
Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier.com/locate/ijhff

Low-frequency oscillations in flow past an inclined prolate spheroid
Håkon Strandenesa, Fengjian Jianga,⁎, Bjørnar Pettersena, Helge I. Anderssonb
a Department of Marine Technology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
bDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

A B S T R A C T

We analyse the forces on a 45∘ inclined 6:1 prolate spheroid at Reynolds number =Re 8000D . In contrast to flow at lower Reynolds numbers previously investigated,
we now find a strong oscillatory behaviour in the global forces. The Strouhal number associated with the forces is 0.05 and the peak-to-peak value of the oscillations
in the sideforce is more than 25% of the average. A Fourier transformation of the entire flow field reveals that the cause of the force fluctuations is spatial oscillations
in one of the two primary vortices generated behind the spheroid. This phenomena is attributed to a three-dimensional vortex instability.

1. Introduction

The flow past a 45∘ inclined 6:1 (length:diameter) prolate spheroid
has been subject to several numerical studies recently with emphasis on
investigating details in the wake flow for cases up to =Re 3000D (Jiang
et al., 2014; 2015a; 2015b; 2016). The main motivation for studying
this case is the flow features common for many vehicles in the air and
ocean space. Based on the results from both simulations and experi-
ments, there is acceptance for the resulting wake flow and forces on the
spheroid to be asymmetric, despite the symmetric geometry and inflow
condition. This applies to many inclined slender body flow cases
(Moskowitz et al., 1989; Cobleigh, 1994; Ashok et al., 2015).

Being a prototype for various vehicles, such as airplanes, drones,
ROVs and submarines, focus in this work is on the manoeuvring cap-
abilities and the external forces acting on the spheroid. We have learned
from previous studies that the time-averaged wake exerts a significant
mean side force on the spheroid, which can be up to 75% of the mean
drag force in the range =Re 3000D to 4000 (see e.g. Jiang et al., 2015b
and Strandenes et al., 2019). Considering the engineering background
of the inclined spheroid, it is interesting to investigate how strong this
side force becomes and how it vary when the Reynolds number is fur-
ther increased. This is the primary scope of the present study. At Rey-
nolds number =Re 3000,D very low-frequency oscillations of the side
force were detected, see e.g. Fig. 2 in (Jiang et al., 2015b), but were not
carefully studied. In this =Re 3000D case there were not observed any
similar oscillations in the drag and lift forces. It is assumed that three-
dimensional effects could be the mechanism behind it, as addressed by
Jiang et al. (2015b) and Zeiger et al. (2004). Some recent works on the
wake behind sharp-nosed slender bodies at high incidence indicate si-
milar low frequency forces from vortex oscillations other than vortex
shedding (see e.g. Ma and Liu, 2014 and Ma and Yin, 2018). However,

in more recent DNS simulations of the actual 6:1 inclined prolate
spheroid at =Re 4000D (Strandenes et al., 2019), the regular low-fre-
quency oscillations observed at =Re 3000D are no longer present, and
only high-frequency irregular oscillations remain. It is therefore of great
interest to investigate how the forces on the spheroid develop as the
Reynolds number is increased. In the present paper, we will address
these points by discussing results obtained by Direct Numerical Simu-
lation (DNS) at =Re 8000D .

Fig. 1 shows the computational domain along with its dimensions.
The flow is governed by the mass conservation and Navier–Stokes
equations for incompressible flow. The constant inflow velocity is
uniform with = = =u U v w, 0. The outlet is a fixed-pressure
boundary condition with zero-gradient Neumann conditions for the
velocity. The four other side boundaries of the domain, perpendicular
to the y and z-axes, are slip-walls in which the wall-normal velocity
component is prescribed to be zero, while the other velocity compo-
nents and the pressure have a zero-gradient Neumann condition. The
Reynolds number based on the equatorial diameter D is

= =Re DU / 8000D .

