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Abstract: Climate change can cause serious problems for future hydropower plant projects and make
them less economically justified. Changing precipitation patterns, rising temperatures, and abrupt
snow melting affect river stream patterns and hydropower generation. Thus, study of climate change
impacts during the useful life of a hydropower dam is essential and its outcome should be considered
in assessing long-term dam feasibility. The aim of this research is to evaluate the impacts of climate
change on future hydropower generation in the Karun-III dam located in the southwest region of
Iran in two future tri-decadal periods: near (2020–2049) and far (2070–2099). Had-CM3 general
circulation model predictions under A2 and B2 SRES scenarios were applied, and downscaled by a
statistical downscaling model (SDSM). An artificial neural network (ANN) and HEC-ResSim reservoir
model respectively simulated the rainfall–runoff process and hydropower generation. The projections
showed that the Karun-III dam catchment under the two scenarios will generally become warmer and
wetter with a slightly larger increase in annual precipitation in the near than the far future. Runoff

followed the precipitation trend by increasing in both periods. The runoff peak also switched from
April to March in both scenarios, due to higher winter precipitation, and earlier snowmelt, which was
caused by temperature rise. According to both scenarios, hydropower generation increased more
in the near future than in the far future. Annual average power generation increased gradually by
26.7–40.5% under A2 and by 17.4–29.3% under B2 in 2020–2049. In the far period, average power
generation increased by 1.8–8.7% in A2 and by 10.5–22% under B2. In the near future, A2 showed
energy deduction in the months of June and July, while B2 revealed a decrease in the months of April
and June. Additionally, projections in the 2070–2099 under A2 exhibited energy reduction in the
months of March through July, while B2 revealed a decrease in April through July. The framework
utilized in this study can be exploited to analyze the susceptibility of hydropower production in the
long term.

Keywords: Artificial neural network; climate change; Had-CM3; HEC-ResSim; hydropower; runoff;
SDSM; renewable energy; clean energy

1. Introduction

Today the use of electric power is an integral part of human life. There are various methods
of producing electricity, such as power generation by fossil-fuel power plants and renewable power
plants. A return to clean and renewable energies is a way to mitigate carbon footprints and climate
change impacts [1]. In the global energy system, hydroelectric generation is a clean and sustainable

Water 2019, 11, 1025; doi:10.3390/w11051025 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-6893-2208
http://www.mdpi.com/2073-4441/11/5/1025?type=check_update&version=1
http://dx.doi.org/10.3390/w11051025
http://www.mdpi.com/journal/water


Water 2019, 11, 1025 2 of 17

way of producing electricity with minimal environmental pollution [2]. Hydropower plants run by the
potential of stored water behind dams. In 2012, hydroelectricity generation was around 77% of the total
global renewable energy production and 18% of the total energy consumption [2]. Given a sufficiently
reliable source of water, hydropower can be a viable, sustainable and financially feasible alternative
to fossil fuel as a source of power generation. Furthermore, hydropower plants rapidly respond to
fluctuations in the electricity network and, in some cases, can control and utilize destructive floods [3].

Notwithstanding these advantages, as the cost of hydropower dams is significantly high,
their planning and operation requires high efficiency, sustainability and forethought [2]. Increases in
the atmospheric concentration of greenhouse gases, known as the main cause of climate change, directly
affects the amount and temporal distribution of climatic variables such as precipitation and temperature.
Consequently, runoff and its seasonal distribution will vary and directly affect hydropower capacity [4].

Climate change alters the frequency and severity of floods and droughts, timing and magnitude
of precipitation, and peak snowmelt [5]. The Intergovernmental Panel on Climate Change (IPCC)
reported that, due to worldwide climate change over the last century, the observed global mean surface
temperature from 1850–1900 to 1986–2005 has increased by about 0.61 ◦C (5–95% confidence interval:
0.55–0.67 ◦C) [6]. Moreover, worldwide precipitation over the mid-latitude land areas of the Northern
Hemisphere has increased since the early 19th century (medium confidence before and high confidence
after 1951). However, in other latitudes, some areas have experienced an increase in precipitation while
other areas have witnessed a decline in precipitation [7]. Furthermore, the IPCC in its fourth report
assessment anticipated that the global average temperature for the end of the 21st century (2090–2099)
relative to the 1980–1999 period would increase by 0.3–6.4 ◦C [8]. IPCC also indicated that by the
middle of the 21st century, annual average river runoff and water availability will increase in some
wet tropical areas and at high latitudes by 10–40%, while they will decrease in some dry regions at
mid-latitudes and in the dry tropics by 10–30%, where some areas are already labeled as water-stressed
areas [9]. These predictions underline the importance of evaluating climate change impacts.

