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Abstract Absolute accuracy is one of industrial manipulator’s key performance
characteristics, which is critical for emerging robotics applications such as laser
cutting, riveting, and carbon fibre placement as well as for many machining oper-
ations. On the other hand, arrival of new uses such as collaborative robots needs
the estimation of interaction efforts with the operator or with the environment
(hand-guiding, collision detection and free backlash assembly). This paper presents
an approach to organize an integrated kinematic and dynamic calibration proce-
dure to improve quality of models appropriate for trajectory planning and motion
control. Along with bringing theoretical insights and novel arguments, we give
hands-on recommendations on selection of parameters priors, initial guesses on
calibration poses and trajectories, setting active constraints, algorithms tuning,
and experimental data filtering which is necessary to perform consistent robot
calibration in practice. We illustrate the study with experimental data and de-
scription of actual calibration performed on the KUKA Light-Weight Robot using
vision-based metrology and dedicated software. In contrast to authors preceding
works, this paper includes a more complete entire procedure description, analysis
of dynamic calibration sensitivity with respect to kinematic parameters estimates
and a chapter on how calibration results can be used for model-based trajectories
planning using virtual holonomic constraints approach.
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1 Introduction

Erroneous estimates of robot parameters used by a motion planner or a controller
can significantly degrade an overall system performance. Thereby, one of prereq-
uisites for such applications is a properly organized and implemented calibration
procedure. However, this task is rarely completely automated. In most cases, in
order to arrive to consistent results standard identification approaches and compu-
tational schemes require tuning, supervision and manual adjustments [20]. An ex-
pert should categorize, which effects can have the major influence on the robot for
expected operations and which can be disregarded trading-off between the model
complexity and its relevance to a behavior that the real system will perform. In
doing so s/he typically decides on a number of degrees of freedom that is suffi-
cient for representing a particular motion of the robot, on kinematic and dynamic
features of an end-effector and on a necessity to include in analysis properties
of actuators and transmissions. S/he scrutinizes characteristics of measurement
instruments available for recording robot’s motion and tunes various filters and
observers for recovering signals impossible to measure directly. For instance, if an
expected motion is relatively slow, then one may require accurate friction models
and observers for reconstructing velocities of related coordinates to compensate
detrimental effects of such forces [9]. On the other hand, if an expected motion is
relatively quick, then one might need to increase a number of degrees of freedom
to capture non-negligible links and joints flexibility [29].

Usually, kinematic and dynamic calibration tasks are treated separately. The
first one represents the task to identify kinematic parameters of a manipulator
typically required to reach a maximal accuracy in positioning of its tool for point-
to-point motions and assumes the presence of an external measurement device
that can be used for validation of an absolute location of a robot’s tool in the world
frame. While the second one is aimed at developing an accurate dynamic model
appropriate either for rigorous simulation and trajectories planning or for high-
performance control, when, for instance, a robot is to be programmed to follow a
time-optimal behavior with demanding velocity and acceleration profiles. It relies
on a measurement system of the robot and, therefore, serves primarily for the inter-
nal representation of trajectories and feedback design strategies. The translation
of the robot motion from its internal representation into a task specific coordi-
nate system is left as a minor step in the majority of the dynamics calibration
case studies. At the same time, interference from the robot incorrect kinematics
representation on its dynamic model identification both at the calibration trajecto-
ries planning and parameters calculation steps were reported in previous research,
e.g. [37].

This work describes analytic, computational and experimental steps imple-
mented for estimating kinematic and dynamic parameters of a robot equipped
with an advanced research interface for signal acquisition and control used together
with an advanced metrology instrument and dedicated software for tracking robot
behaviors in the world frame.

Namely, the discussed calibration procedure has been implemented on the
KUKA Light-Weight Robot (LWRA4+), which is a redundant serial manipulator
with 7 rotational joints. Its attractive features such as kinematics redundancy
and joint torque sensing as well as real-time control capabilities provided via the
Fast Research Interface (FRI) [3] have helped the robot to serve as one of popu-
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lar and widely used platforms in robotics research specifically for developing and
testing new motion planning, HMI, and motion control algorithms. Being appro-
priate for some assignments, parameters of a robot extracted from its CAD model
require refinements for others tasks, where by necessity an experimenter should
take into account neglected or averaged effects due to motors’ dynamics, friction,
non-uniform mass distribution of links and robot-to-robot variations.

Apart from the manipulator, the robotic cell under the study has been equipped
with the Nikon K610 optical coordinate measuring machine (CMM). The advanced
software tools enables their synchronization resulting in tracking of a selected
frame’s origin and orientation at the sampling rate of 1 kHz and with the volu-
metric accuracy of 60 um over a workspace of 17 m2.

The rest of the paper is organized as follows. The next section highlights the
novelty and contribution of this study, particularly addressing the difference be-
tween this work and other researchers and authors previous publications. Sections
[3l and [] are devoted to kinematics and dynamics calibration respectively, where
we added formal problem statements and analytic and experimental steps in their
solutions. In Section the case study set-up and the realization of generic ar-
guments for identification of its Inverse Dynamic Models (IDMs) are presented.
Section [f| presents a comment for model-based trajectory planning based on the de-
veloped IDMs. Finally, discussion on the obtained results and concluding remarks
are given in Section [6] and Section [7] respectively.

2 Novelty and Contribution

To the best of authors knowledge, there are no works focused on integrated
identification of the robot kinematic and dynamic models, therefore the suggested
procedure has scientific novelty and is technically sound. Consistency between
geometric and inertial parameters estimates can be important for the case study
and in general for model-based optimal trajectories planning and motion control,
since the latter depend on the former in a nonlinear way, and erroneous guesses on
robot geometry can propagate while capturing its dynamic behavior [37]. Analysis
of dynamic calibration results’ sensitivity with respect to kinematic parameters
estimates and more complete entire procedure discussion including a chapter on
how calibration results can be further used for trajectories planning bring value
to this paper with respect to authors’ preceding works [26-28|.

Here we can also highlight authors’ contribution compared to other state-of-
the-art techniques for kinematics and dynamics calibration separately.

Despite kinematics calibration is a well-established field of research [104(14}/15]
18,21 [22], its further development is motivated by many practical applications
[6-8L[30L31].

