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Abstract 

CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The workflow 

combines seismic tomography (full-waveform inversion) and rock physics inversion and is 

applied to a 2D seismic line located near the injection point at Sleipner. We use baseline data 

(1994 vintage, before CO2 injection) and monitor data which was acquired after 12 years of 

CO2 injection (2008 vintage). P-wave velocity models are generated using the Full-Waveform 

Inversion (FWI) technology and then, we invert selected rock physics parameters using a Rock 

Physics Inversion (RPI) methodology. FWI provides high-resolution P-wave velocity models 

both for baseline and monitor data. The physical relations between rock physics properties and 

acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir formation) are 

defined using a dynamic rock physics model based on well-known Biot-Gassmann theories. 

For data prior to injection, rock frame properties (porosity, bulk, and shear dry moduli) are 

estimated using RPI which allows deriving physically-consistent properties with related 

uncertainty. We show that the uncertainty related to limited input data (only P-wave velocity) 

is not an issue because the mean values of parameters are correct. These rock frame properties 

are then used as a priori constraint in the monitor case. For monitor data, the FWI results show 

nicely resolved thin layers of CO2-brine saturated sandstones under intra-reservoir shale layers. 

The CO2 saturation estimation is carried out by plugging an effective fluid phase in the rock 

physics model. Calculating the effective fluid bulk modulus of the brine-CO2 mixture (using 

Brie equation in our study) is shown to be the key factor to link P-wave velocity to CO2 

saturation. The inversion tests are done with several values of Brie/patchiness exponent and 

show that the CO2 saturation estimates are varying between 0.30 to 0.90 depending on the rock 

physics model and the location in the reservoir. The uncertainty in CO2 saturation estimation is 

usually lower than 0.20. When the patchiness exponent is considered as unknown, the inversion 
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is less constrained and we end up with values of exponent varying between 5 and 20 and up to 

33 in the specific reservoir area. These estimations tend to show that the CO2-brine mixing is 

between uniform and patchy mixing and variable throughout the reservoir. 
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Introduction 

The global warming is gaining lots of attention in the last decade with the increasing energy 

demand and fossil energy consumption. Excessive CO2 emissions which have a substantial 

contribution to the global warming (Metz et al. 2005) require the implementation of immediate 

mitigation measures. The CO2 Capture and Storage (CCS) technology is hence proposed as a 

mean to reduce the CO2 emission into the atmosphere. Large CO2 storage capacity has already 

been proven in deep saline aquifers (Halland et al. 2011, Böhm et al. 2015). The Sleipner CO2 

storage site is the first commercial-scale offshore storage operation and the longest in operation 

in the world. Geophysical monitoring (including seismic and non-seismic techniques) is used 

to monitor the subsurface changes related to the CO2 plume migration, in order to verify 

conformance and early detection of potential leakage (containment monitoring).  

The seismic monitoring programme at Sleipner includes a 3D baseline survey prior to CO2 

injection and several monitor surveys every two to three years (Arts et al. 2008, Furre et al. 

2015, Furre et al. 2017). Previous studies based on time-lapse analysis help to reveal the details 

of the CO2 plume development (Arts et al. 2004, Arts et al. 2002, Eiken et al. 2000). Structural 

mapping and frequency decomposition have been used to estimate the upper most layer 

thickness (White 2013, Williams and Chadwick 2012). Arts et al. (2002) give quantitative 

estimates of CO2 mass using amplitude information. More recently, Furre et al. (2015) perform 

a detailed analysis of the thin CO2 layers, with respect to time shift development and amplitude 

changes.  

The proper understanding of saturation development in Utsira sandstone has been widely 

studied by several authors. Ghaderi and Landrø (2009) use seismic modeling of thin layer 

responses and propose a simultaneous inversion of velocity and layer thicknesses of partially 

saturated layers with CO2. Post-stack impedance analysis (Ghosh et al. 2015) and time-lapse 
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AVO analysis (Chadwick et al. 2010) have been applied to estimate CO2 saturations. Bergmann 

and Chadwick (2015) propose a method using time-shift analysis to estimate the influence of 

fluid mixing law both with synthetic and real data. As an alternative, quantitative maps of 

velocity properties derived at Sleipner using full waveform inversion have been used as input 

to estimate saturation distributions. Queiber and Singh (2013) and Romdhane and Querendez 

(2014) apply FWI in order to derive highly resolved P-wave velocity models. Queiber and 

Singh (2013) use simple rock physics relations (Gassmann (1951) model combined with Brie’s 

law (Brie et al. 1995)) to describe the CO2 and brine mixture from the P-wave velocity. Dupuy 

et al. (2016) propose a two-step workflow with dynamic rock physics models to tackle the 

existing limitation in frequency sensitivity and obtain reliable reservoir properties from high-

resolution velocity models. Sensitivity studies have highlighted that extra input data in the 

inversion process, such as shear wave velocity and P-wave quality factors are important for the 

estimation of rock frame moduli and can be helpful to better constrain in the estimation of CO2 

saturation (Dupuy et al. 2016, Dupuy et al. 2017, Böhm et al. 2015). At Sleipner, (Dupuy et al. 