For assessing the impacts of climate change, climatic variables are simulated under different
emission scenarios. Each of these scenarios involves a broad range of changes in future population
growth, as well as in the economic, political and technological factors that may affect emissions of
greenhouse gases and aerosols. General circulation models (GCMs) provide credible estimates of future
climate change [10]. These models are introduced as the most useful tools for simulating the present and
future climate under different climate scenarios [11–14]. Confidence in these simulations is higher for
some climate variables (e.g., temperature) than for others (e.g., precipitation) [10]. Spatial resolution of
GCMs (typically ~50,000 km2) are suited for simulation of climatic variables on a large scale, while their
efficiency in regional studies are limited because of their incapability to resolve major characteristics
on a sub-grid scale, e.g., topography and clouds [12,15,16]. Thus, downscaling climatic variables from
large scale meteorological variables to the regional scale is needed in climate change impact studies
on hydrological variables. Statistical downscaling is widely used in predicting hydrological impacts
under climatic scenarios [17].

Many studies have been published recently on the impacts of climate change on hydrological
regimes in various parts of the world. In general, such studies incorporate one or more of the climate
change projections into a hydrological model. Liu et al. (2008) projected the climatic variable changes
under the A2 and B2 scenarios of the HadCM3 model with the SDSM model for the upper-middle
reaches of the Yellow River in North China in the 21st century [18]. Liu et al. (2011) also investigated
stream flow changes by a semi-distributed hydrological model (SWAT) in the Yellow River basin for
the 21st century based on outputs from HadCM3 [19]. The A2 scenario draws on a very heterogeneous
world with less international cooperation because of cultural identities, which separate various world
regions. High population growth (0.83%/year), family values, and local traditions are outlined. The A2
scenario has less focus on economic growth (1.65%/year) and material wealth because of regionally
oriented economic development [20–22]. The B2 scenario also explains a heterogeneous world but
with regional sustainable solutions in economic, social, and environmental issues. In this scenario,
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population growth is less than A2 and more than A1 and B1 scenarios, accompanied by middle
level economic growth. Scenario B2 places a high priority and focus on human welfare, equality,
and environmental protection [20–22]. Hattermann et al. (2008) assessed water availability in the
German part of the Elbe River using the statistical downscaling model STAR to bridge the gap between
one GCM (ECHAM4-OPYC3) and the land-use change by the eco hydrological model SWIM [23].

The artificial neural network (ANN) approach has been increasingly used for predictions in water
resources and environmental engineering [24]. Maier et al. in 2010 investigated 210 journal papers
in the context of predicting water resource variables in river systems by the ANN approach, which
were published from 1999 to 2007 [24]. The authors found that the majority of studies focused on flow
prediction. For example, Lin et al. (2010) applied the ANN approach to estimate regional river runoff

based on the projected climatic parameters of 21 different GCMs [25].
Jong et al. (2018) examined the impacts of climate change and long-term rainfall changes on

