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Oppgavetekst
I et sanntidssystem må tidsfristene nås, ellers degraderes eller feiler systemet.
For å kunne garantere at tidsfristene blir nådd må programmenes verste kjøretid
(WCET) være kjent, maskinvaren til systemet må være predikterbar og hyppigheten
av eksterne avbrudd må være begrenset. Å oppnå alle disse faktorene er vanskelig
og derfor er hensikten med denne oppgaven å utvikle en Time Management Unit (TMU)
som kan måle og begrense kjøretiden prosessoren bruker på vanlige prosesser
og avbruddsrutiner under kjøring.

Prosjektet kan deles inn i mindre oppgaver:
*Utfør et litteratursøk omkring temaet
*Lag en spesifikasjon for TMUen
*Evaluer mulige plattformer for implementering og diskuter fordeler og ulemper
*Utfør en implementering på en passende platform
*Test implementasjonen for å verifisere at designet fungerer etter spesifikasjonene
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Problem description

A Time Management Unit (TMU) for Real-Time
Systems

In real-time systems the time deadlines must be met or the system degrades or
even fails. To guarantee that the deadlines are met, the worst-case execution
time (WCET) of the programs must be known, the underlying hardware must
be deterministic and the occurrences of interrupts must be bounded. All these
factors may be hard to achieve, therefore this project aims to provide a Time
Management Unit (TMU) that is capable of measuring and controlling the
execution time spent by tasks and interrupt service routines (ISRs).

The assignment can be split into several smaller tasks:

1. Perform a background research on the subject and related work

2. Propose a design for the TMU

3. Evaulate possible implementations of the proposed TMU and discuss its
pros and cons

4. Implement the TMU on a suitable platform according to its proposed
design

5. Perform tests on the implementation to verify that the design is operat-
ing according to its specifications
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Supervisors: Amund Skavhaug (ITK)

Bjørn B. Larsen (IET)
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Abstract

In real-time systems the time deadlines must be met or the system degrades
or even fails. To support timely behaviour, the real-time system must be pre-
dictable at the hardware and software level. Estimating the Worst Case Exe-
cution Time (WCET) of any non-trivial code is difficult and when taking into
account the underlying hardware with features like deep execution pipelines,
caches and DMA, the overall effort will be unmanageable [20]. Further, real-
time systems are often subjected to unbounded external stimuli, known as
asynchronous events or interrupts, which may drive the system into overload.
Because of these two key problems, there is a need for a dynamic approach to
measuring and controlling the execution times of tasks and interrupt service
routines (ISRs).

In this project, a study of scheduling in real-time systems have been car-
ried out. Based upon this study, a hardware unit called Time Management
Unit (TMU) is designed aiding real-time systems in keeping deadlines by mea-
suring and controlling the execution times of tasks and asynchronous events.
A test system was implemented, comprising an Field Programmable Gate Ar-
ray (FPGA) with a LEON3 soft-core processor running the eCos embedded
operating system.

The result is that with the use of the proposed TMU, execution times for
tasks and ISRs can be bounded. Thus one can achieve system predictability
and guarantee that the system will not be overloaded, if the unit is used
appropriately. The TMU introduces very little processor time overhead and
utilise little to moderate amounts of FPGA logic resources.

The principal conclusion is that the TMU brings predictability to real-time
systems operating in unpredictable environments at a relatively low cost; both
concerning processor overhead and the increased use of FPGA logic resources.
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Chapter 1

Introduction

Real-time computing systems play a vital role in our society, and they cover
a spectrum from the very simple to the very complex. Examples of real-time
systems include multimedia players, microwave ovens, control systems for cars,
airplanes, military weapon systems and factory control systems.

In real-time computing the correctness of the system depends not only on the
logical result of the computation but also on the time at which the results are
produced. Typically, a real-time system consists of a controlling system and a
controlled system. For example, in an automated factory the controlled system
is the factory floor with its robots, assembling stations and the assembled
parts. The controlling system is the computer and human interfaces that
manage and coordinate the activities on the factory floor. Thus, the controlled
system can be viewed as the environment with which the computer interacts.

Figure 1.1: Real-time system

The controlling system interacts with its environment, the controlled system,
via sensors and actuators. It is imperative that the percepted state of the
environment, as seen by the controlling system, is consistent with its actual
state. Otherwise, the controlling systems’ activities may have disastrous ef-
fects. Hence, periodic monitoring and timely processing of the information is
necessary.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation

Knowing the Worst Case Execution Time (WCET) is of prime importance for
the timing analysis of hard real-time systems. WCET analysis is becoming
more difficult as modern computer systems become more complex. Features
like deep execution pipelines, branch prediction, caches and virtual memory,
all lack deterministic behaviour, and must be included in the WCET analysis.
Estimating the WCET of any non-trivial code is in general very difficult,
and when taking into account the unpredictable hardware, WCET analysis
requires unmanageably high efforts [20]. Also, real-time systems are often
subjected to unbounded external stimuli, known as asynchronous events or
interrupts, which may drive the system into overload. To lower the chances of
missing deadlines, systems have to be over-dimensioned to reduce the risk of
an unexpected temporal resource shortage during operation. Because of this,
there is a need for a dynamic measurement and control of the execution times
of tasks and asynchronous events.

This thesis will focus on how to make a hardware unit, called a Time Man-
agement Unit (TMU), able to improve the predictability of real-time sys-
tems based on standard processor architectures with unpredictable timing
behaviour. The TMU will limit the execution times of tasks as well as the
occurrences of interrupts. The unit shall preferably be architecture indepen-
dent and not depend on any special programming language feature.

1.2 Work in the same field

Hardware platforms for real-time system have gained little interest compared
to that of the software, where programming language features and schedul-
ing algorithms have been thoroughly studied. An accurate Time-Management
Unit for real-time processors was proposed by Kailas and Agrawala [19]. It
is a fine granularity clock embedded in CPUs solving problems with the soft-
ware clock approach, updating a memory location with a new time value at
regular intervals, controlled by an external interrupt. The unit is not intended
for measuring or controlling execution times. Others have studied processor
support for temporal predictability; The SPEAR design example [7] is a pro-
cessor design with predictable timing and interrupt response aimed at hard
real-time systems. Colnaric and Halang [6] presents an asymmetrical multi-
processor architecture for hard real-time systems, whose temporal behaviour
is fully predictable. As for software, Puschner and Koza [26] created new
programming language features making WCET analysis easier.

1.3 Thesis organisation

This thesis is organised as follows:

2



1.3. THESIS ORGANISATION

• Chapter 2 presents the necessary background literature regarding real-
time systems, scheduling theory, FPGA development and the basic soft-
ware tools used in this project.

• Chapter 3 describes the system development phase. This includes the
proposed TMU’s theory of operation, implementation choices, host and
target development platforms, HDL design and implementation of the
TMU, hardware simulations and the modifications to eCos for TMU
support.

• Chapter 4 presents the final tests performed on the implemented system.

• Chapter 5 gives a discussion of the project and the work that has been
done.

• Chapter 6 presents the conclusion of this project.

• Chapter 7 gives an overview of further work.
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Chapter 2

Background literature

The purpose of this chapter is to present real-time systems and RTOSs, basic
concepts of scheduling, and to introduce FPGAs and soft-core processors. And
finally to describe the basic tools and utilities used in this project.

2.1 Real-time system definition

There are several definitions of a real-time system; however, they all have in
common the notion of response time – the time taken for the system to generate
output from some associated input. The Oxford Dictionary of Computing
gives the following definition:

Any system in which the time at which the output is produced is
significant. This is usually because the input corresponds to some
movement in the physical world, and the output has to relate to
that same movement. The lag (delay) from the input time to the
output time must be sufficiently small for acceptable timeliness.

Krishna and Shin [20] have another definition:

A real-time system is anything that we, the authors of this book,
consider to be a real-time system. This includes embedded systems
that control things like aircraft, nuclear reactors, chemical power
plants, jet engines, and other objects where Something Very Bad
will happen if the computer does not deliver its output in time.
These are called hard real-time systems. There is another category
called (not surprisingly) soft real-time systems, which are systems
such as multimedia, where nothing catastrophic happens if some
deadlines are missed, but where the performance will be degraded
below what is generally considered acceptable. In general, a real-
time system is one in which a substantial fraction of the design
effort goes into making sure that task deadlines are met.

5



CHAPTER 2. BACKGROUND LITERATURE

2.2 Real-Time Operating System

A Real-Time Operating System (RTOS) is a multitasking operating system
intended for real-time applications. The RTOS provides an abstraction layer
that hides the hardware details from the application software. The abstraction
layer typically consists of the following five categories:

1. Task management

2. Intertask communication and synchronisation

3. Timers

4. Dynamic memory allocation

5. Device I/O

The most basic job of the RTOS kernel is task management. This set of services
allows application software developers to design their software as a number of
separate pieces of software known as tasks – each handling a distinct topic, a
distinct goal, and perhaps its own real-time deadline. Services in this category
include the ability to create and control tasks and assign priorities to them.
The main RTOS service in this category is the scheduling of tasks as the
embedded system is in operation.

The scheduler controls the execution of application software tasks, and is a
component of RTOSs that have been studied thoroughly. Most RTOSs do their
scheduling of tasks using a scheme called priority-based preemptive schedul-
ing. Each task in a software application must be assigned a priority, with
higher priority values representing the need for quicker responsiveness. Very
quick responsiveness is made possible by the preemptive nature of the task
scheduling. Preemptive means that the scheduler is allowed to stop any task
at any point in its execution, if it determines that another task needs to run
immediately. The basic rule that governs priority-based preemptive schedul-
ing is that at every moment in time, the highest priority task that is ready
to run, will be the task that must be running. In other words, if both a low-
priority task and a higher-priority task are ready to run, the scheduler will
allow the higher-priority task to run first. The low-priority task will only get
to run after the higher-priority task has finished with its current work. But
sometimes, the task with the highest priority depends on a resource held by a
lower priority task. This scenario is called priority inversion. This causes the
execution of the high priority task to be blocked until the low priority task
has released the resource, effectively inverting the relative priorities of the two
tasks. If some other medium priority task, that does not depend on the shared
resource, attempts to run in the interim, it will take precedence over both the
low priority task and the high priority task. Solutions to this problem are
disabling all interrupts to protect critical sections, the priority ceiling protocol
or priority inheritance.

6



2.3. SCHEDULING

The second category of kernel services is intertask communication and syn-
chronisation. These services make it possible for tasks to pass information
from one to another, without danger of that information ever being damaged.
They also make it possible for tasks to coordinate, so that they can produc-
tively cooperate with one another. Without the help of these RTOS services,
tasks might communicate corrupted information or otherwise interfere with
each other. Message passing, mutexes, semaphores, event flags and signals are
examples of services in this category.

Since many embedded systems have stringent timing requirements, most RTOS
kernels also provide some basic timer services, such as task delays, event coun-
ters and alarms.

Some RTOSs provide dynamic memory allocation and device drivers.

2.2.1 What makes an OS real-time?

Many general purpose operating systems provide similar kernel services as
real-time operating systems. The key difference between general-computing
operating systems and real-time operating systems is the need for deterministic
timing behaviour in the real-time operating systems. Formally, deterministic
timing means that operating system services consume only known and ex-
pected amounts of time. In theory, these service times could be expressed as
mathematical formulas. These formulas must be strictly algebraic and not
include any random timing components. Random elements in service times
could cause random delays in application software and could then make the ap-
plication randomly miss real-time deadlines – a scenario clearly unacceptable
for a real-time embedded system.

An RTOS does not necessarily have high throughput; rather, an RTOS pro-
vides facilities which, if used properly, guarantee deadlines can be met gener-
ally (soft real-time) or deterministically (hard real-time). Designers of general
purpose OSs on the other hand, will strive for better throughput, not deter-
minism. An RTOS is valued more for how quickly and/or predictably it can
respond to a particular event than for the given amount of work it can perform
over time.

2.3 Scheduling

It is the job of the scheduling algorithm and operating system scheduler to pro-
vide predictability to the system and to coordinate resources to meet the tim-
ing constraints of the physical system. Traditionally, real-time systems have
used the cyclical executives approach for scheduling. Cyclical executives pro-
vide a deterministic schedule for all tasks and resources in a real-time system
by creating a static timeline upon which tasks and resources are assigned spe-
cific time intervals. While such an approach is manageable for simple systems,

7



CHAPTER 2. BACKGROUND LITERATURE

it quickly becomes unmanageable for large systems. It is a painful process to
develop application code that fit in the time slots of a cyclical executive while
ensuring that the critical sections of different tasks do not interleave. This
approach is typically expensive to create, verify, and update.

An alternative approach uses preemptive and priority-driven scheduling al-
gorithms to schedule tasks. A scheduling algorithm is a set of rules that
determines the task to be executed at a particular moment. This means that
whenever there is a request for a task of higher priority than the one currently
being executed, the running task is immediately interrupted and the newly
requested task is started. Thus the specification of such algorithms amounts
to the specification of the method of assigning priorities to tasks. Using well
defined algorithms to schedule tasks in a real-time system yields an under-
standable scheduling solution.

The preemptive real-time scheduling algorithms can be broadly classified into
two categories: static priority and dynamic priority. This classification is
based on the manner in which priorities are assigned to tasks. A scheduling
algorithm is said to be static if priorities are assigned to tasks a priori and
they do not change during run-time. A static algorithm is also called a fixed
priority scheduling algorithm, an example of which is the Rate Monotonic
(RM) algorithm. A scheduling policy is said to be dynamic if priorities of a
task might change from request to request. The Earliest Deadline First (EDF)
algorithm falls under the category of dynamic priority scheduling policy. Be-
fore discussing these algorithms in detail, some of the terms associated with
real-time scheduling theory will be explained.

A task is a thread of execution performing a specific function. For example, a
task could be a simple thread polling the serial port to check if any data has
arrived. A real-time task can be classified as periodic or aperiodic depending
on its arrival pattern or as soft or hard based on the consequences of a missed
deadline.

2.3.1 Scheduling periodic tasks

Tasks with regular arrival times are called periodic. A common use of periodic
tasks is to process sensor data. For example, a temperature monitor of a
nuclear reactor should be read periodically to detect any changes promptly.
Tasks with irregular arrival times are aperiodic tasks and are used to handle
the processing requirements of random events such as operator requests.

Each of the tasks must complete execution before some fixed time has elapsed
since its request. This fixed time is known as the deadline of the task. If
meeting a given task’s deadline is critical to the system’s operation the task
is called a hard real-time task. If missing occasional deadlines of a particular
task does not adversely affect the system’s performance it is a soft real-time
task.