2017) shows however that the estimation of CO2 saturations from P-wave velocity models 

derived from FWI is still possible. 

In this work, FWI is combined with the rock physics inversion method to invert for selected 

poroelastic properties (rock frame moduli, porosity, CO2 saturation and Brie patchiness 

exponent) and to derive high-resolution maps of CO2 saturation with uncertainty. Data from 

1994 and 2008 vintages are used. The rock frame properties are recovered using baseline data 

and used as a priori parameters to estimate CO2 saturation distribution with the monitor dataset. 

We invert the CO2 saturation and other properties for the monitor case and we constrain the 

inversion using a priori geological information (fluid properties, grain properties, permeability, 

and cementation factor) and a priori information derived from the baseline results (bulk 
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modulus, shear modulus, and porosity). We also analyze how the Brie exponent, describing the 

fluids distribution (from uniform to patchy mixing), is affecting the results. 

This paper is divided into four sections. While the first part gives a description of the 

methodology, the second section gives a short description of the geological context at Sleipner 

justifying the choice of some a priori parameters. The results for both baseline and monitor data 

are described in section 3. Section 4 discusses the obtained results and compares them to other 

studies. 

Methodology 

We use a two-step workflow combining FWI and RPI methods. From FWI, we generate a P-

wave velocity model that is used as input of the rock physics inversion step.  

FWI is performed in the frequency-space domain (Pratt et al. (1998)). The 2D acoustic wave 

equation is solved using finite differences with the mixed grid approach (Hustedt et al. 2004). 

The inverse problem is solved using a pre-conditioned gradient algorithm. The gradient method 

in its standard form provides a relationship between the perturbation model and the data 

residuals. An approximation of the Hessian operator with only the diagonal elements is used to 

save computation cost. Basic data preprocessing steps (including extracting guns, muting, 

coordinate transformation) are performed before running the inversion (Romdhane and 

Querendez (2014)). We derive an initial P-wave velocity model using RMS velocity in time 

converted into interval velocity in depth. The misfit function and the gradient of the misfit at 

iteration n can be expressed: 
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Where ( )nξ∂
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m

 is the gradient of the misfit at iteration n. modd and obsd are the modeled and 

observed data, respectively. eℜ is the real part of a complex number. J denotes the Jacobian 

matrix, thus TJ is the transpose of the Jacobian matrix. δ ∗d  denotes the conjugate of the data 

residuals. The perturbation model is given by: 

 1 .n n nδ += −m m m   (2) 

The gradient method can be formulated as the link between the perturbation model and data 

residuals, and is given as: 
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Where nα  is the step length at iteration n. Proper scaling and regularization can be applied to 

ensure the computational stability. The approximate Hessian aH  can be written: 

 }{ .T
a e ∗= ℜH J J   (4) 

If we only consider the diagonal term of the approximate Hessian, the model update at iteration 

n becomes: 
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Where λ  denotes a damping parameter used to ensure computational stability.  

The second step consists in solving the inverse problem linking seismic properties and rock 

physics properties. The link between rock physics parameters and seismic attributes constitutes 

the forward problem, usually called the rock physics model. The forward problem can be 
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described in a generic manner by Biot-Gassmann theory (Biot 1956a, Gassmann 1951) as long 

as rock frame properties are somehow defined or estimated.  

The Biot-Gassmann equations are valid under several assumptions. The Gassmann equations 

are valid within a low frequency limit and do not account for the chemical interaction between 

the grains and the fluid phases. The Biot theory is limited to homogeneous and isotropic media, 

which consists of only one type of grain. To be more realistic, Pride (2005) extended the Biot-

Gassmann equations and included a generalized dynamic permeability (Johnson et al. 1987). 

The extensive Biot-Gassmann theory can be applied to a multi-composite material saturated 

with a multi-fluid mixture using averaging techniques. In addition, this approach is valid within 

a wide frequency range. More details on the assumptions and theory for this rock physics model 

are given in Pride (2005). The extensive Biot-Gassmann equations allow us to calculate the 

viscoelastic attributes for an effective fluid phase even if only P-wave velocity is used 

Biot (Biot 1956b) demonstrates that there are three types of waves propagating in a fluid 

saturated porous medium. These are compressional wave (P-wave), shear wave (S-wave), and 

an additional slow compressional wave (Biot wave or slow P-wave). The slowness of P wave 

is formulated by Pride (2005) as: 
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Thus, we can deduce the effective P-wave velocity as: 
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In equations (6), ρ and ρf and ρ(ω)%  are bulk density, effective fluid density, and flow resistance 

term. Note that ω is the complex pulsation and is involved in frequency-dependent terms such 

as ρ(ω)%  and γ(ω) . The undrained bulk modulus UK , the Biot modulus C, the shear modulus G 

and the fluid storage coefficient M are the four mechanical moduli. The additional terms γ(ω)  

and H are defined by: 
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The four mechanical moduli are related to the homogenized porous solid. UK , C, and M are 

formulated as: 
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Where the term∆  is given by: 
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Where porosityφ is defined as the ratio between void and total volume in the solid matrix. Kd, 