The kinematics calibration part of this work is based on the general frame-
work introduced in [22], but also employs recent findings in the calibration con-
figurations optimization such as meta-heuristic search algorithms [8] as well as
suggests an alternative approach for preventing sticking in a local minimum given
a non-convex cost function corresponding to various observability indexes [15] by
introducing a multi-start optimization approach. Similar to |34], authors consider
calibration using vision-based metrology with target full-pose measurements by
means of a fixed exteroceptive sensor. However, authors used a photogrammetry
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setup with 3 linear CCD cameras, therefore a novel target design was introduced
and poses optimization procedure was modified with Cartesian-space constraints
to ensure target and base frames visibility during the experiment. In terms of im-
plementation, we proposed a highly-automated procedure specifically adapted for
the optical CMM use.

The dynamics calibration part of this paper tries to address the problem in its
full complexity considering advanced model reduction for complete links and motor
dynamics and ways to provide convergence of parameters estimates under noisy
measurements by means of trajectories planning, signal processing and estimation
algorithm adjustments. These issues have been addressed by other researchers as
well, but from different angles and/or often in fragmented fashion. Since there are
many works on robot dynamics identification in recent years, we mention here only
those mostly devoted to parametric estimation (not frequency-domain methods)
and redundant serial kinematics manipulators as a case study.

For example, works [2/37] consider only link dynamics neglecting motor dynam-
ics. Calibration trajectories are parametrized by Fourier series, while its desired
frequencies and amplitudes are calculated using d-optimality criterion. No model
reduction approach is considered, instead a full barycentric parameters set is used.
While [37] presents results for 6DOF articulated robot, similar approach is applied
to 7DOF KUKA LWR manipulator in [2].

Identification of the KUKA LWR dynamics is accomplished in [11] using a
reverse engineering approach, i.e. mapping numerical values of the link inertia
matrix and the gravity vector with the proposed symbolic model at a set of static
configurations. This work considers recursive model for link dynamics neglecting
friction terms. During the calibration experiment all robot joints were requested to
move along the same non-optimized periodic single frequency trajectory, while the
position measurements were numerically differentiated and low-path filtered. This
study reports that the proposed approach provides poor accuracy in the computed
torque test for the joints that are less loaded.

Work [25] suggests a closed-form solution for identification model reduction,
which allows selecting a set of base inertial parameters by converting observation
matrix to the reduced-row echelon form. It allows to find transformation matrix
in a symbolic form, which is different from often used QR or SVD decomposi-
tion numeric approaches. Future possible identification model reduction based on
confidence of obtained parameters estimates is not considered here.

Works [12,[36] consider the problem of mapping between recursive model dy-
namic coefficients and physical robot parameters. Both works are considering link
dynamics only. [36] introducing additional constraints on link physical parameters
at the step of dynamic coefficients identification to make its estimates feasible. It is
also referring to model reduction, but up to base parameters set only, and to exci-
tation trajectories planning, which is based on a single-criterion optimization. [12]
focuses on recovering values of link masses, inertia tensors and CoG coordinates
from the obtained numerical estimates of dynamic coefficients using optimization
procedures. In contrast, our work shows that physical parameters values may be
not needed for a trajectories planning algorithm.

Similar to our work, [33] addresses the problem of handling measurements
noise, while organizing the identification procedure, and in particular at the exci-
tation trajectories planning step by improving signal-to-noise ratio. However, this
work proposes to apply single criterion optimization, when the cost function is
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defined as the sum of two scalar functions, where the first summand is an obser-
vation matrix condition number and the second one is the reciprocal of the sum
of the joint torques for all joints over pre-selected points of the trajectory. This
approach does not allow targeting torques of particular (e.g. poorly loaded) joints.
B-spline parametrization of excitation trajectories is suggested, which allows ad-
justing trajectories locally without affecting the rest of the path. However, these
trajectories are not periodic and are not explicitly parametrized with respect to
motion frequencies.

Works [5,/16L/17] are the closest to the dynamic calibration part of this study
in terms of the model and signal processing algorithms used as well as experimen-
tal setup under consideration. However, it suggests to use non-optimized LSPB
(trapezoidal velocity profile) calibration trajectories, which can significantly dete-
riorate estimation quality. In our study we enhanced the approach from [17] and
proposed multi-objective optimization settings for searching robot’s calibration
trajectories. As shown, the adjustment resulted in trajectories with better excita-
tion of dynamics of the last joints and consequently helped to improve accuracy
of parameters estimates. The similarity with [17] in modeling the dynamics and
in description of a set of essential parameters allowed for the case study organiz-
ing the comparative analysis of the robot-to-robot variations. Besides that various
hands-on recommendations on selection of parameters priors, initial guesses on
calibration poses and trajectories, setting active constraints, algorithms tuning,
and experimental data filtering are provided throughout the paper.

3 Steps in Kinematics Calibration

Below we describe and comment on steps necessary for kinematics calibration
giving guidelines on making choices for 1) a parametric family of robot models,
2) one or several optimization indexes and algorithms for searching an optimal
set of calibration configurations and 3) computational algorithm for estimating
robot geometric parameters. We illustrate study with experiments for the KUKA
LWRA4+ robotic arm.

3.1 Kinematics Model for Calibration

We consider a serial open-chain redundant manipulator and assume that the robot
is rigid and flexibility in links and transmission are negligible. Thus, no degrees of
freedom, in addition to joint angles, will be introduced for kinematics modeling.
Under these conditions the posture y = [z, y, z, ¢, 0, %] of a robot end-effector with
[z,y, 2] being Cartesian coordinates and with [¢, 6, ] being TCP frame orientation
in the world frame can be obtained from the forward kinematics equations

y:f(évq)v (1)

where ¢ = [q1,. . .7qn]T is a vector of joint coordinates that uniquely determine
the robot configuration; @ is a vector of unknown geometric parameters.
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For a robot consisting of n joints and n + 1 links the transformation from the
robot base to its terminal link coordinate frames assigned using modified Denavit-
Hartenberg (MDH) convention [20}/23] can be expressed as

OTn(Q) = 0T1(q1) : 1T2(q2) teels n_lTn(QH)7 (2)
where each element in the product is given by
jflTj = Rotz(oj)Transyg(dj)Rot.(0;)Trans:(r;)

and represents a transformation between two consecutive link frames calculated
for quadruples of geometric parameters (oj,d;,0;5,75).

