and their
norms (p-norm, where p=2) are computed in advance. The
vector norms are then used to compute the faster squared
Euclidean distance. For example, Spark MLlib (for example,
version 2.3) provides an API for computing faster squared
Euclidean distance by using following formula:
‖a− b‖22 = ‖a‖22 + ‖b‖22 − 2aT b
This formula is computed until it does not introduce too

many numerical errors. Here, ‖a‖22 and ‖b‖22 are the squared
norm 2 of the vectors a and b, respectively. This is faster than
computing the squared Euclidean distance between the vectors
directly.

While updating cluster centers, Spark uses a key − value
pair representation in each node to store unique clusters as key
and the sum of all the instances belonging to a specific cluster
center as value. A reduce function is then used to compute
the vector sum of all the instances from all the nodes for each
cluster center. New cluster centers are collected by taking the
average of their summed vectors.

III. IMPLEMENTING PARALLEL k-MEANSTI ON SPARK

Fig. 2 shows a framework to implement parallel k-meansTI
on a standalone Spark cluster. In this framework, input data
can be provided from any file format such as CSV (Comma
Separated Values) and text. These data are loaded into RDDs
and computations such as selecting initial cluster centers (see
Subsection III-B), inter-cluster distances, and minimum cluster
distance for each cluster (see Subsection III-C) are done in
a single node. Elkan’s k-meansTI algorithm skips distance
computations of an instance based on its lower bounds and
upper bound values. Therefore, the data inside each RDD
are extended to include their lower bounds, upper bound,
and nearest cluster center. This can be done in parallel (see
Subsection III-D).

The next step is to broadcast the initial cluster centers,
inter-cluster distances, and minimum cluster distance for each
cluster to all the nodes in order to compute point-center
distances in parallel. k-meansTI follows the theory mentioned
in the Subsection II-A to skip distance computations between

Fig. 2. Framework Overview of Parallel k-meansTI on Spark

an instance and the cluster centers. After computing distances
and assigning data to their nearest cluster center, the cluster
centers are updated by taking average of the instances inside
each cluster center. This is also done in parallel. In the next
iteration, the inter-cluster distances, minimum cluster distance
for each cluster, and the movement of a cluster center from the
previous iteration to the current iteration are computed. These
variables are then broadcast with the new cluster centers to all
the nodes for distance computations. This process is repeated
until some stopping conditions are met. After reaching the
stopping condition, the clustering result is obtained, which
contains the final cluster centers.

A. Load Data into RDDs

The first step while applying parallel k-meansTI algorithm
on Spark is to load data into RDDs. This is necessary to
distribute data into multiple slave nodes and to perform
parallel processing on them. This can be done by using
SparkContext or SparkSession. These are the API’s
gateway to Spark for any application. An application begins
when one of these is started [8]. After loading data into RDDs,
all the instances are converted to VectorWithNorm format.
This is done for faster point-center distance computations.

B. Selecting Initial Centers

Our parallel implementation of k-meansTI algorithm on
Spark includes the existing functionality from Spark MLlib
k-means to select initial cluster centers. There are mainly two
types of methods to select initial cluster centers. The first
one is by random selection. This method randomly selects
k instances from the list of all the instances. The other is k-
means‖ [17], which is a parallel version of k-means++ method



[16]. This method selects cluster centers that are far away from
each other based on the probability proportional to the squared
distance to the current cluster set. It is also possible to set a
seed in order to get the same cluster centers every time.

C. Computing Inter-cluster and Minimum Cluster Distances

Inter-cluster distance is basically a center-center distance
computation for all the cluster centers (iCDi,j , where i, j =
0 . . . k − 1 and i 6= j). Our implementation uses squared
Euclidean distance to measure the inter-cluster distances.
Minimum cluster distance is also calculated for all the cluster
centers. Minimum cluster distance for a cluster c is half the
minimum inter-cluster distance between c and other cluster
centers. It is computed as minCDi = 0.5 ∗ min(iCDi,j),
where i, j = 0 . . . k − 1 and i 6= j. These distances are
broadcast to all the slave nodes and they are used in conditions
to skip distances.

D. Extend Data inside RDDs

Our algorithm extends the structure of all the data instances
to include their lower bounds, upper bound, and the closest
cluster center values. Fig. 3 shows the initialization of this
extended structure for all the data instances.

Fig. 3. Initializing an extended instance

The extended data structure includes a data point in
VectorWithNorm format, its lower bounds with all the
cluster centers (lbi, where i = 0 . . . k − 1), an upper bound
(ub), and its closest cluster center (cid). A lower bound of an
instance with a cluster center is a squared Euclidean distance
between them. Upper bound stores the distance of the instance
with its closest cluster center. While initializing this structure,
all the lower bounds and the upper bound are assigned 0 value,
and the closest cluster center is set to -1. These values are
updated in every iteration.