Gd, Ks, and Kf are respectively the frame bulk modulus, frame shear modulus, the grains bulk 

modulus and the effective fluid bulk modulus. 
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We consider the solid material for both shale and sand layers consists of a mix of clay and 

quartz grains. We compute the grains bulk moduli KS by averaging the bounds (Hashin and 

Shtrikman 1963). The grain density ρS is computed using an arithmetic average: 

 (1 ) s fρ φ ρ φρ= − + . (11) 

The extended Biot-Gassmann formulation given by Pride (2005) is valid over a wide range of 

frequency because it involves Johnson et al. (1987) model who gives a frequency dependent 

dynamic permeability k(ω) . It allows for correcting the seismic permeability and differentiate 

the viscous and inertial predominant effects at low and high frequency domain (Dupuy et al. 

2016). The dynamic permeability k(ω)  is expressed by Johnson et al. (1987): 

 0( )
11
2 c c
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ω ω
ω ω
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Where ω  is the angular frequency. cω is the characteristic angular frequency which 

characterizes the maximum attenuation peak. k0 is the hydraulic permeability. The 

characteristic frequency cω can be formulated with the cementation factor m, the effective fluid 

viscosity η and the effective fluid density ρf (Adler et al. 1992) such as: 
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Then, we can define frequency dependent flow resistance termρ(ω)%  which is involved in the 

slowness equation (6) and is defined by: 
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Where i  denotes the complex number. 

For the monitor step, it is assumed that the fluid phase in the pore space can be treated as a 

single-phase mixture of brine and CO2, with effective properties computed using Brie mixing 

law (Brie et al. 1995) for fluid bulk modulus, Teja & Rice equation (Teja and Rice 1981) for 

effective viscosity, and arithmetic average (Voigt 1928) for fluid density. The sensitivity tests 

provided in Dupuy et al. (2016) show that the fluid bulk modulus is the main factor affecting 

the P-wave velocity change. The Brie equation involves an empirical exponent e:  

 2 2( ) e
f CO W W COK K K S K= − + , (15) 

where SW denotes the brine saturation, KCO2 and KW denote the CO2 and brine bulk moduli, 

respectively. The exponent e can vary between 1 and 40 (Brie et al. 1995), which corresponds 

to various mixture trends (Figure 1). For instance, the lower bound (e=40) stands for the so-

called uniform mixing (the two fluids are mixed at the finest scale), while the upper bound (e=1) 

stands for the so-called patchy mixing. It is worth noting that the patchy mixing is related to 

empirical observations and its definition is variable depending on the authors. The exponent e 

is proposed to be 3 (Brie et al. 1995) and 5 (Carcione and Picotti 2006) to match the case related 

to gas and brine mixture. The Brie exponent e is sometimes called patchiness exponent 

(Papageorgiou et al. 2016). The set of rock physics model equations (6-14) constitute the 

forward model that allows us to compute visco-elastic attributes (mainly P-wave velocity) from 

rock physics properties (solid and fluid phases and rock frame properties). 

To solve the rock physics inversion problem, we use a semi-global optimization method 

(Neighborhood Algorithm (NA) (Sambridge 1999)) to minimize the discrepancy between 

observed data and calculated data obtained by forward modeling. The method searches for the 

global minimum over the whole model space in a partially random way and the search process 
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is guided by each iteration towards areas with a lower misfit. The scalar misfit function C( )m  

between the observed data obsd and the estimated data g( )m  from the forward modeling can be 

given as an L2 norm:  

 C( ) ( ) ( ) .Tg g = − − obs obsm d (m) d (m)   (16) 

The NA algorithm has only two control parameters: the number of new models at each iteration 

and the resampling size of Voronoï cells. The misfit of the previous iteration decides the new 

sampling of Voronoï cell for the next iteration. Sambridge (1999) and Dupuy et al. (2016) 

provide more details on the NA algorithm and the rock physics inversion, respectively. 

The rock physics inversion process give estimates of selected parameters with the related 

uncertainty. The sensitivity study by (Dupuy et al. 2017) shows that the estimation of CO2 

saturation from P-wave velocity input only is not well constrained when the CO2 saturation is 

high (it is directly related to the shape of the P-wave velocity versus saturation curve, see Figure 

1). Examples of the misfit function shapes for the estimation of frame parameters and saturation 

are given in sensitivity tests. By assuming a Gaussian distribution of estimated models, we can 

estimate the mean value and associated standard deviation to assess the uncertainty.  

Geological background 

Since 1996, about 0.9 million tons of CO2 is annually injected into the Utsira formation at 

Sleipner at a depth of 1012 m below the sea level through a deviated well (Arts et al. 2008). 

The thickness of the Utsira sandstone is about 300 m and is surrounded by the Nordland shale 

on the top and the Hordaland shale on the bottom. The caprock is assumed to be a good quality 

seal with a low probability of leakage (Chadwick et al. 2004). The Utsira formation consists of 

late Miocene to early Pliocene dominantly sandy unit and some shaly intra-reservoir horizons 
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(Chadwick et al. 2000). It is a highly porous, unconsolidated, permeable sandstone which shows 

good reservoir properties for high injection rate through only one single well (Michael et al. 

