
Methodology to calculate interfacial tension

under electric �eld using pendent drop pro�le

analysis

Sameer Mhatre,∗ Sébastien Simon, and Johan Sjöblom

Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of

Science and Technology (NTNU), NO-7491 Trondheim, Norway

E-mail: sameer.mhatre@ntnu.no

Abstract

In this paper we present a methodology to calculate interfacial tension (IFT) of

a water-oil interface under electric �eld. The Young-Laplace equation, convention-

ally used to estimate surface/interfacial tension in axisymmetric drop shape analysis

(ADSA), is modi�ed to include electrostatic e�ects. The solution needs normal com-

ponent of the Maxwell stress at the interface which is calculated separately by solving

the Laplace equation for electric potential. The optimized �tting between the resulting

theoretical pro�le and the experimentally obtained pro�le results into Bond number

which is used to calculate the apparent value of interfacial tension. The algorithm can

process a large number of drop pro�les in one go. The methodology can be applied in

the ADSA studies for adsorption dynamics where a drop is held for a long time while

surface active molecules are allowed to adsorb. The method discussed in this paper will

help the future studies in adsorption dynamics at �uid interfaces under electric �eld

and the resulting interfacial property evolution.
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Introduction

The knowledge of surface/interfacial tension (γ) is important in the industrial applications

involving emulsions and foams. The stability of an interface, which is characterized by the

interfacial tension, is crucial for shelf life of pharmaceutical and food emulsions. There exist a

large number of techniques to estimate the surface and interfacial tension.1,2 The drop pro�le-

based methods such as axisymmetric drop shape analysis (ADSA) have been considered

superior due to their ability of continuous measurement of interfacial tension (IFT) over a

long period of time where the interface is not contacted as in the ring tensiometry. The

method involves obtaining the drop pro�le coordinates and �tting iteratively the Young-

Laplace equation to the experimental coordinates by adjusting interfacial tension value.3

The γ at the best �t between the theoretical pro�le and the experimental coordinates is

considered to be the interfacial tension between the drop phase and the surrounding medium.

The drop suspended from a needle tip assumes a shape as a result of equilibrium between

gravitational and interfacial forces. Furthermore, the presence of surface active molecules

at the interface4�6 or the in�uence of additional externally applied forces contribute to the

equilibrium drop shape.7,8 Over the last two decades the literature witnessed a �urry of

publications which led to the faster and more accurate techniques.3,9�11 The erroneous values

of the IFT at small Bond numbers is a serious drawback of ADSA. At a lower Bond number

the pendent drop becomes more spherical, where a negligible deformation of the drop is

equivalent to a large change in the calculated interfacial tension.12

The studies on the e�ect of electric �eld on surface tension in the absence of surface active

compounds have reported contradictory observations. The early investigations suggested

that the applied electric �eld lowers the surface tension of aqueous drops.13�15 The reported

changes in γ under electric �elds were substantial. However, a study by Hayes16 did not

�nd any change in the surface tension in their experiments with water and brine droplets

under up to 10 kV/cm. Interestingly, their theory suggested that a strong electric �eld (> 10

kV/cm) can induce surface tension changes of order 1×10−8 N/m which is obviously di�cult
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to detect in experimental measurements.

The basic assumption in ADSA is that the axisymmetric shape of a pendent drop is

determined by an equilibrium between gravity and the surface tension force. The Young-

Laplace equation which is balance of these forces across the interface can accurately predict

the drop shape. When the drop is subjected to any additional external force, the equation

needs modi�cation for it to �t precisely to the real drop pro�le. The e�ect of electric �eld on

interfacial properties in multiphase systems has been studied theoretically since long.17�19

The practical di�culty in experimental investigation of such systems is holding the drop

under observation levitated for a long time. The ADSA of a pendent drop under electric

�eld can assist in conducting such experiments; however, the Young-Laplace equation needs

to be modi�ed to include the Maxwell stress at the drop interface. Then the calculation of

the interfacial properties is similar to the conventional ADSA.

