
Guided Process Discovery - A Pattern-based Approach

Felix Mannhardta,∗, Massimiliano de Leonia, Hajo A. Reijersb,a,
Wil M.P. van der Aalsta, Pieter J. Toussaintc,d

aEindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
bVrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands

cNorwegian University of Science and Technology, 7491 Trondheim, Norway
dSINTEF, P.O. Box 4760 Sluppen, NO-7465 Trondheim, Norway

Abstract

Process mining techniques analyze processes based on events stored in event
logs. Yet, low-level events recorded by information systems may not directly
match high-level activities that make sense to process stakeholders. This re-
sults in discovered process models that cannot be easily understood. To prevent
such situations from happening, low-level events need to be translated into high-
level activities that are recognizable by stakeholders. This paper proposes the
Guided Process Discovery method (GPD). Low-level events are grouped based
on behavioral activity patterns, which capture domain knowledge on the rela-
tion between high-level activities and low-level events. Events in the resulting
abstracted event log correspond to instantiations of high-level activities. We
validate process models discovered on the abstracted event log by checking con-
formance between the low-level event log and an expanded model in which the
high-level activities are replaced by activity patterns. The method was tested
using two real-life event logs. We show that the process models discovered with
the GPD method are more comprehensible and can be used to answer process
questions, whereas process models discovered using standard process discovery
techniques do not provide the insights needed.

Keywords: Process Mining, Process Discovery, Domain Knowledge, Event
Logs, Event Abstraction

1. Introduction

Organizations use information systems to support their work. Often, informa-
tion about the usage of those systems by workers is recorded in event logs [1].
Process mining techniques use such event data to analyze processes of organiza-
tions. Most techniques assume that recorded events correspond to meaningful

∗Corresponding author
Email addresses: f.mannhardt@tue.nl (Felix Mannhardt), m.d.leoni@tue.nl

(Massimiliano de Leoni), h.a.reijers@vu.nl (Hajo A. Reijers), w.m.p.v.d.aalst@tue.nl (
Wil M.P. van der Aalst), pieter@idi.ntnu.no (Pieter J. Toussaint)

Preprint submitted to Information Systems January 25, 2018

. . . Nurse

Changed

Call

Signal1

Call

Signal0
. . . Call

Signal4

Call

Signal1
. . . Call

Signal4

Call

Signal1

Nurse

Changed

Call

Signal0

Low-level

events

Shift Alarm Alarm

High-level

activities

Handover

Figure 1: Multiple low-level events are recorded for one instance of a high-level activity.

activities in the instances of a process (i.e., cases). The information about
recorded executions of activities can then be used, e.g., to discover models de-
scribing the observed behavior or to check conformance with existing process
documentation. The ability to identify executions of activities based on events
and discover recognizable models is crucial for any process mining technique.
Events that do not directly correspond to activities recognizable for process
workers are unsuitable for process analytics since their semantics are not clear
to domain experts. Process models discovered based on such low-level events
are often incomprehensible to stakeholders.

However, events recorded by information systems often do not match exe-
cutions of high-level activities [2, 3]. Generally, there can be an n:m-relation
between recorded events and high-level activities [2, 3]. As illustrated in Fig-
ure 1 one instantiation of a high-level activity may result in multiple low-level
events being recorded (e.g., the execution Shift resulted in three low-level events
being recorded). Moreover, one low-level event type may relate to multiple high-
level activities (e.g., CallSignal0 is both recorded by Shift and Alarm). When
applying process discovery methods on low-level event logs, then, semantically
related activities are not presented as such. Event abstraction, the grouping of
low-level events to recognizable activities on a higher abstraction level, can help
guiding process discovery methods towards discovering a process model that can
be understood by stakeholders and is more useful for answering process ques-
tions. Grouping those related low-level events together in activities on a higher
level facilitates model comprehension [4].

This paper proposes the Guided Process Discovery method (GPD). We use
event abstraction based on domain knowledge on the process to guide process
discovery techniques towards a process model that can be recognized by pro-
cess stakeholders. Domain knowledge about the expected low-level behavior of
high-level activities is captured by activity patterns. Activity patterns describe
complex interactions of the control-�ow, time, resource and, data perspective
in terms of low-level events. An activity pattern also provides the name (i.e.,
activity label) of the high-level activity that it describes. It can be seen as
description of the work practice on a �ne granularity, i.e., low-level of abstrac-
tion. Multiple low-level events are captured within one activity pattern. We
consider both manual patterns, which are created by a process analyst based on
domain knowledge, and discovered patterns, which are obtained automatically
from the event log and assigned suitable labels by domain experts. With a set
of activity patterns at hand, we leverage alignment techniques to �nd an opti-

2

mal mapping between the behavior de�ned by these activity patterns and the
observed behavior in the event log. The use of alignments is justi�ed by the
fact that, in general, event logs are noisy. Hence, not all low-level events can
be mapped onto high-level activities. Furthermore, the search for an optimal
mapping requires considering entire traces. Alignment-based techniques do this
by solving optimization problems. We use the information obtained from the
alignment to create an abstracted high-level event log. Based on this abstracted
event log, we discover a process model at the desired level of abstraction. The
discovered process model needs to be validated since the abstraction is based
on assumptions on the process. To validate the model, we expand the activities
of the discovered model with their corresponding activity patterns. Then, we
compute an alignment between this expanded model and the original event log.
Quality measures (e.g., �tness) provided by the alignment technique indicate
the reliability of the abstraction. Moreover, both the discovered high-level and
the expanded lower-level process model can be used for further analysis.

We evaluated the GPD method using two real-life event logs. The �rst event
log was retrieved from a digital whiteboard system used in a hospital in Norway.
We successfully generated an abstracted event log and were able to analyze how
nurses use the digital whiteboard system in their daily work. We could answer
questions about the process that would have been di�cult to answer using the
low-level event log. The second event log was obtained from an ERP system
in the emergency department of a hospital in The Netherlands. We used both
discovered and manually created activity patterns based on domain knowledge
of a doctor in charge of the emergency department. Then, we could show that
the discovered process model obtained with the GPD method is suitable for

answering questions about the process and to communicate with the stakehold-
ers. In contrast, the process models discovered with state-of-the-art discovery
methods failed to provide the insights needed.

Against this background, the remainder of this paper is structured as follows.
First, we introduce necessary preliminaries (Section 2). In the main part of this
paper, we present the seven steps of the GPD method (Section 3). We brie�y
present the implementation (Section 4). We report on the evaluation of the
method using a new real-life data set (Section 5). Finally, we review related
work on event abstraction (Section 6) and conclude the paper (Section 7).

2. Preliminaries

We introduce necessary preliminaries for the presentation of the GPD method.
The input to the method is an event log. We use process models to capture
activity patterns, and alignment techniques to obtain the abstraction mapping.

2.1. Event Logs

An event log stores information about activities that were recorded by informa-
tion systems while supporting the execution of a process. Each execution of a
process instance results in a sequence of events. Events stored in the event log

3

Table 1: Excerpt of a trace σ ∈ E from an event log L = (E,Σ,#, E) recording low-level
events. Each event is identi�ed by a unique identi�er id and records attributes act, time, ai,
and nurse. We use symbol ⊥ to denote an unrecorded attribute. Columns hl-act and hl-ai
are added to illustrate which high-level activity caused the event.

id act time ai nurse hl-act hl-ai

. .
e12 NurseChanged 122 12 NurseA Shift 1
e13 CallSignal1 122 13 ⊥ Shift 1
e14 CallSignal0 124 14 ⊥ Shift 1
. .
e20 CallSignal4 185 20 ⊥ Alarm 2
e21 CallSignal1 194 21 ⊥ Alarm 2
. .
e30 CallSignal4 310 30 ⊥ Alarm 3
e31 CallSignal1 311 31 ⊥ Alarm 3
e32 NurseChanged 312 32 NurseC Handover 4
e33 CallSignal0 315 33 ⊥ Alarm 3

may relate to activities on di�erent abstraction levels. Some events may record
low-level activities, i.e., activities that do not correspond to recognizable pieces
of work.

De�nition 1 (Event Log). Given universes of attributes A and values U , we
de�ne an event log L as L = (E,Σ,#, E) with:

• E is a non-empty set of unique event identi�ers;

• Σ ⊆ U is a non-empty set of activity names;

• # : E → (A ̸→ U) retrieves the attribute values assigned to an event1;

• E ⊆ E∗ is the non-empty set of traces over E. A trace σ ∈ E records the
sequence of events for one process instance. Each event occurs only once,
i.e., the same event may not appear twice in a trace or in two di�erent
traces.

Given an event e ∈ E in the event log L = (E,Σ,#, E), we write #a(e) ∈ U
to obtain the value u ∈ U recorded for attribute a ∈ A. Three mandatory
attributes are recorded by each event: #act(e) ∈ Σ, the name of the activ-
ity that caused the event; #time(e) ∈ U , the time when the event occurred;
#ai(e) ∈ U , the activity instance, i.e., an identi�er linking multiple events,
which are related to the same execution of a single activity.

1We use ̸→ to denote partial functions, i.e., the domain of the partial function f : A ̸→ U
is a subset of A. Given a partial function f , dom(f) ⊆ A denotes its domain.

4

Example 1. Table 1 shows an excerpt of a trace σ ∈ E obtained from a low-
level event log L = (E,Σ,#, E) that is recorded by a digital whiteboard, which
supports the work of nurses in a hospital. Each row represents a unique event
e ∈ E together with the produced data (i.e., attributes) created by a change
in the system. The initial events are omitted. After 122 minutes a low-level
e12 with the activity name NurseChanged (NC) was recorded. The attribute
Nurse is recorded as #Nurse(e12) = NurseA. Next, low-level event e13 with
activity name CallSignal1 (CS1)) and low-level event e14 with activity name
CallSignal0 (CS0) are recorded by a call signal system, which is integrated with
the whiteboard. Together, all three events relate to the same instance (hl-ai) of
the high-level activity Shift (hl-act). Some further low-level events follow.

2.2. Process Model

We use process models to capture behavior. Generally, our method is indepen-
dent of the particular formalism (e.g., Petri nets, UML, Declare, BPMN) used to
model processes. Therefore, we describe our method based on the set of process
executions allowed by the model, independently of the formalism employed.

De�nition 2 (Process Model). Given universes of variables V , values U ,
and transitions T , let S = (T × (V ̸→ U)) be the set of all possible process
steps. A process model p ⊆ S∗ consists of sequences of process steps. We de-
note a sequence of process steps σp ∈ p as a process trace. A process trace
corresponds to one execution of the process (i.e., a process instance). Process
steps (t, w) ∈ σp in process traces correspond to executions of a transition
t ∈ T together with the variable assignment w ∈ (V ̸→ U). We denote with
P = {p ⊆ S∗} the set of all process models.

Executions of process step (t, w) ∈ S can be observed as events. We use labeled
process model to connect the transition t to an observable activity name l ∈ Σ
and variables v ∈ dom(w) to observable attribute names a ∈ A.

De�nition 3 (Labeled Process Model). Given universes of variables V , val-
ues U , attributes A, transitions T and activity names Σ ⊆ U , a labeled process

model is a tuple (p, λ, ν) where:

• p ⊆ (T × (V ̸→ U))∗ is a process model,

• λ : T → Σ is an activity label function that returns the observable activity
name of a transition,

• ν : V → A is a variable label function that returns the observable attribute
name of a variable.

Given a labeled process model (p, λ, ν), we can determine the activity name of
a process step (t, w) ∈ σp. Two distinct transitions t1, t2 ∈ T can be mapped to
the same activity name, i.e., λ(t1) = λ(t2) does not imply t1 = t2.