2010). The intra-reservoir shale layers are very thin and can be less than 1 m thick Zweigel 

(2000).  

To constrain our rock physics inversion, we need to determine a set of realistic a priori rock 

physics properties. These parameters are defined based on the existing geological studies on 

Sleipner field. Grain moduli Ks of the Utsira sandstone and the Nordland shale are calculated 

by the Hashin-Shtrikman bounds method (Mavko et al. 2009, Hashin and Shtrikman 1963). 

Grain density ρS for the Utsira sandstone and the Nordland shale are computed using volume 

weighted averages. The cementation parameter m (Pride 2005) is assumed to be equal to 1 for 

the unconsolidated sandstone and mudstone. As discussed in sensitivity tests by Dupuy et al. 

(2016), the cementation factor has a negligible influence on P-wave velocity. The permeability 

for the Utsira formation is high and ranges from 1×10-12 m2 to 3×10-12 m2 (Boait et al. 2012). 

We use an average permeability of 2×10-12 m2 for Utsira formation. The permeability of 

Nordland shale is defined from lab data and assumed to be equal to 1.48×10-17 m2. The grains 

and rock frame properties of Utsira sandstone and Nordland shale are given in Table 1. 

We consider a CO2 and brine mixture after CO2 injection and a fully brine saturated medium 

before CO2 injection for the saturating fluids properties. The bulk modulus of brine is equal to 

2.3 GPa at reservoir conditions (Boait et al. 2012), and the density of brine is assumed to be 

equal to 1030 kg/m3 (Mavko et al. 2009) at reservoir temperature and pressure. Most of the CO2 

is stored in a supercritical state (Arts et al. 2008) and we use a relatively high density of 700 

kg/m3 for the CO2 phase (Lindeberg 2013). Since the initial pore pressure of 8 MPa is 

considered (Furre and Eiken 2014) and the reservoir temperature is ranging between 27 (top 

Utsira formation) and 37C̊ (near injection point), the range of KCO2 is estimated to be equal to 
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0.02 GPa to 0.075 GPa (Ghaderi and Landrø 2009). We use a value of 0.075 GPa for bulk 

modulus of CO2 (Lindeberg 2013) regarding in-situ pressure and temperature conditions. The 

viscosity of CO2 is discussed in many papers and depends on the temperature and pressure 

(Gasda et al. 2012, Singh et al. 2010). However, the effective viscosity influence on seismic 

velocity is minor at low frequency (Dupuy and Stovas 2016). We use 6×10-5 Pa.s for the CO2 

viscosity. The fluids properties used in the case study are summarized in Table 2. As CO2 is 

under a supercritical state and reservoir pressure and temperature conditions are known, we 

have chosen to fix the CO2 properties and not estimate them. Otherwise, sensitivity tests have 

been carried out to estimate CO2 properties in addition to saturation (Dupuy et al. 2017). The 

tests show that the CO2 saturation estimates are only slightly affected if CO2 properties are 

unknown. 

Sensitivity tests 

Sensitivity tests for baseline parameters, i.e. porosity and rock frame moduli before CO2 

injection are carried out. The forward model is based on the extended Biot-Gassmann theory 

with fully brine saturated Utsira sandstone and is described in the previous part. The grain and 

frame properties for Utsira sandstone and brine properties are given in Table 1 and 2.  

Figure 2 (bottom panel) shows a point test where we estimate frame bulk modulus, frame shear 

modulus and porosity using a different combination of input data (P-, S-wave velocity and 

density). Examining the size and the shape of the low misfit area in these sensitivity plots allows 

assessing the uncertainty of each parameter estimate and how well these estimates are 

constrained depending on which input data are used. Such extensive sensitivity tests are 

described in details in Dupuy et al. (2016). In Figure 2, the low misfit area (pink models) is 

wider when only P-wave velocity is used than when P-, S-wave velocities, and density are input 

data. The dry shear modulus is a lot better constrained when using VP, VS and ρ inputs but 
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porosity and dry bulk modulus have similar uncertainty. It is also worth noting that mean values 

of all low misfit models (pink models) are quite close to the true value, even when only P-wave 

velocity is used. This is a promising conclusion our real data application where acoustic FWI 

is used to derive P-wave velocity maps. 

Similar sensitivity tests are given for CO2 saturation and Brie exponent estimates in Figure 3. 

We observe that the CO2 saturation is correctly estimated when the saturation is low while it is 

more difficult to get an accurate estimate when CO2 saturation is high. This effect is directly 

related to the shape of the VP-SCO2 curve (Figure 1) where we have a quick drop of VP as soon 

as little CO2 is present in the porous medium (fizz-gas effect). However, for Brie exponent 

larger than 5 (fluid mixture is becoming more and more homogeneous), a change of CO2 

saturation is not affecting P-wave velocity when this saturation is greater than 30-50%. The 

inversion is consequently more difficult to constrain for high CO2 saturations and the related 

uncertainty is larger. It is worth noting that this sensitivity test is carried out using VP input only. 