To the best of our knowledge only a few articles reported the methods to estimate IFT

by pro�le analysis of a drop under electric �eld.20,21 These studies considered a drop at equi-

librium condition where its shape does not change with time. This represents a system void

of surface active compound and/or the constant experimental parameters. The theoretical

work by Harris and Basaran,20 to probe stability of a pendent drop under electric �eld,

involved �nite element method to solve the Young-Laplace equation and Boundary element

method for electrohydrodynamics. Whereas, Bateni et al.21 considered an electri�ed sessile

conducting drop rested on an electrode surface. Panciera et al.22 used a similar method to

calculate surface tension during electric �eld-controlled nanowire growth. The objective of

the current manuscript is to present a numerical methodology to calculate dynamic inter-

facial tension under electric �eld for a long period of time, where the IFT can evolve for

various reasons (our upcoming article will report the IFT evolution in more detail). Novelty

of the algorithm lies in its ability to process a large number of drop images in one go. The

method will be useful in the accurate measurement of time-dependent interfacial properties

of a multiphase system in the presence or absence of an electric �eld.
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The advantage of ADSA over other methods is that a drop can be monitored over a

long period of time and its pro�le can be processed to calculate the interfacial tension as

a function of time. We modi�ed the Young-Laplace equation to incorporate electrostatic

e�ects and solved the Laplace equation for electric potential at the drop interface using the

experimental boundary conditions. We combined the method with the traditional numerical

algorithms to �t experimental drop pro�les with the theoretical drop pro�le by the modi�ed

Young-Laplace equation. The algorithm developed in this study processes 3600 drop pro�les

(drop images captured at 1 frame per second for 1 hour), estimates normal component of

the Maxwell stress at the drop interface, generates a theoretical drop pro�le and estimates

apparent interfacial tension by optimally �tting the theoretical pro�le to the experimental

coordinates. As the processing of a large number of drop pro�les generated at a set interval

is fundamental to the ADSA, the algorithm discussed here has a strong advantage over the

previous studies developed for individual images of an electri�ed sessile drop.21

Results and Discussion

A pendent water drop, when surrounded by another liquid, assumes a shape de�ned by the

capillary force and gravity which is a basis for the Young-Laplace equation,

γ

(
1

R1

+
1

R2

)
= ∆p0 −∆ρgz, (1)

where R1 and R2 are principal radii of curvature of the Meridian section of the pendent

drop interface as shown in Figure 1. γ and ∆ρ are the interfacial tension and the density

di�erence of water and medium phases. b is radius of curvature at the drop apex, z and x

are vertical and radial coordinates where the origin is assumed to be at the apex. The term

∆p0 represents the pressure di�erence across the interface at the apex, which is de�ned as,

∆p0 =
2γ

b
(2)
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Figure 1: Variables used in the generation of a theoretical pro�le to �t with the experimen-
tally obtained pro�le of a pendent drop in electric �eld.

Modi�ed Young-Laplace equation in electric �eld

When subjected to an electric �eld the drop interface experiences additional stresses which

must be taken into account in the pro�le analysis. Equation [1] can be revised as,

γ

(
1

R1

+
1

R2

)
= ∆p0 −∆ρgz +

1

2
ε.E2

n. (3)

Where the last term on the right hand side of Equation [3] denotes the normal component of

the Maxwell stress at the water-oil interface. ε is permittivity of the medium phase and En

is the normal component of electric �eld E at the drop interface. The tangential component

of the electric stresses vanishes in the system where a perfectly conducting drop phase is

surrounded by a dielectric liquid.23 Our algorithm can be applied to the systems where a

conducting aqueous drop is held in a dielectric organic liquid.

Given the axisymmetry of the drop shape, the principal radii of curvature in equation [3]
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can be written in terms of arc length s as,

1

R1

=
dθ

ds
, and (4)

1

R2

=
sinθ

x
, (5)

where θ is the tangential angle as shown in Figure 1. Equation 2 for ∆po can be revised to

the present case as,

∆p0 =
2γ

b
− 1

2
ε.E2

n

∣∣∣∣
s=0

. (6)

Combining equations [3], [4], [5] and [6] results,

dθ

ds
=

2

b
− 1

2γ

[
ε.E2

n

∣∣∣∣
s=0

− ε.E2
n

∣∣∣∣
z(s)

]
+

∆ρgz

γ
− sinθ

x
. (7)

The tangential component of the Maxwell stress at the drop interface vanishes as the drop

phase is conducting. Equation [7] is made non-dimensional by using b as the scaling factor

for length and V0/b for the electric �eld; the resulting dimensionless equation is,

dθ

ds̄
= 2− βe

2

[
Ē2
n

∣∣∣∣
s=0

− Ē2
n

∣∣∣∣
z(s)

]
+ βz̄ − sinθ

x̄
(8)

where β and βe are gravitational Bond number and electrical Bond number, respectively and

de�ned as, β = b2∆ρg
γ

and βe =
V 2
0 ε0
bγ

. β is always negative for a pendant drop and positive

for a sessile drop. The non-dimensional variables are denoted by overbars.

