
Abstract

The use of robotic grippers offers huge potential benefits in industrial settings. The
more advanced a gripper is, the more uses it can have, thus offering large economic ben-
efits. On the other hand, the more complex a gripper is, the more advanced its control
system needs to be, in order to control it effectively and safely. This thesis will focus on
controlling SCHUNK Dextrous Hand (SDH), a 3-fingered robotic gripper with 7 degrees
of freedom and tactile sensors in the fingers. By creating a real-time control system the
sensors in the fingers can be used to make a feedback loop that controls the fingers. This
is the basis for creating an adaptive gripper that can grip objects of unknown shape, size
or position. This control system in combination with a controller for a robotic manipula-
tor arm lets the gripper attempt to grip objects even if they are out of reach. By passing
requests up to an overall control system, the gripper can request a translation to a posi-
tion that gives it a better chance at performing a successful grip on the targeted object.
In this project, the controller for the gripper is created, and the communication to and
from the manipulator control system is replaced with a simple user-interface. This user
interface offers a way of testing the complete system without the use of a manipulator
arm. The translations from the gripper is read out, and the target object is moved by
hand, in the opposite direction. This solution offers a simple way to expand the system
to include the manipulator and its control system in later editions.

Initial experiments were successful, with the gripper successfully able to pick up differ-
ent objects. An apple, an empty soda can (both upright and lying down) and a chocolate
egg were all picked up and held firmly without damaging the object. Complications arose
with regards to the sensitivity of the sensors. They were generally unable to register
any pressure when the fingers came in contact with lighter objects, and had to push
the objects against the other two fingers. Another problem that arose was the stability
of the application created. The program was based on multi-threading, and real-time
sensor analysis. The application crashing did cause some objects to be damaged in the
experiments, as the application logic could not halt the fingers despite pressure being
registered. Future work should focus on restructuring the application logic to improve
the stability, and the control system for the manipulator arm.

i

Preface

This thesis is the result of work done in the final semester of my Master of Science De-
gree in Engineering Cybernetics at the Norwegian University of Science and Technology
(NTNU). This thesis can be considered the continuation of the project done in the fall
of 2009, under the same supervisors and using much of the same equipment.

I would like to thank my supervisor Associate Professor Geir Mathisen and co-supervisor
Research Scientist Terje Mugaas for their continued help throughout the project. Thanks
to my friends and family for ideas and input during the work, and especially Åshild Breivik
without whom I would never have reached this far.

Sølve J. Monteiro
Trondheim, June 2010

iii

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Scope . 2
1.3 Thesis Outline . 3

2 Relevant previous work 4
2.1 Mechanical Grippers . 4
2.2 Object detection . 6
2.3 Other object detection methods . 7
2.4 Gripper Technology . 8

3 Solution Outline 11
3.1 SCHUNK Dextrous Hand (SDH) . 11
3.2 A rough gripping solution . 12

4 Design Outline 16
4.1 Goals for the project . 16
4.2 An adaptive gripping solution . 16

5 Implementation 23
5.1 The application . 24
5.2 Improving the off-centre handling . 26
5.3 Rotating fingers for better position . 29

6 Testing 31
6.1 The test setup . 31
6.2 Collecting data . 31
6.3 Testing scenarios . 32

7 Experimental Results 33
7.1 Soda can, standing up . 34
7.2 Soda can, lying down . 36
7.3 Chocolate egg, centred . 38
7.4 Apple, centred . 40
7.5 Apple, out of reach . 42
7.6 Chocolate egg, out of reach, distal grip 44

8 Discussion 46
8.1 Sensor sensitivity . 46
8.2 Improved off-centred object handling . 46
8.3 Application stability and threading . 48
8.4 Future work and improvements . 49

9 Conclusion 50

Bibliography 53

v

A Source Code 53
A.1 SDHGrip2.cpp . 53
A.2 SDHGUI.h . 54
A.3 SDHBackend.h . 66
A.4 SDHBackend.cpp . 70
A.5 SensorHit.h . 86
A.6 SensorHit.cpp . 87

B SDH Data Sheet 88

vi

vii

viii

1 Introduction

Figure 1: Typical industrial robots working in an auto
plant. These robots can work at a pace and a precision un-
matched by humans. Image c©www.harting-mitronics.ch

1.1 Background

Robotic gripping is a very important part of modern industry, and can be seen as a
replacement for humans hands doing the same job. Working in hazardous conditions,
long hours, and with extremely high precision is no problem for a robotic hand. With
computerized systems, one avoids human mistakes and traits such as bad judgement, fa-
tigue, carelessness and imprecision. With technology, the scope of their possible tasks has
increased wildly, making possible tasks from moving red-hot iron bars, sorting bottles, to
holding microscopic tools for the microchip industry. Robotic technology is especially rel-
evant in high-income countries where manual labour is expensive. In such cases economic
benefits can be made by replacing manual labour with autonomous robotic handling.
Figure 1 shows such a typical scenario, a modern auto-manufacturing plant with robots
doing most of the grunt work. However, as more and more tasks are considered for
robotic manipulators, their control systems must become increasingly powerful in order
to work effectively. Parallel to the benefits of using a computer for the task, there are also
drawbacks. A computer does not have instinct, judgement or creativity to solve unknown
problems. A robot can, and will always, only do as it is programmed.

Consider the handling of fragile objects. Figure 2 is a nice example of the usage
of an adaptive gripping technology. As can be seen from the image, the target objects
are of variable shape. Not only that, but the fragile nature of light bulbs requires the
gripper to handle them with care. They must be held firmly enough to not slip out of
the grip, while at the same time they must not be crushed by an overpowering grip.
This can also relate to for example the food industry, where one would suffer economic
losses if the handling of the product destroyed or damaged it’s shape. Another aspect

1

to be considered is adaptive gripping. By this it is meant that the object to be gripped
is not in a pre-programmed or pre-defined position, and the control system itself must
figure out where to grip, how to close the grip and how firmly to grip. This can relate to
almost any process where objects are not placed in an exact position and orientation. It
is even more relevant when the objects to be picked up not necessarily are equal or even
similar in shape. One example of this is sea-food processing plants, where the fish come
in various sizes. On top of that, the objects are not necessarily of a firm nature and might
bend, squash or deform otherwise. This makes it hard for automatic machinery to do
the processing, and often results in people having to do the manual labour. In summary,
by adaptive gripping technology, the focus is on gripping objects of unknown position,
shape, orientation or firmness. The fragility of an object also needs an adaptive gripping
mechanism to apply the least amount of pressure on the object without it slipping.

Figure 2: A possible scenario where an adaptive grip is
needed. The varied shape and the fragility of the light bulbs
requires a varying grasp and force. Image c©www.festo.com

1.2 Scope

In this paper the action of gripping a fragile object will be considered, where the position
is not pre-defined. This will then fall under two of the mentioned criteria for adaptive
gripping: The unknown position and the fragile nature of the object. For a robotic system

2

to perform a grip, picking up an object, moving it or processing it, it will normally be
attached to some sort of robotic arm. This arm is outside the scope of this text and only
the operation of the gripper will be considered. The gripper tool used is the three-fingered
SCHUNK Dextrous Hand (SDH) [3]. This gripper has pressure feedback sensors in the
finger tips, and these will be used to devise a gripping algorithm that will lift the object
firmly, but not too hard. These pressure sensors are the only feedback system available,
so they will also be used for finding the position of the object, by doing a grasping motion
(imagine being blindfolded and trying to grip an unknown object). The gripper cannot
actually move itself (only its fingers) so it needs a feedback system to the manipulator
arm. Communication to and from this higher-level control over both arm and gripper
will be abstracted for future implementation.

This project will experiment with picking up a fragile egg-like object, and see if it is
possible to find and maintain a firm grip on it. The surrounding control system and some
protocols will be discussed and if possible evaluated. A part of this paper will also look
into previous work considered relevant in this field.

1.3 Thesis Outline

This paper is divided into 4 main parts: literature, design and implementation and
conclusion. Chapter 2 will look at some earlier work done in the robotics field considered
relevant. It will focus on object detection and gripping technology, and attempt to refine
some useful ideas for this project. In chapters 3 and 4 an initial strategy for the design
and implementation of the project will be created. By using parts of the theory from
the first section, it will focus on the parts of this project that will be implemented (the
gripper controller). Chapters 5 to 7 will revolve around the practical aspect of this
project: The programming, the testing and the results of the testing. The ideas from
chapter 3 and 4 will be refined and discussed throughout the thesis. The last section of
this paper, chapters 7 and 8, will summarise the results of the testing and compare the
solution to the one devised in chapter 4. The problems encountered and the potential for
improvement in the future will be discussed.

3

2 Relevant previous work

This section explores some previous work done in the field of gripping and robotic ob-
ject detection. Some examples have been included to demonstrate the wide variety of
applications a mechanical gripper can have. Some work regarding object detection for
gripping systems and gripping algorithms has also been reviewed.

2.1 Mechanical Grippers

Figure 3: Barrington Automation B-0P Mini Gripper

Often called End Of Arm Tooling (EOT) or end-effectors, the gripper is the robot ma-
nipulators interface by which it performs most operations. Grippers are divided into four
categories (Hardin 2005 [7]): pneumatic, vacuum, hydraulic and electric. While pneu-
matic grippers are the most common, hydraulics are generally more powerful. Electric
grippers are more versatile than the pneumatic and hydraulic ones, and make up for the
lack of power with versatility and controllability. Vacuum grippers operate by creating a
very low pressure and funnelling this through a suction cup to grip objects. This vacuum
can be achieved either by an aspirator/Venturi Pump (forcing a fluid through a narrower
tube, causing speed increase and lower pressure) or a remote pump connected by tubing.

Grippers vary greatly in both size and function. The simplest grippers have only one
movable joint and a single servo controlling it, allowing for a basic jaw motion. As an
example, consider figure 3, a simple double-actuated gripper produced by Barrington Au-
tomation. This gripper is powered by pneumatics and is specified for loads up to about
230 grams. It is simple and robust, and serves a quite direct purpose. In the other end
of the spectrum there are very advanced grippers, like Ishikawa Komuro Laboratory’s
high-speed hand [11], seen in figure 4.

This three-fingered hand-like gripper features an advanced combination of optical and
tactile sensing, and very fast processing. It has demonstrated its impressive dexterity by
performing feats such as spinning a pen around its fingers, throwing a ball with precision,
dribbling a bouncing ball, tying knots and catching falling objects.

4

Figure 4: Ishikara Komuru Laboratory’s Sensor Fusion Hand

The size of the grippers are wide ranging, from the smallest grippers like NanoEffector
in figure 5 up to huge gripping systems like the ones applied in for example auto junk
yards.

Figure 5: Zyvex’ NanoEffector, capable of manipulating
components from 1 to 500 µm in size. Image c©Zyvex Instru-
ments.

Although definitely more impressive than most simple industrial grippers, the cost
and complexity of a robotic gripper such as Sensor Fusion will make it overly advanced
for most industrial and manufacturing processes. This does however make great contri-
butions in the field of robotic gripping and expands the types of applications robots can
be used for. With its precise and effective control, it is not hard to imagine how a tool
like this could be used in applications such as medicine, advanced manufacturing and

5

prosthesis technology. Industries mostly utilize the much simpler and cheaper grippers,
and employ them to relatively basic tasks, mainly because it is easier and cheaper to leave
the complex tasks to humans. Examples of such a task can be complex movements, eval-
uating quality and sorting of objects on a conveyor belt. It is possible to make machines
that can do the same tasks, but it is often harder to defend this cost. One way to reduce
the cost of such operations, is to create more adaptive and simpler to use algorithms for
the grippers. A system that could adapt itself to grip a wider variety of tasks would save
both time and cost if implemented effectively.

The SCHUNK Dextrous Hand enters in a middle ground in between these two ex-
tremities described above. It is a 3-fingered electrically powered gripper with tactile
sensor matrices in the fingers. It is not close to as fast as the Sensor Fusion, but it is
still far too complicated and costly to be useful in many standard industrial processes.
However because of its feedback system and flexibility it has the potential to become a
very versatile tool that could excel in areas where the standard gripper could not, and
the extra cost of the SDH could cancel out the cost of using several different grippers for
tasks that could be done with a single gripper.

2.2 Object detection

The first step of adaptive gripping should necessarily be the object detection. Wether it
be optically, by radar, sonar, laser or tactile sensing, the gripper needs to know where to
grip. A few different methods to detect objects before the actual gripping begins will be
discussed.

Contact sensing: Robert D. Howe describes two main methods to sense contact
(Howe 1993 [8]); kinaesthetic sensing measures limb motion and forces with internal re-
ceptors. One example of this type of sensing can be a torque sensor in an electric motor,
or the tendons in our body. Cutaneous sensing, on the other hand, uses receptor in the
skin or contact surface to detect contact. Based on An, Atkeson, Hollerbach 1988 ([6])
it is relatively hard to sense and control positions and forces based on actuator signals
alone, and a cutaneous feedback element will give a much higher precision. There are
several ways to measure cutaneous activity, the following are the most common: Piezo-
electric, Piezoresistive, capacitive and inductive. The Piezoelectric crystal is a sensor that
converts pressure or strain into an electric signal. Of the four technologies mentioned,
this is the most sensitive and robust. It is insensitive to electromagnetism and radiation,
and therefore enables measuring in harsh conditions. The main disadvantage of this is
that it measures a change in force, not actual force, and is thus not optimal for static
measurements (this can still be achieved by integrating the changes over time). The
piezoresistive effect differs from the piezoelectric in that it does not produce any poten-
tial itself, only changes its resistive properties relative to the force applied. Capacitive
sensing is a sensor technology that does not rely on contact to the sensors, but uses the
conductivity of the object in question to sense position and change of position. This has
the obvious disadvantage of not being able to sense non-conductive objects directly. The
inductive sensor (also known as the Eddy Current Displacement Sensor) shares many of
the properties of the capacitive, but instead of using an electric field it uses a magnetic

6

field. It is slightly less sensitive than the capacitive sensor, but is better suited for harsh
environments.

Detecting contact by measuring the force, either in separate sensors in the joints, or
by torque measurements in the actuators, can also help in identifying contact. The Jaco-
bian matrix describes the kinematic chain of positions, velocities and acceleration from
a static point to an end-point, and by looking at the transpose of this matrix, the force
of contact can be determined. The obvious problem with this method is that it will only
measure forces in the actuating directions.

One very important aspect of contact sensing is the detection of slippage. This is
a good indicator for when to tighten or improve the grip. If the sensor is in the form
of a matrix (e.g. the Weiss Robotic sensors in the SDH) a pressure distribution is
useful for determining sliding. If the slip is translational (like sliding out of a grip), the
force required to slip is given by the friction coefficient of the materials multiplied by the
total normal force. Using Coulomb friction this is independent of the details of pressure
distribution. For slippage in rotation, pressure information is required. Generally, the
smaller the pressure area is, the less torque can be sustained before slippage. For both
translational and rotational slippage, relation between force and torque is complex.

Object shape may be determined grossly by letting the robot fingers explore the
surface in a groping mode (Allen 1987, Bay 1989). This data can be correlated by non-
contact sensors (optical, etc.) and help provide surface normals (vectors) to prevent slip,
since the ratio of tangential force to surface normal will determine if slipping will occur.
Curvature of the object can be determined effectively by matrix sensors, and also by
small movement of finger tips at the contact location. In general smaller tasks require
sensors closer to the contact point since this gives less interference from inertia and parts
of the manipulator.

The Contact conditions can help specify transition between different phases of a
task. The events can also help determine if the objects starts slipping from the grip.
The contact events can separate different phases of the overall grip, for example before
contact one strategy may be used, and after object contact, the controller might have to
switch to another strategy. Initial contact events can typically be determined by sudden
pressure on contact sensors, cessation of motion from motor-torques, finger tip sensors,
or vibration from the impact.

2.3 Other object detection methods

Structured light (Figure 6, left) paints a light pattern on the scene, and cameras pick
up the resulting pattern. One or more cameras observe the scene from slightly different
angles, and through analysis the curvature of the light pattern will describe the 3D scene.
The precision and resolution of the scene is dependant on the width of the light strips
and their optical quality. For extreme cases when detecting very small objects it will
depend on the wavelength of the light used, but more relevant drawbacks are typically
camera and display resolution.

7

Time-of-flight uses laser light to probe or pick a point in the scene, and measures
the time before the reflection is returned to a sensor. Since the speed of light is known,
the distance to the pick can be determined by the formula d = c∗t/2, where c is the speed
of light and t the measured time. This method of 3D scanning depends on the accuracy of
the sensor, since only a few picoseconds define a depth of a millimetre. Other limitations
to this method is the surface to be scanned. The reflectiveness and diffusiveness can have
an effect on the reflected laser beams. One application of this method is the LIDAR
(Light Detection And Ranging) (Figure 6, right).

Triangulation also uses a laser or light beam on the surface, with a camera mounted
at a slightly different angle. The camera looks for the location of the laser/light dot, and
with simple geometry the distance to the dot can be determined.

Figure 6: The left image shows structured light used for
creating a 3D image from a wheel-hub. A typical application
of LIDAR is aerial scanning of terrain to make height-maps
(right).

2.4 Gripper Technology

The process of gripping an object can roughly be divided into two separate types of
tasks: Pre-programmed and adaptive tasks. A pre-programmed task is where the gripper
executes a precise and known series of movements and actions. This type of gripping is
most relevant for factories and industrial processes, where for example a conveyor belt
will contain objects that are positioned at a precisely given location. In this case the
feedback of the gripping process is less relevant (although it should not be neglected)
than the second case for gripping. In the second case, the object to be gripped is either
unknown or the size or position of it is. To manage such objects, an adaptive gripping
system is needed. For the robot to be able to pick up this object, it is not enough with a
preprogrammed set of specific actions - it will need to detect the object and use a robust
feedback system to be able to hold on to it.