Supplementary tests show that using additional input help to mitigate this issue of non-linearity 

(Dupuy et al. 2017). This first test was assuming that the fluid mixing law is known (Brie 

exponent equal to 5). If this patchiness exponent is inverted together with CO2 saturation 

(bottom panel of Figure 3), we observe a trade-off between these two parameters which is 

expected as only P-wave velocity is used as input. The uncertainty of the saturation estimates 

is consequently larger. 

Sleipner test case 

The two-step workflow is carried out for data before (1994 vintage, baseline) and after CO2 

injection (2008 vintage, monitor). For both vintages, data corresponding to the inline 1836 is 

oriented north to south and located close to the injection point are selected. The applied 

processing workflow aims at improving the signal to noise ratio and without affecting the 
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amplitudes of the data. It includes the removal of the t2 divergence compensation, data muting 

before the first arrivals, and the selection of data with an offset higher than 420 m. The available 

data include offsets up to 1800 m. For the initial velocity model, we assume a horizontal sea 

bottom and use a stacking velocity model converted to interval velocity in depth and smoothed. 

The model is 7 km long and has a depth of 1.35 km. It is defined on a regular 3m squared grid 

to ensure sufficient accuracy when high frequencies are considered. To mitigate the non-

linearity of FWI, we perform the inversion from low to high frequencies using frequency 

components up to 33 Hz to derive a highly-resolved P-wave velocity model. A target region 

around the Utsira sandstone is then used as input to perform RPI.  

FWI results 

Figure 4.a and 4.b show the P-wave velocity maps derived by FWI for both baseline and 

monitor cases, respectively. Selected interpreted horizons (corresponding to the seabed, the top 

Pliocene, the intra Pliocene, the top of Utsira sand wedge, the top of Utsira, and the base of 

Utsira) are also plotted for reference. The top of Utsira sand wedge is an eastward thickening 

package, which is separated from the main sand part by a shale layer (Zweigel et al. 2004). As 

observed in Romdhane and Querendez (2014) using a different inline, the models derived from 

FWI show a clear improvement in term of resolution. Figure 4.b shows clear indications about 

the lateral extent and geometry of the CO2 plume. Figure 4.c shows the corresponding time 

migrated section converted to depth using a simple time to depth relationship based on well 

data situated at around 800 m distance from the 2D line used. The pushdown of the reflection 

beneath the CO2 plume is clearly visible.  

Close up of the target region at the depth of Utsira reservoir where the CO2 is expected to 

accumulate are shown in Figure 4.d, and 4.e with interpreted horizons corresponding to the top 

of Utsira sand wedge, the top of Utsira, and to the base of Utsira from top to bottom. For the 



17 

 

 

baseline case, two thick low-velocity layers can be observed. These layers are probably showing 

high porosity unconsolidated sandstones where the CO2 is expected to migrate after injection. 

For the monitor case, we observe thin low velocity layers that can be associated with the 

accumulation of CO2. The velocity pushdown effect at the base of the Utsira can also be 

observed. The better resolution of the shale-sand interlayers is probably related to the higher 

contrast between the slow-velocity CO2 plume and the surrounded high-velocity brine-saturated 

reservoir, shale overburden and interbedded layers. It is worth noting that the velocities of the 

overburden layers (just above Utsira reservoir) are slightly lower in the monitor case, while no 

effect related to CO2 anomaly should be observed. In addition, velocity differences observed 

below the reservoir are not meaningful of any physical change because CO2 migration is driven 

by buoyancy effect. These uncertainties in velocity can be partly due to some smearing effects 

(Romdhane et al. 2014, Queiber and Singh 2013) which can lead to overestimation of velocities 

in the CO2 plume (i.e. underestimation of velocity change) observed in Utsira sandstone, and 

to the limited available offset range (maximum of 1800 m). 

Baseline dataset: estimation of rock frame properties 

We apply the rock physics inversion on baseline data considering that the porous medium is 

saturated with brine. Similarly to other real case studies (for example, the gas blowout in the 

North Sea presented by (Dupuy et al. 2016)), prior geological information is helpful to constrain 

the estimation of rock frame properties. The RPI is applied to the FWI-derived P-wave velocity 

model to estimate rock frame moduli (Kd, Gd) and porosity φ for the reservoir where the CO2 

plume is expected to accumulate. The inversion ranges are given as: 0.1 GPa < Kd < 10 GPa, 

0.01 GPa < Gd < 10 GPa, 0 < φ < 0.45. The inversion frequency is 30 Hz.  

The estimated bulk frame modulus, shear frame modulus and porosity and associated 

uncertainties are given in Figure 5 and Figure 6. The bulk and shear frame moduli within the 
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two low-velocity sand layers vary from 1 to 3 GPa with ± 1 to 1.5 GPa uncertainty and from 1 

to 1.5  GPa with ±  0.9 to 1.2  GPa uncertainties, respectively. The surrounding layers 

(interpreted as being thin shale interbedded layers and the overburden layers) show higher 

values for both moduli (3 to 6 GPa with ± 1.5 to 2.5 GPa for the bulk modulus and 2 to 2.5 

GPa with ± 1.15 to 1.5 GPa for the shear modulus). The porosity varies from 0.30 to 0.35 with 

± 0.05 to 0.075 uncertainty in the sands, while it shows lower values in the surrounding layers 

(0.20 to 0.25 with ± 0.075 to 0.10 uncertainty). It is worth noting that we can observe the 

imprint of the a priori parameters (grain density, grain bulk moduli, and permeability) on the 

porosity map (Figure 5). It is also noticed that the high porosity layers are slightly shifted 

compared to the interpreted layers. This can be caused by a partially erroneous time to depth 

conversion of interpreted horizons and related to the smearing effect observed in FWI results. 