For the calibration task we introduce two additional coordinate frames repre-
senting camera frame indexed as —1 and tool frame indexed as n+ 1 (see Fig. [1]).

Fig. 1: Camera, robot, and tool frames assignment

Since these frames can be arbitrarily located in space, then, in general, up
to six parameters (vz,bz, az,dz,0z,7.) may be required for defining a transforma-
tion (T!Tp) between the camera and robot base frames and another six values
(Ve, be, ey de, Oe,Te) for a transformation ("T,41) between the robot terminal link
and tool frames. However, taking into account properties of the robot terminal and
base frames one can introduce these transformations in the unified with Eqn. (2))
manner:

T'Ti(q) = "'To - "Ti(qr) = (3a)
Roty(ap)Transg(do)Rotz(0p)Trans=(ro)
X Rotg (o) Transy(dy)Rot(01)Trans,(r}),
where ag =0,do =0, g = vz, 70 = bz, &) = az,d) =dz, 0] =01 +0,, 7] =r1+ry;
and
"Mari(g) =" Talgn) T = (3b)
Rotz(an)Transs(dn)Rot (0%)Transz (r%)
X Rotz(an+1)Transe(dns1)Rotz (Onr1)Transz(rps1),
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where 0, = 05, + Ve, T, = Tn + bey, Ant1 = e, dnt1 = de, Ont1 = Oe, Tnt1 = Te.
Augmenting Eqn. with Eqns. (3a)—(3b)), we obtain forward kinematics equa-
tions

ti(g) = Mo - OTu(q) - "Ths, (4)

which can be used for computing the posture of the end-effector as defined by
Eqn. . In this case, a vector of unknown parameters in the representation (1
becomes

/ /
®=[al,...oni1,d1, .. dny1,00, . Ong1,70, - Tni1] -

3.2 Goal of Kinematics Calibration

Given an estimate & of the vector & and Eqn. , a pose y of the robot’s end-
effector can be pre-computed by the formula

9= [f(2,q) (5)

simultaneously for all feasible robot configurations g at once. Therefore, one can
justify the closeness of ¢ to @ implicitly by comparing values of the pre-computed
7y and measured y end-effector’s poses for different configurations q. It is com-
mon to assume that an estimate & of MDH parameters reproduces the true one,
if the corresponding pre-computed pose g and its ‘ground-truth’ value y are in-
distinguishable for any choice of gq. The statement admits the reformulation as a
solution of an optimization task

Popt := arg min [y — y|°. (6)
vq

The problem can have many local minima, therefore, the vector éopt in Eqn. @
denotes a global optimizer. For the most of robot designs it is sufficient to use a
finite number M of configurations ¢ in searching of @,y provided that a set of these

configurations {ql, o qM } is chosen properly and the constrained optimization
task
2 M . 12
Dopt(g's.,qM) i=arg  min |y —g|| (7)
o’ qc{q*,....q™}
returns the global optimizer ®opt = Dope(q?, ..., qM).

If the vector @ possesses parameters that are not identifiable from the output
y, then the parametrization is excessive and a set of redundant characteristics
should be found. In practice, such parameters can be singled out analyzing the
so-called parametric Jacobian

J(q) = 2112.0), (®)

Indeed, if J(-) is insensitive to some parameters in ¢ for any configuration
g, then these parameters would be challenging to identify. Typically, they are
either eliminated from the model or regrouped with others. The remaining set of
identifiable parameters and the corresponding parametric Jacobian are called base
parameters @ and base Jacobian Jp(q) respectively, see [141[20}/22].
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3.3 Algorithms and Heuristics for Searching Optimal Calibration Configurations

The process of selecting a set of robot configurations Q = {q?,.. L qM } for the
optimization task @ and steps in selecting the base parameters &g of the forward
kinematics of the robot become interconnected if one considers and explores
the so-called base observation matriz

W(Q) == [Js(@")T, Js(@)7, ..., Ja(@)"]" (9)

Its maximal rank indicates a number of identifiable (base) parameters, while the
corresponding set @ describes configurations, which the robot should visit in ex-
periment. Frankly speaking, one can choose arbitrarily many configurations g’ in
Q. However, in the design of experiments it is reasonable to limit a number of
configurations and choose them wisely. As quantitative measures of the configu-
rations optimality, several observability inderes O(Q) and associated optimization
assignments were discussed in [8}14}|15]. Essentially, they explore and rely on the
singular value decomposition (SVD) of the base Jacobian Jg(q) and the results
can be interpreted as searching for a set of configurations, for which end-effector
poses are sensitive to small perturbations of the base parameters. Thus, optimiz-
ing a set of configurations @ can be formulated as a maximization of a selected
observability index subject to nonlinear constraints

l
O(Q) such that {q € (4min, Imaz), 10
( ) yl € (ymin7ymax)7 ( )

1=1,2,..., M.

max
Q={q',¢%,...qM}

Here sub-indexes max and min denote maximum and minimum allowed values
respectively. The constraints listed in the optimization problem are given
both in the joint and the Cartesian spaces. The latter can be present, if there are
obstacles inside the robot’s workspace or there are specifications imposed due to
basic principles of measurement instruments. For instance, if the photogrammetry
technology is applied, then the problem formulation should include end-effector
visibility constraints.

A common practice in calibration poses’ optimization is to use the conjugate-
type deterministic algorithm [20}/22]. It is aimed at adjusting the entire set of
configurations on every iteration. However, such algorithm has a number of defi-
ciencies including its strong dependence on initial conditions and a possibility to
converge to one of local minima. To avoid the issues we tested two modifications:
The first one performs a multi-start procedure assuming that the algorithm is
run several times from randomly chosen and uniformly distributed set of initial
conditions. In the second modification, we tested an Iterative Meta-Heuristic Al-
gorithm with the Tabu Rule (IMHATR) [8], which runs as a two-stage procedure
illustrated by Fig. 2} Here the Tabu list T is a set of already verified configurations
introduced to prevent convergence to one of known local minima. This scheme is
similar to a genetic algorithm, where a stochastic behavior is introduced at the
randomized candidate-configurations selection step. The results and discussions of
the comparative analysis of different observability indexes and poses optimization
algorithms can be found in [26}/28].
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Initial configurations set Qu = {111,112, . --KIM} |