In their work, Jørgensen and Petersen (Petersen, [9]) used a 2D image to calculate
a rough bounding volume around the object to be picked up. They made a simulation

8

engine consisting of 3 different physics engines, ODE[2], Bullet[1] and RWPhysics, and
created their own abstracted software layer. Their system used a 3-fingered SCHUNK
Dextrous Hand mounted on a SCHUNK Lightweight Arm. The calculated bounding
volume of the object gave an indication of where to apply the grip. The image was
provided by an AVT Guppy Firewire camera, and the control of the robot was done with
a Nintendo Wii controller. The purpose of their work was to pick up a random unknown
object placed on a table, and hand it to a spectator. For this to work, they came up with
some ideas that were considered reasonable for an optimal grip.

• Grasp the object close to table to achieve larger vertical grip region

• Attempt to adjust φ (the angle of the fingers) to be orthogonal to the 2D boundary
of the object

• Grasp force and torque should be low to avoid slippage.

• Make all 3 fingers touch the bounding box at the same time

A couple of the points in this list should be clarified. When contact is detected, the
fingers are rotated slightly to potentially get more contact points on the same finger.
This slight change in angle is the adjustment of φ. The argument for lower grasp force
to reduce slipping is perhaps not immediately clear. Normally, the harder one grasps an
object, the less likely it is to slip. However, if the grasp force is not perpendicular to the
surface of the object, a higher force makes it more likely to slip along this surface after a
certain attack angle. They also found that if the contact point is deep in the hand (closer
to the palm, and further from the table surface) an attempt at closing the fingers inwards
at the bottom (a grasping motion) would allow more lifting with less force on the object.

Their experiment was based on grasping an unknown object from a 3D database.
This was simulated in a physics environment, and tested. Their algorithm resulted in a
stable grasp in about one out of 3 attempts. To improve on this, they discussed that a
better image processing would result in a more precise bounding volume. This combined
with better information about the 3D simulation, especially at the contact points, would
improve the gripping algorithm.

Allen and Bajcsy (1984 [5]) described an interesting idea, detecting objects by both
touch and vision. The tactile sensing provided information in areas that were occluded
from the stereoscopic cameras, and touch sensing was also used to describe the surface
of the object better. This setup used a ”finger” with a tactile sensor, attached to a
robotic arm. This sensor was moved to the position of an object in an attempt to trace
the surface, giving a better 3D description of the object than what the vision alone can
accomplish. The objects detected were then matched against candidate objects in an in-
ternal database, and attempted verified or discarded. Their work was not complete, but
in a follow up paper (Allen 1995 [4]) more experiments were done with the same setup.
The results showed that detection by vision alone is noisier, uses more bandwidth and
gives more errors (especially due to lighting conditions) than touch. The surface material
can also have a large impact on optical detection due to reflectiveness, transparency and

9

colour. Touch sensing is generally less noisy, provides less data (and thus consumes less
bandwidth), has more degrees of freedom than the cameras, and can give a more precise
shape detection. The largest problem with touch sensing is that it requires a guided or
clever adapting system to control the touch sensor for meaningful results. The combina-
tion of the two sensor types provided a more robust object detection than single sensor
systems.

The project by Petersen and Jørgensen (2008 [9]) is especially relevant for this project
since they used the same gripper hardware, the SDH. Their approaches for an optimal
grip are very relevant, with the exception that they have some predefined boundaries
found with optical detection. This project does not currently have this, but by building
an expandable control system it is easy to incorporate more object detection features.
These can then assist in the positioning of the gripper and the gripping. One example of
this is the use of structured light, described in section 2.3. This method would create a
3D image of the target object, which could be analysed for boundaries and an optimal
gripping approach.

10

Figure 7: SCHUNK Dextrous Hand

3 Solution Outline

This chapter will focus on the goals for the project and how the gripping should be per-
formed. It will look at the entire system, consisting of both gripping module, manipulator
arm, their control systems and the interaction between them. The gripper module will
be explained and the relevant variables and coordinate systems to be used later will be
defined. Possible expansion and potential use is also considered.

3.1 SCHUNK Dextrous Hand (SDH)

This project will focus on working with the SCHUNK Dextrous Hand (SDH), seen in
figure 7. In order to work effectively with the hardware and avoid future confusion, it is
useful to define some terms to be used for the hand. These terms are illustrated in figure
8. The SDH is a three-fingered robot with two tactile sensors on the inside of each finger.
Two of the fingers can rotate relative to the base of the hand (the palm), and all three
fingers have two joints: A proximal and a distal. This totals to 7 degrees of freedom, all of
which should be controlled real-time. On the inside of each finger there are two rubbery
pads. These matrices with contact sensors (produced by Weiss Robotics) can measure
the force applied to them. The movement of the fingers can be controlled both directly
with positions and with velocities. A controlled gentle grip will have to rely on both of
these in order to make an effective grip. The terms are illustrated in figure 8. The largest
piece of the gripper is the base or palm of the hand. All three fingers are attached to
this, and it has a universal connector to be fitted on to several robotic manipulators. It
also contains the hardware controller for the gripper. Each of the six mobile parts of the
gripper are defined as a links, and the connections between them as the joints. When

11

Figure 8: Terms used to define the parts of the SDH gripper

the gripping takes place, the base of the hand will be pointing its connector sky-ward
and the fingers towards the ground or table. The non-rotating finger is denoted as the
thumb or finger 0, and in counter clockwise direction seen from above, finger 1 and
finger 2. The links closest to the palm are denoted as proximal and the ones at the end
of the fingers as distal. Since the gripper will be communicating with an overall control
system, it needs to be able to specify directions in a manner that is understandable. A
coordinate system is thus defined for the gripper. This coordinate system will always be
fixed to the palm of the gripper, with the intersection of the three axis in the centre of the
palm. The x-axis is pointing out between the two rotating fingers (the thumb ”opens”
in a negative-x direction). The y-axis will point in the opening direction of finger 1, and
z-axis will point down towards the ground/table. The z-axis will also be referred to as
the ”palm-axis”.

3.2 A rough gripping solution

The intended purpose of this project is to attach the SDH to a robotic arm, and have them
communicate via a control system. If something is beyond the reach of the gripper, the
control system must be such that it will move the hand to an improved position, allowing
the gripper to hold on to the target. Both pieces of hardware have their separate control
systems, and the overall control system must create the needed communication channels
between them. The layout of the control systems and their communication channels are
illustrated in figure 9.

The overall control system will need to initialise the other two, and before anything
else happens, set them in a waiting state. One of two things can then happen: it can
determine that the gripper is in a good place to start gripping, or it can decide that the
gripper needs to move. Initially the only available tool to determine whether there is

12

Figure 9: Illustrates the setup of the overall system, the
controllers and their communication channels.

anything to pick up or not is the gripper. However by creating an open and expandable
global control system, later editions can easily include other detection methods such as
cameras, radars and lasers. Without that (and without human intervention) the control
system could create a search pattern. For example, if there is a given work area it could
start in one corner, and make a grasp. If nothing is found, the gripper control will return
a signal, and the overall control will move to a new position. Consider the system seen
from above: When the overall control system moves the hand, it needs to move it an
offset equal to the maximum grasp radius of the gripper. Before the arm commences the
movement, it needs to first reset the gripper to an ”open” configuration, and after this
put it in a waiting mode. When the movement is deemed complete, it can re-initialise
the gripping algorithm, and wait for the results.

It should be clarified that the discussed search by grasping is not a very realistic sit-
uation. It is not especially effective, and in most situations the target object will either
be placed at a more or less known location, or there will be other means for achieving
a rough location estimate. It should be considered more of a possible addendum to the
intended capabilities, namely grasping objects, and reporting the need for a better lo-
cation. If the overall system were to have another sensor attached at a later time, this
grasp-and-search approach could easily be exchanged for a much more effective method.

The gripping process is designed in such a way that the movement of the arm is ab-
stracted out of the control system for the gripper. If the gripper calculates the position of
the object to be such that it will not be able to successfully hold on to it, it will calculate
an offset needed for a better grasp. This offset is returned to the overall control system,
and after the move is complete, a new search-and-grasp is initialised. The gripping control
does not need to know that it is in a more optimal position than before, it runs through

13

Figure 10: This sequence diagram shows an example of the
search-and-move process and the messages sent between the
control systems.

the same procedure as a normal search; detect, estimate object position, determine if it
is within grasp, grasp if it is, and return an offset if not.

Figures 10 and 11 show examples of the gripping scenarios and the communication
between the gripper control and the parent overall control system. In the first sequence
diagram the gripper does not find anything, returns this message to the overall control
and waits for further instructions. In figure 11 an object is detected. However it is too
far from the centre of the gripper to be able to hold on to it. From the contact position it
estimates a needed translation to get a better position on the object. This is the scenario
that will be focused more on in the rest of this paper.

14

Figure 11: The sequence of events leading up to a success-
ful grasp. When contact is detected in the gripper, it will
attempt to determine if it is able to grasp the object. If it
calculates the object to be too far off for a successful grip, it
will return with a request to move in the direction required
for a better grip. After the overall control is done moving the
arm, the same iterative process is started.

15

4 Design Outline

This chapter will focus on the parts of the project that will be implemented, the gripper
control. The solution will be designed with the overall controller still in mind, but with
the functions abstracted. This way a future project or continuation of this work will
easily be able to pick up where this one ends, and implement the communication to an
overall controller system.

4.1 Goals for the project

This project aims to implement one part of the previously mentioned system, the gripping
control. The communication protocols will be implemented, but abstracted in such a way
that one can manually read and write requests and also manually move the hand/object.
The gripper control will pick up objects, holding firmly, but gently enough to not destroy
the object in question. The first step in this process is to somehow detect the objects
location, size and shape. A more advanced system could possibly determine what type
of object this is (glass or steel?) by comparing a detected object to a database. This
database could possibly hold data about the material of the object, and provide infor-
mation about durability, weight and texture. This project will use detection based only
on tactile sensing, using the SCHUNK Dextrous Hand. The challenge will be creating a
system that is versatile enough to pick up fragile objects, in this case chocolate eggs, and
holding them firmly without dropping or crushing them. The gripping mechanism relies
on feedback from the sensors.
Given that the objects to be picked up are not in a specified position there is another

problem that is not trivial. There is need for a two-way communication system between
the gripper and the manipulator arm (or rather their control systems). In case the grip-
per does not find anything within its reach, the overall control will need to instruct the
arm to move, perhaps in some sort of pattern, to try a new area. If there is another
sensor present, for example a camera, this could also be used to give a rough estimate
of the location of the target object. Even in the case that it does detect something,
the object might be too far from the centre of the gripper to get a good grasp on, and
again the controller for the gripper must instruct the arm to move in a given vector (rel-
ative to the hand). The communication from the arm to the hand will be simpler, and
consist generally of messages telling the gripper controller that it is moving, stationary,
in a new position, and similar. Since this project is not directly concerning the control
of the manipulator arm, it might be sensible to abstract these actions, and handle the
implementation at a later time, perhaps with an overall controller, able to operate both
the arm and the gripper.

4.2 An adaptive gripping solution

The suggested objects to be gripped are chocolate eggs, and if these are approximated to a
sphere, a slightly crude method of gripping the object can be devised. Assume that there
is an upper limit for the size of the egg, and that a touch by the gripper does not move
the egg. If one can determine in a 3D space exactly where the contacts happen, they can

16

Figure 12: A finger (grey) with its contact pad (blue) seen
from a distal position, and the possible locations of the egg
based on the contact point.

be aggregated into a 3D image of the egg. Assume the gripper makes a motion where the
movement of a pressure pad is always perpendicular to the surface of the pad (Figure 12).
Furthermore, assume that the egg is always standing up, with its narrower end pointing
up towards the palm of the gripper. If a closing motion of the fingers produce a contact
event, the position of the contact relative to the width of the finger gives some insight
about the position of the egg. This simplification can be used in another dimension as
well. Consider a simpler gripper with vertical fingers with contact pads pointing in to-
wards the centre. The point of contact in the vertical direction can help determine the
position of the egg, since either the widest part of the egg will contact, or the end of the
finger will touch first (see figure 13). In both the cases, the only complicated scenario is
when the contact happens at the very edge of the contact pad. This means that the egg
can be in any position pivoting this edge. The simplest solution to this would be to move
the finger (either by gripper control or by manipulator arm control) in the direction of
the contact, relative to the finger, and attempt to get a more central contact.

A simple approach to the first step in detecting the location of the egg can be to have
the fingers straightened out while grasping (the distal angle on all fingers = 0), and this
way a simple transformation from spherical into Cartesian coordinates can determine the
position of the contact, relative to the palm or a desired position. Since the egg is of a
fragile nature (both real eggs and chocolate eggs), some care must be taken in not relying

17

Figure 13: A side view of a finger, stretched out. Again,
given the contact point in a vertical direction, a rough esti-
mate of the location of the egg can be made.

too much on grip pressure to maintain the grip. One possible solution to this could be to
let the proximal links do the gripping, and then curl the distal links around the bottom
of the egg to hold it up instead of squeezing it. This would rely on the position of the egg
being relative close to the palm, and the egg not being too large. If the egg is positioned
directly on the table (or another flat surface) care must be taken to not collide the distal
links with the table.

Images 12 and 13 show a finger, from the bottom and from the side respectively. The
dotted lines are the possible positions of an egg, given that there is contact detected on
the finger. The idea is to use the symmetry of the egg to estimate the position based
only on one contact point. Unless this contact happens on the edge of the pressure pad,
the pressure pad will always be a tangent to the egg surface. If the contact does happen
on the edge of the pad, the possible locations are many more, and another approach is
needed to determine the location of the egg exactly.

The entire control system is designed to work around the principle of a control feed-

18

back to the controller for the robot manipulator. If this is abstracted, it can easily be
expanded and improved in the future to provide support for different detection mecha-
nisms from the grippers perspective, as well as auxiliary systems from the manipulator.
These two directions for the information flow are best explained by an example. In the
first case, assume that an optical detection device is equipped, with image recognition
algorithms and feedback to the manipulator control. This device will then work parallel
to the gripper, feeding the control system with information and updates regarding the
location of the egg relative to the hand. In the second example, assume a future version
of the SDH gripper comes with a radar or sonar, and can find the direction of the egg
relative to itself. This information can then again be passed up to the manipulator con-
trol system, to move closer to the target.

The control of the gripper itself is the main task of this paper, and as such an effective
and safe (both for the egg and the hardware) method of locating and picking up the
egg must be made. This algorithm will be divided into separate steps, and attempted
separated to simplify future implementation;

1. Reset the hand to open position

2. Wait for ready signal from manipulator controller

3. Slowly close the fingers, while checking the contact sensors

4. If no contact is made after the proximal links reach an angle α, send signal to overall
control that no positive contact was found. Return to point 1

5. If there is contact in the grasp, send immediate stop to actuators

6. From the location of the contact point, attempt to calculate the centroid of the egg.

7. If the centroid is within a previously defined area (close enough for a good grasp),
begin grasping motion.

8. Else, reset hand to open position, send signal to manipulator control to move hand in
a vector given by [desired centroid position] - [calculated centroid position].

9. For the grasping, keep the distal joint at an angle of 0 deg, while slowly closing
in the proximal links. When contact is made by one of the fingers, this should
immediately stop, and the other two carry on until they also have contact.

10. When contact is made by a finger, the contact point should optimally be close to
the centre of the contact pad of the proximal link. If it is very close to the edge,
attempt to rotate this finger gently in order to improve the contact position.

11. When all three proximal links are in contact with the egg, begin to close the distal
links, until each one has contact. When one distal contact is made, it stops and
tells the gripper control system it is done, waiting for the others to complete.

19

Figure 14: Left diagram shows proximal and distal α angles
for a finger, right diagram shows angle β

This algorithm is also illustrated in the state machine in figure 15. From this algo-
rithm it is apparent that some more terms need definitions. The open position of the
hand is defined as proximal links outstretched (gripper is as open as possible). This way,
the grasping algorithm can cover a large volume, even if it is unable to grip objects in
all of this volume, a detection will help improve the position. In this open position, the
values of the proximal joint angles are −π/2.

The angle α[0..2] of a link is defined such that in upright position α = 0, positive angle
is closing in towards the palm, and negative angle is opening outwards. The subtext
term defines the finger. The limits for α is ±2π. The two fingers that can rotate in the
palm (finger 1 and 2) are mechanically coupled, and as such only one variable is needed
to define the rotation; β. Rotation in towards the palm is defined as positive, and β = 0
is defined as the rotation needed to place the pads of finger 1 and 2 pointing in direct
opposite direction of finger 0. Given the maximum size of an egg, the angle αmax can be
determined. Beyond this angle no egg will fit inside the grip, and it is therefore not nec-
essary to close the grip further. This grip will be tight enough to detect any egg with the
centroid in the boundaries of the hand. A failed detection after all three proximal angles
have reached αmax means there is no egg in the reachable area, and the manipulator arm
must be instructed to move to a new position. Note that this αmax should only be used if
there is no detection. If one of the fingers make contact, the others will continue closing
in, even beyond αmax to attempt to reach the same target. This however, only applies if
the egg is assumed to be in a reachable area. If for example the contact is made very far
from the palm (with a proximal angle close to −π/2 it is definitely not reachable, and
the program goes to point 8 of the list. The angles are shown in figure 14. Figure 16

20

Figure 15: This state diagram illustrates the algorithm for
gripping unknown objects

shows a configuration of the hand, where it is not possible for an object to fit in between
the fingers. If the fingers reach such an angle, there is no need to continue closing them
further. Alternatively, αmax could be such that the tips of the fingers just about touch.