the Brazilian Northeast’s hydroelectric production in the Sao Francisco basin. The results predicted
reduced rainfall, more frequent droughts and higher temperatures by the end of 2100, which can cease
hydropower production [26]. Mishara et al. (2018) studied climate change impacts on hydropower and
fisheries in a small catchment of the Trishuli River in Nepal. Predicted climate change demonstrated an
increase in basin flow and subsequent impacts on hydropower and fisheries and increased economic
benefits [27]. Markoff and Cullen (2008) estimated the impacts of hydrological regime changes on
hydropower generation at the installations of Pacific Northwest Power and the Conservation Council
in the United States. The study showed that hydropower would decrease for the majority of the
climatic projections by the end of the 21st century [28]. Minville et al. (2009) evaluated the impacts
of climate change on the hydropower generation, power plant efficiency, unproductive spills and
reservoir reliability due to changes in the hydrological regimes [29]. This study was conducted under
the CGCM3 general circulation model forced by the SRES A2 greenhouse gas emission scenario over
the 1961–2099 period in the Peribonka River water resource system, Quebec, Canada. The main results
indicated that annual mean hydropower would decrease in the period 2010–2039 and then increase
by the end of the 21st century. Lehner et al. (2005) offered a model-based approach for analyzing the
possible impacts of climate change on Europe’s hydropower capacity in 5991 hydropower stations [30].
Results showed unstable regional trends in hydropower capacity with a reduction of more than 25% for
southern and southeastern European countries. Sharma and Shakya (2006) evaluated the hydrological
changes and climate change impacts on the water resources of the Bagmati watershed in Nepal through
periods ending in 2010, 2020 and 2030 [31]. The results showed mean reduction in yearly discharge and
hydropower production in each period. Whittington and Harrison (2002) investigated climate change
effects on river flows, electricity production and financial performance in the Batoka Gorge scheme
on the Zambezi River [32]. They used the HEC-5 model to simulate reservoir performance under
climate change scenarios. The results showed a significant reduction in river flows, power production,
electricity sales revenue and an adverse impact on a range of investment measures.

Many studies [26,28–32] have reported that hydropower production in the future would decrease
under climate change scenarios because of changes in the amount of precipitation, rising temperature,
changes in the solid atmospheric precipitation to rain, earlier snowmelt, and reduction of snow reservoirs
in mountains. However, climate change impacts on hydroelectricity generation is region-dependent
and requires local studies. Climate change impacts can trigger serious problems in hydropower plant
projects in the future and make them less economically justified. Thus, studies of climate change
impacts during the useful life of the hydropower dam is essential and its outcome could be vital in
assessing long-term dam feasibility and susceptibility of hydropower generation.

The aim of this work is to evaluate the impacts of climate change on precipitation, temperature,
and stream flow as the main impact factors on hydropower generation in two future tri-decadal periods
of the near future (2020–2049) and far future (2070–2099) for a major hydropower dam in southwest Iran,
which was constructed and completed in 2005 over the Karun River. The impacts are studied under
the A2 and B2 emission scenarios of the Had-CM3 general circulation model, which was downscaled
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by the SDSM model. Moreover, the rainfall–runoff modelling was conducted by the ANN model and
the HEC-ResSim reservoir model was used for reservoir and hydropower simulation. The study of
hydropower generation prediction is a demanding task in future governance and planning of water
and hydropower resources and can support the decision-makers and water resource managers.

2. Materials and Methods

In this study, the performance of the Karun-III dam was evaluated in terms of hydropower
production in two future periods according to a combination of the statistical downscaling model
(SDSM), artificial neural network (ANN) and HEC-ResSim tools. Figure 1 demonstrates the
methodology of the presented study in a schematic way.
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2.1. General Circulation Models (GCMs)

The first step involved selection of appropriate general circulation models (GCM) and emission
scenarios. In this study, the UK Hadley Center Coupled Model (HadCM3) was selected. This model
was developed in 1999 in the Hadley Center of the UK meteorological office and is one of the main
models used in the IPCC’s third, fourth and fifth assessment reports. The capability of this model
in simulating the current climate without using flux adjustment was a main advantage at the time
of its development and this feature still ranks the model highly in comparison to other models [33].
Atmospheric components of the HadCM3 consist of 19 layers with 2.5◦ × 3.75◦ (latitude by longitude)
horizontal resolution, which produce a global grid of 96 × 73 grid cells with surface spatial resolution
of about 417 km × 278 km at the equator, decreasing to 295 km × 278 km at 45◦ north and south latitude.
Oceanic components of this model have 20 layers with 1.25◦ × 1.25◦ horizontal resolution that simulate
important details of the present oceanic structure [33–35].