8



2.3. SCHEDULING

2.3.2 Rate Monotonic Scheduling

Liu and Layland presented an optimal fixed priority algorithm known as the
Rate Monotonic (RM) algorithm [22]. In this algorithm, priorities are as-
signed according to the request rate (frequency) of tasks. Specifically, tasks
with higher frequency will have higher priority. The Rate Monotonic priority
assignment is optimum in the sense that no other fixed priority assignment
rule can schedule a task set which cannot be scheduled by the RM algorithm.

One drawback of the RM algorithm is that the schedulable bound is less than
100 %. Schedulable bound is the maximum value of the CPU utilisation for
a set of tasks up to which all tasks will be guaranteed to meet their deadline.
Since Ci/Ti is the fraction of processor time spent in executing task τi, the
total CPU utilisation for a set of n tasks is:

U =
n∑

i=0

Ci/Ti (2.1)

where Ci is the worst-case execution time and the period is Ti.

Liu and Layland [22] proved that the worst-case schedulable bound Wn for n
tasks is:

Wn = n
(
21/n − 1

)
(2.2)

This worst case utilisation bound decreases monotonically from 0.83 when
n = 2 to 0.693 as n approaches infinity. This shows that any periodic task set
of any size will meet deadlines all the time if the RM algorithm is used and
the total utilisation is not greater than 0.693. Note that this is a sufficient but
not necessary schedulability test. The task set may still be schedulable even
if the processor utilisation is above the schedulable bound.

2.3.3 Earliest Deadline First

Liu and Layland [22] also present a dynamic scheduling algorithm called the
Earliest Deadline First (EDF) because the task with the nearest deadline for
its current request has the highest priority. At any instant, the task with
the highest priority and an unfulfilled request gets hold of the CPU. This
contrasts with the RM algorithm in which priorities do not change with time.
One drawback of the EDF algorithm is the higher scheduling overhead with
respect to the RM algorithm, as it has to dynamically compute priorities of
tasks.

The necessary and sufficient condition for the feasibility of a task set with
EDF is given below:

U =
n∑

i=0

Ci/Ti 6 1 (2.3)

where, n is the total number of tasks.
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The ratio of Ci/Ti is the CPU utilisation by the ith task. The above condition
is necessary because the tasks should not overload the CPU if they have to
meet all the deadlines. EDF is an optimal algorithm in the sense that if a task
set can be scheduled by any algorithm, it can also be scheduled by EDF.

Dynamic priority scheduling with the EDF algorithm has a distinct advantage
over fixed priority scheduling: the schedulable bound for EDF is 100 % for all
task sets. This means that you can fully utilise the computing power of the
CPU. The major problem with the EDF algorithm is that there is no way to
guarantee which tasks will fail in a transient overload. With RM, low priority
tasks are always the first to fail. However, no such priority assignment exists
with EDF.

2.3.4 Scheduling Aperiodic Tasks

A task with random arrival times is called an aperiodic task. A sporadic
task is a subset of aperiodic tasks, having with a minimum interarrival time.
Aperiodic tasks result from operator actions or asynchronous events. Non-
critical aperiodic tasks can be executed as background tasks. On the other
hand, if the aperiodic task is critical it can be incorporated into the RM
algorithm through the use of a periodic server, which is a periodic task whose
function is to service one or more aperiodic tasks. The simplest periodic server
is the Polling Server (PS) and is illustrated in Figure 2.1. The PS is activated
every period. If no aperiodic tasks are available, the server suspends itself until
the next period. The major disadvantage of this approach is unpredictable
response times for aperiodic tasks. An aperiodic task arriving just after the
PS has been invoked, has to wait for the server’s next period.

Figure 2.1: A polling server for handling aperiodic tasks

An efficient scheduler should be able to meet the hard deadlines of periodic
tasks and provide a fast average response time for aperiodic tasks. Two of
the algorithms that strive to achieve this goal are: the Deferrable Server (DS)
algorithm and the Sporadic Server (SS) algorithm. These algorithms overcome
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the major limitation of the polling method where the aperiodic task arrives
after the polling instant.

Deferrable Server Algorithm

Lehoczky, Sha and Strosnider proposed an algorithm for scheduling aperiodic
tasks called the Deferrable Server (DS) algorithm [38]. This algorithm creates
a periodic server τi with Ci execution time, or execution budget, with a priority
defined by the server’s period Ti. The DS has the entire period to use its Ci

budget at priority Pi. When the server has consumed its budget, its priority
is set to background – the lowest priority of the system, only allowing it to
run when no periodic tasks are available. At the beginning of each period, the
budget is set to Ci. If the DS has any remaining budget from the previous
period, it will be discarded.

The difference between the PS and the DS is that a DS can service an aperiodic
task anytime during its period provided that it still has some unused execution
time. On the other hand, a polling server can only service an aperiodic task
that is pending at the start of its period.

Figure 2.2 illustrates a schedule of two periodic tasks and a DS which handles
aperiodic tasks. Vertical arrows indicate an aperiodic request and vertical
lines represent the release of periodic tasks. The release of the DS means that
its budget is replenished. The tasks are ordered by priority, although once the
DS has spent its budget, it will receive the lowest priority.

Figure 2.2: An example schedule with a Deferrable Server
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Sporadic Server Algorithm

Another algorithm for scheduling soft deadline aperiodic tasks was given by
Sprunt, Sha and Lehoczky [34], called the Sporadic Server (SS). The SS algo-
rithm creates a high priority task for servicing aperiodic tasks and preserves
its server execution time at its high priority level until an aperiodic request
occurs. It differs from the DS algorithm in the way it replenishes its server
execution time. Thus, the sporadic server does not recover its capacity to
its full value at the beginning of each new period, but only after it has been
consumed by aperiodic task execution. More precisely, the sporadic server
replenishes its capacity each time TA it becomes active and its capacity is
greater than 0. The replenishment time is set to TA plus the server period.
The replenishment amount is set to the capacity consumed within the interval
TA and the time when the sporadic server becomes idle or its capacity has
been exhausted. The sporadic server is considered to be active if the priority
at which the system is currently executing is equal to or greater than its pri-
ority, otherwise it is idle. Figure 2.3 illustrates an example schedule with a
medium priority sporadic server and two periodic tasks.

Figure 2.3: A medium priority sporadic server for handling aperiodic tasks

According to Sprunt et al. [34], from a scheduling point of view, a sporadic
server can be treated as a standard periodic task with the same period and
execution time as the sporadic server. They proved that a periodic task set
that is schedulable with a task, τi, is also schedulable if τi is replaced by a
sporadic server with the same period and execution time.
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2.4 FPGA

A Field Programmable Gate Array (FPGA) is a semiconductor device contain-
ing cells of programmable logic known as Configurable Logic Blocks (CLB) and
programmable interconnections. Each CLB has a Look-Up Table (LUT) that
can be configured to give a specific type of logic function when programmed.
Additionally, there are clocked flip-flops in the CLBs, allowing an optionally
synchronous operation and a basic memory element. A typical FPGA has
thousands of CLBs and often have special features such as dedicated hard-
ware multipliers and block RAM. Modern FPGAs contain enough logic blocks
to implement a number of 32-bit processors on a single device [40]. Most FP-
GAs are volatile and lose their configuration upon power loss. Thus the use of
non-volatile memory, i.e. flash, for holding the configuration bits is necessary.
Often a Complex Programmable Logic Device (CPLD)1 is used to read the
non-volatile memory and program the FPGA when powering up. To define
the behaviour of the FPGA the user provides schematics or Hardware Descrip-
tion Language (HDL) source code. The most common HDLs are VHDL and
Verilog.

2.4.1 IP Cores

To simplify the design of complex systems in FPGAs, there exist libraries of
predefined complex functions and circuits that have been tested and optimised
to ease the design process. These predefined circuits are commonly called In-
tellectual Property cores, or IP cores, and are available from FPGA vendors
and third-party IP suppliers. These cores are rarely free, and typically re-
leased under proprietary licenses. Other cores are available from developer
communities such as OpenCores [24], which are typically free and released
under GNU General Public License (GPL) or similar license.

Soft-core processor

A soft-core processor is a processor IP core that can be wholly implemented
using logic synthesis. It can be implemented in different semiconductor de-
vices containing programmable logic, e.g. FPGAs and CPLDs. Because of
this implementation, the processor will not operate at the speeds or have the
performance of a hard-core solution. In many embedded applications, the
high performance achieved by the hard-core processor is not required, and
performance can be traded for expanded functionality and flexibility. With
a soft-core processor, its functionality can be tweaked and peripheral devices
can be added and removed very easily.

1CPLDs are also programmable logic devices, similar to FPGAs, but are non-volatile and
typically has less logic resources than FPGAs
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2.4.2 Design Flow Overview

The general design flow of FPGAs consists of the system design entry where
the user supplies HDL files or schematics providing a description of the desired
hardware functionality. Then functional simulation may be performed until
the result is satisfactory. The next step is to synthesise the design, that is,
the synthesis tool will analyse the HDL files and will extract RAM, counters,
multiplexers and arithmetic blocks out of the code. When synthesis is done, it
is time for place and route. The place and route tool generates a netlist and a
timing file. With the timing file it is possible to perform a timing simulation
again, in the same simulation environment as before. This timing simulation
will be more accurate than the one from synthesis, since it involves timing for
routing as well. The last step is to generate a bit-file and download it into the
device.

2.5 VHDL

VHDL is the VHSIC Hardware Description Language. VHSIC is an abbrevia-
tion for Very High Speed Integrated Circuit. VHDL is used for describing the
structure and behaviour of digital electronic hardware designs, such as ASICs
and FPGAs as well as conventional digital circuits.

VHDL was originally developed in order to document the behaviour of digital
systems, that is to say, VHDL was developed as an alternative to huge, complex
manuals which were subject to implementation-specific details. Later, logic
simulators were developed that could read the VHDL files. The next step
was the development of logic synthesis tools that read the VHDL, and output
a definition of the physical implementation of the circuit. Modern synthesis
tools can extract RAM, counter, and arithmetic blocks out of the code, and
implement them according to what the user specifies. Thus, the same VHDL
code could be synthesised differently for lowest cost, highest power efficiency,
highest speed, or other requirements.

VHDL is strongly-typed, is case insensitive and has many similarities with the
Ada programming language.

In VHDL, a design consists at a minimum of an entity which describes the
interface and an architecture which contains the actual implementation. In
addition, most designs import library modules. Some designs also contain
multiple architectures and configurations. The following example is a counter
with parameterised register width, asynchronous reset and parallel load.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter is
generic (
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width : integer := 4
);
port (
clk,rst,load : in std_ulogic;
data : in unsigned(width-1 downto 0);
count : out unsigned(width-1 downto 0)

);
end counter;

architecture behaviour of counter is
begin
process(rst,clk)
variable q : unsigned(width-1 downto 0);

begin
if rst = ’1’ then
q := (others => ’0’);

elsif rising_edge(clk) then
if load = ’1’ then
q := data;

else
q := q + 1;

end if;
end if;
count <= q;

end process;
end behaviour;

2.6 GHDL

GHDL is a complete free software simulator for VHDL using GCC technology.
It works by compiling VHDL files into a binary which simulates, or executes,
the design. GHDL is strictly a simulator; it does not do synthesis and it cannot
translate a design into a netlist.

Below is an example of how to simulate a simple design with GHDL. The
Device Under Test (DUT) is in the file design.vhd and the testbench file
is design_tb.vhd in which the top entity is called design_tb. A simple
testbench is built by instantiating the DUT, generating a sequence of input
patterns and comparing the output to what output the system should produce.
The synopsys library specified on the command line enables the use of the
standard textio package in the testbench, needed for printing diagnostics to
the standard ouput, stdout. The first step is to analyse the design, the next
step is to elaborate the design. Note how the name of the entity is used instead
of the filename here. The last step is to execute the compiled binary file.

$ ghdl -a --ieee=synopsys design.vhd design_tb.vhd
$ ghdl -e --ieee=synopsys design_tb
$ ./design_tb

GHDL can also create VCD or GHW files, which may be visually inspected
with a waveform viewer such as GTKWave. VCD format files are defined in
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the Verilog HDL standard which limits its use with VHDL. The GHW format
is specially designed for the use with GHDL, enabling inspection of all VHDL
datatypes.
$ ./design_tb --vcd=dump.vcd
$ ./design_tb --wave=dump.ghw

2.7 GTKWave

GTKWave is a fully featured waveform viewer which reads many dumpfile for-
mats, i.e. GHW and VCD, and allows their viewing. GTKWave is developed
for Linux, with ports for various other operating systems. Figure 2.4 shows a
screenshot of GTKWave, displaying a dumpfile. GTKWave support save files,
enabling window and signal display settings to be restored – as shown below.
$ gtkwave dump.ghw gtkwave.sav

Figure 2.4: A screenshot of GTKWave
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Chapter 3

System development

This chapter presents the theory of operation of the TMU system and the
whole development process; from the choice of host and target platforms to
the HDL model of the TMU, hardware simulations and the modifications to
the eCos RTOS for TMU support.

3.1 TMU theory of operation

The TMU is a hardware unit that is integrated in, or in close proximity to,
the CPU. Its purpose is to measure and control the execution time of both
tasks and Interrupt Service Routines (ISR). For each interrupt level the unit
has an execution timer called IRQ Timer and for the ordinary execution state
the unit has a single execution timer called the Task Timer, as illustrated in
Figure 3.1.

Figure 3.1: A block diagram of the TMU

The Task Timer, shown in Figure 3.2, has three processor accessible registers;
count, limit and control. The count register is incremented every clock cycle
and compared with the limit register. When they equal, an interrupt is gen-
erated, signalling that the current task has exceeded its given budget. The
control register manages the interrupt generation capabilities of the timer.
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Figure 3.2: A block diagram of the TMU Task Timer

Each IRQ Timer has an extra register, the period register, as seen in Fig-
ure 3.3. The period register stores the interval at which the count register
shall be cleared. Thus, the IRQ Timers support the DS algorithm presented
in section 2.3.4 by replenishing the execution budget at regular intervals. Ac-
tually, the IRQ Timer requires another register too, the ticks register. Ticks
always increments and is compared with the period register, but is not acces-
sible to the processor. When ticks and period equals, both ticks and count
will be cleared. Interrupt signals previously connected directly to the IRQ
controller are routed via the IRQ Timers. While there is execution budget
left, all IRQ signals are passed through. But when the budget is spent, no
more signals will pass until the next replenish period.

