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Problem Description
The candidate will consider problems associated with feasibly controlling a maneuverability-
constrained vehicle for motion control scenarios such as planar path maneuvering and path
tracking. The following elements must thus be considered:
1. Develop guidance laws for:
  a) Feasible convergence of a maneuverability-constrained vehicle to a planar path (steering and
speed problems).
  b) Feasible movement of a maneuverability-constrained vehicle along a planar path (speed
problem).
2. Investigate the stability properties of the suggested guidance laws.
3. Suggest how a physical path (like a road) can be converted into an analytic form which is suitable
for use with the proposed guidance laws.
4. Develop guidance algorithms which solve the path-tracking problem when the path must be
generated online based on the movements of a leader vehicle.
5. Investigate the problem of creating feasible paths associated with lawn-mower survey
operations.
6. Explore the behavior of the suggested guidance algorithms through numerical simulations.
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Summary

The problem of performing accurate path maneuvering tasks in planar space
is investigated in thesis. The purpose is to utilize limited knowledge about
the vehicle’s maneuverability constraints to output feasible reference signals.

Acceleration limitations of the vehicle have been used in an algorithm that
determines forward speeds in such way that a predefined path can be followed
at high speeds. The algorithm ensures that the speed is reduced before acute
turns. Furthermore, an existing steering law has been modified to dynami-
cally take the limitations of the vehicle into consideration when determining
the desired course. This modified steering law exhibits desirable convergence
characteristics toward the desired path.

A complete guidance system, which combines the path convergence algorithm
with the path speed algorithm, has been proposed. This system is able to
rapidly converge to the desired path and follow this path, even for paths
where the curvature is large.

The modified steering law has been combined with a path-tracking speed
controller. The path-tracking speed controller makes sure the vehicle can
track a target on a predefined path. The resulting path-tracking system is
able to follow a leader vehicle’s path by creating accurate paths online from
periodically sampled positions.

A method for creating feasible U-turns in a lawn-mower pattern has been
proposed. For a given vehicle speed, the resulting path obeys angular speed
and angular acceleration constraints.

Finally, the proposed algorithms are tested in simulations to illustrate their
behavior and usefulness.
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Chapter 1

Introduction

1.1 Motivation

With the exception of station keeping, the purpose of a vehicle is to move
around. To be able to do this, appropriate reference signals must be produced
by a guidance system. For several hundred years vehicles have been controlled
by steersmen, whose task were to determine forward speed and course. With
the increased need for automatic control of unmanned vehicles (Breivik 2010),
several propositions for path following algorithms have emerged.

Figure 1.1: A steersman at work aboard USS Noma during World War I.
Courtesy of Captain Lamar R. Leahy, www.history.navy.mil.
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2 Chapter 1. Introduction

The oil and gas sector is very important to the Norwegian economy. Hence,
a crucial part of succeeding in this competitive sector is having cutting edge
technology which is cost effective and efficient. According to (Breivik et al.
2008), it is expected that unmanned vehicle technology will play a significant
role for hydrocarbon exploration and exploitation in the future. Since these
future vehicles do not need to accommodate people, they can employ new
kinds of vehicle design, that is, high power-to-weight ratio and different hull
designs (Cooper et al. 2002). Unfortunately, the traditional autopilots are
designed for slow maneuvers like course changing, and hence cannot take
advantage of rapid maneuvers at high speed, which might characterize an
unmanned vehicle.

Figure 1.2: There exist a Viknes 830 which has been retrofitted by Maritime
Robotics. This modified vehicle operates as a USV with accommodation
for people, such that it is convenient to do experimental trials. Courtesy of
Viknes, www.viknes.no.

Unmanned surface vehicles (USVs) have existed for a long time, but in the
last couple of decades, a great deal of research effort has given attention
to the control of USVs in order to develop more agile and maneuverable
vehicles (Bertram 2008). For instance, a USV must often push the limits
of the vehicle in order to satisfy a given task. To push the envelope, the
maneuverability constraints of the USV must be taken into consideration
when the reference signals are determined. Furthermore, USVs often work
in speed regimes were underactuation is inevitable, that is, there are fewer
actuators than degrees of freedom, and hence control laws developed for fully
actuated systems cannot be employed.

Some Guidance, Navigation and Control (GNC) systems are designed using
the principle of modularity. These systems distinguish between the guidance
system and the control system, that is, they are not that interwoven, mean-
ing that an underlying controller is able to converge to the reference signal
produced by a guidance system (Skjetne 2005). Thus, an upgrade of the guid-

2



1.2. Contributions 3

ance system may yield powerful upgrades with serious value for the money.
This include potential benefits such as optimization of path traversing and
the ability to perform diverse tasks in different environments.

1.2 Contributions

The contributions of this thesis are miscellaneous, but can mainly be sum-
marized in four categories as follows:

1) Speed assignment system:

• Lookahead system: The lookahead system is able to gather cur-
vature information from a predefined path which is not arc-length
parameterized. The information is gathered a given along-path
distance ahead of the vehicle position. Specifically, the curvature
information gathered from the path is stored for use in a speed
assignment algorithm.

• Speed assignment algorithm: The speed assignment algorithm
employs curvature information and vehicle maneuverability con-
straints to plan purposeful reference speeds along the path. The
commanded speeds are reachable and makes it easier for the ve-
hicle to follow the path.

2) Path convergence algorithms:

• Steering algorithm: An existing steering law for regularly pa-
rameterized paths is modified. Specifically, the lookahead distance
is manipulated using different techniques to incorporate vehicle
maneuverability constraints in the steering assignments.

• Semi-constant lookahead: An investigation of the steering law’s
equations is done to yield a constant lookahead distance which
utilizes the vehicle’s angular speed constraint. The lookahead is
constant for a given speed.

• Variable lookahead: Employment of clothoid properties to con-
struct a variable lookahead distance, where the both the angular
speed and angular acceleration constraint of the vehicle are taken
into consideration.

3



4 Chapter 1. Introduction

• Convergence heuristics: Additional modifications to the looka-
head distance is provided to make it more robust for course errors.

3) Path-tracking system:

• Online path generation: The online path generator creates a
continuous path from sampled positions during the course of exe-
cution. Two different approaches for path generation are reviewed,
with considerations toward AIS-retrieved data or only position
data. The generated paths are applicable for path scenarios such
as path following or path tracking.

• Path-tracking speed assignment: The path-tracking speed as-
signment algorithm employs along-path distances between the tar-
get and the follower to output a bounded speed assignment for the
following vehicle.

4) Path-planning scenarios:

• Path planner for lawn-mower patterns: A path planner for
lawn-mower patterns using clothoids is proposed. This method
creates feasible parameterizations for a given speed under vehicle
maneuverability constraints on angular speed and angular accel-
eration.

• Comparison to η-splines The clothoid approach is compared
to an η-spline approach, emphasizing the curvature rate of the
two approaches.

4



1.3. Thesis outline 5

1.3 Thesis outline

The thesis starts with mathematical definitions and common abbreviations
in Chapter 2. This chapter is followed by a introduction of relevant path
parameterizations and their properties. Chapter 4 covers background infor-
mation on the vehicle’s characteristics and motion control fundamentals.

Then, each topic considered in this thesis is treated in its own section of
Chapter 5. Here, specific motivation, previous work and additional back-
ground information are presented.

After that, each method is verified through simulations in Chapter 6. In
Chapter 7, conclusions are drawn, and future work are proposed. Finally, an
Appendix follows with computational details and further background theory.

5
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Chapter 2

Preliminaries

In this chapter, frequently used mathematical definitions and notations are
presented. Furthermore, uncommon abbreviations are also summarized.

2.1 Mathematical definitions and notations

In this thesis, vectors and matrices are written in boldface, while scalars are
not. Time derivatives of x(t) are denoted ẋ, ẍ, x(3),. . . ,x(i). Derivatives
with respect to some other variable is denoted x′, x′′, x(3′),. . .x(i′). It is
clear from the context which variable it has been differentiated with respect
to. The norm |x| is the Euclidean norm

√
x�x, while |x| is the absolute

value of x ∈ R. The dot product of two vectors of the same dimension
is defined as a · b � a�b. The index set In ⊂ N0 is all natural number
from 0 to n including n: {0, 1, 2, . . . , n}. The column vector is stated as

col [x,y] �
[
x�, y�]�.

7



8 Chapter 2. Preliminaries

2.2 Abbreviations

CLF Control Lyapunov Function
ECEF Earth-Centered, Earth-Fixed
ECI Earth-Centered Intertial
DOF Degree Of Freedom
DP Dynamic Positioning
FIFO First-In, First-Out
GES Globally Expontentially Stable
GNC Guidance, Navigation and Control
LES Locally Exponentially Stable
LOS Line-Of-Sight
MPC Model Predictive Control
MPG Model Predictive Guidance
NED North East Down
SNAME Society of Naval Architects and Marine Engineers
UAV Unmanned Aerial Vehicle
UGAS Uniformly Globally Asymptotically Stable
ULES Uniformly Locally Exponentially Stable
USV Unmanned Surface Vehicle

8



Chapter 3

Path parameterizations and
their characteristics

3.1 The path parameterization

3.1.1 Parametric curve

A parametric curve is a univariate parametric representation of a set of equa-
tions, where each state is parameterized by a common scalar variable � ∈ R.
The position pp(�) = [xp(�), yp(�)]� ∈ R

2 belongs to the curve, which
is a one-dimensional manifold that can be expressed by the set (Breivik &
Fossen 2009)

P � {p ∈ R
2 |p = pp(�) ∀� ∈ R}. (3.1)

Both curve and path have the same meaning in this thesis, and are used
interchangeably.

3.1.2 Piecewise parametric curve

A single curve cannot represent complex shapes without high complexity.
Hence, by dividing a shape into smaller curve segments with limited va-
lidity interval, the shape can be accurately approximated without the po-
tential of ill-conditioned parameters, inaccuracy and Runge’s phenomenon
(Runge 1901), which a single curve may suffer from. Define a curve segment,

9



10 Chapter 3. Path parameterizations and their characteristics

enumerated i, which similarily to a single curve, also is a one-dimensional
manifold expressed by the set

Pi � {pi ∈ Di ⊂ R
2 |pi = pi,p(�) ∀� ∈ Ii = [�i,0, �i,1] ⊂ R}. (3.2)

We assume that each curve segment has a predecessor and a successor, with
the exception of the first and last curve segment. Adjacent curve segments
have successive indexing, that is, Pk has a predecessor Pk−1 and a successor
Pk+1. Furthermore, we assume that the curve segments are connected, mean-
ing that the end point of one curve segment has the same planar position as
the start point of the successor. This notation allows each curve segment to
have a validity interval Ii which best serves a proper representation of the
particular parameterization.

Formally, a piecewise curve can written as a superset of n curve segments:

Ps =
n⋃

i=1

Pi. (3.3)

This notation implies that the piecewise curve p is defined in

p ∈ Ds =
n⋃

i=1

Di ⊂ R
2. (3.4)

The validity region Ds need not be defined in the whole planar space, only
in a reasonable vicinity of the vehicle, making it well defined for all practical
purposes. In Section 3.1.6 additional restrictions to the resulting curve are
presented.

3.1.3 Continuity

In a Cartesian coordinate system it is interesting to have a precise meaning of
what continuity of a path really means. In the following, we will define para-
metric and geometric continuity for planar parameterizations and elaborate
on the differences between these two types of continuities.

Parametric continuity

Defintion 3.1 (Cn and regularity (Barsky & DeRose 1984)).

10



3.1. The path parameterization 11

a) A scalar function f(�) belongs to the class Cn on [�0, �1] if it is n-
times continuously differentiable on [�0, �1]. It is regular if

df

d�
�= 0 ∀ � ∈ [�0, �1]. (3.5)

b) A parameterization pp(�) = [xp(�), yp(�)]�, � ∈ [�0, �1] is Cn if
each of the coordinate functions xp(�) and yp(�) is Cn on [�0, �1]. It
is regular if

dpp

d�
�= 0 ∀ � ∈ [�0, �1]. (3.6)

A regular parameterization means that the path never degenerate into a
point. A parameterization that satisfies Definition 3.1 of order n is said to
be Cn parametric continuous.

Example 3.1. Define

p1(�) =

[
�
−�

]
, � ∈ [0, π/4], (3.7)

p2(�) =

[
sin(� + π/4) + π/4 − sin(π/4)
cos(� + π/4) − π/4 − cos(π/4)

]
, � ∈ [0, π]. (3.8)

Let the parameterizations just defined be stitched together into a single curve,
see Figure 3.1.

From Figure 3.1 it is clear that this curve is C0 continuous since they join at a
join point J . For the curve to be C1 continuous, however, the first derivative
must be equal at J , that is

dp1

d�

∣∣∣∣
�=π/4

!
=
dp2

d�

∣∣∣∣
�=0

. (3.9)

Evaluating the derivatives at J reveal that the curve is not C1 continuous:

dp1

d�

∣∣∣∣
�=π/4

=

[
1
−1

]
�= dp2

d�

∣∣∣∣
�=0

=

[ √
2/2

−√
2/2

]
. (3.10)

The conclusion of Example 3.1 is that a curve is not necessarily parametric
continuous, even though it may appear smooth geometrically. In some geo-
metric problems, only the path needs to be smooth, not the parameterization
itself. This motivates a different type of continuity that only requires that
the resulting curve is sufficiently smooth geometrically.

11



12 Chapter 3. Path parameterizations and their characteristics
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Figure 3.1: The curve is only C0 continuous.

Geometric continuity

Defintion 3.2 (Geometric continuity (Barsky & DeRose 1984)). Let pi(�)
and pi+1(�) be regular Cn parameterizations such that pi(�1) = pi+1(�0) =
J , where J is a simple point. They meet with nth order geometric Gn

continuity at J if pi and pi+1 can be reparameterized to have Cn parametric
continuity at J .

Geometric continuity up to n = 2 can be interpreted as:

G0: The curve is connected.

G1: The unit tangent vector is continuous.

G2: The curvature is continuous.

The different degrees of geometric continuity is illustrated in Figure 3.2.

Example 3.2. Consider the curve presented in Example 3.1. It is obvious
that the curve is G0 continuous, and by normalizing (3.10), we see that the

12



3.1. The path parameterization 13

Figure 3.2: Left: G0 continuous curve. Middle: G1 continuous curve. Right:
G2 continuous curve.

unit tangent vectors are equal. Hence, the curve is G1 continuous, as expected
after inspecting Figure 3.1.

3.1.4 Arc length of a path

The arc length between two points is the distance a particle needs to travel
along the path when moving from one point to the other. This positive scalar
number, which is deducted from Pythagoras’ rule, is defined by

s(�) =

∫ �

α

|p′
p(τ)|dτ, (3.11)

where the integration variable is denoted by τ to distinguish it from the
upper limit �.

Some paths are arc-length parameterized which means that � = s. The
paths belonging to Ps however, are generally not arc-length parameterized,
which complicates the determination of the arc length between arbitrary path
points. Specifically, (3.11) cannot be solved explicitly in the general case.

Arc-length speed

The time derivative of the arc length is

ṡ(�) =
d

dt

(∫ �

α

|p′
p(�̃)|d�̃

)
= |p′

p(�)|�̇. (3.12)

13



14 Chapter 3. Path parameterizations and their characteristics

Let the along-path speed of a particle be defined as

Up �
√
ẋ2p + ẏ2p. (3.13)

Furthermore, by the chain rule we have

ẋp(�) =
dxp
d�

d�

dt
= x′p�̇, (3.14)

and similarly for yp(�), such that we can rewrite (3.13) to

Up(t) =
√

(x′p�̇)2 + (y′p�̇)2 =
√
x′2p + y′2p · �̇,

where we define √
x′2p + y′2p � |p′

p(�)|, (3.15)

resulting in

�̇(t) =
Up(t)√
x′2p + y′2p

=
Up(t)

|p′
p(�)| , (3.16)

which describes the relationship between the path variable’s speed and the
along-path speed.

Substituting (3.16) into (3.12) we get

ṡ(�) = Up(t), (3.17)

which confirms that the time rate of change of the arc length is equal to the
along-path speed.

3.1.5 Path curvature

Every point of a curved path has a tangent circle, called the osculating circle,
see Figure 3.3. This circle has the same curvature as the path at the given
point. For a straight line, the radius of this circle is infinity, but in general,
it varies with the path. By knowing the curvature of a path point, the
corresponding osculating circle can be calculated by

R(�) =
1

κ(�)
, (3.18)

14



3.1. The path parameterization 15

Figure 3.3: Osculating circle at pp(�).

where κ(�) is the curvature at the path point. The curvature is defined
as the magnitude of rate of change of the angle of the tangent vector with
respect to arc length (SpringerLink 2010)

κ(�) =

∣∣∣∣dT (�)

ds

∣∣∣∣ , (3.19)

where T (�) is the unit tangent vector of the path parameterization. Since
most parameterizations are not arc length parameterized, this calculation is
not as trivial as it may seem from the definition. The curvature can in the
general case be shown to be

κ(�) =
|p′

p(�) × p′′
p(�)|

|p′
p(�)|3 =

|x′py′′p − y′px
′′
p|

|p′|3 (3.20)

where we have used that p′
p(�) � dpp(�)/d�. See Appendix C.1 for com-

putational details.

Signed curvature

In some cases it is convenient to know in what direction the path curves.
The signed version of the path curvature is

κ(�) =
p′
p(�) × p′′

p(�)

|p′
p(�)|3 =

x′py
′′
p − y′px

′′
p

|p′
p|3

. (3.21)

The convention is that the curvature is signed in accordance with the right-
hand rule. That is, for x′p > 0, a path with positive curvature curves in
counter-clockwise direction, while a path with negative curvature curves in
clockwise direction, see Figure 3.4.

15



16 Chapter 3. Path parameterizations and their characteristics

Figure 3.4: The convention of signed curvature.

3.1.6 Path parameterizations in this thesis

The path parameterizations used in this thesis are Pr ⊂ Ps. The sub-
set Pr has additional restrictions to the curves, making it applicable to
path maneuvering scenarios. The subset contains curves with G2-continuous
paths and bounded curvature, which means that the path tangent |p′

p(�)| �
|dpp(�)/d�| is non-zero and finite for all points on the curve. In practice,
this means that such curves never degenerate into a point nor have corners.

3.2 Splines

In a mathematical context, a spline is a piecewise curve where each curve
segment is a polynomial parameterization of a finite degree n. A planar spline
segment can be written as:

x = an�
n + an−1�

n−1 · · · a1� + a0, (3.22a)

y = bn�
n + bn−1�

n−1 · · · b1� + b0, (3.22b)

� ∈ [�0, �1] , (3.22c)

16



3.2. Splines 17

where the polynomial coefficients are real numbers. Compactly, we can write

p(�)� =

[
x(�)
y(�)

]�
=

[
1 � · · · �n

]
⎡
⎢⎢⎢⎣
a0 b0
a1 b1
...

...
an bn

⎤
⎥⎥⎥⎦ , (3.23a)

� ∈ [�0, �1] , (3.23b)

(ai, bi) ∈ R ∀ i ∈ In ⊂ N0. (3.23c)

Splines have been used in many different applications, including vehicle body
design, computer-aided graphical design, curve-fitting, shape generation and
path planning. A common feature of all these problems is that the objec-
tive is to somehow represent a finite number of discrete data points, denoted
control polygon, in a continuous manner. The research community is replete
with different types of splines and ways to obtain the polynomial coefficients,
given a specific control polygon. Basis splines, Catmull-Rom splines, Quin-
tic splines, η-splines and β-splines are all different kinds of approaches for
representing a control polygon parametrically. Generally, we can distinguish
between two types of approaches:

Interpolating splines are designed such that the curve pass through each
discrete data point.

Approximating splines do not necessarily pass through every data point,
but approximate the trend of the data points.

Common for all types of splines are the basis polynomials, or blending func-
tions. The blending functions blend the points of the control polygon to-
gether, yielding a continuous curve. Given a control polygon V 0,V 1, · · · ,V m,
where V i ∈ R

r, a spline can be written as a function of the control polygons:

p(�) =
m∑
i=0

Wi(�)V i, ∀� ∈ [�0, �1] , (3.24)

where Wi(�) is the i-th blending function. There are many different ways
of obtaining the blending functions, and they greatly depend on the desired
properties of the curve. In the remaining part of this thesis only planar
positions in the control polygon will be considered, that is V i ∈ R

2. It

17



18 Chapter 3. Path parameterizations and their characteristics

should, however, be emphasized that splines treat each degree of freedom
separately, making it easily scalable.

With the vast possibilities for creating a spline curve, it is required by the
implementor to choose the approach with the most desirable properties for
the specific problem at hand. To be able to do this, important properties of
each spline should be compared with each other, choosing the spline which
is most applicable to the intended application. In (Blanc & Schlick 1995),
one such check-list is provided, presenting important properties splines can
possess. These properties are also presented in (Weston 2002) and some of
them are restated here for convenience:

Affine invariance: Geometric properties remain unchanged after linear trans-
formations, such as rotations, and translations.

Convex hull: The spline is contained within the polygon created by the
control polygon.

Shape parameters: Add additional degrees of freedom to control the shape
of the spline.

Local/Global control: Manipulation of shape parameters or control ver-
tices may affect the spline locally or globally. A spline has Lp locality
if the manipulation affects at most p curve segments.

Continuity where segments meet: A specific degree of either parametric
or geometric continuity characterize each spline method.

In the next section, the most sentral spline used in this thesis is presented.

3.2.1 The Bézier curve

A Bézier curve is a polynomial parametric curve with origin from France.
More specifically, algorithms for presenting Bézier curves were invented by
Paul de Casteljau in 1959, who worked for Citroën (Casteljau 1959). This
type of curve was also used by a French engineer named Pierre Bézier in the
early 1960’s to create smooth automobile bodies for Renault. Since the name
de Castelajau already is used on (one of) the algorithms for calculating the
Bézier curves; the de Castelajau’s algorithm, the curve has been given the
name Bézier curves.

18



3.2. Splines 19

Matematically, the general form for a planar Bézier curve of degree n is

p(�) =
n∑

i=0

Bi,n(�)V i, � ∈ [0, 1], (3.25)

where Bi,n(�) are the Bernstein basis polynomials of degree n and V i are
planar positions in the control polygon. By carefully stitching Bézier curves
together, a Bézier spline is obtained.

In (Joy 2000) the Bernstein basis polynomials of degree n are defined by

Bi,n(�) =

(
n

i

)
�i(1 −�)n−i, ∀ i ∈ In. (3.26)

The binomial coefficients are defined as(
n

i

)
=

n!

i!(n− i)!
. (3.27)

Example 3.3. The Bernstein basis polynomials of degree 3 are

B0,3(�) = (1 −�)3 (3.28a)

B1,3(�) = 3�(1 −�)2 (3.28b)

B2,3(�) = 3�2(1 −�) (3.28c)

B3,3(�) = �3. (3.28d)

The basis functions are displayed in Figure 3.5.

� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� �

Figure 3.5: The Bernstein basis polynomials.
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20 Chapter 3. Path parameterizations and their characteristics

Define the four planar points

V 0 = [1 1]�, V 1 = [2 5]�

V 2 = [6 7]�, V 3 = [7 2]�,

to be the control polygon of a simple example. Using (3.25) we get a Bézier
curve of degree 3. The curve can be seen in Figure 3.6.