In this study, HadCM3 output under A2 and B2 emission scenarios was used to evaluate the
probable climate change impacts for the two future tri-decadal periods: near (2020–2049) and far
(2070–2099). Climatic data includes observed daily precipitation and maximum and minimum
temperature at meteorological stations as the predictands, and large-scale meteorological variables as
predictors. Among existing downscaling models, a statistical downscaling model (SDSM) is preferred
because of its ability to reproduce various statistical characteristics of the observed datasets in its
downscaled outputs at a 95% confidence level, which is an advantage over other statistical models
such as Lars-WG and ANN [16]. Simulating the local scale daily precipitation and temperature is
based on large-scale atmospheric variables including reanalysis datasets (1971–2000) from National
Centers for Environmental Prediction (NCEP), and HadCM3 outputs (1971–2099). These large-scale
atmospheric variables ensure model consistency in weather generation with adjusting the grid size of
HadCM3 outputs to the local scale in the observed period [36,37].
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2.2. Statistical Downscaling Model (SDSM)

The SDSM is a hybrid model and multiple regression-based tool for simulating future scenarios to
assess the impact of climate change. This model is an integration of a stochastic weather generator
approach and a transfer function model and utilizes a linear regression method and a stochastic
weather generator [14,21,38,39]. For obtaining the best statistical relationship between the observed
and generated climate variables, SDSM provides adjustment during the model calibration in some
parameters such as event threshold, bias correction, and variance inflation [21].

SDSM inputs are the datasets of large-scale predictors (NCEP and GCMs) of a grid box close to
the study area and local predictands (e.g., temperature, precipitation) at single stations. Regarding
the dissimilarity in spatial resolutions of NCEP data (2.5◦ × 2.5◦) and HadCM3 data (2.5◦ × 3.75◦),
the NCEP data was interpolated for adjusting its resolution to the same scale as the HadCM3 model [21].
Then all atmospheric data (predictors) were normalized with respect to their 1971–2000 averages and
standard deviations [21,40,41].

Finding the most relevant predictor variables by linear correlation analysis between predictors and
predictands is critical in SDSM [38]. The most relevant and appropriate combination of predictors has
to be chosen by investigating the correlation between the predictand variable and predictor variables
(NCEP data), e.g. sea level pressure, temperature, humidity, vorticity and wind direction [14,38,39].
Figure 2 represents the simplified schematic downscaling procedure in SDSM. It is notable that
SDSM downscales temperature better than precipitation; however, precipitation time series that are
synthesized by the SDSM are acceptable [18,42].
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2.3. Runoff Prediction by Artificial Neural Network Model (ANN)

In this study, the ANN model was used because of its common use in the field of hydrology
and water resources engineering for predictive purposes and simulating the rainfall–runoff

processes [24,43]. Among various ANN architectures, the feed-forward architectures are the most
popular and widely used in hydrology and the most common form of them is multilayer perceptrons
(MLPs) [24,44]. The computational efficiency of ANNs without using physical components in modelling
complex hydrological and water resource behaviors makes it a substitute for conceptual watershed
modeling [24,43,45]. Acceptable and satisfactory performance of ANN in the majority of the research
in rainfall–runoff modeling makes it an attractive approach to this topic [45].

In feed-forward networks, the information propagation is from an input layer to the output layer.
A MLP is a set of neurons that are arranged in different layers: one input layer, one or more hidden
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layer(s), and one output layer [46,47]. ANN, with one hidden layer, can accurately solve hydrological
problems and simulate the nonlinear characteristics of a hydrological process [48].

In this study, a feed-forward MLP ANN model was trained with standard back propagation (BP)
against historic monthly runoff of the reservoir. Then, downscaled precipitation and temperature of
the future were utilized as the input to the ANN model to estimate the basin runoff. ANN implicitly
incorporates the snowmelt contribution in the total stream flow by taking temperature as one of its
inputs. In a feed-forward BP-ANN, the nodes of the input layer receive the normalized dataset as
inputs [46].