An optimal position for the centroid of the egg can be defined (given minimum and
maximum boundaries) such that the egg will be gripped from the side by the proximal
links and held underneath by the distal links. Caution must be taken by the manipulator
arm control to not lower the gripper so low that the palm of the hand can collide with
the egg. If a contact is detected too close to the palm or too far out (only the distal links
can grip), instructions must be sent to the manipulator control to move the hand into a
more optimal height. The desired position of the egg referenced in point 8 of the list, is a
point in between the fingers where the largest egg will not collide with the palm, centred
in between all three fingers, and at such a vertical position that only the proximal links
will grip it.

21

Figure 16: Given the minimum size of an egg, after a certain
α there can be no egg in between the fingers

22

5 Implementation

This section will cover the implementation of the algorithm designed in the previous chap-
ter. Some requirements in the application are discussed. This chapter will not include
source code for the implementation, please see Appendix A for attached source. During
the implementation of the algorithm some changes were made. These changes and their
reasoning will be made clear in this chapter.

The SDH comes shipped with libraries for connection to the hardware in C++ and
Python. Since previous work (Monteiro 2009 [10]) was done with C++ and .NET, the
same programming language and environment will be used to implement the gripping
algorithm. Visual Studio and .NET provide a simple and intuitive interface for creating
a graphical Windows User Interface. For this project, not much is needed besides a few
buttons to trigger actions, and an output window to read system messages. In addition
to this, it will be writing data to a file for later analysis of the forces.

From the list given in chapter 4.2 one could implement a state machine, typically a
large switch-case statement. However, this is not really necessary for this system. The
states are mostly sequential, and the transitions between them are rather simple. The
gripper alternates between waiting, searching, grasping and maintaining grasp. From the
“wait” state, it will always move on to the “search” state, and from the search state
there are only two possible new states, “wait” and “grasp”. This might be simpler to
implement and be more efficient performance wise.

One very important aspect of this system is that it needs to be able to detect collision
and call for a stop very fast. Therefore it is likely wise to keep the contact detection in
a separate thread that can poll the hardware at as high rate as possible. The likely bot-
tleneck here will be the bandwidth to the hardware, or the hardware itself. This implies
that the searching fingers should not move at maximum speed. By moving them gently
enough, the largest delay in the contact-sensing thread will have time to call for a full
stop before the finger has moved the egg too much.

In the algorithm for detecting and gripping objects one point that was brought up
was determining the centroid of the egg relative to the contact position. This is not
quite trivial because the position of the egg is not always easy to determine based only
on one contact point. At first glance what seems to be a rather simple solution is to
define the surface of the pad as a tangent to the egg. However, given the shape of the
egg, and that the finger might not approach the centre, this is not true. It is possible
that the contact will happen at the edge of the pad (see figure 12). If this occurs, the
finger must be rotated, if possible while still maintaining contact with the egg. This is
done to see if a better position can be achieved. By better position it is meant a position
where the contact will move away from the edge of the pad towards the centre. When
this has been achieved, it is more correct to say that the pad will be a tangent to the
egg, and the gripping can continue. This of course does not work if the contact is done
by the thumb (finger 0) that cannot rotate, or even if the contact is made far from the
centre of the palm. A change in the angle β will then cause more of a translation than a

23

rotation for the pads. If this is the case, the only solution is to send a message back to
the manipulator control system to move the gripper to a better position.

5.1 The application

Figure 17: GUI for the application. The buttons in the
interface are a way to simulate the communication between
the controller for the gripper and the overall controller for
the entire system (gripper and arm). The progress bars show
the maximum pressure detected for each pressure sensor.

Figure 17 shows the application created in Microsoft Visual C++ 2010. It has only a
set of simple controls that mimic the communication between the overall control system
and the gripper control system. This application instances an object containing all the
main parts of the gripping algorithm. However, in order to not lock down the user in-
terface, almost all the methods are started as separate threads. The first thing the user
must do after initialising the application is connect it to the hardware via the button
Connect to HW. If the SDH is not connected or not powered on, an error message will
be displayed in the log window. Once it is connected to the hardware, it will immediately
start checking the sensors on the hardware. It cycles through each of the 6 sensor pads,
and for each of those pads it checks every pressure point. In this phase (the Wait state)
it does not do anything with these sensor read-outs. However, it will still display the
maximum pressure detected (seen above the Threshold slider in figure 17). When the
Grasp (Search) button is hit, the system moves to the next state, Grasp. Now it will
begin to test the max pressure read from the sensors. It will then compare this against
the threshold set by the user via the slider in the user interface. By default the threshold
value is 20. Whenever a readout exceeds the set threshold, an object of the type Sen-
sorHit is created and added to a global collection. In the grasp state, all movement is
halted, and an analysis of the sensor hit is done. The SensorHit object contains infor-

24

mation about which sensor was hit, where on the sensor and how much pressure was put
on the sensor. This is used in the next stage of the algorithm, where the centroid of the
target is estimated. The centroid calculation can result in three possible outcomes: 1 -
the egg is within the reach of the hand, in which case the system can proceed with the
next phase, close grasp. 2 - The egg is within reach, but the contact occurred on the side
of a sensor (the x position is either close to 0 or close to the max-x for that sensor). In
this case the system will move to the rotate state. 3 - The target object is estimated to
be out of reach. From the estimated position, a vector is created that is the position of
the centroid - the position of the optimal placement of the egg. This vector is relative to
an absolute coordinate system for the hand, and returned up to the overall control system.

Figure 18: State diagram for the gripping algorithm

The close grasp part of the algorithm focuses on bringing together the fingers, but
only the ones that have not collided with the object yet. This is done by analysing the
SensorHit objects stored globally. When the command to close the fingers is called, it
loops through all the recorded hits (these are obviously reset when a ”new” grasp is
made), and checks if there have been any hits that correspond to the axis it is closing.
For example, in the SDH library, axis 1 corresponds to the finger with sensors 0 and 1 on.
If any hits on these sensors exists in the collection, a flag is raised, inhibiting this axis
from approaching its target. For each hit, the closing motion is halted, and it returns how
many axes have been inhibited. By analysing this return value, the system can determine
if it has closed all the fingers as much as it can, or if there is still an axis it can close in

25

on the target to get a better grip. In the implementation the closing motion is divided
into the proximal links and the distal links. First it will attempt to close in the proximal
links as much as possible. A proximal link is inhibited both by a hit on the proximal or
the distal sensor on the same finger. When the closeProximals method reports that it is
unable to close the proximal links further, it is time to close the distal links. Depending
on if the hits inhibiting the proximal links were on the proximal or distal sensors, the
distal links will now also close in on a target angle. The algorithm is very similar to the
one for the proximals: if a hit is detected, it is recorded in the global collection, and the
closing motion is halted. When the motion is recommenced, it checks the collection for
hits on the distal sensors this time, inhibiting the corresponding links. When there are
no links that are uninhibited, the grasping motion is complete, and a message is sent to
the overall controller telling it the grasp is successful. Figure 18 shows the steps in the
algorithm before the grip is complete.

The application is based on starting separate threads for several different tasks. For
example, having a CPU-intensive loop in the same thread as the user interface is undesir-
able since it makes for a sluggish and unresponsive experience for the operator. Instead
the user interface initialises a thread via a button. As an example, when the operator
presses the ”Connect to HW” button, it starts, among other things, a loop that con-
stantly polls the sensors in the fingers. One important feature with the SDH library is
that most of the ”move”-calls are blocking. For example after targets have been set for
an axis or a finger, the method MoveHand() or MoveFinger() has to be called. This
initialises the actual movement of the fingers. The problem is that the application waits
at this line in the code until the movement is complete. In these cases it is especially
relevant to use multi threading. When a call is made to move one or more axis, it is not
made directly to the hardware. Instead, it creates a new thread that runs a specified
method. While this thread is blocked by its hardware call, another thread is checking the
sensors constantly, and if a pressure surpassing the threshold is detected, it makes a call
to stop the hardware and abort the move-thread immediately.

5.2 Improving the off-centre handling

During the implementation of the part of the algorithm that calculates and evaluates
the centroid, a better solution was found. Instead of assuming the position and size of
an object, based on one contact point and pre-defined values, why not let the gripper
just try gripping it anyway? Figure 18 (p. 25) shows the state diagram for the initially
planned algorithm from chapter 4.2. Point 6 indicates that the results of the estimation
of the centroid should decide if the gripping continues or is aborted. However in the new
algorithm it will now instead jump from point 5 to 9 (Figure 18, p. 25): When a contact
is made, it will halt the finger the contact is detected on, and keep the other two still
going, approaching their pre set target. Again, if one of those two fingers hit something,
it will stop, and the last un-affected finger will continue in towards the central palm-axis.
When all fingers have stopped, meaning each finger has either hit something or reached
the central axis, the algorithm now checks how many fingers have had hits on them. If
this test returns only one finger, the grip is not complete since it will not be able to grasp
with only one finger. This new algorithm is shown in figure 19.

26

Figure 19: New state diagram with improved handling of
off-centred objects

Notice how the state ”Calculate centroid” from the state machine in figure 18 has
been removed, and instead another output from the ”Closing proximals” state has been
added. In practice what this algorithm does, is test if any object intersects either the
paths of one or more fingers, or the palm-axis of the gripper. Figure 20 illustrates the
idea of gripping an object that might still be off centre relative to the palm axis (red
beam). Since the blue ball intersects both the path of finger 1 and the palm axis, the
fingers will close in on it and be able to hold on to it nicely.
When the algorithm returns an ”out of reach” message due to only one finger making

contact, it will use the position of the contact as a new target for the gripper. Notice how
this again differs from the original algorithm: Instead of assuming a radius on a spherical
object, it only uses the contact point of the object. The x and y position of the hit are
calculated by using a spherical to Cartesian coordinate transformation. The radius of the
sphere in the spherical coordinate system is calculated by evaluating which sensor was
hit, proximal or distal. Furthermore it uses the y-position on this sensor to see how far
in a distal direction this hit occurred. The distance along the finger will then be a value
calculated according to the sensor hit position with some constant offsets added. Since
this is all occurring in the close proximals process, there is no need to consider the angle
of the distal links. The x and y positions relative to the palm axis are calculated. The
variable dist is the position of the hit along the finger. Figure 21 shows the spherical

27

Figure 20: An off-centre object can still be gripped success-
fully.

coordinates on the gripper. Note how this will find the offset from the base of the finger,
not the centre of the palm. Therefore an offset is applied to the x- and y values to
compensate for the distance from the centre of the palm to the base of the finger. Figure
22 shows the gripper module from a bottom view. All three fingers are positioned the
same distance from the centre of the palm, and this distance is the offset.

The following equations give the transformation from spherical to Cartesian coordi-
nates. Recall that α is the angle of the proximal links, and α = 0 when the finger is
pointing straight down towards the table, and −π/2 when fully open. β is the rotation
of the fingers, where β = 0 is when finger 0 is facing in the opposite direction of finger 1
and 2. The offset value is distance from the centre of the palm along the x or y axis to
the position of the finger.

For finger 0:

x = −dist · sin(α)− offset (1)

y = 0 (2)

For finger 1:

x = dist · cos(90 + α) · cos(β) + offset (3)

y = dist · cos(90 + alpha) · sin(β) + offset (4)

28

Figure 21: Description of the spherical coordinates.

For finger 2:

x = dist · cos(90 + α) · cos(β) + offset (5)

y = −dist · cos(90 + alpha) · sin(β)− offset (6)

Since this calculation will position the gripper on top of the contact point and not
necessarily the centroid of the object, this might result in the new position of the gripper
being slightly off-positioned to the object. It should still be enough to get a grip on
it, since now at least some part of the body of the object will intersect the grippers
palm-axis.

5.3 Rotating fingers for better position

It became apparent that using the initial idea of rotating the fingers while in contact
with the object would not work. This idea was based on a rotation around an axis that
would lie along the length of the finger. In this case, the surface of the sensor pads could
be rotated while not moved at all. Since this rotating axis will only lie along the length
of the finger when the proximal link is close to 0 degrees, it is not very useful. If the
proximal link is at 0 degrees, the finger is very close to the centre of the hand, and an
egg would not be able to fit in there anyway. Another solution was therefore devised.
Instead of relying on a constant contact with an object, it could just rotate an amount
that would be dependent on the distance of the hit, measured from the palm. The closer

29

Figure 22: All three fingers are positioned symmetrically
around the centre of the palm.

to the palm, the more rotation is needed, and as such a simple function was created to
apply finger rotation:

rot = 10.0− hitDistance · 10.0/160.0 (7)

Hit distance is the measured distance from the palm to the point of contact along a
finger. This was tested, but it brought forth another problem: By first contacting and
then rotating the finger, the finger would pull the object with it. Especially when it was
a lighter object, such as the chocolate egg. In some cases, when the egg was balanced
on a foot, it even tumbled the egg down with the rotation. An extra step was applied to
solve this: before rotating the finger, move out just a little bit to lose contact. After this
it was clear to perform rotation without disturbing the object, and when the rotation
was complete it could move in again.

30

6 Testing

Figure 23: The testing setup for the gripping. The grip-
per is suspended in the air by supporting beams across two
containers.

6.1 The test setup

The control for the robot manipulator or the overall system is not present, and as such
the testing scenario will attempt to isolate the parts of the gripping algorithm that
can be tested. The SDH gripper module is mounted on a square wooden stand with
fingers pointing upwards, but the gripper in this position will not be able to test lifting
capabilities or picking up object from a flat surface. Therefore the SDH platform is held
upside down between two platforms, suspended on crossing beams. The setup is shown
in figure 23. Objects can be placed in different heights and positions relative to the hand,
and the systems reaction can be measured. In the cases where the hand reports the need
to move in order to get a better grip on the target, the corresponding movement will be
done by moving the target object instead in the opposite direction. By using chequered
paper or a ruler the object can be moved exactly the distance and direction requested by
the SDH gripper. The primary target object is a chocolate egg, and the main objective is
to see if the SDH is able to grip this without destroying or damaging it. However it could
be interesting to test other objects as well, both spherical (an apple) and more irregularly
shaped (cell phone, soda can). If the gripping algorithm damages any of these objects, it
is likely the chocolate egg will not stand much chance.

6.2 Collecting data

The application is programmed to print data to file, as it is read from the sensors. Later
analysis of the pressure data and the pressure distribution can help improve the gripping
algorithm, and possibly identify problem areas where the grip is too tight and damages

31

the egg, or so weak it is unable to hold on. The main verification will be done visually,
as it will be easy to see if the grip has damaged the egg.

6.3 Testing scenarios

To test the versatility of the gripper, some different scenarios will be set up and the
results recorded. First, different objects will be tested, positioned at different heights,
and relatively centred under the gripper. This will test if the gripper is able to maintain
a grasp both by holding the object with the proximal and the distal links. The objects to
be tested are an empty 33 cl. soda can, an apple and a chocolate egg. The soda can will
be attempted gripped both standing up, and lying on its side. This will test the control
algorithms ability to grip non-symmetric objects. These setups will conclude the tests
where objects are positioned relatively centred in the gripper. The next set of tests will
show if the gripper is able to determine if an object is graspable, and how far it requests
the overall controller to move it. This can be verified by following the instructions given
by the gripper controller, but since the gripper cannot move in this setup, the target
object will instead be moved by hand in the opposite direction. This scenario will be
tested with the upright soda can, the apple and the chocolate egg.

32

7 Experimental Results

This section will show some of the relevant results from the experiments. Included are
plots of the max-pressure readout per sensor. It should be noted that the sensors are not
temperature calibrated, and as such there is no linear conversion between the number
read out and a physical force. Around 3450 seemed to be the maximum possible output
for the sensors. The data from the sensors was automatically written to a file during the
experiment. This was later read into MATLAB and made into plots. The plots show the
max readout per sensor (y-axis) over iterations in the sensor-polling thread. After the
grip was complete, the supporting platform beneath the object was removed to see if the
gripper could support the object without dropping it.

In addition to the photographs and the collected data from the sensors, some of the
experiments were filmed. These films, together with more photographs, can be found on
the attached CD. The source code and compiled win32 binaries are also on the CD.

33

7.1 Soda can, standing up

The first test was the standing up soda can (figure 24 and 25). It was positioned at
such a height that the proximal links would contact the soda can first, and when the
proximals were completely closed in on the can, the distal links started closing in. The
reason for using a soda can in this experiment is to test the control systems ability to
grip non-symmetric objects. On top of that, it is easy to observe if this object is being
gripped too hard, as the metal will buckle (an empty can is used).

Figure 24: Picking up soda can positioned for the proximal links to impact first. Threshold
was set to 6.

34

Figure 25: This plot shows the sensor max pressure during the process of gripping an upright
soda can. The soda can was positioned for the proximal links to impact first. Note how the
pressure for Prox 2 saturates at about sample 600.

The fingers were able to hold the can firmly, but not so hard that the can got bent or
damaged. In spite of this, the sensors reached max pressure output, as can be seen from
the plot in figure 25: the measurement in sensor Prox2 flattens out on top, meaning the
value is saturated. Luckily the proximal links gripped the can by the upper rim of the
can which provides additional structural support.

35

7.2 Soda can, lying down

This test also uses the soda can, but in this case, lying down. The soda can was centred
under the palm, and lying on its side. This will test the grippers ability to pick up
irregularly shaped objects. The soda can was placed relatively far down on the table,
resulting in only the distal links making contact with it. Figure 26 and 27 shows the
result of this operation.

Figure 26: Picking up soda can lying down. The gripper is able to support the object after
the platform beneath is removed.

36

Figure 27: This figure shows the max sensor pressure detected while picking up soda can lying
down. Compared to the previous test (figure 25), it can be seen that the pressure registered
is quite a bit lower. This might be because less force is applied the further out the contact is
made.