Figure 3.3: A TMU IRQ Timer block diagram

The TMU also has a configuration register and a timer select register. The
configuration register has a global enable bit for the TMU and some read only
information about the current implementation, helping software determine its
underlying platform. The timer select register sets the active TMU timer and
is controlled by software. Only one timer is running at any given time.

Count, limit and period registers are preferably 64-bit wide, but may be less.
The minimum register width is the one with a register overflow period of more
than the longest relative deadline for any task in the system.
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3.1.1 OS support for the TMU

The TMU must be incorporated into the Operating System (OS) for proper
handling. The Task Timer registers shall become a part of the task, or thread,
context. That is the count, limit and control registers of the Task Timer. That
way, all threads share the same hardware timer, but are under the impression
of having their own timer. The following operations must be performed by
the OS:

• When a thread is created, default values for the TMU registers must be
provided.

• During a context switch, the OS must save the current threads TMU
registers to the threads stack, and load the next threads TMU registers
from its stack and into the TMU hardware.

• When an interrupt occurs, the OS must change the active timer of the
TMU to that of the corresponding interrupt by writing to the Timer
Select register. And when the Interrupt Service Routine (ISR) has com-
pleted, the Timer Select register must be written again to reselect the
Task Timer.

Further, a suitable Application Programming Interface (API) to the TMU
must be provided by the system for application program use.

3.2 TMU implementation alternatives

The objective is to find the implementation giving the lowest overhead, but at
the same time is flexible enough to allow the TMU being implemented with
various processor architectures.

3.2.1 Peripheral device

For a System-on-Chip (SoC), functions such as timers, General Purpose In-
put/Output (GPIO), system timers and UARTs are commonly known as pe-
ripheral devices. These devices are on the same chip as the CPU and are
accessed through a system bus. Being a peripheral device, the TMU benefits
of the standardised system bus and processor architecture independence. On
the negative side, accessing a device through a bus means slower access times.

3.2.2 Coprocessor

A coprocessor is a processor that operates under the supervision of the primary
processor, the CPU. Typically, it has no means of accessing memory without
the use of the CPU and it supports a limited instruction set. The purpose of a
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coprocessor is to alleviate the CPU load by handling some computational in-
tensive tasks. Typical application areas are floating point arithmetic, graphics
and signal processing. As for the TMU, being implemented as a coprocessor
means tight integration with the CPU. This shortens the register access times
and gives high flexibility as the coprocessor has its own instruction set. On
the other hand, many systems only allow for a single coprocessor, and thus
using the TMU comes at the expense of other coprocessor functions. Further,
the TMU has no benefit of having its own instruction set, and it does not do
anything computational intensive; it only counts and compares its registers.
Additionally, the coprocessor interface is architecture specific and would make
it harder to implement the TMU on other processor systems.

3.2.3 Register File

The register file is a set of registers that the CPU uses for temporarily storing
data. These registers are addressed by the operand fields of processor instruc-
tions which are defined by the Instruction Set Architecture (ISA) for that
particular architecture. Since the registers are addressed in the instruction
itself, it is the fastest memory access times of the computer memory hierar-
chy. Because the register file is closely related to the ISA, adding registers to
the register file means expanding the ISA. In turn, the assembler for the given
architecture has to be modified to support the new instruction format, making
it an intrusive approach. Thus, implementing the TMU inside the register file
means that the ISA and assembler have to be modified, making it a highly
architecture specific and complicated implementation.

3.2.4 Chosen implementation

Based on the above given aspects of the various TMU implementations, the
decision fell on peripheral device implementation. As a peripheral device, the
TMU is very easy to implement compared to the coprocessor and register file
alternatives. It also means that the TMU will be easy to adapt to new systems
and architectures. There is no need to modify the compiler/assembler or in
any way modify the ISA. The only negative side is that accessing the device
through a bus means slower access times.

3.3 Host development platform

The host development platform is a standard desktop computer with a parallel
port for FPGA programming and a serial port or ethernet port for commu-
nicating and debugging the target. Linux is opted as the host platform OS
because it is a convenient platform for development with GNU tools. Using
GNU tools on MS Windows often involve programs like Cygwin or MinGW,
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emulating a UNIX environment. The Ubuntu 7.04 Linux distribution was used
as the host OS.

To be utilised as a development platform, additional software must be installed
on the host. The following sections describe the installation procedure of the
basic tools used throughout this project.

3.3.1 Installation of Xilinx software and cable drivers

A user account was created at the Xilinx home page, http://www.xilinx.
com, before the download of the Xilix WebPACK could take place. When the
download had finished, the installer was started like this:
$ cd /path/to/dl/
$ unzip <name>.zip
$ cd <name>
$ sudo ./setup

When using Xilinx JTAG software like Impact, Chipscope and XMD on Linux,
the proprietary kernel module windrvr from Jungo is needed to access the
parallel- or USB-cable. As this module does not work with current linux
kernel versions (versions above 2.6.18) a library was developed by users on
the Internet, which emulates the module in userspace and allows the tools to
access the JTAG cable without the need for a proprietary kernel module. Thus,
“Install cable drivers” in the install procedure was deselected and the third-
party cable driver was installed instead. The cable driver was downloaded
from http://rmdir.de/~michael/xilinx/. and is called libusb-driver.

The library was built like this:
$ cd /path/to/dl/
$ tar xzf usb-driver-HEAD.tar.gz
$ cd usb-driver
$ make

The built library is named libusb-driver.so and exists in the working directory.
Although the library is called libusb, it also handles the parallel programming
cables.

The Xilinx software depends on several environment variables defined in the
file settings.sh in the installation directory. settings.sh must be sourced
in the shell before starting any Xilinx utility. The example below starts Xilinx
ISE Project Navigator.
$ source /path/to/Xilinx92i/settings.sh
$ ise

When using the FPGA download utility Impact, the path to libusb-driver.so
must be set:
$ su
$ source /path/to/Xilinx92i/settings.sh
$ export LD_PRELOAD=/path/to/libusb-driver.so
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$ impact

Note that using the cable drivers requires root privileges by default. Ordi-
nary user access to the parallell port device used for FPGA programming was
enabled by adding the user to the “lp” group:
$ sudo usermod -a -G lp username

When trying to program the FPGA with iMPACT, the error “Programming
failed” and “DONE did not go high” appeared. This was fixed by setting the
option “Use HIGHZ” instead of “BYPASS” in Edit −→ Preferences −→ iMPACT
−→ Configuration Preferences.

Now, most of the Xilinx IDE was running correctly, but when trying to run
i.e. Floorplanner, the following error appeared:
$ floorplanner
Wind/U X-toolkit Error: wuDisplay: Can’t open display

This behaviour was corrected by setting the environment variable DISPLAY
to :0.

To sum up, the following entries were added to the shell resource file1 after
installation of the Xilinx WebPACK, so that all utilities would work.
source /path/to/Xilinx92i/settings.sh
export LD_PRELOAD=/path/to/libusb-driver.so
export DISPLAY=:0

3.3.2 GHDL

The VHDL simulator GHDL can be installed through the package manage-
ment system of Ubuntu:
$ sudo apt-get install ghdl

3.3.3 GTKWave

The waveform viewer GTKWave can be installed through the package man-
agement system of Ubuntu:
$ sudo apt-get install gtkwave

3.4 FPGA development board

There are two market leading FPGA manufacturers, Xilinx and Altera. Both
provide free tools for MS Windows platforms. Xilinx also provide free devel-
opment tools for Linux, while Linux tools from Altera must be purchased.

1The shell resource file is named, on Ubuntu systems at least, .bashrc, and exists in
the home directory of the user
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Because Linux has been chosen as the host platform OS, Xilinx FPGA devel-
opment boards were opted. In the next sections, the following Xilinx boards
will be presented:

1. Spartan-3 Starter Board
This board was readily available at project start and was subject to the
first implementation tests, presented in the next section.

2. Spartan-3A DSP 1800A Development Board
This board was ordered when it became clear that the first board had
insufficient resources. As the supplier could not deliver the board in
time, no actual implementation was performed on this platform. But
while the order was being processed, an implementation was prepared
and simulations were performed.

3. Virtex-4 ML401 Evaluation Platform
This board was obtained when the supplier of the Spartan-3A DSP
1800A Development Board could not deliver in time. The Virtex-4
ML401 Evaluation Platform is the board in which the final design is
implemented.

3.4.1 Spartan-3 Starter Board

The Spartan-3 Starter Board, Figure 3.4, was readily available at project start
and was subject to the first implementation tests. As will be discussed in this
text, the board was an unsuitable platform for testing the TMU and another
board had to be obtained.

Figure 3.4: Xilinx Spartan-3 Starter Board, source http://www.xilinx.
com

The Xilinx Spartan-3 Starter Board features:
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• Xilinx Spartan-3 XC3200 FPGA with 1 920 slices2, 30 Kib distributed
RAM and 216 Kib of block RAM

• On-board 2 Mib Platform Flash (XCF02S)

• 8 slide switches, 4 pushbuttons, 9 LEDs, and 4-digit seven-segment dis-
play

• Serial port, VGA port, and PS/2 mouse/keyboard port

• 1 MiB3 on-board 10ns SRAM (256 Kib4 x 32)

• Three 40-pin expansion connectors

Trying out an 8-bit soft-core processor

The idea behind the first implementation attempt was to keep the system as
simple as possible, finding a good match of an 8-bit soft-core MCU running a
suitable RTOS in which the TMU could be embedded. Table 3.1 shows a se-
lection of 8-bit MCU IP cores found through OpenCores [24] and the Internet.
Listed compilers and RTOSs are also free. Note that the quality of cores found
on the Internet varies greatly. Some cores are totally equivalent to a particu-
lar device, implementing the same instruction set and set of peripherals, while
others are only partially compatible, either lacking some peripheral devices,
not implementing the full instruction set or have not been tested in hardware.
The cores listed below provide an acceptable quality standard, suitable for
implementation in an FPGA.

Table 3.1: A selection of free 8-bit MCU IP cores

Arch. Name Compatible HDL Compiler RTOS
AVR avr_core ATmega103 VHDL GCC FreeRTOS
8051 8051 - Verilog SDCC FreeRTOS
PIC16 CQPIC PIC16F84 VHDL SDCC1 -
PIC18 ae18 PIC18 Verilog SDCC1 FreeRTOS

Of these cores, the AVR Core was chosen because of its support by the well
known GCC compiler and that it has been thoroughly tested. The AVR
Core is written by Ruslan Lepetenok in synthesisable VHDL and is an Atmel
ATmega103 equivalent device, having the same instruction set and instruction
timing. The core features 32 8-bit general purpose registers, 23 interrupt
vectors and support for up to 128 KiB of program and up to 64 KiB of data

2On Spartan-3 architectures: 1 CLB = 4 slices = 8 LUTs
3mebibyte = 220 bytes = 1,024 kibibytes (MiB)
4kibibit = 210 bits = 1,024 bits (Kib)
1SDCC support for PIC16 and PIC18 MCUs is a work in progress as of March 2008
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memory. It also has a programmable UART, two 8-bit timers, eight external
interrupt sources and two 8-bit parallell ports.

The AVR Core is supported by FreeRTOS – a minimal RTOS featuring:

• Multitasking capabilities

• Preemptive, cooperative and hybrid kernel configuration options

• Support for co-routines

• Intertask communication and synchronisation

• Priority inheritance

• Scalable

FreeRTOS is licensed under a modified GPL and can be used in commercial
applications under this license, without having to open source user application
code.

A new project in the Xilinx ISE Project Navigator was created and all AVR
Core VHDL files were copied into the project. The program memory of the
AVR Core is hardcoded in the file PROM.vhd, and must be specified before
the design can be synthesised. The AVR Core distribution comes with an
utility called, hex2vhd, reading Intel Hex format files and generating a PROM
VHDL entity in a file named PROM.vhd containing the program instructions
and static data. An example of compiling a program for the AVR Core and
generating PROM.vhd is shown below.

$ avr-gcc -mcall-prologues -mmcu=atmega103 -Os -g prog.c -o prog.elf
$ avr-objcopy -j .text -O ihex prog.elf prog.hex
$ hex2vhd prog.hex

avr-gcc and avr-objcopy is a part of the AVR development tools that
was installed through the package management system of Ubuntu:

$ sudo apt-get install avr-libc binutils-avr \
> gcc-avr gdb-avr simulavr

Having specified the location of the generated PROM.vhd in Project Navigator,
the design can be implemented. Test programs were written, testing the paral-
lel ports by flashing LEDs and writing to the UART. These test programs can
be found in Appendix A. When building the FreeRTOS demo design, updating
PROM.vhd and implementing the design, it became clear that the generated
bit-file was too big for the XC3S200 FPGA. Thus, an implementation of the
TMU with an RTOS for proper testing would be impossible. Even if the
design could fit into the FPGA, the AVR Core has no debug unit, making
single stepping through programs impossible. Also, the process of updating
the PROM memory with a new program takes a significant amount of time,
as the FPGA design cycle has to be performed each time.
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Instantly updating block RAM contents in a .bit file

In designs like the AVR Core, the contents of the program memory is hard-
coded into a HDL file. When loading a new program, the whole FPGA design
flow has to be performed. This process is very time consuming, and when
only the memory contents of a design is changing, it is also unnecessary. Xil-
inx provide a tool called Data2Mem, which decreases development time by
orders of magnitude by directly replacing block RAM data in bit files without
the intervention of any other Xilinx implementation tools.

Data2Mem needs a .bmm (Block Memory Map) file to direct the translation
of data into the proper initialisation form. A .bmm file is a text file that has
syntactic descriptions of how individual Block RAMs constitute a contiguous
logical data space. However, as Data2Mem is a part of Xilinx automated
design flow for embedded processors, proper syntax of the .bmm file is poorly
documented for stand-alone use. As a result, usage of this tool failed.