!

| Start Tabu list T = {Qa} |

Add configuration

@ Finish search

[r=r+ e Qu=(Qu+ D]

Remove configuration

select ¢ :
max,-—gi (O(@Qars1 {a'}),--0@Qus1 {¢°))...0@Qus1 {a™}))

Qu={Qu+1 {a7}}, k=k+1 |

Fig. 2: Diagram for IMHATR algorithm

3.4 Geometric Parameters Estimation

When a set of robot configurations for minimizing the index is successfully
determined, a numerical procedure for computing its global optimizer ®,y; can be
initiated and implemented in various ways. In this work we realized the classical
iterative linear least squares algorithm

AYy = Yin — F($:_1,Q), (11a)
Adp ) = Wi AYy, (11b)
bp ), = dp 1+ Adpg . (11c)

Here Wg is the pseudo-inverse of the base observation matrix Wg defined in @;
T

Ym = [yin;yfn;my%} € R and
F(d,Q) = [f(ék, a"); f(Pr,q?);... f(Dy, qM)} € R%M denote respectively vectors
of measured and calculated (p|) tool frame positions and orientations aggregated
for a set of M configurations of the set Q; an index k corresponds to k-th iteration.
Elements of ¢}, corresponding to the base parameters are updated from ®p j,, while
others are kept equal to its initial values.

In addition, the Levenberg-Marquardt or damped least-squares algorithm was also

implemented to improve a convergence if the 2nd order terms of the Taylor series
expansion of Eqn. (11b)) were significant

—1
Adp ), = [WEWB 4 Akdmg(WEWB)} Wk Ay, (12)

Here AY}, is calculated as in Eqn. (11a) and the non-negative damping factor Ay
is adjusted at each iteration following the heuristics:
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= —if [[AY || < [[AYR] = Aky1 = Ax/10
— —else  Apy1 =10 X,

3.5 Experiment Organization

For kinematics calibration we used Nikon K610 optical coordinate measuring
machine (CMM) that provides position and orientation measurements for dynam-

ically moving frames.

In order to organize measurements, two frames were marked for the CMM with
two sets of LEDs — the robot base frame and the tool frame. The former was as-
signed to compensate for possible camera relocations between series of experiments
and allowed us to directly measure relative full pose between two aforementioned

frames.

To ensure better visibility and localization accuracy for the tool frame we
designed a special LED fixture that was attached to the robot flange (see Fig. |3).
Reasoning behind the fixture geometry is explained in .

Fig. 3: LED fixture design

Tab. [T] contains the list of active constraints imposed on joint angles and tool
pose in Cartesian space with respect to the camera frame to guarantee the LED

visibility and avoid collisions.

Table 1: Constraints for Configurations Optimization

Joint angles, [rad]

lg1,3,5,7] < L5 gz,4] < ZE5 |gs] <

LED fixture orientation in camera frame, [rad]

Roll ¢ € [-4F, T2]; Pitch 6 € [-F,

INERSE

LED fixture position in robot base frame, [rad]

Distance in XY plane dgzy > 0.2;

Vertical coordinate z > —0.1
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For optimizing calibration configurations Matlab Optimization Toolboz was used.
The selection of base parameters and the calculation of their estimates were im-
plemented in the software package GECARO+ [24]. FRI was used to control the
robot motion during experiments. In order to operate the K610 CMM, to assign
dynamic frames, and to acquire measurements via the DMM-Modular protocol,
Nikon Metrology’s K-CMM, DMM, and Geoloc software were used.

The process of the kinematics calibration is illustrated in the supplementary
multimedia file.

4 Steps in Dynamics Calibration

In this Section we provide background, describe step-by-step procedure and
point out adjustments essential for accurate open-chain manipulator dynamics re-
covering. Results presented in this section are recalling approaches described in
authors’ previous work [27], while its extension in terms of comprehensive analysis
of how preliminary kinematic calibration and calibration trajectories planning in-
fluence dynamic model identification are presented in the 'Dynamics Calibration
Results’ subsetion.

4.1 Dynamics Model for Calibration

The dynamics of an open-chain manipulator with n-degrees of freedom and phys-
ically collocated actuators having substantial gear-ratios in transmissior&an be
well approximated by the Inverse Dynamics Model (IDM)

= M(q)§+ C(q,9)q + G(q) + 741, (13)
T=1IaG+ 7+ Tm- (14)

Here ¢, ¢, and § € R™ are vectors of joint positions, velocities, and accelerations; 7
and 7; € R™ are vectors of motor and joint torques; M(q) is nxn link inertia matrix;
C(q,q)q and G(q) € R™ are vectors representing Coriolis/centrifugal generalized
forces and forces due to gravity or compliance; I, is the diagonal drive inertia
matrix (motor and gearbox); 7f,, and 7 € R™ are vectors of motor and joint
friction torques.

The identification task requires also a parametrization of dissipative generalized
forces represented in Eqns. — in the lump format as torques 7¢; and 7¢y,.
The simplest parametric model of a friction includes symmetric and decoupled
Coulomb and linear viscous parts solely dependent on links’ angular velocities

T = Fyig + Fesign(q) + of f1, (15)
Trm = Fomq + Femsign(q) + of fm. (16)
Here Fym, Fem, F,; and F,; are n X n diagonal constant matrices of viscous and

Coulomb friction coefficients for motors and joints respectively; of fm and of fl €
R™ are motor and joint torque offsets.

1 According to DLR. Light-Weight Robot III specifications http://www.dlr.de/rmc/rm/en/
desktopdefault.aspx/tabid-3803/6175_read-8963/ (the predecessor of the KUKA LWRA4+)
all seven harmonic drives have high gear ratios. In particular, they are 1:100 for axes 1, 2, 3,
4, 6, and 7; and 1:160 for axis 5.
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As known from [10}|14,[20], nonlinear Eqns. (13)-(16) of the robot dynamics
can be transformed into a recursive dynamic model, which is linear in unknown
barycentric parameters

T(t) = w (q(t), (1), 4(t)) x, V. (17)
The [n x Ns] matrix function w (-) represents the IDM Jacobian with respect to a
vector of parameters x = [x1;...;xn] € R where each column has seventeen

elements X5 = [XX]', XYj, )(Zj7 YYj, YZj, ZZj, MXj, M)/j, MZj, ijlajy

E}l,jv Fcl,j: Offlj, vad, ch”j, Offmj]T with XXj, XY}', XZj, YY}', YZj, and
ZZ; being the inertia tensors, M X;, MY}, and MZ; being the first moments, M;
being the mass all listed for the j-th link, j =1,...,n; and with Ngs = 17 -n being
the total number of barycentric parameters.