The gripper was able to pick up the lying down can nicely and the pressure levels
stayed satisfactorily low. Note in the plot (Figure 27) how the pressure drops on all three
distal sensors at about sample 400. This was caused by a slight jerk on the can as the
platform beneath it was removed by hand. The gradual increase in pressure after this
(from 400 onwards) is a bit strange, since the fingers do not move, but might be caused
by the sensors calibration properties changing over time by having constant pressure on
them. This experiment also tested the new finger-rotation algorithm. The initial hit by
Dist 2 was on the edge of the sensor. The finger opened up slightly, rotated and closed
in again, getting a nice and centred contact this time.

37

7.3 Chocolate egg, centred

The next test was picking up a chocolate egg. This was one of the main objectives of
this paper, and this experiment will reveal if the gripper is able to halt its movement
fast enough to not destroy the egg. The chocolate egg is still protected by its original
aluminium wrapping. This is intentionally left on to not pollute the hardware with
chocolate. The egg was placed relatively close to the palm-axis, and at such a height that
the gripping would be done by the distal links. Figures 28 and 29 show the results of this
test.

Figure 28: Attempt at gripping a chocolate egg. The egg is positioned relatively close to the
palm-axis, and close to the table for a distal grip.

38

Figure 29: Plot showing the max pressure per sensors while gripping a chocolate egg. The
three distal links are able to hold on to the chocolate egg without damaging it.

Note in the plot (Figure 29) how there is a very sudden increase in pressure in Dist 1
and 2, while Dist 0 is able to stop relatively quick without much pressure being applied.
This can be explained by the velocity profile of the movements. When a movement is
issued to the gripper, it attempts to perform this movement in an economical manner,
by using a velocity profile. This velocity profile makes the start and end of a movement
slow, while the middle part is faster. Since the gripper has been programmed to halt
and recommence movement after a contact event, the gripper will have stopped when it
hit the egg with the first two fingers, and after that continued the movement for finger
0. Since finger 0 was already quite close to the egg, it did not get to build up much
speed before the contact, and was thus able to halt much sooner than the other two. The
sudden drop at sample 830 is the release of the grip.

39

7.4 Apple, centred

This test is similar to the chocolate egg in the respect that it attempts to grip a spherical
object. The apple is less fragile than the chocolate egg, however it weighs quite a bit
more, and has a relatively slippery surface. This test will help determine if this gripping
algorithm is able to hold on to an object of some weight without dropping it and without
damaging it. In figure 30 it can be seen that the apple is placed on a small ”foot” made
from aluminium wrapping, to lift the apple off the surface below a little. This can be
useful if the fingers are expected to ”curl” around the object, making a more cupping
grip.

Figure 30: This test will attempt to grip and hold an apple. The platform beneath it is
removed after the SDH GUI reports the grip to be completed.

40

Figure 31: The plots show that the pressure keeps increasing slowly, even after the grip is
reported to be complete and the controller has stopped the hand. As discussed earlier, this
might be a property of the sensors, where the continued pressure in a sensor makes it gradually
output higher and higher values.

This test gave a satisfactory result: The apple was held up nicely by the three distal
links, and the gripper did not drop it even after the platform beneath the apple was
removed. The plot in figure 31 shows that the pressure did not reach the maximum for
the sensor (about 3400), however another unforeseen problem appeared: From the last
of the three images in figure 30 it can be seen that the apple almost touches the joint.
If the contact happens between the proximal and the distal links the object will only hit
the joint in between the links. This does not have any sensors and as such the fingers
will continue to close. This was not the case in this test, but had the apple been about
50mm higher up, it would likely have been damaged by the joints.

41

7.5 Apple, out of reach

Placing an apple out of gripping range, but still in contact range will test the controllers
ability to send the correct messages to the parent controller. The apple is placed with
all of its body outside of the palm-axis and underneath finger 2. The grasp search first
detected the apple on finger 2, halted this finger and kept the other two going. When
they reached their target angles without any contacts, the control system set the state
”out of reach”, calculated the offset needed to centre on the object, and returned this to
the parent controller.

Figure 32: Detecting, relocating and gripping the off-centred apple. After the first finger
detects the apple, the other fingers converge on the palm axis. Without any more contacts than
from the one finger, it is deemed un-graspable from this position. The application subsequently
returns the status to the parent controller and requests a translation to be positioned better.

42

Figure 33: The first contact is made by the distal link in finger 1. At about sample number
1000 the grip is released, and it sends the requested offset to the parent controller. When this
reports it to be in place, it starts with a new grip, this time able to contact with all three distal
links, and hold on to it. Some empty data in between the two contacts has been removed to
emphasise the important events.

Notice the plot in figure 33 how first one sensor hits, and waits for the other two fingers
to close. When they find nothing, the coordinates of the hit are used to calculate a desired
translation. The gripper control requested the following (x,y) translation: (72, -80).
These coordinates are relative to the coordinate system described in chapter 3, figure 8
and given in millimetres. The hand is opened by the gripper control (done manually from
the GUI) and instead of moving the gripper, the apple is moved in the opposite direction,
-72,80), again relative to the gripper-fixed coordinate system. Measuring the distance
with a ruler, moving the apple and then activating the grasp-search again simulates the
parent-controller moving the gripper and giving the message to resume search. The apple
ended up fairly centred under the palm, and the gripper was able to close in on the apple
and hold it, even with the platform beneath removed. In the last image in figure 32 it
can be seen how even with the apple ending up slightly off-centred the gripper can close
its fingers around it and hold it up, even with the platform beneath removed.

43

7.6 Chocolate egg, out of reach, distal grip

This test will be similar to the apple out of reach, however the chocolate egg is a smaller
and more fragile target. If the translated distance is very inaccurate it could result in
an off-centred grip that might damage the egg. To hold the egg in an upright position,
a crude ”foot” is made from aluminium foil. This does not offer enough support to keep
the egg in position if the approaching finger has a high threshold on its pressure sensor.

Figure 34: These images show the process of contact with first one finger, the request to be
translated, and the second attempt at gripping.

44

Figure 35: The plot shows how first one finger impacts, the grip is opened and by the time
it attempts a new grip, all three fingers are touching the egg. The second grip shows that
the pressure read on two of the fingers reaches saturation. This did still not damage the egg
fortunately.

The egg was placed under finger 1. After the contact the two others closed in without
any hits. The calculated needed offset was (65,82) mm. This was measured up on the
paper, and the egg moved (in the opposite direction). The second grasp was able to get
a nice firm grip on the egg. In figure 34 the gripping and offset-reporting can be seen:
In the first image, finger 1 contacts the egg and halts while the other two fingers close in
on the centre. Since no other contact is found, the position of the first contact made by
finger 1 is used to request a translation (seen in the screen shot from the application).
After the egg is moved by hand, the SDH was able to grip and hold it.

45

8 Discussion

This section will discuss the results of the experiments, the problems encountered, their
causes and possible solutions. The changes made to the gripping algorithm during the
implementation will also be discussed and evaluated.

8.1 Sensor sensitivity

The first major issue encountered in the experiments was the high threshold in the sensors
before they registered contact. This can be seen from the plots in the previous chapter:
there is a very sudden ”jump” from 0 up to a high level of pressure. As such, even by
setting the pressure threshold in the gripping algorithm to 0 meaning any sensor activity
above zero would trigger a hit, it did not register anything before the pressure was too
high for the intended purpose. Testing showed that if the chocolate egg was not held in
place and a finger approached it from the side, the weight in the egg was not enough to
trigger a hit in the sensor. If the finger approached from an angle, in a downward motion,
it would be able to trigger the hit without damaging the egg. This is due to the down-
ward pressure caused by the finger, in a sense pressing it down towards the table. The
problem became apparent when the object was not totally centred, but not far enough
out to get hit by the downward motion of the finger. In these cases the finger had a very
lateral approach, and in the case of the soda can and chocolate egg, ended up pushing
the object against the other two fingers. When the movement of the object got restricted
like this, the sensors in the fingers triggered hits and could stop. The apple was heavy
enough to trigger a hit without being moved. If the objects were to be fixed in place, for
example by some sort of attaching foot underneath, this would not be a big problem, as
the foot would restrict it from moving. However, more sensitive pressure sensors would
be preferable since it is undesirable that the gripper should ”pull” objects in towards its
centre.

8.2 Improved off-centred object handling

To handle off-centred objects and determine if they were within reach the initial plan was
to estimate a centroid from the contact point. Using this centroid and a pre-determined
radius for the object, it would be possible to make an educated guess to see if the object
was within range. This is far from optimal, and not even very robust or adapting. It
relies on a pre-determined shape and a pre-determined object radius. A simpler and more
adaptive solution was implemented: When one finger has a contact, the other two will
continue converging on the palm-axis (z-axis). When they reach the target angle (αmax)
the application logic sees that only one of the fingers have had contact, meaning it is
not graspable. However, from the one finger that made contact, the sensor (proximal or
distal), and the position on the sensor is retrieved. The angle of the proximal link relative
to the palm is also read. Using this data the point of contact can be estimated. The
x and y-components of this point is used to create a vector from the palm of the hand
to the contact point, and this is the vector that is returned to the parent controller. In
practice what this method does is check if there is a part of the object that intersects

46

the palm axis, or the trajectories of the fingers. This has the advantage of being much
more robust than the initial idea. The shape of the object is not that important, only
that it is positioned in such a way that part of it is within reach of at least two fingers.
Consider the following example: The gripper control uses the initial idea of calculating
a centroid using a pre-defined radius for it. However the gripper is used to pick up
something larger, or non-spherical, for example a banana. The first finger contacts the
banana in point relatively far from the palm-axis. This would result in the centroid being
estimated outside the reach of the gripper. With the new algorithm, however, the two
other fingers will continue closing in on the palm-axis, where they will find the banana.
All three fingers (or at least two) will get a good grip on the banana, and have saved the
manipulator arm a translation. The main disadvantage with this new method is that it
takes slightly longer than the first idea. The two other fingers have to continue converging
on the palm axis, and since the movements should preferably run slowly to be able to
stop in time, this takes 10-15 seconds to complete. This might still save time, given the
manipulator arm will have to do less movement to close in on targets.

There was also a change in the plan on how to handle contacts that occurred on the

Figure 36: The white dashed line shows the axis of rotation for the finger rotation β .

edge of the sensors. The initial idea was to keep the finger in place, and rotate it in order
to see if the contact point could be improved. Some further insight into this solution
revealed that this method would only work if the fingers could rotate around their own
axis, something that would be true only if the proximal link angle was 0 degrees. This
is illustrated in figure 36. A proximal angle of 0 degrees would mean the fingers would
be so closed together that an egg would not fit in there anyway, and as such this method
was discarded. Instead, a simpler and more intuitive approach was taken: if contact was
detected on the edge of a sensor, rotate the fingers an amount that would be linearly

47

dependent on the distance of the contact point, measured from the root of the finger.
This meant a contact very close to the root needed more rotation of the finger, than if
the contact was far out on the tip of a finger. This method was not tested in itself, but
the experiment with picking up a lying down soda can (chapter 7.1) involved one of the
fingers getting a hit on the edge of a sensor. The finger opened up a tiny bit, performed
a rotation, and then closed in again, with the contact this time hitting almost in the
middle of the sensor.

8.3 Application stability and threading

The stability of the application was perhaps the biggest issue in this project and the ma-
jor cause for damaged objects during the testing. Since this application is built around
the idea of having separate threads for testing pressure, performing movements, running
the state machine and other logic, it follows that if the threads start crashing it leads
to many problems. One example where it resulted in a destroyed egg was when the
thread performing the logics crashed during a grasp search. This thread could then no
longer use the data from the sensor-polling thread and was unable to stop the fingers
from closing in on the egg, even if the pressure was well over the threshold. The result
was a completely destroyed chocolate egg (seen in figure 37) It is not completely clear yet

Figure 37: The result of a crashed thread that caused the fingers to continue closing in despite
pressure threshold being surpassed.

what is the cause of this, but some testing showed that larger delays made it more stable
and less likely to crash. This might mean that some of the threads need some time to
close down and clean up resources before they can be re-initialised. As an example the
part of the algorithm that closes the distal fingers runs a while-loop to keep on closing
fingers that have not had an impact, or have not reached the target angle. This initially
ran without any delays in it, and caused a lot of crashes. By putting in a delay of 100
milliseconds, the crashes became much less frequent, and with half a second, the crashes
from this thread disappeared entirely. This is not really a viable solution for the rest of
the threads however, since for example the sensor-polling thread is required to run as fast

48

as possible, in order to halt the movement before crushing the target object. A likely
improvement would be to rebuild the application, but this does not fix the fundamental
issue, which is the loss of control when there are many threads involved. Multi-threading
is an intuitive concept to understand, but with several threads running simultaneously
it is easy to control over the logic. The problem is in the SDH library: When a move-
ment is issued, it blocks all calls, and there is nothing one can do until this movement is
completed. One approach used during the implementation was to add try-catch blocks
around functions that were failing often. This did neutralise almost all the crashes, and
instead displayed an error message in the application output window. Nonetheless this
is not a solution to the problem, rather just smoothing out the consequences of it. Even
by catching most of the exceptions, there were times where it still crashed, or the logic
failed, because an important thread had crashed.

8.4 Future work and improvements

This project has shown the potential in adaptive robotic gripping using the SDH, but
there are still plenty of improvements and work ahead. The major complications arose
around the SDH library’s handling of hardware calls. With their blocking calls, the
application had to be separated up into several parallel threads. This caused a lot of
problems, the threads got aborted when a ”halt”-message was given, causing them to
crash at times. The biggest priority for future work would therefore be to re-design the
application from scratch in the hope of making it more stable and the thread-logic easier
to handle. An even bigger improvement would be if future versions of the SDH library
came with alternative functions that were non-blocking.

The second big issue encountered was the high threshold on the contact sensors. This
made the gripper unable to sense when it came in contact with light objects, like the
chocolate egg. It was still able to sense the egg, but not without pushing it against the
other fingers. Although it was able to stop before it caused damage, it is undesirable
that the gripper has to move objects and squeeze them between its fingers to sense them.
There is a lack of calibration options in the SDH’s sensor system, and this would have
helped immensely. Again, possible future releases of the SDH library might offer better
control over the sensors.

This project has designed an entire system consisting of a robotic gripper, a manipu-
lator arm, and their control systems. Since the work done has only been on the gripper
control system, the logical next step would be to design a corresponding control system
for a manipulator arm, and an overall control system to manage them both.

49

9 Conclusion

Robotic gripping offers a fantastic possibility of improving performance, precision and
safety in almost all industries. As technology advances, the possible applications of
robotics and robotic gripping also increase. However, their increased complexity and the
growing complexity of their tasks call for more and more advanced control systems.

This project has looked at the task of safely gripping objects that do not have a pre-
programmed position, size, shape or durability. By using adaptive gripping methods, the
gripper attempts to close the fingers around the object, and hold on to it in a manner
that mimics the human hand. One of the central aspects of this operation is the feedback,
both in the human hand and in the robotic analogy. This project has focused on working
with the SCHUNK Dextrous Hand, and with its tactile feedback sensors it has proven
itself as a worthy candidate for an adaptive gripper. The robotic gripper, as with the
human hand, is not very useful without an arm to move it. This project is thus designed
with the idea of the gripper being attached to a robotic manipulator. The control systems
for both those pieces of hardware should communicate via an overall control system. This
way the feedback from the gripper can make small changes in the robotic arm in order
to improve the position.

This paper describes the work done on the control system for the gripper. The com-
munication to and from the overall control system has been abstracted out, and replaced
with a simple interface created in C++ .NET. This interface allows inputs and outputs
of the same types that the gripper would use to communicate with the overall control
system, were it present. An algorithm to grip unknown objects, both in position, size and
shape was implemented and tested. The tests were done with an apple, a soda can (both
upright and lying down) and a chocolate egg. The latter would illuminate the grippers
ability to handle fragile objects, while still holding on firmly enough to not let them slip
out of the grip.

Tests show that the gripping algorithm was very successful in all cases, and did not
damage any of the objects, while still holding on to them firmly enough to not drop them,
even when the platform beneath them was removed. The main problem encountered was
in the application itself. Since the application was programmed in multiple threads,
the logic was hard to keep track of, and caused stability problems with the application.
Crashing threads caused the logic to fail at times, and this did cause some objects to
get damaged. It should be emphasised that this was a problem with the implementation
of the application, not the gripping algorithm itself. A re-structuring of the application
might help control the logic and the different threads with more ease.

Another problem encountered was the lack of sensitivity in the sensors on the grip-
per. This can be seen from the plots in the results chapter. There is a very sudden
jump from a 0-pressure level up to a very high level. The result of this was that the
gripper was unable to ”touch” lighter objects, like the chocolate egg, without pushing
them. When the egg was pushed against the other two fingers, it would trigger the
sensors, and the contact would be detected without having damaged the egg. Still, this

50

is not optimal as it is not desirable to have to ”pull” objects into the palm to detect them.

One problem that surfaced during the experiments was the space between the sensors.
Although this did not affect any of the tests done in this project, this is a potential prob-
lem. There is a gap of approximately 1.5 cm, between the proximal and the distal finger
sensors. If this section is the only one in contact with the object, the finger would not
detect the object, and continue closing in, most likely damaging the object if it is fragile.
There is not much that can be done with this, other than perhaps supplementing the
entire system with optical or other detection methods that could help detect the objects.

This project has shown some of the possibilities with using an adaptive gripping
control system, and discussed some of the possible applications for it. Although there
are still some problems with the application, and the overall control system has not been
created, this project shows promise in the area of an adaptive gripping and multi-fingered
gripper control and feedback.

51

References

[1] Bullet Physics. http://bulletphysics.org.

[2] Open Dynamics Engine. http://ode.org.

[3] SCHUNK Dextrous Hand, 2010. http://www.schunk-modular-robotics.com/left-
navigation/service-robotics/components/actuators/robotic-hands/sdh.html.