2.4. HEC-ResSim Reservoir Model

The HEC-ResSim 3.0 model is used for simulating reservoirs under various operational rules of
water resources allocation, flood control, river routing, and other applications with different operational
policies. The user may apply different managements in the reservoir system through defining
operational rules and scenarios. Model inputs consist of reservoir properties (volume-area-elevation
curve, operational levels, operation rules, etc.), control and operational characteristics, river routing
properties, and time series input data. The outputs of this model can be used in water resources
planning and management, water supplies allocation, dam reservoirs design, environmental issues,
hydroelectric power and flood control planning [49]. In this study, this model was used for hydroelectric
power simulation in the Karun III dam.

2.5. Calibration and Validation Assessment

The performance of the model calibration and validation can be evaluated by the following four
statistical indices:

RMSE =

√∑n
m=1

(
Xp −Xo

)2

n
/Xo (1)

MAE =

∑n
m=1

∣∣∣Xp −Xo
∣∣∣

n
/Xo (2)

BIAS Error =

∑n
m=1

(
Xp −Xo

)
n

/Xo (3)

Correlatin
(
Xo, Xp

)
=

∑(
Xo −Xo

)(
Xp −Xp

)
√∑(

Xo −Xo
)2 ∑(

Xp −Xp
)2

(4)

where RMSE is the root mean square error, MAE is the mean absolute error, Xp is predicted data, Xo is
observed data, Xo is the average of observed data, Xp is the average of predicted data, and n is the
number of data.

2.6. Case Study

The Karun River basin (Figure 3) is located in southwestern Iran, approximately 28 km from
Izeh City and about 610 km from the mouth of the Karun River in north-east Khuzestan Province.
This region’s climate is moderate with an annual mean precipitation of 620 mm at the site of the
Karun-III dam. The Karun River is the longest river (~950 km) in Iran, extending from the Zagros
ridges to the Arvandrud transboundary river junction [50]. The Zargos Mountain Range is considered
an exceptional source of hydropower because of considerable precipitation, which provides various
river basins with snowmelt and surface runoff, and facilitates powerful streamflow [5]. Annual mean
flow of the Karun River at the Karun-III dam site is over 300 m3/s with an annual volume of 106 m3.
The reservoir of the Karun-III dam is 60 km long with a surface area of 48 km2 and a storage volume of
2,970,000,000 m3 [50]. The dam was commissioned in 2005 [51]. The Karun III dam is an over-year
regulation dam and has been built for hydropower generation as well as to provide more flood control
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capacity in coordination with other dams built on the Karun River, as well as supplying approximately
one billion m3 water for irrigation. The area of the Karun-III dam basin is 24,202 km2. The water stored
in the Karun-III reservoir is exploited exclusively for hydropower through a hydropower plant with an
installed capacity of 2000 MW and 4137 Gwh mean annual energy generation [50,52].Water 2018, 10, x FOR PEER REVIEW  7 of 17 
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3. Results and Discussion

3.1. Calibration and Validation of SDSM

After evaluating the performance of the SDSM model in downscaling climatic variables, i.e.,
precipitation and temperature at different meteorological stations over the Karun-III basin, precipitation
was downscaled to the basin scale in each station based on the calibrated model. Subsequently,
precipitation time series were generated for each rain station. Rainfall is a conditional process and is
projected by a stochastic weather generator conditioned on the predictor variables [21]. The precipitation
dataset is not generally normalized and because of the skewed nature of the precipitation distribution,
the fourth root transformation was applied in this study [21,39]. The observed time series of temperature
and precipitation were divided into two periods: the calibration period 1971–1985 for developing
the SDSM, and the validation period 1986–2000 for testing the model performance and comparing
it with the downscaled results. In the validation period, monthly mean values of precipitation and
temperature were downscaled with predictor variables of NCEP reanalysis data.

The monthly average of 20 simulated series of precipitation and maximum and minimum
temperature demonstrated a good correlation with the observed precipitation in the calibration period.
Table 1 shows the values of statistical measures between observed and downscaled monthly mean
precipitation and temperature in the validation period (1986–2000).

Table 1. Values of statistical indices between observed and downscaled monthly mean precipitation
and temperature in the validation period (1986–2000).