2. Numerical methods

The code MGLET (Manhart et al., 2001) is used for the simulations
presented in this paper. In short, MGLET uses a finite-volume for-
mulation on staggered Cartesian grids to solve the incompressible Na-
vier–Stokes equations. Linear interpolation and integration for all spa-
tial terms are used, leading to second-order accuracy in space. A third-
order low-storage explicit Runge–Kutta time integration scheme
(Williamson, 1980) is used for time stepping. The solid geometry is
introduced through an immersed boundary method (Peller et al., 2006).
A combined multi-grid and local grid refinement method is used to, i)
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increase the convergence rate of the pressure solver and, ii) resolve
geometrical and flow structures sufficiently (Manhart, 2004). The grid
is entirely isotropic, i.e. = =x y z everywhere in the domain.

To justify that the grid resolution is sufficient for the problem in
question, we performed a grid resolution study. Three different meshes
with different resolution were created (see Table 1), and a fully de-
veloped flow field was computed on the finest grid. This solution was
then transferred to the two coarser grids, and the three simulations
were restarted and run for the same number of timesteps.

Fig. 2 gives an overview of the results. The coarsest grid tested in
this convergence study is clearly not satisfactory. The initial condition
is a flow field with a strongly asymmetric side force CFz, which quickly
develops into a nearly symmetric flow state with almost zero mean
sideforce after restarting with the coarser grid. On the two finer grids
(medium and fine), the asymmetric side force persists, but there are still
differences in the computed forces. The power spectra of the v-velocity
in a selected point in the wake, as shown to the left in Fig. 2, also
indicate that the flow on the coarsest grid is severely under-resolved. A
major portion of the energy at the higher frequencies is lost. The two
finest grids show reasonable agreement, but the finer grid clearly re-
solve more scales compared to the medium grid. In conclusion, we
believe that the finest grid is sufficiently fine to resolve all essential
scales present in this flow with the required precision. Measured in a
plane at =x D/ 4, the grid resolution Δx is never larger than about 1.4
times the estimated Kolmogorov lengthscale η, i.e. =xmax( / ) 1.4.
The results discussed hereafter are all from the simulation using the
finest mesh.

3. Results

In general, the flow structures in this flow configuration at
=Re 8000D share many similarities with the flow at lower Reynolds

numbers (ReD=3000), as referred to in the introduction. However,
there are a few important distinctions. Fig. 3 gives an overview of the
flow structures of the present case, and shows the two main coherent
vortices originating from the tip, here named S and P. The weaker of the
two vortices is P and the stronger one is S, by means of maximum
vorticity in the vortex core. The figure clearly shows that the weaker
one, P, is the one to disintegrate closest to the nose. This is the opposite
of the lower Reynolds number cases, where the weakest of the two
vortices was the most stable structure, persisting far downstream of the
spheroid tail. Further details and analysis of the wake will be subject to
a separate study and will not be presented herein.

We present the mean and RMS of the force coefficients compared to
earlier results in Table 2. From this we observe that the mean drag

coefficient CFx decreases as the Reynolds number increases, while in the
two other directions the coefficients CFy and CFz increase. This means
that the side forces become more significant at =Re 8000D compared to
for instance =Re 3000D . Furthermore, there is one phenomenon that
has never been reported before, that is a very strong low-frequency
oscillation in the forces from the fluid acting on the spheroid in all three
directions. Fig. 4 gives an overview of the evolution of the force coef-
ficients, from which this phenomenon is evident. In contrast to the
oscillations in the sideforce observed at =Re 3000D these oscillations
are now working in all directions: lift (Fx), drag (Fy) and sideways (Fz).
This paper aims to present a concise and focused study on this phe-
nomenon.

The period of these low-frequency oscillations are almost exactly
= =T f D U1/ 20 / , leading to a Strouhal number of = =St fD U/ 0.05.

Compared to a typical vortex street behind a circular cylinder at similar
Reynolds number with Strouhal number of =St 0.2, the present oscil-
lation is surprisingly slow. One easily notice from Fig. 4, that the peak-
to-peak side force CFz oscillations is more than 25% of their mean value,
revealing very strong flow dynamics in the wake that heavily influences
the near pressure field. However, by inspections of the velocity field in
the wake, we cannot find any signs of vortex shedding, and the presence
of a von Karman vortex street can be ruled out. By using visualization in
2-D and 3-D of quantities such as velocity, pressure, vorticity, λ2 etc., no
obvious other structures can be attributed to this phenomenon either.