� � � � � � � �

�

�

�

�

�

�

�

Figure 3.6: A Bézier curve.

Figure 3.6 actually illustrates several important properties of the Bézier
curve:

Interpolating: The end points are interpolated.

Approximating: Intermediate points are only approximated.

Convex hull: The curve is within the convex hull of the polygon.

Furthermore, it can be proven by induction that the sum of the Bernstein
basis polynomials always is equal to unity:

n∑
i=0

Bi,n(�) = 1, ∀� ∈ [0, 1] , (3.29)

making the Bézier curve affine invariant (Joy 2000).

20



3.3. Clothoids 21

Matrix form

In some cases it is convenient to organize the Bézier curve in a matrix from
where the parameters are collected in an own parameter vector (Joy 2000):

p(�)� =
[

1 � · · · �n
]
⎡
⎢⎢⎢⎣
b0,0 0 · · · 0
b1,0 b1,1 · · · 0

...
...

. . . 0
bn,0 bn,1 · · · bn,n

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

V �
0

V �
1

...
V �

n

⎤
⎥⎥⎥⎦ , (3.30)

where bi,j are coefficients defined by:

bi,j = (−1)i−j

(
n

i

)(
i

j

)
. (3.31)

This arrangement makes it easier to find derivatives of arbitrary order, since
only the parameter vector needs to be differentiated, not each Bernstein basis
polynomial of the parameterization.

By introducing additional control points in the control polygon, the desired
degree of geometric continuity of a Bézier spline can be achieved by carefully
placing the control points of each Bézier curve (DeRose & Barsky 1988).

3.3 Clothoids

Euler discovered a special spiral when he considered the problem of “an
elastic spring freely coiled in the form of a spiral” (Archibald 1918). The
spiral, called the Euler spiral, was given the name clothoid by Cesaro when
he studied the properties of the spiral. Clothoid comes from Greek meaning
“to twist by spinning” (Cesaro 1886). The spiral is defined parametrically as

p(t) =

[
x(t)
y(t)

]
= a�

[
C(t)
S(t)

]
, a� > 0, (3.32)

where the Fresnel integrals C(t) and S(t) are

C(t) =

∫ t

0

cos(
1

2
πu2)du, (3.33a)

S(t) =

∫ t

0

sin(
1

2
πu2)du. (3.33b)
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22 Chapter 3. Path parameterizations and their characteristics

Figure 3.7: The Cornu Spiral.

The Euler spiral was first plotted accurately by Cornu and hence also carries
the name Cornu spiral (Cornu 1874).

It is possible to write the expressions for the Fresnel integrals so that they
depend on the angle between the x-axis and the tangent vector (Abramowitz
& Stegun 1972)

C(ϑ) =
1√
2π

∫ ϑ

0

cos(u2)√
u

du, (3.34a)

S(ϑ) =
1√
2π

∫ ϑ

0

sin(u2)√
u

du. (3.34b)

This arrangement requires however that the parameter is ϑ ≥ 0. In the
following we will use the scaled versions of (3.34) as in (Meek & Walton 2004)

C(ϑ) =

∫ ϑ

0

cos(u2)√
u

du, (3.35a)

S(ϑ) =

∫ ϑ

0

sin(u2)√
u

du, (3.35b)

ϑ ≥ 0. (3.35c)
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3.3. Clothoids 23

A clothoid with scaling factor a = a�√
2π

can then be written as

p(ϑ) = a

[
C(ϑ)
S(ϑ)

]
, ϑ ≥ 0. (3.36)

3.3.1 Properties of a clothoid

In the following we will investigate the properties of a clothoid defined by
(3.36).

The tangent vector is

p′(ϑ) =
a√
ϑ

[
cos(ϑ)
sin(ϑ)

]
, ϑ ≥ 0, (3.37)

and from this it is evident that ϑ is the angle of the tangent vector with
respect to the x-axis.

By calculating the curvature of a clothoid we get

κ(ϑ) =
p′(ϑ) × p′′(ϑ)

|p′(�)|3 =

√
ϑ

a
, (3.38)

see Appendix C.1.1 for computational details.

The center of the osculating circle at a path point ϑ is found by the normal
and the curvature at the particular point:

m(ϑ) = p(ϑ) +
1

κ(ϑ)

[ − sin(ϑ)
cos(ϑ)

]
. (3.39)

The arc length is (3.11)

s(ϑ) =

∫ ϑ

0

|p′(u)|du

=

∫ ϑ

0

a√
u
du = 2a

√
ϑ, (3.40)

and by expressing the curvature of the clothoid (3.38) as a function of the
arc length we get

κ(ϑ) =
s(ϑ)

2a2
. (3.41)
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24 Chapter 3. Path parameterizations and their characteristics

This equation shows that the curvature is proportional to the arc length of
the clothoid. This property suggest that if a particle follows the clothoid at a
constant speed, the angular speed changes linearly. The relationship between
the speed and the angular speed can by the use of (3.18) be rewritten to

U = ωR =
ω

κ(ϑ)
,

which together with (3.41) gives

ω(ϑ) = U
s(ϑ)

2a2
. (3.42)

This confirms that the angular speed is proportional to the arc length. For
a constant speed U, the angular acceleration is

ω̇(ϑ) = ṡ(ϑ)
U

2a2
, (3.43)

and since the time derivative of the arc length is the speed of the particle
itself (3.17), we get

ω̇ =
U2

2a2
, (3.44)

which concludes that the angular acceleration in constant when following a
clothoid at constant speed.

3.3.2 Applications of clothoids

The properties of clothoids are beneficial in many different applications.
Specifically, in highway design, clothoids have been used as transition curves
to acquire smooth changes in the angular velocity, (Higgins 1921, Talbot
1927, Baass 1984). Furthermore, in robot path planning, the use of clothoids
has resulted in smooth and feasible trajectories for car-like vehicles (Shin &
Singh 1990, Fleury et al. 1995, Scheuer & Fraichard 1997). In the design
of roller coaster loops, the properties of clothoids have also been utilized
(Pendrill 2005). When designing cars, the body surface needs be G2 con-
tinuous to have good aesthetics. Similarly, in computer vision, completing
shapes with clothoids may result in more appealing graphical shapes (Kimia
et al. 2003).
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3.3. Clothoids 25

Figure 3.8: Left: The roller coaster Loopen produced by Vekoma in 1988 is
found at Tusenfryd in Norway. The teardrop-shaped loop is designed by the
use of clothoids. Courtesy of www.physics.gu.se.
Right: The Troll Ladder, a mountain road in Rauma, Norway. Courtesy of
Ronnie Haug.
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Chapter 4

Vehicle motion control

The subject of vehicle motion control can be divided into four scenarios, each
entailing specific characteristics (Breivik 2010):

Target tracking: Track the motion of a target. There exist no future infor-
mation about the target movement, only instantaneous motion. Track-
ing of a stationary target is called point stabilization.

Path following: The objective is to follow a predefined path. There is only
a spatial constraint, the path itself being it.

Path tracking: Track a target that is moving on a predefined path. Now
there are both spatial and temporal constraints. This scenario is also
often called trajectory tracking.

Path maneuvering: Utilize knowledge about vehicle maneuverability to
negotiate a predefined path. This often means to somehow optimize
this negotiation.

In this thesis the focus is on path maneuvering and path tracking. As can
be seen from the definitions above, path maneuvering is a subset of path
following. Hence, path-maneuvering methods can also be used to handle
path-following scenarios, but in a more optimal manner. In fact, path-
maneuvering methods can also be used to solve path-tracking objectives by
employing specific speed constraints. This sheds light on the applicability
of path-maneuvering methods. In (Skjetne et al. 2004), the maneuvering
problem is divided into two tasks:
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Figure 4.1: A Lockheed Martin F-22 Raptor being maneuvered in a 3-
dimensional work space. Courtesy of www.wikivisual.com.

1. Geometric task: Force the vehicle to converge to and follow the de-
sired, predefined path.

2. Dynamic task: Fulfill desired speed or perhaps acceleration constraints
along the path.

The desired speed can either be a predefined speed profile or inputs from the
pilot. In most articles about path following however, the main concern has
indeed been the geometric task. The dynamic task has usually been solved
by employing a constant forward speed. In general, this is a non-optimal
solution seen from a path-maneuvering point of view. If the speed is so low
that every curvature can be negotiated, the speed often is too conservative.
On the other hand, choosing a too optimistic constant speed will lead to
failure of keeping on the path when the curvature becomes too large.

4.1 Motion control fundamentals

To be able to discuss specific approaches of the motion control scenarios,
some terminology and definitions must be presented.
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4.1.1 Operating spaces

The most relevant operating spaces of a vehicle are (Breivik & Fossen 2009)

Work space: A physical space where the vehicle moves. For a car, this is
the planar space:

MW ∈ R
2. (4.1)

Configuration space: Defines a set of variables which is sufficient to spec-
ify all points of a rigid-body vehicle in the work space. For a car, this
is the planar position and the orientation of the car:

MC ∈ R
2 × S, (4.2)

where S ∈ [0, 2π]. A configuration variable is often denoted as a degree
of freedom (DOF).

4.1.2 Actuation properties

When controlling a vehicle, it is often distinguished between different degrees
of actuation (Fossen 2002)

Full actuation: Independent control of each DOF can be obtained simul-
taneously.

Underactuation: The converse of full actuation, that is, independent con-
trol of each DOF is not possible.

The path scenarios considered in this thesis is a subset of all possible tasks
in the configuration space. Specifically, when following a path, there are no
explicit restrictions on the orientation of the vehicle. This is an important
relaxation, since underactuated vehicle cannot independently control each
degree of freedom. Hence, the considered path scenarios can be achieved with
underactuated vehicles, provided that the paths are feasible with respect to
the vehicle maneuverability constraints.
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4.1.3 Kinematics

Kinematics only includes the geometrical aspects of motion. The guidance
and control laws need a mathematical description of the vehicle relative some
desired position and velocity. Hence, to accurately describe the vehicle in
the configuration space, each degree of freedom must be described relative a
reference frame.

Reference frames

We distinguish between global and local reference frames. The origin of
global reference frames are the Earth’s center, with the z-axis parallel to the
axis of rotation, pointing toward the North pole. These reference frames
are used to describe vehicle motion globally. Local reference frames have its
origin placed on a geographically stationary point, or on the vehicle itself. A
summary of the reference-frame definitions defined in (Fossen 2002) are:

Global reference frames

ECI: Earth-centered inertial frame {i}. This frame follows Earth’s elliptic
motion around the sun, but does not rotate around its own axis in the
manner the Earth in fact does. A geographical position on Earth is not
a constant coordinate in this frame.

ECEF: The Earth-centered Earth-fixed frame {e} is similar to {i}, but
also rotates with an angular speed ωe relative the zi-axis, making each
geographical position on Earth uniquely determined in this reference
frame.

Local reference frames

NED: The North-East-Down frame {n}. The origin of this frame is defined
relative to Earth’s reference ellipsoid. As the name suggests, the x-axis
points North, the y-axis East, and the z-axis downward toward Earth’s
center. By using the angles denoted longitude and latitude, the location
of the frame’s origin can be determined.
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BODY: The body-frame {b} is fixed to a point on the vehicle. Thus, by
considering the position and orientation of this frame relative a sta-
tionary reference frame, the specific configuration of the vehicle can be
determined, see Figure 4.3. Furthermore, the time rate of change of
the this frame’s positions are used to determine the vehicle’s linear and
angular velocity.

Figure 4.2: The origin of the ECEF-frame and the ECI-frame are identical.
The zn-axis of the NED-frame points toward the origin of the global reference
frames. Courtesy of (Hildrestrand 2010).

There exist a common nomenclature for marine motion variables (SNAME
1950). Necessary quantities to describe the vehicle in the configuration space,
and the vehicle’s linear and angular velocities will now be defined. The con-
figuration of a vehicle is defined relative a stationary reference frame. When
the stationary reference frame is the {n}-frame, the following definitions can
be made.
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Position and orientation Define the configuration of a vehicle in 3 DOF
as

η =

[
pn

Θ

]
=

⎡
⎣ N
E
ψ

⎤
⎦ ∈ MC , (4.3)

where MC is the configuration space (4.1). N and E is the North and
East position of the vehicle in [m], while ψ [rad] is the orientation of the
vehicle relative the {n}-frame. Unfortunately, η conflicts with the notation
of the η-spline, but since it is clear from the contex which vector is discussed,
alternative notation will not be introduced.

Linear and angular velocity The body-fixed velocity is

ν =

[
vb

ωb

]
=

⎡
⎣ u
v
r

⎤
⎦ ∈ R

3, (4.4)

where u and v [m/s] are time rate of change of the x-axis and y-axis of the
body-frame relative a stationary reference frame. Furthermore, r [rad/s] is
the angular speed of the vehicle.

Rotation matrices

To determine a position given in an arbitrarty reference frame {p} in an-
other reference frame {q}, a transformation is needed. This transformation
manipulates the original coordinates in such way that the same position now
is represented in the secondary reference frame. To achieve this, a rotation
between the reference frames is needed. A rotation matrix R is an element
in the special orthogonal group of order 3 (Egeland & Gravdahl 2002):

SO(3) =
{
R|R ∈ R

3×3, RR� = R�R = I, detR = 1
}
. (4.5)

Define Rq
p as the rotation matrix which transforms a position νp from the

{p}-frame to the {q}-frame:

νq = Rq
pν

p. (4.6)
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The principal Euler rotation matrix about the z-axis is:

Rz,ψ �

⎡
⎣ cosψ sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦ , (4.7)

where ψ is the rotation angle. For instance, transforming a velocity vector
νb in {b} to {n} is performed by

η̇ = νn = Rz,ψ(ψ)νb. (4.8)

As remarked in (Breivik 2010), the velocity vector of a vehicle is not nec-
essarily pointed in the same direction as the x-axis of the body-frame. To
successfully follow a path with an underactuated marine vehicle, it is not suf-
ficient to only steer the heading of the vehicle; the orientation of the velocity
vector must be controlled. We define the course angle as the orientation of
the velocity vector, while the heading is the orientation of the vehicle. The
difference between these orientations is called the sideslip angle β. We get
the relationship (Fossen 2002)

χ = ψ + β, (4.9)

see Figure 4.3.

Figure 4.3: The heading ψ is the orientation of the {b}-frame relative the
{n}-frame. χ is the orientation of the velocity vector of the vehicle relative
the {n}-frame. Adapted from (Breivik 2010).

33



34 Chapter 4. Vehicle motion control

4.1.4 Characterization of marine surface vessels

According to (Faltinsen 2005), one often divide vessels into three main cat-
egories depending on which forces dominate the interaction on the hull at
maximum speed. These categories are

Displacement vessels: Buoyancy forces dominate.

Semi-displacement vessels: Buoyancy forces no longer dominates over
hydrodynamic forces.

Planing vessels: Hydrodynamic forces dominates.

For instance, planing vessels have different dominating forces depending on
the actual speed of the vessel. Thus, if the intended tasks of a vessel are de-
fined in such way that the vessel must operate in many different displacement
regions, unified control of the vessel is difficult (Breivik 2010).

4.2 Vehicle characteristics

4.2.1 Vehicle dynamics

The task of following a predefined path introduces the challenge of controlling
the velocity vector of the vehicle. Since the vehicle has dynamics, neither the
magnitude, nor the orientation of the velocity vector can change abitrarily
fast.

The magnitude of the velocity vector

For most vehicles, the acceleration of speed is dependent on the speed itself,
hence a differential system is needed to predict the magnitude of the velocity
vector.

Let the vector p � [x, y]� represent the planar position of a vehicle relative
to the origin of a stationary reference frame. Further, let the magnitude of
the velocity vector be defined as U �

√
ẋ2 + ẏ2 ≥ 0. Then denote f(U)

as the acceleration function. Strictly speaking, f(U) depends on the actual
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control input, but that is omitted here. The following system represents the
simplified dynamics for the vehicle speed response in the general case:

U̇ = a (4.10a)

a = f(U). (4.10b)

Most ships have different characteristics when increasing or decreasing their
speed. A ship can be made to accelerate by using its propellers, while hy-
drodynamic damping forces can make it decelerate. Hence, f(U) is vehicle-
dependent and changes depending on acceleration or deceleration.

Figure 4.4: A Viknes 830 experiencing hydrodynamic damping. Courtesy of
www.maritimerobotics.no.

Angular speed

Recall that χ is the angle between the x-axis of a stationary reference frame
and the velocity vector of the vehicle. The velocity vector can then be written
as

dp

dt
= U

[
cos(χ)
sin(χ)

]
. (4.11)

The angular speed of the velocity vector is given by

χ̇ = ω, (4.12)
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where the relationship between the speed and angular speed is

U = ωR. (4.13)

For a given speed, there is a maximum angular speed of a vehicle. The
maximum angular speed can be estimated as a function of the vehicle speed:
ωmax(U) > 0. Although this function sometimes is assumed to be constant in
the area of interest (Yoshimoto et al. 2000, Bibuli, Bruzzone & Caccia 2009),
it is here assumed that it does in fact depend on the vehicle speed. The
inequality

χ̇ ≤ ωmax(U) (4.14)

must be satisfied in order not to violate the angular speed constraint. Hence,
there is an implicit relationship between the speed and the maximum angular
speed. Thus, the following inequality must also be satisfied:

U ≤ ωmax(U)

κ
, (4.15)

where U ∈ [Umin, Umax], and Umin and Umax is the smallest and largest
vehicle speed. κ = 1

R
(3.18) is the curvature.

Angular acceleration

A vehicle cannot obtain angular speeds instantaneously, there is a bounded
angular acceleration that must be obeyed. For a car, this corresponds to a
bounded turning rate on the wheels, while for a boat this can for instance
correspond to bounded angular speed on the rudder angle. The maximum
angular acceleration must obey

|χ̈| ≤ ω̇max(U), (4.16)

where ω̇max(U) > 0 is a given constraint.

4.2.2 Vehicle model

The most common way of modelling marine vessels are the vectorial model
representation of Fossen (Fossen 2002). This representation compactly de-
scribes each degree of freedom using matrices similar to those found in robot
modelling. From (Fossen 2002) we have

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ , (4.17)
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where

ν =
[
u, v, w, p, q, r

]�
(4.18)

η =
[
x, y, z, φ, θ, ψ

]�
(4.19)

are vectors of velocity and position/Euler angles, respectively. Furthermore,
M , C and D are inertia, Coriolis and damping matrices, respectively. g is
a vector of gravitational/buoyancy forces and moments.

Unfortunately, this model is constructed to be valid for low speed regimes in
the displacement region, and hence is not very accurate for higher speeds.
Thus, constructing a control law which satisfies this model may not be fruitful
when the model itself is inaccurate. The scope of this thesis is not construc-
tion of control laws, but rather desired state assignments constructed by a
guidance system. Hence, only a closed-loop model of the vehicle behavior is
presented.

The proposed model is a simplified version of a small vehicle. It simulates
the closed-loop behavior of the course χ [rad] and speed U [m/s] when the
reference signals χd and Ud are given.

Course model

Similar to the yaw-rate controller in (Breivik et al. 2008), define the course
rate as:

χ̇ = χ̇max(U)
χ̃√

χ̃2 + Δ2
˙̃χ

, (4.20)

where Δ ˙̃χ is a shaping variable which determines the rendezvous behavior of
the course rate when the course error becomes small. A small rendezvous
variable forces the course rate to faster attain the maximal course rate. This
model acts as a bounded low-pass filter, so there are no limitations on the
course acceleration. The angular speed is bounded by χ̇max(U) � ωmax(U).

Define the course error as

χ̃ � χd − χ, ∈ 〈−π, π] . (4.21)

To avoid possible wrap-around problems, care must be taken when calculat-
ing χ̃. Specifically, it cannot be calculated simply by taking the difference
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between the desired and actual course. Motivated by (Breivik et al. 2008),
employment of the four quadrant version of arctan yields the desired behav-
ior:

χ̃ = atan2(sin(χ̃), cos(χ̃)), (4.22)

where sin(χ̃) and cos(χ̃) can be calculated by

sin(χ̃) = sin(χd − χ) = sinχd cosχ− cosχd sinχ, (4.23a)

cos(χ̃) = cos(χd − χ) = cosχd cosχ+ sinχd sinχ. (4.23b)

Forward speed model

Small seaborne vehicles, such as USVs, start to plane at intermediate speeds.
In the semi-displacement/planing regions, the characteristics of the acceler-
ation is different than for the low speed displacement region. In (Breivik
et al. 2008) the step response of the surge speed revealed a rapid increase of
speed up to about 5 [m/s] and a more linear increase after that. Motivated
by this result, the response for low speeds is nonlinear, while the model has
constant acceleration for higher speeds. Furthermore, acceleration is slower
than deceleration, hence distinguishing between acceleration and deceleration
is important.

Define the speed error as

Ũ � Ud − U, (4.24)

such that when Ũ ≥ 0, an acceleration finds place:

U̇ = U̇max,acc,nl(U)
Ũ√

Ũ2 + Δ2
acc,nl

+ U̇max,l
Ũ√

Ũ2 + Δ2
l

, (4.25)

where U̇max,l is the maximal linear acceleration, and the maximal nonlinear
acceleration vanishes exponentially as

U̇max,acc,nl(U) = Ke−aaccU , (4.26)

where K > 0 and aacc > 0. Δacc,nl > 0 and Δl > 0 are shaping parameters
which determine what Ũ must be to give maximal nonlinear acceleration and
linear acceleration, respectively.
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When Ũ < 0, a deceleration finds place. The decelerating response is mod-
elled by

U̇ = U̇max,dec,nl(U)
Ũ√

Ũ2 + Δ2
dec,nl

+ U̇max,l
Ũ√

Ũ2 + Δ2
l

, (4.27)

where the nonlinear term dominates at higher speed according to

U̇max,dec,nl(U) = adecU, (4.28)

where adec > 0. Again, Δdec,nl > 0 and Δl > 0 are shaping parameters, where
the latter is identical with the one defined for linear acceleration.

Polar coordinate representation

The two closed-loop models just presented is a decomposition of the velocity
vector. This decomposition, which has been proposed in (Breivik 2010) and
references therein, is motivated by control laws that are able to control the
surge speed and the yaw rate. When the desired forward speed and course
are known, meaningful feedback action is possible from the desired values.
Figure 4.5 illustrates the decomposition of the velocity vectors.
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Figure 4.5: The decomposition of the velocity vectors into magnitudes and
orientations. Adopted from (Breivik 2010).
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Chapter 5

Motion control for path
scenarios

There are many different ways of constructing a vehicle motion control sys-
tem. As a whole, this system is complex and consists of many different
subproblems. A convenient way of structuring these problems is the princi-
ple of modularity. Each module solves its own problems, and by combining
all the modules, a fully functional motion control system is made possible.
This makes it easier to modify a specific part of the system without redesign-
ing the whole system. Furthermore, considering less comprehensive problems
individually are often easier than trying to solve the whole problem at once.