3.4.2 Spartan-3A DSP 1800A Development Board

As the XC3S200 FPGA on the Spartan-3 Starter Board had too little re-
sources, a new development board was ordered. Although the supplier could
not deliver the board in time, and the Virtex-4 ML401 Evaluation Platform
was used for the implementation, the board is still presented here. The time
between ordering the board and obtaining the Virtex-4 ML401 Evaluation
Platform was spent simulating and preparing a LEON3 design for actual im-
plementation on the Spartan-3A DSP 1800A Development Board. Because
there was no demo design in GRLIB for this board, a lot of time was spent
on making one. The Spartan-3A DSP 1800A development board, Figure 3.5,
features:

• Spartan-3A XC3SD1800A DSP FPGA with 16 640 slices, 260 Kib dis-
tributed RAM and 1 512 Kib of block RAM

• 128 MiB DDR2 SDRAM (32 Mib x 32), 16 Mib x 8 parallel flash, 64
Mib SPI serial flash

• 10/100/1000 Ethernet PHY

• RS232 serial port

• Video RGB Port

• 8 user LEDs, 8-position user DIP switch, 4 user push button switches,
reset push button switch

• JTAG programming/configuration port
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Figure 3.5: Xilinx partan-3A DSP 1800A Development Board, source http:
//www.xilinx.com

3.4.3 Virtex-4 ML401 Evaluation Platform

As the XC3S200 FPGA on the Spartan-3 Starter Board had too little logic
resources, another development board was obtained. The Virtex-4 ML401
Evaluation Platform, Figure 3.6, featuring:

Figure 3.6: Xilinx Virtex-4 ML401 Evaluation Platform, source http://
www.xilinx.com

• Xilinx Virtex-4 XC4VLX25 FPGA with 10 752 slices, 168 Kib dis-
tributed RAM and 1 296 Kib of block RAM
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• 64 MiB DDR SDRAM, 8 Mib ZBT SRAM, 64 Mib Flash, 4 kb I2C
EEPROM

• 16-character x 2-line LCD

• General purpose DIP switches LEDs, and push buttons

• Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, and
microphone-in (mono) jacks

• RS-232 serial port

• USB Ports (2 Peripheral/1 Host)

• VGA port with 24-bit video DAC

• PS/2 mouse and keyboard connectors

• On-board 32 Mib Platform Flash (XCF32P)

• System ACE CompactFlash controller with Type I/II CompactFlash
connector for FPGA configuration from CF-cards

3.5 Soft-core processor alternatives

The 8-bit AVR Core MCU test proved to be a difficult development platform,
as discussed in Section 3.4.1. In the second design, larger processors with de-
bug facilities and rapid program downloading functionalities was opted. Ta-
ble 3.2 lists a selection of free 32-bit soft-core processors suitable for implemen-
tation. As before, listed processors and RTOSs are free and all architectures
use the GCC. All processors are supported by Linux and uClinux, but as they
have poor real-time capabilities, only RTOSs are listed.

Table 3.2: A selection of free 32-bit soft-core processors

Name ISA HDL RTOS
LEON SPARC V8 VHDL RTEMS, eCos
OpenRISC OpenRISC Verilog RTEMS
AEMB MicroBlaze Verilog FreeRTOS

3.5.1 LEON

The LEON processor is a 32-bit synthesisable processor core written in VHDL
based on the SPARC V8 architecture. The core is highly configurable, and
particularly suitable for System-on-Chip (SoC) designs. The LEON3 core is
a newest implementation of the LEON family, with a 7 stage integer pipeline
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and multi-processor support. It is distributed as part of the GRLIB IP library
under the GNU GPL.

3.5.2 OpenRISC

OpenRISC, or more specifically OpenRISC 1000, is a processor family based
on an open source 32/64-bit RISC ISA design by the OpenCores team [24]
released under the GNU Lesser General Public License (LGPL). The only fin-
ished implementation is the 32-bit OpenRISC 1200 which is a 32-bit scalar
RISC with Harvard microarchitecture, 5 stage integer pipeline and virtual
memory support (MMU), written in Verilog HDL. Being Wishbone compli-
ant5, OpenRISC will easily integrate with many other open source cores that
use the same open bus specification.

3.5.3 AEMB

The AEMB is an open source 32-bit microprocessor core written in Verilog
HDL. It is instruction compatible with the Xilinx Microblaze and comes with
several architectural enhancements. It will easily run C/C++ code and has
been independently proven in hardware. AEMB is Wishbone compliant and
will easily integrate with many other open source cores that use the same open
bus specification. The AEMB core is fully parameterisable, without using any
unwieldy define files. This includes the address space and optional functional
units, such as the barrel-shifter and multiplier. This allows customisation in
the design without having to make any changes to the original AEMB files.

3.5.4 Chosen soft-core processor

Of the given processors, LEON3 was chosen as it seemed to be the easiest pro-
cessor to start out with, having a large user base, lots of peripherals, included
testbench and demo designs for many FPGA boards. Also, Kjetil Svarstad, a
professor dealing with system level design and analysis of digital systems at
NTNU, recommended it.

3.6 RTOS alternatives

Suitable RTOSs for the LEON3 soft-core processor are RTEMS and eCos, as
listed in Table 3.2. Both are presented here before the choice is made.

5Wishbone is an open bus standard for SoC designs
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3.6.1 RTEMS

RTEMS (Real-Time Executive for Multiprocessor Systems) is a free open
source RTOS designed for embedded systems. RTEMS is designed to sup-
port various open API standards including POSIX and uITRON. The basic
features of the RTEMS kernel include:

• Multitasking capabilities

• Event-driven, priority-based preemptive scheduling

• Optional rate-monotonic scheduling

• Intertask communication and synchronisation

• Priority inheritance

• Dynamic memory allocation

• High level of user configurability

Additionally, RTEMS provide networking, filesystems and debugging support.

RTEMS is distributed under a modified GPL licence, allowing linking RTEMS
objects with other files without requiring the full executable to be covered
by the GPL. This license is based on the GNAT Modified General Public
License with the language modified to not be specific to the Ada programming
language.

3.6.2 eCos

Embedded Configurable Operating System, or eCos, is an open source Real-
Time Operating System (RTOS) intended for embedded and real-time sys-
tems.

It can be customised to precise application requirements, with hundreds of op-
tions, delivering the best possible run-time performance and minimised hard-
ware needs. It is written in the C and C++ programming languages, and
its standard application interface is C. eCos also has compatibility layers and
APIs for POSIX and uITRON. eCos was designed for devices with memory
size in the tens to hundreds of kilobytes, and it can be used on hardware with
too little RAM to support embedded Linux, which currently needs a mini-
mum of about 2 MiB of RAM, not including application and service needs.
The basic features of the eCos kernel include:

• Multitasking capabilities

• Event-driven, priority-based preemptive scheduling – choose between the
bitmap scheduler and the multi-level queue (MLQ) scheduler

• Intertask communication and synchronisation
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• Priority inheritance and priority ceiling protocol

• Integration with the system’s support for interrupts and exceptions

• High level of user configurability

eCos also provide device drivers, filesystem support and network capabilities.
eCos is distributed under the GPL license with an exception which permits
proprietary application code to be linked with eCos without itself being forced
to be released under the GPL. It is also royalty and buyout free.

3.6.3 Chosen RTOS

Both RTEMS and eCos seemed like equally good alternatives, but only one
could be chosen. eCos was chosen as the system RTOS because it is highly con-
figurable and simple, both important aspects when implementing the TMU.

3.7 LEON3 development tools

3.7.1 GRLIB IP Library

GRLIB is a collection of reusable IP cores distributed under GNU GPL. It
is based on the AMBA AHB and APB on-chip buses, which is used as the
standard interconnect interface. The implementation of the AHB/APB buses
is compliant with the AMBA-2.0 specification [1], with additional “sideband”
signals for automatic address decoding, interrupt steering and device identi-
fication. The AHB and APB signals are grouped according to functionality
into VHDL records, declared in the GRLIB VHDL library. All GRLIB cores
use the same data structures to declare the AMBA interfaces, and can then
easily be connected together.

GRLIB is downloaded from the home page of Gaisler Research, http://www.
gaisler.com. It can be installed anywhere, just extract the downloaded
archive:
$ tar xzvf grlib-gpl-1.0.17-b2710.tar.gz

3.7.2 GRMON debug monitor

GRMON is a general debug monitor for the LEON processor, and for SoC
designs based on the GRLIB IP library. GRMON features:

• Read/write access to all system registers and memory

• Built-in disassembler and trace buffer management

• Downloading and execution of LEON applications
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• Breakpoint and watchpoint management

• Remote connection to GNU debugger (gdb)

• Support for USB, JTAG, RS232, PCI, Ethernet and SpaceWire debug
links

GRMON can be run in stand-alone mode, or connected through a network
socket to the GNU GDB debugger. In stand-alone mode, a variety of de-
bugging commands are available to allow manipulation of memory contents
and registers, breakpoint/watchpoint insertion and performance measurement.
Connected to GDB, GRMON acts as a remote target and supports all GDB
debug requests. The communication between GDB and GRMON is performed
using the GDB extended-remote protocol.

GRMON is released under both a professional and an evaluation license. The
evaluation version may be used during a limited period without purchasing
a license. GRMON can be downloaded from http://www.gaisler.com.
Untar the download and add the the path to the GRMON executable in the
search path:
$ tar xzvf grmon-eval-1.1.27b.tar.gz
$ echo "export PATH=/path/to/grmon-eval/linux:$PATH" >> $HOME/.bashrc

3.7.3 TSIM LEON simulator

TSIM is an instruction-level simulator capable of emulating LEON-based com-
puter systems. TSIM features:

• Accurate and cycle-true emulation

• High performance: up to 30 MIPS on high-end PC (Xeon@3.2GHz)

• Standalone operation and remote connection to GNU debugger (gdb)

• Instruction trace buffer

• Stack backtrace with symbolic information

• Unlimited number of breakpoints and watchpoints

TSIM can be downloaded from http://www.gaisler.com and installed
like this:
$ tar xzvf tsim-eval-2.0.10.tar.gz
$ echo "export PATH=/path/to/tsim-eval/tsim/linux:$PATH" >> $HOME/.bashrc

TSIM can be run in stand-alone mode, or connected through a network socket
to the GNU GDB debugger. It acts very similarly to the GRMON debugger
and has a variety of debugging commands allowing manipulation of mem-
ory contents and registers, breakpoint/watchpoint insertion and performance
measurement.

A stand-alone TSIM session:
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$ tsim-leon3
tsim> load hello
tsim> go
resuming at 0x40001114
Hello, eCos world!

A session with TSIM and gdb, using two terminals:
Terminal 1:

$ tsim-leon3 -gdb
gdb interface: using port 1234
connected
Hello, eCos world!

Terminal 2:

$ sparc-elf-gdb
(gdb) file hello
(gdb) target extended-remote localhost:1234
(gdb) load
(gdb) c
Continuing.

Program exited normally.
(gdb)

3.7.4 BCC

The Leon Bare-C Cross Compilation System (BCC), a free C/C++ cross-
compiler system for LEON2 and LEON3 processors based on GCC and the
Newlib embedded C-library. BCC includes a small run-time system with in-
terrupt support and Pthreads library. BCC consists of the following packages:

• GNU C/C++ cross-compiler (3.2.3 and 3.4.4)

• GNU Binutils-2.16.1 (assembler, linker ...)

• Newlib 1.13.0 Embedded C-library

• Bare-C run-time system with interrupt support and tasking

• Pthreads library

• Boot-prom builder

• GNU debugger (gdb)

• DDD graphical front-end for gdb

• Insight graphical front-end for gdb

• Windows (Cygwin) and linux host

• Optional Eclipse-based IDE
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BCC can be downloaded from the homepage of Gaisler Research, www.gaisler.
com. The procedure for binary package installation of BCC on a Linux host
is shown below. BCC is recommended to be installed in /opt:
$ su
# mv sparc-elf-3.4.4-1.0.30.tar.bz2 /opt
# cd /opt
# tar xjvf sparc-elf-3.4.4-1.0.30.tar.bz2
# exit
$ echo "export PATH=/opt/sparc-elf-3.4.4/bin:$PATH" >> $HOME/.bashrc

3.8 Implementing a LEON3 system

The best way to implement a LEON3 system is to start out with one of the
many demo designs available in the GRLIB distribution. In the following
text, the demo design for the Virtex-4 ML401 Evaluation Platform is used.
If the design needs modifications, GRLIB provides a graphical configuration
tool which is started like this:
$ cd <grlib>/designs/leon3-avnet-ml401
$ make xconfig

Figure 3.7 shows the GRLIB configuration tool.

The design can then be simulated or implemented in the FPGA. GRLIB sup-
ports several simulators, i.e. GHDL, ModelSim. GRLIB also support several
synthesis tools, but for this project, only Xilinx tools have been used. To per-
form synthesis, place and route and generation of bitfiles, all that is needed
is:
$ make ise

To program the FPGA or PROM, type:
$ make ise-prog-fpga
$ make ise-prog-prom

3.8.1 Running applications on target

To download and debug applications on the target board, the GRMON debug
monitor is used. GRMON can be connected to the target using RS232, JTAG,
ethernet or USB. Ethernet was opted for its high speed. To connect using the
ethernet port, do:
$ grmon-eval -eth -u -gdb

initialising ............
detected frequency: 41 MHz

Component Vendor
LEON3 SPARC V8 Processor Gaisler Research
GR Ethernet MAC Gaisler Research
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Figure 3.7: The GRLIB configuration tool
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DDR266 Controller Gaisler Research
AHB/APB Bridge Gaisler Research
LEON3 Debug Support Unit Gaisler Research
LEON2 Memory Controller European Space Agency
Generic APB UART Gaisler Research
Multi-processor Interrupt Ctrl Gaisler Research
Modular Timer Unit Gaisler Research
General purpose I/O port Gaisler Research
Unknown device Unknown vendor
AHB status register Gaisler Research

Use command ’info sys’ to print a detailed report of attached cores

gdb interface: using port 2222

The unknown device is the TMU. It is unknown because its plug and play codes
are not defined in GRMON. Open another terminal, start gdb and connect to
the target:

$ sparc-elf-gdb
(gdb) file program-name
(gdb) target extended-remote localhost:2222
(gdb) load
(gdb) c
Continuing.

To reload the program:

(gdb) monitor reset
(gdb) load
(gdb) c
Continuing.

Commands that start with monitor is passed to the debug monitor, which in
this case is GRMON. That way, all commands available in GRMON can be
accessed in GDB by using the monitor prefix.

To run programs with GRMON in stand-alone mode, do:

$ grmon-eval -eth -u
grlib> load program-name
grlib> run

3.9 Configuring eCos and building applications

This section will demonstrate how to configure and build eCos as well as
compiling user applications and running them on the LEON simulator TSIM.

The eCos build process involves three separate directory trees: source, build,
and install.

• The source tree is the source code repository, which is located under the
packages directory of an eCos distribution.
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• The build tree is generated by the configuration tools and contains in-
termediate files, such as makefiles and object files. The structure of the
build tree might differ between system builds. Typically, each package
in the configuration has its own directory in the build tree, which is used
to store that package’s makefiles and object files.

• The install tree is the location of the eCos main library file and the
exported header files, which are used when the application is built. The
library files are located under the lib subdirectory, and the header files
are contained under the include subdirectory.