5

Figure 2: DPN implementation of a process model.

Example 2. Here, we use Data Petri nets (DPNs) [5] as language that we use
to specify process models in the language-independent GPD method. This is
just for the purpose of illustration: Other languages could be used. We use DPN
as a rich notation with well-de�ned semantics, which can express the control-
�ow as well as the data-, resource- and time-perspective of a process. As we
use DPNs only in the examples, we refer to [5] for a comprehensive introduction
to DPNs. The set of valid process traces of a DPN corresponds directly to
our de�nition of a process model based on its set of execution traces. Figure 2
depicts a DPN speci�cation of a process model p̄ = (p, λ, ν). DPN transitions
(i.e., rectangles in Figure 2) correspond to transitions in T and DPN variables
(i.e., hexagons in Figure 2) correspond to variables in V . The DPN speci�es
that transitions CS4B, CS1B and CS0B can only be executed in sequence and
the time between executing CS4B and CS1B must be at most 10 minutes. Its
activity label function is λ(CS4B) = CS4, λ(CS1B) = CS1, and λ(CS0B) =
CS0. Its variable label function is ν(TB) = time, i.e., variable TB stores the
execution time of the activity. Given this DPN speci�cation, process trace
σp = ⟨(CS4B, w1), (CS1B, w2), (CS0B, w3)⟩ with w1(TB) = 185 min, w2(TB) =
194 min and dom(w3) = ∅ is valid process behavior. Process trace σ′p =
⟨(CS4B, w′1), (CS1B, w′2)⟩ with w′1(TB) = 185 min, w′2(TB) = 196 min is invalid,
i.e., σ′p /∈ p. In trace σ′p, an execution of transition CS0 is missing. Moreover,
it took too long until activity CS1 was executed.

2.3. Alignment

We use alignments to relate event logs to process models. An alignment estab-

lishes a mapping between a log trace σ ∈ E and a process trace σp ∈ p. Events in
log traces are mapped to process steps in process traces. It may not be possible
to align all events and process steps. Therefore, it is possible to map deviating
events and process steps using a special step ≫. In case an event is mapped to
≫, the alignment could not �nd a corresponding process step for an event, i.e.,
the event is missing in the process model. In case a process step is mapped to
≫, the alignment could not �nd a corresponding log event, i.e., the process step
was forcefully executed. We denote those pairs as log move and model move,
respectively. Finally, it is possible that the activity name and the event label
match, but the values of the process variables and event attributes do not match.
We denote such pair as incorrect synchronous move.

De�nition 4 (Alignment). Let L = (E,Σ,#, E) be an event log. Let p̄ =
(p, λ, ν) be a labeled process model and let S = (T × (V ̸→ U)) be the set

6

of all process steps. A legal move in an alignment is a pair (e, s) ∈ (E ∪ {≫
})× (S ∪ {≫}) with:

• (e,≫) is a log move i� e ∈ E,

• (≫, s) is a model move i� s ∈ S,

• (e, s) is an incorrect synchronous move i� e ∈ E ∧ s ∈ S ∧ s = (t, w)
∧#act(e) = λ(t) ∧ ∃v ∈ dom(w) : w(v) ̸= #ν(v)(e),

• (e, s) is a correct synchronous move i� e ∈ E ∧ s ∈ S ∧ s = (t, w)
∧#act(e) = λ(t) ∧ ∀v ∈ dom(w) : w(v) = #ν(v)(e).

All other moves are considered illegal, i.e., the move (≫,≫) is illegal. We denote
the set of all legal moves in an alignment as Γ = ((E∪{≫})× (S∪{≫}))\{(≫
,≫)}. The alignment between a log trace σ ∈ E and a labeled process
model p̄ is a sequence γσ,p̄ ∈ Γ∗ such that ignoring all occurrences of ≫, the
projection of γσ,p̄ on the �rst element of each move yields σ and the projection
on the second element yields a process trace σp ∈ p. Alignment γσ,p̄ relates
events e ∈ σ to process steps (t, w) ∈ σp.

There are techniques [5, 6] that search for an optimal alignment, which mini-
mizes the deviations between log trace and process trace. Deviations are scored
according to a user-de�ned cost function, which speci�es domain knowledge on
the reliability of events. An optimal alignment according to the cost function
can be seen as the most likely mapping between events and process steps.

Example 3. Assume we want to �nd a mapping between the labeled pro-
cess model p̄ = (p, λ, ν) already introduced in Example 2 and the log trace
σ = ⟨e20, e21⟩. Log trace σ contains two of the events introduced in Table 1.
Process model p̄ prescribes that the transition CS0 has to be executed after
the transition CS1. Therefore, σ does not �t the behavior de�ned by the pro-
cess model. Still, it is possible to align σ and p̄. One possible alignment is
γσ,p̄ = ⟨(e20, (CSB4, w1)), (e21, (CSB1, w2)), (≫, (CSB0, w3))⟩ with the recorded
attributes w1(TB) = 185 min, w2(TB) = 194 min and dom(w3) = ∅. Ac-
cording to alignment γσ,p̄ there is one deviation: transition CS0 was missing,
i.e., (≫, (CSB1, w3)) is a model move. Alignment γσ,p̄ is optimal, i.e., no other
alignment with less deviations can be build.

3. Guided Process Discovery

We present GPD, a method for process discovery that is guided by domain knowl-
edge on the relation between recorded low-level events and high-level activities
in the process. We assume that multiple low-level events grouped together in-
dicate the execution of a high-level activity. Moreover, we assume that domain
knowledge on the supposed grouping between high-level activities and low-level
events can be provided. For example, in Table 1 the execution of the high-level

7

Figure 3: Overview of the proposed GPD method.

activity Shift is manifested as sequence of three low-level events NurseChanged,
CallSignal1, and CallSignal0.

The input to the GPD method is a low-level event log L = (E,Σ,#, E),
which contains low-level events recorded during the execution of a process, and
domain knowledge on the grouping between the recorded low-level events and
high-level activities of the process in the form of activity patterns. The method
consists of the following 7 steps (Figure 3):

1. We identify and encode multi-perspective activity patterns that describe
elements of high-level behavior as recorded in the low-level events of L.

2. We compose activity patterns in an integrated abstraction model.

3. We align the abstraction model with the low-level event log.

4. We abstract the low-level event log L to a high-level event log LH =
(EH ,ΣH ,#H , EH) at the desired level of abstraction using the alignment
mapping.

5. We discover a high-level process model based on the abstracted high-level
event log.

In order to validate the quality of the high-level process model, two additional
steps can be employed.

6. We expand activities in the abstract model with their activity patterns.

7. We validate the expanded model against the original event log.

The proposed method can deal with noise, reoccurring and concurrent behavior,
and shared functionality. In the following sections, we describe each step of the
GPD method in detail.

8

3.1. Identify and Encode Activity Patterns

We represent knowledge about the relation between low-level events in the event
log L and high-level activities ΣH with multi-perspective activity patterns. An
activity pattern can be seen as description of the high-level activity in terms
of the work practice on a �ne granularity, i.e., the steps required to execute
the high-level activity on a low-level of abstraction. An activity pattern also
provides the name (i.e., activity label) of the high-level activity that it describes.
We encode activity patterns as labeled process models to allow the speci�cation
of complex interactions of the control-�ow, time, resource and, data perspective
in terms of low-level events. The labeled process model speci�es those events
that are expected to be seen in the event log for one instance of the corresponding
high-level activity.

De�nition 5 (Activity Pattern). Given a set of transitions T , a set of high-
level activities ΣH ⊆ U , and a set of life-cycle transition LT , we de�ne an
activity pattern as ap = (p, λ, ν, hl, lt) with:

• (p, λ, ν), is a labeled process model that de�nes the set process traces that
are expected when executing one instance of a high-level activity;

• hl : T → ΣH , a mapping between transitions and high-level activities.

• lt : T ̸→ LT , a mapping between transitions and life-cycle transitions.

For each process trace σp ∈ p, steps (t, w) ∈ σp correspond to low-level activities
that are expected to be executed as part of the high-level activity hl(t) ∈ ΣH .
We denote the set of all activity patterns with AP .

Mapping lt is motivated by the observation that activities rarely happen in-
stantaneously. Activities have life-cycles [1]. The set of life-cycle transitions
LT and the mapping function lt are speci�ed by the user. In the remainder
of this paper, we use the start and complete life-cycle transition, i.e., LT =
{start, complete}. Moreover, we require that transitions are not shared be-
tween activity patterns. For all activity patterns ap1 = (p1, λ1, ν1, hl1, lt1) ∈
AP , ap2 = (p2, λ2, ν2, hl2, lt2) ∈ AP , if {t ∈ T | ∃w,σp(σp ∈ p1 ∧ (t, w) ∈
σp)} ∩ {t ∈ T | ∃w,σp

(σp ∈ p2 ∧ (t, w) ∈ σp)} ̸= ∅ then ap1 = ap2. Similarly,
we require that variables are not shared between activity patterns. Thus, we
can uniquely identify to which pattern a process step belongs. This is not lim-
iting: If this condition does not hold, transitions and variables of the activity
pattern can be renamed to avoid overlaps in names. Renamed transitions and
variables can be linked to the original names by using the activity label func-
tion λ and the variable label function ν of the activity pattern. Transitions
t1, t2 ∈ T from di�erent patterns may be associated with the same activity
name, i.e., λ1(t1) = λ2(t2) and variables v1, v2 ∈ V may be associated with the
same attribute name, i.e., ν(v1) = ν(v2).

Example 4. Figure 4 shows three activity patterns apa, apb and apc that
are implemented as DPNs. We use the abbreviated low-level activity name

9

Figure 4: Three activity patterns apa, apb, apc ∈ AP for the example with process models
in DPN notation. The respective label functions λ are implicitly encoded in the abbreviated
transition names (e.g., λa(CS1A) = CallSignal1).

concatenated with the pattern name for transitions. For example, transition
CS1A models activity CallSignal1, i.e., λa(CS1A) = CallSignal1. We depict
the life-cycle transition mapped to a transition in italics below the transition,
e.g., lta(NCA) = start. The �rst pattern apa describes the high-level activity
Shift, i.e., for all transitions t in the pattern we assign hl(t) = Shift. First, the
nurse responsible for the patient changes (NCA) and the name of the nurse is
recorded in variable Na. Variable Na is mapped to the attribute nurse, i.e.,
ν(Na) = nurse. Within 30 minutes (T ′a − Ta ≤ 30 min with ν(Ta) = time), the
responsible nurse visits the patient and the call signal system records a button
press (CS1A). Finally, the nurse leaves the room and another button press is reg-
istered (CS0A) resetting the status. The second pattern apb describes a similar
sequence (i.e., transitions CS1B and CS0B), but represents a di�erent high-level
activity: The patient is attended outside of the normal routine. Transition CS4
has to be executed at most 10 minutes beforehand (i.e., T ′b−Tb ≤ 10 min). The
low-level activity corresponding to CS4B is an alarm triggered by the patient.
We assign hl(t) = Alarm for each transition t in the pattern. The third pattern

describes a simple handover between nurses: Only the responsible nurse changes
(NCC) without any consultation of the patient. We assign hl(t) = Handover for
each transition t in the pattern. Transition NCC is an example of shared func-
tionality. Both transitions NCC and NCA are labeled with the same activity
name, i.e., λa(NCA) = λc(NCC) = NurseChanged.