One possible way of dividing the motion control problem is shown in Figure
5.1. Each block takes care of their own problems, and output results when
the problems are solved. By changing the guidance system, different tasks
can be achieved with the same measurement and control system.

5.1 The guidance system

A guidance system is responsible for prescribing the commands needed to
achieve a desired motion in the physical environment in which a vehicle
moves. Typically, for underactuated vehicles the orientation and magnitude
of the velocity vector need to be determined. In general, a path maneuvering
problem can be divided into two objectives:
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Figure 5.1: Dividing a vehicle control system into subproblems.

Path Traversion: Assume that the vehicle is confined to move along a path,
that is, the velocity vector always points along the tangent of the path,
like trains. The vehicle has maneuverability constraints which must
be obeyed in order to stay on the path. In this case only appropriate
speed assignments are needed to fulfill the objective, constituting a
speed problem where U must be decided.

Path Convergence: The vehicle is not on the path and the orientation of
the velocity vector must be determined for the vehicle to converge to
the path. This is a steering problem where the appropriate orientation
of the velocity vector χ must be determined.

Figure 5.2 shows the idea of path traversion and path convergence. By com-
bining the two objectives, the total solution gives a complete guidance system
applicable to path maneuvering of underactuated vehicles. In accordance
with the path maneuvering definition, this guidance system does not only
consider the geometric aspects of a motion control scenario, but also the
vehicle maneuverability constraints.

In the next sections, methods for both these objectives are presented. In
Section 5.2 the path traversion problem is considered. The main challenge
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Figure 5.2: The concepts of path traversion and path convergence.

explored in this section is to determine the largest speed for which the vehicle
can have at a path point, and satisfy both current and future maneuverabil-
ity constraints imposed by the path curvature. Next, in Sections 5.3 to 5.6,
algorithms for path convergence are presented. The main obstacle in these
sections is to create guidance algorithms that try avoid too aggressive con-
vergence, or somehow optimalize the convergence. In Section 5.7 the path
maneuvering algorithm is combined with a path-tracking method, resulting
in a scheme for tracking a target on a path which is only defined a limited
distance ahead.

5.2 Path speed algorithm

5.2.1 Motivation

An important quality for many marine vehicles is the ability to follow a
given geometrical path accurately. This path can either be fully defined
beforehand or given such that only a limited distance ahead of the vehicle
is known. Since vehicles have maneuverability constraints, these limitations
cannot be ignored when following a path. Hence, the speed assignments must
be determined with care, employing information about the path. The topic
of this chapter is development of such a speed control algorithm.
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5.2.2 Previous work

Previous work on the topic of speed control for path-maneuvering purposes
include (Yoshimoto et al. 2000), where a speed control algorithm is employed.
The concept is developed for ground vehicles where the path is discovered as
the vehicle moves forward. The speed is adjusted such that the lateral accel-
eration does not exceed a permissible range and the curvature is used in the
determination of the commanded speed. The principles are based on simple,
yet beneficial physical considerations and are proven to work in experimental
trials with a model car. Nonetheless, there are some limitations worth men-
tioning. First, the lateral acceleration limit is chosen to be constant for all
speeds, which yields a suboptimal solution. Second, the commanded speed
is chosen to comply with the curvature at a given lookahead distance. The
lookahead distance is chosen to be sufficient for the whole speed range, so in
some cases the lookahead distance may be too conservative.

In (Fox et al. 1997), the motion dynamics of a mobile robot is used to deter-
mine admissible translational and rotational velocities. The paper deals with
constraints imposed by limited velocities and accelerations. Since it covers
an approach to collision avoidance, only velocites considered safe are chosen.
Although the task is not to follow a predefined path, interesting concepts
are presented, and in particular the dynamic window approach; “The dy-
namic window restricts the admissible velocites to those that can be reached
within a short time interval given the limited accelerations of the robot” (Fox
et al. 1997). This scheme results in a set of reachable velocites. A speed al-
gorithm which yields feasible command signals may result in a smooth and
desirable system response.

Recently, planar path-following algorithms employing heuristic speed adap-
tation has been proposed (Bibuli, Bruzzone & Caccia 2009). The advance
speed is based on path curvature measurements and steering action predic-
tions. Specifically, when the orientation is far from the desired value, the
speed is reduced to render faster convergence. The maximum curvature is
measured inside a prediction horizon ahead of the vehicle, and the speed is
determined such that it never exceeds the constraint imposed by the max-
imum curvature within the prediction horizon. However, this approach is
more conservative than a scheme that explicitly employs maneuverability
constraints in the speed decision.
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Figure 5.3: A Ferrari 458 Italia moving on a curved track. Courtesy of
www.collegecars.wordpress.com.

5.2.3 Along-path lookahead distance

The path parameterization provides information that can be used to plan the
vehicle speed ahead of its current location. Specifically, information about
the curvature κ(�) is particularly interesting. When the curvature is known
at a given path point, it is possible to calculate the highest speed that the
vehicle can have and still remain on the path given the curvature-associated
restrictions on its angular speed.

The full path information is not required, only a predefined along-path looka-
head distance is necessary. If the lookahead distance is large enough, the path
information provided by this interval is sufficient to yield feasible speeds in
order to fulfill future curvature constraints. A reasonable along-path looka-
head distance can be chosen as the stopping distance from maximum speed,
denoted Δd. We now proceed to develop the methods to be able to retrieve
the path information needed.

The lookahead system

The combination of (3.16) and (3.17) yields

ṡc = Up(t) (5.1a)

�̇c(t) =
ṡc

|p′
p(�c)| , (5.1b)
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Figure 5.4: Along-path lookahead distance Δd between the current position
and a desired future position. Here, s(�) is the arc length while pp(�) is a
point on the path.

which gives information about the vehicle’s current position, using the sub-
script c to indicate that the current position is considered. A similar scout
system can be used to obtain information about what is ahead. We call
the scout system state the future, with subscript f to indicate that this is
something the vehicle will experience in the future. The lookahead distance
is then the arc length between the current and future path point, see Figure
5.4. For the sake of simplicity, we let the current and future arc length s(�c)
and s(�f ) be denoted sc and sf , respectively. As can be seen from Figure
5.4, the desired value for the future arc length is

sf,d = sc + Δd. (5.2)

A feedback driving the scout system to the desired future path point is
needed. The difference between the actual and desired future arc length
is denoted

s̃ � sf − sf,d, (5.3)

and the control objective of the scout system becomes

lim
t→∞

s̃(t) = 0, (5.4)

achievable by controlling the along-path speed of the scout system. Specifi-
cally, by introducing a simple P-controller for the scout system, the objective
is achieved:

ṡf = Up(t) − kp · s̃(t), (5.5)

�̇f (t) =
ṡf

|p′
p(�f )| , (5.6)
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where kp > 0 is the proportional gain. Fortunately, the scout system is not
a physical system and hence the convergence can be arbitrarily fast.

Lyapunov analysis of the lookahead system

Introduce the radially unbounded control Lyapunov function (CLF) and its
time derivative

V (s̃) =
1

2
s̃2 > 0 ∀ s̃ �= 0 (5.7)

V̇ (s̃) = ˙̃ss̃, (5.8)

where the time derivative of s̃ is

˙̃s = ṡf − ṡf,d (5.9)

⇓ (5.1a) , (5.2) , (5.5) , Δ̇d = 0
˙̃s = −kps̃. (5.10)

Combining (5.8) and (5.10) gives

V̇ = −kps̃2 < 0 ∀ s̃ �= 0, (5.11)

which renders the lookahead error globally exponentially stable (GES), see
e.g. (Khalil 2002).

5.2.4 Speed assignment algorithm

The lookahead system provides information about the path ahead of the
current position. In order to utilize this information, it needs to be stored,
updated and retrieved at appropriate times. A database containing infor-
mation about the path segment, path parameter, arc length and curvature
can be used to assess appropriate speed limitations at different path points.
These speed limitations are stored in the database and updated as new in-
formation is received.

The database is outlined in Table 5.1. The three first columns of the database
represent information received from the lookahead system (5.1)-(5.6). The
contents of the remaining two columns will be explained in the subsequent
sections. Before elaborating the contents of these columns, it is worth point-
ing out that the database is constructed for a curve represented by a single
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path parameterization. In the case of piecewise path parameterizations, the
lookahead particle does not necessarily reside on the same curve segment as
the vehicle particle. Thus, modifications to the database must be applied to
make it compatible with piecewise curves.

� s(�) κ(�) Uc Uf

�1 s(�1) κ(�1) Uc(�1) Uf (�1|�f )
...

...
...

...
...

�f s(�f ) κ(�f ) Uc(�f ) Uf (�f |�f )

Table 5.1: Database of relevant path information.

The database in Table 5.2 is a modified version of Table 5.1 which is appli-
cable for piecewise curves. The notation is this database is as follows: �k,


indicates that this parameter value belongs to the path parameterization de-
fined by Pk, and that it is the -th entry of the database. In the following,
the explanation of the two last columns will be done by referring to Table
5.1, with the understanding that these considerations also applies for Table
5.2.

Pk �k s(�k) κ(�k) Uc Uf

Pi �i,1 s(�i,1) κ(�i,1) Uc(�i,1) Uf (�i,1|�j,f )
...

...
...

...
...

...
Pj �j,f s(�j,f ) κ(�j,f ) Uc(�j,f ) Uf (�j,f |�j,f )

Table 5.2: Database of relevant path information, extended to piecewise
curves.

Current curvature-constrained speed restriction

When the curvature on a path point is known, it is possible to calculate the
maximum speed at which the vehicle is able to follow the curvature at this
point. This speed restriction is denoted Uc. Recall from (4.13) that U = ω

κ
,

where the curvature κ(�c) is calculated with (3.20).

The maximum angular speed of a vehicle can be estimated as a function of
vehicle speed: ωmax(U) > 0. Hence, there is an implicit relationship between
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5.2. Path speed algorithm 49

Figure 5.5: The maximum speed as a function of the arc-length distance,
when a critical curvature is discovered at �f . Uf is updated in the interval
Δi, between s(�i) and s(�f ).

the maximum speed and the maximum angular speed. Thus, the following
objective function must be solved:

min
Uc

∣∣∣∣Uc − ωmax(Uc)

κ(ωc)

∣∣∣∣ (5.12a)

s.t. 0 < Umin ≤ Uc ≤ Umax. (5.12b)

In general, it is difficult to draw any conclusions from this optimization prob-
lem, but it should be noted that an explicit solution can be obtained in most
practical cases. An explicit solution is preferred due to the computational
demand of solving the objective function.

Future curvature-constrained speed restriction

The whole point of having a lookahead system is to utilize information about
future curvature information. Since the vehicle cannot change speed arbi-
trarily fast, the speed restrictions close to a sharp turn should decrease in
an ordinary fashion. Specifically, the system (4.10), with f(U) equal to the
decelerating response of the vehicle should be used to figure out when the
vehicle should start to decelerate in time to satisfy (5.12b) and thus stay on
the path.

The rightmost column of Table 5.1 contains the preliminary values for Uf .
The notation Uf (�i|�f ) indicates that Uf (�i|�f ) is estimated using the
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50 Chapter 5. Motion control for path scenarios

Figure 5.6: When Uf is updated, the smallest of the new and old Uf is chosen.

path curvature information provided by the scout system all the way up to
�f . As long as the arc length between these two path points is smaller than
the along-path lookahead distance Δd, the speed restriction at �i is not fully
determined. In other words, only Uf (�i|�f ) where s(�f ) − s(�i) ≥ Δd

constitutes a valid Uf .

The database contains so much information about the path that going from
maximum speed to a full stop is possible within the lookahead distance.
Nonetheless, for critical speed restrictions greater than zero at the lookahead
distance Δd an update of the whole Uf -column is unnecessary. The database
is therefore only updated a given distance interval Δi > 0 from which the
speed decelerates from Umax to the critical speed at the newly discovered path
point Uc(�f ), see Figure 5.5. Thus, Uf is only updated for � ∈ 〈�i, �f〉.
Another thing to be kept in mind is that the update interval may contain
several critical curvatures, meaning that the new Uf at a given point may
be larger than an already existing speed restriction. Hence, a check between
the new and old Uf must be performed, choosing the smaller one. Figure
5.6 shows the problem at hand. In the first part of the update interval, the
old speed restriction is smaller than the new one, so no update is performed.
When the new Uf becomes smaller, it is chosen in preference to the old Uf .
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Admissible speeds during short time intervals

The database now contains two speed restrictions that should not be vio-
lated in order to keep the vehicle on the path. However, since the vehicle has
dynamics, the speed cannot change arbitrarily fast. Thus, upper and lower
admissible speeds should be determined according to acceleration limitations
at each time step. By using the Bogacki-Shampine method for numerical
solution for ordinary differential equations (Bogacki & Shampine 1989), es-
timates of the admissible speeds for the next time step are possible. This
method is applied with following computations:

h = ti+1 − ti (5.13a)

k1 = f (U(ti)) (5.13b)

k2 = f

(
U(ti) +

1

2
hk1

)
(5.13c)

k3 = f

(
U(ti) +

3

4
hk2

)
(5.13d)

U(ti + 1) = U(ti) +
2

9
hk1 +

1

3
hk2 +

4

9
hk3. (5.13e)

Let facc(Uc(ti)) and fdec(Uc(ti)) represent the maximum acceleration and
deceleration at the speed Uc(ti), respectively. By substituting f(U) with
facc(Uc) and fdec(Uc) in (5.13), estimates of upper and lower admissible speeds
can be calculated. Denote Uacc(ti+1) as the upper limit, while the lower limit
is denoted Udec(ti+1).

Even though a vehicle has a more complex acceleration response than pre-
sented here, the interval [Udec, Uacc] represents more conservative speed changes
than Uc and Uf generally can do, and should thus be included in the final
decision of the reference speed.

Dynamic information window

As the vehicle moves along the path, the arc-lengths s(�c) and s(�f ) in-
crease, which means that new data is retrieved. Naturally, at some point data
gets old and hence irrelevant for the future speed decisions. The threshold
parameter is s(�c), since database entries with s(�) < s(�c) contain in-
formation about path points that already have been traversed. Discarding
useless database entries is performed continuously, always letting the upper-
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52 Chapter 5. Motion control for path scenarios

most entry of the database be the best choice when determining the reference
speed.

Decision of the reference speed

After calculating Uc, Uacc, Udec and Uf , it is now possible to decide the
reference speed for the next time step. Picking Uc and Uf from the uppermost
entry of Table 5.1, one must decide the highest speed possible not violating
the restrictions.

At a given path point it is not allowed to have a greater speed than Uc,
due to the curvature constraint at this point. Hence, this is the highest
possible speed no matter what, or else it is not possible to stay on the path.
Furthermore, Uf indicates the highest speed at the same point in order to
fulfill the curvature restrictions further ahead. For this reason, the chosen
speed must be equal or lower than Uf in order to not derail further ahead.
We get the following minimization:

Uref = min(Uc, Uf ). (5.14)

Given an initial speed U , the vehicle must accelerate or decelerate to arrive
at the reference speed. If, for example, Uc and Uf both are quite far from the
initial speed, the reference speed given by (5.14) is not admissible. We want
to generate reference speeds that are admissible, so we have to incorporate
Udec and Uacc in the minimizing expression. For whatever reason, the result
of the minimizing expression should always be within [Udec, Uacc], thus not
violating the acceleration limitations. To successfully satisfy these conditions,
the following minimizing expressions must be applied to ensure appropriate
behavior for the algorithm:

Algorithm 1 Uref

if Uc ≥ U then
Uref ← min(max(Udec, Uf ),min(Uacc, Uc))

else if Uc < U then
Uref ← min(max(Udec, Uc),max(Udec, Uf ))

end if

It should be noted that when Uc < U the reference speed does not necessarily
yield a feasible speed obeying the angular speed constraint. That is, when
Uref > Uc it is not possible to follow the path. This situation can occur when
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the deceleration function is too optimistic, or during bad initial conditions
on U.

5.3 Path convergence

5.3.1 Motivation

The task of following a predefined path has many application areas. Transit,
surveillance and systematic information gathering are all specific tasks where
realization of path following algorithms are of interest (Breivik 2010). A
measure of how well these tasks are executed depends on the eye of the
beholder, but one plausible measure of performance is the rate of convergence.
In other words, if there is an error from the desired state, how can the motion
control system feasible converge to the desired states in an beautiful manner,
without overshoot.

As discussed in Chapter 5, a guidance system, which is responsible for pre-
scribing desired velocities, can affect the rate of convergence. Specifically,
if the assignments are chosen with the vehicle maneuverability constraints
taken into account, desirable behavior may be achieved. If an already es-
tablished guidance law is used as a starting point, manipulation of the law’s
parameters alters the convergence behavior of the closed-loop system. If these
manipulations are done purposefully, a better convergence is made possible.

In the next section, previous contributions on the topic of path maneuvering
are presented.

5.3.2 Previous work

Since the turn of century, there have been several publications on path fol-
lowing for underactuated vehicles. In (Pettersen & Lefeber 2001, Fossen
et al. 2003, Fredriksen & Pettersen 2006) the line-of-sight (LOS) approach
have been investigated for straight-line path following. This approach mim-
ics the behavior of a helmsman aiming at a moving point on the straight line,
see Figure 5.7.

In (Breivik & Fossen 2009) this approach has been further upgraded, where
guidance laws allow the vehicle to follow circles and even curved paths. A
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54 Chapter 5. Motion control for path scenarios

Figure 5.7: The principle of line-of-sight steering. The desired course is
directed toward a moving point on the desired line, which is determined by
the lookahead distance Δ.

drawback of these contributions is the performance of the methods. That is,
for a constant speed, a constant lookahead may yield acceptable behavior,
but if the forward speed changes, a different lookahead must be used. Fur-
thermore, when the cross-track error is large, a more aggressive lookahead is
desirable, while for intermediate cross-track errors, a conservative lookahead
is appreciated, due to the vehicle maneuverability constraints.

To accommodate the vehicle maneuverability constraints, several authors
have addressed this problem by employing methods which take the con-
straints into account. An optimal guidance scheme for cross-track control
of underactuated underwater vehicles is considered in (Børhaug et al. 2006).
The authors propose a model predictive guidance (MPG) scheme to find
optimal commanded signals on the course rate. They compare the scheme
with conventional LOS-guidance with constant lookahead to illustrate the
improved convergence rate. Later, in (Pavlov et al. 2009, Oh & Sun 2010)
a model predictive control (MPC) algorithm is used on a straight-line path
following algorithm to update the lookahead distance in such way that a fast
convergence with minimal overshoot is achieved. For curved paths, the cur-
vature of the path influences the convergence of the vehicle. Thus, the path
information has be exploited in (Subbotin et al. 2006, Gomes et al. 2007) to
yield faster convergence to the path.

In the next section a steering law for regularly parameterized paths is pre-

54



5.3. Path convergence 55

Figure 5.8: Statoil’s process plant in K̊arstø, Norway. MPC is a design
method which is widely used in the process industry. The dynamics of ve-
hicles are relatively fast compared to process plant dynamics. Due to better
opportunities for increased computational speed, MPC has also found its
use in other control problems. In the last decade, several articles on MPC-
based vehicle motion control have emerged. Courtesy of Anders J. Steensen
/ Teknisk Ukeblad, www.tu.no.

sented. This steering law’s lookahead distance is manipulated in the subse-
quent chapters to achieve faster convergence.

Steering for regularly parameterized paths

Consider a particle with position p(t). This particle is not situated on the
path. We want the particle to converge to the path and move along the path.
To achieve this objective, the velocity vector of the particle must be decided.
The material in the next paragraphs is taken from (Breivik & Fossen 2009).
The orientation of the velocity vector is given by the steering law

χ(e) = χp(�) + χr(e), (5.15)

where χp is the path-tangential angle given by

χp(�) = atan2(y′p(�), x′p(�)), (5.16)
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56 Chapter 5. Motion control for path scenarios

where atan2(y, x) is the four-quadrant version of arctan, that is, atan2(y, x) ∈
〈−π, π]. The second term χr(e) is the path-relative steering angle:

χr(t) � arctan

(−e(t)
Δ

)
∈ 〈−π/2, π/2〉 . (5.17)

Furthermore, the deviation from the path is divided into two variables σ(t)
and e(t):

[
σ(t)
e(t)

]
=

[
cosχp − sinχp

sinχp cosχp

]T
(p(t) − pp(�)). (5.18)

σ(t) is called the along-track distance, while e(t) is the cross-track error.

The path parameter is given by

�̇ =
U(t) cosχr(e) + γσ(t)

|p′
p(�)| , (5.19)

where γ > 0. The control objective is

lim
t→∞

[
σ(t)
e(t)

]
= 0. (5.20)

The idea of the algorithm is to point the velocity vector toward a point on
the tangent of the direct projection of p(t) onto the path. To fulfill the
objective, pp(�) can collaborate with p(t) by reducing σ(t). This is achieved
with (5.19). Figure 5.9 illustrates the principle of the steering algorithm.
The path-fixed reference frame {p} has been rotated a positive angle χp

relative to the stationary reference frame {s}. The x-axis of {p} now points
along the tangent of the path at the path point pp(�). For a more thorough
explanation, the reader is encouraged to consult (Breivik & Fossen 2009).

Extensions due to piecewise paths The steering law just presented is
constructed for continuous paths, which is parameterized with a continu-
ously increasing parameter. To make the law applicable for piecewise paths,
where the parameter variable not necessarily is strictly increasing, care must
be taken when transferring from one parameterization to the next. By re-
parameterizing each curve segment, such that the parameter variable be-
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Figure 5.9: The principle of steering for regularly parameterized paths.
Adapted from (Breivik & Fossen 2009).

comes continuously increasing is one possible solution:

Pk : � ∈ [�k,0, �k,1] (5.21)

Pk+1 : � ∈ [�k,1, �k+1,1] (5.22)

Pk+2 : � ∈ [�k+1,1, �k+2,1] (5.23)
... (5.24)

Another solution is to let the parameter variable be untouched, and solve
the problem by other means. Specifically, when the numerical integral (5.19)
exceeds the upper limit of the currently active curve segment Pk, it must
be reset to the corresponding parameter value �k+1,t+1 of the next curve
segment Pk+1. Figure 5.10 displays the relevant quantities needed to solve
the problem. To find this parameter value, some calculations must be done.
First, the arc-length distance between the previous time step’s parameter
value �k,t and the currently desired parameter value �k,t+1 must be calcu-
lated. From (3.11) we have

s =

∫ �k,t+1

�k,t

∣∣p′
p(u;Pk)

∣∣ du. (5.25)
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Next, the arc-length from �k,t to �k,1 is found:

s1 =

∫ �k,1

�k,t

∣∣p′
p(u;Pk)

∣∣ du. (5.26)

Now, the arc-length to be travelled on the new curve segment is known as

s2 = s− s1. (5.27)

Hence, the desired parameter value can be found by solving the arc-length
equation for the new curve segment with respect to the upper limit of the
integral

s2 =

∫ �k+1,t+1

�k+1,0

∣∣p′
p(u;Pk+1)

∣∣ du, (5.28)

which unfortunately cannot be solved explicitly in the general case. Thus,
a numerical method must be employed. For instance, Newton’s method can
be used. See Appendix C.4.