For this example, the eCos port for LEON3 will be used. Either download
eCos from CVS or download the latest version with applied patches from
www.gaisler.com. Untar the download at a suitable location and export
the eCos repository path through the ECOS_REPOSITORY environment
variable:

$ tar xjvf ecos-rep-1.0.8.tar.gz
$ export ECOS_REPOSITORY=/path/to/ecos-rep-1.0.8/packages

To permanently have the the environment variable set, add it to the shell
resource file like this:

$ echo "export ECOS_REPOSITORY=/path/to/ecos-rep-1.0.8/packages" >> $HOME/.bashrc

The kernel will be configured and built in a separate directory called the build
tree. To start out with a standard configuration, do:

$ cd <build>
$ ecosconfig new sparc_leon3

This will create a text file called ecos.ecc that contains the default config-
uration for the LEON3 target. The configuration file may be altered by hand,
or preferably by using the graphical user interface called eCos Configuration
Tool:

$ configtool ecos.ecc

Figure 3.8 shows a screenshot of the eCos Configuration Tool, showing some
of the many options.

The next step after the configuration phase is to fill the eCos build tree. This
can be performed either within the Configuration Tool or in the shell as will
be done here.

$ ecosconfig tree

The build tree is a set of makefiles, header files and source files that will be
used for building the eCos install tree. Sometimes it may be necessary to make
the build tree after some configuration changes. Now, to build eCos, simply
type make:

$ make
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Figure 3.8: A screenshot of the eCos configuration tool
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Within the build tree there is now a directory called install. The install tree is
the location of the eCos main library file and the exported header files, which
are used when the application is built. The library files are located under
the lib subdirectory, and the header files are contained under the include
subdirectory.

Building applications is preferably performed in yet another directory.
$ cd <apps>
$ sparc-elf-gcc -g -I/path/to/ecos-build/install/include \
> -L/path/to/ecos-build/install/lib -Ttarget.ld -nostdlib hello.c

Applications can be tested with the TSIM simulator:
$ tsim-leon3 a.out
tsim> go
resuming at 0x40001114
Hello, eCos world!

3.10 HDL design of the TMU

As the LEON3 processor is written in VHDL, it was reasonable to code the
TMU in VHDL as well. The TMU is written in a structured VHDL coding
style called “two-process method” proposed by Jiri Gaisler [11]. The method
is applicable to any synchronous single-clock design, which represents the ma-
jority of all designs. The coding style has three simple rules:

• Only use two processes per entity

• Use record types in all port and signal declarations

• Use high-level sequential statements to code the algorithm

In order to improve readability and provide a uniform way to encode the algo-
rithm of a VHDL entity, the two-process method only uses two processes per
entity: one process that contains all combinational (asynchronous) logic, and
one process that contains all sequential logic (registers). Using this structure,
the complete algorithm can be coded in sequential (non-concurrent) state-
ments in the combinational process while the sequential process only contains
registers, i.e. the state.

Signals are grouped together in VHDL records, according to functionality,
which simplifies the connection of modules. By using record types to group
associated signal, the port list becomes both shorter and more readable.

The biggest difference between a program in VHDL and standard program-
ming language such as C, is that VHDL allows concurrent statements and
processes that are scheduled for execution by events rather than in the order
they are written. This reflects indeed the dataflow behaviour of real hard-
ware, but becomes difficult to understand and analyse when the number of
concurrent statements passes some threshold. On the other hand, analysing
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the behaviour of programs written in sequential programming languages does
not become a problem even if the program tends to grow, since there is only
one thread of control and the execution is done sequentially from top to bot-
tom. The two-process method asserts this problem by using only high-level
sequential statements to code the algorithm.

3.10.1 TMU VHDL model

The component declaration of the TMU is given in Listing 3.1.

Listing 3.1: The component declaration of the TMU, apbtmu.vhd
component apbtmu
generic (
pindex : integer := 0; -- APB device select signal
paddr : integer := 0; -- 12 MSb of APB address
pmask : integer := 16#fff#; -- APB address mask
pirq : integer := 0; -- which APB irq to generate
ntimers : integer range 1 to MAXTIMERS := 16;
tbits : integer range 1 to 32 := 32; -- timer bits
);

port (
rst : in std_logic;
clk : in std_logic;
apbi : in apb_slv_in_type;
apbo : out apb_slv_out_type;
tmui : in tmu_in_type;
tmuo : out tmu_out_type
);

end component;

The first four generics are common to all APB devices. They are used for
configuring which APB select signal will be used to access the unit, its base
address, address range and the interrupt line that the unit shall use. The
TMU further has a generic specifying how many timers to implement, where
the first timer is the Task Timer and subsequent timers will be IRQ Timers.
The last generic selects how many bits each timer register will occupy. As for
now, the maximum register width is 32 bits, sufficient for testing. The port
signals, apart for clock, reset and APB in and out, are signals for connecting
to the IRQ controller and setting the unit in debug mode. The declaration of
the VHDL records tmu_in_type and tmu_out_type can be seen below:
type tmu_in_type is
record
dhalt : std_ulogic; -- halt timers in debug mode

end record;

type tmu_out_type is
record
apbi : apb_slv_in_type; -- to irq controller
morebudget : std_logic_vector(MAXTIMERS-1 downto 1); -- only for debug

end record;
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As can be seen, the record declaration of tmu_out_type contains a apbi
signal for the IRQ controller. This apbi is equivalent to the apbi in the port
declaration, except that the IRQ signals are controlled by each implemented
IRQ Timer. The record tmu_in_type contains a signal dhalt that freezes
the TMU when asserted. dhalt should be connected to the LEON3 Debug
Support Unit (DSU), stopping the TMU whenever the system is in debug
mode. The TMU conforms to the theory of operation given in Section 3.1 and
the complete VHDL model is available in Appendix B.

3.10.2 TMU register details

Section 3.1 introduced the processor accessible registers of the TMU. This
section will describe these registers in detail, starting with the address mapping
of all TMU registers in Table 3.3.

Table 3.3: The Time Management Unit (TMU) registers

Address offset Register name
0x00 Configuration
0x04 Timer select
0x08 Pending IRQs
0x0C Unused
0x10 Timer 1 Counter
0x14 Timer 1 Limit
0x18 Timer 1 Replenish Period
0x1C Timer 1 Control
0xn0 Timer n Counter
0xn4 Timer n Limit
0xn8 Timer n Replenish Period
0xnC Timer n Control

Table 3.4: TMU Configuration register

0 : Enable or disable the TMU. The current timer will only increment
if this bit is set.

1 – 5 : The number of timers implemented. Read only.
6 – 11 : How many bits that are used for timer registers; count, limit and

period. Read only.
12 : Indicates whether the TMU is in debug mode. Debug mode is

controlled by the LEON3 Debug Support Unit (DSU). Read only.
13 – 31 : Unused
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Table 3.5: TMU Timer Select register:

0 – 4 : Value selects which timer to enable
5 – 31 : Unused

Table 3.6: TMU Pending IRQ register:

0 – 31 : Bit i is set by hardware when timer i’s budget is spent. Software
must clear these bits.

Table 3.7: TMU Timer n Count register:

0 – tbits-1 : Value.

Table 3.8: TMU Timer n Limit register:

0 – tbits-1 : Value.

Table 3.9: TMU Timer n Period register:

0 – tbits-1 : Value.

Table 3.10: TMU Timer n Control register:

0 : Enable interrupt generation for this timer. For the Task Timer, it
means an interrupt is requested when count equals limit. For IRQ
Timers, it means that the IRQ signal associated with that timer is
decoupled from the IRQ controller while its budget is empty and
waiting for a replenish. When the budget is replenished, interrupts
will be forwarded to the IRQ controller again.

1 : Indicates a pending interrupt, and is the same bit as in the Pending
Interrupt register. Must be cleared by software.

2 – 31 : Unused.
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3.10.3 TMU logic utilisation

The logic resource utilisation of the TMU is listed in Table 3.11, with different
settings of the VHDL generic ntimers. When ‘1’, only the Task Timer is
synthesised. The number of IRQ Timers is ntimers - 1. All TMU registers
are 32-bits wide. The table data is taken from the map report generated by
the Xilinx implementation tools after synthesis, translation and mapping. The
target device is a Xilinx Virtex-4 XC4VLX25.

Table 3.11: Time Management Unit (TMU) logic utilisation on a Virtex-4
FPGA

Timers LUTs
1 262
2 683
4 1471
8 3099

12 4713
16 6348

Table 3.11 can be compared to the logic utilisation of some GRLIB IP cores
in Table 3.12, taken from the GRLIB IP Core User’s Manual [12].

Table 3.12: Approximate logic utilisation of some GRLIB IP cores on a Virtex-
2 FPGA

IP LUTs
APBUART 200
DDRCTRL 1600
GRGPIO, 16-bit configuration 100
IRQMP (1 processor) 300
GRETH 10/100 Mbit Ethernet MAC with EDCL 2600
LEON3, 8 + 8 Kbyte cache 4300
GPTIMER (16-bit scaler + 2x32-bit timers) 250

The Task Timer, requiring about 262 LUTs, takes about the same amount of
resources as the GPTIMER with a 16-bit prescaler and 2 x 32-bit timers. An
approximate number of LUTs required by an IRQ Timer is found by subtract-
ing the number of LUTs used for implementing the Task Timer and one IRQ
Timer and when only implementing the Task Timer: 683 − 262 = 421. IRQ
timers use about 60 % more resources than the Task Timer, because of the
added complexity by the period register and its surrounding logic.

In the overall demo design used for implementing the TMU, using the TMU
with four timers increased the number of LUTs by 8 %.
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3.11 Adding the TMU to a LEON3-design

The TMU is implemented as a peripheral device on the AMBA APB bus.
This setup is illustrated in in Figure 3.9(a) where the processor is connected
to its peripheral devices via a common system bus. Interrupt signals are
routed to the IRQ controller which forwards the highest priority unmasked
interrupt to the processor. Figure 3.9(b) shows the same system with an
added TMU, connected to the same system bus. Interrupt signals from the
peripheral devices are now routed to the TMU. For each incoming interrupt
signal, the TMU passes it on to the IRQ controller while its corresponding
IRQ Timer has not timed out.

(a) Standard (b) Added TMU

Figure 3.9: A System-on-Chip (SoC) design with a processor and peripheral
devices

Using the proposed TMU in an existing LEON3 design is easy. First, the TMU
VHDL file, apbtmu.vhd, must be specified in the makefile of the design by
adding it to the list of synthesisable files:

VHDLSYNFILES=config.vhd ahbrom.vhd apbtmu.vhd leon3mp.vhd

The files are compiled in order from left to right, requiring the top design file,
leon3mp.vhd, to be specified at the end, as it depends on the other files.

Now the TMU package defined in apbtmu.vhd, will be available in the VHDL
library work and can be used in the top design file, leon3mp.vhd, by spec-
ifying a use clause, before the entity declaration like this:
use work.tmupkg.all; -- Time Management Unit (TMU) package/library

In the architecture declaration part of the top design, two signals for the TMU
are listed as well as an integer constant enabling conditional instantiation of
the TMU:
constant CFG_TMU_ENABLE : integer := 1;
signal tmui : tmu_in_type;
signal tmuo : tmu_out_type;

The next step is to instantiate the TMU in the top design. Note the use of
conditional generate statements.
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tmugen : if CFG_TMU_ENABLE /= 0 generate
tmu0 : entity work.apbtmu
generic map (pindex => 9, paddr => 16#010#, pmask => 16#fff#,
pirq => 10, ntimers => 4, tbits => 32)

port map (rst => rstn, clk => clkm, apbi => apbi, apbo => apbo(9),
tmui => tmui, tmuo => tmuo);

end generate;

tmui.dhalt <= dsuo.tstop;

tmungen : if CFG_TMU_ENABLE = 0 generate
tmuo.apbi <= apbi;

end generate;

The value of generic pindex must not equal any other instantiated peripheral.
The same applies to apbo(9). paddr sets the 12 most significant bits of
the units base address relative to that of the AHB/APB bridge unit. The
AHB/APB unit address range start at 0x80000000 giving the TMU its base
address at 0x80001000. pmask specifies the address range of the unit, and
when set to 0xfff the unit has 256 bytes address range – enough for 16
timers. The debug halt signal of the TMU, tmui.dhalt, is connected to the
Debug Support Unit (DSU), setting the TMU in debug mode at the control
of the DSU.

The last step is to connect the APB signals from the TMU to the IRQ con-
troller by using tmuo.apbi instead of apbi in the port map of the IRQ
controller:

irqctrl : if CFG_IRQ3_ENABLE /= 0 generate
irqctrl0 : irqmp -- interrupt controller
generic map (pindex => 2, paddr => 2, ncpu => NCPU)
port map (rstn, clkm, tmuo.apbi, apbo(2), irqo, irqi);

end generate;

3.12 Hardware simulation

The TMU has been simulated by using the VHDL simulator GHDL and the
wave viewer GTKWave. GRLIB comes with VHDL testbenches for each
LEON3 processor demo design, and makefiles for building a simulation model
of the design with many VHDL simulators. Building the testbench executable
with GHDL is accomplished by typing make ghdl at the shell prompt. When
running the testbench, it first starts inspecting the system configuration by
reading the AMBA “plug and play” registers of all IP cores and printing in-
formation to the terminal. Then, the testbench starts the processor which
executes the contents of the simulated memory. The memory contents can be
updated by typing make soft. make soft builds a library of test proce-
dures for all parts of the system from source files in GRLIB, compiles the file
systest.c in the local design and finally links the code and store the binary
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in .srec file formats ready for the testbench. An example systest.c is
displayed below.

main()
{
report_start();
base_test(); // leon3_test(), irqtest(), gptimer_test(), apbuart_test()
tmu_test(0x80001000, 10);
report_end();

}

base_test() performs tests on the LEON3 processor, the IRQ controller,
the general purpose timer and the UART. A source file was written to exercise
the TMU for simulation purposes, and can be found as part of the GRLIB
patch in Appendix A. The TMU test procedure makes sure that all TMU
registers can be read or written, testing that the timers will start counting
when they are activated and testing the IRQ of the Task Timer. All that is
needed is to call tmu_test() with the base address of the TMU and its IRQ
number.

The procedure for simulating the design is thus:

$ cd /path/to/design
$ make soft
$ make ghdl
$ ./testbench --wave=dump.ghw
$ gtkwave dump.ghw

If only the software changes, the testbench need not be rebuilt. If some VHDL
files are changed, the next run of make ghdl might fail and the remedy is
make ghdl-clean; make ghdl.