Activity patterns represent the knowledge about how high-level activities are
re�ected by low-level events in the event log. Please note that we do not expect
an activity pattern to be an exact representation of every possible way a high-
level activity manifests itself in the event log. In fact, in Section 3.5 we show
that our method is able to deal with approximate matches. Since obtaining
suitable activity patterns is crucial for the GPD method, we elaborate here on
how to obtain activity patterns. We categorize activity patterns based on the
way they have been obtained into: manual patterns and discovered patterns.
Table 2 provides a list of sources and examples for activity patterns.

3.2. Manual patterns

Manual patterns are created based on domain knowledge about the high-level
activities of the process at hand. We further subdivided manual patterns based
on the source of the domain knowledge into patterns based on expert knowledge,
process questions, and standard models.

10

Table 2: Sources for manual and discovered activity patterns.

Source Category Examples

Expert knowledge Manual Patterns apa, apb, apc (Figure 4)
Process questions Manual Di�erent admission variants (Section 5)
Standard models Manual Transactional life-cycle model [1] (Fig-

ure 5), clinical protocols
Local behavior Discovered Local process models [7], sub sequences [8],

episodes [9], instance graphs [10]
Decomposed behavior Discovered Region theory [11], clustering [12]
Data attributes Discovered Discovery per department (Section 5)

Expert knowledge. Manual patterns based on expert knowledge encode assump-
tions on the system. Stakeholders of the process can provide initial assumptions
on how high-level activities are manifested in the event log. Moreover, seman-
tically related activities can be grouped together to form sub-processes. If the
expected behavior of such a sub-process is known, it can be captured as an ac-
tivity pattern. The sub-process captured by the activity pattern can be seen as
a single activity on a higher level of abstraction. In Example 4 (Figure 4), we de-
scribe three activity patterns that are based on expert knowledge. The patterns
encode the assumption that the low-level activities CS1 and CS0 both occur in
the context of shift change and in the context of an alarm. This knowledge was
obtained from a domain expert who is familiar with the system.

Process questions. Often, questions on the process can be used as a source for
activity patterns. These patterns are not driven by knowledge about the ques-
tions, but knowledge about the required type of output. For example, in the
evaluation (Section 5) we use an activity pattern that is based on the process
question: �What are the trajectories of patients in the hospital based on their
admission?�. The activity pattern encodes the di�erent variants of the admis-
sion.

Standard models. Some patterns appear in processes across all domains. Those
patterns are based on standard models that are independent of the concrete
domain, e.g., the transactional life-cycle model [1]. Discovering such patterns
from event logs is challenging for state-of-the-art process discovery algorithms.
For example, specialized algorithms exist for event logs with life-cycle informa-
tion [13]. It is possible to encode the expected behavior as activity patterns
and, thus, to avoid the usage of a specialized algorithm for certain patterns. For
example, in Figure 5 we show how to adapt the transactional life-cycle model
to encode the lifecycle transitions for the high-level activity X-Ray. An X-Ray
is scheduled (xscheduled), started (xstart), possibly suspended (xsuspended), re-
sumed (xresumed), and eventually completed (xcomplete). The XES standard [14]
for event logs de�nes an extension for the transactional life-cycle model.

11

Figure 5: An activity pattern capturing the life-cycle of the high-level activity X-Ray.

3.3. Discovered patterns

It is also possible to automatically discover patterns from the low-level event
log. We distinguish between patterns that are discovered based on local behavior,
based on decomposed behavior, and based on data attributes.

Local behavior. There are dedicated pattern mining techniques [7�10] that dis-
cover patterns of local behavior from event logs. Such patterns do not capture
the behavior of the complete traces. The models describe subsets of the events
and the same event can be part of several patterns. Such discovered local pat-
terns can be directly used as input to the GPD method. It can be challenging to
automatically assign good labels to discovered patterns. Methods for automatic
labeling of process fragments [15] do exist.

Decomposed behavior. Work on decomposed process discovery [11, 12] could be
leveraged to obtain activity patterns that represent parts of the observed behav-
ior. Di�erent from methods that discover patterns of local behavior, the event
log is decomposed into several disjunct sub-logs using an automated technique.
Then, a full process model is discovered for each of the logs using standard pro-
cess discovery techniques. This process model can be used as activity pattern.

Data attributes. Next to automatic decomposition approaches, information can
be exploited on the hierarchical structure that is stored in the data attributes of
the event log. For example, later in the evaluation (Section 5), we use informa-
tion on the department in which an event occurred. We split the event log into
sub logs based on the department and discover three separate process models
that are used as activity patterns.

3.4. Compose Activity Patterns to an Abstraction Model

With a set of activity patterns for the process under analysis at hand, we com-
pose their behavior into an integrated abstraction model. The composition of
activity patterns may restrict the interaction that is possible between the high-
level activities that are captured by the activity patterns. By restricting the
interaction, we help to �nd a more precise mapping between low-level events
and high-level activities.

De�nition 6 (Composition Function). A composition function f : AP∗ ̸→
AP combines the behavior activity patterns ap1, . . . , apn into an (composite)
activity pattern cp ∈ AP , i.e., f(ap1, . . . , apn) = cp. We denote with F =
AP∗ ̸→ AP the set of all composition functions.

12

We provide the semantics for �ve basic composition functions: sequence, choice,
parallel, interleaving and repetition. Our abstraction method is not restricted
to these functions. Further composition functions can be added.

We introduce some necessary notations for sequences and functions. Given
a sequence σ ∈ S∗ and a subset X ⊆ S, proj (σ,X) is the projection of σ on
X. For example, proj (⟨w, o, r, d⟩, {o, r}) = ⟨o, r⟩. σ1 · σ2 ∈ S∗ concatenates two
sequences, e.g., ⟨w, o⟩ · ⟨r, d⟩ = ⟨w, o, r, d⟩. Given two functions f : X1 → Y and
g : X2 → Y with disjoint domains, i.e., X1 ∩X2 = ∅, f ⊕ g denotes the union
of functions f and g, i.e., (f ⊕ g)(x) = g(x) if x ∈ X1 and (f ⊕ g)(x) = f(x) if
x ∈ X2. Given activity patterns api = (pi, λi, νi, hli, lti) ∈ AP with i ∈ N, we
introduce the following composition functions:

• Sequence composition ⊙ ∈ F :

ap1 ⊙ ap2 = (p, λ, ν, hl, lt) with

p = {σ ∈ S∗ | σ1 ∈ p1 ∧ σ2 ∈ p2 ∧ σ = σ1 · σ2}, and
λ = λ1 ⊕ λ2, ν = ν1 ⊕ ν2, hl = hl1 ⊕ hl2, lt = lt1 ⊕ lt2.

The operation ⊙ is associative. We write
⊙

1≤i≤n api = ap1 ⊙ ap2 ⊙ . . .⊙
apn to compose ordered collections of patterns in sequence. Moreover, we
de�ne

⊙
1≤i≤0 api = {⟨⟩}.

• Choice composition ⊗ ∈ F :

ap1 ⊗ ap2 = (p, λ, ν, hl, lt) with

p = p1 ∪ p2, and

λ = λ1 ⊕ λ2, ν = ν1 ⊕ ν2, hl = hl1 ⊕ hl2, lt = lt1 ⊕ lt2.

The operation ⊗ is commutative and associative. We write
⊗

1≤i≤n api =
ap1 ⊗ ap2 ⊗ . . .⊗ apn to compose sets of patterns in choice.

• Parallel composition ⋄ ∈ F :

ap1 ⋄ ap2 = (p, λ, ν, hl, lt) with

p = {σ ∈ (S1 ∪ S2)
∗ | proj (σ, S1) ∈ p1 ∧ proj (σ, S2) ∈ p2} and

λ = λ1 ⊕ λ2, ν = ν1 ⊕ ν2, hl = hl1 ⊕ hl2, lt = lt1 ⊕ lt2.

The operation ⋄ is commutative and associative. We write ♢1≤i≤n api =
ap1 ⋄ ap2 ⋄ . . . ⋄ apn to compose sets of patterns in parallel.

• Interleaving composition ↔ ∈ F with p(n) denoting the set of all per-
mutations of the numbers {1, . . . ,n}:

↔ (ap1, . . . , apn) =
⊗

(i1,...,in)∈p(n)

⊙
1≤k≤n

apik .

13

Figure 6: Overview of the graphical notation for the composition functions.

• Repetition composition [n,m] ∈ F with n ∈ N0,m ∈ N ∪ {∞}, and
n ≤ m:

ap
[n,m]
1 =

⊗
n≤i≤m

⊙
1≤k≤i

ap1.

We build a composed abstraction model cp = (p, λ, ν, hl, lt) ∈ AP with a formula
that composes all patterns of interest. The process model p ∈ P corresponds to
the overall behavior that we expect to observe for the execution of all high-level
activities in a single process instance.

Example 5. Given the activity patterns apa, apb and apc shown in Figure 4,

we can compose their behavior to cp = (↔ (ap
[0,∞]
a , ap

[0,∞]
b))[0,∞] ⋄ ap[0,∞]

c . We
allow inde�nite repetitions of all activity patterns using the repetition compo-
sition. We allow the absence of patterns using the repetition composition as
the corresponding high-level activities might not have been executed in every
process instance. We restrict cp to only contain the interleaving of patterns
apa and apb as there is only one responsible nurse per patient. Therefore, the
activities expressed by apa and apb can occur in any order but should not hap-
pen in parallel. We add apc using the parallel composition as handovers can
take place in parallel to apa and apb. The result of this composition is the
abstraction model cp. Model cp corresponds to all behavior that could be ob-
served for executions of the three high-level activities. For example, process
trace ⟨(NCA, w1), (CS1A, w2), (NCC, w3), (CS0A, w4)⟩ with w1(Na) = NurseA,
w1(Ta) = 0 min, dom(w2) = ∅, w3(Nc) = NurseB, and w4(Ta) = 29 min, be-
longs to the set of process traces of the composed abstraction model. Whereas
the process trace ⟨(NCA, w′1), (CS1A, w′2), (CS4B, w′3), (CS0A, w′4)⟩ with w′1(Na)
= NurseA, w′1(Ta) = 0 min, dom(w′2) = dom(w′3) = ∅, and w′4(Ta) = 29 min,
is not part of the process behavior of cp.

We designed a graphical representation for each composition function, which can
be used to design abstraction models in the implementation of our approach. It
would also be possible to use BPMN, Petri nets, or Process trees to visualize
the composition of patterns. However, abstraction models are not meant to
be full speci�cations of processes. Mostly basic functions, such as the parallel,
interleaving, and repetition composition are used. Moreover, process discovery
based on the resulting high-level event log is still necessary. Therefore, we use
this compact graphical representation.

Figure 6 shows the graphical notation for the proposed composition func-
tions: sequence, choice, parallel, interleaving and repetition. The parallel com-
position of two patterns does not restrict the interaction between patterns.

14

Figure 7: Abstraction model cp created by composing the patterns apa, apb, and apc.

Figure 8: DPN created by our implementation for the abstraction model cp. The process
models of the activity patterns apa, apb, apc are depicted as clouds pa, pb, pc with source
places sa, sb, sc and sink places ea, eb, ec. Black transitions are invisible routing transitions,
which are not recorded in event logs.

Therefore, unless otherwise speci�ed, we assume that patterns are composed
in parallel. The interleaving composition is depicted by connecting interleaved
patterns to the interleaving operator ↔. Patterns are composed in choice by
connecting all patterns in choice to a choice operator ⊗. The sequence com-
position is depicted by a directed edge between two patterns. We attach the
unary repetition composition directly to the patterns. If necessary, we draw a
box around composed patterns to clarify the precedence of operations. Each of
the proposed composition functions is implemented using the DPN notation as
described in Appendix A. Here, we show it based on an example.