The representation is often redundant and some of parameters might not
be identifiable. Therefore, similar to Section [3] one searches for a subset of ny
base IDM parameters xg with n, < Ns, which are sufficient for reconstructing the
motors’ torques in the left-hand-side of Eqn. ((17))

7(t) = wp (a(t), (1), d(t)) xB, Vt. (18)

Here wp (-) known as the base IDM Jacobian [n x np] matrix is composed from ny
columns of w (+) originally defined by the dynamics in . Sets of base parameters
can be determined using closed-form rules of [22] or QR-decomposition of the
IDM Jacobian, see [21]. In turn, some of the base IDM parameters might not
have a significant contribution to the system dynamics and can be post-eliminated
reducing a set of the base parameters to a smaller set of essential IDM parameters.
Systematically it can be done using statistical hypothesis tests [16]. However, if
identification steps for both motor and joint dynamics are performed concurrently,
then one needs to keep among essential parameters those, which can be only
estimated in hard-to-excite modes. In this case, a manually supervised iterative
elimination procedure can be implemented as an alternative [20].

4.2 Signal Processing and Additional Model Transformations

Motivated by practical use, several additional assumptions and transformations of
the model are necessary.

The first one is related to representation of a noise that appears in measure-
ments of ¢(-), 7(-) and enters into coefficients of the regressor wg(-). The common
approach is to neglect the measurement’s noise in computing wg(-) and assume
that the following model reproduces the measurements accurately

7(t) =wp (q(t), 4(t),d(t)) xB + €(t), (19)

i.e. the noise €(t) is additive. If such assumption is accepted, then collecting mea-
surements, while the robot is moving along a certain trajectory, and augmenting
the data results into the overdetermined set of linear equations

T =0pxp+E, (20)

where 7" and E are the vectors of 'stacked’ actual motor torques and model errors
respectively, all of a size [r x 1] with 7 = n - ne and ne being the number of
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measurement samples; 2p is the IDM observations matriz vertically stacked from
wp (q(tr),d(ty),d(ty)) blocks for k=1,... ne, [16].

The second assumption characterizes results of pre-processing of raw measure-
ments of 7(-) and ¢(-) for reducing noise and for estimating velocities and ac-
celerations required in computing the regressor. It is commonly done by band-
pass filtering of all signals resulting into the Inverse Dynamic Identification Model
(IDIM)

Yy = 2pyxs + Ef, (21)
where the index f denotes filtered data

Ty = [ (t)sef (t2); o (1)
wp (¢ (1), 4/ (1), (1))
Qpy = :
wp (& (tn),4! (t0). & (t0.))

Then the second assumption postulates that the filtered error signal £y in Eqn.
has zero mean, serially uncorrelated and heteroskedastic [16]. It implies that £
has a block-diagonal covariance matrix

R:dlag (O’%Ine,"' 7(7‘72']:77,@,"' 7(7727,]:1'7,6) 5 (22)

where Ine is the [ne X ne] identity matrix and 032 is the error variance calculated
from j-th subsystem of Eqn. (21)).

4.3 Searching for Optimal Calibration Trajectories

Successful identification of robot’s dynamics relies on availability of a family of
rich-in-modes robot’s nominal trajectories ¢; (-). Performing them in experiments
generates input data for computing estimates of model parameters based on the
linear regression or its filtered version . For various reasons it is convenient
to consider a parametric family of nominal trajectories, where behaviors of joint
coordinates are trigonometric polynomials of time, i.e. when the motion of i*"-joint
(i=1,...,n) is written as

ny
g7 (t) = qio+ Y _ [ainsin (k- wot) + by cos (k- wot) ] . (23)
k=1

Here ¢; 0 is the initial bias, wo is the base frequency, a;; and b; ; are constant
coefficients, n is the number of frequencies.

Searching coefficients {ai’k,biyk} of trigonometric polynomials are com-
monly done through solving appropriately posted constrained optimization task.
Meanwhile, the order ns of polynomials, their base frequency wo are often selected
in advance: They should respond to requirements for inducing high-frequency
modes (wo T,n¢ 1) and for covering a larger part of the robot workspace (wq |).
However, they cannot be any and, in particular, to avoid an excitation of a hidden
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dynamics in transmission, the parameters should be consistent with the inequality
ny - wo < wr, where wr is the smallest resonance frequency among the joints.
Some of constraints for optimization can be taken directly from the list of robot
specifications representing limits imposed on joints’ variables and their velocities.
Others, such as geometrical constraints representing conditions for obstacle avoid-
ance, self-occlusion and imposed in the workspace of the robot, require volumetric
characteristics of a robot structure combined with the forward kinematics of the
robot discussed on the previous step of the calibration process. Another impor-
tant constraints, such as torques limits, require an iterative use of the model —
(16)) with the current update of parameters available to the moment. Additional
constraints can be enforced due to implementation conditions, e.g. zero joints’
velocities and accelerations at the beginning and the end of a searched motion.
In order to achieve a coherent distribution of behaviors among joints, one can
follow the common strategy and consider the optimization index defined as the
condition number of the IDM observation matrix 2p(-), i.e. cond ({25) — min.
However, such choice might lead to trajectories with lack of sufficient excitation
of weakly loaded wrist joints, bad signal-to-noise ratios of recorded data and po-
tentially result in inaccurate estimates for their dynamic parameters. This is the
case for the KUKA LWR4+ and we have tested the applicability of multiobjective
optimization as one of alternatives for exciting the dynamics of the last two joints.
The formal settings of such optimization assignment have been the following: E|

F (qi,07 Qj k> bi,k7t) -7 v < A:
(47 (0), ¢; (0)] = [0, 0],

Q; (t) € (Qi,min: Qi,maw)a
I(EI(I)I v s.t. qf (t) € (qi,minu q.i,maz)a (24)
ai ki k T;(t) € (Ti,miani,max)y

t1=1...n, k=1...ny
dyy(t) > 0.3, z(t) > —0.2.