Below is the output of a simulation.
$ ./testbench --wave=dump.ghw
LEON3 Digilent XC3S1000 Demonstration design
GRLIB Version 1.0.17, build 2710
Target technology: spartan3 , memory library: spartan3
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area disabled
ahbctrl: AHB masters: 2, AHB slaves: 8
ahbctrl: Configuration area at 0xfffff000, 4 kbyte
ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: mst1: Gaisler Research JTAG Debug Link
ahbctrl: slv0: European Space Agency Leon2 Memory Controller
ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slv1: Gaisler Research AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 1 Mbyte
ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit
ahbctrl: memory at 0x90000000, size 256 Mbyte
ahbctrl: slv4: Gaisler Research Test report module
ahbctrl: memory at 0x20000000, size 1 Mbyte
ahbctrl: slv6: Gaisler Research Generic AHB ROM
ahbctrl: memory at 0x00000000, size 1 Mbyte, cacheable, prefetch
apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slv0: European Space Agency Leon2 Memory Controller
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apbctrl: I/O ports at 0x80000000, size 256 byte
apbctrl: slv1: Gaisler Research Generic UART
apbctrl: I/O ports at 0x80000100, size 256 byte
apbctrl: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
apbctrl: I/O ports at 0x80000200, size 256 byte
apbctrl: slv3: Gaisler Research Modular Timer Unit
apbctrl: I/O ports at 0x80000300, size 256 byte
apbctrl: slv5: Gaisler Research PS2 interface
apbctrl: I/O ports at 0x80000500, size 256 byte
apbctrl: slv6: Gaisler Research VGA controller
apbctrl: I/O ports at 0x80000600, size 256 byte
apbctrl: slv8: Gaisler Research General Purpose I/O port
apbctrl: I/O ports at 0x80000800, size 256 byte
apbctrl: slv9: NTNU ITK Time Management Unit
apbctrl: I/O ports at 0x80001000, size 256 byte
ahbrom6: 32-bit AHB ROM Module, 108 words, 7 address bits
apbtmu9: Time Management Unit rev 0, with 4 32-bit timers, irq 10
clkgen_spartan3e: spartan3/e sdram/pci clock generator, version 1
clkgen_spartan3e: Frequency 50000 KHz, DCM divisor 4/5
leon3_0: LEON3 SPARC V8 processor rev 0
leon3_0: icache 1*8 kbyte, dcache 1*8 kbyte
dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes
ahbjtag AHB Debug JTAG rev 0
apbuart1: Generic UART rev 1, fifo 4, irq 2
irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
apbps2_5: APB PS2 interface rev 0, irq 5
apbvga6: APB VGA module rev 0
grgpio8: 18-bit GPIO Unit rev 0
testmod4: Test report module

**** GRLIB system test starting ****
Leon3 SPARC V8 Processor
CPU#0 register file
CPU#0 multiplier
CPU#0 radix-2 divider
CPU#0 cache system

Multi-processor Interrupt Ctrl.
Modular Timer Unit
timer 1
timer 2
chain mode

Generic UART
Test passed, halting with IU error mode

testbench.vhd:117:6:@932123ns:(assertion failure): *** IU in error mode,
simulation halted ***

./testbench:error: assertion failed

./testbench:error: simulation failed

Note that the error at the end is correct behaviour; the only way to stop a
simulation from within the design is to generate an error [13].
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3.12.1 Problems

A few problems occured while trying to simulate the design.

• Simulation files for GHDL are generated from a master makefile within
GRLIB with statements like @echo -e \\tmkdir gnu > compile.ghdl.
The -e option enables interpretation of backslash escapes, but for some
reason fails when used in a makefile6. The result is that the -e is written
to the file and no “tab” character. The solution is to remove all -e’s from
these statements. See Appendix A for the patch that fix this.

• GRLIB has a graphical user interface for configuration and simulation
which can be started with make xgrlib. Using this Graphical User
Interface (GUI) for simulation fails.

• The testbench for the Xilinx ML401 development board fails. Thus, a
different (arbitrary) demo design was used for simulation7.

3.12.2 Results

By inspecting the signals in GTKWave, the TMU has been proved to perform
according to its specification; IRQ generation of the Task Timer works and so
does IRQ blocking of the IRQ Timers as well as the replenishment of budgets.

Figure 3.10 illustrates the workings of the Task Timer. The Timer Select reg-
ister, shown as signal tsel, is initially set to zero. That way the Task Timer
is selected. The Limit register is written with the value 150 and interrupt
generation is enabled by setting irqen. Then the global enable bit is set,
which resumes the active timer. Count increments each cycle and when equal
to Limit, a short interrupt pulse is generated and the pending interrupt bit,
irqpen is set. The testbench incorporates a minimal interrupt handler for
the TMU IRQ which clears Count and the pending interrupt bit irqpen –
as seen about t = 104us. Yet another interrupt is generated before the Timer
Select register is written to select the first IRQ Timer and the Task Timer
stops.

3.13 Changes to eCos for TMU support

This section describes what has been done to accomplish support for the TMU
in eCos. The modified parts of eCos includes:

• The HAL

– Added the Task Timer registers to the thread context
6At least on a Ubuntu 7.04 system with GNU Make 3.81
7Digilent XC3S1000, known as leon3-digilent-xc3s1000 in GRLIB
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Figure 3.10: GTKWave displaying signals of the Task Timer

– The trap handling code – changing the active TMU timer when
runnning ISRs and added termination model exception handlers

• Added a return value to the exception handler prototypes in the kernel
to support termination model exceptions

• Added a TMU API

• Changed the eCos configuration system to allow easy TMU configuration
when building eCos

LEON3 is a SPARC processor, thus all references to the HAL means the
SPARC HAL. All modified eCos source code is available in Appendix A.

3.13.1 Changes to the HAL

The struct HAL_SavedRegisters in file hal_arch.h contains the def-
inition of the register layout on the stack, that is, the saved thread con-
text. HAL_SavedRegisters has been modified to incorporate the additional
TMU registers as illustrated in Figure 3.11. There are only three Task Timer
registers, Count, Limit and Control, but due to a simplification of the TMU
VHDL design, the Task Timer also has a Period register, making a total of four
TMU registers in the thread context. The Period register of the Task Timer is
a dummy register not performing any task. It can be read and written though,
and has been used for debug.

The file icontext.c contains the function hal_thread_init_context()
which initialises a thread context. A pointer variable called regs of type
HAL_SavedRegisters * is used to initialise the thread context in memory,
given the thread’s stack base address. The Task Timer initialisation code in
this file is listed below. The only register that has a meaningful value at this
point is the control register. When set to zero, it ensures that all threads start
out with its Task Timer disabled.
#ifdef CYGPKG_HAL_HAS_TMU // TMU Time Management Unit

// init TMU task timer regs
regs->count = 0xF00DF00D; // lower addr

49



CHAPTER 3. SYSTEM DEVELOPMENT

Figure 3.11: The layout of saved thread context on the stack

regs->limit = 0xCAFEBABE;
regs->period = 0xDEADBEEF;
regs->control = 0; // higher addr

#endif // !CYGPKG_HAL_HAS_TMU

As for the context switch code, context.S, there are two modified functions,
hal_thread_switch_context and hal_thread_load_context. Ac-
tually, the upper half of hal_thread_switch_context saves the context
and then drops through to hal_thread_load_context. The saving and
loading of TMU registers have been placed as close as possible, to reduce the
amount of “lost” cycles as illustrated in Figure 3.12.

The SPARC architecture defines traps as the union of interrupts and excep-
tions. Figure 3.13 is a flowdiagram of the eCos trap handling code with mod-
ifications marked by the shaded elements. When a trap occurs, eCos calls
the Vector Service Routine (VSR) that has been registered for that trap vec-
tor. The interrupt VSR is located in vec_ivsr.S and the exception VSR
in vec_xvsr.S. Both VSRs set up a context for which the ISR or Excep-
tion Service Routine (XSR) is called, but there are some important differences
between the interrupt handler and exception hander system that will be ex-
plained next.

Interrupts are asynchronous events caused by external devices. They may
arrive at any time and are not associated in any way with the thread that is
currently running. ISRs may not perform any system call or anything other
than what is directly related to the interrupt subsystem and hardware. If
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Figure 3.12: Flowchart of the context switch code

further processing is needed, the ISR may specify that a Deferred Service
Routine (DSR) is run as soon as possible. If the scheduler is unlocked, the
DSR is run immediately after the ISR. If not, the DSR is delayed until the
scheduler is unlocked. DSRs can perform a subset of system calls, the non-
blocking ones. Because DSRs have the ability to release threads, a re-schedule
is performed after any DSR.

An exception is a synchronous event caused by the execution of a thread.
These include both the machine exceptions raised by hardware such as divide-
by-zero, memory fault and illegal instruction. XSRs in eCos is called from
thread context and may use any system call. No re-scheduling is performed
at the end of an XSR.

The TMU Task Timer generates asynchronous interrupts, but are interpreted
as exceptions associated with the current thread. Handling the event as an
exception is a more correct abstraction, and because interrupts are not disabled
as in ISRs and the scheduler is not locked as in DSRs, the exception handler
may use any system call. There are two models for handling exceptions; the
resumption model and the termination model. In the resumption model, the
program returns to the place where the exception was raised after the handler
had been run. In the termination model, the program does not return to
the point where the exception occurred. An example of resumption model
exceptions are POSIX signals, and for the termination model; Ada exceptions.

eCos provide only resumption model exception handlers, and as discussed in
Section 3.14, termination exception handlers for the TMU was opted. In order
to make termination model exception handlers in eCos, the first step was to
add a non-void return value to the exception handler prototypes. The next
step was to modify the exception VSR to check, and possibly jump to, the
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Figure 3.13: A flowchart of the eCos interrupt and exception VSRs. The
shaded blocks are added for TMU support
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value of the return argument. If the return argument is below or equal to
a small number, say 10, the handler returns to the instruction that caused
the exception – the resumption model. If the return argument is above 10,
the argument is treated as an address and the VSR will jump to this address
instead – the termination model. Thus, the exception handler simply returns
a function pointer which the VSR will jump to instead of the saved program
counter from when the exception occurred.

3.13.2 The TMU API

The files hal_tmu.h and hal_tmu.c were written as the TMU API, and is
available in Appendix A. User applications must include the header file to get
access to the API:
#include <cyg/hal/hal_tmu.h> // the TMU API header

The API consist of the following functions:
// Set the TMU to the state it enters upon reset: all regs set to
// zero except Limit & Period regs which is set to 0xffffffff
void tmu_reset(void);

// Enable counters - and in effect, interrupt generation/blocking
void tmu_enable(void);

// Freeze timers
void tmu_disable(void);

// Get the number of implemented timers
unsigned int tmu_ntimers(void);

// Get the number of bits used for timer registers
unsigned int tmu_tbits(void);

// Enable/disable IRQ generation if Task Timer,
// or IRQ blocking if IRQ Timer
void tmu_enable_irq(int timer);
void tmu_disable_irq(int timer);

// Read/clear the Pending Interrupt register
unsigned int tmu_read_irqpen(void);
void tmu_clear_irqpen(void);

// Setup any timer, preferrably IRQ timers
void tmu_tmr_setup(int timer, int limit, int period, int irqen);

// Setup the Task Timer for the current thread, must be called in
// its context! ’period’ is not actually used - debug
void tmu_task_tmr_setup(int limit, int period, int irqen);

unsigned int tmu_task_tmr_get_count(void);
void tmu_task_tmr_set_count(unsigned int val);
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unsigned int tmu_task_tmr_get_limit(void);
void tmu_task_tmr_set_limit(unsigned int val);

unsigned int tmu_task_tmr_get_irqen(void);
void tmu_task_tmr_set_irqen(int irqen);

unsigned int tmu_task_tmr_get_irqpen(void);
void tmu_task_tmr_set_irqpen(int irqpen);

3.13.3 Changes to the configuration system

All TMU code for eCos is written within a guard macro called CYGPKG_HAL_HAS_TMU.
If the TMU is not used, its processing overhead can be removed completely at
compile time by not defining that macro. If the TMU is used, CYGPKG_TMUADDR
defines the base address of the unit, and CYGPKG_HAL_TMU_IRQ the IRQ
number of the TMU. All three macros can be set in the eCos Configuration
Tool under eCos HAL −→ SPARC architecture.

To incorporate these options into the configuration tool, the SPARC HAL
package configuration file, hal_sparc.cdl, was modified. The following
TMU component definition was added, allowing the user of the eCos Config-
uration Tool to manipulate the TMU macros.
cdl_component CYGPKG_HAL_HAS_TMU {

display "Has TMU"
default_value 1

description "This option will add support for the Time Management Unit
(TMU). This means that the Task Timer registers of the TMU
will be added to the thread context. The user may then specify execution
budgets for ordinary tasks and interrupts (ISRs). For tasks, the user
can register an exception handler (CYGNUM_HAL_EXCEPTION_OTHERS) to
handle tasks that exceed their execution budget. API: hal_tmu.h"

cdl_option CYGPKG_TMUADDR {
display "Base address of the TMU"
flavor data
default_value 0x80001000

}

cdl_option CYGPKG_HAL_TMU_IRQ {
display "IRQ of the TMU"
flavor data
default_value 10

}
}

The TMU API hal_tmu.c, see Section 3.13.2, must be included in the eCos
build process to allow its use by application programs. This was performed
by adding the file name to the list of files in the hal_sparc.cdl used for
compilation of the HAL:
compile hal_intr.c hal_boot.c callcons.S memcpy.S hal_tmu.c
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3.14 Handling the Task Timer timeout

POSIX signal handlers and the standard exception handlers in eCos are based
on the resumption model. After a resumption handler has run, control is
transferred back to the instruction that raised the exception. This concept
is illustrated in Figure 3.14 with a flowdiagram of a simple thread using a
resumption model TMU exception handler. But the resumption model makes

Figure 3.14: Flowchart of a thread with a resumption model Task Timer
exception handler

little sense for the Task Timer exception. When the TMU raises an exception,
because the current thread has exceeded its budget, an alternative algorihm
or code sequence must be provided, because the current algorithm clearly did
not produce a result on time. There is no point in continuing execution at the
instruction that caused the exception and therefore the termination model was
opted. The termination model exception handler system was implemented in
eCos as described in Section 3.13.1.