Example 6. For example, Figure 7 shows the graphical representation of the
composition of activity patterns apa, apb, and apc to the abstraction model

cp = (↔ (ap
[0,∞]
a , ap

[0,∞]
b))[0,∞] ⋄ ap

[0,∞]
c , which was introduced in Example 5.

Patterns apa and apb are �rst interleaved and then composed in parallel with apc.
It is straightforward to implemented the composition of activity patterns using
the DPN notation. Figure 8 depicts the DPN implementation of the abstraction
model cp. To simplify the composition, we assume that the DPNs of activity
patterns have a single source place and a single sink place. The abstraction
model starts with a single source place src and ends with a single sink place

snk. We model the parallel composition of ap
[0,∞]
c with ↔ (ap

[0,∞]
a , ap

[0,∞]
b)[0,∞]

by adding invisible transitions split and merge, which realize a parallel split
and join. Invisible transitions cannot be observed; they are only added for
routing purposes. We use place mutex to model the mutual exclusion constraint

of the interleaving composition of patterns ap
[0,∞]
a and ap

[0,∞]
b . Place mutex

15

Table 3: The top three rows show an excerpt of an alignment γσ,p̄ between the running example
log trace σ ∈ E and the labeled process model p̄. Low-level events e are aligned to process
steps (t, w) that relate to the low-level activity recorded by the event (#act(e) = λ(t)). The
bottom �ve rows show an excerpt of a trace σH ∈ EH from the high-level event log. Events ê
and the four attributes #H are returned by the GPD method.

e e12 e13 e14 . . . e20 e21 ≫ . . . e30 e31 e32 e33

#act(e) NC CS1 CS0 . . . CS4 CS1 . . . CS4 CS1 NC CS0

m,w NCA,w1 CS1A,w2 CS0A,w3 . . . CS4B,w4 CS1B,w5 CS0B,w6 . . . CS4B,w7 CS1B,w8 NCC,w9 CS0B,w10

#H
act(ê) Shift Shift . . . Alarm Alarm . . . Alarm Hando. Alarm

#H
lc(ê) start comp. . . . start comp. . . . start comp. comp.

#H
ai(ê) 3 3 . . . 6 6 . . . 11 12 11

#H
time(ê) 122 124 . . . 185 194 . . . 310 312 315

ê ê5 ê6 . . . ê11 ê12 . . . ê21 ê22 ê23

guarantees that only either apa or apb can be executed at the same time, yielding
the interleaving of apa and apb. Each repetition composition is implemented
by adding two invisible transitions loop and skip, which allow to repeat the
pattern inde�nitely or to skip its execution, respectively.

3.5. Align Event Log and Abstraction Model

With an abstraction model at hand, we need to relate the behavior in the
low-level event log to process traces de�ned by the abstraction model cp =
(p, λ, hl, lt). More speci�cally, we need to determine the mapping between low-
level events in traces σ ∈ E of the event log and process steps in process traces
of the labeled process model p̄ = (p, λ, ν) de�ned by the abstraction model.
Concretely, we use the alignment technique for DPNs presented in [5] to estab-
lish alignments γσ,p̄ ∈ Γ between log traces and process traces. The alignment
guarantees that its sequence of model steps without ≫-steps is a process trace
de�ned by the composed abstraction model. Please note that we can uniquely
identify sub-sequences of the initial (uncomposed) activity patterns in the align-
ment since we required transitions to be unique among activity patterns.

Example 7. The top three rows of Table 3 show an excerpt of such an align-
ment γσ,p̄ between the example log trace (Table 1) and a process trace from
the example abstraction model (Figure 6). In fact, the third row in Table 3
is a process trace of the process model. Pattern apa and pattern apc are
both executed once. Pattern apb is executed twice and. The sub-sequence
⟨(CS4B, w4), (CS1B, w5), (CS0B, w6)⟩ with variable assignments w4(Tb) = 185
min, w5(Tb) = 194 min, and dom(w6) = ∅ contains only transitions that are
part of pattern apb. Please note that step (CS0B, w6) was inserted as model
move by the alignment, i.e., there is no corresponding event in the event log.

3.6. Abstract the Event Log using the Alignment

We describe how to build the high-level event log (EH ,ΣH ,#H , EH) using an
alignment of the low-level event log with the abstraction model. In general,
there might be scenarios where one event could be mapped to several activity

16

instances. We simplify the discussion by assuming that events are only mapped
to single activity instances. This is not a limitation, as described by Baier et
al. [3]: Those events could be duplicated in a pre-processing step beforehand.

3.6.1. Abstraction Algorithm

The bottom four rows of Table 3 show how we obtain the high-level event log
from the information provided by the alignment. We align each trace σ ∈ E
of the low-level event log with the abstraction model. Doing so, we obtain an
alignment γσ,p̄ as shown in the �rst three rows for each trace in the low-level
log.

Algorithm 1: Abstraction of an event log based on an abstraction
model.
Input: Low-level Event Log L = (E,Σ,#, E), Abstraction Model

cp = (p, λ, ν, hl, lt) ∈ AP

Result: High-level Event Log LH = (EH ,ΣH ,#H , EH)

EH ← {}, ΣH ← hl [Σ], i← 0
for h ∈ ΣH do ai(h)← 0
for σ ∈ E do

γ ← computeOptimalAlignment(σ, cp)
σH ← ⟨⟩
for (e, s) ∈ γ s.t. s ̸=≫ ∧ s = (t, w) ∧ t ∈ dom(lt) do

EH ← EH ∪ {ê}
σH ← σH · ⟨ê⟩
assignAttributes(ê, (e, (t, w)), γ, ai, hl, lt)
if lt(t) = complete then ai(hl(t))← ai(hl(t)) + 1
i← i + 1

end

EH ← EH ∪ {σH}
end

return (EH ,ΣH ,#H , EH)

We build the high-level event log based on the alignment and the mapping
functions hl and lt of the abstraction model cp as speci�ed by Algorithm 1.
Function hl obtains the name of the high-level activity for a transition. Function
lt is used to decide for which transition a new event needs to be created. New
high-level events are added to EH for those alignment moves (e, (t, w)) for which
the transition t is mapped to a life-cycle transition, i.e., in our case either start
or complete. Those transitions correspond to visible transitions in the life-cycle
of the high-level activity.
Algorithm 2 describe how we assign each new high-level event a name based
on the mapping hl(t), a unique activity instance identi�er (i.e., as de�ned the
XES standard [14]) for each execution of an activity pattern, and the life-cycle
transition obtained from the mapping lt(t). Moreover, we copy the values of
all variables v ∈ dom(w) to the attributes of the new event. Hence, low-level
attributes can be transformed to high-level attributes. In this manner, we create
a high-level trace in EH for each low-level trace in E . Algorithm 1 provides us
with the abstracted high-level log (EH ,ΣH ,#H , EH).

Example 8. For example, events ê5 and ê6 in Table 3 are created based on
the alignment of low-level events e12 and e14 to transitions NCA and CS0A. We

17

Algorithm 2: Procedure assignAttributes, which assigns the attributes
of event ê that was created for the execution of a high-level activity.
Input: Event ê, Alignment move (e, (t, w)), Alignment γ, Instance mapping ai,

High-level activity mapping hl, Life-cycle mapping lt

#H
act(ê)← hl(t) // assign high-level activity name

#H
ai(ê)← ai(hl(t)) // assign activity instance

#H
lc(ê)← lt(t) // assign life-cycle transition

for v ∈ dom(w) do #H(ê)(ν(v))← w(v) // copy variables
if e ∈ E then

#H
time(ê)← #time(e) // assign timestamp

else

#H
time(ê)← obtainTime(γ, (e, (t, w)))

end

assign event ê5 the high-level activity name Shift, i.e., #H
act(ê5) = Shift. We

assign the unique activity instance identi�er 3 to both events, i.e., #H
ai(ê5) =

#H
ai(ê6) = 3. Instance 3 of the high-level activity Shift was started by event ê5

and completed by event ê6. Then, we assign the life-cycle transition start to ê5
(i.e., #H

lc (ê5) = start) and the life-cycle transition complete to event ê6. Finally,
we copy the values of the variables NA and TA as #H

nurse(ê5) = NurseA and
#H

time(ê5) = 122 min.

We ensure that every high-level event ê ∈ EH is assigned a timestamp. We
consider two cases depending on the alignment move (e, (t, w)): (1) The process
step was aligned to a low-level event e and (2) the process step was mapped
to e =≫, i.e., a model move. In the �rst case, we assign the timestamp of
the aligned low-level event to the high-level event. For example, #H

time(ê11) =
#time(e20) = 185 min. In the second case, there are multiple possible methods
to determine the most likely timestamp for a model move (e.g., based on statis-
tical methods [16]). Therefore, we abstract from the concrete implementation
with the method obtainTime. For the case study, we used the timestamps of
neighboring low-level events that are mapped to the same activity instance. For
example, for the unmapped high-level event ê12, we use the timestamp from the
neighboring event e21, i.e., #

H
time(ê12) = #time(e21) = 194 min.

3.6.2. Quality of the Abstraction

The alignment enables the de�nition of two quality measures for the abstraction
mapping. First, we use global matching error ϵL,cp ∈ [0, 1] as a measure for
how well the entire low-level event log L matches the behavior imposed by the
composed abstraction model cp. In this context, a �tness measure such the one
de�ned in [5] for alignments of DPNs can be seen as global measure for the
quality of the used abstraction model. A low �tness indicates that there are
many events that cannot be correctly matched and, thus, the abstraction model
does not capture the whole process correctly. The resulting abstracted event log
would not allow a reliable analysis. In case of low �tness, the assumptions made
in the identi�cation and encoding of the activity patterns should be revised.

Second, we de�ne a local matching error ϵL,cp(h) ∈ [0, 1] on the level of

18

Figure 9: A discovered high-level model in DPN notation. We distinguish high-level activities
from activities used in activity patterns by using a gray background.

each recognized high-level activity. Some process steps in the alignment are not
matched to an event in the log, i.e., the event is missing. To obtain ϵL,cp(h),
we determine the fraction of incorrect and model moves for process activities
that are part of the activity pattern for the high-level activity h over the total
number of all alignment moves for h.

De�nition 7 (Local matching error). Let L = (E,Σ,#, E) be a low-level
event log. Let cp = (p, λ, ν, hl, lt) ∈ AP be an abstraction model with the labeled
process model p̄ = (p, λ, ν). We de�ne the matching error ϵL,cp(h) ∈ [0, 1] as
the fraction of incorrect and model moves over the total number of all moves
for process activities that are mapped to h in the alignment γσ,p̄:

ϵL,cp(h) =

∑
σ∈E |proj (γσ,p̄,Γerr

h)|∑
σ∈E |proj (γσ,p̄,Γh)|

, where

Γh = {(e, s) ∈ Γ | s ̸= ≫ ∧ s = (t, w) ∧ hl(t) = h}, and
Γerr
h = {(e, s) ∈ Γh | (e, s) is a model move or

(e, s) is an incorrect synchronous move}.

The matching error can be used to exclude individual unreliable activity pattern
matches, which exceed a certain ϵ-threshold.

Example 9. For example, in Table 3 one execution of transition CS0B in the
activity pattern for the Alarm activity is mapped to ≫. The local matching
error ϵL,cp(Alarm) is 5

6 for high-level activity Alarm based on the alignment
shown in Table 3.

3.7. Discover a High-Level Process Model

After creating the abstracted event log LH , we discover a process model based on
the abstracted high-level activities ΣH . For the process discovery, any state-of-
the-art process discovery technique can be employed. However, as the abstracted
event log contains information on the life-cycle of activities (i.e., the start and
the complete transition), we propose to use a process discovery technique that
can harness this information, such as the Inductive Miner [13]. We could use
the discovered process model directly for further analysis (e.g., performance
analysis, deviation analysis, decision rule mining etc.).