Here A = [gq,; krs - T6,mazx; ks - T7,maz) is the goal matrix, ~ is the attainment co-
efficient, ¥ = | 4] is the weight matrix, and

F () = |cond (25); (Fo.maz — 17§ (O); (rr.maz — 17 ()]

can be interpreted as the vector objective function, where (-) denotes a mean
Valueﬂ of an argument over time-interval it is defined. The goal matrix parameters
90, krg, and k-, can largely affect the optimization results and should be carefully
selected. A way to find their initial approximates is to perform a single criterion
optimization (such as cond (25) — min) in advance.

2 The problem is specified in a form adapted for implementation with the Matlab ’fgoalattain’
function.

3 Values for limits of joint angles, velocities, and torques can be found in the KUKA LWR4+
data-sheet.
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4.4 Parameters Estimation and Quality of Estimates

In these settings the optimal-in-variance estimates for elements of the vector xp
are provided by the Weighted Least Squares (WLS) algorithm [14}/161|17]

—1
g = (ngR*QBf) 0k Ry (25)
The covariance matrix of such estimate given by ¥ = (ngRfl.QBa - quanti-

tatively describes the parametric uncertainty in xp as a whole, while the relative
standard deviation (RSD) of the i-th element in xp

%UXiB =

100 - 74
7)@;» (26)

X
can be used as a certificate for each individual characteristic, where 5)221; is the i-th
B

diagonal coefficient of X.
Additional metrics for quality estimation results are

— physical feasibility of obtained parameters estimates;
— discrepancies between measured and recovered joint torques obtained as a re-
sult of computed-torque test.

Remark 1 The approach allows an efficient software realization of the identification
procedure, however the justification of the validity of the assumptions that support
the method should be clearly performed in each case study. In general, they are
met provided that measurements ¢(-) and 7(-) are acquired at high sampling rate
and the data filtering is well tuned.

4.5 Experiment Organization

All the generic arguments for modelling and identification discussed above
were applied for reconstructing dynamic models of the KUKA LWR4+ installed
at the Industrial Robotics Lab, NTNU. For consistency of identification results,
experiments were prepared and run on the original KUKA LWR4+ and on the
robot equipped with additional payload firmly attached to the last joint. The
payload was ~ 3.28 [kg] with an off-set of the center of mass away from the axis
of rotation of joint 7, see Fig. [d In modeling and identification processes it was
treated as the link 8 fixed to the link 7 of the robot.

The Symoro+ package [19] was used both for dynamic model symbolic repre-
sentations and for the automatic selection of its base parameters. The developed
symbolic representations were exported to Matlab using the ’Optimizer’ function
of Symoro+ and further used in planning of excitation trajectories and in com-
puting estimates for essential parameters.

The set of kinematic and dynamic constraints used at the calibration trajec-
tories planning step is listed in Table

Pre-computed trajectories were used for conducting a series of identification
experiments. In doing so, we commanded reference trajectories by activating the
LWRA4+’s joint position control mode. Reflexxes On-Line Motion Library available
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Fig. 4: Load for dynamics identification

via Stanford FRI LibraryEl was used to generate smooth trajectories from an ar-
bitrary pose to a start pose of the excitation trajectory.

"Recorder’ function provided by KUKA was utilized to acquire motor and joint
positions, motor currents and joint torques sampled at 1kHz and to save logs with
up to 60 seconds of records for each experiment. In order to prepare the acquired
data for computing estimates of essential parameters, measured signals were pre-
processed by the 4th_order band-pass Butterworth and the decimate filters with
cutting-off frequencies of 10 Hz and 2 Hz respectively.

A reader can observe some of recorded experiments from the supplementary
multimedia file.

5 IDIM for VHC-Based Trajectories Planning and Tracking

Most of modern feed-forward and feedback control methods utilized in robotics
(such as PD+ with gravity compensation, inverse dynamics control, passivity
based control etc.) rely on nominal representations of robot dynamics. Hence,
reconstructing essential parameters of the IDM of a robot provides an analytic
tool for developing model based motion and trajectory planning algorithms as
well as control architectures.

In order to illustrate another application and another use of a reconstructed
dynamics for a robot-manipulator, let us re-consider the classical approach of
for planning time optimal behaviors of the system subject to velocity constraints.

The method assumes that a temporal behavior of all n-degrees of freedom of
the robot is parametrized through kinematic relations

@(t) =1 (0(), -, an(t) = én(6(1)), (27)

where &(-) = [¢1(-), ..., qﬁn(-)]T are smooth functions, while the temporal behavior
of the scalar variable 6(-) is defined to accommodate some specifications. Geomet-
rically functions ¢;(-) help to represent a path in a configuration space of the robot
for searching a time optimal behavior written in terms of an auxiliary variable 0(-)
introduced instead of time. It is common to assume that functions ¢;(-) depend
on a finite set of parameters that can be tuned in optimization. Such cascaded

4 http://cs.stanford.edu/people/tkr/fri/html/index.html
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representation is convenient in re-writing any velocity limit imposed on a rate of
change of a coordinate as a constraint on dynamics of 6(-). Indeed, the implication
C;

6] = 1: PO < G = 100 < gy

gives the background for converting a generic velocity constraint in the system into
the corresponding property imposed only on 6(-), §(-) variables and parameters of
¢;(+) functions. As known [4,13], dynamics of the variable 6(-) for the fully actuated

case is determined by the equation
a(0)8+ ()67 + 7(0) = u, (28)

where the scalar functions a(-), 8(-), v(-) are computed from the dynamics of
the robot and the choice of functions ¢;(+); u(-) is a scalar control input, which
might also depend on dissipative forces present in the dynamics of the robot. In
examples, this equation is derived from for given analytic expressions of the
inertia matrix M(-), the Coriolis/centrifugal C(-)¢ and the potential generalized
forces G(-).

Indeed, the representation of the robot dynamics for a motion, for which
the relations are invariant, take the vector format

9 = A(0)8 + B(0)6° + I'(0), (29)

with 7g = 7 — g — 711, A(6) = [a1(6) ... an(0)]", B(6) = [51(0)...5n(0)]" and
r() =) ... v@)]".