Figure 3.15 shows a flowdiagram of a simple thread using the termination
model exception handler for the Task Timer as well as setjmp/longjmp for
non-local jumps or control flow. The thread performs a call to setjmp, saving
its execution environment in a jump buffer. Later when calling longjmp, the
execution environment is restored to the saved state, effectively transferring
the control back to the setjmp line. When executing the setjmp call, it
returns zero, but when jumped to from longjmp it returns the value specified
in the second argument of longjmp. The curly lines in Figure 3.15 denotes a
special transfer of control. Line one represents the control flow taken when the
thread’s Task Timer raises an exception. The exception handler only specifies
where to continue executing when the handler returns, shown as line two.
The dummy function has only one purpose; to perform the longjmp call,
causing a jump to setjmp shown by line three, so that the thread’s timeout
handler can be placed within the thread, having access to all necessary data
and information about the thread. Each time the thread is about to do some
work, it resets the count register of the Task Timer. While the thread is
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waiting for its release and is in the blocked state, its budget is preserved.

Figure 3.15: Flowchart of a thread with termination model Task Timer ex-
ception handler

3.14.1 Problems

Asynchronous Transfer of Control (ATC) must be used carefully so that the
state of the system is not corrupted. Imagine a thread that has just aquired
a mutex and immediately receives the TMU exception. The thread asyn-
chronously jumps to the timeout handler and then back to the thread’s entry,
not releasing the aquired mutex. On the next run it will try to aquire the
same mutex again, causing problems in the OS kernel if the system does not
support recursive mutexes. eCos for one, does not support recursive mutexes.
Thus, to use the TMU with Asynchronous Transfer of Control (ATC), care
must be taken to do a proper tidy up in the timeout handler.
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Tests

This chapter presents the final tests on the target system. This includes a test
of the Task Timer and an IRQ Timer.

4.1 Setup

The target system is based on the LEON3 demo design for the Xilinx ML401
Evaluation Platform, which in GRLIB is called leon3-avnet-ml401, with
an added TMU as described in Section 3.11. The demo design almost fully
utilises the resources of the FPGA, leaving only room for 4 TMU timers. To
make room for more timers, the GRLIB configuration had to be stripped.
Table 4.1 lists changes to the standard demo design which enabled up to 14
TMU timers.

Table 4.1: Changes to the ML401 demo design

What Old value New value
System clock 65 MHz 40 MHz
Power down mode enabled disabled
Cache 8 + 8 KiB disabled
MMU enabled disabled
DSU instruction trace enabled disabled
DSU JTAG enabled disabled
I2C enabled disabled

The system clock setting must be accompanied with a modification of the
ucf-file (User Constraint File) of the design, specifying timing constraints:

#TIMESPEC "TS_rclk270b_clkml_rise" = FROM "rclk270b_rise" TO "clkml_rise" 3.500;
TIMESPEC "TS_rclk270b_clkml_rise" = FROM "rclk270b_rise" TO "clkml_rise" 4.000;#new
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It might seem strange that a reduction of the operating frequency allows for
more logic. But the process of implementing an HDL description of a design
into actual hardware in an FPGA is an optimisation problem of speed versus
area. When the FPGA becomes almost full, the speed optimal placements of
logic blocks and routing cannot be done. The result is a reduction in speed
and the ability to utilise more logic.

The system is running eCos with the modifications to the HAL and the ex-
ception subsystem of the kernel as presented in Section 3.13.

4.2 Test 1: Sporadic events

This test demonstrates how the system handles an overload of sporadic events,
or interrupts, via the TMU. To make the test more reproducible, two threads
are incorporated:

Thread 1: This thread manipulates the GPIO to generate a hardware interrupt.
The interrupt line is routed through the TMU. After each generated
interrupt, the thread sleeps for a variable amount of time. Although the
interrupt interval is not actually sporadic, controlled interval times will
display the system behaviour better.

Thread 2: This thread is released by the DSR that runs when the processor is
interrupted by the GPIO unit. It has the highest priority of the two
threads enabling it to preempt Thread 1.

The source code can be found in Appendix A.

The Task Timer of the TMU is not used in this test, but there is no problem
in mixing the use of the Task Timer and an IRQ Timer. The TMU is set up
to accept interrupts from the GPIO unit at a limited interarrival time, thus
limiting the effective release frequency of Thread 2. This is accomplished by
setting the limit register to ’1’, and the period register to the desired budget
replenish interval. The TMU can also be set up to accept bursts of interrupts
by setting the limit register, and possibly the period register, to a greater
value.

4.2.1 Results

1 grlib> load test-tmu-irq-timer
2 grlib> run
3 Entering cyg_user_start() function
4 Beginning execution; thread 2
5 Beginning execution; thread 1
6 --> Thread 2: released!
7 Thread 1: generated irq and now a delay of 5 clock ticks
8 Thread 1: generated irq and now a delay of 6 clock ticks
9 Thread 1: generated irq and now a delay of 7 clock ticks

10 Thread 1: generated irq and now a delay of 8 clock ticks
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11 Thread 1: generated irq and now a delay of 9 clock ticks
12 Thread 1: generated irq and now a delay of 10 clock ticks
13 Thread 1: generated irq and now a delay of 12 clock ticks
14 Thread 1: generated irq and now a delay of 14 clock ticks
15 Thread 1: generated irq and now a delay of 16 clock ticks
16 Thread 1: generated irq and now a delay of 19 clock ticks
17 Thread 1: generated irq and now a delay of 22 clock ticks
18 Thread 1: generated irq and now a delay of 26 clock ticks
19 --> Thread 2: released!
20 Thread 1: generated irq and now a delay of 31 clock ticks
21 Thread 1: generated irq and now a delay of 37 clock ticks
22 Thread 1: generated irq and now a delay of 44 clock ticks
23 Thread 1: generated irq and now a delay of 52 clock ticks
24 Thread 1: generated irq and now a delay of 62 clock ticks
25 --> Thread 2: released!
26 Thread 1: generated irq and now a delay of 74 clock ticks
27 Thread 1: generated irq and now a delay of 88 clock ticks
28 --> Thread 2: released!
29 Thread 1: generated irq and now a delay of 105 clock ticks
30 Thread 1: generated irq and now a delay of 126 clock ticks
31 --> Thread 2: released!
32 Thread 1: generated irq and now a delay of 151 clock ticks
33 --> Thread 2: released!
34 Thread 1: generated irq and now a delay of 181 clock ticks
35 --> Thread 2: released!
36 Thread 1: generated irq and now a delay of 217 clock ticks
37 --> Thread 2: released!
38 Thread 1: generated irq and now a delay of 260 clock ticks
39 --> Thread 2: released!
40 Thread 1: generated irq and now a delay of 312 clock ticks
41 --> Thread 2: released!
42 Thread 1: generated irq and now a delay of 374 clock ticks
43 --> Thread 2: released!
44 Thread 1: generated irq and now a delay of 448 clock ticks
45 --> Thread 2: released!
46 Thread 1: generated irq and now a delay of 5 clock ticks
47 Thread 1: generated irq and now a delay of 6 clock ticks
48 Thread 1: generated irq and now a delay of 7 clock ticks
49 Thread 1: generated irq and now a delay of 8 clock ticks
50 Thread 1: generated irq and now a delay of 9 clock ticks
51 Thread 1: generated irq and now a delay of 10 clock ticks
52 Thread 1: generated irq and now a delay of 12 clock ticks
53 --> Thread 2: released!
54 Thread 1: generated irq and now a delay of 14 clock ticks
55 Thread 1: generated irq and now a delay of 16 clock ticks
56 Thread 1: generated irq and now a delay of 19 clock ticks
57 Thread 1: generated irq and now a delay of 22 clock ticks
58 Thread 1: generated irq and now a delay of 26 clock ticks
59 Thread 1: generated irq and now a delay of 31 clock ticks
60 Thread 1: generated irq and now a delay of 37 clock ticks
61 Thread 1: generated irq and now a delay of 44 clock ticks
62 --> Thread 2: released!
63 Thread 1: generated irq and now a delay of 52 clock ticks
64 Thread 1: generated irq and now a delay of 62 clock ticks
65 Thread 1: generated irq and now a delay of 74 clock ticks
66 --> Thread 2: released!
67 Thread 1: generated irq and now a delay of 88 clock ticks
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68 Thread 1: generated irq and now a delay of 105 clock ticks
69
70 Interrupt!
71 stopped at 0x40005e24
72 grlib>

Thread 2 is initially released as the IRQ Timer has a full budget. Summing
the delays of Thread 1, lines 7-18, adds up to 154 ticks. At this time, the IRQ
Timer has had its budget replenished and allows interrupts to pass through
to the processor which schedules Thread 2, on line 19. Jumping to line 53,
Thread 2 is released after only 57 ticks since its last release. Since the IRQ
timers conform to the Deferrable Server (DS) algorithm, that is, replenishing
the budget at regular intervals, this behaviour is correct. What happens is
that at the previous release, the timer is very close to its next replenish period.

The result is that when interrupts arrive more often than the TMU accepts,
the interrupt is stopped at the TMU and the processor usage is preserved. If
it is important not to miss interrupts, the Interrupt Pending bit can be read.

4.3 Test 2: Tasks with variable execution times

This test will show how the system handles periodic tasks which execute for
too long. Two threads are used to make sure that the single Task Timer
hardware unit works for more than one thread. The threads are identical and
used ATC TMU exception handler. Both threads perform a CPU heavy for-
loop, iterating over i from zero to work, where work cycles between 100, 150
and 200. Both threads use the same TMU setup, allowing almost work 191
to be performed until the TMU interrupts. The source code can be found in
Appendix A.

4.3.1 Results

1 grlib> load test-tmu-task-timer
2 grlib> run
3 Entering cyg_user_start() function
4 Beginning execution; thread 1
5 Beginning execution; thread 2
6 Thread 1: used 783785 TMU cycles work=100
7 Thread 2: used 788489 TMU cycles work=100
8 Thread 1: used 1173512 TMU cycles work=150
9 Thread 2: used 1174685 TMU cycles work=150

10 --> Thread 1 timeout: TMU count=1501535 work=200 i=191
11 --> Thread 2 timeout: TMU count=1501604 work=200 i=191
12 Thread 1: used 783857 TMU cycles work=100
13 Thread 2: used 789306 TMU cycles work=100
14 Thread 1: used 1173595 TMU cycles work=150
15 Thread 2: used 1179100 TMU cycles work=150
16 --> Thread 1 timeout: TMU count=1501534 work=200 i=191
17 --> Thread 2 timeout: TMU count=1501595 work=200 i=191
18 Thread 1: used 783929 TMU cycles work=100
19 Thread 2: used 789275 TMU cycles work=100
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20 Thread 1: used 1173736 TMU cycles work=150
21 Thread 2: used 1178989 TMU cycles work=150
22 --> Thread 1 timeout: TMU count=1501537 work=200 i=191
23 --> Thread 2 timeout: TMU count=1501583 work=200 i=191
24 Thread 1: used 783878 TMU cycles work=100
25 Thread 2: used 789308 TMU cycles work=100
26 Thread 1: used 1173630 TMU cycles work=150
27 Thread 2: used 1179229 TMU cycles work=150
28 --> Thread 1 timeout: TMU count=1501536 work=200 i=191
29 --> Thread 2 timeout: TMU count=1501590 work=200 i=191
30
31 Interrupt!
32 stopped at 0x4000669c
33 grlib>

As can be seen, both threads succeed in computing work=100 and work=150,
but when they try to perform work=200, the Task Timer fires at i=191 and
the thread’s exception handler is called.
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Chapter 5

Discussion

5.1 Results

The test of the IRQ timers of the TMU showed that the unit can limit the
number of interrupts forwarded to the processor within a given period. ISRs
are assumed to be short and have almost constant execution time, thus the
limitation of interrupt occurrences have almost the same effect as limiting the
execution times of the ISRs themselves. Once an IRQ Timer is set up, it is
autonomous, requiring no more processor intervention causing overhead.

The test of the Task Timer of the TMU showed that the unit accurately mea-
sures the execution times of threads running on the system and generates an
interrupt when a given execution limit is specified. The unit measures execu-
tion time so accurately that variations between thread runs become apparent.
The Task Timer is fully setup once for a thread, but before each cycle, the
Task Timer must be reset by clearing the Count register.

5.2 Hardware choices

An early attempt on building a platform for TMU implementation, involved
using the 8-bit AVR IP core, avr_core, from OpenCores [24] on a small
FPGA development board, the Spartan-3 Starter Board (XC3S200), which
was readily available at project start. The use of this board, and 8-bit MCU,
turned out to be a dead end, because of three reasons. First, the avr_core
has no debug unit, making debugging very hard. Second, the program memory
had to be hardcoded into the bit-file, a slow approach compared to having a
debug unit downloading a program to the device online. The last reason
was that the FPGA was too small to fit a FreeRTOS application. A new
board was ordered, the Spartan-3A DSP 1800A Development Board, which
is an embedded HW/SW development board intended for soft-core use. The
supplier of the board was later found to be unable to deliver on time and
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the Virtex-4 ML401 Evaluation Platform was obtained instead. As for the
platform soft-core processor, the 32-bit LEON3 processor was opted. LEON3
can be set up with a debug unit enabling debugging and online downloading
of applications. The LEON3 processor is a part of the GRLIB IP library and
has many demo designs for FPGA boards, one of which is the Virtex-4 ML401
Evaluation Platform. Because this board was already supported, getting the
first LEON3 design up and running went fairly quickly. This saved valuable
project time, as the failed delivery of the Spartan-3A DSP 1800A board had
set the project back. GRLIB, and the LEON3 processor, was well documented
and enabled easy system configuration.

5.3 Software choices

The choice of software is basically the choice of RTOS for the target platform.
The chosen RTOS, eCos, is a highly configurable system, and integrating the
TMU into eCos’ configuration system was an intuitive process. eCos is well
documented and comes with examples making the development process rapid.

5.4 Design of the TMU

The TMU was designed as a peripheral device for the LEON3 soft-core proces-
sor. Being a peripheral device, the TMU is easily ported to other architectures
with minimal effort, in contrast to a coprocessor or register file implementa-
tion. The negative side is that there is more overhead when the processor has
to access registers on a system bus, compared to the register file, where access
is instant. The TMU is designed by the VHDL “two-process” model, which
makes its algorithm easy to understand. And its AMBA APB interface makes
it easy to incorporate it into new LEON3 designs. The use of VHDL generics
enables rapid configuration of the number of timers, the timer register widths
and which interrupt line to use.
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Conclusion

The main objective in this thesis has been to develop a TMU capable of
improving the predictability of real-time systems by measuring and controlling
the execution times of tasks and prevent overloading of interrupts. The TMU
is designed, simulated and implemented in an FPGA as a peripheral device
connected to a LEON3 soft core processor. The system is running the eCos
RTOS with a modified HAL for TMU support, and tests have been performed,
verifying that the unit is working correctly. This suggests that the TMU can
prevent real-time systems from being overloaded and miss deadlines, even if
the underlying architecture is largely non-deterministic. The TMU uses little
to moderate amounts of FPGA logic resources, depending on how many timers
are being implemented. The Task Timer uses about 250 LUTs, and each IRQ
Timer uses about 400 LUTs.