Figure 5.10: Quantities involved when transferring from one curve segment
to the next.

5.4 Path convergence for straight lines

If the steering law presented in Section 5.3.2 is employed, it is possible to
investigate the course rate during the convergence phase. The time derivative
of the course angle (5.15) is

χ̇(e) = χ̇p(�) + χ̇r(e), (5.29)

and since the path-tangential angle χp is constant for a straight line, we get

χ̇(e) = χ̇r(e) (5.30)

χ̇r(e) =
d

dt

(
arctan

(−e(t)
Δ

))
(5.31)

=
eΔ̇ − ėΔ

Δ2 + e2
. (5.32)
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By also using Pythagoras’ theorem on quantities in Figure 5.11, ė can be
rewritten to

ė = U sinχr =
−Ue√
Δ2 + e2

, (5.33)

which yields the following expression for the course rate

χ̇r(e) =
eΔ̇ − −UeΔ√

Δ2+e2

Δ2 + e2
. (5.34)

Figure 5.11: Geometric relationship between different quantities.

The course rate is the same as the angular speed of the vehicle, and hence
we get the following constraint from (4.14) when steering the vehicle

|χ̇r(e)| ≤ ωmax(U). (5.35)

This motivates a choice of Δ in such way that this constraint is never violated.

5.4.1 Semi-constant lookahead

First, let us consider the case where the time derivative of the lookahead
distance is constant for constant speed. Equation (5.34) reduces to

χ̇r(e) =
UeΔ

(Δ2 + e2)
3
2

. (5.36)

Differentiate (5.36) with respect to the cross-track error:

dχ̇r

de
=

UΔ

(Δ2 + e2)
5
2

(Δ2 − 2e2). (5.37)
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Next, set this derivative to zero, and find the corresponding cross-track error:

dχ̇r

de
!

= 0 → Δ2 − 2e2 = 0 → e = ± Δ√
2
. (5.38)

By using this cross-track error, we can find an expression for the lookahead
distance needed to respect the angular speed constraint (5.35). The maxi-
mum angular speed becomes

χ̇r|e= Δ√
2

= χ̇r,max =
2

3
√

3

U

Δ
, (5.39)

and by substituting χ̇r,max = ωmax(U) and solving for Δ, we get

Δ(U) =
2

3
√

3
Rmin(U), (5.40)

Rmin(U) =
U

ωmax(U)
. (5.41)

This lookahead is constant for a constant speed U, and hence is called a
semi-constant lookahead. Equation (5.40) reveals that the lookahead dis-
tance is proportional to the smallest circle the vehicle can follow at a given
speed. Figure 5.12 shows that with the constant lookahead proposed here,
the angular speed remains within feasible bounds. This choice is conserva-
tive, since more aggressive lookahead distances may still obey the angular
speed constraint for cross-track errors other than e = ±Δ/

√
2. Next, we will

consider the case where we let the lookahead distance vary as function of the
cross-track error.

5.4.2 The principle of circular convergence

When following a circle, the angular speed is constant. If we manipulate the
lookahead distance in such way that the vehicle follows a circle during the
convergence toward the straight line, the angular speed is bounded. We will
now consider the geometric aspects needed to achieve this objective.

From Figure 5.13 it can be seen that (AB ⊥ DE)∧(BC ⊥ EF )∧(AC ⊥ DF ).
This implies that the triangles �ABC and �DEF are similar triangles.
Similar triangles have the same shape, but one triangle is a scaled version
of the other. Corresponding sides of the triangles are proportional to each
other, hence we have

AB

DE
=
BC

EF
=
AC

DF
. (5.42)
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Figure 5.12: The angular speed for different speeds and cross-track errors,
when using semi-constant lookahead.

Figure 5.13: Circular convergence to straight line.
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Since most of the sides of both triangles are known, it is possible to calculate
Δ through the proportional relationship in (5.42). We get

Δ

R− |e| =
|e|
b
, (5.43)

where b is calculated using Pythagoras’ theorem:

b2 = R2 − (R− |e|)2 (5.44)

⇓
b =

√
2R|e| − e2. (5.45)

Substitute the expression for b into (5.43) and do some algebraic simplifica-
tions, we get the following expression for the lookahead distance

Δ(e) = (R− |e|)
√

|e|
2R− |e| , 0 < |e| < R. (5.46)

The choice of Δ(e) yields a circular convergence toward the straight line.
The radius of convergence equals R, and if the choice of U satisfies (4.15),
the course rate is within the constraints imposed by (5.35). To make sure
the angular speed is within feasible bounds, the expression for χ̇r(e) must be
investigated.

Desired course characteristics The course rate can be shown to be

χ̇r = sgn(e)
U

R
, (5.47)

see Appendix C.2 for computational details. By combining (5.35) and (5.47)
we get

|χ̇r(e)| =

∣∣∣∣sgn(e)
U

R

∣∣∣∣ ≤ ωmax(U), (5.48)

where R is the radius of convergence chosen in the expression of Δ. Recall
from (5.41) that Rmin(U) is the smallest radius for which (4.15) is satis-
fied for a given forward speed U. Equation (5.48) is then satisfied whenever
R ≥ Rmin(U). This indicates that the choice of Δ respects the angular speed
constraint. When R is close to Rmin(U), the steering law is working close
to the angular speed constraint and hence slack is introduced when R is in-
creased. In Figure 5.14 the lookahead distance is shown for different forward
speeds and cross-track errors when ωmax(U) = 0.4 [rad/s] and R = Rmin(U).
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Figure 5.14: The lookahead distance when using the circular convergence for
different speeds and cross-track errors.

The circular convergence only yields a G1-continuous path, that is, the an-
gular speed has steps whenever there is a transition from a circular path to
a straight line. Steps in the angular speed is impossible for physical vehi-
cles, thus, the proposed approach must be improved to also obey an angular
acceleration constraint.

5.4.3 Path convergence with angular acceleration con-
straint

To achieve a convergence toward a straight line when there is a angular ac-
celeration constraint, transition phases with bounded angular acceleration
must be developed. A possible solution is to combine the circular conver-
gence with transition phases to obey both angular speed and acceleration
constraints. We know from Section 3.3 that clothoids possess desirable prop-
erties such as bounded angular acceleration for particles following its curve.
Hence, clothoids can be used to develop feasible transition phases.

Figure 5.15 illustrates the principle of the proposed approach. The conver-
gence consists of three phases, two transistion phases made of clothoids, I
and III, and a circular phase in between, denoted II. There are some aspects
that need to be enlightened in order to be able to determine the appropriate
course angle.
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Figure 5.15: Desired path with transition phases.

Scaling the clothoids

Recall that for a given speed U, there is a upper curvature for which the
vehicle is able to follow the path. Thus, the corresponding radius Rmin is the
smallest circle the vehicle can follow. Let R0 ≥ Rmin be the desired radius on
the circular path. We need to find the scaling of the clothoids so that both
the angular speed constraint (4.14) and the angular acceleration constraint
(4.16) are obeyed.

Let ϑ0 be the parameter value of the clothoid for which it touches the circular
path. We know that the curvature of the clothoid equals the one of the
circular path where they meet, hence from (3.38) we find that the scaling of
the clothoid is

a = R0

√
ϑ0. (5.49)

Contact angle between the clothoid and the circle

Next, we need to determine ϑ0. Since we have assumed that the maximum
angular acceleration constraint has the same magnitude as the deceleration
constraint, both clothoids meet the circle with the same parameter value,
that is ϑI,0 = ϑIII,0 = ϑ0. For this reason, the circular arc must be equally
shared between the clothoids. Recall that ϑ is the angle of the tangent of the
clothoid with respect to the x-axis of the clothoid’s reference frame, and thus
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ϑ0 must be in the interval 〈0, π/4], see Figure 5.16. The angular acceleration
of a clothoid is constant and depends on the scaling a. Consequently, we
can determine ϑ0 by maximizing the angular acceleration. From (3.44) and
(4.16) we have

ω̇ =
U2

2a2
≤ ω̇max (5.50)

a2 =
U2

2ω̇max

, (5.51)

and by substituting the expression for the scaling (5.49) and solving for ϑ0

we get

ϑ0 =

(
U

R0

)2
1

2ω̇max

∈
〈

0,
π

4

]
, (5.52)

where R0 = Rmin. We have required that ϑ0 falls within a validity interval.
In some cases the calculation yields a value outside this interval. This means
that the angular acceleration is too small to be able to reach the desired
curvature within the interval 〈0, π/4]. In this case we must increase the radius
of the circular path so that ϑ0 enters the required interval. We minimize R0

by solving (5.52) with ϑ0 = π
4
:

R0 = U

√
2

πω̇max

. (5.53)

To summarize, if the contact angle ϑ0 ∈
〈
0, π

4

]
, R0 = Rmin, otherwise ϑ0 = π

4

and R0 is chosen according to (5.53).

Placement of the circular path

The shortest distance from the desired straight line to the circular path is
denoted l0, as depicted in Figure 5.16. The center of the circle is given by
(3.39) with ϑ = ϑ0:

m(ϑ0) =

[
mx

my

]
= p(ϑ0) +

1

κ(ϑ0)

[ − sin(ϑ0)
cos(ϑ0)

]
, (5.54)

and by consulting Figure 5.16 once more, we can see that

l0 = my −R0. (5.55)
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Figure 5.16: Relevant quantities with respect to placement of the clothoid
reference frames.
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With these quantities in place, we focus our attention toward placing the
curves in relation to each other. The resulting trajectory constitute a de-
sired path which respects the vehicle maneuverability constraints during the
convergence. We want to extract the desired course angle from this trajec-
tory only by knowing the cross-track error. The following sections describe
the method for each of the phases.

The first transition phase

Transforming the cross-track-error to the clothoid parameter value
Denote the reference frame for phase I as {I}. For positive cross-track er-
rors, the path-fixed reference frame {p} has its y-axis parallel with the x-axis
of this frame, but in opposite direction, see Figure 5.16. The translational
displacement of {I} with respect to the yp-axis of {p} can be found by con-
sidering quantities in Figure 5.16. By adding: i) the shortest distance l0 from
the path to the circle; ii) the distance from this point to the contact point
JI,0 along the yp-axis; and iii) the distance from origo of {I} to JI,0 along
the xI-axis, we get

e0 = l0 +R0 (1 − sin(ϑ0)) + aC(ϑ0), (5.56)

where a is the clothoid scaling and C(ϑ0) is calculated by (3.35a). Hence,
for a given cross-track error e in {p}, the corresponding x-value in {I} is

xI(e) = e0 − |e|, |e| ∈ [l0 +R0(1 − sin(ϑ0)), e0] . (5.57)

Equation (5.57) together with the clothoid scaling and the contact angle gives
sufficient information to determine the desired course χr(e).

To find the course angle, we first equate the x-coordinate of the clothoid
(3.36) with xI(e) (5.57):

aC(ϑI) = a

∫ ϑI

0

cos(u)√
u

du = xI(e), (5.58)

and solve this equation with respect to ϑI . This is an implicit function, so a
numerical method must be used. Define

gI(ϑ) = aC(ϑ) − xI(e) = 0, ϑ ∈ 〈0, ϑ0] , (5.59)

g′I(ϑ) = a
cos(ϑ)√

ϑ
, (5.60)
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and by iteratively computing the approximation of Newton’s root-finding
method (C.32):

ϑn+1 = ϑn − gI(ϑn)

g′I(ϑn)
, (5.61)

it should converge to the correct value for ϑI(e), provided that the initial
guess is sufficiently close. From (C.46) in Appendix C.5 we have that

ϑn=0 =
d2I
8

(
1 +

1

α2
I

)
, (5.62)

where dI = xI(e)
a

and αI =
(

1 − π2

160

)
is a reasonable initial guess.

The lookahead distance ΔI(e) Let ϑI(e) be the solution of (5.58). By
rotating ϑI(e) to the {p}-frame, we find the desired course angle for this
phase to be

χr(e) = −sgn(e)
(π

2
− ϑI(e)

)
∈ ±

[π
2
− ϑ0,

π

2

]
, (5.63)

see Figure 5.17.

Figure 5.17: Trigonometric relations between {p} and {I}.

As described in Section (5.3.2), we can also express the desired course as a
function of the lookahead distance ΔI(e). By inspecting Figure 5.17, we can
see that the lookahead distance can be expressed with the cross-track error
and ϑI(e)

ΔI(e) = |e| tan (ϑI(e)) . (5.64)
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Desired course characteristics Because of the linearly increasing curva-
ture along the clothoid path, choosing the lookahead distance according to
(5.64) will yield a linearly increasing course rate

χ̇r(e) = sgn(e)Uκ (ϑI(e)) = sgn(e)
U

R (ϑI(e))
, (5.65)

see Appendix C.3.1 for computational details. The curvature increases from
κ(0) = 0 to κ(ϑ0) = 1

R0
as it meets the circular path.

Furthermore, the course acceleration is constant since the course rate changes
linearly. From (3.44) we have

ω̇ = χ̈r(e) = sgn(e)
U2

2a2
, (5.66)

and by inserting the clothoid scaling from (5.49), we can write

χ̈r(e) = sgn(e)

(
U

R0

)2
1

2ϑ0

. (5.67)

If we also substitute ϑ0 from (5.52) we confirm that the angular acceleration
is constant in this phase, obeying the angular acceleration constraint:

χ̈r(e) = sgn(e)

(
U

R0

)2
1

2
(

U
R0

)2
1

2ω̇max

(5.68)

= sgn(e)ω̇max. (5.69)

Circular convergence phase, revisited

When the cross-track error becomes smaller than a given limit, phase I is no
longer valid and the vehicle enters the circular phase, denoted phase II. In
Section 5.4.2 the circular phase was discussed when the desired straight line
was tangent to the circle. Now, the circle is placed above the straight line,
so a slight modification of the lookahead distance formula (5.46) must take
place. Consider Figure 5.18 with the circle displaced a distance l0 above the
desired straight line. By using the lookahead distance formula for the circular
convergence as a starting point, we can lengthen this lookahead so that it
aims at the desired straight line and not just the tangent of the circle. Once
more, we can use the fact that �ABC and �DEF are similar triangles, and
corresponding sides are scaled versions of each other. The figure shows that

ΔII

Δ
=

|e|
|e�| , (5.70)
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and using |e| = l0 + |e�|, the lookahead distance of phase II is

ΔII(e) = Δ(|e| − l0)
|e|

|e| − l0
, |e| ∈ III (5.71)

where Δ(|e| − l0) is the original formula for circular convergence (5.46) and
III is the validity interval for phase II. By studying Figure 5.16, we conclude
that

III = 〈l0 +R0(1 − cos(ϑ0)), l0 +R0(1 − sin(ϑ0))〉 . (5.72)

As expected, this interval diminishes for increasing ϑ0 and vanish for ϑ0 = π
4
.

Figure 5.18: ΔII is a scaled version of Δ when l0 > 0.

The second transition phase

Transforming the cross-track-error to the clothoid parameter value
The transition phase with decreasing curvature is entered when the cross-
track error

|e| ≤ l0 +R0(1 − cos(ϑ0)). (5.73)

This phase, denoted phase III, has similar properties as phase I. Luckily, it is
simpler to figure out the parameter value ϑIII(e) compared to ϑI(e). Figure

70



5.4. Path convergence for straight lines 71

5.16 reveals that the y-axis of {p} and {III} are parallel in the same direction
for e > 0. Hence,

yIII(e) = |e|, |e| ∈ [0, l0 +R0(1 − cos(ϑ0))] . (5.74)

Furthermore, equating the y-coordinate of the clothoid (3.35b) with yIII(e)

aS(ϑIII) = a

∫ ϑIII

0

sin(u)√
u

du = yIII(e), (5.75)

and solving with respect to ϑIII , it is possible to determine the desired course
angle. Again, this is an implicit function that has to be solved with Newton’s
root-finding method. Define

gIII(ϑ) = aS(ϑ) − yIII(e) = 0, ϑ ∈ 〈0, ϑIII,0] , (5.76)

g′III(ϑ) = a
sin(ϑ)√

ϑ
, (5.77)

and by iteratively computing the approximation of Newton’s root-finding
method (C.32):

ϑn+1 = ϑn − gIII(ϑn)

g′III(ϑ)
, (5.78)

the approximation converges to ϑIII(e) for a proper choice of the initial ϑIII .
Equation (C.55) in Appendix C.5 provides a feasible initial choice:

ϑn=0 =
1

2

(
3dIII

2

)2/3
(

1 +
1

α
2/3
III

)
, (5.79)

where dIII = yI(e)
a

and αIII = 1 − π2

224
.

The lookahead distance ΔIII(e) The desired course angle for phase III
is simply

χr(e) = −sgn(e)ϑIII(e) ∈ ± [0, ϑ0] , (5.80)

and the lookahead distance is

ΔIII(e) =
|e|

tan(ϑIII(e)) + Δϑ

, (5.81)

see Figure 5.19. Δϑ > 0 is a small variable to avoid singularity when ϑIII = 0.
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Figure 5.19: Trigonometric relations between {p} and {III}.

Desired course characteristics Similar to phase I, the curvature changes
linearly along the clothoid path. However, since the path parameter ϑIII(e)
decreases in this phase, the course rate approaches zero linearly

χ̇r(e) = sgn(e)Uκ (ϑIII(e)) = sgn(e)
U

R (ϑIII(e))
, (5.82)

see Appendix C.3.2 for computational details. The curvature decreases from
κ(ϑ0) = 1

R0
to κ(0) = 0 as it meets the desired straight line.

By following the same procedure as for phase I, we can show that the angular
acceleration is constant in this phase. The difference in the deduction is that
the along-path speed has changed sign to negative, which yields a negative
acceleration. Specifically, (3.44) becomes

ω̇(ϑ) = χ̈r(e) = −sgn(e)
U2

2a2
, (5.83)

and the course acceleration, or more precisely, the course deceleration is

χ̈r(e) = −sgn(e)

(
U

R0

)2
1

2ϑ0

(5.84)

= −sgn(e)

(
U

R0

)2
1

2
(

U
R0

)2
1

2ω̇max

(5.85)

= −sgn(e)ω̇max, (5.86)

which satisfies the angular acceleration constraint (4.16).
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5.4.4 Concluding remarks

The proposed clothoid approach yields lookahead distances which take the
vehicle maneuverability constraints into account. Specifically, the angular
speed and angular acceleration remains within feasible bounds when follow-
ing the desired trajectory. Figure 5.20 shows qualitatively how different
quantities vary when converging toward a straight line. Table 5.3 provides a
convenient overview of the results developed in this chapter.

Property Expression Phase
± [l0 +R0(1 − sin(ϑ0)), e0] I

Cross-track error ±〈l0 +R0(1 − cos(ϑ0)), l0 +R0(1 − sin(ϑ0))〉 II
± [0, l0 +R0(1 − cos(ϑ0))] III

ΔI(e) = |e| tan(ϑI(e)) I

Lookahead distance ΔII(e) = Δ(|e| − l0)
|e|

|e|−l0
II

ΔIII(e) = |e|
tan(ϑIII(e))

III

χr(e) ∈ ± [
π
2
− ϑ0,

π
2

]
I

Course angle χr(e) ∈ ± 〈
ϑ0,

π
2
− ϑ0

〉
II

χr(e) ∈ ± [0, ϑ0] III
χ̇r(e) = sgn(e) U

R(ϑI(e))
I

Course rate χ̇r(e) = sgn(e) U
R(ϑ0)

II

χ̇r(e) = sgn(e) U
R(ϑIII(e))

III

χ̈r(e) = sgn(e)ω̇max I
Course acceleration χ̈r(e) = 0 II

χ̈r(e) = −sgn(e)ω̇max III

Table 5.3: Validity regions and equations for the different phases.

To further illustrate the lookahead distance for different speeds and cross-
track errors, a 3D-plot is provided in Figure 5.21 for a vehicle with the
following maneuverability constraints:

ωmax(U) = 0.4 [rad/s], (5.87)

ω̇max(U) = 0.1 [rad/s2]. (5.88)

To get a preliminary comparison of the three proposed algorithms, plots of the
lookahead distances as a function of cross-track error and the corresponding
theoretical angular speeds are provided in Figure 5.22. The forward speed
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Figure 5.20: Idealized behavior of different quantities when using the pro-
posed algorithm.
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Figure 5.21: The variable lookahead distance for different speeds and cross-
track errors.

is set to be U = 3 [m/s]. It can be seen that all the algorithms obey the
angular speed constraint in this idealized setting. What cannot be seen
however, is the angular acceleration of the approaches. Since the clothoid
approach respect this constraint, we can deduce from the figure that neither
the semi-constant, nor the circular convergence will obey this constraint.

Until now, we have only considered straight lines, where the path tangent is
constant. In the next chapter we will investigate the effect a varying path
tangential will have on the path convergence.

5.5 Path convergence for curved paths

The steering law in Section 5.3.2 uses knowledge about the tangent of the
path’s closest point to the vehicle’s position. Hence, the steering law depends
on the path tangent. This path tangent varies as the vehicle moves along the
path, and thus becomes a part of the course dynamics. In the next section
we examine how a varible path tangent influences the angular speed.
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Figure 5.22: The lookahead distance and angular speed for different looka-
head approaches.
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5.5.1 The angular speed

When a vehicle follows a curved path, the path tangent changes with respect
to time. The time derivative of the course is (5.29)

χ̇(e) = χ̇r(e) + χ̇p(�), (5.89)

but unlike the straight line scenario, we have to find an expression for χ̇p. By
using the result of χ̇r(e) in Chapter 5.4 and differentiate (5.16) with respect
to time, we get

χ̇(e) = sgn(e)
U

R(e)
+
d

dt

(
atan2(y′p, x

′
p)
)

(5.90)

= sgn(e)
U

R(e)
+

1

1 +
(

y′p
x′
p

)2

d
dt

(y′p)x
′
p − d

dt
(x′p)y

′
p

x′2p
, (5.91)

using the chain rule we can write

d

dt
(x′p) = x′′p�̇, (5.92)

d

dt
(y′p) = y′′p�̇, (5.93)

and the expression becomes

χ̇(e) = sgn(e)
U

R(e)
+

(y′′px
′
p − x′′py

′
p)�̇

x′2p + y′2p
. (5.94)

Furthermore, employing (3.15) and (3.16) yields

χ̇(e) = sgn(e)
U

R(e)
+

(y′′px
′
p − x′′py

′
p)

|p′
p(�)|3︸ ︷︷ ︸
κ(�)

Up, (5.95)

where we have recognized the expression for signed curvature (3.21). Lastly,
the along-path speed can be written as Up = U cos(χr), and thus the final
expression for the course rate is

χ̇(e) = U

(
sgn(e)

R(e)
+ κ(�) cos(χr(e))

)
. (5.96)

The angular speed should always stay within (4.14):

|χ̇| ≤ ωmax(U). (5.97)
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Since we cannot control χ̇p, this must be achieved by controlling the path-
relative course rate χ̇r. Combine (5.96) and (5.97):∣∣∣∣U

(
sgn(e)

R(e)
+ κ(�) cos(χr(e))

)∣∣∣∣ ≤ ωmax(U), (5.98)

which means that when e and κ have opposite signs, χ̇r can be increased
and the inequality still holds. On the other hand, if they have same signs,
χ̇r may have to be more conservative in order to fulfill the constraint. The
new constraint for χ̇r is

|χ̇r| ≤ ωmax(U) − sgn(e)χ̇p, (5.99)

|χ̇r| ≤ ωmax(U) − sgn(e)Uκ(�) cos(χr(e)), (5.100)

where we assume that the angular speed of the path never exceeds the max-
imum angular speed of the vehicle. By using measured values for U and
χr(e), this constraint can be used to make the convergence more conservative
or aggressive depending on the cross-track error and its signum. Specifically,
one can use the newly proposed angular speed constraint as the angular
constraint in the already proposed lookahead dynamics from Chapter 5.4.
However, with this choice of convergence, overshoot is not guaranteed to
be avoided. The curvature of the path ahead of the vehicle combined with
speed control must be employed to ensure proper convergence. These results
will not be employed in the path convergence algorithms, and must thus be
considered as future work.