In order to identify the source of these low-frequency oscillations,
we employ a simple, novel technique we call in-situ Fourier transform. In
this technique we evaluate a discrete Fourier transform of the entire
pressure field for selected, pre-defined frequencies. This evaluation is
performed in discrete time windows. Once each window is finished, the
results are added to an accumulated, time-averaged Fourier coefficient
for the selected frequencies. The real part of this Fourier coefficient is
the total energy content of the selected wavelength, and is computed for
every gridcell in the computational domain. In practice, the results are
the same as if we had stored the pressure in every gridcell every
timestep, and computed the energy spectra from these data, but only
extracted the energies corresponding to a few frequencies. Therefore,
this technique is especially economical and effective for DNS in light of
the enormous number of grid cells used in the simulations.

The result is shown in Fig. 5. The red areas indicate zones where the
pressure fluctuates strongly with =f U D1/20 / , and the blue areas
indicate zones where the pressure fluctuates with frequency

=f U D2 2/20 / . The observed pattern can easily be explained: there is a
cyclic motion of the two main wake vortices. The strongest vortex (S),
which is located to the left in Fig. 5, moves from the leftmost red area
(where it is strong), passing through the blue area (where it gets weaker
or the path is more uncertain), and towards the next red area again,
before it returns back the same path towards the origin at the leftmost
red area. The vortex passes through the blue area twice per cycle, hence
the double frequency. The pattern of this motion is an upside-down ‘U’-
pattern.

The weaker main vortex (P) also exhibits a similar motion, but along
an almost vertical line instead of the curved path of the stronger vortex.
In addition, the vortex itself is much weaker, and thus the energies
recorded are lower.

To further understand the motion of this vortex and how it influ-
ences the forces on the spheroid, additional simulations were carried
out. In these simulations, the pressure was recorded in several planes
perpendicular to the x-axis. From these time series, we identified the
location of the vortex core by searching for the position of the lowest
pressure. The trajectories of the vortex center in each x-plane, are
shown in Fig. 6. Each dot corresponds to the position of the vortex core
at a time instant, and the color indicates the strength of the vortex core
at that time.

From Fig. 6 we can see that the motion of the vortex core at
=x D/ 0.0 is already visible, and forms an elliptical path. By the col-

ouring, we also observe that the vortex core vary in strength throughout

Fig. 1. Computational domain and coordinate system. The origin of the co-
ordinate system is in the center of the spheroid. The figure is not to scale.
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this oscillatory motion. When the vortex core is furthest away from the
spheroid, it is usually stronger than when the vortex core is closer to the
body. In the plane =x D/ 0.5 the circular path has transformed into a
line. At =x D/ 1.0 the elliptical shape is yet again visible. Also here, it is
evident that the vortex core is stronger when it is in a position further
away from the body than when it is close. Finally, at we see the same
‘U’-shape as we predicted based on the in-situ Fourier transform. We
also see, that the vortex core oscillates both in strength and position.

This explains why the two red areas to the left in Fig. 5 are of different
magnitude.

The trajectories of the vortex cores are plotted along with the
pressure in an attached animation, from which we unexpectedly notice
that the motion of the vortex core is anti-clockwise at =x D/ 0.0 but
clockwise at =x D/ 1.0. In the plane =x D/ 0.5 the motion is back and
forth a straight path. This interesting observation is also marked with
arrows in Fig. 6. The plots in Fig. 6 show that the vortex tube is under
both a wave type motion in the axial direction and a helical motion,
therefore suggesting the three-dimensional vortex instability (Ash and
Khorrami, 1995). The frequency of this instability coincides with the
frequency of the overall body forces.