However, knowing that expected resolution of FWI is around half a wavelength which 

corresponds to approximately 30 m for a frequency of 33 Hz and a velocity of 2000 m/s, this 

depth mismatch of 10 m maximum is in the range of uncertainty. That's why we chose to not 

do any stretch matching of these horizons. 

Monitor dataset: estimation of CO2 saturation and patchiness exponent 

After the estimation of rock frame properties, we focus on the 2008 vintage dataset for the target 

region. Figure 7 shows the maps of CO2 saturation using Brie rock physics model with two 

exponent values (e=1 and e=5), and when e is inverted together with saturation. Figure 8 shows 

the associated uncertainties of CO2 saturation for the three cases. Figure 9 shows the estimation 

of patchiness exponent and its associated uncertainty for the third case (joint inversion of CO2 

saturation and Brie exponent). The estimation of CO2 saturation using e=1 (so-called patchy 

mixing) shows clear CO2-brine saturated regions, mainly around 880-970 m deep with 
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saturations reaching 0.90 ± 0.15 to 0.17 uncertainty. The estimations of CO2 saturation within 

deeper sandstone layers are lower than 0.50 with ± 0.12 to 0.17 uncertainty. 

The estimation of CO2 saturation using exponent e=5 also shows one high CO2-brine saturated 

region (870-970 m deep). CO2 saturation in this layer varies from 0.30 to 0.70 with ± 0.15 to 

0.17 uncertainty. Especially, the highest uncertainty tends to be associated with the highest CO2 

saturated regions. For example, at 910-940 m deep, the CO2 saturation is going up to 0.70 with 

± 0.17 uncertainty. We can also see this distinct high CO2 saturated region at the depth of 

approximately 900 m when we invert for the Brie (or patchiness) exponent and CO2 saturation 

simultaneously. In this case, the CO2 saturation is reaching 0.50 in this main layer with an 

uncertainty around 0.22 to 0.25. The estimations of CO2 saturations within the deeper sandstone 

layers vary in the range of 0.20 to 0.30 with ± 0.13 to 0.17 uncertainty. It is worth noting that 

uncertainties related to CO2 saturation estimates are higher in this third case, up to 0.25 instead 

of 0.17 in the two first cases. The patchiness exponent e within these CO2-brine saturated layers 

is ranging from 4 to 33 with an uncertainty around 5 to 11. Again, the higher uncertainty in CO2 

saturation tends to be associated with the high CO2 saturated regions. While lower uncertainty 

and higher value in the estimation of the patchiness exponent tend to be associated with the 

high CO2 saturated regions. For example, the estimations of patchiness exponent vary in the 

range of 31-36 with ± 5 uncertainty at depth of 910-940 m where the CO2 saturation is reaching 

0.50. High CO2 saturation and uniform mixing tend to happen at the same location. 

It is worth noting that there are large CO2 saturations above the top Utsira in Figure 7, especially 

for the case where Brie exponent is equal to 1 (top panel). This feature in overburden should 

not be interpreted as leaking CO2. It is linked to the low velocity patch (blue colors) observed 

in Figure 4.e. It is important to note that this high saturation value is only visible for the patchy 

saturation case (e=1) and that the results of CO2 saturation estimates are affected by 



20 

 

 

uncertainties both related to the first (FWI) and second inversion steps (RPI). The FWI step is 

dependent on data quality which is different for the baseline (1994 vintage) and monitor (2008 

vintage) datasets, making any quantification of 4D changes difficult. For this reason, we opted 

for a parallel time-lapse FWI strategy. The baseline data is used in our case to derive constraints 

on rock frame properties in the reservoir. Smearing effect in FWI results can also be a source 

of "ghost" changes above and below the reservoir as noticed in Figure 4. In addition, the 

overburden shales have low porosity (<20%) and complex mineralogy, so additional caution 

must be considered when looking at CO2 saturations in the overburden because of greater 

uncertainties in a priori constraints. Finally, Biot-Gassmann theory combined with the effective 

fluid phase rock physics model have been shown to be relevant for fluid substitution in brine-

CO2 sands but its applicability for shales is less straightforward (Dupuy et al. 2017, Falcon-

Suarez et al. 2018, Bergmann and Chadwick 2015, Queiber and Singh 2013). High CO2 

saturation estimates in the overburden are consequently not reliable and no conclusion of any 

leaking CO2 should be derived from this result. 