[4] P. Allen. Integrating vision and touch for object recognition tasks. Multisensor
integration and fusion for intelligent machines and systems, pages 407–440, 1995.

[5] P. Allen and R. Bajcsy. Object recognition using vision and touch. In Proceedings of
the 9th International Joint Conference on Artificial Intelligence, Los Angeles, CA,
pages 1131–1137, 1984.

[6] C.H. An, C.G. Atkeson, and J.M. Hollerbach. Model-based control of a robot manip-
ulator.

[7] W. Hardin. Designers make robotic grippers with
productivity, energy savings in mind. Oct 2005.
http://www.industrialcontroldesignline.com/howto/roboticsprototyping/172301304.

[8] R.D. Howe. Tactile sensing and control of robotic manipulation. Advanced Robotics,
8(3):245–261, 1993.

[9] J. Jørgensen and H. Petersen. Usage of simulations to plan stable grasping of un-
known objects with a 3-fingered Schunk hand. In Workshop on Robot Simulators:
Available Software, Scientific Applications and Future Trends, ICRA, 2008.

[10] S. Monteiro. Developing a user interface for schunk dextrous hand. 2009.

[11] A. Namiki, T. Komuro, and M. Ishikawa. High-speed sensory–motor fusion for
robotic grasping. Measurement Science and Technology, 13:1767–1778, 2002.

52

A Source Code

A.1 SDHGrip2.cpp

1 // SDHGrip2 . cpp : main p r o j e c t f i l e .
2 /∗ This f i l e i s the main runnab le f i l e . I n i t i a l i s e s the Windows ←↩

Form .

3 ∗ SÃ¸lve Monteiro , (c) 2010
4 ∗/
5

6 #include ” s tda fx . h”
7 #include ”SDHGUI. h”
8

9 using namespace SDHGrip2 ;
10

11 [STAThreadAttribute]
12 int main (array<System : : String ˆ> ˆargs)
13 {
14 // Enabl ing Windows XP v i s u a l e f f e c t s b e f o r e any c o n t r o l s are ←↩

c r e a t e d
15 Application : : EnableVisualStyles () ;
16 Application : : SetCompatibleTextRenderingDefault (fa l se) ;
17

18 // Create the main window and run i t
19 Application : : Run (gcnew SDHGUI ()) ;
20 return 0 ;
21 }

53

A.2 SDHGUI.h

1 /∗ SDHGUI. h
2 ∗ Contains most o f the Windows−generated Forms data , as w e l l as ←↩

some
3 ∗ GUI Methods to connect to backend

4 ∗ SÃ¸lve Monteiro , (c) 2010
5 ∗ ∗/
6

7 #pragma once
8 #include ”SDHBackend . h”
9

10

11 namespace SDHGrip2 {
12

13 using namespace System ;
14 using namespace System : : ComponentModel ;
15 using namespace System : : Collections ;
16 using namespace System : : Windows : : Forms ;
17 using namespace System : : Data ;
18 using namespace System : : Drawing ;
19 using namespace System : : Threading ;
20 using namespace System : : Collections ;
21

22 /// <summary>
23 /// Summary f o r SDGUI
24 /// </summary>
25 public ref class SDHGUI : public System : : Windows : : Forms : : Form
26 {
27 public :
28

29 Thread ˆsensorThread , ˆgraspThread ;
30 SDHBackend ˆsdhbackend ;
31 int maxPressureValue ;
32 bool running ;
33 private : System : : Windows : : Forms : : Timerˆ printTimer ;
34 private : System : : Windows : : Forms : : Labelˆ label1 ;
35 private : System : : Windows : : Forms : : Labelˆ label_maxPressure ;
36 private : System : : Windows : : Forms : : Timerˆ timer_maxPressurePoll ;
37 private : System : : Windows : : Forms : : Buttonˆ button3 ;
38 private : System : : Windows : : Forms : : Buttonˆ button4 ;
39 private : System : : Windows : : Forms : : Buttonˆ button5 ;
40 private : System : : Windows : : Forms : : TrackBarˆ ←↩

trackBar_changeThreshhold ;
41

42 private : System : : Windows : : Forms : : Labelˆ label2 ;
43 private : System : : Windows : : Forms : : Labelˆ label_threshhold ;
44 private : System : : Windows : : Forms : : Buttonˆ button6 ;

54

45 private : System : : Windows : : Forms : : Buttonˆ button7 ;
46 private : System : : Windows : : Forms : : Buttonˆ button8 ;
47 private : System : : Windows : : Forms : : ProgressBarˆ pb_0 ;
48 private : System : : Windows : : Forms : : ProgressBarˆ pb_1 ;
49 private : System : : Windows : : Forms : : ProgressBarˆ pb_3 ;
50 private : System : : Windows : : Forms : : ProgressBarˆ pb_2 ;
51 private : System : : Windows : : Forms : : ProgressBarˆ pb_5 ;
52 private : System : : Windows : : Forms : : ProgressBarˆ pb_4 ;
53 private : System : : Windows : : Forms : : Labelˆ label3 ;
54 private : System : : Windows : : Forms : : Labelˆ label4 ;
55 private : System : : Windows : : Forms : : Labelˆ label5 ;
56 private : System : : Windows : : Forms : : Labelˆ label_state ;
57

58

59 public :
60 ArrayList ˆprintBuffer ;
61 SDHGUI (void)
62 {
63 maxPressureValue=0;
64 running=true ;
65 InitializeComponent () ;
66

67 printBuffer = gcnew ArrayList () ;
68 printout (”Form i n i t i a l i s e d ”) ;
69 sdhbackend = gcnew SDHBackend () ;
70 sdhbackend−>init (printBuffer) ;
71

72 }
73

74 void printout (Object ˆo) {
75 printBuffer−>Add (o) ;
76 }
77

78

79

80 protected :
81 /// <summary>
82 /// Clean up any r e s o u r c e s be ing used .
83 /// </summary>
84 ˜SDHGUI ()
85 {
86 i f (components)
87 {
88 delete components ;
89 }
90 }
91 private : System : : Windows : : Forms : : Buttonˆ button1 ;
92 protected :
93 private : System : : Windows : : Forms : : RichTextBoxˆ richTextBox1 ;

55

94 private : System : : Windows : : Forms : : Buttonˆ button2 ;
95 private : System : : ComponentModel : : IContainerˆ components ;
96

97 private :
98 /// <summary>
99 /// Required d e s i g n e r v a r i a b l e .

100 /// </summary>
101

102

103 #pragma r eg i on Windows Form Designer generated code
104 /// <summary>
105 /// Required method f o r Designer suppor t − do not modify
106 /// the c o n t e n t s o f t h i s method wi th the code e d i t o r .
107 /// </summary>
108 void InitializeComponent (void)
109 {
110 this−>components = (gcnew System : : ComponentModel : : Container ()←↩

) ;
111 this−>button1 = (gcnew System : : Windows : : Forms : : Button ()) ;
112 this−>richTextBox1 = (gcnew System : : Windows : : Forms : :←↩

RichTextBox ()) ;
113 this−>button2 = (gcnew System : : Windows : : Forms : : Button ()) ;
114 this−>printTimer = (gcnew System : : Windows : : Forms : : Timer (this←↩

−>components)) ;
115 this−>label1 = (gcnew System : : Windows : : Forms : : Label ()) ;
116 this−>label_maxPressure = (gcnew System : : Windows : : Forms : :←↩

Label ()) ;
117 this−>timer_maxPressurePoll = (gcnew System : : Windows : : Forms : :←↩

Timer (this−>components)) ;
118 this−>button3 = (gcnew System : : Windows : : Forms : : Button ()) ;
119 this−>button4 = (gcnew System : : Windows : : Forms : : Button ()) ;
120 this−>button5 = (gcnew System : : Windows : : Forms : : Button ()) ;
121 this−>trackBar_changeThreshhold = (gcnew System : : Windows : :←↩

Forms : : TrackBar ()) ;
122 this−>label2 = (gcnew System : : Windows : : Forms : : Label ()) ;
123 this−>label_threshhold = (gcnew System : : Windows : : Forms : : Label←↩

()) ;
124 this−>button6 = (gcnew System : : Windows : : Forms : : Button ()) ;
125 this−>button7 = (gcnew System : : Windows : : Forms : : Button ()) ;
126 this−>button8 = (gcnew System : : Windows : : Forms : : Button ()) ;
127 this−>pb_0 = (gcnew System : : Windows : : Forms : : ProgressBar ()) ;
128 this−>pb_1 = (gcnew System : : Windows : : Forms : : ProgressBar ()) ;
129 this−>pb_3 = (gcnew System : : Windows : : Forms : : ProgressBar ()) ;
130 this−>pb_2 = (gcnew System : : Windows : : Forms : : ProgressBar ()) ;
131 this−>pb_5 = (gcnew System : : Windows : : Forms : : ProgressBar ()) ;
132 this−>pb_4 = (gcnew System : : Windows : : Forms : : ProgressBar ()) ;
133 this−>label3 = (gcnew System : : Windows : : Forms : : Label ()) ;
134 this−>label4 = (gcnew System : : Windows : : Forms : : Label ()) ;
135 this−>label5 = (gcnew System : : Windows : : Forms : : Label ()) ;

56

136 this−>label_state = (gcnew System : : Windows : : Forms : : Label ()) ;
137 (cli : : safe_cast<System : : ComponentModel : : ISupportInitializeˆ ←↩

>(this−>trackBar_changeThreshhold))−>BeginInit () ;
138 this−>SuspendLayout () ;
139 //
140 // but ton1
141 //
142 this−>button1−>Location = System : : Drawing : : Point (13 , 26) ;
143 this−>button1−>Name = L” button1 ” ;
144 this−>button1−>Size = System : : Drawing : : Size (98 , 23) ;
145 this−>button1−>TabIndex = 0 ;
146 this−>button1−>Text = L”Connect to HW” ;
147 this−>button1−>UseVisualStyleBackColor = true ;
148 this−>button1−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : GUIConnect) ;
149 //
150 // richTextBox1
151 //
152 this−>richTextBox1−>Location = System : : Drawing : : Point (12 , ←↩

238) ;
153 this−>richTextBox1−>Name = L” richTextBox1 ” ;
154 this−>richTextBox1−>Size = System : : Drawing : : Size (660 , 219) ;
155 this−>richTextBox1−>TabIndex = 1 ;
156 this−>richTextBox1−>Text = L”” ;
157 //
158 // but ton2
159 //
160 this−>button2−>Location = System : : Drawing : : Point (13 , 84) ;
161 this−>button2−>Name = L” button2 ” ;
162 this−>button2−>Size = System : : Drawing : : Size (84 , 23) ;
163 this−>button2−>TabIndex = 2 ;
164 this−>button2−>Text = L”Open Hand” ;
165 this−>button2−>UseVisualStyleBackColor = true ;
166 this−>button2−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : GUIOpenHand) ;
167 //
168 // printTimer
169 //
170 this−>printTimer−>Enabled = true ;
171 this−>printTimer−>Interval = 50 ;
172 this−>printTimer−>Tick += gcnew System : : EventHandler (this , &←↩

SDHGUI : : printOutBuffer) ;
173 //
174 // l a b e l 1
175 //
176 this−>label1−>AutoSize = true ;
177 this−>label1−>Location = System : : Drawing : : Point (407 , 25) ;
178 this−>label1−>Name = L” l a b e l 1 ” ;
179 this−>label1−>Size = System : : Drawing : : Size (74 , 13) ;

57

180 this−>label1−>TabIndex = 3 ;
181 this−>label1−>Text = L”Max Pressure : ” ;
182 //
183 // l a b e l m a xP r e s s ur e
184 //
185 this−>label_maxPressure−>AutoSize = true ;
186 this−>label_maxPressure−>Location = System : : Drawing : : Point←↩

(487 , 25) ;
187 this−>label_maxPressure−>Name = L” labe l maxPressure ” ;
188 this−>label_maxPressure−>Size = System : : Drawing : : Size (13 , 13)←↩

;
189 this−>label_maxPressure−>TabIndex = 4 ;
190 this−>label_maxPressure−>Text = L”0” ;
191 //
192 // t imer maxPressurePol l
193 //
194 this−>timer_maxPressurePoll−>Enabled = true ;
195 this−>timer_maxPressurePoll−>Interval = 10 ;
196 this−>timer_maxPressurePoll−>Tick += gcnew System : :←↩

EventHandler (this , &SDHGUI : : getMaxPressure) ;
197 //
198 // but ton3
199 //
200 this−>button3−>Location = System : : Drawing : : Point (103 , 84) ;
201 this−>button3−>Name = L” button3 ” ;
202 this−>button3−>Size = System : : Drawing : : Size (97 , 23) ;
203 this−>button3−>TabIndex = 5 ;
204 this−>button3−>Text = L”Grasp (Search) ” ;
205 this−>button3−>UseVisualStyleBackColor = true ;
206 this−>button3−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : StartSearchMode) ;
207 //
208 // but ton4
209 //
210 this−>button4−>Location = System : : Drawing : : Point (206 , 84) ;
211 this−>button4−>Name = L” button4 ” ;
212 this−>button4−>Size = System : : Drawing : : Size (75 , 23) ;
213 this−>button4−>TabIndex = 6 ;
214 this−>button4−>Text = L” Tr igger h i t ” ;
215 this−>button4−>UseVisualStyleBackColor = true ;
216 this−>button4−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : GUIManualHit) ;
217 //
218 // but ton5
219 //
220 this−>button5−>Location = System : : Drawing : : Point (596 , 209) ;
221 this−>button5−>Name = L” button5 ” ;
222 this−>button5−>Size = System : : Drawing : : Size (75 , 23) ;
223 this−>button5−>TabIndex = 7 ;

58

224 this−>button5−>Text = L” Clear Log” ;
225 this−>button5−>UseVisualStyleBackColor = true ;
226 this−>button5−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : GUIClearLog) ;
227 //
228 // trackBar changeThreshho ld
229 //
230 this−>trackBar_changeThreshhold−>Location = System : : Drawing : :←↩

Point (410 , 54) ;
231 this−>trackBar_changeThreshhold−>Maximum = 500 ;
232 this−>trackBar_changeThreshhold−>Name = L”←↩

trackBar changeThreshhold ” ;
233 this−>trackBar_changeThreshhold−>Size = System : : Drawing : : Size←↩

(186 , 45) ;
234 this−>trackBar_changeThreshhold−>TabIndex = 8 ;
235 this−>trackBar_changeThreshhold−>TickFrequency = 10 ;
236 this−>trackBar_changeThreshhold−>Value = 20 ;
237 this−>trackBar_changeThreshhold−>ValueChanged += gcnew System←↩

: : EventHandler (this , &SDHGUI : : GUIChangeThresshold) ;
238 //
239 // l a b e l 2
240 //
241 this−>label2−>AutoSize = true ;
242 this−>label2−>Location = System : : Drawing : : Point (407 , 38) ;
243 this−>label2−>Name = L” l a b e l 2 ” ;
244 this−>label2−>Size = System : : Drawing : : Size (66 , 13) ;
245 this−>label2−>TabIndex = 9 ;
246 this−>label2−>Text = L” Threshhold : ” ;
247 //
248 // l a b e l t h r e s h h o l d
249 //
250 this−>label_threshhold−>AutoSize = true ;
251 this−>label_threshhold−>Location = System : : Drawing : : Point←↩

(487 , 38) ;
252 this−>label_threshhold−>Name = L” l a b e l t h r e s h h o l d ” ;
253 this−>label_threshhold−>Size = System : : Drawing : : Size (19 , 13) ;
254 this−>label_threshhold−>TabIndex = 10 ;
255 this−>label_threshhold−>Text = L”20” ;
256 //
257 // but ton6
258 //
259 this−>button6−>Location = System : : Drawing : : Point (13 , 113) ;
260 this−>button6−>Name = L” button6 ” ;
261 this−>button6−>Size = System : : Drawing : : Size (98 , 23) ;
262 this−>button6−>TabIndex = 11 ;
263 this−>button6−>Text = L” Close Proximals ” ;
264 this−>button6−>UseVisualStyleBackColor = true ;
265 this−>button6−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : GUICloseProximals) ;

59

266 //
267 // but ton7
268 //
269 this−>button7−>Location = System : : Drawing : : Point (13 , 142) ;
270 this−>button7−>Name = L” button7 ” ;
271 this−>button7−>Size = System : : Drawing : : Size (98 , 23) ;
272 this−>button7−>TabIndex = 12 ;
273 this−>button7−>Text = L” Close D i s t a l s ” ;
274 this−>button7−>UseVisualStyleBackColor = true ;
275 this−>button7−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : GUICloseDistals) ;
276 //
277 // but ton8
278 //
279 this−>button8−>Location = System : : Drawing : : Point (181 , 26) ;
280 this−>button8−>Name = L” button8 ” ;
281 this−>button8−>Size = System : : Drawing : : Size (100 , 23) ;
282 this−>button8−>TabIndex = 13 ;
283 this−>button8−>Text = L” Fu l l Auto Grasp” ;
284 this−>button8−>UseVisualStyleBackColor = true ;
285 this−>button8−>Click += gcnew System : : EventHandler (this , &←↩

SDHGUI : : GUIInitAutoGrasp) ;
286 //
287 // pb 0
288 //
289 this−>pb_0−>Location = System : : Drawing : : Point (352 , 142) ;
290 this−>pb_0−>Maximum = 3600 ;
291 this−>pb_0−>Name = L”pb 0” ;
292 this−>pb_0−>Size = System : : Drawing : : Size (100 , 14) ;
293 this−>pb_0−>Style = System : : Windows : : Forms : : ProgressBarStyle←↩