E. Assign Data to Clusters

Elkan’s k-meansTI algorithm applies some conditions to
skip point-center distance computations, before assigning in-
stances to their closest cluster centers. Similar to the parallel
k-means on Spark, this process is done sequentially within the
RDDs but in parallel between the RDDs. k-meansTI algorithm
applies Lemma 1 rule in the first iteration and both Lemma
1 and Lemma 2 rules are applied in further iterations to
skip unnecessary distance computations and to compute lower
bounds (see Subsection II-A). This algorithm also follows the
same distance computation method as in parallel k-means on
Spark.

In the first iteration, for all the instances p within each
slave node, squared Euclidean distance is computed with a
cluster center Ci, d(p, Ci). The distance of p is computed to
other cluster centers Cj only when d(p, Ci) > 0.5 ∗ iCDi,j ,

where i, j = 0 . . . k − 1 and i 6= j. Whenever this condition
is satisfied, the distance d(p, Cj) is compared with d(p, Ci).
If d(p, Cj) is smaller than d(p, Ci), the closest cluster center
of p becomes Cj , instead of Ci. Lower bound values of p for
a cluster center are updated whenever a distance is computed
between them and the upper bound is updated with the distance
between p and its closest cluster center.

In other iterations, for all the instances p within each
slave node, first the lower bounds are updated as d(p, Ci) =
max(0, lbC′

i
− distMapCi,C′

i
), where i = 1 . . . k − 1, C ′i

is the cluster center of Ci from the previous iteration, and
distMapCi,C′

i
is the distance moved by this cluster center

from the previous iteration. Then the upper bound (ub) is
updated with an addition to the distance moved by the closest
cluster center from the previous iteration. After this, three
different nested conditions to skip distance computations are
applied to each instance.

The first condition skips the distance computations of an
instance with all other cluster centers, if its ub ≤ minCDcid,
where cid is the closest cluster center of the instance from the
previous iteration. When the first condition is not satisfied,
the algorithm attempts to skip distance computations with the
cluster centers Ci, if ub ≤ iCDcid,Ci

or ub ≤ lbCi
, where

i = 0 . . . k − 1 and i 6= cid. The upper bound value is
updated with the distance of the instance and the first cluster
center for which the second skip condition is not satisfied.
The third condition is just a repetition of the second condition
but with the updated upper bound value. The distance of the
instance is computed with all the cluster centers for which
the third condition is not satisfied. If the distance is smaller
than the upper bound value, this distance becomes the upper
bound value and the cluster center at that point becomes the
closest one. Lower bounds are updated whenever a distance is
computed.

F. Updating Cluster Centers
The process of updating cluster centers in each iteration is

exactly the same as in parallel k-means algorithm on Spark. It
uses the key − value pair to store unique cluster centers and
their summed vectors in each node and then they are reduced
to combine all the key − value pairs from all the nodes. The
new cluster centers are updated by taking the average of the
summed vectors for each cluster center.

G. Stopping Conditions
Two different conditions are defined as the stopping condi-

tions in the implementation of the parallel k-meansTI cluster-
ing algorithm on Spark. The first one is the maximum number
of allowed iterations. By default, it is 20. Another condition
is the difference between cluster centers from the previous
iteration and the current iteration. The algorithm is stopped,
if the squared distance of any one of the cluster centers from
the previous iteration is less than or equal to 0.0001.

IV. EXPERIMENTAL WORK

We first implemented parallel k-meansTI algorithm on
Spark on top of RDDs by using Spark MLlib APIs, following



the framework shown in Section III. Since Spark ML provides
high-level API for data pipeline from data preparation to model
training, we wrapped this algorithm by using Spark ML APIs.

All the pipeline stages on Spark ML are grouped into
estimators (algorithms that require training) and transformers
(algorithms that don’t require training) [8]. We implemented
an estimator for parallel k-meansTI algorithm, used various
Spark ML transformers from Spark ML for data preparation,
and used our estimator for clustering.

A. Experimental Setup

A Standalone Spark Cluster was created on a cloud platform
with one master node and 7 slave nodes, each node with
Spark 2.3 version to perform experiments. The master node
had 60GB disk space, 8 GB RAM, and 4 virtual CPUs. All
the slave nodes had 40GB disk space, 4 GB RAM, and 2
virtual CPUs. The algorithms in our standalone cluster use 2
cores and 2GB memory from each slave node, whereas they
use 4GB memory from the master node.