5.6 Path-convergence heuristics

In this chapter, some additional heuristics are considered. The propositions
are formed to make the lookahead steering more robust and pratically appli-
cable.

5.6.1 Numerical issues

When the cross-track error is small, the lookahead distance becomes very
small. Since the sampling frequency of an implementation is limited, numer-
ical issues will arise and oscillations around the desired course is imminent.
Hence, slack must be introduced. This can be done by introducing a constant
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5.6. Path-convergence heuristics 79

lookahead in addition to the variable lookahead. The constant lookahead
may be chosen to be proportional to the semi-constant lookahead proposed
in Section 5.4.1:

Δ(U, e) = Δvar(e, U) + kcΔconst(U), (5.101)

where kc > 0, Δvar(e, U) the lookahead based on clothoids, and Δconst(U) the
semi-constant lookahead. This choice of lookahead makes the convergence
more conservative, but avoids the numerical issues if kc is chosen sufficiently
high.

5.6.2 Course error χ̃

The lookahead distances considered so far assume that the desired and actual
course are identical, and will remain so, provided that the vehicle maneuver-
ability constraints are obeyed. This is not a fair assumption, and is rarely
true in practice. The course error χ̃ is nonzero most of the time and affects
the course response. To compensate for this, slack should be introduced to
avoid a too aggressive response when the course error is large. Propose the
following heuristic lookahead distance taking χ̃ into account:

Δ(U, e, χ̃) = Δvar(e, U) + Δconst(U)(kc + kχ̃|χ̃|), (5.102)

kχ̃ > 0. This choice makes the convergence more conservative as the course
error increases.

5.6.3 Speed control and χ̃

If both the course error and the forward speed is large, the vehicle needs
to move farther before it is able to converge to the path. Furthermore, the
vehicle maneuverability constraints are more restrictive at higher speeds,
motivating a speed reduction if the course error is large. A similar approach
has been proposed in (Bibuli, Bruzzone & Caccia 2009). Let Ud(t) be the
desired forward speed. We wish to reduce this speed if the course error
increases. Define the reference speed

Uref(t, χ̃) = Umin + (Ud(t) − Umin)S(χ̃) ∈ [Umin, Ud(t)] , (5.103)

where Umin is the smallest obtainable speed, and S(χ̃) is a mapping function.
The mapping function maps the course error into a scaling, such that a small
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course error yields a large scaling, and vice versa. Thus, (5.103) will provide
a reference speed which depends on the course error. Mathematically, the
mapping function can be written as

S(χ̃) : [−π, π] �→ [0, 1] . (5.104)

A possible choice of the mapping function is

S(χ̃) =
1 + cos(χ̃)

2
, (5.105)

but this choice does not lend any shaping capabilities for the implementor.
Hence, we seek a bounded function which has shaping capabilities. Propose
the more flexible mapping function

S(χ̃) = tanh

(
1

kU |χ̃| + Δχ̃

)
, (5.106)

where kU > 0 and Δχ̃ > 0. Increasing kU will result in a more aggressive
reduction in speed when a course error appears. Δχ̃ > 0 is a small variable
to prevent singularity when χ̃ = 0.

5.7 Path tracking

5.7.1 Motivation

Recall from Section 4 that path tracking is a motion control scenario where
the objective is to track a target on a predefined path. This definition outlines
a scenario for which the motion of the target is fully defined prior to executing
the scenario. A practical application of the path tracking scenario may be the
problem of following the path of a leader vehicle at a specified distance. When
the surrounding environment is restricted, it is crucial to accurately track the
path of the leader vehicle. In many cases, the leader vehicle’s maneuvers may
not be fully determined beforehand, making the general definition for path
tracking inaccurate. If the path tracking definition is relaxed by letting the
leader motion be revealed during the course of the scenario execution, several
problems arise:

• How can the leader vehicle’s motion be purposefully translated into
a well-defined curve, making it applicable to a path tracking steering
regime?
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Figure 5.23: Yellow-billed ducklings tracking the motion of a mother
duck. Courtesy of Melvin Gray / The Wildfowl & Wetlands Trust,
www.wwt.org.uk.

• How should the path-tracking guidance law be constructed to guarantee
convergence to the desired target?

Next, some previous propositions will be presented.

5.7.2 Previous work

As already stated in Section 4, path maneuvering can be divided into two
tasks; a dynamic task and a geometric task (Skjetne et al. 2004). More
specifically, a path-following steering law can be used to converge the vehicle
to the path, while a speed adaptation regime makes sure the vehicle adheres
to the desired target point along the path.

In (Breivik & Fossen 2009) this approach was proposed with the path-
following steering law presented in Section 5.3.2, and a speed adaptation
law. The speed adaptation uses the error between the actual and wanted
parameter value of the path parameterization to create a bounded approach
speed toward the moving target point. However, different parameterizations
may require different tuning parameters, making them non-intuitive in the
general case. Furthermore, this method cannot be used if the path consists
of piecewise curve segments where the parameter value is not a continuously
increasing parameter.

These shortcomings have been overcome in (Bibuli, Parodi, Lapierre & Caccia
2009). A similar method has been proposed, dividing the problem into two
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separate tasks. Now, the speed adaptation depends on the arc-length devi-
ation between the artificial vehicle particle and the target particle, making
the deviation physically intuitive.

In the following sections, a similar method is developed. First, the objective
is formed. Then, two methods for online generation of G2-continuous paths
are presented. After that, the speed adaptation law is constructed together
with proofs from cascaded stability theory.

5.7.3 The path-tracking objective

As pointed out in Section 4, the path-tracking scenario can be divided into
two objectives

1. Path convergence

2. Path traversion

Mathematically, these two objectives can be formulated as

lim
t→∞

∣∣p(t) − pp(�(t))
∣∣ = 0, (5.107a)

lim
t→∞

∣∣pp(�(t)) − pp(�tp(t))
∣∣ = 0, (5.107b)

where p(t) is the vehicle position, pp(�(t)) is the projection of the vehicle
onto the path, and finally; ppt(�pt) is the artificial target particle.

The first objective is solved using the path-following algorithm outlined in
5.3.2. The latter objective is a speed adaptation objective which will be
elaborated on shortly. Figure 5.24 illustrates the problem at hand.

Figure 5.24: The path-tracking objective.
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5.7.4 Online path generation

In marine environments, many vessels are equipped with a tracking device
called Automatic Identification System (AIS). This system broadcasts infor-
mation about the vessel’s current state such as speed, position, course and
rate of turn (USCG 2010). Receivers of this radio-transmitted data gain
knowledge about the vessel’s movement. Unfortunately, this instantaneous
information is only broadcasted at certain variable time intervals, forcing
continuous information to be estimated from these discrete data packages.

By employing a Kalman filter or some other appropriate estimation tech-
nique, a continuous expression for the leader vehicle’s speed is obtained. In
the following, it is assumed that the leader vehicle’s speed is known with
satisfactory accuracy. To estimate the leader vehicle’s path, however, addi-
tional attention must be directed toward the continuity of the created curve
segments. Specifically, care must be taken when stitching curve segments
together, forcing G2 continuity where the segments meet. By doing so, the
created curve satisfies the restrictions outlined in Section 3.1.6, and hence
the curve is applicable for the already presented steering algorithm. We now
proceed to present different path generation algorithms.

Path generation algorithms

The problem of path generation is a well-studied topic with many applica-
tion areas. Thus, an extensive library of articles and approaches exists, each
approach with its own angle of attack, using methods from the respective
communities. In robot path planning, the problem is often to create a colli-
sion free trajectory, taking vehicle maneuverability constraints into account.
Early work include (Delingette et al. 1991, Fleury et al. 1995, Scheuer &
Fraichard 1997), where paths with continuous curvature were proposed. In
the last decade, numerous authors have proposed different approaches to
path planning, each optimal with respect to different objectives: (Nagy &
Kelly 2001, Guarino Lo Bianco & Piazzi 2000, Lepetic et al. 2003, Yang
et al. 2009), to mention only a few. Many of these approaches are complex
and often specialized for one particular setting. In the two next sections, ap-
plicable methods with sufficient properties are reviewed. It is assumed that
the leader vehicle is less maneuverable than the following vehicle, making the
leader vehicle’s path feasible for the following vehicle.
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The η−spline The objective of interpolating two configurations in planar
space is solved in (Piazzi & Guarino Lo Bianco 2000). A quintic (5th order)
spline is proposed:

p(�)� =
[

1 � · · · �5
]
⎡
⎢⎢⎢⎣
a0 b0
a1 b1
...

...
a5 b5

⎤
⎥⎥⎥⎦ , (5.108)

� ∈ [0, 1] . (5.109)

Rather than using blending functions, the approach is based on explicitly
solving the polynomial coefficients for the given configurations. This ap-
proach guarantees that G2 continuity between curve segments are maintained.
The equations for the polynomial coefficients can be found using the given
conditions, such as positions, specified tangent directions and signed curva-
tures at these positions:

p(0) = pA =

[
xA
yA

]
, p(1) = pB =

[
xB
yB

]
,

p′(0)
|p′(0)| =

[
cos(χA)
sin(χA)

]
, p′(1)

|p′(1)| =

[
cos(χB)
sin(χB)

]
,

κ(0) = κA, κ(1) = κB,

(5.110)

where χA and χB is given relative a stationary reference frame {s}, see Figure
5.25. Further, the signed curvatures are given according to the right-hand
rule.

Figure 5.25: The configurations needed to find the η−spline.

The coefficients that solve the configuration problem are found in Appendix
C.6. As this solution reveals, the coefficients depend on additional param-
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eters, denoted η =
[
η1 η2 η3 η4

]�
, hence the name η−splines. These

parameters are the shape parameters of the η−spline, but are not intuitive to
determine. In (Piazzi & Guarino Lo Bianco 2000), an optimization regime is
outlined, minimizing the rate of change of curvature. However, the optimiza-
tion problem is difficult to solve, so the same authors proposed a sub-optimal
solution based on heuristics. The following choice of η gives satisfactory re-
sults in most practical cases (Piazzi et al. 2003):

η1 = η2 = |pA − pB|, (5.111)

η3 = η4 = 0. (5.112)

Usability with AIS Since AIS provides information about speed, posi-
tion, course and rate of turn, the piecewise curve between arbitrary sampled
positions can be constructed. Specifically, both position and course condi-
tions can trivially be formed from the AIS-data. As for the curvature, the
use of different mathematical relationships is needed. First, the unsigned
curvature is found from (4.13) and (3.18):

κ =
|χ̇|
U
, (5.113)

where |χ̇| is the absolute value of the rate of turn, and U is the speed of the
vehicle. Next, by also utilizing the signum of the provided rate of turn, the
signed curvature is

κ =
χ̇

U
, (5.114)

making it possible to create a path similar to the leader vehicle’s path.

If a different method for gathering the leader vehicle’s state information is
used, η−splines cannot necessarily be applied. For instance, if only position
data is sampled, a different approach must be considered. In the next section,
one such method is reviewed.

A G2−continuous Catmull-Rom spline There exist many algorithms
for creating C2−continuous splines. However, since the curves needed to em-
ploy the proposed path-following algorithm must be regular, that is, having
non-vanishing path tangents, some of these algorithms cannot be used. In
the work of (DeRose & Barsky 1988) a G2−continuous interpolating spline is
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proposed. This approach is beneficial in online path generation due to its reg-
ularity, and interpolating properties. Now, a brief summary of this algorithm
is given, emphasizing its possible application for online path generation.

Given a control polygon V 0, · · · , V m, the idea is to construct additional
control points such that the resulting curve connects the original control
points with G2 continuity. This is done by using Catmull-Rom splines, β-
splines and Bézier curves.

A Catmull-Rom spline is a spline where the blending functions blend together
functions rather than control points (Catmull & Rom 1974). These functions
are called interpolating functions. In (DeRose & Barsky 1988) it is shown
that by constructing geometrically continuous interpolating functions, the
resulting curve can be made Gn continuous, with the proper choice of blend-
ing functions. The blending functions are taken from β-splines, which have
shaping capabilities through shape parameters.

Figure 5.26: Given the original control points V i, additional control points
Qq are created between the original control points. A Bézier curve is created
from the Q-polygon.

The construction algorithm is complex, so a thorough explanation will not
be given here, but a pseudocode is provided in Appendix C.7. For a detailed
explanation of the algorithm, the reader is recommended to consult (DeRose
& Barsky 1988). The output of the algorithm is a control polygon consisting
of six control points between each original pair of control points, see Figure
5.26. Recall that a Bézier curve interpolates the end points and approximates
the interior points. Hence, by finding the Bézier curve of the constructed
control polygon, an interpolating curve segment between two point is created.
This is simply done by using Qi, Qi+1, · · ·Qi+5 as the control polygon in
(3.30), where Qq is a control point in the constructed control polygon. When
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stitching several Bézier curves together, a G2−continuous curve is achieved.

The created piecewise curve has L6 locality with respect to the control points,
and L4 locality with respect to the shape parameters. On other words, per-
tubation of a control point affects six surrounding curve segments, while
changing a shape parameter only affects four. In the implementation con-
sidered here, the shape parameters are constant, with β1 = 1 and β2 = 0,
giving satisfactory behavior in our particular application. In fact, with this
choice, a regular C2-continuous piecewise curve is obtained.

Considerations for online path generation Since the curve has L6

locality, a minimum of six control points are needed to create a single curve
segment, that is, to create a curve segment between the points V k and V k+1,
two points before V k and two points after V k+1 are needed, as Figure 5.26
shows. Whenever a new point V k+4 becomes available, a new segment Pk+1

can be created. The creation of this segment uses the points from V k−1 to
V k+4. Hence this constitutes a First-in, first-out (FIFO) buffer with length
equal to six control points. This FIFO-buffer is outlined in Table 5.4. When
the buffer is populated, arrival of a new point results in creation of a new
curve segment. In an initial phase, the buffer may not populated. A segment
cannot be created before six points exist, so extrapolation of some kind might
be necessary to yield a curve in the vicinity of the following vehicle.

Curve segment Point

Pk

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩Pk+1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V k−2 ← Old
V k−1

⇑ Direction
V k

V k+1

V k+2

V k+3

V k+4 ← New

Table 5.4: FIFO-buffer for curve segment creation.

The Catmull-Rom approach puts restricting conditions on the location of the
target point with respect to the leader vehicle’s position. Specifically, if the
target particle is on a segment Pk between the positions V k and V k+1, the
position denoted V k+4 must be available before the target particle is finished
with the traversion of curve segment Pk. Hence, the target particle cannot
be closer to the leader vehicle than the arc length of three curve segments.
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Furthermore, some slack should also be added, so that the vehicle projection
can move past the target particle in a possible overshoot. Figure 5.27 shows
the problem at hand. We get

Δpt > slack +
3∑

i=1

Δk+i. (5.115)

Figure 5.27: Limitation on the desired along-path, path-tracking distance
Δpt.

As a remark it should be mentioned that the η−spline puts less restrictions
on the closeness of the target particle. Only a single curve segment between
the target particle and the leader vehicle is undetermined. It should however
be emphasized that if an AIS transponder is used, the sampling frequency
can vary greatly, adding another degree of uncertainty.

If (5.115) is not satisfied, two things can be done. Either extrapolation of the
leader vehicle’s position is needed, or increasing the sampling frequency of
the positions, if possible, making the arc-length between consecutive points
smaller.

5.7.5 The path-tracking system

Artificial target particle with offset correction

None of the proposed methods produce a 100% exact reconstruction of the
original path. Thus an offset in arc length between the real and generated
path is inevitable. This offset must be compensated for, if not, the target
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particle will eventually drift away from the desired arc length behind the
leader vehicle. If we assume that the real speed of the leader vehicle is
known, the numerical integral of this speed equals the distance covered by
the leader vehicle. Define the real distance covered by the leader vehicle
between the points V k and V k+1 as

Δk =

∫ tk+1

tk

U
(t)dt, (5.116)

where U
(t) is the real leader vehicle speed, tk and tk+1 is the sampling times
of the points, respectively. Further, let the corresponding arc length of the
generated curve segment Pk be (3.11)

Δ̂k �
∫ �1

�0

|p′
p,k(�)|d�. (5.117)

The error between these arc lengths should be compensated by the target
particle which follows the generated path. Define the offset

s̃offset,k � Δ̂k − Δk, (5.118)

which is the offset error for curve segment Pk. A positive offset means that
the generated curve segment is longer than the real segment, hence the target
particle must speed up to avoid drifting. Over time, the distance the target
particle must travel compared to the leader vehicle depends on the cumulative
offset each curve segment produce:

s̃offset =
∑
k

s̃offset,k. (5.119)

Let Utp(t) be the speed of the target particle. Propose a simple proportional
regulator with feedforward from the speed of the leader vehicle:

Utp(t) = U
(t) − kp,pt (s̃pt − s̃offset)︸ ︷︷ ︸
s̃d

, (5.120)

where kp,pt > 0 is the proportional path-tracking gain. Furthermore,

s̃pt(t) = stp(t) + Δpt − s
(t) (5.121)

is the difference in distance covered by the target particle stp(t) and leader
vehicle s
(t). Δpt is the along-path distance between the leader vehicle and
target particle, see Figure 5.27.
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If the real vehicle speed cannot be determined with sufficient degree of ac-
curacy, some other means for compensating the accumulating offset must be
constructed. For instance, when a position is sampled, it can be handed a
temporal condition, demanding the target particle to be close to this position
a specified time delay after the leader vehicle has been there. This will in
practice create similar steps in the desired target particle position, thus, the
same controller apply, with some modifications. These modifications will not
be considered here.

Now, an artificial target particle follows the created path at the desired along-
path distance behind leader vehicle. Next a path-tracking speed controller is
developed.

Path-tracking speed controller

The path-tracking speed controller must force the vehicle projection to the
desired target position represented by the target particle (5.107b):

lim
t→∞

∣∣pp(�(t)) − ptp(�tp(t))
∣∣ = 0. (5.122)

In a similar manner as in (Skejic et al. 2010), propose the following bounded
reference speed for the vehicle projection with feedforward from the leader
vehicle’s speed:

Up(t) = U
(t) + Ua,max
s̃p(t)√

s̃p(t)2 + Δ2
s

, (5.123)

where s̃p(t) = stp(t)−sp(t) and sp(t) is the arc length of the vehicle projection.
Furthermore, Ua,max is the largest approach speed toward the target particle,
and Δs is a shaping parameter determining the rendezvous behavior of the
approach speed.

The leader vehicle’s speed is chosen as the feedforward rather than the target
particle’s speed. This is due to the non-physical speeds the target particle
obtain when a new offset arrives. Physical speeds could been obtained with
a more conservative kp,pt, but it is better to compensate the offset-induced
error with the bounded feedback term. However, this choice complicates the
stability analysis somewhat, as will be obvious in the next section.
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Stability analysis

We can write the error states of the path-tracking system, which consists of
the target-particle correction and the path-tracking speed controller, as

s̃p(t) = stp(t) − sp(t), (5.124a)

s̃d(t) = stp(t) + Δpt − s
(t). (5.124b)

Taking the time derivatives of each term:

˙̃sp = ṡtp − ṡp, (5.125a)
˙̃sd = ṡtp + Δ̇tp − ṡ
 − ˙̃soffset, (5.125b)

and using the fact that the time derivative of the arc length is the speed,
Δ̇pt = 0, and with slight abuse of notation: ˙̃soffset = 0, which is true most of
the time, we can write

˙̃sp = (U
 − kp,pts̃d) −
(
U
 + Ua,max

s̃p√
s̃2p + Δ2

s

)
, (5.126a)

˙̃sd = (U
 − kp,pts̃d) − U
. (5.126b)

The error dynamics becomes the following cascaded system:

Σ1 : ˙̃sp = −Ua,max
s̃p√

s̃2p + Δ2
s

− kp,pts̃d, (5.127a)

Σ2 : ˙̃sd = −kp,pts̃d. (5.127b)

This system has similar form as the cascade system in (C.58). We now apply
Theorem C.3 to investigate the stability properties of the system. For this
theorem to be valid, each of the Assumptions C.1-C.4 must hold. Thus, we
must investigate the validity of these assumptions.

First, we define the system needed in Assumption C.1:

˙̃sp = −Ua,max
s̃p√

s̃2p + Δ2
s

. (5.128)

Furthermore, let x = col[s̃p, s̃d].
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Validity of Assumption C.1 Define the CLF and its derivative

V1(s̃p) =
1

2
s̃2p > 0 ∀sp �= 0 (5.129)

V̇1 = s̃p ˙̃sp, (5.130)

and substitute (5.128) we get

V̇1 = −Ua,max

s̃2p√
s̃2p + Δ2

s

< 0 ∀sp �= 0, (5.131)

which renders the system UGAS. In fact, linearizing the system around the
origin, it is obvious that the system also is ULES, see Appendix C.9. Thus,
the system (5.128) is UGAS/ULES.

From (5.129) we find α1, α2 ∈ K∞ to be

α1(s) = α2(s) =
1

2
s2, (5.132)

and from (5.130), the positive semidefinite function

W (s) =
s2√

s2 + Δ2
s

, (5.133)

and finally α4(s): ∣∣∣∣ δVδs̃p
∣∣∣∣ ≤ α4(s) = s. (5.134)

Equations (5.132)-(5.134) ensure that Assumption C.1 holds.

Validity of Assumption C.2 Define the CLF and its derivative

V2(s̃d) =
1

2
s̃2d > 0 ∀sd �= 0 (5.135)

V̇2 = s̃d ˙̃sd, (5.136)

and substitute (5.127b) we can conclude from

V̇2 = −kp,pts̃2d < 0 ∀sd �= 0 (5.137)

that Σ2 is UGES and Assumption C.2 holds.
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Validity of Assumption C.3 By consulting (C.58) we see that in our
system we have

g(t,x(t; t◦,x◦)) = kp,pt, (5.138)

so α5(s) can be defined as

α5(s) =
kp,pt
cg(s)

=
kp,pt
s
, (5.139)

where we have chosen cg(s) = s ∈ K. Next, α6(s) must satisfy (C.64):

α6(s) ≥ α4(α
−1
1 (s))α5(α

−1
1 (s)). (5.140)

We substitute the obtained functions for α4 and α5 with the inverse function
α−1
1 (s) =

√
2s as parameter and get

α6(s) ≥
√

2s
kt,pt√

2s
= kp,pt (5.141)

α6(s) � kp,pt, (5.142)

so that ∫ ∞

a

1

α6(s)
ds = ∞, a = 0, (5.143)

which makes Assumption C.3 valid.