Example 10. Figure 9 shows an example of a high-level model in DPN notation
that can be discovered based on the abstracted event log. The discovered process

19

starts with a change of shifts. Then, in parallel, patients raise one or more alarms
and, sometimes, a handover takes place. In fact, in Table 3 the Alarm and the
Handover activity are observed to be overlapping each other. An instance of
the Handover instance (event ê22) is interleaved between the start (event ê21)
and the complete (event ê23) of an Alarm activity instance.

3.8. Expand the High-Level Activities and Validate Against the Event Log

The abstracted event log LH hides details on the low-level events. High-level
events in LH might have been introduced by the approximate abstraction map-
ping that was obtained through the alignment. As we allow log moves and
model moves in the alignment, some parts of the abstracted event log might
be based on our assumptions on the process rather than the actual data in the
original, low-level event log. We can quantify this error by using the previously
introduce measures �tness and matching error. However, even a small error
during the abstraction can be multiplied by the discovery algorithm. In other
words, we might have misguided the discovery and resulting process model does
re�ect our assumption rather than reality. This is clearly undesirable.

To evaluate the quality of the discovered high-level model, we generate a so-
called expanded process model. We substitute each high-level activity with the
DPN representation associated with the activity. In fact, the high-level activities
in the discovered process model can be seen as composite activities and the
activity patterns as sub-processes. This step depends on the concrete modeling
notation. The expansion of high-level activities with sub-processes cannot be
described using solely the language of the process model. When de�ning a
process model through its language, it is not possible to distinguish whether
two high-level activities a and b are executed in parallel (i.e., the execution of
low-level activities in the sub processes of a and b can overlap), or their execution
is only interleaved (i.e., we observed both ⟨a, b⟩ and ⟨b, a⟩ but the activities are
not overlapping). Since the steps are similar in each modeling notation, we
focus on the case in which DPNs are employed. For the concrete approach
described here, we assume that the discovered model and the activity patterns
are provided as DPN (e.g., as in Figure 9).

The mapping from high-level activities to activity patterns can be obtained
automatically through function hl. Each pattern is mapped to exactly one high-
level activity. We replace each transition with the entire corresponding activity
pattern. Figure 10 illustrates the expansion of a high-level activity a with the
process model pa of the associated activity pattern apa. Again, we assume that
activity patterns are provided as DPNs with a single source and a single sink
place (i.e., work�ow nets). With the help of two invisible routing transitions s
and c, we connect the source place src and sink place snk of the activity pattern
to the input places i1, . . . , in and output places o1, . . . , on of the replaced high-
level activity. The resulting expanded process model describes the behavior of
the discovered model in terms of low-level events, i.e., each high-level activity
is replaced with a sub process that captures its behavior on a lower abstraction
level.

20

Figure 10: Expansion of a single high-level activity a with input places i1, . . . , in and output
places o1, . . . , on in the discovered model with the DPN modeling the activity pattern apa.

Figure 11: A partially expanded high-level model. The high-level activity Shift in the high-
level model has been replaced by the DPN that models the activity pattern apa.

Example 11. Figure 11 shows a partially expanded high-level model. We re-
placed high-level activity Shift in the model shown in Figure 9 by the DPN that
models the activity pattern apa. Routing transitions s and c have been added.
Transition s is connected to input place i of high-level activity Shift and to the
source place src of the activity pattern. Transition c is connected to the only
sink place snk of the activity pattern and to both output places o1 and o2 of the
high-level activity Shift. The invisible routing transition s is not strictly neces-
sary. The activity pattern has a single source place and the high-level activity
is connected to a single input place and, thus, we can simplify the expanded
model by fusing places i and src and removing transition s. We use standard
reduction rules for this [17].

We can now validate the quality of the expanded model against the low-level in-
put event log. We use existing conformance checking techniques (e.g., alignment-
based techniques [5, 6]) that determine the quality (e.g., �tness) of a process
model given an event log. We need to validate the model against the original
input event log rather than against the abstracted event log. Otherwise, the
validation would be biased by the domain knowledge that we introduced in
the abstraction. However, when measuring the quality of the expanded model
against the original event log, the result is independent from the domain knowl-
edge assumed by using the activity patterns.

21

Figure 12: A RapidMiner work�ow that implements the GPD method. The operators Identify
and Compose are sub-processes, in which the activity patterns are imported or discovered and
composed with an operator that implements the composition functions.

4. Implementation

Our method is implemented both in the open-source process mining framework
ProM and as set of operators in the RapidMiner extension RapidProM [18].2

Figure 12 shows a work�ow in RapidProM that implements the entire GPD
method.3 First, the original event log is imported from a XES �le. Then, we
import manually created patterns and use discovery method (e.g., Inductive
Miner) to obtain discovered patterns in the sub-process Identify (i.e., step 1
of the method). All patterns are composed in the Compose sub-process. The
Compose operator implements step 2 of the method and requires a collection
of process models and a composition formula as input. By default all patterns
are composed in parallel. We used a sub process for both steps to ensure that
the work�ow �ts in a �gure. We apply the Align & Abstract operator, which
implements steps 3 and 4 of the method. The required inputs are the event
log, the abstraction model and a mapping between the event and transition
labels. Afterwards, the standard Inductive Miner operator is used to discover a
high-level process model (step 5). This process model is, then, expanded with
the new Expand operator. Finally, we use the standard conformance checking
capabilities of RapidProM to measure the �tness of the expanded model.

5. Evaluation

We evaluated the usefulness of our proposed GPD method by using two real-life
event logs and its e�ciency by using a series of synthetic event logs for perfor-

2The ProM package LogEnhancement can be downloaded under http://promtools.org

and the source code of the RapidProM extension under https://github.com/rapidprom/

rapidprom-source/tree/fmannhardt.
3The RapidProM work�ow can be downloaded under: https://svn.win.tue.nl/repos/

prom/Packages/LogEnhancement/Trunk/data/gpd-workflow.rmp

22

http://promtools.org
https://github.com/rapidprom/rapidprom-source/tree/fmannhardt
https://github.com/rapidprom/rapidprom-source/tree/fmannhardt
https://svn.win.tue.nl/repos/prom/Packages/LogEnhancement/Trunk/data/gpd-workflow.rmp
https://svn.win.tue.nl/repos/prom/Packages/LogEnhancement/Trunk/data/gpd-workflow.rmp

mance evaluation. The �rst event log was obtained from a digital whiteboard
system used to support the daily work of nurses in the observation unit of a
Norwegian hospital. We used the whiteboard to evaluate the abstraction part
of the GPD method (i.e., until step 4 in Figure 3). We created an abstraction
model with 18 manual activity patterns. Three of these patterns were already
used as running examples before: apa, apb, and apc in Figure 4. Based on the
abstracted event log that was created by applying our method until step 4, we
gathered insights into the usage of the digital whiteboard system. In this paper
we do not further elaborate on the evaluation of the abstraction method on the
whiteboard event log, as it was already reported in [19].

In Section 5.1, we evaluate the usefulness of the full GPDmethod by applying
it on a new real-life event log that contains events on the management of sepsis
patients in a di�erent hospital from The Netherlands. In Section 5.2, we perform
a controlled experiment to evaluate the performance of the proposed method.
Finally, in Section 5.3 we acknowledge its limitations.

5.1. Application on the Sepsis Process

The process entails the trajectory of patients with a suspicion for sepsis, a life-
threatening condition typically caused by an infection [20], within the hospital.
We analyzed this process as part of a project carried out together with the
emergency department and the data analytics team of the hospital.

First, we provide more details on the event log that we used (Section 5.1.1)
and report on the process questions that we identi�ed together with the stake-
holders from the hospital (Section 5.1.2). Then, we describe the identi�ed ac-
tivity patterns (Section 5.1.3) and show the results that could be obtained (Sec-
tion 5.1.4). Finally, we compare our results with those that can be obtained by
state-of-the-art methods (Section 5.1.5).

5.1.1. Event Log

We extracted the event log from an Enterprise Resource Planning (ERP) system
of the hospital. The ERP systems is used for most activities in the hospital,
such as the electronic patient record, laboratory tests, and information on the
movement of patients between hospital wards. There are about 1,000 cases
and 15,000 events that were recorded for 16 di�erent activities. Moreover, 39
data attributes are recorded, e.g., the department responsible for the activity,
the results of blood tests and information from checklists �lled in by nurses.
The recorded events relate to activities of di�erent categories. Some activities
are executed in the emergency department (e.g., checklists, infusions), some
activities are related to blood tests, some activities are about the admission
and transfer within the hospital, and some activities are about the discharge of
patients.

5.1.2. Process Questions

Together with the doctor responsible for the emergency department and a data
analyst of the hospital, we identi�ed three process questions that are of interest
for the hospital:

23

1. What are the trajectories of patients depending how they were initially
admitted to the hospital? Is there any in�uence on the remaining process,
e.g., does a certain category of patient return more often. Speci�cally, the
hospital is interested in the following three categories: (1) patients that
are �rst admitted to the normal care ward, (2) �rst to the intensive care
ward, or (3) patients that are �rst admitted to the normal care ward and,
only then, to the intensive care ward? Each of the categories is of interest
to the hospital because the category of the �rst admission indicates the
severity of the sepsis condition. In particular, the third category is of high
interest as it indicates that the patient's condition has worsened after
being admitted. The hospital is interested in minimizing the number of
those patients and in visualizing the e�ects of this category of patients to
the operation of the hospital, e.g., in terms of the outcome and the time
that those patients remain in the hospital.

2. Are patients with a sepsis condition given antibiotics and liquid and if
so, then, what is the delay from the initial triage until antibiotics are
administered in the emergency ward. The rationale for this question is
a medical guideline that recommends the administration of antibiotics
within one hour after a sepsis condition has been identi�ed.

3. Are there decision rules that can be discovered based on the attributes
recorded in the event log? Discovering such rules may lead to insights
on the conditions under which patients follow a certain trajectory in the
process. It would be interesting for the hospital to know the most likely
trajectory of a patient in order to prevent problems from arising early in
the process.

We apply the proposed GDP method and show that the obtained process model
is suitable to answer the process questions. Moreover, the discovered process
model is comprehensible by stakeholder and, thus, can be used for communica-
tion. Finally, we show that state-of-the-art process discovery methods applied
directly on the low-level event log provided process models that were unsuitable
to answer these questions.

5.1.3. Activity Patterns

We identi�ed two manual and three discovered activity patterns. The manual
patterns are shown in Figure 13(a) and Figure 13(b). Both patterns are based
on the activities Admission NC and Admission IC, which relate to the admission
of a patient to an intensive care or normal care ward, respectively. We designed
the manual patterns together with the data analyst of the hospital based on
the �rst process question that was articulated by the doctor. Activity pattern
Admission (Figure 13(a)) encodes the three admission variants, which were also
encoded in a similar manner in a �owchart-like process documentation provided
by the emergency department. We deliberately duplicated the activities to en-
code the problematic third variant of admission that is of great interest to the
doctor. A patient may further be transferred between the di�erent wards of

24

(a) Admission pattern that models three di�er-
ent variants of an admission.

(b) Transfer pattern that
models a series of transfers.

Figure 13: Two manual patterns that were created for the sepsis event log. The respective
activity mapping is de�ned by removing the pre�xes A_ or T_ from the transition name (e.g,
λA(A_Admission IC) = Admission IC).

the hospital. Therefore, there may be subsequent events that record one of the
low-level admission activities. Those transfers are not of interest to the emer-
gency department. Therefore, we added activity pattern Transfer (Figure 13(b)),
which encodes that any number of subsequent transfers may occur.