Further, the axisymmetric drop pro�le is characterized by,

dx̄

ds̄
= cosθ, (9)
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and

dz̄

ds̄
= sinθ. (10)

The equations [8], [9] and [10] can be solved for β using initial condition, at apex, s̄ = x̄ =

z̄ = θ = 0

Zholob et al.10 argued that the governing equations [8], [9] and [10] can be rewritten into

polar coordinates for better accuracy and easier to �t the equations to the experimental drop

pro�le. For the conversion they suggested shifting the origin of the coordinate system to the

drop center de�ned by the point equidistant from the drop apex and the split line. As shown

in Figure 2, in the new coordinate system, the center lies on the axis of symmetry at height

z = zm/2. Following in the footsteps of Zholob et al.,10 Equation [8] is rewritten in polar

coordinate system as,

k = 2− βe
2

[
Ē2
n

∣∣∣∣
s=0

− Ē2
n

∣∣∣∣
z(s)

]
+ βz̄m

(
1− r̄cosφ

)
− 1√

1 + P 2

1

z̄mr̄sinφ
(11)

where,

P =

dr̄
dφ
sinφ+ r̄cosφ

r̄sinφ− dr̄
dφ
cosφ

. (12)

k, in Equation [11], is the curvature, which is de�ned as,

k =
r̄2 + 2

(
dr̄
dφ

)2 − r̄ d2r̄
dφ2(

r̄2 +
(
dr̄
dφ

)2
)3/2

. (13)

The detailed method of conversion can be found in reference.10

Electric �eld at drop interface

The electric �eld distribution at the drop interface is estimated independently using 2D �nite

di�erence method (FDM). The system solved to get E, shown in Figure 3, is similar to that

studied by Harris and Basaran.20 However, they hybridized the �nite element method to solve
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Figure 2: New origin shifted to the drop center in polar coordinates.

the Young-Laplace equation and the boundary element method for electrostatics of a pendent

drop. The estimation of the electric �eld by assuming drop shape to be at equilibrium is

straight forward. The solution uses instantaneous experimental drop pro�le as the drop

geometry. The nondimensionalized 2D Laplace equation solved for electric potential outside

the drop between two electrode is,

∇̄2v =
∂2v̄

∂z̄2
+

1

r̄

∂

∂r̄

(
r̄
∂v̄

∂r̄

)
= 0. (14)

The lengths in Equation [14] are scaled with diameter of the capillary (c) and electric po-

tential with the applied potential at the lower electrode (v0). The equation is solved using

8



following boundary conditions:

v̄ = 1 at the lower electrodeAL (15)

v̄ = 0 at drop surface D, capillary surface AC and ground electrode AG (16)

n.∇v̄ = 0 everywhere in the domain (17)

v̄ = 1− (l + z)/d far-�eld E, away from the drop (18)

The capillary and drop are randomly kept at zero potential as the capillary is Te�on coated

and isolated from the top electrode.

Figure 3: Schematics of the 2D axisymmetric domain used to solve electric �eld distribution
at the drop interface. Boundaries: upper electrode AG, lower electrode AL, capillary Ac,
periodic boundaries Ap and drop surface D
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Algorithm

There exist a number of methods for optimum �tting between two pro�les. Rio and Neu-

mann3 elaborately discussed the various optimization algorithms and criteria of their selec-

tion. In the present work we used the Levenberg-Marquardt optimization method to optimize

the �t between theoretical and experimental drop pro�les. This method is considered ad-

vantageous when the initial guess for Bond number is vague. Also, the computation time is

fairly small compared to the other optimization methods.

The �ow chart of algorithm to calculate apparent interfacial tension when pro�le coor-

dinates of a drop under electric �eld is given as an input is shown in Figure 4. A drop of

desired size is generated and exposed to a DC electric �eld. A CCD camera captures images

of the drop while the NI tools acquire the images and process them to detect the drop edges

and extract the coordinate data at a set rate. The program imports the �le containing the

coordinate data sets and starts shape analysis from the pro�le at t=0 s. The experimental

drop pro�le is used to estimate the electric �eld distribution at water-oil interface separately

assuming drop to be rigid. An initial guess for the capillary Bond number (β0) is needed in

the beginning of the solution. In the analysis of subsequent pro�les, optimum β of the previ-

ous pro�le is used as the initial guess. The theoretical pro�le is generated using equation [11]

and associated boundary conditions. The Levenberg�Marquardt method optimizes �tting

between the theoretical and experimental pro�les iteratively by updating β. The optimum

β is used to calculate the apparent interfacial tension (γ = b2∆ρg
β

) and as the initial guess for

Bond number for the next pro�le.