It is furthermore interesting to notice, from Fig. 6, that the spatial
oscillation of the vortex is accompanied by pressure (Cp) variation,
meaning the source of the oscillatory body forces may come from either
the spatial oscillation or the pressure variation, or the joint effect of
them. To clarify this, we plot the correlation between the side force
(CFz) and the vortex core location in plane =x D/ 0.0 in Fig. 7. The
abscissa is the distance, ℓ, from the center of the spheroid

Fig. 2. Results from the grid resolution study. Left: Power spectra of v-velocity sampled in point =x y z D( , , ) (2.5, 1.32, 0.5) . Right: Sideforce coefficient CFz as a
function of time.

Table 1
Grid convergence study setup. All cases were simulated 163,840 timesteps
starting from the same initial condition, and the timestep was 0.001 D/U∞ in all
cases. Δx is the grid resolution and η is an estimate of the Kolmogorov length
scale.

Simulation Coarse Medium Fine

Number of grid cells 0.447× 109 1.660×109 2.077× 109

min(Δx/D) 0.016 0.008 0.004
max(Δx/η) at =x D/ 4.0 5.11 2.69 1.38

Fig. 3. Looking from below on the wake visualized by a volume rendering of the λ2 vortex identification criterion. The strongest of the two vortices is the starboard
vortex.
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( =x y z( , , ) (0, 0, 0)) to the vortex core position in the plane =x 0. We
clearly observe that the side force is stronger as the vortex moves closer
to the spheroid, however, the colours in Fig. 7 indicated that the
pressure is higher as the vortex is closer to the spheroid, which seems to
be contradictory. Further investigation of Cp and the side force shows
no correlation between them. Additionally, we do not find any corre-
lations between Cp in the vortex core at =x D/ 0.0 and =x D/ 1.0, at the
same instant. This tells us that the variation in pressure in the vortex
core is a local phenomenon and does not influence the overall in-
tegrated force on the spheroid. Therefore, the oscillatory body force is
only caused by the spatial oscillation of the vortex, which is originally
induced by the three-dimensional vortex instability.

4. Concluding remarks

The low-frequency forces acting on the 6:1 prolate spheroid at
Reynolds number =Re 8000D is of great importance for manoeuvring
capabilities of vehicles. The period of the observed low-frequency
phenomenon is four times that of typical vortex shedding from cylin-
ders. This unexpected phenomenon is caused by the cyclic motion of the
primary wake vortex, which oscillates both in strength and space. The
spatial oscillations seem to be the dominant source of the oscillatory

Table 2
Mean and root-mean-square (RMS) of the force and torque coefficients.

ReD CFx CFy CFz CMx CMy CMz

3000 (ref. Jiang et al., 2015b) Mean 0.879 −0.796 −0.645 −0.168 0.166 0.311
RMS 0.009 0.009 0.010

4000 (ref. Strandenes et al., 2019) Mean 0.852 −0.807 0.637 0.084 −0.082 0.315
RMS 0.012 0.013 0.039 0.019 0.019 0.015

8000 (present) Mean 0.832 −0.831 −0.701 −0.123 0.122 0.316
RMS 0.022 0.014 0.069 0.023 0.023 0.014

Fig. 4. Drag and sideways force coefficients at =Re 8000D for the first 100 D/
U∞ simulated.

Fig. 5. yz-plane at =x D/ 1.55. Spheroid cross-section is grey. Fourier amplitudes of the pressure at the frequency corresponding to the low-frequency oscillations in
the forces =f U D1/20 / (red colors) and the double of this frequency =f U D2 2/20 / (blue colors). The pressure coefficient =C p U/(0.5 )p

2 from a randomly
selected timestep is drawn with black iso-contours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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forces, because the variations in strength are in local regions only. The
exploration of this phenomenon is still on-going. Simulations at higher
Reynolds numbers are in progress, and seem to confirm that the oscil-
lations are still present at higher ReD.

The phenomenon is similar to the phenomena reported by Ma and
Liu (2014) and Ma and Yin (2018), however, the absence of vortex

shedding in the present configuration makes the flow and wake con-
figuration qualitatively different from their results.
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