Then any linear combination of rows in will result in .

The proposed dynamics calibration procedure suggests an alternative direct
method for computing all the terms in as functions of the IDM base Jacobian
@p(-) and IDM base parameters estimates xp, which avoids reconstructing the
matrix functions M (-), C(-) and G(.).

Proposition 1 Any motion of a system described by Euler-Lagrange equations (|13))
consistent with the kinematic relations (27)) can be represented by (29) with coefficients
that can be calculated as follows

r)=wg0,0,0)xp, (30)
B(6) = ép (6.1,0) X — [(6), (31)
A(0) = (0.1,1) s — B(6) — I(0). (32)

Here &g (-) and Xg correspond to the IDM base Jacobian and the IDM base parameters
vector excluding terms related to friction.

Remark 2 Friction coefficients of fm, of fl, Fecm, Fcl, Fvm, and Fuvl can always be
identified separately from other base IDM parameters. Therefore, we can always
find relations for &p(-) and xp by excluding corresponding rows and components
of wg(+) and xp respectively.

Proof After path variable # was introduced, we can define relations for reference
trajectories of ([13]) in terms of joint coordinates, velocities, and accelerations

¢ =d(0), =00, ¢ =a"0*+d4, (33)
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where @(6) is the vector function in ([27)). Substituting relations from Eqn. (3) to
Eqn. , we derive

XB-

6 Discussion

6.1 Kinematics Calibration Results

T* = wp (9,0,9) XB-
Thus, at each time instance we can calculate system dynamics along any reference
trajectory (¢*,q*,¢*) based on Eqns. (30)—(32) and given parameters estimates

(34)

The analysis of the robot parametric Jacobian showed that parameters ao,
do, 07, and r7 should be eliminated as non-identifiable and the set of base pa-
rameters ¢ consists of 32 elements. For optimizing a set of configurations the
observability index O(Q) in was chosen equal to the condition number of the
base observation matrix O(Q) := cond (Wg(Q)). Numerical optimization resulted
in 17 optimal configurations, for which O(Q) achieves its minimal value equal to
min O(Q) = 11.1878.

For more details on calibration poses optimization using different observation
indexes and algorithms a reader can refer to authors’ previous papers [26}28].

Both the linear least-squares and Levenberg-Marquardt parameter estimation
algorithms gave very similar results. The fact supports an applicability of the linear

model, see also ((11b]),

AY = Wg(Q)Adp,

in the identification of the KUKA LWR4+ redundant kinematics.

Values for nominal versus calibrated MDH parameters of the system are col-
lected in Tab. The data collected in Tab. [3| emphasize the positive effect of
calibration by comparing some of recorded end-point localization errors for nomi-
nal and calibrated MDH parameters.

Table 2: Nominal vs. Calibrated MDH Parameters

(35)

Frame a;, [rad] d;, [m] 0;, [rad] riy [m]

nom. calibr. nom. calibr. nom. calibr. nom. calibr.
0 0 0 0 0 1.55 1.5493 —4.3 —4.4066
1 1.5 | 1.5273 0.1 0.0698 | q1 —0.79 | g1 —0.7994 | —0.14 | -0.1375
2 /2 m/24+1.2-107% | 0 -0.0003 | q2 g2 — 0.0042 0 3.9.107°
3 —7/2 | —7/2+6.1-107* | 0 -0.0003 | g3 g3 — 0.0098 0.4 0.3999
4 —7/2 | —7/24+14-107% | 0 0.0011 | g4 q4 — 0.0065 0 2.6-10~4
5 /2 7/2—-1.1-10"% | 0 -0.0009 | g5 g5 +0.0011 0.39 | 0.3908
6 /2 m/24+6.4-107% | 0 0.0004 | g g6 — 0.0016 0 1.6-10—%
7 —7/2 | —7/2—3.6-10"% | 0 -0.0006 | g7 qr 0 0
8 0 5.30-10~% 0.0015 | -0.0002 | 0.79 0.7859 0.093 | 0.0911
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Table 3: End-point Positioning Volumetric Deviations

Position, [mm] | Orientation, [deg]
Parameters set

max average max average
Nominal 9.6806 | 5.9019 0.8058 | 0.5636
Calibrated 1.7592 | 0.7965 0.2268 | 0.1042

6.2 Dynamics Calibration Results

Similar to [17], we considered three models for identification:

— Model 1 captures primarily the robot dynamics neglecting the dynamics of
motors, i.e. Eqn. is replaced by the identity 7 = 7; and corresponds to
Model B in [17]. The approach is appropriate when measurements of joints’
torques are only available and when motors’ parameters are out of interest in
application.

— Model 2 captures both links and motors dynamics, i.e. the IDM is calculated
for the complete set of Eqns. 7, which correspond to Model C in [17].
The model assumes that motors and joints torques’ measurements are both
available.

— Model 3 captures the motors’ parameters appeared in Eqn. and Eqn.
and corresponds to Model D in |17].

Identifying such model requires both motor and joint torque measurements,
but, in contrast to Model 2, it relies on difference between these signals. Such ap-
proach allows estimating parameters of the motors dynamics gained independently
of properties of the robot dynamics.

Remark 8 Structurally the model — for the KUKA LWR4+ is not new and
has been used in [17], but it differs from the parametric representation of the
KUKA LWR4+ dynamics considered in |11], where the coupling of the robot and
motor dynamics were described through the deflection model and Hooke’s law.

For example, for the most complete Model 2 written originally with 136(= 8-17)
IDM parameters (for 7 joints and a payload) the Symoro+ package [19] found
eighteen non-identifiable parameters and suggested other sizteen to be regrouped
resulting altogether in the set of base parameters with 102 elements. Forty four
of them were later singled out by the manually supervised iterative procedure as
essential [5]. Regrouping relations for base parameters were similar to ones reported
in [17, Table III].