Validity of Assumption C.4 The inequality (C.68)∣∣∣∣δV1δs̃p
g(t,x)

∣∣∣∣ ≤ λW (s̃p), |s̃p| > η > 0, (5.144)

must hold for r > 0, |s̃d| < r and λ > 0. Substitute expressions previously
calculated and get

|s̃pkp,pt| ≤ λUa,max

s̃2p√
s̃2p + Δ2

s

(5.145)

kp,pt ≤ λUa,max
|s̃p|√
s̃2p + Δ2

s

, (5.146)

which can be made valid with the proper choice of |s̃p| ≥ η > 0 and λ > 0.
Hence, Assumption C.4 is also valid.
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Conclusion Since all the Assumptions C.1-C.4 hold, we can conclude from
Theorem C.3 that the cascaded tracking system 5.127 is UGAS/ULES be-
cause −Ua,max

s̃p√
s̃2p+Δ2

s

majorizes kp,pt.

5.8 Path planning scenarios

5.8.1 Motivation and previous work

An autonomous vehicle that performs a path maneuvering task needs a path
to follow. Depending on the task at hand, the planning of the particular
path varies significantly. Often, a set of waypoints is provided where the
straight lines between consecutive waypoints are the ultimate goal. This is
common in shipping, where the objective is to move from a starting point
to a destination. One task of the path planning problem is to purposefully
determine the location of each waypoint in such way that the resulting path
is somehow optimal and collison free. Recent work on this account can be
found in (Nord 2010).

An area of application for unmanned aerial vehicles (UAV)s and unmanned
surface vehicles (USV)s is to systematically cover a geographic area. This
is done to gather information about the region, for instance, monitoring
a coast line or hydrocarbon exploration. A future area of application is
monitoring ice conditions to support the hydrocarbon exploitation in arctic
environments.

There exist several approaches for traversing a geographic region. A com-
monly used pattern is the lawn-mower pattern (Frost 1999). This is chosen
due to its simplicity. As pointed out in (Ousingsawat & Earl 2007), vehicle
maneuverability constraints affects performance significantly. There may be
strict demands on cross-track error when following the lines. For instance,
when scanning a grid, the gathered data will perhaps be post-processed and
combined with earlier collected data. Thus, it is not desirable that the har-
vested data does not cover the intended area.

In (Ousingsawat & Earl 2007) the lawn-mower pattern is modified to include
weighting of subsections of the search grid at hand. The weighting signifies
the uncertainty associated with the specific subsection. The authors proposed
a method to determine the optimal order the parallel lines is traversed. This
is done to minimize coverage time and maximize area of coverage.
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Figure 5.28: The lawn-mower pattern consists of straight lines and U-turns.
Courtesy of www.uniquedaily.com.

5.8.2 Lawn-mower pattern

The lawn-mower pattern is basically a set of parallel lines. Let the pattern
be defined by the planar positions P k at the edges of each line, often called
waypoints. The waypoint matrix becomes

P =
[
P 0, P 1, · · · , P n−1

] ∈ R
2×n, n ≥ 3, (5.147)

where the vectors
−−−→
PiPj and

−−−−−−→
Pi+2Pj+2 are parallel and in opposite directions,

and
−−−→
PiPj ⊥ −−−−−→

PjPi+2. The index i ∈ {2; ∀ ∈ N0} is an even number and
j = i+ 1 is an odd number.

The distance between the parallel lines
−−−→
PiPj and

−−−−−−→
Pi+2Pj+2 can be written

as

d j+1
2

� |P j+1 − P j| , (5.148)

where j = i + 1 is an odd number, and i ≤ n − 2. In most lawn mower
patterns, the distance between each parallel line is the same, but can in
general vary.

When going from one parallel line to the next, the vehicle cannot follow
a straight line which connects the adjacent positions P j and P j+1. This
path has corners with infinite curvature, which is impossible to follow for
physical vehicles. A path must be constructed in such way that a vehicle that
follows the path, performs U-turns between the parallel lines while obeying
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angular speed and angular acceleration constraints. Furthermore, a piecewise
path consisting of straight lines is not regularly parameterized with bounded
curvature, and thus the path following algorithm discussed in earlier chapters
cannot be used. Hence, to follow the parallel lines with the path following
steering law, a smooth curve is needed.

The objective of a path planning algorithm for lawn-mower patterns can be
stated as:

Objective 5.1. Lawn-mower path planning
Given the vehicle speed U and the corresponding vehicle maneuverability con-
straints, ωmax(U) and ω̇max(U), explained in Chapter 4.2, construct feasible
U-turns for the waypoint matrix P .

5.8.3 Lawn-mower pattern using clothoids

Clothoids can easily be scaled in such way that the angular speed and angular
acceleration constraints are obeyed. The character of the U-turns depend on
the distance d between the parallel lines and the vehicle maneuverability
constraints stated in Objective 5.1. Thus, the turn can be divided into three
different cases. Next, a qualitative description of each case is presented,
followed by elaborations of each case.

Case A: When d is sufficiently
large, two 90◦ turns and pos-
sibly a straight line can be
constructed. The figure on
the right displays the result-
ing U-turn. The line segments
enumerated 1 through 4 is
clothoids, while 5 is a straight
line.
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Case B: For a medium d, the two
clothoids 1 and 2 and possibly a cir-
cular arc 3 form the U-turn.

Case C: When d is sufficiently small,
the vehicle must turn in opposite di-
rection first to be able to feasibly con-
verge to the next straight line. This
case consists of the six clothoids enu-
merated 1-6 and possibly a circular
arc 7.

Preliminaries

To make the text more readable and ease the reference, central equations
defined in earlier chapters will now be restated together with some additional
equations.

A clothoid with positive curvature according to the right-hand rule is defined
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by (3.36)

p(ϑ) = a

[
C(ϑ)
S(ϑ)

]
, ϑ ≥ 0, (5.149)

and by switching the signum of the y-coordinate, a clothoid that turns the
other way is obtained.

The clothoid scaling a can be written in terms of the angular acceleration by
rearranging (3.44)

a = U
1√

2ω̇(U)
(5.150)

The osculating circle radius of a point on the clothoid is the inverse of (3.38):

R(ϑ) =
a√
ϑ
, (5.151)

and its center is (3.39)

m(ϑ) = p(ϑ) +
1

κ(ϑ)

[ − sin(ϑ)
cos(ϑ)

]
. (5.152)

It should be mentioned that this equation is only valid for a clothoid on its
basic form, that is, not rotated across either the x-axis or the y-axis.

The smallest feasible osculating circle for a given speed is (5.41)

Rmin(U) =
U

ωmax(U)
. (5.153)

The derivative of the Fresnel integrals can be found from (3.37)

C ′(ϑ) =
cos(ϑ)√

ϑ
, (5.154a)

S ′(ϑ) =
sin(ϑ)√

ϑ
. (5.154b)

The angle between a vector P = [Px, Py]
� ∈ R

2 and the x-axis is

ψ � atan2(Py, Px), ∈ 〈−π, π] . (5.155)

Rotating a vector P ∈ R
2 an angle ψ according to the right-hand rule in the

xy-plane is achieved with a modified version of the rotation matrix (4.7):

R(ψ) �
[

cosψ − sinψ
sinψ cosψ

]
. (5.156)
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Basic parameterizations The parameterization of basic paths such as
straight lines and circles can be found in (Breivik & Fossen 2009). They are
restated here for convenience.

A straight line can be parameterized as

p(�) = P + L�

[
cos(α)
sin(α)

]
, � ∈ [0, 1] , (5.157)

where P is the initial point, L is the length of the line, and α is the angle of
the line with respect to the x-axis.

A circular arc can be parameterized as

p(�) = M c +R

[
cos(� + ψ)
sin(� + ψ)

]
, � ∈ [�0, �1] , (5.158)

where M c is the circle center and R is the radius. Further, the position
vector p(�)|�=0 creates an angle ψ with respect to the x-axis.

Lawn-mower pattern, Case A

Let P 0, · · · ,P 3 be two parallel lines valid for Case A. The path starts in P 0

and has an angle ψ with respect to the x-axis, see Figure 5.29.

Scaling To obtain a 90◦ turn using two clothoids, the common angle of the
clothoids must be π/4. At this point, often defined as apex, the curvature
is at its largest. To verify that the curve is feasible, the curvature must be
checked at apex. Choosing the clothoid scaling as small as possible yields the
shortest path. First, the smallest possible scaling is calculated by maximizing
the angular acceleration in (5.150)

amin = U
1√

2ω̇max(U)
. (5.159)

Next, if the inequality

Rapex(π/4; amin) ≥ Rmin(U), (5.160)

is invalid, the osculating circle is smaller than the smallest possible circle
Rmin for that particular speed. Hence, the scaling must be increased to
successfully obey this constraint. Algorithm 2 summarize the determination
of the scaling.
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Figure 5.29: The Case A U-turn for lawn-mower patterns with different
quantities.

Algorithm 2 Clothoid scaling a for lawn-mower path planning; Case A

if Rapex < Rmin(U), then

a← Rmin(U)
√
π
2

else
a← amin

end if
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Turning direction To determine the shape of each clothoid, one can con-

sider the vector
−−−→
P0P2 � P dir. If this vector is rotated an angle −ψ, the

signum om the y-coordinate can be used to determine the shape of all the
clothoids: [

Pdir,x

Pdir,y

]
= R�(ψ)P dir, (5.161)

dy � sgn(Pdir,y). (5.162)

After inspecting Figure 5.29, we can conclude that the clothoids 1 and 3
always have the same shape, and likewise for 2 and 4. Thus, to get the desired
clothoid shapes, dy can be used to determine the signum of y-coordinate of
the clothoids.

Translation of a clothoid’s origin To create the path, the clothoids
must be translated to the correct positions. The origin of the clothoids 1
and 4 have their origin in P 1 and P 2, respectively. As for the two remaining
clothoids, some additional considerations must be done. The vectors Q2 and
Q3 in Figure 5.29 can determine the origin of clothoid 2 and 3 relative P 1

and P 2, respectively. We get

Q2 = a
(
S
(π

4

)
+ C

(π
4

))[
1
dy

]
, (5.163a)

P a = P 1 + R(ψ)Q2, (5.163b)

and

Q3 = a
(
S
(π

4

)
+ C

(π
4

))[
1

−dy
]
, (5.164a)

P b = P 2 + R(ψ)Q3. (5.164b)

The straight line The straight line that connects clothoid 2 and 3 is
simply

PIII =

{
pA,5(�) = P a + L�

[
cos(α)
sin(α)

]
, � ∈ [0, ]

}
, (5.165)

where �L = |P b − P a| and α = atan2(Pb,y − Pa,y, Pb,x − Pa,x).
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The piecewise path for the U-turn We now have enough information
to construct the resulting piecewise curve that connects the parallel lines.
The following parameterizations form the clothoids 1 to 4.

PI =

{
pA,1(�) = P 1 + aR(ψ)

[
C(�)
dyS(�)

]
, � ∈

[
0,
π

4

]}
, (5.166a)

PII =

{
pA,2(�) = P a + aR

(
ψ − dy

π

2

)[
C(�)
dyS(�)

]
, � ∈

[π
4
, 0

]}
,

(5.166b)

PIV =

{
pA,3(�) = P b + aR

(
ψ + dy

π

2

)[
C(�)
dyS(�)

]
, � ∈

[
0,
π

4

]}
,

(5.166c)

PV =

{
pA,4(�) = P 2 + aR(ψ)

[
C(�)

−dyS(�)

]
, � ∈

[π
4
, 0

]}
, (5.166d)

The resulting piecewise path for the U-turn is thus

PA =
V⋃
i=I

Pi. (5.167)

Validity of Case A When P a = P b, the vehicle maneuverability con-
straints just barely allow the vehicle to manage this particular U-turn; if d
is reduced only slightly, this case no longer is valid. That is, if

d

2a
< S

(π
4

)
+ C

(π
4

)
, (5.168)

some other approach must be used.

Lawn-mower pattern, Case B

When Case A no longer is valid, the possibility of a U-turn consisting of two
clothoids and a circular arc arises. The circular arc meets the clothoids when
the clothoid tangents create an angle ϑc with their initial orientation. Figure
5.30 shows the problem at hand. Furthermore, it can be deduced from the
same figure that

d = 2aS(ϑc) + 2Rc cos(ϑc), (5.169)
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where d is the distance between the parallel lines and Rc is the radius of the
circular arc. Since Rc also is the osculating circle radius of the clothoids at
ϑc, we have from (5.151) that

Rc =
a√
ϑc

. (5.170)

Figure 5.30: The Case B U-turn for lawn-mower patterns with different quan-
tities.

The unknown in (5.169) is ϑc, hence we can write the equation as a function
of ϑ

gB(ϑ) = S(ϑ) + C ′(ϑ) − d

2a
, ϑ ∈

〈
0,
π

2

]
, (5.171)

where gB(ϑc) = 0. To find ϑc, a numerical method must be used. For
instance, Newton’s method with ϑc,0 = 10−6 finds the root with a sufficiently
high number of iterations, see Appendix C.10.1.

The scaling of the clothoids is not fully determined beforehand, since the
solution of (5.171) dictates the radius Rc. More specifically, for a given
scaling a, the following inequality must be valid

Rc(ϑ; a) ≥ Rmin(U). (5.172)
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Once more, the optimal solution is choosing the scaling as small as possible
according to (5.159). If (5.172) is invalid, a must be increased iteratively
and (5.171) solved again, until the inequality is valid. However, by studying
Figure 5.30, it can be seen that when

d < 2aS
(π

2

)
, (5.173)

the clothoids are too large to be able to successfully create a feasible U-turn
between the two parallel lines.

The circular arc To be able to parameterize the circular arc, its center
must be determined. With (5.152) as a starting point, the center of the circle
can be defined as

M c = pB,1(ϑc) + R(ψ)

[ − sin(ϑc)
dy cos(ϑc)

]
, (5.174)

where pB,1(ϑ) is the parameterization of clothoid 1, which will be defined
shortly, and dy is defined in (5.162).

Since a U-turn involves a 180◦ change in orientation, and the clothoids pro-
duce ϑc each, the circle has a orientation change of

Δ∠c = π − 2ϑc. (5.175)

Thus, the circular arc can be parameterized as

PII =

{
pB,3(�) = M c +Rc

[
cos(� + ψ)
sin(� + ψ)

]
, � ∈

[
−dy Δ∠c

2
, dy

Δ∠c

2

]}
.

(5.176)

The piecewise path for the U-turn The parameterizations for the
clothoids 1 and 2 are similar to the clothoids defined by (5.166a) and (5.166d),
respectively, with the exception of the validity intervals. This can be veri-
fied by comparing the shapes of the corresponding clothoids in the Figures
5.29 and 5.30. Hence, the parameterizations for the clothoids in Case B are
defined as

PI =

{
pB,1(�) = P 1 + aR(ψ)

[
C(�)
dyS(�)

]
, � ∈ [0, ϑc]

}
, (5.177a)

PIII =

{
pB,2(�) = P 2 + aR(ψ)

[
C(�)

−dyS(�)

]
, � ∈ [ϑc, 0]

}
. (5.177b)
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By combining the parameterizations in correct order, the resulting piecewise
path for the U-turn can formally be defined as

PB =
III⋃
i=I

Pi. (5.178)

Validity of Case B As stated in (5.173), this case is not valid if a scaling
cannot be found such that the U-turn consists of clothoids that perform at
most a π/2 [rad] change of orientation each. That is, when

d < 2aS
(π

2

)
, ∀a ∈ [amin,→〉 , (5.179)

a different approach must be used.

Lawn-mower pattern, Case C

When the parallel lines are sufficiently narrow, Case C applies. In this case,
the path first turns in the opposite direction of the next desired line. There
exist heuristic maneuvers for turning a vessel called man overboard resque
turns. For instance, a Williamson turn change course to 60◦ of original course
in starboard or port direction before once more changing course (McPhee
2006). This achieves a U-turn converging close to the original straight line.
As seen in Figure 5.31, this is not a symmetric path. The proposed solution
for Case C is not similar to the Williamson turn. A symmetric solution is
proposed, where the initial course change varies with the vehicle parameters
and the distance between the parallel lines. This choice makes it easier to
construct the path and gives sufficiently good behavior in practise.

The U-turn of Case C is, like the other cases, symmetric about the midline
between parallel lines. It consists of a total of six clothoids and a circular
arc. Figure 5.32 shows the components of the U-turn, which will be explained
momentarily.

The clothoids 1 and 2 perform a course change of φ [rad] with initial and
final curvature equal to zero. Each clothoid contributes equally to the course
change, and hence the the course has changed φ/2 [rad] at apex. φ is un-
known and must be calculated. To simplify the discussion, set ψ = π/2 [rad]
temporarily. The vector Q3 can then be determined by inspecting Figure
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Figure 5.31: The Williamson man overboard resque turn.

5.32. After some algebraic simplifications, we get

Q3 = a

[
S(φ/2)
C(φ/2)

]
︸ ︷︷ ︸

Clothoid 1

+ aR(π/2 − φ)

[
C(φ/2)
S(φ/2)

]
︸ ︷︷ ︸

Clothoid 2

, (5.180)

which makes us able to determine the origin of clothoid 3 :

P a = P 1 + Q3. (5.181)

Let the angle between clothoid 3 ’s initial tangent vector and the meeting
point with the circle be denoted ϑc, which we for the moment assume is
known. This position can be determined relative Q3 as

Qc = aR(π/2 − φ)

[
C(ϑc)
S(ϑc)

]
, (5.182)

see Figure 5.32. Thus, the osculating circle center with radius Rc is

M c = P a + Qc +RcR(π/2 − φ)

[ − sin(ϑc)
cos(ϑc)

]
, (5.183)

for ψ = π/2 [rad].

Since the path is symmetric about the midline between the parallel lines, we
know that the x-coordinate of M c must be

Mc,x
!

= P1,x − d

2
. (5.184)

By writing out the x-coordinate of (5.183) and simplify, we get

Mc,x(φ) = P1,x + a [S(φ/2) + sin(φ) (C(φ/2) + C(ϑc) − S ′(ϑc))

− cos(φ) (S(φ/2) + S(ϑc) + C ′(ϑc))] , (5.185)

106



5.8. Path planning scenarios 107

where we have used that Rc = a/
√
ϑc.

To determine φ, equating (5.184) and (5.185) and solving for φ would do the
trick, except that the equation is implicit and must be solved numerically.
We define the root function from the same equations:

gC(φ) =
Mc,x(φ) − P1,x

a
= [S(φ/2) + sin(φ) (C(φ/2) + C(ϑc) − S ′(ϑc))

− cos(φ) (S(φ/2) + S(ϑc) + C ′(ϑc))] +
d

2a
, (5.186)

which can be solved using Newton’s method with φ0 = 10−6, see Appendix
C.10.2.

Until now, we have only considered the geometrical aspects of finding a fea-
sible path. The next objective is to incorporate the vehicle maneuverability
constraints such that a, ϑc and φ can be determined.

Figure 5.32: The Case C U-turn for lawn-mower patterns with different
quantities.

The path parameters

Scaling parameter a Similar to the other cases, we wish to minimize the
scaling because this will produce the shortest path. Hence, from (5.159) the
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desired clothoid scaling is

amin = U
1√

2ω̇max(U)
. (5.187)

A simplification of the design is to force the scaling to be equal for all the
clothoids. In some cases it would be beneficial to only manipulate the scaling
of the clothoid 3 and 4, but this will not be done here, due to the increased
complexity this choice implies.

The angle ϑc If (5.187) holds, combining (5.151), (5.153) and (5.187) and
solving for ϑ gives

ϑmax =
ωmax(U)2

2ω̇max(U)
, (5.188)

which is the largest angle the tangent vectors of the clothoids 3 and 4 can
create with their initial tangent vectors. We further limit the angle such that

ϑc = min (ϑmax, π) , (5.189)

which is the nominal choice when determining φ. Later, we will further
restrict ϑc in order to avoid undesired paths.

Course change angle φ A course change of φ [rad] is equally shared
between two clothoids and as mentioned earlier, the angle is φ/2 at apex,
implying that the maximum course change is twice ϑmax. Furthermore, we
restrict the course change to π/2 and thus the maximum course change is

φmax = min (2ϑmax, π/2) . (5.190)

Further restriction to ϑc The U-turn involves a total orientation change
of 180◦. The circular arc accounts for

Δ∠c =
π

2
− |−φ+ ϑc| , (5.191)

which implies that

− φ+ ϑc ≤ π

2
. (5.192)

When ϑc > π/2, (5.192) does not necessarily apply. Consequently, when φ
has been found, a verification of this inequality must be performed. If it is
invalid, ϑc must be reduced. The method is summarized in Algorithm 3.
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Algorithm 3 Iterative reduction of ϑc; Case C

if ϑc > π/2 then
while ϑc − φ > π/2 do
ϑc ← ϑc − α, α > 0
Find φ s.t. gC(φ;ϑc) = 0, using Newton’s algorithm

end while
end if

Final determination of the scaling a For a given scaling, the solution
of (5.186) yields a feasible candidate for φ. As long as

φ ≤ φmax, (5.193)

the course changing clothoids do not violate the angular speed constraint.
In the opposite case, several things can be done. Either augment a straight
line between clothoid 2 & 3, and 4 & 5, or increasing the scaling a, such
that (5.193) becomes valid. The latter represents the simplest choice, even
though it possibly is less optimal than the former.

The x-coordinate of the circle center (5.183) lies to the left of the initial
parallel line (in the nominal case used to deduce the equations) and hence

M�
c,x(φ, ϑc) � gc(φ) − d

2a
≤ 0, ∀ col [φ, ϑc] ∈ IC . (5.194)

The set IC is the blue/green area (and the red area) of Figure (5.33). The red
area is the portion which is infeasible due to (5.190), while the yellow/orange
area never occurs, since the the distance d must be negative for it to apply.
We identify the red region by setting φ = 2ϑc and finding the zero of 5.194,
which yields the critical point

ϑc,k ≈ 0.368. (5.195)

To guarantee that φ does not violate the angular speed constraint, the scaling
a must be iteratively increased such that (5.193) is satisfied. Algorithm 4
describes the necessary calculation to make φ feasible.

Translation of the clothoid’s origins The origin of the clothoids 1 and
6 are the waypoints P 1 and P 2, respectively. By consulting Figure 5.32, it
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Figure 5.33: The blue/green area on the left is the feasible set for ψ and ϑc.
The red area is infeasible due to the angular speed constraint.

Algorithm 4 Iterative increasement of a when φ > φmax; Case C

while ϑc < ϑc,k do
if φ > φmax then
a← a+ α, α > 0
ϑc ← a2

Rmin

Find φ s.t. gC(φ;ϑc, a) = 0, using Newton’s algorithm
end if

end while
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can be seen that the vectors Q3 and Q4 are

Q3 = a

[
S(φ/2)
C(φ/2)

]
aR(π/2 − φ)

[
C(φ/2)
S(φ/2)

]
, (5.196)

Q4 =

[ −Q3,x

Q3,y

]
(5.197)

If the restriction ψ = π/2 is released, the vectors that determine the origin
of the clothoids 2 & 3, and 4 & 5 can be found. We get

P a = P 1 + R(ψ − π/2)

[
dyQ3,x

Q3,y

]
, (5.198)

P b = P 2 + R(ψ − π/2)Q4, (5.199)

where dy is defined in (5.162).