Moreover, we obtained three discovered patterns based on information on
the organizational perspective that is part of the event log. We extracted three
sub logs: Each log contained all activities performed by employees of a certain
department. Then, we discovered a process model for each of the sub logs using
the Inductive Miner (Figure 14). Activity pattern ER (Emergency Department)
is shown in Figure 14(a). All activities in pattern ER are executed in the emer-
gency department (departments A and C in the event log). Therefore, we denote
this pattern as ER. First, the patient is registered and triage checklists are �lled.
Then, antibiotics and liquid infusions can be given. Figure 14(b) shows activity
pattern Lab discovered for department B, clearly this is the laboratory depart-
ment responsible for blood tests. Figure 14(c) is based on a sub log obtained
for department E and contains �ve di�erent activities that relate to di�erent
(anonymized) variants on how patients are discharged.

We composed six activity patterns4 into an abstraction model (Figure 15).
Here, we used the composition functions to add the constraint that a Transfer
can only occur after an Admission has taken place. Clearly, patients need to be
admitted before they can be transferred. Overall, we used only basic domain
knowledge on the process and organizational information taken from the event
log to build an abstraction model.

25

(a) ER pattern discovered for departments A and C.

(b) Lab pattern discovered for department B. (c) Discharge pattern dis-
covered for department E

Figure 14: Three discovered patterns that were obtained by splitting the log based on the
department attribute and using the Inductive Miner on the resulting sub logs.

Figure 15: Abstraction model used for the case study. We added the restriction that the
high-level activity Transfer can only occur after the high-level activity Admission.

5.1.4. Results of the GPD Method

We created an abstracted high-level event log with the abstraction model shown
in Figure 15. The abstracted event log has about 8,300 events for the six high-
level activities. The abstracted event log could be computed in less than 2
minutes using 2 GB of memory. The global matching error of the abstraction
model was ϵ = 0.02. Only for pattern ER a non-zero local matching error
ϵ(ER) = 0.006 was recorded, i.e., all other patterns match perfectly.

Next, we discovered the guided process model shown in Figure 16(a) on the
abstracted event log using the Inductive Miner5. This process model describes

4The sixth activity pattern for the activity Return ER consists only of the activity Return
ER itself, i.e., this activity can be left unchanged by our method.

5We used the Inductive Miner infrequent with a noise threshold of 0.2 (the default setting).

26

(a) High-level guided Petri net

(b) Expanded guided Petri net

Figure 16: High-level and expanded Petri net discovered using IM when applying the GPD
method. Gray transitions are abstracted high-level activities.

the trajectory of a patient on a high level of abstraction. Results of blood tests
are obtained during the whole process. First, patients are in the emergency
room. Then, patients are either admitted to a hospital ward or they leave the
hospital. Admitted patients are possibly transferred to another hospital ward
and eventually discharged. Finally, patients may return to the emergency room
at a later time. The process model matches the high-level description of the
process by stakeholders from the hospital that we obtained beforehand.

We expanded the high-level activities of the guided process model with the
corresponding activity patterns as described in Section 3.8. Figure 16(b) shows
the resulting expanded process model. We validated the quality of the discovered
process model by measuring the average �tness (0.97) of the expanded process
model with regard to the original low-level event log. The process model �ts
most of the behavior seen in the event log. Thus, we can use the expanded
process model to reliably answer the three initially posed process questions.

Category of Admission. The �rst question on how patients are initially admit-
ted to the hospital wards can be answered using the expanded process model.
We projected the low-level event log on the process model using the Multi-
perspective Process Explorer (MPE) [21]. Figure 17 shows the output of the
MPE. We could determine that 2.3% of the admitted patients are of the prob-
lematic category: They are �rst admitted to the normal care ward and, then,
re-admitted to the intensive care ward. Around 86.2% of the patients are ad-

27

Figure 17: Performance information and a decision rule projected on the expanded model
discovered for the sepsis event log.

mitted to the normal care ward and 10.9% of the patients are admitted to the
intensive care ward. Moreover, we used the �ltering capabilities of the MPE to
visualize only the trajectories of the problematic patients. This revealed that
56.5% of those patients return to the emergency room within one year (i.e., ac-
tivity Return ER). Among the other patients only 27.4% return. This indicates
that the problematic category of patients should, indeed, be monitored more
closely.

Infusions. We used the discovered process model to investigate whether antibi-
otics and liquid infusions are given to patients with a sepsis condition. There are
several criteria that are checked to determine a sepsis. The event log contains
the attribute SIRSCriteria2OrMore, which indicates whether two or more of
these criteria are ful�lled. We used the MPE to retain only cases with SIRSCri-

teria2OrMore=true and projected those cases on the expanded process model.
This revealed that 95.3% of those patients eventually get an antibiotics infusion.
However, according to the event log 15% of those patients do not receive a infu-
sion of liquid (i.e., the alignment contains a model move for low-level activity IV
Liquid). Then, we projected the average time between activities in the entire
event log on the process model. This revealed that it takes, on average, 1.68
hours until the antibiotics are administered (Figure 17). When reporting both
�ndings to the hospital, we found that data about the infusions is entered man-
ually into the ERP system. Therefore, it is unclear whether the average time
represents the real waiting time. Moreover, missing liquid infusions are, most
probably, simply not registered.

Decision Rules. We also applied our decision mining techniques [22] to discover
decision rules for the decision points in the expanded process model. We discov-
ered that it depends on the attribute SIRSCriteria2OrMore whether patients
receive infusions. This can be expected as patients with more than two crite-
ria for a sepsis should de�nitely receive infusions. We also discovered decision
rules regarding the three di�erent variants of admission. We found rules for the
admission of patients to the normal care and intensive care. However, we did

28

not �nd a good rule for the problematic category based on the attributes in the
event log.

Overall, using the process model shown in Figure 16(b) we could provide
meaningful answers to the process questions. Moreover, it was possible to use
the discovered process model to communicate with stakeholders. By guiding the
process discovery with activity patterns, we show that it is possible to discover
a model that is comprehensible to domain experts.

5.1.5. Comparison to State-of-the-Art Methods

To assess the usefulness of our GPD method, we compared the insights that
can be obtained from the expanded model shown in Figure 16(b), which was ob-
tained by applying the GPD method and Inductive Miner, with the models that
were solely discovered by state-of-the-art methods on the same abstraction level.
Thus, in this comparison we ignore that the GPD method additionally provides
a high-level process model. We applied the following four discovery methods
directly to the original low-level event log: the Heuristics Miner (HM) [23], the
ILP Miner [24], the Inductive Miner (IM) [13], and the Evolutionary Tree Miner
(ETM) [25].

Heuristics Miner. The process model discovered by the HM6 is unsound, it con-
tains unbounded behavior that prevents the process from completing. Process
model that are unsound are not suited for a wide range of analysis tasks [1].
Therefore, we could not use the process model discovered by the HM.

ILP Miner. The process model discovered by the ILP Miner7 is �tting the
event log well (�tness 0.80), but it is very complex with several non-free choice
constructs. This made it impossible to explain it to the stakeholders (i.e., doctor
and data analyst) of the hospital. Thus, the model is unsuitable in our case.

Evolutionary Tree Miner. The process model discovered by the ETM8 after
running for 100 generations (�tness 0.84) was complex and was missing the in-
frequently occurring activities Admission IC, Release B, Release C, and Release
E. Since those activities are an important part of the process this model could
not be used.

Inductive Miner. Figure 18 shows the process model discovered by the IM9.
Among the state-of-the-art methods, we consider this the best model for our
purposes. Still, note how di�cult it is to use this process model to directly an-
swer any of the process questions. The model does have a comparable average
�tness (0.99), but it fails to properly re�ect the structure of the process. Seman-
tically related activities are not grouped together since the IM does not take the

6We used the ProM 6.7 plug-in Mine for a Heuristics Net using Heuristics Miner.
7We used the ProM 6.7 plug-in ILP-Based Process Discovery (Express).
8We used the ProM 6.7 plug-in Mine Pareto fron with ETMd.
9We used the same parameter settings as when using the IM together with the GPD

method.

29

Figure 18: Unguided Petri net discovered using IM without applying the GPD method.

organizational information and the domain knowledge on the admissions into
account. For example, antibiotics and liquid infusions are placed on di�erent
decision points and the blood tests are placed within the main process �ow.
Moreover, it is possible to repeat most of the process after the two discharge ac-
tivities Release A and Release B occurred. We know from the stakeholders that
administering antibiotics is not repeated in the context of the treatment in the
emergency room. Based on the model in Figure 18 it is impossible to answer the
�rst question on the problematic category of patients. Similarly, it is di�cult to
answer the second question on the antibiotics and liquid infusions as the process
model does not contain a decision point for the infusions. The application of
decision mining (i.e., the third question) requires suitable decision points to be
present in the process model. The decisions modeled in Figure 18 are on a very
low level of abstraction, i.e., on the level of skipping a single low-level activity.
Therefore, we were not able to �nd the decision rules described in the previous
paragraph. To conclude, the unguided process model is clearly not suited for
our type of analysis.

5.2. Evaluation of the E�ciency of the Method

The computation time is dominated by the alignment computation in step 3
of the method. Computing an optimal alignment has exponential worst-case
complexity [5]. The abstraction itself in step 4 can be computed in time linear to
the size of the input trace. Therefore, we evaluated the e�ciency of our method
by computing alignments for several models and traces. All experiments have
been conducted on a standard laptop with 16 GB of memory. We tested the
computation time for a set of eight randomly generated process models (25�263
transitions) and event logs (6�340 events per trace) that were previously used
in [26]. We decomposed each model based on the method described in [27] to
obtain between 3 and 25 activity patterns for each model. Then, we compared
the performance of using the parallel and the interleaving composition of all
activity patterns for increasing levels of noise (10%�30% of swapped events as
described in [26]) that was injected into the event log.

Figure 19 shows the resulting average computation time per trace of our
method when applied to each of the event logs. We limited the computation time
to 100 seconds (100,000 ms) since we consider this to be a feasible computation
time in practice. As expected, the computation time grew exponentially both
with increasing length of the traces as well as with the increasing number of

30

Trace length 1–50 Trace length 51–150 Trace length 151–350
1
0
%
N
o
is
e

2
0
%
N
o
is
e

3
0
%
N
o
is
e

3 4 9 13 14 15 25 3 4 9 13 14 15 25 3 4 9 13 14 15 25

1

10
10
01,

00
010

,0
0010

0,
00
0

1

10
10
01,

00
010

,0
0010

0,
00
0

1

10
10
01,

00
010

,0
0010

0,
00
0

Number of activity patterns

A
ve
ra
g
e
c
o
m
p
u
ta
ti
o
n
ti
m
e
p
e
r
tr
a
c
e
(m
s
)

Composition function Interleaving Parallel

Figure 19: Average computation time per trace of the alignment used in the GPD method.

activity patterns. Moreover, using the parallel composition lead to a worse
performance than using the interleaving composition, which is expected due to
the large state-space that needs to be explored in case of parallel branches. In
comparison, the increasing level of noise had little in�uence on the computation
time.

Overall, the experiment showed that it is feasible to use the GPD method
with up to 25 activity patterns and traces of up to length 350 on occasion of
the interleaving composition. When composing all of the patterns in parallel,
the computation �nished within the maximum of 100 seconds in the cases when
less than 13 activity patterns and an event log with less than 20% noise were
tested. Conversely, the computation did not �nish within 100 seconds for some
traces when using the parallel composition. In situations with 13 or more ac-
tivity patterns, more than 10% noise, or traces that are longer than 150 events
our method would have required a longer computation time. Readers should
however notice that a composition con�guration with all patterns in parallel is
the worst case that rarely happens. Usually, an abstraction model is built using
a combination of the available composition patterns (cf. Figure 15).