Earlier research has either been on how to make the hardware platform itself
predictable, by making each operation deterministic, or on how to calculate
the WCET of tasks or creating new programming languages features capable
of easier WCET analysis. None have investigated the dynamic approach of
measuring execution time as done here. A favourable aspect of using the
proposed TMU is that it is architecture independent and can be implemented
on any processor design by only modifying its bus interface. Another positive
side is that existing code need not be modified unless the services of the TMU
are needed.
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Chapter 7

Further work

Although the proposed TMU is fully functional, there are some improvements
worth mentioning:

• Add a VHDL generic mask specifying which timers to implement. This
has the advantage of not having to implement more timers than abso-
lutely necessary. With the current version of the TMU, having a task
timer and a timer for IRQ level 10, the timers 0 to 10 have to be imple-
mented. This wastes FPGA resources.

• Make the TMU registers 64-bit for “infinite” overflow periods. This is
trivial for 64-bit systems. If the system is less than 64-bit, there will be
at least twice as many memory accesses during context switches, but as
the TMU processing overhead is very low, doubling the memory accesses
is still affordable.

• Build the TMU IRQ Timers according to the Sporadic Server (SS) al-
gorithm. The TMU IRQ Timers are now operating according to the
Deferrable Server (DS) algorithm, which periodically replenishes the ex-
ecution budget to full. If a budget is exhausted at the same time as a
replenish occurs, the DS can use two consecutive budgets. Depending
on the application, this might be unfortunate.

• Add a prescaler register, reducing the frequency of the TMU timer ticks.
The TMU has a very fine granularity, running at the system clock fre-
quency, and by adding a prescaler register, one may balance the timer
granularity against its overflow period.

• Add a soft limit register for the Task Timer, giving the system the ability
to be warned when a task’s limit is approaching, and perhaps kill the
task if it has not completed before the actual limit is reached.
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Appendix A

CD

A.1 Contents

This report is accompanied by a CD containing the following folders:

• code contains the source code written throughout this project. This
includes:

– The synthesisable TMU model written in VHDL.
[code/apbtmu.vhd]

– Test programs for eCos and the TMU written in the C Program-
ming Language.
[code/ecos/*.*]

– The complete modified version of the eCos SPARC HAL for use
with the TMU.
[code/ecos/repository-packages-hal-sparc/]

– Two patches for eCos which add a return value to the exception
handler prototypes and default exception handlers, and one patch
for GRLIB which fixes the a GHDL simulation problem and defines
constants for TMU identification in the VHDL testbench. The
order in which the patches are applied does not matter.
[code/patch/*.*]

– The TMU demo design. Must be built against GRLIB with the
above GRLIB patch applied.
[code/leon3-avnet-ml401/]

• report contains the LATEX source files of this report, including images,
and the report itself as a Portable Document File (PDF).
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A.2. CD

A.2 CD

Figure A.1: CD
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Appendix B

Source code

B.1 TMU

1 -------------------------------------------------------------------------------
2 -- Entity: apbtmu
3 -- File: apbtmu.vhd
4 -- Author: Bjorn Forsman
5 -- Description: TMU with AMBA APB interface (Leon3 peripheral device)
6 --
7 -- Revision list
8 -- Date By Changes
9 -- 2008-04-04 BF initial design

10 -- 2008-04-06 BF added interrupt handling
11 --
12 --
13 --
14 --
15 --
16 --
17 -- ghdl -a --ieee=synopsys --workdir=gnu/work --work=work -Pgnu -Pgnu/opencores -Pgnu

/gaisler -Pgnu/work apbtmu.vhd
18 -- ghdl -e --ieee=synopsys --workdir=gnu/work --work=work -Pgnu/grlib apbtmu
19 -------------------------------------------------------------------------------
20
21 library ieee;
22 use ieee.std_logic_1164.all;
23 library grlib;
24 use grlib.amba.all; -- apb_slv_{in,out}_type
25
26 package tmupkg is
27
28 constant MAXTIMERS : integer := 32;
29 constant TSELBITS : integer := 5; -- log2(MAXTIMERS)
30
31 type tmu_in_type is
32 record
33 dhalt : std_ulogic; -- halt timers in debug mode
34 end record;
35
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36 type tmu_out_type is
37 record
38 apbi : apb_slv_in_type; -- to irq controller
39 morebudget : std_logic_vector(MAXTIMERS-1 downto 1); -- only for debug
40 end record;
41
42 component apbtmu
43 generic (
44 pindex : integer := 0; -- APB device select signal
45 paddr : integer := 0; -- 12 MSb of APB address
46 pmask : integer := 16#fff#; -- APB address mask
47 pirq : integer := 0; -- which APB irq to generate
48 ntimers : integer range 1 to MAXTIMERS := 16;
49 tbits : integer range 1 to 32 := 32; -- timer bits
50 );
51 port (
52 rst : in std_logic;
53 clk : in std_logic;
54 apbi : in apb_slv_in_type;
55 apbo : out apb_slv_out_type;
56 tmui : in tmu_in_type;
57 tmuo : out tmu_out_type
58 );
59 end component;
60
61 end tmupkg;
62
63
64
65 library ieee;
66 use ieee.std_logic_1164.all;
67 library grlib;
68 use grlib.amba.all; -- apb_slv_{in,out}_type
69 use grlib.stdlib.all; -- report_version and "+" fcn. for

std_logic_vector!
70 use grlib.devices.all; -- lib/grlib/amba/devices.vhd
71 -- (configuration constants)
72 --pragma translate_off
73 use std.textio.all;
74 --pragma translate_on
75 use work.tmupkg.all;
76
77 entity apbtmu is
78 generic (
79 pindex : integer := 0; -- APB device select signal
80 paddr : integer := 0; -- 12-bit MSB APB address
81 pmask : integer := 16#fff#; -- APB address mask
82 pirq : integer := 0; -- which APB interrupt to generate
83 ntimers : integer range 1 to MAXTIMERS := 16;
84 tbits : integer range 1 to 32 := 32; -- timer bits
85 );
86 port (
87 rst : in std_logic;
88 clk : in std_logic;
89 apbi : in apb_slv_in_type;
90 apbo : out apb_slv_out_type;
91 tmui : in tmu_in_type;
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92 tmuo : out tmu_out_type
93 );
94 end;
95
96 architecture rtl of apbtmu is
97
98 constant REVISION : integer := 0;
99

100 constant pconfig : apb_config_type := (
101 0 => ahb_device_reg(VENDOR_NTNU, NTNU_TMU, 0, REVISION, pirq),
102 1 => apb_iobar(paddr, pmask));
103
104 type timer_reg is
105 record
106 irq : std_ulogic; -- interrupt pulse
107 irqen : std_ulogic; -- interrupt enable
108 irqpen : std_ulogic; -- interrupt pending
109 ticks : std_logic_vector(tbits-1 downto 0); -- always increment
110 count : std_logic_vector(tbits-1 downto 0); -- inc when tmr selected
111 limit : std_logic_vector(tbits-1 downto 0); -- interrupt when cnt>lim
112 period : std_logic_vector(tbits-1 downto 0); -- replenish period
113 end record;
114
115 type timer_reg_vector is array (natural range <> ) of timer_reg;
116
117 type registers is
118 record
119 enable : std_ulogic; -- enable TMU
120 tsel : integer range 0 to ntimers-1; -- timer select
121 timers : timer_reg_vector(0 to ntimers-1);
122 end record;
123
124 signal r, rin : registers;
125
126 begin
127
128 comb : process(rst, r, apbi, tmui)
129 variable v : registers;
130 variable readdata : std_logic_vector(31 downto 0);
131 variable tmpirq : std_logic_vector(NAHBIRQ-1 downto 0);
132 variable morebudget : std_logic_vector(ntimers-1 downto 1);
133 variable toirqctrl : apb_slv_in_type; -- tmp var for irq controller
134 begin
135
136 v := r; -- copy regs to working var.
137
138 -- increment count for the selected timer (when not in debug mode)
139 if tmui.dhalt = ’0’ then -- halt timers in debug mode
140 if v.enable = ’1’ then
141 v.timers(r.tsel).count := v.timers(r.tsel).count + 1;
142 end if;
143
144 -- deferred server model: replenish budget every period
145 -- increment ticks, reset count and replenish budgets for irq tmrs
146 for i in 1 to ntimers-1 loop
147 v.timers(i).ticks := v.timers(i).ticks + 1;
148 if v.timers(i).ticks >= v.timers(i).period then
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149 v.timers(i).count := (others => ’0’);
150 v.timers(i).ticks := (others => ’0’);
151 end if;
152 end loop;
153
154 end if; -- if tmui.dhalt
155
156
157 -- internal interrupt signal generation
158 for i in 0 to ntimers-1 loop
159 if (v.timers(i).count = v.timers(i).limit) then
160 if (v.timers(i).irqen = ’1’) then
161 v.timers(i).irq := ’1’;
162 v.timers(i).irqpen := ’1’; -- must be reset by software
163 end if;
164 else
165 v.timers(i).irq := ’0’;
166 end if;
167 end loop;
168
169 -- external interrupt lines
170 toirqctrl := apbi; -- default assignment
171 for i in 1 to ntimers-1 loop
172 if v.timers(i).count < v.timers(i).limit then
173 morebudget(i) := ’1’;
174 else
175 morebudget(i) := ’0’;
176 end if;
177
178 --into(i) <= inti(i) and not
179 toirqctrl.pirq(i) := apbi.pirq(i) and not
180 (not morebudget(i) and v.timers(i).irqen and v.enable);
181 end loop;
182
183 -- Task TMU interrupts overrides
184 toirqctrl.pirq(pirq) := (v.timers(0).irq and v.timers(0).irqen) and v.enable;
185
186
187 -- read registers
188 readdata := (others => ’0’);
189 case apbi.paddr(8 downto 2) is
190 when "0000000" => -- control reg
191 readdata(0) := v.enable;
192 readdata(5 downto 1) := conv_std_logic_vector(ntimers, TSELBITS);
193 readdata(11 downto 6) := conv_std_logic_vector(tbits, 6);
194 readdata(12) := tmui.dhalt;
195 when "0000001" => -- timer select reg
196 readdata(TSELBITS-1 downto 0) := conv_std_logic_vector(v.tsel, TSELBITS);
197 when "0000010" => -- irqpen
198 for i in 0 to ntimers-1 loop
199 readdata(i) := v.timers(i).irqpen;
200 end loop;
201 when others => -- timer registers
202 for i in 0 to ntimers-1 loop
203 if conv_integer(apbi.paddr(8 downto 4))-1 = i then
204 case apbi.paddr(3 downto 2) is
205 when "00" => -- count reg
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206 readdata(tbits-1 downto 0) := r.timers(i).count;
207 when "01" => -- limit reg
208 readdata(tbits-1 downto 0) := r.timers(i).limit;
209 when "10" => -- period reg
210 readdata(tbits-1 downto 0) := r.timers(i).period;
211 when "11" => -- timer n control reg
212 readdata(0) := r.timers(i).irqen;
213 readdata(1) := r.timers(i).irqpen;
214 when others =>
215 end case;
216 end if;
217 end loop;
218 end case;
219
220
221 -- write registers
222 if (apbi.psel(pindex) and apbi.penable and apbi.pwrite) = ’1’ then
223 case apbi.paddr(8 downto 2) is
224 when "0000000" => -- control reg
225 v.enable := apbi.pwdata(0);
226 when "0000001" => -- timer select reg
227 v.tsel := conv_integer(apbi.pwdata(TSELBITS-1 downto 0));
228 when "0000010" => -- irqpen reg
229 for i in 0 to ntimers-1 loop
230 v.timers(i).irqpen := apbi.pwdata(i);
231 end loop;
232 when others =>
233 for i in 0 to ntimers-1 loop
234 if conv_integer(apbi.paddr(8 downto 4))-1 = i then
235 case apbi.paddr(3 downto 2) is
236 when "00" => -- count reg
237 v.timers(i).count := apbi.pwdata(tbits-1 downto 0);
238 when "01" => -- limit reg
239 v.timers(i).limit := apbi.pwdata(tbits-1 downto 0);
240 when "10" => -- period reg
241 v.timers(i).period := apbi.pwdata(tbits-1 downto 0);
242 when "11" => -- timer n control reg
243 v.timers(i).irqen := apbi.pwdata(0);
244 v.timers(i).irqpen := apbi.pwdata(1);
245 when others =>
246 end case;
247 end if;
248 end loop;
249 end case;
250 end if;
251
252
253 -- reset
254 if rst = ’0’ then
255 for i in 0 to ntimers-1 loop
256 v.timers(i).irq := ’0’;
257 v.timers(i).irqen := ’0’;
258 v.timers(i).irqpen := ’0’;
259 v.timers(i).ticks := (others => ’0’);
260 v.timers(i).count := (others => ’0’);
261 v.timers(i).limit := (others => ’1’);
262 v.timers(i).period := (others => ’1’);
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263 end loop;
264 morebudget := (others => ’1’); -- irq timers
265 v.enable := ’0’; -- disable counting
266 v.tsel := 0; -- start with the task timer selected
267 end if;
268
269
270 -- outputs
271 rin <= v; -- copy working variable to signal
272 apbo.prdata <= readdata; -- drive apb read bus
273 tmuo.apbi <= toirqctrl;
274 tmuo.morebudget(ntimers-1 downto 1) <= morebudget;
275 end process;
276
277
278 -- concurrent assignments
279 apbo.pindex <= pindex;
280 apbo.pconfig <= pconfig;
281
282
283 -- registers
284 regs : process(clk)
285 begin
286 if rising_edge(clk) then
287 r <= rin;
288 end if;
289 end process;
290
291
292 -- boot message
293
294 -- pragma translate_off
295 bootmsg : report_version
296 generic map ("apbtmu" & tost(pindex) &
297 ": Time Management Unit rev " & tost(REVISION) &
298 ", with " & tost(ntimers) &
299 " " & tost(tbits) & "-bit timers" & ", irq " & tost(pirq));
300 -- pragma translate_on
301
302 end;
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