: : Continuous ;
294 this−>pb_0−>TabIndex = 14 ;
295 //
296 // pb 1
297 //
298 this−>pb_1−>Location = System : : Drawing : : Point (458 , 142) ;
299 this−>pb_1−>Maximum = 3600 ;
300 this−>pb_1−>Name = L”pb 1” ;
301 this−>pb_1−>Size = System : : Drawing : : Size (100 , 14) ;
302 this−>pb_1−>Style = System : : Windows : : Forms : : ProgressBarStyle←↩

: : Continuous ;
303 this−>pb_1−>TabIndex = 15 ;
304 //
305 // pb 3
306 //
307 this−>pb_3−>Location = System : : Drawing : : Point (458 , 122) ;
308 this−>pb_3−>Maximum = 3600 ;
309 this−>pb_3−>Name = L”pb 3” ;
310 this−>pb_3−>Size = System : : Drawing : : Size (100 , 14) ;

60

311 this−>pb_3−>Style = System : : Windows : : Forms : : ProgressBarStyle←↩
: : Continuous ;

312 this−>pb_3−>TabIndex = 17 ;
313 //
314 // pb 2
315 //
316 this−>pb_2−>Location = System : : Drawing : : Point (352 , 122) ;
317 this−>pb_2−>Maximum = 3600 ;
318 this−>pb_2−>Name = L”pb 2” ;
319 this−>pb_2−>Size = System : : Drawing : : Size (100 , 14) ;
320 this−>pb_2−>Style = System : : Windows : : Forms : : ProgressBarStyle←↩

: : Continuous ;
321 this−>pb_2−>TabIndex = 16 ;
322 //
323 // pb 5
324 //
325 this−>pb_5−>Location = System : : Drawing : : Point (458 , 162) ;
326 this−>pb_5−>Maximum = 3600 ;
327 this−>pb_5−>Name = L”pb 5” ;
328 this−>pb_5−>Size = System : : Drawing : : Size (100 , 14) ;
329 this−>pb_5−>Style = System : : Windows : : Forms : : ProgressBarStyle←↩

: : Continuous ;
330 this−>pb_5−>TabIndex = 19 ;
331 //
332 // pb 4
333 //
334 this−>pb_4−>Location = System : : Drawing : : Point (352 , 162) ;
335 this−>pb_4−>Maximum = 3600 ;
336 this−>pb_4−>Name = L”pb 4” ;
337 this−>pb_4−>Size = System : : Drawing : : Size (100 , 14) ;
338 this−>pb_4−>Style = System : : Windows : : Forms : : ProgressBarStyle←↩

: : Continuous ;
339 this−>pb_4−>TabIndex = 18 ;
340 //
341 // l a b e l 3
342 //
343 this−>label3−>AutoSize = true ;
344 this−>label3−>Location = System : : Drawing : : Point (349 , 190) ;
345 this−>label3−>Name = L” l a b e l 3 ” ;
346 this−>label3−>Size = System : : Drawing : : Size (51 , 13) ;
347 this−>label3−>TabIndex = 20 ;
348 this−>label3−>Text = L” Proximals ” ;
349 //
350 // l a b e l 4
351 //
352 this−>label4−>AutoSize = true ;
353 this−>label4−>Location = System : : Drawing : : Point (455 , 190) ;
354 this−>label4−>Name = L” l a b e l 4 ” ;
355 this−>label4−>Size = System : : Drawing : : Size (38 , 13) ;

61

356 this−>label4−>TabIndex = 21 ;
357 this−>label4−>Text = L” D i s t a l s ” ;
358 //
359 // l a b e l 5
360 //
361 this−>label5−>AutoSize = true ;
362 this−>label5−>Location = System : : Drawing : : Point (12 , 209) ;
363 this−>label5−>Name = L” l a b e l 5 ” ;
364 this−>label5−>Size = System : : Drawing : : Size (38 , 13) ;
365 this−>label5−>TabIndex = 22 ;
366 this−>label5−>Text = L” State : ” ;
367 //
368 // l a b e l s t a t e
369 //
370 this−>label_state−>AutoSize = true ;
371 this−>label_state−>Location = System : : Drawing : : Point (56 , 209)←↩

;
372 this−>label_state−>Name = L” l a b e l s t a t e ” ;
373 this−>label_state−>Size = System : : Drawing : : Size (0 , 13) ;
374 this−>label_state−>TabIndex = 23 ;
375 //
376 // SDHGUI
377 //
378 this−>AutoScaleDimensions = System : : Drawing : : SizeF (6 , 13) ;
379 this−>AutoScaleMode = System : : Windows : : Forms : : AutoScaleMode : :←↩

Font ;
380 this−>ClientSize = System : : Drawing : : Size (684 , 469) ;
381 this−>Controls−>Add (this−>label_state) ;
382 this−>Controls−>Add (this−>label5) ;
383 this−>Controls−>Add (this−>label4) ;
384 this−>Controls−>Add (this−>label3) ;
385 this−>Controls−>Add (this−>pb_5) ;
386 this−>Controls−>Add (this−>pb_4) ;
387 this−>Controls−>Add (this−>pb_3) ;
388 this−>Controls−>Add (this−>pb_2) ;
389 this−>Controls−>Add (this−>pb_1) ;
390 this−>Controls−>Add (this−>pb_0) ;
391 this−>Controls−>Add (this−>button8) ;
392 this−>Controls−>Add (this−>button7) ;
393 this−>Controls−>Add (this−>button6) ;
394 this−>Controls−>Add (this−>label_threshhold) ;
395 this−>Controls−>Add (this−>label2) ;
396 this−>Controls−>Add (this−>trackBar_changeThreshhold) ;
397 this−>Controls−>Add (this−>button5) ;
398 this−>Controls−>Add (this−>button4) ;
399 this−>Controls−>Add (this−>button3) ;
400 this−>Controls−>Add (this−>label_maxPressure) ;
401 this−>Controls−>Add (this−>label1) ;
402 this−>Controls−>Add (this−>button2) ;

62

403 this−>Controls−>Add (this−>richTextBox1) ;
404 this−>Controls−>Add (this−>button1) ;
405 this−>Name = L”SDHGUI” ;
406 this−>Text = L”SDH Adaptive Gripping ” ;
407 this−>FormClosing += gcnew System : : Windows : : Forms : :←↩

FormClosingEventHandler (this , &SDHGUI : : shutDown) ;
408 (cli : : safe_cast<System : : ComponentModel : : ISupportInitializeˆ ←↩

>(this−>trackBar_changeThreshhold))−>EndInit () ;
409 this−>ResumeLayout (fa l se) ;
410 this−>PerformLayout () ;
411

412 }
413 #pragma endreg ion
414

415

416 //Runs in a s e p a r a t e thread !
417 public : void GUIPollSensors () {
418

419 while (running) {
420 // t r y {
421 maxPressureValue = sdhbackend−>getMaxPressure () ;
422 Sleep (20) ;
423 // } catch (Except ion ˆe){
424 // }
425

426 }
427 }
428 private : System : : Void GUIConnect (System : : Objectˆ sender , System←↩

: : EventArgsˆ e) {
429 sdhbackend−>connect () ;
430 sensorThread = gcnew Thread (gcnew ThreadStart (this , &←↩

SDHGUI : : GUIPollSensors)) ;
431 sensorThread−>Start () ;
432 }
433 private : System : : Void GUIOpenHand (System : : Objectˆ sender , System←↩

: : EventArgsˆ e) {
434 sdhbackend−>openHandStart () ;
435 }
436 private : System : : Void printOutBuffer (System : : Objectˆ sender , ←↩

System : : EventArgsˆ e) {
437 while (printBuffer−>Count>0){
438 richTextBox1−>AppendText (printBuffer [0]−>ToString ()+”\n”)←↩

;
439 richTextBox1−>ScrollToCaret () ;
440 printBuffer−>RemoveAt (0) ;
441 }
442 }
443

444

63

445

446 private : System : : Void getMaxPressure (System : : Objectˆ sender , ←↩
System : : EventArgsˆ e) {

447

448 label_maxPressure−>Text = maxPressureValue . ToString () ;
449 pb_0−>Value = (int) (sdhbackend−>sensorMax [0]) ;
450 pb_1−>Value = (int) (sdhbackend−>sensorMax [1]) ;
451 pb_2−>Value = (int) (sdhbackend−>sensorMax [2]) ;
452 pb_3−>Value = (int) (sdhbackend−>sensorMax [3]) ;
453 pb_4−>Value = (int) (sdhbackend−>sensorMax [4]) ;
454 pb_5−>Value = (int) (sdhbackend−>sensorMax [5]) ;
455 label_state−>Text = sdhbackend−>state ;
456

457

458 }
459

460

461 private : System : : Void shutDown (System : : Objectˆ sender , System : :←↩
Windows : : Forms : : FormClosingEventArgsˆ e) {

462 running = fa l se ;
463 sdhbackend−>shutDown () ;
464

465 }
466 private : System : : Void StartSearchMode (System : : Objectˆ sender , ←↩

System : : EventArgsˆ e) {
467 printout (”GUI s t a r t i n g search ! ”) ;
468 sdhbackend−>graspSearchStart () ;
469 }
470 private : System : : Void GUIManualHit (System : : Objectˆ sender , System←↩

: : EventArgsˆ e) {
471 sdhbackend−>manualTriggerHit () ;
472 }
473 private : System : : Void GUIClearLog (System : : Objectˆ sender , System : :←↩

EventArgsˆ e) {
474 richTextBox1−>Clear () ;
475 }
476 private : System : : Void GUIChangeThresshold (System : : Objectˆ sender , ←↩

System : : EventArgsˆ e) {
477 int iVal = trackBar_changeThreshhold−>Value ;
478 label_threshhold−>Text = iVal . ToString () ;
479 sdhbackend−>iPressureThreshhold = iVal ;
480 }
481 private : System : : Void GUICloseProximals (System : : Objectˆ sender , ←↩

System : : EventArgsˆ e) {
482 Thread ˆproximalsThread = gcnew Thread (gcnew ThreadStart (←↩

sdhbackend ,&SDHBackend : : closeProximalsStart)) ;
483 proximalsThread−>Start () ;
484 // sdhbackend−>c l o s e P r o x i m a l s S t a r t () ;
485 }

64

486 private : System : : Void GUICloseDistals (System : : Objectˆ sender , ←↩
System : : EventArgsˆ e) {

487 Thread ˆdistalsThread = gcnew Thread (gcnew ThreadStart (←↩
sdhbackend , &SDHBackend : : closeDistalsStart)) ;

488 distalsThread−>Start () ;
489 }
490 private : System : : Void GUIInitAutoGrasp (System : : Objectˆ sender , ←↩

System : : EventArgsˆ e) {
491 printout (” S ta r t i ng s t a t e machine”) ;
492 Thread ˆstateMachineThread = gcnew Thread (gcnew ThreadStart (←↩

sdhbackend , &SDHBackend : : startStateMachine)) ;
493 stateMachineThread−>Start () ;
494 }
495 } ;
496

497

498 }

65

A.3 SDHBackend.h

1 /∗
2 ∗ SDHBackend . h
3 ∗ Header f i l e wi th p r o t o t y p e s f o r the SDHBackend c l a s s . Has ←↩

methods f o r communication wi th
4 ∗ SDH hardware , as w e l l as most o f the a p p l i c a t i o n l o g i c .

5 ∗ SÃ¸lve Monteiro , (c) 2010
6 ∗ ∗/
7

8 #pragma once
9 #include ”sdh . h”

10 #include ”dsa . h”
11 #include ” u t i l . h”
12 #include ” s d h l i b r a r y s e t t i n g s . h”
13 #include ” b a s i s d e f . h”
14 #include ” sdhopt ions . h”
15 #include ” SensorHit . h”
16 using namespace System ;
17 using namespace std ;
18 using namespace SDH ;
19 using namespace System : : Windows : : Forms ;
20 using namespace System : : Collections ;
21 using namespace System : : Threading ;
22 using namespace System : : IO ;
23

24 ref class SDHBackend

25 {
26 public :
27

28 //Max a n g l e s in c l o s i n g f o r proximal l i n k s and f i n g e r r o t a t i o n
29 double alpha_max , beta_max ;
30 int iGrabVelocity ;
31 double fingerDelta ;
32

33 //SDH Hand and sensor o b j e c t s
34 cSDH ∗hand ;
35 cDSA ∗ dsa ;
36

37 //The cSDHOptions o b j e c t i s a s i m p l i f i e d way o f s e t t i n g params on←↩
the hardware

38 cSDHOptions ∗ options ;
39

40 // P r i n t b u f f e r f o r o u t p u t t i n g to GUI
41 ArrayList ˆprintBuffer ;
42

43 //Some d i f f e r e n t t h r e a d s needed in l o g i c
44 Thread ˆgraspingThread , ˆopenHandThread , ˆcloseGraspThread , ˆ←↩

66

proximalsThread , ˆdistalsThread ;
45

46 // Logic f l a g s used in the s t a t e machine
47 bool noHits , running , moving ;
48 String ˆstate ;
49

50 // S t o r e s the l a s t r e g i s t e r e d h i t on a new sensor
51 SensorHit ˆlastHit ;
52 int iMaxPressure ;
53 int iPressureThreshhold ;
54 ArrayList ˆsensorMax ;
55

56 // Globa l c o l l e c t i o n o f sensor h i t s
57 ArrayList ˆ sensorHits ;
58

59 // Flags f o r h a l t i n g f i n g e r s from c l o s i n g
60 bool inhibitAxis1 , inhibitAxis3 , inhibitAxis5 , proximalsDetected ;
61 bool isFullAuto ;
62 int activeAxis ;
63

64 // Fi le−w r i t i n g output
65 TextWriter ˆtw ;
66

67 // Constructor
68 SDHBackend (void) ;
69

70 // I n i t i a l i s e method . This i s c a l l e d immediate ly a f t e r c o n s t r u c t o r
71 void init (ArrayList ˆprintBuffer) ;
72

73 // Attempts to connect to hardware . Pr in t s e rror message i f i t ←↩
f a i l s .

74 void connect () ;
75

76 // Print method . Pr in t s to GUI output window
77 void printout (Object ˆo) ;
78

79 // S t a r t the open−hand thread .
80 void openHandStart () ;
81

82 //The open−hand thread runs t h i s method
83 void openHand () ;
84

85 // Print sensor i n f o to output window
86 void printSensors () ;
87

88 //Get the g l o b a l max r e g i s t e r e d p r e s s u r e
89 int getMaxPressure () ;
90

91 // Shut down method , c l o s e s connec t ions

67

92 void shutDown () ;
93

94 // S t a r t the grasp−search thread
95 void graspSearchStart () ;
96

97 //Method f o r the grasp−search thread
98 void graspSearch () ;
99

100 // Trigger a manual h i t , f o r debugg ing
101 void manualTriggerHit () ;
102

103 //Semi−automatic method , c l o s e s remaining f i n g e r s
104 void closeGrasp () ;
105

106 // Clears t a r g e t a n g l e s from the SDH hardware and s e t s them to the←↩
curren t v a l u e

107 // This h e l p s a g a i n s t j e r k s when s t o p p i n g / s t a r t i n g
108 void clearTargets () ;
109

110 // S t a r t the c l o s e−prox imals thread
111 void closeProximalsStart () ;
112

113 //Method f o r the c l o s e−prox imals thread
114 void closeProximals () ;
115

116 // S t a r t the c l o s e−d i s t a l s thread
117 void closeDistalsStart () ;
118

119 //Method f o r the c l o s e−d i s t a l s thread
120 void closeDistals () ;
121

122 // Test i f c e n t r o i d i s w i t h i n reach , and/ or i f we need f i n g e r ←↩
r o t a t i o n

123 void calculateCentroid () ;
124

125 // S t a r t the f i n g e r r o t a t i o n
126 void rotateFingersStart () ;
127

128 // S t a r t the f u l l y automated search and grasp
129 void startStateMachine () ;
130

131 //Get how many f i n g e r s have had c o n t a c t s on them
132 int getContactingFingers () ;
133

134 //Get the d i s t a n c e from the palm of the hand the c o n t a c t occured
135 int getHitDistalPosition (SensorHit ˆsensorHit) ;
136

137 //Get which proximal a x i s corresponds to the sensor t h a t was h i t
138 int getHandAxisFromSensor (int iSensor) ;

68

139

140 //Get which proximal a x i s corresponds to the sensor t h a t was h i t
141 int getHandAxisFromSensor (SensorHit ˆsensorHit) ;
142

143 // Convert de gre es to rad ians
144 double deg2rad (double deg) ;
145

146 //Get the x−p o s i t i o n in m i l l i m e t e r s from the c e n t e r o f the palm ←↩
o f the c o n t a c t p o i n t

147 int getGlobalXFromSensorHit (SensorHit ˆsensorHit) ;
148

149 //Get the y−p o s i t i o n in m i l l i m e t e r s from the c e n t e r o f the palm ←↩
o f the c o n t a c t p o i n t

150 int getGlobalYFromSensorHit (SensorHit ˆsensorHit) ;
151

152 } ;

69

A.4 SDHBackend.cpp

1 /∗ SDHBackend . cpp
2 ∗ Source f i l e f o r the SDHBackend c l a s s . Has methods f o r ←↩

communication wi th
3 ∗ SDH hardware , as w e l l as most o f the a p p l i c a t i o n l o g i c .