Statistical Index MAE BIAS RMSE Correlation

Observed and downscaled precipitation 13% 10% 17% 97%

Observed and downscaled
temperature

Max temperature 0.26% 0.04% 0.33% 99%

Min temperature 0.83% 0.03% 0.96% 99%
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3.2. Scenario Projection

In this section, 20 daily time series of precipitation and maximum and minimum temperature
were generated by the predictor variables of the HadCM3 general circulation model under A2 and
B2 emission scenarios for the two future tri-decadal periods: near (2020–2049) and far (2070–2099),
and then compared with the 1971–2000 control period. The control period in this study as proposed by
the World Meteorological Organization (WMO) in climate change studies was the 1971–2000 period
after the 1961–1990 baseline [54]. The results are shown in Figure 4.
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As clearly seen in Figure 4, the A2 and B2 scenarios have a similar trend in predicting precipitation
in the future. Precipitation increases in both scenarios over the near future and far future, except in
the month of March. Moreover, the results of the A2 scenario showed a decrease in April over the far
future. Changes in summer precipitation were not significant in both periods because of the usual dry
summers in this catchment. Furthermore, according to predictions, a larger increase in precipitation is
expected in the near future than the far future.

Figures 5 and 6 demonstrate respectively the average monthly observed and predicted maximum
and minimum temperatures under A2 and B2 emission scenarios for the two future tri-decadal periods.
In addition, Figure 7 presents the average annual temperature changes in the observed and under
study periods for both emission scenarios.
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Figure 7. Comparison between the averages annual observed and downscaled temperature under A2
and B2 scenarios.

As shown in Figures 5–7, temperature will increase in both periods under the A2 and B2 scenarios
and the Karun-III catchment will become warmer. Compared with the observed period, annual mean
maximum and minimum temperatures rise by 1.3 ◦C and 0.8 ◦C in 2020–2049 period, and by 3.8 ◦C
and 3.9 ◦C in the 2070–2099 under the A2 scenario. Similarly under the B2 scenario, the annual average
maximum and minimum temperatures increase by 1.5 ◦C and 1.04 ◦C in 2020–2049, and by 2.6 ◦C and
2.4 ◦C in 2070–2099 over the observed period 1993–2000. The results are compatible with predictions
reported in similar researches [42,55].

3.3. Rainfall–RunoffModel

The ANN model was trained with the Levenberg–Marquart (LM) or standard back-propagation
(BP) to simulate monthly runoff into the reservoir. The number of neurons in the hidden layer
varied between 4 to 7 neurons and was determined through trial and error. Two ANN models
were prepared, one for wet and the other for dry seasons, i.e., two 6-month classes including wet
months (December–May) and dry months (June–November) out of monthly-observed runoff over the
1971–2000 period. Table 2 shows the performance of the ANN model during the training and test
phases for both wet and dry periods. Results indicate better performance in the wet months than in
the dry months.
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Table 2. Performance criteria of the wet and dry artificial neural network (ANN) model based on
precipitation and max and min temperature data.

Train Test

Statistical Index MAE BIAS RMSE Correlation MAE BIAS RMSE Correlation

Wet (Dec-May) 29% 19% 38% 87% 31% 23% 38% 82%

Dry (June-Nov) 26% 21% 38% 75% 29% 18% 39% 74%

All months 28% 18% 38% 81% 26% 17% 37% 91%

A single ANN model, which encompassed runoff of all months over the year, was also examined.
This single ANN model showed better performance than the two separate wet and dry models
due to more data for training and testing phases. Therefore, the single ANN model was applied for
rainfall–runoff simulation in this study. Figure 8 illustrates the result of the rainfall–runoff simulation by
the ANN model for the under study period. Moreover, Table 3 presents the maximum, minimum and
average changes in simulated annual runoff in the near and far future compared to the historic period.
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Table 3. Range of predicted changes in annual runoff over the historic period under A2 and B2 scenarios
by the end of the century.