5.3. Limitations

We showed that our method can be used to guide the process discovery towards
a more useful process model. Still, we acknowledge that there are some limita-
tions to the GPD method. First, the performance of the method highly depends
on the quality of the used activity patterns. We introduced the expansion step
in the GPD method to limit the risks of using low-quality activity patterns, i.e.,

31

patterns that do not properly capture the real execution of the process. The ex-
panded process model can be validated on the original event log. Hence, quality
problems can be detected. Second, if activity patterns share low-level events,
then, there may be multiple mappings from low-level events to activities. The
cost-based alignment techniques that we use to determine the optimal mapping
chooses an arbitrary pattern in case there are multiple mappings with the same
cost. As we show in Section 5.2, our method is computationally expensive due
to the complexity of the alignment problem [5]. It is infeasible to compute the
exact solution for very long traces and larger sets of activity patterns when
using parallel composition. However, real-life event logs with traces of up to
250 events could be abstracted without problems as demonstrated in our prior
work [19].

6. Related Work

Several event abstraction methods have been proposed. Moreover, there is a
large body of work on activity recognition [28] and event processing [29]. We
focus on work tha t is related to the �eld of process mining (i.e., an explicit
process representation is used). We categorize the related work in unsupervised

and supervised event abstraction methods. First, we describe how this paper
extends our own previous work.

Previous work. This paper extends and revises our previous work [19] on event
abstraction along three directions. (1) We de�ne two di�erent types of activity
patterns depending on how they are obtained: manual patterns and discovered
patterns. (2) We extended the original method by adding three additional steps:
discover, expand, and validate (cf. Figure 3). Thereby, it is possible to use the
resulting process model for reliable analytics. Assumptions that were made
during the abstraction can be validated. (3) We evaluated the revised method
using a new, more extensive case study.

Unsupervised methods. There are several approaches for unsupervised event ab-
straction in the �eld of process mining. Unsupervised method generally try
to determine this relation based on identifying sub-sequences or using machine
learning methods. Among the �rst proposals for event abstraction in process
mining was the Fuzzy Miner by Günther et al. [30]. Activities are grouped to-
gether based on the signi�cance of the edges between activities. Bose et al. [8]
proposed to use common patterns based on repeating sequences to abstract
events. Later, Günter et al. [2] used agglomerative hierarchical clustering to
build a hierarchy of event clusters that can be used for event abstraction. Cook
et al. [31] proposed an unsupervised algorithm for activity discovery based on
sensor data that is guided by the minimum description length principle. Folino
et al. [32] turned event abstraction into a predictive clustering problem and did
not assume the notion of an event label in the new approach. Unsupervised
abstraction methods, clearly, do not take existing knowledge into account and
fail to provide meaningful labels for discovered event clusters.

32

Supervised methods. Approaches for supervised event abstraction assume some
knowledge on the relation between low-level events and activities. Methods
based on Complex Event Processing (CEP) [29] and activity recognition [28]
typically assume a stream of events over which queries are evaluated. When
a query is matched a high-level activity is detected. Traditionally, CEP does
not consider the notion of process instance (i.e., case) and in case of overlapping
queries (e.g., shared functionalities) both high-level activities would be detected.
Still, there is some work that uses CEP withing a business process context [33�
36]. However, none of these works provides a complete process discovery method
based on domain knowledge. There are also proposals for supervised event ab-
straction that are more closely related to the �eld of process mining. Tax et
al. [37] assume the existence of a labeled training set of traces. Moreover, the
approach is limited to processes without concurrent high-level activities. Ma-
chine learning methods are used to infer the correct mapping. Senderovich et
al. [38] determine an optimal mapping between sensor data of a real-time lo-
cating system and activities based on �nding an optimal mapping using integer
linear programming. Ferreira et al. [39] assume a complete process model of
the high-level activities. They use hierarchical Markov models together with an
expectation maximization method to �nd the mapping between low-level events
and the high-level events in the process model. Later work [40] proposed a di�er-
ent, greedy approach that can better deal with noise in the event log. Fazzinga
et al. [41] proposed a probabilistic method to the same problem, �nding a map-
ping between an existing high-level model and events. The method is limited to
traces of length less than 30 events due to the computational complexity. Most
related to our work are the methods developed by Baier et al. [3, 42, 43]. Again,
the methods assume knowledge about a single high-level model for the overall
process. The goal is to automatically discover the relation between events and
activities. Therefore, these methods are mainly targeting the situation where
the process is assumed to be well known. The proposed methods use clustering
methods and heuristics when challenged with event logs from processes that fea-
ture concurrent high-level activities and noise (i.e., erroneous or missing events).
A later proposal using constraint programming approach in [43] only considers
the control-�ow perspective, i.e., rules based on data are not supported. Clearly,
none of the supervised methods guides process discovery method towards a bet-
ter process model that can be validated on the original event log.

7. Conclusion

We presented a new method that uses event abstraction based on domain knowl-
edge to guide process discovery towards better results. We use multi-perspective
activity patterns that encode assumptions on how high-level activities manifest
themselves in terms of recorded low-level events. An abstracted event log is
created on the basis of an alignment between activity patterns and the low-
level event log. We use the abstracted event log to discover a high-level process
model. We expand the high-level activities of this process model with the activ-
ity patterns to validate the quality of the discovered process model based on the

33

original event log. We evaluated the GPD method by applying it to a real-life
event log of a hospital. The case study shows that the GPD method can be suc-
cessfully applied in complex, real-life environments. We created an abstracted
event log and a high-level process model from an event log that was recorded by
a system, in which (1) multiple high-level activities share low-level events with
the same label, (2) high-level activities occur concurrently, and (3) erroneous
events (i.e., noise) are recorded. We validated that the process models obtained
with the GPD method are, indeed, good representations of the event logs stud-
ied. The guided process model is comprehensible by stakeholders and suitable
to answer process questions, whereas the unguided process model discovered by
standard process discovery methods is unsuitable for these purposes. By adding
only basic domain knowledge, we could guide the discovery process towards a
much more useful process model. Future work is needed to address some limita-
tions of our method. At this point, if there are multiple optimal alignments for
a sequence of events, i.e., multiple di�erent instantiations of activity patterns
could explain the observed behavior, then, one of them is chosen arbitrarily. A
prioritization of activity patterns used during the alignment computation could
be introduced. Moreover, it would be possible to introduce a simple heuristic
that minimizes the number of pattern instantiations by introducing a small cost
for instantiating a pattern to the alignment technique, Finally, alignment tech-
niques require a lot of resources for event logs with very long traces. Work on
decomposing or approximating the alignment computation could help to allevi-
ate this limitation.

References

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition, Springer, 2016. doi:10.1007/978-3-662-49851-4.

[2] C. W. Günther, A. Rozinat, W. M. P. van der Aalst, Activity mining by
global trace segmentation, in: BPM 2009 Workshops, Vol. 43 of LNBIP,
Springer, 2009, pp. 128�139. doi:10.1007/978-3-642-12186-9_13.

[3] T. Baier, J. Mendling, M. Weske, Bridging abstraction layers in process
mining, Inf. Syst. 46 (2014) 123�139. doi:10.1016/j.is.2014.04.004.

[4] H. A. Reijers, J. Mendling, R. M. Dijkman, Human and automatic mod-
ularizations of process models to enhance their comprehension, Inf. Syst.
36 (5) (2011) 881�897. doi:10.1016/j.is.2011.03.003.

[5] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, Bal-
anced multi-perspective checking of process conformance, Computing 98 (4)
(2016) 407�437. doi:10.1007/s00607-015-0441-1.

[6] W. M. P. van der Aalst, A. Adriansyah, B. F. van Dongen, Replaying
history on process models for conformance checking and performance anal-
ysis, Wiley Interdiscip Rev Data Min Knowl Discov 2 (2) (2012) 182�192.
doi:10.1002/widm.1045.

34

http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1007/978-3-642-12186-9_13
http://dx.doi.org/10.1016/j.is.2014.04.004
http://dx.doi.org/10.1016/j.is.2011.03.003
http://dx.doi.org/10.1007/s00607-015-0441-1
http://dx.doi.org/10.1002/widm.1045

[7] N. Tax, N. Sidorova, R. Haakma, W. M. P. van der Aalst, Event abstrac-
tion for process mining using supervised learning techniques, in: Intel-
liSys, IEEE, 2016, pp. 161�170, pre-print, https://arxiv.org/abs/1606.
07283.

[8] R. P. J. C. Bose, W. M. P. van der Aalst, Abstractions in process mining:
A taxonomy of patterns, in: BPM 2009, Vol. 5701 of LNCS, Springer, 2009,
pp. 159�175. doi:10.1007/978-3-642-03848-8_12.

[9] M. Leemans, W. M. P. van der Aalst, Discovery of frequent episodes in
event logs, in: SIMPDA 2014, Vol. 237 of LNBIP, Springer, 2015, pp. 1�31.
doi:10.1007/978-3-319-27243-6_1.

[10] C. Diamantini, L. Genga, D. Potena, Behavioral process mining for un-
structured processes, J. Intell. Inf. Syst. 47 (1) (2016) 5�32. doi:10.1007/
s10844-016-0394-7.

[11] J. Carmona, Projection approaches to process mining using region-based
techniques, Data Min. Knowl. Discov. 24 (1) (2012) 218�246. doi:10.1007/
s10618-011-0226-x.

[12] B. F. A. Hompes, H. M. W. E. Verbeek, W. M. P. van der Aalst, Find-
ing suitable activity clusters for decomposed process discovery, in: SIM-
PDA 2014, Vol. 237 of LNBIP, Springer, 2015, pp. 32�57. doi:10.1007/

978-3-319-27243-6_2.

[13] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Using life cycle
information in process discovery, in: BPM 2015 Workshops, Vol. 256 of
LNBIP, Springer, 2016, pp. 204�217. doi:10.1007/978-3-319-42887-1_
17.

[14] IEEE standard for extensible event stream (XES) for achieving interop-
erability in event logs and event streams, IEEE Std 1849-2016 (2016).
doi:10.1109/IEEESTD.2016.7740858.

[15] H. Leopold, J. Mendling, H. A. Reijers, M. L. Rosa, Simplifying process
model abstraction: Techniques for generating model names, Inf. Syst. 39
(2014) 134�151. doi:10.1016/j.is.2013.06.007.

[16] A. Rogge-Solti, R. S. Mans, W. M. P. van der Aalst, M. Weske, Repairing
event logs using timed process models, in: OTM 2013 Workshops, Springer,
2013, pp. 705�708. doi:10.1007/978-3-642-41033-8_89.

[17] T. Murata, Petri nets: Properties, analysis and applications, Proc. IEEE
77 (4) (1989) 541�580. doi:10.1109/5.24143.

[18] A. Bolt, M. de Leoni, W. M. P. van der Aalst, Scienti�c work�ows for pro-
cess mining: building blocks, scenarios, and implementation, STTT 18 (6)
(2016) 607�628. doi:10.1007/s10009-015-0399-5.