Figure 10 shows the 1D profiles of CO2 saturation and patchiness exponent for the different test 

cases. The profile is extracted at an offset of 3240 m going through the high CO2 saturation 

zone. The main CO2–brine saturated layers appear between 900 and 950 m deep with CO2 

saturation ranging from 0.60 to 0.90. It is interesting that both patchy mixing (e=1 or e=5 

depending on authors) and uniform mixing (e=40) models show CO2 saturations reaching 0.90. 

The CO2 saturation increases when the patchiness exponent decreases, which is directly related 

to the shape of the velocity versus saturation curves (Figure 1). It is worth noting that the results 

for exponent equal to 1 are enveloping the other results showing more high-resolution variations. 

When we invert patchiness exponent and CO2 saturation at the same time, we observe more 

oscillations due to the under-determined inversion system. The uncertainty for the estimation 

of CO2 saturation varies in the range of ± 0.12 to 0.17, when we are using a known Brie 
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exponent. When we invert the CO2 saturation and the patchiness exponent together, the 

associated uncertainty of CO2 saturation goes up to ± 0.25.  

Discussion 

In our study, FWI has been used to derive velocity models from both the baseline and monitor 

datasets and were used as input to infer rock physics properties. The inversion of the monitor 

dataset provided clear indications about the geometry and lateral extent of the CO2 plume with 

the lowest P-wave velocities being in the uppermost layers. We used a parallel time-lapse 

strategy where models from velocity analysis were used as initial models for the inversion. 

Alternative strategies (Asnaashari et al. 2015), including the use of a sequential time-lapse 

inversion and the introduction of a priori information (for example about the overburden), can 

contribute to the improvement of the derived models. 

The values of CO2 saturation obtained for inline 1836 are higher than those obtained in Dupuy 

et al. (2017). The inline data used in our study is located very close to the injection point, while 

the 1D section shown in Dupuy et al. (2017) is located approximately 500 m away from the 

injection point. For comparison, Queiber and Singh (2013) get values up to 0.90 using 2006 

vintage, while Golding et al. (2011) suggest that saturation is probably higher than 0.30. Recent 

work by Ghosh et al. (2015) gives estimations between 0.20 and 0.80 depending on the mixture 

type (patchiness exponent). In previous tests using the same methodology shown by Dupuy et 

al. (2017), rock frame properties are derived from well-log data acquired at the injection well. 

The effect of a priori properties (i.e., rock frame, grains and fluid parameters) on CO2 saturation 

estimates can strongly affect the results, and these a priori parameters should be handled with 

care. Estimating them from baseline data can be a better solution. It is anyway worth keeping 

in mind that uncertainty related to baseline estimates (bulk and shear moduli as well as porosity) 
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is not negligible and is a key factor in the CO2 saturation quantification. Even if our sensitivity 

tests show that the mean values of these baseline properties estimated from P-wave velocity 

only are close to the true value, uncertainty is not negligible and other sensitivity tests show 

that the CO2 saturation can be changed by 0.10 to 0.20 if the baseline properties are different. 

Regarding the mixture distribution, Sen et al. (2016) use a capillary pressure equilibrium theory 

and show that the CO2 distribution at Sleipner is more uniform for high CO2 saturation and 

more patchy for low CO2 saturation. We found similar trends in our results. For example, the 

patchiness exponent is higher for the highly CO2 saturated layers, which is indicating a more 

uniform mixing while the patchiness exponent is smaller for the less CO2 saturated layers. 

Ghosh et al. (2015) also found that the CO2 phase is not fully patchy or uniformly saturated in 

the reservoir. Zhang et al. (2014) and Chadwick et al. (2010) propose an approach using history-

matching simulations and 4D seismic data. They get a higher estimation of CO2 saturation with 

some values up to 0.98. In our study, the highly saturated layers show saturations varying 

between 0.60 and 0.90 with an uncertainty of 0.12 to 0.20. Lumley et al. (2008) suggest that it 

is difficult to quantify the CO2 saturation when it is larger than 0.30. In our study, we also 

observe that the estimated uncertainty is higher for higher CO2 saturation (Figure 1 and 3). 

Relevant uncertainty assessment and quantification still need to be carried out. Proper 

uncertainty propagation from seismic imaging (using the method suggested in Eliasson and 

Romdhane (2017) for example) to rock physics inversion can be taken into account using a 

fully Bayesian formulation. More constraints to the inversion process could be added to mitigate 

the trade-off between saturation and patchiness exponent (standing for the rock physics model 

itself). For example, using additional inputs from seismic inversion (attenuation, shear wave 

velocity, AVO attributes) or from other geophysical techniques (gravity, CSEM) can lead to 

reduce the non-uniqueness of the inversion (Gao et al. 2012, Liang et al. 2016, Subagjo et al. 