B. Data sets

This subsection includes six different data sets that are used
in the experiment (see Table I). These data sets are selected
based on the variety of the number of feature dimensions and
the number of instances. Since the type of digital evidence
depends on the context, any digital data can be used for the
purpose of testing our methods. Therefore, we could use a
variety of data sets, not necessarily related to malware or
intrusion (for example, Secom [19] or MNIST [20]).

TABLE I
DATASETS FOR THE EXPERIMENT

Data sets Number of Attributes Number of Instances
BaIoT [19] 115 1009145
Secom [19] 590 1372
MNIST [20] 785 70000
KDDCup99 [21] 41 1048575
KDDCup98 [22] 481 95412
KDDCup98-Big 962 95412

1) BaIoT Data Set: This data set contains Internet of
Things (IoT) traffic data, collected from 9 commercial IoT
devices authentically infected by Mirai and BASHLITE. This
data set was created to detect network-based IoT botnet attacks
by using deep autoencoders [23]. In this experiment, data
set from Danmini Doorbell folder is used. It has 1009145
instances and 115 attributes.

2) Secom Data Set: This data set contains data from a semi-
conductor manufacturing process. A file secom.data [19] was
downloaded for the experiment and it has total 1372 instances
and 590 attributes.

3) MNIST Data Set: This data set is a subset of a larger
set avaialble from NIST. It contains handwritten digits with
60000 training instances and 10000 test instances [20]. We
combined both training and test data for the experiment. This
data set includes 785 attributes.

4) KDDCup99 Data Set: This data set was used for The
Third International Knowledge Discovery and Data Mining
Tools Competition, which was held in conjunction with KDD-
99. It contains a variety of intrusions simulated in a military
network environment [21]. This is an old data set but since the
foucs of this paper is on examining the speed of the parallel
k-meansTI on Spark, this data set is suitable for our exper-
iment. A compressed file kddcup.data.gz was downloaded
for the experiment and it includes 1048575 instances and 41
attributes.

5) KDDCup98 Data Set: This data set was used for the The
Second International Knowledge Discovery and Data Mining
Tools Competition, which was held in conjunction with KDD-
98 [22]. A zipped file cup98LRN.zip was downloaded. This
data set has 95412 instances and 481 attributes.

6) KDDCup98-Big Data: This data set is created by copy-
ing the features from KDDCup98 data set twice, such that
it has double features than KDDCup98 and has the same
number of instances. This is done to check the performance
of the algorithms on a high-dimensional data set. This data set
contains total 95412 instances and 962 attributes.

C. Data Preparation
All the data sets we collected already had attributes and

their values were in the CSV format. Some of these data
sets had categorical attributes, which is not supported by the
clustering algorithms and some of the attributes were empty.
Following are some of the pre-processing steps performed on
the downloaded data sets in order to make them suitable for
the clustering algorithms on Spark:
• Converting categorical attributes into numerical: Spark

ML StringIndexer transformer was used to encode
all the string attributes to numeric attributes. The num-
bers range from 0 to the number of labels, ordered by
the frequencies of the labels. The most frequent label
gets 0 number. After converting categorical attributes to
numerical, categorical attributes were dropped from the
DataFrames.

• Converting null values to 0: When the data is loaded in
Spark, Spark interprets empty values as null. Since null
is not a numerical value, we converted them to 0.

• Converting all numerical attributes to double: This is
done to create dense vectors for all the instances of the
data sets.

D. Applying parallel k-meansTI on Spark
We first created a SparkSession, which is similar to the

SparkContext in Spark MLlib. The SparkSession is
an entry point for Spark SQL and it is created by using the
builder pattern and getOrCreate() as follows:
val spark = SparkSession

.builder()

.appName(name="k-meansTI")

.master(master="local")

.getOrCreate()

The getOrCreate() returns an existing session if one
is already running. We can specify the path of a master in



the builder master(name=<value>) option. Spark runs
locally, if its value is local, it runs locally with 5 cores when
the value is local[5], and it runs on a Spark standalone
cluster, if a Spark master URL is provided as its value.