35

https://arxiv.org/abs/1606.07283
https://arxiv.org/abs/1606.07283
http://dx.doi.org/10.1007/978-3-642-03848-8_12
http://dx.doi.org/10.1007/978-3-319-27243-6_1
http://dx.doi.org/10.1007/s10844-016-0394-7
http://dx.doi.org/10.1007/s10844-016-0394-7
http://dx.doi.org/10.1007/s10618-011-0226-x
http://dx.doi.org/10.1007/s10618-011-0226-x
http://dx.doi.org/10.1007/978-3-319-27243-6_2
http://dx.doi.org/10.1007/978-3-319-27243-6_2
http://dx.doi.org/10.1007/978-3-319-42887-1_17
http://dx.doi.org/10.1007/978-3-319-42887-1_17
http://dx.doi.org/10.1109/IEEESTD.2016.7740858
http://dx.doi.org/10.1016/j.is.2013.06.007
http://dx.doi.org/10.1007/978-3-642-41033-8_89
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/s10009-015-0399-5

[19] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, P. J.
Toussaint, From low-level events to activities - A pattern-based approach,
in: BPM 2016, Vol. 9850 of LNCS, Springer, 2016, pp. 125�141. doi:

10.1007/978-3-319-45348-4_8.

[20] F. Mannhardt, Sepsis Cases - Event Log. Eindhoven Uni-
versity of Technology. Dataset. (2016). doi:10.4121/uuid:

915d2bfb-7e84-49ad-a286-dc35f063a460.

[21] F. Mannhardt, M. de Leoni, H. A. Reijers, The multi-perspective process
explorer, in: F. Daniel, S. Zugal (Eds.), BPM 2015 (Demos), Vol. 1418 of
CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 130�134.

[22] F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. P. van der Aalst, Decision
mining revisited - discovering overlapping rules, in: CAiSE 2016, Vol. 9694
of LNCS, Springer, 2016, pp. 377�392. doi:10.1007/978-3-319-39696-5_
23.

[23] A. J. M. M. Weijters, J. T. S. Ribeiro, Flexible heuristics miner (FHM), in:
CIDM 2011, IEEE, 2011, pp. 310�317. doi:10.1109/cidm.2011.5949453.

[24] S. J. van Zelst, B. F. van Dongen, W. M. P. van der Aalst, Avoiding over-
�tting in ILP-based process discovery, in: BPM 2015, Vol. 9253 of LNCS,
Springer, 2015, pp. 163�171. doi:10.1007/978-3-319-23063-4_10.

[25] J. Buijs, Flexible evolutionary algorithms for mining structured process
models, Ph.D. thesis (2014). doi:10.6100/IR780920.

[26] M. Leoni, A. Marrella, Aligning real process executions and prescrip-
tive process models through automated planning, Expert Syst Appldoi:
10.1016/j.eswa.2017.03.047.

[27] J. Munoz-Gama, J. Carmona, W. M. van der Aalst, Single-entry single-
exit decomposed conformance checking, Inf. Syst. 46 (2014) 102�122. doi:
10.1016/j.is.2014.04.003.

[28] Y. Liu, L. Nie, L. Liu, D. S. Rosenblum, From action to activity: Sensor-
based activity recognition, Neurocomputing 181 (2016) 108�115. doi:10.

1016/j.neucom.2015.08.096.

[29] G. Cugola, A. Margara, Processing �ows of information: From data stream
to complex event processing, ACM Comput. Surv. 44 (3) (2012) 15. doi:

10.1145/2187671.2187677.

[30] C. W. Günther, W. M. P. van der Aalst, Fuzzy mining - adaptive process
simpli�cation based on multi-perspective metrics, in: BPM 2007, Vol. 4714
of LNCS, Springer, 2007, pp. 328�343. doi:10.1007/978-3-540-75183-0_
24.

36

http://dx.doi.org/10.1007/978-3-319-45348-4_8
http://dx.doi.org/10.1007/978-3-319-45348-4_8
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.1007/978-3-319-39696-5_23
http://dx.doi.org/10.1007/978-3-319-39696-5_23
http://dx.doi.org/10.1109/cidm.2011.5949453
http://dx.doi.org/10.1007/978-3-319-23063-4_10
http://dx.doi.org/10.6100/IR780920
http://dx.doi.org/10.1016/j.eswa.2017.03.047
http://dx.doi.org/10.1016/j.eswa.2017.03.047
http://dx.doi.org/10.1016/j.is.2014.04.003
http://dx.doi.org/10.1016/j.is.2014.04.003
http://dx.doi.org/10.1016/j.neucom.2015.08.096
http://dx.doi.org/10.1016/j.neucom.2015.08.096
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1145/2187671.2187677
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1007/978-3-540-75183-0_24

[31] D. J. Cook, N. C. Krishnan, P. Rashidi, Activity discovery and activity
recognition: A new partnership, IEEE T. Cybernetics 43 (3) (2013) 820�
828. doi:10.1109/TSMCB.2012.2216873.

[32] F. Folino, M. Guarascio, L. Pontieri, Mining multi-variant process models
from low-level logs, in: BIS 2015, Vol. 208 of LNBIP, Springer, 2015, pp.
165�177. doi:10.1007/978-3-319-19027-3_14.

[33] S. Bülow, M. Backmann, N. Herzberg, T. Hille, A. Meyer, B. Ulm, T. Y.
Wong, M. Weske, Monitoring of business processes with complex event
processing, in: BPM 2013 Workshops, Vol. 171 of LNBIP, Springer, 2013,
pp. 277�290. doi:10.1007/978-3-319-06257-0_22.

[34] C. A. L. Oliveira, N. C. Silva, C. L. Sabat, R. M. F. Lima, Reducing
the gap between business and information systems through complex event
processing, Computing and Informatics 32 (2) (2013) 225�250.

[35] M. Weidlich, H. Ziekow, A. Gal, J. Mendling, M. Weske, Optimizing event
pattern matching using business process models, IEEE Trans. Knowl. Data
Eng. 26 (11) (2014) 2759�2773. doi:10.1109/TKDE.2014.2302306.

[36] S. Hallé, S. Varvaressos, A formalization of complex event stream pro-
cessing, in: EDOC 2014, IEEE Computer Society, 2014, pp. 2�11. doi:

10.1109/EDOC.2014.12.

[37] N. Tax, N. Sidorova, R. Haakma, W. M. van der Aalst, Mining local process
models, J. of Innovation in Digital Ecosystems, in press. doi:http://dx.

doi.org/10.1016/j.jides.2016.11.001.

[38] A. Senderovich, A. Rogge-Solti, A. Gal, J. Mendling, A. Mandelbaum, The
ROAD from sensor data to process instances via interaction mining, in:
CAiSE 2016, Vol. 9694 of LNCS, Springer, 2016, pp. 257�273. doi:10.

1007/978-3-319-39696-5_16.

[39] D. R. Ferreira, F. Szimanski, C. G. Ralha, Mining the low-level behaviour
of agents in high-level business processes, IJBPIM 6 (2) (2013) 146�166.
doi:10.1504/IJBPIM.2013.054678.

[40] D. R. Ferreira, F. Szimanski, C. G. Ralha, Improving process models by
mining mappings of low-level events to high-level activities, J. Intell. Inf.
Syst. 43 (2) (2014) 379�407. doi:10.1007/s10844-014-0327-2.

[41] B. Fazzinga, S. Flesca, F. Furfaro, E. Masciari, L. Pontieri, A probabilistic
uni�ed framework for event abstraction and process detection from log
data, in: OTM Conferences, Vol. 9415 of LNCS, Springer, 2015, pp. 320�
328. doi:10.1007/978-3-319-26148-5_20.

[42] T. Baier, A. Rogge-Solti, J. Mendling, M. Weske, Matching of events and
activities: an approach based on behavioral constraint satisfaction, in: SAC
2015, ACM, 2015, pp. 1225�1230. doi:10.1145/2695664.2699491.

37

http://dx.doi.org/10.1109/TSMCB.2012.2216873
http://dx.doi.org/10.1007/978-3-319-19027-3_14
http://dx.doi.org/10.1007/978-3-319-06257-0_22
http://dx.doi.org/10.1109/TKDE.2014.2302306
http://dx.doi.org/10.1109/EDOC.2014.12
http://dx.doi.org/10.1109/EDOC.2014.12
http://dx.doi.org/http://dx.doi.org/10.1016/j.jides.2016.11.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.jides.2016.11.001
http://dx.doi.org/10.1007/978-3-319-39696-5_16
http://dx.doi.org/10.1007/978-3-319-39696-5_16
http://dx.doi.org/10.1504/IJBPIM.2013.054678
http://dx.doi.org/10.1007/s10844-014-0327-2
http://dx.doi.org/10.1007/978-3-319-26148-5_20
http://dx.doi.org/10.1145/2695664.2699491

[43] T. Baier, Matching events and activities, Ph.D. thesis, Universität Potsdam
(2015).

A. Implementation of the Composition Functions as DPNs

As explained in Section 3.4, we describe here the implementation of all proposed
composition functions as DPNs. Figure A.20 and the following 5 paragraphs
describe the implementation of the composition of activity patterns as a DPN.
A comprehensive introduction of DPNs is given in [5]. Given activity patterns
apa = (pa, λa, νa, hla, lta), apb = (pb, λb, νb, hlb, ltb) ∈ P that are implemented
as DPNs with source places sa, sb and sink places ea, eb, we describe how to
compose apa and apb to a combined pattern for each of the introduced compo-
sition functions. We focus on the composition of their process models pa and pb
since the remaining mapping functions are combined by taking their union.

Figure A.20: Implementation of the composition functions using the DPN notation

Sequence. Pattern apa and pattern apb are composed in sequence by adding
two places (source, sink) and three transitions (t1, t2, t3) as shown in Fig A.20.
Places source and sink are the entry and exit points of the composed pattern
and transitions t1, t2, t3 connect the source places sa, sb and sink places ea, eb of
both patterns in sequence.

38

Choice. Pattern apa and pattern apb are composed in choice by adding two
places (source, sink) and four transitions (t1, t2, t3, t4) as shown in Fig A.20.
Places source and sink are the entry and exit points of the composed pattern.
The control-�ow is split after place source such that either t1 or t2 has to
be executed. Transitions t1, t2 are connected to the source places sa, sb of the
patterns. The sink places ea, eb of the patterns are connected to transitions
t3, t4. Finally, both transitions t3, t4 are connected to the exit place sink.

Parallel. Pattern apa and pattern apb are composed in parallel by adding two
places (source, sink) and two transitions (t1, t2) as shown in Fig A.20. The
control-�ow is split using transition t1 such that both patterns pa and pb have
to be executed. Afterward, both places ea and eb are connected to transition t2,
which merges the control-�ow.

Interleaving. Pattern apa and pattern apb are composed in interleaving by
adding seven places (source, sink, p1, p2, p3, p4 and px) and six transitions
(t1, t2, t3, t4, t5, t6) as shown in Fig A.20. Intuitively, the interleaving of pa and
pb can be expressed as choice between any possible ordering of pa and pb. The
control-�ow is split in parallel using t1 enabling any possible re-ordering of pat-
terns pa and pb. Place px is added restricting the behavior such that only either
pa or pb can be executed at the same time. Finally, transition t6 merges the
control-�ow from places px, p3 and p4.

Repetition. The repetition of a pattern apa is modeled by adding three places
(source, sink, p1) and three transitions (t1, t2, t2). We use a counter variable i
that keeps track of the repetitions and add guards to transitions t1, t2 and t3 that
constrain the maximum allowed and minimum required number of repetitions
accordingly. Transition t3 increases the counter i on each iteration. Please
note because we have a-priori knowledge of the number of repetitions such a
construct can always be unfolded to a normal Petri net, e.g., by repeated use
of the sequence and choice composition and duplicating the pattern. Moreover,
in case the number of repetitions is unbounded, i.e., m = ∞ and n = 0 we can
simplify the construction as shown on the right-hand side of Figure A.20.

39