Emission Scenario A2 B2

Changes Compared
with Historic Period

Maximum
Change

Minimum
Change

Average
Change

Maximum
Change

Minimum
Change

Average
Change

2020–2049 +51.3% +32.1% +41.7% +33.7% +17.5% +25.6%

2070–2099 +7.1% -1.5% +3.5% +28.1% +7.5% +18.2%

The results in Figure 8 showed an increase in runoff of the Karun-III catchment in future periods
in comparison with the control period 1971–2000. The stream flow increases more in 2020–2040 than in
2070–2099. Annual average runoff increases by 32.1–51.3% under the A2 scenario and by 17.5–33.7%
under the B2 scenario for the near future. The runoff peak also switches from April to March in
both scenarios, which is caused by a temperature shift towards a warmer winter to accelerate earlier
snowmelt. In contrast, the annual average runoff changes by about −1.5–7.1% under the A2 scenario
and 7.5–28.1% under the B2 scenario over the 2070–2099 period.

3.4. Reservoir Evaporation Loss

Evaporation from the surface of the reservoir should be considered for reservoir and hydropower
simulations. In this study, the climate change-induced evaporation variation from the surface of the
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reservoir due to temperature rise in the future was taken into account through an empirical relationship
between evaporation and average temperature at a climate station close to the Karun-III dam according
to Equation (5):

E = 19.451 T − 144.34 (5)

where T is monthly mean temperature in ◦C at the climatic station close to the Karun-III dam, and E is
the monthly evaporation from the evaporation pan in millimeters.

Table 4 demonstrates the statistical indices of the relationship between monthly mean temperature
and monthly evaporation in the training and test periods. The evaporation time series for future
periods was calculated according to empirical Equation (5).

Table 4. Statistical indexes of error and correlation of the regression relationship between mean
temperature and evaporation.

Train (1983–1993) Test (1994–1999)

Statistical Index RMSE MAE Correl RMSE MAE Correl

Evaporation 25% 19% 96% 19% 15% 95.7%

The time series of evaporation for the study period was produced by using Equation (5) and the
predicted time series of temperature under A2 and B2 emission scenarios in the near and far future.
Figure 9 demonstrates the mean annual evaporation in the observation period and generated time
series under A2 and B2 scenarios.
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Figure 9. Mean annual evaporation time series in observation period and A2 and B2 scenarios in the
near and far future.

Figure 9 illustrates an increase in evaporation from the surface of the reservoir in the near and far
future periods in comparison with the observed period.

3.5. Hydropower Simulation

In this study, the HEC-ResSim reservoir model was used for simulating hydropower in the Karun
III dam. Downscaled meteorological variables and evaporation time series were subsequently used
as inputs to the HEC-ResSim3.0 reservoir model. To assess the accuracy of the simulation results,
the observed time series of hydropower generation in the 2005–2010 period was used for evaluating the
model simulation. Table 5 presents the statistical indices of error and correlation of daily hydropower
generation between the recorded and simulated time series in the observed period (2005–2010).
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Table 5. Error indices and correlation coefficient between recorded and simulated hydropower
generation in 2005–2010.

Statistical Index: MAE BIAS RMSE Correlation

Daily 11.8% 8.4% 19.6% 83.3%

Monthly 8.6% 6.3% 11.3% 88%

After model calibration, prediction and simulation of hydroelectricity energy for each of the
emission scenarios A2 and B2 in the two future periods, as well as for the control period 1971–2000,
was conducted. Thus, hydropower energy was simulated according to the observed runoff and surface
evaporation data in the control period to serve as the basis of comparison with the future projections.
Results of mean, maximum and minimum hydropower generated through 20 monthly runoff series
are shown in Figures 10 and 11 for the near and far future, respectively. Furthermore, annual results of
different scenarios are presented in Figure 12 and Table 6.
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Table 6. Predicted changes of mean annual simulated hydropower energy in the near and far future in
comparison with the 1971–2000 period.

Emission Scenarios A2 B2

Changes in
Comparison with

Control Period

Maximum
Change

Minimum
Change

Average
Change

Maximum
Change

Minimum
Change

Average
Change

2020–2049 +40.5% +26.7% +34.1% +29.3% +17.4% +24%

2070–2099 +8.7% +1.8% +6.3% +22% +10.5% +16.5%

As can be seen in Figure 12 and Table 6, an increase of hydropower generation is expected in
future in comparison with the 1971–2000 control period. It is noteworthy that the degree of change
in hydropower generation is larger in the near future 2020–2049 than in the far future 2070–2099,
which is compatible with the results of simulated runoff data series. Annual average hydropower
generation tends to increase gradually by about 26.7–40.5% under A2 and 17.4–29.3% under B2 in the
2020–2049 period. While an increase is simulated in the 2070–2099 period, by about 1.8–8.7% under A2,
and 10.5–22% under B2.