Planning of excitation trajectories for the derived symbolic representations of
Models 1-3 was approached and reformulated as constrained optimization prob-
lems for searching coefficients of polynomials in two different settings:

— Trajectory A is calculated as a result of the single-objective optimization
cond (2p) — min;

— Trajectory B is calculated as a result of the multiobjective optimization
with g, = 35, krg = kr, =0.9.
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pu————r — Trajectory B
= = Trajectory A 1 = = Trajectory A

(a) To = 15sec (b) To = 25sec

Fig. 5: Examples of excitation trajectories for dynamics calibration

Trajectory planning procedures were re-iterated for different choices of the base
period Ty in ranging between 10 and 30 sec and, what is more important, for
different sets of kinematic parameters of the KUKA LWR4+ provided either
by the robot manufacturer for a generic set-up or obtained as a result of kinematics
calibration discussed above. Examples of the 3-D path corresponding to excitation
trajectories planned for Model 2 found for the set of calibrated kinematic param-
eters from Table 2] are shown on Fig. As seen, found trajectory candidates
are ’aggressive’ and cover most of the robot workspace, but quite different from
each other. More details on calibration trajectories planning, including trajecto-
ries characteristics obtained for different optimization strategies can be found in
authors’ preceding work [27].

Dynamic parameters estimates were computed by . The outcomes of the
implemented IDM identification procedure for different sets of kinematic parame-
ters and types of calibration trajectories are presented on Fig[f] Fig. [7] illustrates
how kinematic parameters influence the IDM identification results by showing the
relative difference between essential dynamic parameters estimates obtained for
CAD-based and calibrated MDH parameters values. Table [4]is matching numbers
pointed at Fig[f]and Fig. [7] with the names of corresponding essential parameters
(see xj in ), while R in index denotes that the parameter was obtained after
regrouping,.

Fig. [8] shows results of the computed torque test performed to verify overall
calibration accuracy that we can reach with multi-criterion calibration trajectory
optimization and using advantageous of calibrated kinematic model. As one can
see, even for a poorly loaded joint 6 absolute torque recovery error do not exceed
0.5Nm along most of the validation trajectory’ which is approximately 1% of the
maximum torque value for the smallest joint.



Consist. Kin. and Dyn. Calibration of Redundant Industrial Manipulators 21

Table 4: Model 2 essential parameters

Num. 1 2 3 4 5 6 7 8 9 10 11
Param. Ia1 Fyma | Fem Loz Fom,2 | Fem,2 Ia3 Fym,3 | Fem,3 | Fom,a Ias
Num. 12 13 14 15 16 17 18 19 20 21 22
Param. | Fumys | Fems I Fum6 | Fem,s Ia7 Fym,7 | Fem,7 | offm7 | Fea Fup
Num. 23 24 25 26 27 28 29 30 31 32 33
Param. | offl2 Fazs Fea of fla Fas | offls | Far | offlz | XXor | ZZ2r | MYagr
Num. 34 35 36 37 38 39 40 41 42 43 44
Param. | XXup | ZZip | MYagp | MYsr | MYsr | XXs | YYs | YZs | MYs | M2Zs | Mg

CAD OT

= SLROER

1kl
0 5 10 15 20 250 5 10 15 20 250 5 10 15 20 250 5 10 15 20 25

Fig. 6: Essential base parameters estimates for Model 2: CAD means CAD-based
nominal estimates for kinematic (MDH) parameters, ID means calibrated kine-
matic parameters, RP stands for LSPB calibration trajectory with 20 random
way-points, OT stands for optimized Trajectory B with Ty = 25 sec.

6.3 General Remarks

The most important outcomes and observations from the study are briefly
commented next:

1. We proposed and verified several adjustments of a generic optimization based
methods for robot calibration. This includes the argument to incorporate robot’s
kinematics parameters estimation as a prerequisite for calibration of dynam-
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Fig. 7: Relative difference between essential parameters estimates obtained for
Model 2 for CAD-based nominal (CAD) and calibrated (ID) kinematic parameters
values.

ics and the argument on applicability and advantages of multi-objective con-
strained optimization in searching of excitation trajectories.

To point out apparent advantages of the adjustments for organizing the identifi-
cation, one can observe that we gained 5 to 7 times improvement in positioning
accuracy, while the difference between estimated and nominal MDH parameters
is up to Imm in translational and more than 5° in rotational measures. Fur-
thermore, with the proposed multi-objective optimization based approach we
found feasible excitation trajectories with more uniform distribution of input
signals for different joints specifically for the last three degrees of freedom gs,
ge and q7. It resulted in shrinking the RSD of the IDM parameters’ estimates
twice if compared with corresponding values derived in [17].

As a separate contribution and for illustration purposes, such IDM identifi-
cation procedure was applied for recovering the IDM of the KUKA LWR4+,
where both of newly suggested points were realized in software and tested ex-
perimentally. Extended summary of qualitative results on estimating essential
parameters for Models 1, 2 and 3 as well as its comparative analysis for dif-
ferent excitation trajectories and different choices of kinematic parameters can
be found in the technical report attached as a supplementary material.
Another comparison of the results with [17] shows that KUKA LWR4+ robot-
to-robot parameters variations can reach 20%. The biggest differences are re-
lated to friction coefficients and drive parameters, which can be explained by
the influence from the internal and external wiring, manufacturing tolerances,
and wear-and-tear. It can be also caused by the fact that in [17] non-calibrated
kinematic parameters were used. The observation emphasizes importance of
the sequential kinematic and dynamic calibration and proves that CAD-based
parameters’ values can only serve as rough estimates.
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Fig. 8: IDM test: measured(solid blue) and computed (dotted red) joint torques,
and its relative error (solid black)

7 Conclusions and Future Work

The paper provides the comprehensive discussion of an integrated identification
procedure, where the calibration of a robot dynamics becomes consistent with the
calibration of its kinematic parameters. The work primarily illustrates the com-
plexity of the problem and elucidates important details of use of measurement
equipment, advanced symbolic and computational software tools, analytic formu-
lations and steps in integration work all required for developing a solution in the
study.

However, there is a number of open problems. New identification approaches
that can provide faster convergence under relaxed excitation conditions and handle
measurements noise in a robust manner are required. In this sense, the approach
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described in [1] looks a good alternative to the existing techniques. On the other
hand, model accuracy verification methods should be advanced to derive a criterion
reflecting minimum deviations in trajectories tracking tasks. Computed-torque
tests do not give a direct answer to this question.

In any cases, found trajectories require syntheses of control systems. Success-
ful examples and novel methods of feedback designs for orbital stabilization that
complement the discussed model based trajectory planning algorithms for under-
actuated as well as for fully actuated mechanical systems are recently reported
in [32}|35].
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