Experiments

The setup used to generate a pendent drop, apply uniform DC electric �eld, capture the

drop images and acquire pro�le coordinate data is demonstrated by the schematics in Figure

5. The dosing system was used to generate a drop of precise volume and maintain it over
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drop profile

Calculation of En 
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β0 = β
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Figure 4: ADSA algorithm to calculate interfacial tension when the pendent drop is under
external electric �eld.

the course of experiment. A Te�on-coated capillary (ID = 1100 µm, OD = 2000 µm and

coating thickness = 500 µm) was held vertical between two horizontal steel electrodes such

that equator of the drop, created at the opening of the capillary, lies approximately at the

centre between the electrodes. The upper electrode was connected to ground and the bottom

one to power source. The power source consist of a function generator (Agilent Technologies

DSO-X 2022A) and an ampli�er (Trek 609E-6).

CCD Camera

Software/Computer

Electrodes

Lamp

Signal Generator Amplifier

Reservoir

Dosing System

Drop

Figure 5: Schematics of the experimental system.
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The drop, 3.5 wt% NaCl in Milli-Q water, was surrounded by Xylene (95 %, VWR). The

volume of the drop was kept 30 µl in all the experiments so as to avoid errors due to very

low capillary Bond number. All the experiments were carried out at room temperature and

pressure conditions.

The accuracy of coordinates of the experimental pro�le is very critical for an accurate

calculation of the interfacial tension by ADSA. This paper does not discuss the edge detection

technique but a number of studies dedicated to the edge detection can be found in the

literature.24,25 Moreover, several articles on pro�le tensiometry elaborately discussed the

edge detection techniques.10,26 In our experiments a CCD camera �tted with a Schneider-

Kreuznach Componon-S 2.8/50 Enlarging Lens captured the drop image at 1 image per

second. The images were acquired by an IMAQ PCI-1408 acquisition board. A gradient-

based edge detection scheme IMAQ CannyEdgeDetection24 was used for image processing

and to detect drop edges.

Fitting Experimental Pro�les

The CCD camera captured the drop images at 1 frame per second rate for 3600 s. The NI-

IMAQ tools acquired the drop images and saved the drop pro�le coordinate data in a �le at

the set rate. Each pro�le, depending on quality of the image, contained between 160 and 200

coordinates. Our interfacial tension calculation code imports the �le and �ts the theoretical

pro�le calculated by Equation 11 with each time-dependent coordinate data set. At the end

of �tting optimization, the apparent interfacial tension is calculated from the corresponding

capillary Bond number for each drop pro�le. Figure 6 demonstrates the experimental and

theoretical pro�les after the �tting optimization, in the absence (Figure 6(a)) and presence

(Figure 6(b)) of the electric �eld.

The computation speed is governed by accuracy of the initial guess of β. In the system

where the interfacial tension does not change signi�cantly over time, the program can be
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Figure 6: The modi�ed Young Laplace equation (Equation 11) �tted to the experimental
drop pro�les. (a) Drop in the absence of electric �eld, and (b) equilibrium shape of a drop
subjected to 0.625 kV/cm.

faster. However, in the studies involving a drop undergoing time-dependent interfacial prop-

erties, the program can be made faster by setting optimized β of the previous pro�le as the

initial guess for the next.

In the pro�le analysis technique when a pendent drop is subjected to an externally applied

electric �eld, the Young-Laplace equation gives inaccurate values of the interfacial tension.

As the drop deforms, due to the electric stresses at its interface, the estimated IFT is always

less than the real value. As shown in Figure 7, the di�erence between the real (IFT at 0

kV/cm) and the estimated IFT goes on increasing with strength of the applied electric �eld.

The change can be signi�cant and can give a completely wrong idea of the interface. The

accurate values can be obtained by including the Maxwell stress term in the Young-Laplace

equation.

The calculated apparent interfacial tension of water-xylene system for an hour is shown

in Figure 8. The plots suggest that the γ remains unchanged in both conditions- without

electric �eld and under the �eld. The initial shape change after the drop subjected to electric
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Figure 7: The misleading values interfacial tension of water-xylene interface obtained by the
Young-Laplace equation without incorporating the Maxwell stress term.

�eld is not re�ected in the γ plot of Figure 8(b) as it happens within the charge relaxation

time ε/σ, which is less that 1 s for xylene. Here σ is electrical conductivity of the surrounding

phase. The interfacial tension is found to be constant over the range of applied electric �eld

(0-0.833 kV/cm) which is logical given the fact that the �uid system is void of surface active

compounds.

Figure 9 shows the apparent interfacial tension which is calculated by taking average

of γ from 3600 pro�les. The experiment at each electric �eld is repeated at least 4 times.

Additionally, scaling the average values of the apparent interfacial tension under electric �eld

by γ at no �eld (demonstrated in Figure 10) suggests that the interfacial tension remains

constant over a large range of applied electric �eld.