The next step was to load the pre-processed data from
CSV files into DataFrames. Below script shows how to do it
by using the spark SparkSession variable. The spark
variable reads CSV including headers only when the header
option is true.

val dfTraining = spark
.read
.format(source="csv")
.option("header","true")
.option("inferSchema",true)
.load(filename)

After loading the data into DataFrames, a Spark ML trans-
former VectorAssembler() was used to convert data
into vectors. We set all the columns of the DataFrames as
input columns to the VectorAssember() transformer and
Features column as its output column. At the end of this
script, all the data are in vector format under the Features
column of the DataFrames. Below script shows the use of
VectorAssembler():

val assembler = new VectorAssembler()
.setInputCols(dfTraining.columns)
.setOutputCol("Features")

The next step was to create an object of the parallel
k-meansTI model. We set the number of clusters
by using setK() option, maximum iterations by
using setMaxIter(), feature columns by using
setFeatureCol(), and prediction output column by
using setPredictionCol() as below:

val kmeansTI = new KMeansTI()
.setK(10)
.setMaxIter(5)
.setFeatureCol("Features")
.setPredictionCol("Prediction")

Before training the data set, pipeline stages have to be
created and they are used to train the model. The order of
setting the pipeline stages is important, since these stages are
run in order. Below scripts show how to use pipeline and
fit functionalities. The fit() function fits the pipeline to
the training DataFrame, where the DataFrame is transformed
through each stage.

val pipeline = new Pipeline()
.setStages(Array(assembler, kmeansTI))

val model = pipeline.fit(dfTraining)

Below script shows how to collect final cluster cen-
ters and predict the testing DataFrame (dfTesting) by using
transform() option of the training model.

val centers = model
.stages(2)
.asInstanceOf[KMeansTIModel]
.clusterCenters

val result = model.transform(dfTesting)

E. Experiments and Results

This subsection shows the comparison of the performance of
our implementation of parallel k-meansTI algorithm on Spark
with the Spark ML parallel k-means algorithm. These two

algorithms are compared in three different ways for each data
set listed in the Table I.

In the first case, the speedup of parallel k-meansTI on
Spark is compared with the Spark ML k-means by varying the
number of clusters from 10 to 1000, keeping the maximum
number of iterations to 5. The second case includes the
computation of the number of skipped distances in percentage
by parallel k-meansTI on Spark for the same setting as in the
first case. The third case includes the speedup comparison of
these algorithms when the maximum number of iterations was
varied. In this case, the number of clusters was 100, and the
number of maximum iterations were varied from 5 to 50.

We executed both algorithms 31 times for the first and the
third cases of all the data sets. The final speed is computed
as an average of these 31 outputs. While executing the
algorithms, a seed was initialized and k-means‖ algorithm was
used to get the same initial cluster centers for both algorithms.
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Fig. 4. Applying k-means and k-meansTI on BaIoT data set.

Fig. 4 shows the experimental results obtained on BaIoT



data set by applying Spark ML k-means algorithm and our
implementation of parallel k-meansTI algorithm on Spark.
These results show that the speed of parallel k-meansTI
algorithm on Spark was slower than the speed of Spark ML
k-means algorithm on BaIoT data set for a small number
of cluster centers (k=10). Howerver, it outperformed Spark
ML k-means algorithm with the increase of the number of
clusters (see Fig. 4(a)). The number of skipped distances is
also very high in this case and it increased with the number of
cluster centers (see Fig. 4(b)). The speed of parallel k-meansTI
algorithm on Spark decreased with the increasing number of
iterations (see Fig. 4(c)).
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Fig. 5. Applying k-means and k-meansTI on Secom data set.

Fig. 5 presents the experimental results of applying these
clustering algorithms on Spark for Secom data set. Both
algorithms had the same speed when the number of clusters
used in the algorithms was 10, but parallel k-meansTI on Spark
outperformed Spark ML k-means with the increase of the
number of clusters. Fig. 5(a) shows a drop in speed when

the number of clusters was 500 and 1000. In these cases,
the maximum number of iterations was 5, but the algorithms
converged in 3 iterations when the number of clusters was 500
and in 1 iteration when it was 1000.

Fig. 5(b) shows the number of skipped distances in percent-
age by these algorithms on Secom data set. Due to the fast
convergence of the algorithms for k = 500 and k = 1000, the
percentage of skipped distances were 59% and 17.3% for these
cases, respectively. The percentage of the number of skipped
distances increased up to 87.5% when the algorithms did not
converge before 5 iterations.

When the number of iterations were varied, both algorithms
converged very fast. Therefore, we compared their perfor-
mance up to maximum 10 iterations only. Fig. 5(c) shows
that the speed of parallel k-meansTI is better than Spark ML
k-means for both iterations. However, there is a drop in speed
when the iterations was increased.
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Fig. 6. Applying k-means and k-meansTI on MNIST data set.