While monthly results did not show any overall significant changes in the summer, some changes
were predicted in comparison with the control period. Projections under the A2 scenario showed
that in the months of June and July of the 2020–2049 period, hydropower energy will be reduced in
comparison with the control period. Furthermore, projections under the B2 scenario in the same future
period revealed energy reduction in the months of April and June. The hydropower generation peak
under both scenarios in the near future shifted to March from June in the control period, which can be
justified by the increase in winter precipitation, temperature rise and earlier snowmelt. Additionally,
projections in the 2070–2099 period under the A2 scenario exhibited an energy reduction in the months
of March, April, June, and July, while the B2 scenario revealed a decrease in the months of April
to July. These changes in hydropower production can be due to changes in the stream pattern and
rainfall–runoff regime, which are caused by changes in precipitation pattern, temperature rise and
abrupt snowmelt. Therefore, it is important to take into consideration climate change impacts on the
susceptibility of hydropower generation during the useful life of the dams to mitigate the negative
impacts of climate change by sustainable strategic planning and management in the long term.

4. Conclusions

In this study, changes in climatic variables including precipitation, temperature, and evaporation
due to climate change over the Karun-III basin in Iran were studied and its impact on hydropower



Water 2019, 11, 1025 14 of 17

generation in the near (2020–2049) and far (2070–2099) future periods were investigated. The SDSM
model was used to simulate the series of precipitation and temperature under climatic scenarios.

Based on the analysis on the downscaled projections of the HadCM3 model under the A2 and B2
scenarios, the Karun-III basin tends to become warmer and wetter by the end of the current century.
In all months, except in summer, a precipitation increase will be expected under both scenarios.
Projections showed a larger increase in precipitation in the near future than in the far future, while a
larger increase in precipitation is expected under the A2 scenario than in the B2 scenario for the
2070–2099 period. It is expected that temperature rise will change the solid atmospheric precipitation
(snow and hail) to rain. Therefore, snow reservoirs of the mountains will be reduced.

By simulating the rainfall–runoff process under projected climatic scenarios, it was found that the
runoff follows the precipitation pattern. ANN implicitly incorporates the snowmelt contribution in
the total runoff by taking temperature as one of the inputs. Annual runoff increased in both the near
and far future periods, while stream flow will increase in the near future more than in the far future.
The monthly runoff peak also switches from April to March in both A2 and B2 scenarios, which is
caused by the increase in winter precipitation, rise in the temperature, earlier snowmelts, dry summers
and less snow storage in the mountains.

Evaporation from the surface of the reservoir was also taken into consideration for reservoir and
hydropower simulations. The results show an increase in evaporation from the surface of the reservoir
in the near and far future periods in comparison with the observed period.

For simulating hydropower generation, downscaled meteorological variables and evaporation time
series were subsequently used as inputs to the HEC-ResSim reservoir model. Moreover, hydropower
generation under the A2 and B2 climate scenarios were compared with the control period. Results
show that annual average hydropower generation tends to increase under A2 and B2 scenarios in both
near and far future periods, increasing more in the near future than in the far future.

It is worth mentioning that there are large uncertainties involved in predicting climatic variables
as well as simulating future runoff and hydropower under various scenarios. Thus, further studies
are required to examine the uncertainty of the results compared to other climate model projections.
Moreover, it is important to take into consideration the nexus use of water strategies and need for
multipurpose reservoirs. In this study, the irrigation water allocation was assumed to not alter during
the study period. This issue should be taken into account in future studies.

In conclusion, mitigation strategies are necessary to offset the negative effects of climate change
impacts on hydropower dam planning and operation while trying to capitalize on the positive impacts
during certain periods of the future. Although climate change positively impacted hydropower
generation in our case study, other aspects must be addressed in other complementary studies for a
comprehensive assessment of climate change impacts on various aspects of hydropower dam design
and operation in the future.
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