The circular arc In a similar manner as for (5.174), the center of the
circular arc can be defined as

M c = pC,1(ϑc) + R(ψ − dyφ)

[ − sin(ϑc)
dy cos(ϑc)

]
, (5.200)

where pC,1(ϑ) is the parameterization of clothoid 3, which will be defined
very soon.

The parameter span for the circle is

Io = [−dyΔ∠c, dyΔ∠c] , (5.201)

where Δ∠c was defined in (5.191).

The parameterization for the circular arc is thus

PIV =

{
pC,7(�) = M c +Rc

[
cos(� + ψ)
sin(� + ψ)

]
, � ∈ Io

}
, (5.202)

where Rc is the circular arc radius calculated using the final scaling a.

The piecewise path for the U-turn We now possess sufficient knowledge
about the problem to construct the parameterizations. The clothoids are
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parameterized in a similar manner as the clothoids in Cases A and B, so no
explanation will be given. We get

PI =

{
pC,1(�) = P 1 + aR(ψ)

[
C(�)

−dyS(�)

]
, � ∈

[
0,
φ

2

]}
, (5.203a)

PII =

{
pC,2(�) = P a − aR (ψ − dyφ)

[
C(�)
dyS(�)

]
, � ∈

[
φ

2
, 0

]}
,

(5.203b)

PIII =

{
pC,3(�) = P a + aR (ψ − dyφ)

[
C(�)
dyS(�)

]
, � ∈ [0, ϑc]

}
,

(5.203c)

PV =

{
pC,4(�) = P b + aR

(
ψ + dy

π

2

)[
C(�)

−dyS(�)

]
, � ∈ [ϑc, 0]

}
,

(5.203d)

PV I =

{
pC,5(�) = P b + aR

(
ψ + dy

π

2

)[ −C(�)
dyS(�)

]
, � ∈

[
0,
φ

2

]}
,

(5.203e)

PV II =

{
pC,6(�) = P 2 + aR(ψ)

[
C(�)
dyS(�)

]
, � ∈

[
φ

2
, 0

]}
, (5.203f)

The piecewise path for the U-turn of Case C is

PC =
V II⋃
i=I

Pi. (5.204)

Whenever Case A and Case B are invalid, Case C applies.

Concluding remarks

The proposed approach connects parallel lines under vehicle maneuverability
constraints. The method does not minimize the time of coverage, but opens
the possibilities for doing so. The method provides feasible paths for a given
speed. By augmenting this approach with algorithms that determine the
order of the parallel lines, and speed assignments along the path, an optimal
lawn-mower path planner is born.
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Chapter 6

Simulation results

This chapter illustrates the proposed algorithms through simulations. First,
preliminary information about the setup is given. Then, elaborating infor-
mation and figures are given, together with discussions and conclusions.

6.1 Preliminaries

6.1.1 The simulation environment

All the simulations are done using the MathWorks
TM

environment MATLAB R©

and Simulink R©. Furthermore an own package was created using object-
oriented MATLAB code. This was done to simplify the construction of the
system and making the simulation environment more flexible for changes. A
rough UML-diagram of the package can be found in Appendix A. In Ap-
pendix B it is given a short manual on how to reproduce the simulations
provided in this chapter.

6.1.2 Closed-loop model

The course model

The closed-loop model presented in Section 4.2.2 is used with the parameters
shown in Table 6.1. A step response χ = π/4 [rad] of the model with χ0 = 0

113



114 Chapter 6. Simulation results

[rad] can be seen in Figure 6.1. As expected, the course changes with bounded
angular speed. Furthermore, the acceleration changes rapidly and attains
large values. This is also expected, since the model is a bounded low-pass
filter. This limitation makes the model unrealistic, so a limited acceleration
should be incorporated in the model. This extension is considered to be
future work and will not be performed in this thesis. Still, the variable
lookahead distance is chosen with the assumption that the maximum angular
acceleration is ω̇max(U) = 0.1 [rad/s2].

Parameter Value
Δ ˙̃χ 1/1000 [rad]

ωmax(U) 0.4 [rad/s]

Table 6.1: Course model parameters.

The forward-speed model

The parameters chosen for the forward-speed model from Section 4.2.2 is
presented in Table 6.2. The upper and lower obtainable speed is also given.
Two different step responses are also provided. An accelerating step response
to U = 8 [m/s] from U0 = 1 [m/s] is found in Figure 6.2, while a decelerating
step response to U = 1 [m/s] from U0 = 8 [m/s] is shown in Figure 6.3. These
responses reveal that the acceleration is much slower than the deceleration,
which coincides with the expected behavior for a USV. Furthermore, the
speed increases rapidly upto about 5 [m/s], and has a more linear quality
after that.

6.1.3 Paths

To investigate the behavior of the guidance algorithms, we need several dif-
ferent paths. A total of five paths are used, ranging from basic parameteri-
zations to challenging curved paths. Here, we merely present these paths for
ease of reference.

Some of the parameterizations are defined relative the vehicle’s initial posi-
tion. This makes it easier to create desirable initial cross-track errors. The
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Figure 6.1: Step response of course model.

Parameter Value
K 1.5 [m/s2]
aacc 0.7 [s/m]
Δacc,nl 0.1 [m/s]
adec 0.25 [-]
Δdec,nl 5 [m/s]

U̇max,l 0.04 [m/s2]
Δl 0.005 [m/s]
Umin 1 [m/s]
Umax 8.9 [m/s]

Table 6.2: Forward-speed model parameters.
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Figure 6.2: Step response of forward-speed model; acceleration.
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Figure 6.3: Step response of forward-speed model; deceleration.
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initial vehicle position is

p(0) =

[
px,0
py,0

]
. (6.1)

Straight line

The straight line is parameterized by

Pα =

{[
px,0 − 10

py,0 − 50 + 10�

]
, � ∈ [0, 40]

}
. (6.2)

Circular path

The circular path is parameterized by

Pβ =

{[
px,0 +R cos(�)
py,0 −R sin(�)

]
, � ∈ [−2π, 4π]

}
, (6.3)

where R = 40 [m]. The direction of the path is in counter-clockwise direction
if plotted in a NED-frame.

Curved paths

There are used three different curved paths in this thesis. All of them are
created using manually sampled positions from Figure 6.4, which is a plot
of a real race track. The positions are used in an implementation of the G2-
continuous Catmull-Rom path generation algorithm presented in Chapter
5.7.4. In order to obtain an approximated maximum curvature, the sampled
positions are scaled prior to path generation. Since the paths consist of many
curve segments, there is no point in restating them here. Nevertheless, the
chosen parts of the track, which are denoted Pγ, Pδ and Pε, can be seen in
Figure 6.4.

It is worth pointing out that the chosen algorithm does not create feasible
paths in general. Even though the paths are G2 continuous, there are no
limitations on what values the curvature can attain. More specifically, if the
control points create turns which are impossible in practice, the resulting path
will also be impossible to follow. On the other hand, simulations will show
that the piecewise path is indeed feasible if the control points are sampled
from a feasible path.
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Figure 6.4: Nürburgring’s Nordschleife is a motorsport race track in Nürn-
burg, Germany. It is an example of a predefined path that can be expressed
with parameterizations. Courtesy of wikimedia.org.

Common parameters

To avoid singularities, the variables Δϑ = 10−6 and Δχ̃ = 10−6 are used in
(5.81) and (5.106). The feedback term of the vehicle projection particle in
the steering law (Chapter 5.3.2) is the same in all the simulations: γ = 0.5.

6.1.4 Simulation cases

The simulations are divided into three main parts. The first part simulates
the path speed algorithm presented in Chapter 5.2. The initial conditions
and parameters of this simulation are given in Section 6.2.1.

The second part considers path convergence scenarios. The simulation is di-
vided into six cases, and gradually adds functionality and tests the algorithms
on more challenging paths. Case I &II are straight-line scenarios, followed
by a circular-path scenario in Case III. In Case IV, the response of following
a curved path is investigated. Then, the path speed algorithm is combined
with the path convergence algorithm and tested against a challenging curved
path in simulation Case V. Finally, the path-tracking system is simulated
in Case VI. Each case’s initial conditions are given in Table 6.3, where the
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corresponding paths also are indicated.

The last part illustrates the different paths the lawn-mower path planner
creates for different speeds. Furthermore, the method is compared to a simple
spline method.

Case
Initial conditions

Uref(t) Path
North [m]East [m]U0 [m/s]χ0 [rad]

I 50 10 5 0 U0 Pα

II 50 10 5 0 Uref (Ud, χ̃) Pα

III 0 0 5 0 Uref (Ud, χ̃) Pβ

IV 500 75 5 0 Uref (Ud, χ̃) Pδ

V 530 220 5 0 Uref (Ud, χ̃) Pγ

VI 165 650 2 π Uref (Up(t), χ̃) Pε

Table 6.3: Case overview.
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6.2 Results

6.2.1 Path speed algorithm

In this section we verify that the path speed algorithm presented in Chapter
5.2 yields speed references which obey the angular speed constraint. The
path denoted Pγ will be used, since this path is scaled in such way that
the the maximum curvature is large. For the moment, we assume that the
vehicle is constrained to follow the path. Furthermore, to be able to use the
algorithm, some parameters must be determined.

Parameters

The vehicle’s maximum acceleration and deceleration can be extracted from
the forward speed model presented in Section 4.2.2:

facc(U) = Ke−aaccU + Umax,l, (6.4a)

fdec(U) = adecU + Umax,l, (6.4b)

where the model parameters are given in Table 6.2.

The lookahead distance is chosen to be Δd = 20 [m]. Even though this is less
than the stopping distance, it is sufficient in this particular example. The
initial speed is U0 = 5 [m/s]. The proportinal feedback gain of the lookahead
system was set to kp = 1.

Result

Figure 6.5 shows the particular path at hand. The path contains several
acute turns, where the speed must be reduced to obey the angular speed
constraint. The reference speed along the track is shown in the uppermost
plot of Figure 6.6. We can see that the reference speed is lower than, or equal
to the curvature constrained speed, which also is shown in the plot. The plot
in the middle shows the curvature of the path, and naturally, there is a clear
correlation between the curvature and the curvature constrained speed. The
lowermost plot of Figure 6.6 displays the error between the desired and the
actual along-path lookahead. Since this error has been minimized offline and
the lookahead database populated, there is no initial transient phase. The
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error is small at all times, within ±0.15 [m], which is sufficiently accurate.
The error can be reduced further by increasing the feedback gain kp or in-
troducing integral action, which may be necessary if the lookahead distance
is small.
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Figure 6.5: Path speed algorithm: Predefined curve Pγ.
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6.2.2 Case I: Straight-line path convergence

Parameters

The semi-constant lookahead distance is compared to a conservative variant
of the variable lookahead distance with χ̃ heuristics. The expressions for the
lookahead distances are given in Table 6.4.

Lookahead distance Parameters
Δ(U) = kcΔconst(U) kc = 1

Δ(e, χ̃, U, t) = Δvar(U, e) + Δconst(U)(kc + kχ̃χ̃) kc = 0.3, kχ̃ = 0.3

Table 6.4: Lookahead distances for Case I.

Result

The position response can be seen in Figure 6.7. The two different meth-
ods display similar responses, where the semi-constant lookahead is slightly
faster. This is due to the smaller lookahead distance during the last part of
the convergence, as seen in Figure 6.8. Nevertheless, the variable lookahead
distance obtains more conservative course accelerations during this phase,
and thus does not carelessly ignore the angular acceleration constraint. The
course responses are shown in Figure 6.9, which confirm that the course rate
has less steep tangents with the variable lookahead approach.

A common drawback of these approaches is the fact that since the angular
speed is bounded, a large circular arc is performed before the orientation of
the vehicle points toward the straight line. The consequence of this behavior
is that the vehicle increases the cross-track error for a while before it starts
to decrease. A reduction of the forward speed is a possible counteraction.
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Figure 6.7: Case I: position response.
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Figure 6.9: Case I: course response.
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6.2.3 Case II: Straight-line path convergence with heuris-
tic speed adaptation

This case considers the same scenario as in Case I, but with the addition
that an heuristic speed adaptation scheme is employed.

Parameters

The formulas for the lookahead distance have the same parameters as in
Case I. Furthermore, the speed adaptation law presented in Chapter 5.6.3 is
employed with kU = 1.

Result

The Figures 6.10-6.12 contain the responses for this case. Compared to
the previous case, the position response is similar, but with an important
distinction; the circular arc is smaller, leading to faster convergence to the
straight line. This improved convergence rate is made possible at the expense
of the forward speed. As can be seen in Figure 6.11, the speed is reduced
to about 3.2 [m/s] before it starts to increase. This is in contrast to the
previous case, where the forward speed was kept steady at 5 [m/s]. The
aggressiveness of the speed reduction depends on the shaping parameter kU .
If a less aggressive speed reduction is desired, kU must be reduced. Often,
there are considerable energy costs associated with constantly changing the
speed. Hence, the parameter must be carefully determined, perhaps even
made speed dependent.
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Figure 6.11: Case II: error, lookahead and speed response.
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Figure 6.12: Case II: course response.
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6.2.4 Case III: Circular convergence with heuristic speed
adaptation

Case III considers the convergence behavior when starting in the origin of a
circle for which is the desired path. The radius of the circle is 40 [m], and
the speed is once more 5 [m/s], as stated in Table 6.3.

Parameters

There are no changes in the parameter values compared to Case II.

Result

Figure 6.13 shows that both methods are able to converge to the circle quite
rapidly. The semi-constant lookahead method produces a small overshoot,
while the other does not. Furthermore, in Figure 6.14 we can see that the
speed reduction for the semi-constant lookahead is more significant than for
the variable lookahead, though only 0.15 [m/s]. The difference in the speed
reductions stems from the fact that the course error is much larger for the
former method. The course-related responses in Figure 6.15 do not exhibit
any surprises; the course accelerations are once more nonphysical due to
excessive acceleration values.
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Figure 6.13: Case III: position response.
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Figure 6.14: Case III: error, lookahead and speed response.
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Figure 6.15: Case III: course response.
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6.2.5 Case IV: Curved path with heuristic speed adap-
tation

This case considers the same guidance algorithms used in the previous two
cases, but along a curved path. Due to the small curvature values, the
piecewise path Pδ is a relatively easy path to follow for a speed of 5 [m/s].

Parameters

The same parameters as in Case II is used.

Result

The results of this simulation can be seen in Figures 6.16-6.18. Both meth-
ods converge to the path and are able to follow it with high precision. A
comparison of the metods reveals only small deviations between them, with
the exception of the forward speed; the forward speed of the variable looka-
head method is somewhat higher than the other. By inspecting the position
response in Figure 6.16, it can be seen that a slight understeering is expe-
rienced during the steepest turns. This might suggest that the speed is a
bit high during these turns. If the speed had been increased, the cross-track
errors would most likely have increased. To feasibly follow the path at high
speeds, the path speed algorithm must be incorporated.
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Figure 6.17: Case IV: error, lookahead and speed response.

137



138 Chapter 6. Simulation results

0 50 100
−1

−0.5

0

0.5

1

1.5

χ
r
[r
a
d
]

Time [s]

Steering response

0 20 40 60 80

−0.4

−0.2

0

0.2

0.4

Time [s]

χ̇
(t
)
[r
a
d
/
s]

Angular speed

0 20 40 60 80
−0.2

−0.1

0

0.1

0.2

Time [s]

χ̈
(t
)
[r
a
d
/
s2
]

Angular acceleration

Δ(U, t) [m]

Δ(e, χ̃, U, t) [m]

Saturation

Figure 6.18: Case IV: course response.
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6.2.6 Case V: Curved path with path speed algorithm

This case illustrates the enhanced path-following capabilities when the path
speed algorithm is employed. This guidance algorithm is compared to a guid-
ance algorithm where the forward speed is only determined by the heuristic
speed adaptation. Both guidance algorithms use the same steering algorithm,
that is, the variable lookahead distance approach. To really emphasize the
benefits of the path speed algorithm, the challenging piecewise path Pγ is
chosen.

Parameters

Once again, the same parameters as in Case II have been used. In addi-
tion, the lookahead system of the path speed algorithm has an along-path
lookahead distance of Δd = 30 [m] and a proportional feedback term kp = 1.
In contrast to the simulation in Section 6.2.1, the deceleration function is
chosen to be more conservative than the one proposed in (6.4b):

fdec(U) = ρ(adecU + Umax,l), (6.5)

where ρ = 0.5. Otherwise, both the acceleration function (6.4a) and the
parameters of both functions are the same as in 6.2.1. The reason for choosing
a more conservative deceleration function is to allow more slack in the vehicle
response. With a too aggressive deceleration function, the vehicle is not able
to decelerate to the desired speed and thus the vehicle cannot follow the
path.

Result

Figure 6.19 shows the vehicle response when using the two different ap-
proaches. The plot clearly shows that the vehicle has significantly better
path-following capabilities when using the path speed algorithm. In this
particular simulation, the guidance algorithm without path-dependent refer-
ence speed is able to traverse a bigger portion of the path. This achievement
comes with the apparent drawback of higher cross-track errors, which can be
seen in Figure 6.20. This figure also shows the generally higher speed the
latter algorithm attains. Nevertheless, the guidance algorithm which em-
ploys the path speed algorithms by far excels the one with only heuristice
speed adaptation. It is still worth noticing the cross-track error of the best
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guidance algorithm during the steep turns. It is still present. This indicates
that the speed has not been sufficiently reduced in time for the turns, which
means that the decelerating function is to aggressive. By making it in even
more conservative, this cross-track error can be reduced further.
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Figure 6.19: Case V: position response.

140



6.2. Results 141

0 10 20 30 40
−8

−6

−4

−2

0

2

4

6

8

e(
t) 

[m
]

Time [s]

Cross−track error

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5

χ̃
[r
a
d
]

Time [s]

Course error

0 10 20 30 40
1

2

3

4

5

6

7

8

Time [s]

Δ
(t
)
[m

]

Lookahead distance

0 10 20 30 40
1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

U
(t)

 [m
/s

]

Speed response

Δ(e, χ̃, U, t) [m]

Δ(e, χ̃, U, t) [m]
Path speed algorithm
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6.2.7 Case VI: Path-tracking system

Setup

The path-tracking system consists of two subsystems solving one objective
each. These objectives are the path converging objective and the along-
path speed objective. The former is solved using the same algorithm and
parameters as in Section 6.2.5, while the latter is the path-tracking objective.
Define the following parameters for the path-tracking speed controller:

Ua,max = 1 [m/s], (6.6)

Δs = 4 [m]. (6.7)

The leader vehicle follows the “unknown” path Pε at constant speed U
 = 2
[m/s] and its initial position is [146, 612]� [m]. The following vehicle’s initial
conditions are given in Table 6.3.

Let the desired along-path distance behind the leader vehicle be Δpt = 30
[m]. Thus, the artificial particle’s initial position on the created path can
be found offline. Next, we let the online path-generation algorithm receive
sampled positions every 5 [m]. Since we assume that only position data is
known, we choose the G2-continuous Catmull-Rom path generation algorithm
presented earlier.

Results

The position response The position responses are shown in Figure 6.21.
After an initial transition phase, the following vehicle follows the created
path, while also converging toward the artificial target. In the figure, the
target vessel is invisible when the following vehicle has converged. This is
because they are on top of each other. One particularly interesting observa-
tion is that the following vehicle is unable to follow the path when the leader
vehicle performs acute turns. Often, the leader vehicle has slower dynamics
than the following vehicle, hence this unfortunate behavior may not be a big
problem in practice. Nevertheless, it affects the convergence rate due to the
limited approach speed the following vehicle can have. One potential solu-
tion to overcome this drawback is to combine the path speed algorithm with
the path-tracking speed controller. Even though the path is only defined a
limited distance ahead, the path speed algorithm can still prevent the fol-
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lowing vehicle from trying to obtain to aggressive approach speeds. Due to
time constraints, this has not been verified through simulations.
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Figure 6.21: Case VI: position response.

Error responses Figure 6.22 shows the cross-track error, course error, and
along-path arc-length error between the following vehicle and the artificial
target vehicle. After the initial transition phase to the path, the arc-length
error reduces linearly, and finally slows down as the arc-length error vanishes.
This is the intended behavior, and is thus a satisfactory result. The same
figure shows that the speed response varies in the beginning, due to the
heuristic speed adaptation, but finally converges to speeds near the leader
vehicle’s speed.

The generated path versus the leader vehicle’s path As can be seen
in Figure 6.23, the online-generated path is quite similar to the real path.
Even for sharp turns, the paths are close to each other, with a cross-track
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Figure 6.22: Case VI: error and speed response.
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error of less than 0.5 [m]. This accuracy is sufficient in most cases, but by
decreasing the sampling interval, higher accuracies can be obtained.
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Figure 6.23: Case VI: comparison of paths.

Offset correction Each time a new segment is created by the path gener-
ator, there is a small offset between the arc length of the real and generated
path. This offset creates a step in the distance the artificial target particle
must travel to remain close to the real (and “unknown”) artificial target par-
ticle. The lowermost plot in Figure 6.24 shows the corresponding arc-length
difference between the desired position and actual position of the artificial
target particle. We can see that the steps are corrected exponentially and
never exceeds |0.2| [m].

In addition, the uppermost plot of the same figure shows the straight-line
error between the target particle and real target particle. It remains within
±0.4 [m]. This error is a combination of the arc-length difference and the
inaccuracy of the created path explained in the previous section. This result
reveals that the artificial target particle is always close to the real target
particle.

To summarize, the path-tracking system is able to create accurate paths on-
line, where an artificial target particle remains close to desired along-path
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Figure 6.24: Case VI: artificial target versus real artificial target.

distance behind the leader vehicle. Furthermore, the following vehicle con-
verges to this target with bounded speed, and is able to follow the path if
the path is feasible for that particular vehicle.
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6.2.8 Lawn-mower pattern

To illustrate the diverse paths the lawn-mower path planning algorithm can
generate, six different speeds are given for the same set of waypoints. The
desired waypoints are

P0 = R(π/4) [1, 1]� , P1 = R(π/4) [30, 1]� , (6.8)

P2 = R(π/4) [30, 20]� , P3 = R(π/4) [1, 20]� , (6.9)

such that the distance between the parallel lines is d = 19 [m]. Furthermore,
the different forward speeds are

U = {1, 2, 3, 3.5, 4, 5}, [m/s] (6.10)

The vehicle maneuverability constraints are

ωmax = 0.4 [rad/s], (6.11)

ω̇max = 0.1 [rad/s2]. (6.12)

The resulting paths are displayed in Figure 6.25. As expected, the arc lengths
of the U-turns increase for higher speeds. Table 6.5 displays which case ap-
plies for the different speeds. A particularly interesting observation is that
when switching from Case B to Case C, the resulting arc lengths increase
significantly. Hence, to plan efficient paths, the forward speed should de-
pend on the distance between the parallel lines. A measure of performence
is the time it takes to traverse a given path. Since the arc length of the path
depends on the forward speed, it is possible to construct a optimizing func-
tion such that the speed varies along the path, and the path is traversed in
minimum time. Furthermore, there is a cost associate with a speed change,
so the optimizing function should also penalize a change in both linear and
angular speed. This topic however, is subject to future work, and will not be
investigated further here.