4 ∗ SÃ¸lve Monteiro , (c) 2010
5 ∗ ∗/
6

7 #include ”StdAfx . h”
8 #include ”SDHBackend . h”
9

10

11

12 SDHBackend : : SDHBackend (void)
13 {
14 }
15

16 void SDHBackend : : printout (Object ˆo) {
17 printBuffer−>Add (o) ;
18 }
19

20 void SDHBackend : : init (ArrayList ˆprintBuffer) {
21 SDHBackend : : printBuffer = printBuffer ;
22 printout (”Backend i n i t i a l i s e d ”) ;
23 options = new cSDHOptions () ;
24 running = true ;
25 isFullAuto=fa l se ;
26 iPressureThreshhold = 20 ;
27 alpha_max = 5 . 0 ;
28 beta_max = 9 0 . 0 ;
29 fingerDelta = 60 ; // D e f a u l t v a l u e f o r r o t a t i o n
30 iGrabVelocity = 5 ;
31 sensorHits= gcnew ArrayList () ;
32 String ˆtime = (DateTime : : Now) . ToString () ;
33 time = time−>Replace (: , .) ;
34 time = time−>Replace (, .) ;
35 printout (”Time : ”+time) ;
36 tw = gcnew StreamWriter (” data /”+time+” . txt ”) ;
37 printout (” Created f i l e data /”+time+” . txt ”) ;
38

39 //tw−>WriteLine (” I n i t i a l i s i n g t e x t w r i t e r ”) ;
40 //tw−>Close () ;
41 sensorMax = gcnew ArrayList () ;
42 for (int i=0;i<6;i++)
43 sensorMax−>Add (0) ;
44 }
45

70

46 double SDHBackend : : deg2rad (double rad) {
47 return rad ∗180.0/ Math : : PI ;
48 }
49

50 void SDHBackend : : connect () {
51 printout (” Connecting to hand”) ;
52 i f (hand !=NULL) {
53 i f (hand−>IsOpen ()) {
54 printout (” Error : Connection to hand a l ready open ! ”) ;
55 return ;
56 }
57 }
58 try{
59 hand = new cSDH () ;
60 hand−>OpenRS232 (options−>sdhport , options−>rs232_baudrate , ←↩

options−>timeout , options−>sdh_rs_device) ;
61 i f (hand−>IsOpen ()) printout (”Connected to SDH hardware ! ”) ;
62

63 dsa = new cDSA (0 , 1 , options−>dsa_rs_device) ;
64 dsa−>SetFramerate (1) ;
65 /∗
66 p r i n t o u t (dsa−>G e t C o n t r o l l e r I n f o () . ToString ()) ;
67 p r i n t o u t (dsa−>GetSensorInfo ()) ;
68 p r i n t o u t (dsa−>GetMatrixInfo (opt ions−>m a t r i x i n f o)) ;
69 ∗/
70

71 } catch (Exception ˆex) {
72 printout (” Error connect ing to SDH hardware : ”+ex) ;
73 }
74 }
75

76 void SDHBackend : : clearTargets () {
77

78 try{
79 std : : vector<double> angles = hand−>GetAxisActualAngle (hand−>←↩

all_axes) ;
80 hand−>SetAxisTargetAngle (hand−>all_axes , angles) ;
81 }catch (Exception ˆe) {
82 printout (” Error : ”+e−>ToString ()) ;
83 }
84 }
85

86 void SDHBackend : : openHandStart () {
87 openHandThread = gcnew Thread (gcnew ThreadStart (this , &SDHBackend←↩

: : openHand)) ;
88 openHandThread−>Start () ;
89 }
90

91 void SDHBackend : : openHand () {

71

92 fingerDelta=60.0;
93 i f (hand==NULL) {
94 printout (” Error : connect ion to SDH not e s t a b e l i s h e d ”) ;
95 return ;
96 }
97 i f (! hand−>IsOpen ()) {
98 printout (” Error : connect ion to SDH not e s t a b e l i s h e d ”) ;
99 return ;

100 }
101

102 // Clear a l l h i t s , s t a r t i n g over
103 sensorHits−>Clear () ;
104

105 printout (”Opening hand ! ”) ;
106 // This can be a b i t f a s t e r
107 hand−>SetAxisTargetVelocity (hand−>All , 4 0 . 0) ;
108

109 // Rotat ion
110 hand−>SetAxisTargetAngle (0 , fingerDelta) ;
111

112 // Proximal a n g l e s : −70 deg , d i s t a l : 0
113 hand−>SetAxisTargetAngle (1 ,−70.0) ;
114 hand−>SetAxisTargetAngle (2 , 0 . 0) ;
115 hand−>SetAxisTargetAngle (3 ,−70.0) ;
116 hand−>SetAxisTargetAngle (4 , 0 . 0) ;
117 hand−>SetAxisTargetAngle (5 ,−70.0) ;
118 hand−>SetAxisTargetAngle (6 , 0 . 0) ;
119

120 //Do the movement
121

122 try{
123 moving = true ;
124 hand−>MoveHand () ;
125 moving = fa l se ;
126 } catch (Exception ˆe) {
127 hand−>Stop () ;
128 moving = fa l se ;
129 printout (” Error moving hand : ”+e−>ToString ()) ;
130 return ;
131 }
132

133 // D i s a b l e the motors
134 hand−>SetFingerEnable (hand−>All , fa l se) ;
135

136 // K i l l a l l t h r e a d s
137 /∗ t r y {
138 graspingThread−>Abort () ;
139 } catch (Except ion ˆ){
140 }∗/

72

141 try{
142 openHandThread−>Abort () ;
143 }catch (Exception ˆ) {
144 }
145 try{
146 closeGraspThread−>Abort () ;
147 }catch (Exception ˆ) {
148 }
149 try{
150 proximalsThread−>Abort () ;
151 }catch (Exception ˆ) {
152 }
153 try{
154 distalsThread−>Abort () ;
155 }catch (Exception ˆ) {
156 }
157 // p r i n t o u t (”Hand opening complete ! Motors d i s a b l e d ”) ;
158 }
159

160 void SDHBackend : : printSensors () {
161 dsa−>UpdateFrame () ;
162 cDSA : : sMatrixInfo matrixInfo [6] ;
163 cDSA : : tTexel texel ;
164 printout (” S e n s o r p o l l i n g i n i t i a l i s e d ”) ;
165 for (int m=0;m<6;m++){
166 matrixInfo [m] = dsa−>GetMatrixInfo (m) ;
167 for (int y=0; y<matrixInfo [m] . cells_y ; y++){
168 for (int x=0; x<matrixInfo [m] . cells_x ; x++){
169 texel = dsa−>GetTexel (m , x , y) ;
170 printout (” (”+m+” , ”+x+” , ”+y+”) : ”+(int) texel) ;
171 }
172 }
173 }
174 }
175

176 int SDHBackend : : getMaxPressure () {
177 String ˆdataLogStr=”” ;
178 int iSensorMax ; //Max per sensor
179 i f (! running) return 0 ;
180 try{
181 dsa−>UpdateFrame () ;
182 } catch (Exception ˆe) {
183 printout (” Error read ing p r e s su r e : ”+e−>ToString ()) ;
184 return 0 ;
185 }
186 cDSA : : sContactInfo contactInfo ;
187 cDSA : : sMatrixInfo matrixInfo [6] ;
188 int iMax = dsa−>GetTexel (0 , 0 , 0) ;
189 int iVal ;

73

190 cDSA : : tTexel texel ;
191 for (int m=0;m<6;m++){
192 iSensorMax=0;
193 contactInfo = dsa−>GetContactInfo (m) ;
194 /∗
195 p r i n t o u t (” Contac t in fo f o r ”+m+” (f , a , x , y) : ” +c o n t a c t I n f o .←↩

f o r c e+” ”
196 +c o n t a c t I n f o . area+” ”
197 +c o n t a c t I n f o . cog x+” ”
198 +c o n t a c t I n f o . cog y) ;
199 ∗/
200 // p r i n t o u t (” Pressure Point ”+m+”: ” +dsa−>GetContactArea (m)) ;
201 matrixInfo [m] = dsa−>GetMatrixInfo (m) ;
202 for (int y=0; y<matrixInfo [m] . cells_y ; y++){
203 for (int x=0; x<matrixInfo [m] . cells_x ; x++){
204 texel = dsa−>GetTexel (m , x , y) ;
205 iVal = (int) texel ;
206 i f (iVal>iSensorMax) iSensorMax=iVal ;
207 i f (iVal>iMax) iMax = iVal ;
208 i f (iVal>iPressureThreshhold) {
209

210 i f (noHits) { //Dont b o t h e r p r i n t i n g i f we re a l r e a d y ←↩
s topped

211 // Lets on ly count t h i s h i t i f we dont have any h i t s on ←↩
the same sensor from b e f o r e !

212 int iHitCount = sensorHits−>Count ;
213 bool hasHitAlready = fa l se ;
214 for (int i=0;i<iHitCount ; i++){
215 SensorHit ˆhit = (SensorHit ˆ) sensorHits [i] ;
216 i f (hit−>sensor == m) {
217 hasHitAlready= true ;
218 }
219 }
220 i f (! hasHitAlready) {
221 printout (” Pressure thre shho ld surpassed : ” +iVal+” vs←↩

”+iPressureThreshhold) ;
222 printout (” Hit was in s enso r ”+m+” x : ”+x+” y : ”+y) ;
223

224 noHits=fa l se ;
225 lastHit = gcnew SensorHit (m , x , y , iVal) ;
226 // p r i n t o u t (”X comp:”+ getGlobalXFromSensorHit (l a s t H i t)←↩

) ;
227

228 sensorHits−>Add (gcnew SensorHit (m , x , y , iVal)) ;
229 }
230 }
231 }
232

233 }

74

234 }
235 dataLogStr+=iSensorMax+” ” ;
236 sensorMax [m] = iSensorMax ;
237 }
238 tw−>WriteLine (dataLogStr) ;
239 // p r i n t o u t (”Max p r e s s u r e : ”+iMax) ;
240 iMaxPressure = iMax ;
241

242

243

244 return iMax ;
245 }
246

247 void SDHBackend : : shutDown () {
248 running=fa l se ;
249 i f (dsa !=NULL) dsa−>Close () ;
250 i f (hand !=NULL) {
251 hand−>SetFingerEnable (hand−>All , fa l se) ;
252 hand−>Close () ;
253 }
254 tw−>Close () ;
255 }
256

257 // I n i t i a l i s e s e p a r a t e thread f o r grasp−s e a r c h i n g − c l e a r s p r e v i o u s ←↩
h i t s !

258 void SDHBackend : : graspSearchStart () {
259 i f (hand==NULL) {
260 printout (” Error : connect ion to SDH not e s t a b e l i s h e d ”) ;
261 return ;
262 }
263 i f (! hand−>IsOpen ()) {
264 printout (” Error : connect ion to SDH not e s t a b e l i s h e d ”) ;
265 return ;
266 }
267 sensorHits−>Clear () ;
268 graspingThread = gcnew Thread (gcnew ThreadStart (this , &SDHBackend←↩

: : graspSearch)) ;
269 noHits=true ;
270 graspingThread−>Start () ;
271 }
272

273 void SDHBackend : : graspSearch () {
274 printout (”Grasp Search commenced − o ld h i t s c l e a r e d ! ”) ;
275 //Open hand in seq mode (s i n c e we re a l r e a d y in a s e p a r a t e thread←↩

)
276 openHand () ;
277 sensorHits−>Clear () ;
278 printout (” I n i t i a l i z i n g inwards search ”) ;
279 closeGraspThread = gcnew Thread (gcnew ThreadStart (this , &←↩

75

SDHBackend : : closeGrasp)) ;
280 closeGraspThread−>Start () ;
281 moving = true ;
282 while (noHits && running) {
283 i f (! moving) {
284 printout (”Movement complete ”) ;
285 return ;
286 }
287 }
288 closeGraspThread−>Abort () ;
289 printout (” Hit detected , h a l t i n g search ! ”) ;
290

291 hand−>Stop () ;
292 clearTargets () ;
293 //hand−>SetFingerEnab le (hand−>All , f a l s e) ; // Lets l e a v e the motors←↩

on s i n c e we re g r i p p i n g
294 calculateCentroid () ;
295

296 }
297 // Closes grasp f o r ALL f i n g e r s !
298 void SDHBackend : : closeGrasp () {
299 //Max ang le f o r proximal j o i n t s . No egg w i l l f i t !
300 hand−>SetAxisTargetVelocity (hand−>All , iGrabVelocity) ; //We want ←↩

t h i s to be q u i t e s low
301 hand−>SetAxisTargetAngle (0 , fingerDelta) ; // Lets j u s t keep 60 deg ←↩

(f o r a l i k e s i d e d t r i a n g l e)
302

303 // Proximal j o i n t s t a r g e t : alpha max , d i s t a l : 0
304 hand−>SetAxisTargetAngle (1 , alpha_max) ;
305 hand−>SetAxisTargetAngle (2 , 0 . 0) ;
306 hand−>SetAxisTargetAngle (3 , alpha_max) ;
307 hand−>SetAxisTargetAngle (4 , 0 . 0) ;
308 hand−>SetAxisTargetAngle (5 , alpha_max) ;
309 hand−>SetAxisTargetAngle (6 , 0 . 0) ;
310

311 hand−>MoveHand () ;
312

313 // ˆˆ i s b l o c k i n g , so i f we reach here , we ve reached a lpha max ←↩
wi thout h i t s

314 // so l e t s power down motors
315 moving = fa l se ;
316 hand−>SetFingerEnable (hand−>All , fa l se) ;
317 printout (” Search returned no r e s u l t s ”) ;
318 state = ”STATE NOHITS” ;
319 }
320

321 int SDHBackend : : getContactingFingers () {
322 int finger0 , finger1 , finger2=0;
323 for (int i =0; i<sensorHits−>Count ; i++){

76

324 SensorHit ˆsh = (SensorHit ˆ) (sensorHits [i]) ;
325 int sensor = sh−>sensor ;
326 i f (sensor==0 | | sensor==1) finger0=1;
327 i f (sensor==2 | | sensor==3) finger1=1;
328 i f (sensor==4 | | sensor==5) finger2=1;
329 }
330

331 return finger0 + finger1 + finger2 ;
332

333 }
334

335 void SDHBackend : : manualTriggerHit () {
336 noHits = fa l se ;
337 }
338

339 void SDHBackend : : closeProximalsStart () {
340 proximalsThread = gcnew Thread (gcnew ThreadStart (this , &←↩

SDHBackend : : closeProximals)) ;
341 proximalsThread−>Start () ;
342 noHits=true ;
343 moving = true ;
344 proximalsDetected= fa l se ;
345 bool proximalsRunning = true ;
346 while (proximalsRunning && running && noHits) {
347 i f (! moving && ! isFullAuto) return ;
348

349 }
350 proximalsThread−>Abort () ;
351 printout (” Hit detected , h a l t i n g proximals ! ”) ;
352 hand−>Stop () ;
353 //hand−>SetFingerEnab le (hand−>All , f a l s e) ; // Leave motors on
354 clearTargets () ;
355

356 }
357

358 void SDHBackend : : closeProximals () {
359 clearTargets () ;
360 inhibitAxis1 , inhibitAxis3 , inhibitAxis5 = fa l se ;
361 SensorHit ˆhit ;
362 int sensor ;
363 int iHitCount = sensorHits−>Count ;
364 printout (” Clos ing proximals : have ”+iHitCount+” h i t s to r e s p e c t : ”←↩

) ;
365 for (int i=0;i<iHitCount ; i++){
366 hit = (SensorHit ˆ) sensorHits [i] ;
367 printout (hit−>getString ()) ;
368 sensor = hit−>sensor ;
369 i f (sensor == 0 | | sensor == 1) {
370 inhibitAxis1 = true ;

77

371 printout (” Axis 1 i n h i b i t e d ! ”) ;
372 }
373 i f (sensor == 2 | | sensor == 3) {
374 inhibitAxis3 = true ;
375 printout (” Axis 3 i n h i b i t e d ! ”) ;
376 }
377 i f (sensor == 4 | | sensor == 5) {
378 inhibitAxis5 = true ;
379 printout (” Axis 5 i n h i b i t e d ! ”) ;
380 }
381 }
382 /∗
383 We want to move the f i n g e r s t h a t dont have any h i t s on them .
384 a x i s 1 has sen sors 01
385 a x i s 3 has sen sors 23
386 a x i s 5 has sen sors 45
387 ∗/
388 try{
389 hand−>SetAxisTargetVelocity (hand−>All , iGrabVelocity) ;
390 } catch (Exception ˆe) {
391 printout (” Error s e t t i n g v e l o c i t y : ”+e−>ToString ()) ;
392 return ;
393 }
394 activeAxis=0;
395 i f (! inhibitAxis1) {
396 activeAxis++;
397 hand−>SetAxisTargetAngle (1 , alpha_max) ;
398 }
399 i f (! inhibitAxis3) {
400 activeAxis++;
401 hand−>SetAxisTargetAngle (3 , alpha_max) ;
402 }
403 i f (! inhibitAxis5) {
404 activeAxis++;
405 hand−>SetAxisTargetAngle (5 , alpha_max) ;
406 }
407

408 proximalsDetected= true ;
409 try{
410 hand−>MoveHand () ;
411 state = ”STATE PROXIMALSCOMPLETE” ;
412 } catch (Exception ˆe) {
413 printout (” Error c l o s i n g proximals : ”+e−>ToString ()) ;
414 }
415 moving = fa l se ;
416 printout (” Proximal c l o s i n g complete , a c t i v e a x i s : ”+activeAxis) ;
417 //hand−>SetFingerEnab le (hand−>All , f a l s e) ;
418 i f (activeAxis==0){
419 state=”STATE PROXIMALSCOMPLETE” ;

78

420 }
421

422 }
423

424 void SDHBackend : : closeDistalsStart () {
425 printout (” S ta r t i ng to c l o s e d i s t a l s ”) ;
426 distalsThread = gcnew Thread (gcnew ThreadStart (this , &SDHBackend←↩

: : closeDistals)) ;
427 distalsThread−>Start () ;
428 noHits=true ;
429 moving = true ;
430 while (noHits && running) {
431 i f (! moving) return ;
432 }
433 distalsThread−>Abort () ;
434 printout (” Hit detected , h a l t i n g d i s t a l s ! ”) ;
435 hand−>Stop () ;
436 //hand−>SetFingerEnab le (hand−>All , f a l s e) ; // Leave motors on
437 clearTargets () ;
438