2018). 
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Conclusions 

We derive a quantitative spatial distribution of CO2 saturation through the combination of FWI 

and RPI. The two-step workflow is applied to a selected inline from both baseline and monitor 

surveys at Sleipner. We first estimate rock frame properties based on baseline data which are 

then used as an input to the monitor vintage study. We found that CO2 saturations can reach 

0.60 to 0.90 ± 0.12 to 0.25 near the injection point when the patchiness exponent is assumed to 

be known. The uncertainty of the CO2 saturation estimation is relatively low for most cases but 

tends to increase for higher CO2 saturations. We show the possibility to estimate the CO2-brine 

mixture law by estimating the patchiness exponent and CO2 saturation simultaneously. The 

patchiness exponent is globally varying from 5 to 33 which indicates a distribution of CO2 and 

brine between fully patchy (e=1) and fully uniform (e=40) mixings. But it tends to be a very 

uniform mixing when CO2 saturation is very high.  
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Figures 

 

Figure 1 P-wave velocity variation with brine saturation for various patchiness exponents. 
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Figure 2 Estimation of dry shear modulus, dry bulk modulus and porosity from P- wave 

velocity (top panels) and from P-, S-wave velocities and density (bottom panel). The red cross 

indicates the true model. The color of each dot represents the misfit value for each computed 

model (between 0 and 0.01). 
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𝑆𝑆𝐶𝐶𝑂𝑂2 = 0.80 𝑆𝑆𝐶𝐶𝑂𝑂2 = 0.15 

  

𝑆𝑆𝐶𝐶𝑂𝑂2 = 0.80, 𝑒𝑒 = 5 𝑆𝑆𝐶𝐶𝑂𝑂2 = 0.15, 𝑒𝑒 = 5 

Figure 3 Estimation of brine saturation SW (top panels) and estimation of brine saturation and 

patchiness exponent (bottom panels) from P-wave velocity (Figures from (Dupuy et al. 2017)). 

The blue cross indicates the model with the lowest misfit and the red cross indicates the true 

model. The color of each dot represents the misfit value for each computed model (between 0 

and 0.01; all models with misfit higher than 0.01 are clipped). 
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(a)  

(b)  

(c)  

(d)  

(e)  

Figure 4 From top to bottom: (a) P-wave velocity model of baseline vintage (1994) derived by 

FWI, (b) P-wave velocity model of monitor vintage (2008) derived by FWI. (c): Corresponding 

time migrated section converted to depth. (d, e): Close-ups around the reservoir where CO2 is 
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injected for (d) baseline and (e) monitor models. The injection point is located at 1012 m deep. 

The FWI has been carried out with limited offset (1800 m) with frequencies inverted up to 33 

Hz. The black (and blue lines in (c)) correspond to selected interpreted horizons. For the full 

sections (three top figures), the black lines are indicating the seabed, the top Pliocene, the intra 

Pliocene, the top of Utsira sand wedge, the top of Utsira and the base of Utsira from top to 

bottom. For the close-up sections (two bottom figures), the black lines are indicating the top of 

Utsira sand wedge, the top of Utsira and the base of Utsira from top to bottom. The base of the 

Utsira is added to (c). 
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Figure 5 From top to bottom: frame bulk modulus Kd, frame shear modulus Gd and porosity φ. 

The black lines are figuring the interpreted horizons, i.e. the top of Utsira sand wedge, the top 

of Utsira and the base of Utsira from top to bottom. 
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Figure 6 From top to bottom: related uncertainty of frame bulk modulus Kd, frame shear 

modulus Gd and porosity φ. The black lines are figuring the interpreted horizons, i.e. the top of 

Utsira sand wedge, the top of Utsira and the base of Utsira from top to bottom. 
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Figure 7 From top to bottom: CO2 saturation estimated by RPI using patchiness exponent e=1, 

e=5 and exponent inverted (given in Figure 9). 
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Figure 8 From top to bottom: the uncertainty of CO2 saturation estimated by RPI using 

patchiness exponent e=1, e=5 and exponent inverted (given in Figure 9). 
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Figure 9 From top to bottom: estimation of patchiness exponent and related uncertainty. The 

patchiness has been inverted together with CO2 saturation (given in Figure 7). 
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Figure 10 From left to right: 1D profiles of CO2 saturation estimation using different patchiness 

exponents, 1D profiles of CO2 saturation estimation and related uncertainty for e=5 and 1D 

profiles of patchiness exponent and related uncertainty. The 1D profiles are extracted for an 

offset equal to 3240 m. The dotted lines correspond to the mean values and the dashed lines 

stand for the mean value ± one standard deviation. 
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Tables 

Table 1 Utsira sandstone and Nordland shale properties. 

Lithology 

Grain properties 
Rock frame 

properties 

KS ρS m ko 

GPa kg/m3  m2 

Utsira 

Sandstone 
39.29 2663.5 1 2×10-12 

Nordland Shale 22.6 2390 1 1.48×10-17 
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Table 2 Brine and CO2 properties. 

Fluid phase 

Fluid properties 

ƞ ρf Kf 

Pa.s kg/m3 GPa 

Brine 6.9×10-4 1030 2.3 

CO2 6×10-5 700 0.075 

 


	Abstract
	Introduction
	Methodology
	Geological background
	Sensitivity tests
	Sleipner test case
	FWI results
	Baseline dataset: estimation of rock frame properties
	Monitor dataset: estimation of CO2 saturation and patchiness exponent

	Discussion
	Conclusions
	Acknowledgements
	References
	Figures
	Tables