Fig. 6 shows the experimental results obtained by the



algorithms on the MNIST data set. The speed of parallel k-
meansTI on Spark is similar to the speed of Spark ML k-
means for the small number of clusters (k = 10). Otherwise,
Spark ML k-means outperformed our parallel k-meansTI on
Spark for the larger number of cluster centers for the MNIST
data set. Fig. 6(b) shows that the parallel k-meansTI has
skipped distances up to 83%. When the number of iterations
was increased, the speed of parallel k-meansTI on Spark also
decreased (see Fig. 6(c)).
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Fig. 7. Applying k-means and k-meansTI on KDDCup99 data set.

Fig. 7 shows that the parallel k-meansTI algorithm on
KDDCup99 skipped many distance computations, but it per-
formed worse than the Spark ML k-means algorithm for all
the number of clusters. The difference in their speed increased
with the increasing number of clusters. Its speed became even
worse when the number of clusters was constant (k=100) and
the number of iterations was varied (see Fig. 7(c)).
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Fig. 8. Applying k-means and k-meansTI on KDDCup98 data set.

Fig. 8 shows that the parallel implementation of k-meansTI
on Spark performed better compared to the Spark ML k-
means clustering algorithm for the larger number of clusters
on the KDDCup98 data set. It also skipped many distance
computations and it increased with the increasing number of
clusters. The percentage of skipped distances was more than
85% when the number of clusters was 10 and it increased up
to approximately 93% with the increased number of cluster
centers. When the iterations were varied and the cluster size
was kept constant (see Fig. 8(c)), the speed of parallel k-means
decreased with the increase in the number of iterations.

Fig. 9 shows the experimental results on the KDDCup98-
Big data set. In this case, the parallel k-meansTI on Spark
outperformed Spark ML k-means for all the variations of
cluster centers, where it was increased with the larger number
of cluster centers (see Fig. 9(b)). The number of skipped
distances is similar as on KDDCup98 data set. The speed of
our implementation of parallel k-meansTI on Spark decreased
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Fig. 9. Applying k-means and k-meansTI on KDDCup98-Big data set.

with the increasing number of iterations like in all other data
sets (see Fig. 9(c)).

V. DISCUSSION

The experimental results in Subsection IV-E shows that
the parallel k-meansTI on Spark can skip many point-center
distance computations. However, its speed depends on the type
of data set.

Since Spark ML/MLlib uses vector norms for computing
point-center distance computations instead of vectors until it
does not introduce too many numerical errors, the distance
computation is faster when at least one of the vectors is sparse.
We can take an example of MNIST data set. The MNIST data
set contains 785 attributes and 70000 instances and its data is
sparse. When we executed Spark ML parallel k-means and our
implementation of parallel k-meansTI on Spark on this data
set, the Spark ML k-means outperformed in speed. This shows
that, if the data set contains a lot of sparse data, Spark ML

k-means outperforms k-meansTI on Spark, regardless of the
high dimensionality of the data set, number of instances, and
the possibility to skip a large number of point-center distances.
The speed of parallel k-meansTI on Spark becomes even worse
for such data sets when the number of clusters is increased.

On the contrary, when the data set contains more non-
sparse data, is high dimensional, and contains a large number
of instances, our implementation of k-meansTI on Spark
outperforms the Spark ML k-means. For example, parallel
k-meansTI on Spark outperformed Spark ML k-means for
the high dimensional data sets (BaIoT had 115 attributes,
Secom had 590 attributes, KDDCup98 had 481 attributes, and
KDDCup-Big had 962 attributes). Most of the data inside these
data sets were not sparse. The speed of parallel k-meansTI on
Spark increased with the increasing number of clusters.

The experimental results showed an uniform trend on the
speedup of the parallel k-meansTI on Spark when the number
of iterations was varied and when the number of clusters was
constant. Its speed decreased with the increasing number of
iterations for all the selected data sets.

These experimental results suggest that it is better to use
Spark ML k-means algorithm when the big data like digital
evidence contains mostly sparse data. However, it is better to
use parallel k-meansTI algorithm on Spark if the data set does
not contain a lot of sparse data.

VI. CONCLUSION

This paper presented a framework to implement parallel
k-meansTI algorithm on Apache Spark. It also compared its
performance with the existing Spark ML k-means algorithm
on different types of data sets. The experimental results show
that the parallel k-meansTI algorithm on Spark can skip many
point-center distance computations and is faster than the Spark
ML k-means algorithm, if the data set is high dimensional, big
in size, and does not contain a lot of sparse data. Spark ML
k-means algorithm outperforms our implementation of parallel
k-meansTI algorithm on Spark, if the data set is highly sparse,
regardless of its size and dimensionality. These results suggest
to use parallel k-meansTI algorithm on Spark when the digital
evidence is high dimensional and does not contain a lot of
sparse data.
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