439 }
440

441 void SDHBackend : : closeDistals () {
442 clearTargets () ;
443 bool inhibitAxis2 , inhibitAxis4 , inhibitAxis6 = fa l se ;
444 SensorHit ˆhit ;
445 int sensor ;
446 int iHitCount = sensorHits−>Count ;
447 printout (” Clos ing d i s t a l s : have ”+iHitCount+” h i t s to r e s p e c t : ”) ;
448 for (int i=0;i<iHitCount ; i++){
449 hit = (SensorHit ˆ) sensorHits [i] ;
450 printout (hit−>getString ()) ;
451 sensor = hit−>sensor ;
452 i f (sensor == 1) inhibitAxis2 = true ;
453 i f (sensor == 3) inhibitAxis4 = true ;
454 i f (sensor == 5) inhibitAxis6 = true ;
455 }
456 /∗
457 We want to move the d i s t a l s t h a t dont have any h i t s on them .
458 a x i s 2 has sen sors 1
459 a x i s 4 has sen sors 3
460 a x i s 6 has sen sors 5
461 ∗/
462 hand−>SetAxisTargetVelocity (hand−>All , iGrabVelocity) ;
463 activeAxis=0;
464 i f (! inhibitAxis2) {
465 activeAxis++;
466 hand−>SetAxisTargetAngle (2 , beta_max) ;
467 }

79

468 i f (! inhibitAxis4) {
469 activeAxis++;
470 hand−>SetAxisTargetAngle (4 , beta_max) ;
471 }
472 i f (! inhibitAxis6) {
473 activeAxis++;
474 hand−>SetAxisTargetAngle (6 , beta_max) ;
475 }
476

477 try{
478 hand−>MoveHand () ;
479 } catch (Exception ˆe) {
480 printout (” Error moving d i s t a l s : ”+e−>ToString ()) ;
481 return ;
482 }
483 //hand−>SetFingerEnab le (hand−>All , f a l s e) ;
484 printout (” D i s t a l c l o s i n g complete ”) ;
485 state = ”STATE DISTALSCOMPLETE” ;
486 moving = fa l se ;
487

488 }
489

490 int SDHBackend : : getHandAxisFromSensor (int sensor) {
491 int axis ;
492 i f (sensor==0 | | sensor == 1)
493 axis = 1 ;
494 i f (sensor==2 | | sensor ==3)
495 axis = 3 ;
496 i f (sensor==4 | | sensor ==5)
497 axis = 5 ;
498 return axis ;
499

500 }
501

502 int SDHBackend : : getHandAxisFromSensor (SensorHit ˆsensorHit) {
503 return getHandAxisFromSensor (sensorHit−>sensor) ;
504 }
505

506 int SDHBackend : : getHitDistalPosition (SensorHit ˆsensorHit) {
507 int sensor = sensorHit−>sensor ;
508 int y = sensorHit−>y ;
509

510 //y=0 −> d i s t a l d i r e c t i o n
511 // doub le ang l e = a n g l e s [a x i s] ;
512 int isDistal = sensor%2; // proximal ; 0 , d i s t a l : 1 ;
513

514 cDSA : : sMatrixInfo matrixInfo = dsa−>GetMatrixInfo (sensor) ;
515 int iSensorLength = matrixInfo . cells_y ;
516 //TODO: f i n d d e t a i l e d dims

80

517 int proximalOffset=20; //From palm to proximal
518 int distalOffset=100; //From palm to beg inn ing o f d i s t a l
519 int sensorOffset= (iSensorLength−y) ∗0 . 7 5 ;
520 int iHitLength= (proximalOffset+sensorOffset)∗(1−isDistal)+(←↩

distalOffset+sensorOffset) ∗isDistal ;
521 return iHitLength ;
522

523 }
524

525 int SDHBackend : : getGlobalXFromSensorHit (SensorHit ˆsensorHit) {
526 int axis = getHandAxisFromSensor (sensorHit) ;
527 int dist = getHitDistalPosition (sensorHit) ;
528 double alpha = hand−>GetAxisActualAngle (axis) ;
529 double beta = hand−>GetAxisActualAngle (0) ;
530 int x=0;
531 int h=0;
532 i f (axis==1){ //− y
533 x = dist∗cos (deg2rad(90+alpha)) ∗cos (deg2rad (beta)) ;
534 }
535 else i f (axis==3){ //Thumb
536 x = −dist∗cos (deg2rad(90+alpha)) ;
537

538 }
539 else i f (axis==5){ // +y
540 x = dist∗cos (deg2rad(90+alpha)) ∗cos (deg2rad (beta)) ;
541 }
542 printout (”X comp a x i s : ”+axis+” d i s t ance : ”+dist+” alpha : ”+alpha←↩

+” xcomp : ”+x) ;
543 return x ;
544 }
545

546 int SDHBackend : : getGlobalYFromSensorHit (SensorHit ˆsensorHit) {
547 int axis = getHandAxisFromSensor (sensorHit) ;
548 int dist = getHitDistalPosition (sensorHit) ;
549 double alpha = hand−>GetAxisActualAngle (axis) ;
550 double beta = hand−>GetAxisActualAngle (0) ;
551 int y=0;
552 int h=0;
553 i f (axis==1){ //− y
554 y = −dist∗cos (deg2rad(90+alpha)) ∗sin (deg2rad (beta)) ;
555

556 }
557 else i f (axis==3){ //Thumb
558 y = 0 ;
559 }
560 else i f (axis==5){ // +y
561 y = dist∗cos (deg2rad(90+alpha)) ∗sin (deg2rad (beta)) ;
562 }
563 printout (”Y comp a x i s : ”+axis+” d i s t ance : ”+dist+” alpha : ”+alpha←↩

81

+” ycomp : ”+y) ;
564 return y ;
565 }
566

567 void SDHBackend : : calculateCentroid () {
568 printout (” Ca l cu l a t ing Centroid ”) ;
569 vector<double> angles = hand−>GetAxisActualAngle (hand−>←↩

all_real_axes) ;
570 int x = lastHit−>x ;
571 int y = lastHit−>y ;
572 int sensor = lastHit−>sensor ;
573 cDSA : : sMatrixInfo matrixInfo = dsa−>GetMatrixInfo (sensor) ;
574

575 int iHitLength = getHitDistalPosition (lastHit) ;
576

577

578 // Test i f h i t x i s c l o s e to 0 or c e l l s x .
579 printout (” Test ing h i t l a t e r a l l o c a t i o n : h i t was in ”+x+” , max i s ←↩

”+matrixInfo . cells_x) ;
580 i f (x==0 | | x+1>=matrixInfo . cells_x) {
581 state = ”STATE NEEDROTATE” ;
582 return ;
583 }
584

585 //We re good , l e t s g e t on wi th the prox imals !
586 // T e l l s t a t e machine to s t a r t prox imals STATUS CENTROIDOK
587 state = ”STATE CENTROIDOK” ;
588

589

590 }
591

592 // S t a r t s a thread t h a t a t tempts to improve a d e t e c t e d c o n t a c t . This←↩
one shou ld not r e l y on c o l l i s i o n s

593 // to be ha l t ed , but we need to make sure we don t go beyond max/min←↩
o f f i n g e r s .

594 void SDHBackend : : rotateFingersStart () {
595 printout (”Commencing r o t a t i o n ”) ;
596 double dAngleMin = 0 ;
597 double dAngleMax = 9 0 . 0 ;
598

599 //Assuming we re s t i l l usomg l a s t H i t as the a c t i v e h i t .
600 // r o t a t i o n = K∗ d i s t a n c e
601 int x = lastHit−>x ;
602 int iHitLength = getHitDistalPosition (lastHit) ;
603 double rot = −(10.0−(10.0∗iHitLength) /160) ;
604 int axis=1;
605 double currRot = hand−>GetAxisActualAngle (0) ;
606 int sensor = lastHit−>sensor ;
607 i f (sensor == 0 | | sensor == 1) { // a x i s 1

82

608 i f (x != 0) rot∗= −1;
609 axis = 1 ;
610 } else i f (sensor == 4 | | sensor == 5) { // a x i s 5
611 i f (x==0) rot ∗= −1;
612 axis = 5 ;
613 } else {
614 printout (” Hit was on the thumb (senso r ”+sensor+”) ”) ;
615 state = ”STATE CENTROIDOK” ;
616 return ;
617 }
618 // Less r o t a t i o n the l a r g e r h i t L e n g t h i s
619 double totalRot = currRot+rot ;
620

621 i f (totalRot>dAngleMax) totalRot = dAngleMax ;
622 i f (totalRot<dAngleMin) totalRot = dAngleMin ;
623 hand−>SetAxisTargetVelocity (0 , 1 0 . 0) ;
624 hand−>SetAxisTargetVelocity (axis , 1 0 . 0) ;
625 hand−>SetAxisTargetAngle (axis , hand−>GetAxisTargetAngle (axis) −3.0)←↩

; // move out
626 hand−>MoveHand () ;
627 sensorHits−>Clear () ;
628 hand−>SetAxisTargetAngle (0 , totalRot) ; // r o t a t e
629 hand−>MoveHand () ;
630 hand−>SetAxisTargetAngle (axis , hand−>GetAxisTargetAngle (axis) +3.0)←↩

; //move in
631 hand−>MoveHand () ;
632 hand−>SetAxisTargetVelocity (hand−>All , 5 . 0) ;
633 printout (” Rotation complete ”) ;
634 state = ”STATE CENTROIDOK” ;
635 //Open up , 1 deg ? , r o t a t e , c l o s e 1 deg , s t a t e−> STATE CENTROIDOK
636

637 }
638

639 void SDHBackend : : startStateMachine () {
640 // l e t s make a b l o c k i n g − s i n g l e run , t r i g g e r e d by a c a l l from ←↩

daddy
641

642 // S t a r t wi th the grasp search ?
643 state=”STATE SEARCHING” ;
644 sensorHits−>Clear () ;
645 graspSearchStart () ;
646 while (state==”STATE SEARCHING”) {
647 // wai t
648 }
649

650 // check the s t a t u s s e t by c a l c C e n t r o i d
651 i f (state==”STATE OUTOFREACH”) {
652 printout (” State : out o f reach ”) ;
653

83

654 // Abort grasp
655 // re turn message to daddy
656 }
657 i f (state==”STATE NEEDROTATE”) {
658 printout (” s t a t e : need some r o t a t i n g ”) ;
659 rotateFingersStart () ;
660 // r o t a t e Fingers accord ing to l a s t H i t − l e t s make t h i s b l o c k i n g←↩

!
661 }
662 i f (state==”STATE CENTROIDOK”) { //assume t h i s i s c o r r e c t
663 printout (” s t a t e : c en t r o id i s with in reach ”) ;
664 closeProximalsStart () ;
665 // c l o s e P r o x i m a l s S t a r t − b l o c k i n g
666 while (state != ”STATE PROXIMALSCOMPLETE”) {
667 //−> c l o s e P r o x i m a l s S t a r t − b l o c k i n g
668 Sleep (300) ;
669 closeProximalsStart () ;
670 }
671 }
672 i f (state==”STATE PROXIMALSCOMPLETE”) {
673 printout (” s t a t e : proximals are done c l o s i n g ”) ;
674 // Test how many f i n g e r s have reahced t h e i r t a r g e t s
675

676 i f (getContactingFingers ()<2){
677 state = ”STATE OUTOFREACH” ;
678 int x = getGlobalXFromSensorHit (lastHit) ;
679 int y = getGlobalYFromSensorHit (lastHit) ;
680

681 printout (” Object i s out o f reach ! Need to move g r ippe r (x , y) ←↩
: (”+x+” , ”+y+”) ”) ;

682 // c a l c u l a t e needed movement
683 return ;
684 }
685 closeDistalsStart () ; // − b l o c k i n g
686 while (state !=”STATE DISTALSCOMPLETE”) {
687 // c l o s e D i s t a l s − b l o c k i n g
688 Sleep (300) ;
689 closeDistalsStart () ;
690 }
691

692 }
693

694 i f (state==”STATE NOHITS”) {
695 printout (” s t a t e : Grasp found nothing ”) ;
696 // re turn message to daddy : no h i t s
697 }
698

699 i f (state==”STATE FIXROTATION”) {
700 printout (” s t a t e : Found target , but need g r ippe r r o t a t i o n ! ”) ;

84

701 }
702

703 i f (state==”STATE DISTALSCOMPLETE”) {
704 printout (” s t a t e : Grip i s complete ! ”) ;
705 //hand−>SetFingerEnab le (hand−>All , f a l s e) ;
706 // re turn message to daddy : g r i p complete
707 }
708

709

710 }

85

A.5 SensorHit.h

1 /∗ SensorHit . h
2 ∗ Header f i l e f o r SensorHit c l a s s
3 ∗ SensorHit i s an o b j e c t r e p r e s e n t i n g a c o n t a c t on a sensor .
4 ∗ Sensor−ID , pressure , x and y p o s i t i o n and f i n g e r c o n f i g u r a t i o n
5 ∗ i s s t o r e d in t h i s o b j e c t .

6 ∗ SÃ¸lve Monteiro , (c) 2010
7 ∗ ∗/
8

9 #pragma once
10 using namespace System : : Collections ;
11 ref class SensorHit

12 {
13 public :
14 int sensor , x , y , pressure ;
15 ArrayList ˆproximalAngles ;
16 SensorHit (int sensor , int x , int y , int pressure , ArrayList ˆ ←↩

proximalAngles) ;
17 SensorHit (int sensor , int x , int y , int pressure) ;
18 System : : String ˆgetString () ;
19

20 } ;

86

A.6 SensorHit.cpp

1 /∗ SensorHit . cpp
2 ∗ Source f i l e f o r SensorHit c l a s s
3 ∗ SensorHit i s an o b j e c t r e p r e s e n t i n g a c o n t a c t on a sensor .
4 ∗ Sensor−ID , pressure , x and y p o s i t i o n and f i n g e r c o n f i g u r a t i o n
5 ∗ i s s t o r e d in t h i s o b j e c t .

6 ∗ SÃ¸lve Monteiro , (c) 2010
7 ∗ ∗/
8

9 #include ”StdAfx . h”
10 #include ” SensorHit . h”
11

12

13 SensorHit : : SensorHit (int sensor , int x , int y , int pressure)
14 {
15 SensorHit : : sensor = sensor ;
16 SensorHit : : x = x ;
17 SensorHit : : y = y ;
18 SensorHit : : pressure = pressure ;
19

20 }
21

22 SensorHit : : SensorHit (int sensor , int x , int y , int pressure , ←↩
ArrayListˆ proximalAngles) {

23 SensorHit : : proximalAngles = proximalAngles ;
24 SensorHit (sensor , x , y , pressure) ;
25 }
26

27 System : : String ˆSensorHit : : getString () {
28 return ” (s : ”+SensorHit : : sensor+” , x : ”+SensorHit : : x+” , y : ”+←↩

SensorHit : : y+” , p : ”+SensorHit : : pressure+”) ” ;
29 }

87

B SDH Data Sheet

��

���

� � � � � � � � � � � � � �

���
���������������������������������������

������������������������ Array

�

�

�

�

�

�

�
��
��������������������

��
��
��
��
���
���
��
��������������������������������������

�

�

�

�

���������������
����������� ���
�������������� ���� ���

������������� ���� ���

�������������������� ���� ��

�������������������� �������

������������ ���� ����

�������� ���� ��

����������������� �

������������������ �

����������������������� �

���������������������������� �

������������������������ ������� ���

����������������������� ���� ���

��������������������� ���� ���

�������� ��� �����

������� ��� ��

�������������������������� ��� �

�������������� ����������������������

����������������� �

��������������������� � �

�

�

������������� ������������������������������������� ���������������������� ������������������������������������

����������������
�����������������

����������
������������������������������������

������������

�

� ��������������������������������������

� ��
�����������������

� ���
���

� ��������������������������������

� ��
����������������������������

� ��
�������������������

88

� � � � � � � � k � k � � � � � � � � � � � � � � � � �

���
���������������������������������������

�
�

�
�

�
�

�
�

�
�

�
�
��
��
�
��

�
�
��
��
�
��

�
�
��

�
�
��

����������

� �

��
���
���
���
���
��
��
��

��
���
���
��
��
��
������������������������������

�����������
��������

� ��

� �����

� ���

� �

��������������������
���

��������������

�����������������

������������������������ �������� ������

������������������ ���� ���

����������������� ����� ���

����������� ����� ���

����������������� ����������������

���������������

���������������������������� ����� ��

����������� ����� ��

������������� ������

����������������� ��� ���

�������������������� ������������������������

�

89

	Introduction
	Background
	Scope
	Thesis Outline

	Relevant previous work
	Mechanical Grippers
	Object detection
	Other object detection methods
	Gripper Technology

	Solution Outline
	SCHUNK Dextrous Hand (SDH)
	A rough gripping solution

	Design Outline
	Goals for the project
	An adaptive gripping solution

	Implementation
	The application
	Improving the off-centre handling
	Rotating fingers for better position

	Testing
	The test setup
	Collecting data
	Testing scenarios

	Experimental Results
	Soda can, standing up
	Soda can, lying down
	Chocolate egg, centred
	Apple, centred
	Apple, out of reach
	Chocolate egg, out of reach, distal grip

	Discussion
	Sensor sensitivity
	Improved off-centred object handling
	Application stability and threading
	Future work and improvements

	Conclusion
	Bibliography
	Source Code
	SDHGrip2.cpp
	SDHGUI.h
	SDHBackend.h
	SDHBackend.cpp
	SensorHit.h
	SensorHit.cpp

	SDH Data Sheet