In addition to the interfacial tension, the numerical �tting calculates geometrical aspects

of a drop under electric �eld. The critical radius of curvature (b), de�ned as radius of
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Figure 8: (a) The apparent interfacial tension of water-xylene interface for 3600 s. (b) The
apparent interfacial tension of a drop subjected to E0 = 0.33 kV/cm for 3600 s.
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Figure 9: The average apparent interfacial tension of a pendent water drop under electric
�eld for an hour. The error bars are obtained from more than four parallel experimental
runs.

curvature of the drop at its apex where the principal radii of curvature (R1 and R2) are

equal, is other unknown of capillary Bond number. The values of b obtained from �tting of

drop pro�les under various electric �eld strengths are plotted in Figure 11. The critical radius
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Figure 10: The average apparent interfacial tension under electric �eld scaled by γ at no
�eld.

appears to monotonically decrease as the applied �eld is increased. The electric stresses at

the drop interface stretch the drop in the vertical direction. The surface charge migration

towards the apex, which is already a high curvature part of a pendent drop,20 ramps up the

charge density. The resulting non-uniformity in the charge distribution further increases the

radius of curvature at the drop apex. Increasing the magnitude of electric �eld causes more

deformation resulting in to a more tapered apex.

The ADSA is a pro�le based tensiometry. It assumes that any change in curvature of

the drop is due to the change in its interfacial properties. In the absence of electric �eld,

the original Young-Laplace equation (Equation 1) applied to a drop at equilibrium renders

a correct estimate of γ. The equation is still valid when the shape evolves over time e.g.

by adsorption of surface active molecules to the interface. The continuously evolving drop

geometry is captured by a camera and the pro�les processed by the conventional algorithms

give accurate estimation of IFT. However, when a drop is exposed to an electric �eld, the
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Figure 11: The radius of curvature at apex when the drop is under electric �eld. The error
bars are obtained from more than four parallel experimental runs.

Maxwell stress at its interface are balanced by interfacial tension force and the drop attains

a new shape. Although the drop remains at equilibrium thereafter and the new shape

is constant, the γ calculated by Equation 1 is less than the real interfacial tension. If

not corrected for the Maxwell stress, the Young-Laplace equation accounts the modi�ed

geometry for the changing IFT and gives misleading values. Figure 11 shows such electric

�eld dependent curvature at drop apex (b) and the estimated γ by the uncorrected Young-

Laplace equation (Equation 1) is shown in Figure 7.

Conclusions

This paper reports a methodology to import and process a large set of pendant drop pro�les

to extract interfacial tension values. The Young-Laplace equation is modi�ed to include the

normal component of electric stress at the drop interface and converted in to polar coordinate
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system so as to easily �t with the experimentally obtained drop pro�les. The electric �eld

distribution at the drop interface is obtained independently using 2D FDM. The theoretically

obtained pro�le is �tted to the experimental pro�le using Bond number as a �tting parameter.

The interfacial tension is calculated from the Bond numbers at the optimum �t between the

two drop pro�les. Unlike the previous studies in the surface/interfacial tension calculation

under electric �eld, the algorithm discussed here can handle a large number of images all at

the same time.

The apparent interfacial tension, calculated from experimental pro�les of an aqueous drop

surrounded by xylene, suggests that the applied electric �eld does not alter the interfacial

tension. However, the radius of curvature at the drop's apex decreases upon increasing

strength of the applied electric �eld, further tapering the already high curvature apex of

the drop. Our analysis demonstrates that if the Maxwell stress term is not included in the

Young-Laplace equation, the estimated interfacial tension can be misleading and signi�cantly

lower than the real IFT.
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Appendix A: Experimental Data

Table 1: Experimental data for an aqueous pendent drop in xylene under DC uniform electric
�eld. η is standard deviation.

Electric Field
(kV/cm)

b (µm)
IFT by Young-Laplace equation
(mN/m)

IFT by modi�ed
Young-Laplace equation
(mN/m)

Mean η Mean η Mean η
0.000 1892.80 0.000 35.493 0.291 35.493 0.291
0.208 1900.35 3.748 36.110 0.042 35.780 1.113
0.333 1894.30 3.652 34.170 0.735 35.533 1.139
0.417 1892.65 3.981 33.220 0.495 36.123 0.299
0.500 1880.60 5.052 31.510 1.706 35.687 0.300
0.625 1873.60 4.973 29.330 1.128 34.430 1.725
0.750 1863.97 4.661 27.320 0.523 35.123 0.874
0.833 1859.23 3.513 26.797 0.603 35.927 0.746
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