Speed [m/s] 1 2 3 3.5 4 5
Case A A B B C C

Table 6.5: Relationship between speed and valid case for path planning of
lawn-mower pattern.

To verify that the curvature changes in a controlled manner, we can investi-
gate the curvature as a function of the arc length. Figure 6.26 displays the
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Figure 6.25: U-turn for different speeds.

result of this investigation. We can see that the curvature changes linearly
for all the cases. This is expected, since the angular acceleration is constant
when following clothoids. From the figure one might suspect that Case B is
the most desirable, since the curvature only increase and the decrease once,
unlike the other cases. If the path had been optimized with respect to the
change in curvature, d2κ/ds2, Case B would probably be the outcome.

Comparison to η-splines

The algorithm for constructing the lawn-mower pattern using clothoids is
tedious and have many special cases which must be taken care of. On the
other hand, using η-splines to construct the U-turns seems simple. Hence,
a comparison between the clothoid approach and η-spline approach must be
performed.

The η-spline was discussed in Chapter 5.7. This method connects two con-
figurations with a single parameterization. The drawback with this method
is the difficulty of finding a feasible η vector. In (Piazzi et al. 2003) the
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Figure 6.26: Signed curvature for the lawn-mower path.
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following heuristic choice was proposed:

η1 = η2 = |p1 − p2| = d, (6.13)

η3 = η4 = 0. (6.14)

With this choice, an identical path will be created for a given distance d,
regardless of the forward speed. To compensate for this unfortunate property,
propose

η1 = η2 = b
U

ωmax(U)
d, (6.15)

η3 = η4 = 0, (6.16)

where b > 0 is a tuning parameter.

Set b = 0.5 and construct the paths for the same waypoint matrix as in the
previous section, but only with the speeds

U = {1, 3, 5}, [m/s]. (6.17)

The resulting paths are diplayed in Figure 6.27, and the curvatures as a
function of arc length can be seen in Figure 6.28. For a given speed, the
clothoid approach respects the vehicle maneuverability constraints. This
means that the η-spline path must be equal to or more conservative than the
clothoid path to be feasible for a given speed. In Figure 6.27 it can be seen
that for low speeds, the η-spline is more convervative than the clothoid path,
but ultimately, the η-spline path becomes too aggressive. This is verified by
Figure 6.28 where it can be seen that the slope of the curvature becomes too
steep for higher speeds and is thus unfeasible, due to the angular acceleration
the curvature rate represents.

The simulations show that the lawn-mower path planner using clothoids cre-
ates feasible paths in a controlled manner. When the speed and the maneu-
verability constraints force the use of Case C, the arc length of the U-turn
becomes large. Hence, some kind of optimization of the forward speed must
be created such that the resulting curve is optimal in some manner. The
proposed approach creates a favorable fundament for one such extension.

Furthermore, a comparison to a η-spline approach reveals better performance
in terms of respecting the vehicle maneuverability constraints for the desired
speed. It should be noted that with the proper choice of η, the η-spline
approach can produce paths similar to those created by the clothoid ap-
proach, but with fewer parameterizations. Since no simple method for this
achievement exist, the clothoid approach excels the η-spline approach.
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Figure 6.27: A comparison between clothoid and η-spline U-turns.

6.3 Concluding remarks

This chapter illustrates the concepts developed in this thesis. Each simula-
tion shows promising results which can be further improved in future work.
Despite these uplifting results, there is a crucial limitation worth mentioning.
The course model employed in the simulations does not have any limitations
on the angular acceleration. This simplification greatly influences the simu-
lation results, since the acceleration in reality is bounded. Thus, the results,
which greatly depend on the course dynamics, are merely preliminary re-
sults which demonstrate the possible performance of the proposed guidance
algorithms. Hence, an improved course model must be developed, where the
angular acceleration is a part of the course dynamics. This problem is topic
of future work.
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Figure 6.28: A comparison of the signed curvature for the clothoid and η-
spline approach for lawn-mower patterns.

152



Chapter 7

Conclusions and future work

A lookahead system, which gathers path information from piecewise paths,
is proposed. The lookahead system, which is shown to be GES, is able to
maintain a predefined distance ahead of the vehicle, even for curve segments
which are not arc-length parameterized.

Moreover, simulations verify that the speed assignment system of the path
speed algorithm is able to prescribe forward speeds which obey the vehicle
maneuverability constraints. The path traversion can therefore be accom-
plished more accurately compared to a constant speed profile.

The two path convergence steering algorithms that have been proposed demon-
strate good convergence behavior on the employed vehicle model. The more
advanced steering algorithm displays more desirable behavior with respect to
vehicle maneuverability constraints. Furthermore, the simple speed adapta-
tion heuristics further improve the convergence characteristics of the vehicle.

The combination of the speed assignment system with the path convergence
algorithm yields a path maneuvering algorithm which shows better path con-
vergence and path traversion performance than a system that lacks these
components.

The path-tracking system, which is proven to be UGAS/ULES, is able to
accurately mimic a leader vehicle’s path through the use of leader vehicle
movements and splines. Furthermore, the following vehicle converges to the
desired target along this path. The convergence has bounded approach speed,
which makes it physically plausible.
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The path planner for lawn-mower patterns is able to create U-turns which
obey the vehicle maneuverability constraints for a given speed. This result
lays the foundation for optimal path planning of lawn-mower patterns.

7.1 Future work

During the investigation of the topics in this thesis, new challenges have
arisen. They can mainly be summarized as follows:

• Full-scale tests of the proposed guidance system.

• Employment of path characteristics to control the convergence rate
such that it depends on curvature ahead of the vehicle.

• Development of a more precise course model in order to get responses
which are closer to real course responses.

• Combination of the path-tracking speed controller and the speed assign-
ment algorithm for feasible path traversion. This will able the vehicle
to obtain higher approach speeds when the path allows it.

• Optimization of forward speed along the path of a lawn-mower pat-
tern to obtain U-turn which is optimal in some sense, being time of
traversion, length of total path, or some other criteria.
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Runge, C. (1901). Über empirische Funktionen und die Interpolation zwis-
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Appendix A

Path maneuvering simulation
environment

To be able to simulate the proposed system in a structurally neat manner,
a custom simulation environment has been constructed. The tools were pro-
grammed using the MathWorks

TM
environment MATLAB R©. More specif-

ically, a package consisting of support classes designed using the object-
oriented techniques has been created. This makes it easier to grasp for other
people than the designer. Furthermore, the design can easily be extended or
modified in the future to add addition functionality.

A rough UML-diagram of the package can be found in Figure A.1, where the
most important components are included. An explanation beyond what the
diagram itself provides is not given, since this is considered outside the scope
of this thesis.

This design was intended for use in Simulink R© to aid the simulations of the
vehicle responses. Although it works, the current implementation is slow.
Hence, optimization of the code, and maybe converting it to a so-called S-
function is topic of future work. This opens the possibilities for real-time
simulations and experimental trials.
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162 Appendix A. Path maneuvering simulation environment

Figure A.1: Rough UML-diagram of the PathManeuvering package.
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Appendix B

CD Contents

A CD is bundled with this thesis. The main contents of the CD are:

• This thesis in portable document format (PDF) named Haugen2010.pdf

• Referenced articles in PDF in the folder bibliography

• Simulation files including the package PathManeuvering in simulation

The folder simulation contains many different scripts and functions which are
used in the simulations. There exist several simulation scripts which make
it easy to reproduce the simulation scenarios. For these simulations to run
correctly, InitFunction.m must be run first. This script adds the root folder
and the subfolders to the MATLAB path. The simulations files can be found
in the folder simulationFiles and its subfolders. Table B.1 lists the different
cases and the corresponding simulation files.
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Simulation File in simulationFiles/
Course step course step.m
Speed step speed step.m
Path speed PathSpeed/sim path speed.m
Case I Straight/straightI sim.m
Case II Straight/straightII sim.m
Case III Circle/circle sim.m
Case IV Curved/curved sim.m
Case V Curved/curvedV sim.m
Case VI Tracker/CaseVI sim.m
Lawn Mower LawnMower/simulation.m

Table B.1: Simulation files.
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Appendix C

Complementary material

C.1 Curvature

From (3.19) we have

κ(�) =

∣∣∣∣dT (�)

ds

∣∣∣∣ , (C.1)

and by utilizing the chain rule we get

κ(�) =

∣∣∣∣dT (�)

ds

∣∣∣∣ =

∣∣∣∣∣
dT
d�
ds
d�

∣∣∣∣∣ =
|T ′(�)|
|p′(�)| , (C.2)

where T ′(�) = p′(�)
|p′(�)| .

In the following we will use dp
d�

(�) � p′ and p =

[
x
y

]
.

T ′(�) =
p′′ · |p′| − p′

(p′·p′′)︷ ︸︸ ︷
(x′ · x′′ + y′ · y′′)

|p′|
|p′|2 . (C.3)

|T ′(�)| = 1
|p′|2

√(
x′′ · |p′| − 1

|p′|x
′ · (p′ · p′′)

)2

+
(
y′′ · |p′| − 1

|p′|y
′ · (p′ · p′′)

)2

= 1
|p′|2

√
(x′′2 + y′′2)︸ ︷︷ ︸

|p′′|2
|p′|2 − 2 (x′ · x′′ + y′ · y′′)︸ ︷︷ ︸

(p′·p′′)

(p′ · p′′) + (x′2 + y′2)︸ ︷︷ ︸
|p′|2

1
|p′|2 (p′ · p′′)2

= 1
|p′|2

√|p′′|2 · |p′|2 − (p′ · p′′)2
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=
1

|p′|2
√

(x′ · y′′)2 − 2x′ · x′′ · y′ · y′′ + (y′ · x′′)2

=
1

|p′|2
√

(x′ · y′′ − y′ · x′′)2

|T ′(�)| =
|(x′ · y′′ − y′ · x′′)|

|p′|2 . (C.4)

Insert (C.4) into (C.2) and we get the following equation for path curvature

κ(�) =
|(x′ · y′′ − y′ · x′′)|

|p′|3
⇓ p′ × p′′ � (x′ · y′′ − y′ · x′′)

κ(�) =
|p′(�) × p′′(�)|

|p′(�)|3 (C.5)

C.1.1 Curvature of clothoids

The curvature of a clothoid can be calculated using the formula for curvature
(C.5). The 1st derivative of the clothoid is (3.37)

p′(ϑ) =
a√
ϑ

[
cos(ϑ)
sin(ϑ)

]
, ϑ ≥ 0, (C.6)

and the 2nd derivative is

p′′(ϑ) =
a
√
ϑ

ϑ

[ − sin(ϑ) − 1
2ϑ

cos(ϑ)
cos(ϑ) − 1

2ϑ
sin(ϑ)

]
, ϑ ≥ 0. (C.7)

Furthermore the denominator of (C.5) is

|p′(ϑ)|3 =

(
a√
ϑ

)3

, (C.8)

and by using (C.6)-(C.8) in (C.5) we get

κ(ϑ) =
a2/ϑ

a3/ϑ3/2

⎛
⎝cos2(ϑ) + sin2(ϑ)︸ ︷︷ ︸

1

− 1

2ϑ
(sin(ϑ) cos(ϑ) − sin(ϑ) cos(ϑ)︸ ︷︷ ︸

0

)

⎞
⎠

κ(ϑ) =

√
ϑ

a
. (C.9)
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C.2 Calculation of χ̇r in the circular conver-

gence phase

Given (5.33) and (5.46):

χ̇r(e) =
eΔ̇ − −UeΔ√

Δ2+e2

Δ2 + e2
(C.10)

Δ(e) = (R− |e|)
√

|e|
2R− |e| , e < R. (C.11)

First, eliminate Δ from the following expression by employing (C.11):

Δ2 + e2 =
e2(R− |e|)2
2R|e| − e2

=
e2

2R|e| − e2
(
R2 − 2R|e| + e2 + 2R|e| − e2

)
⇓

Δ2 + e2 =
R2|e|

2R− |e| . (C.12)

Second, eliminate Δ from (C.10) by using (C.11) and (C.12)

χ̇r =
eΔ̇ + Ue(R− |e|)

√
|e|

2R−|e|

√
2R−|e|
R2|e|

R2|e|
2R−|e|

= sgn(e)
2R− |e|
R2

(
Δ̇ +

U

R
(R− |e|)

)
. (C.13)

The expression for ė (5.33) can be written as

ė =
−Ue√
Δ2 + e2

⇓ (C.12)

= −Ue
R

√
2R− |e|

|e|
ė = −sgn(e)

U

R

√
|e|(2R− |e|). (C.14)
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Furthermore, Δ̇ is given by

Δ̇ =
d

dt

(
(R− |e|)

√
|e|

2R− |e|

)

= −sgn(e)ė

√
|e|

2R− |e| + sgn(e)ė
(R− |e|)(2R− |e| − (−|e|))

2
√

|e|
2R−|e|(2R− |e|)2

= sgn(e)ė

(
−
√

|e|
2R− |e| +R(R− |e|)

√
2R− |e|

|e|
1

(2R− |e|)2
)

= sgn(e)ė
1√

2R− |e|

(
−
√
|e| +

R(R− |e|)
2R− |e|

1√|e|

)
, (C.15)

where ė can be eliminated with (C.14):

= −sgn(e)sgn(e)
U

R

√
|e|(2R− |e|)

2R− |e|

(
−
√

|e| +
R(R− |e|)
2R− |e|

1√|e|

)

= −U
R

(
−|e| +

R(R− |e|)
2R− |e|

)

Δ̇ = −U
R

(
R2 − 3R|e| + e2

(2R− |e|)
)
. (C.16)

Now, Δ̇ must be eliminated from the expression of χ̇r (C.13)

χ̇r = sgn(e)
2R− |e|
R2

(
Δ̇ +

U

R
(R− |e|)

)

= sgn(e)
2R− |e|
R2

(
−U
R

(
R2 − 3R|e| + e2

(2R− |e|) ) +
U

R
(R− |e|)

)

= sgn(e)
2R− |e|
R2

U

R

(−R2 + 3R|e| − e2 + (R− |e|)(2R− |e|)
2R− |e|

)
= sgn(e)

U

R3

(−R2 + 3R|e| − e2 + 2R2 −R|e| − 2R|e| + e2
)

χ̇r = sgn(e)
U

R
. (C.17)
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C.3 Calculation of χ̇r in the clothoid transi-

tion phases

The path-relative course rate χ̇r(e) when steering for straight lines is given
by (5.32):

χ̇r(e) =
eΔ̇ − ėΔ

Δ2 + e2
. (C.18)

In the two next sections we show how this expression can simplified when
following clothoid paths.

C.3.1 χ̇r in phase I

In the first transition phase, the lookahead distance is given by (5.64)

ΔI(e) = |e| tan (ϑI(e)) , (C.19)

and its time derivative is

Δ̇I = sgn(e)ė tan(ϑI) + |e|(1 + tan2(ϑI))ϑ̇I . (C.20)

Next, we eliminate ϑ̇I by employing (3.16)

ϑ̇I =
U

|p′(ϑI)| , (C.21)

and inserting the length of the clothoid tangent vector (3.37)

|p′(ϑI)| =

∣∣∣∣ a√
ϑI

[
cos(ϑI)
sin(ϑI)

]∣∣∣∣
=

a√
ϑI

, (C.22)

we get

ϑ̇I = U

√
ϑI

a
. (C.23)

Furthermore, by noticing that the curvature of a clothoid is (3.38)

κ(ϑI) =

√
ϑI

a
, (C.24)
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we can finally write the time derivative of the path parameter as

ϑ̇I = Uκ(ϑI). (C.25)

By inserting this result in (C.20) and eliminating Δ̇ and Δ from (C.18) we
get

χ̇r(e) =
e(sgn(e)ė tan(ϑI) + |e|(1 + tan2(ϑI))Uκ(ϑI)) − ė|e| tan (ϑI(e))

(|e| tan (ϑI(e)))2 + e2

=
e|e|(1 + tan2(ϑI))Uκ(ϑI)

e2(1 + tan2(ϑI))

= sgn(e)
U

R(ϑI(e))
. (C.26)

C.3.2 χ̇r in phase III

In the second transition phase, the lookahead distance is (5.81)

ΔIII(e) =
|e|

tan(ϑIII(e))
. (C.27)

The time derivative of the lookahead distance is

Δ̇III =
sgn(e)ė tan(ϑIII) − |e| sec2(ϑIII)ϑ̇III

tan2(ϑIII)
. (C.28)

Similar to (C.25), it can be shown that

ϑ̇III = −Uκ(ϑIII). (C.29)

The negative sign comes due to decreasing path parameter in this phase.

Again, we can arrive at the simplified expression for the course rate by elim-
inating Δ̇ and Δ from (C.18)

χ̇r(e) =
e(sgn(e)ė tan(ϑIII)

tan2(ϑIII)
+ |e|1+tan2(ϑIII)

tan2(ϑIII)
Uκ(ϑIII)) − ė|e|

tan(ϑIII(e))(
|e|

tan(ϑIII

)2

+ e2

=
e|e|1+tan2(ϑIII)

tan2(ϑIII)
Uκ(ϑI)

e2
(

1+tan2(ϑIII)
tan2(ϑ)

)
= sgn(e)

U

R(ϑIII(e))
. (C.30)
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C.4 Newton-Raphson method

The Newton-Raphson method is a root-finding algorithm which use tangent
lines to successively converge to the root of a function. The method was
first described by Newton in 1669, but published much later (Newton 1711).
In the mean time, Raphson also described same principle, but in a more
elegant manner (Raphson 1690). In textbooks today, the algorithm, which
is also known as Newton’s root-finding method, is presented with Raphson’s
approach.

The idea is to start with an initial guess of x = xk and approximate the
function in a neighborhood of xk with a first order Taylor series. Next, we
find the point xk+1 = xk + ε where this approximation intersects the x-axis.

f(x) ≈ f(xk) + f ′(xk)ε

0 = f(xk) + f ′(xk)ε

⇓
ε = − f(xk)

f ′(xk)
. (C.31)

The point

xk+1 = xk − f(xk)

f ′(xk)
(C.32)

is a new approximation of the location of the root. Figure C.1 illustrates the
principle of the algorithm. By repeating (C.32) in an iterative loop, x may or
may not converge to the root. Certain condition must however be satisfied
to guarantee convergence.

Theorem C.1 (From (Buchanan & Turner 1992)). If the function f(x) is
twice differentiable and satisfies the following conditions on the interval [a, b]:

a) f(a) and f(b) are opposite signs,

b) f ′(x) is nonzero in [a, b],

c) f ′′(x) does not change sign in [a, b],

d)
[

f(a)
f ′(a)

]
< b− a and

[
f(b)
f ′(b)

]
> b− a,

the Newton’s root-finding method converges to the unique root of the equation
f(x) = 0 in [a, b] for any starting value in [a, b].
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Figure C.1: The principle of the Newton-Raphson method.

In some cases a precise value of f ′(xk) is not available; the interval [a, b]
has to be widened to meet the conditions of Theorem C.1. When f(x)
contains one of the Fresnels integrals (3.34a)-(3.34b), a widened interval must
be developed (Meek & Walton 2004).

Lemma C.1 (From (Meek & Walton 2004)). A function f(x) is on standard
form if:

a) f(rL) < 0 < f(rH),

b) f ′(r) > 0,

c) f ′′(r) > 0,

d) f(r) = 0.

Theorem C.2 (From (Meek & Walton 2004)). Given a function f(x) on
standard form. If f(x) changes sign over the interval [rL, rH ], define the
widened interval [a, b], where a = rL − h, b = rH − h, and h = rH − rL. If
f ′(x) > 0 and f ′′(x) > 0 over the interval [a, b], and if 2h(3f ′′

max − f ′′
min) <

f ′
min, where f ′

min, f
′′
min, and f ′′

max are smallest and largest values on [a, b],
then Newton’s root-finding method converges to the unique root of f(x) = 0
in [a, b] for any starting value in [a, b].

Proof. See (Meek & Walton 2004).
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C.5 Conditions for convergence of Newton’s

root-finding method

To guarantee that Newton’s root-finding method converges to the root, the
conditions presented in Theorem C.1 must be satisfied. When dealing with
the Fresnels integrals, the last condition of this theorem may not be satisfied
(Meek & Walton 2004). Thus, a widened interval must be used to guarantee
the last condition. Now, we restate the Fresnels integrals and find upper and
lower limits for sin(ϑ) and cos(ϑ) for later use.

From (3.35) we have

C(ϑ) =

∫ ϑ

0

cos(u2)√
u

du, (C.33a)

S(ϑ) =

∫ ϑ

0

sin(u2)√
u

du, , (C.33b)

and the reduced feasible interval for the transition phases

ϑ ∈
〈

0,
π

4

]
. (C.34)

The derivatives with respect to ϑ are

C ′(ϑ) =
cos(ϑ)√

ϑ
(C.35a)

S ′(ϑ) =
sin(ϑ)√

ϑ
(C.35b)

Taylor series gives

ϑ

(
1 − ϑ2

6

)
< sin(ϑ) < ϑ, (C.36a)

1 − ϑ2

2
< cos(ϑ) < 1 − ϑ2

2
+
ϑ4

24
< 1. (C.36b)

Phase I

We have the root-function (5.59) and its first derivative (5.60)

gI(ϑ) = C(ϑ) − xI(e)

a
= 0, ϑ ∈ 〈0, ϑ0] , (C.37a)

g′I(ϑ) =
cos(ϑ)√

ϑ
, (C.37b)
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and the second derivative

g′′I (ϑ) = −sin(ϑ)√
ϑ

− 1

2ϑ

cos(ϑ)√
ϑ

. (C.37c)

To be able to use Theorem C.2, the root-function must be on standard form
according to Lemma C.1. Hence, gI(ϑ) must be reflected across both axes to
get g′I > 0 and g′′I > 0. The second derivative becomes:

g′′I (ϑ) =
sin(ϑ)√

ϑ
+

1

2ϑ

cos(ϑ)√
ϑ

. (C.38)

We need to show that both the first and second derivatives in fact satisfy
g′I > 0 and g′′I > 0.

Estimates of g′I(ϑ) and g′′I (ϑ) Substituting the lower limit of (C.36b) into
(C.37b) we get

1 − ϑ2

2√
ϑ

< g′I(ϑ) , ϑ ∈
〈

0,
π

4

]
(C.39)

and can conclude that the first derivative satisfies the positivity condition of
Lemma C.1.

Next, we use (C.36) in (C.38)

ϑ
(

1 − ϑ2

6

)
√
ϑ

+
1

2ϑ

1 − ϑ2

2√
ϑ

< g′′I (ϑ) <
ϑ√
ϑ

+
1

2ϑ
√
ϑ

2ϑ2
(

1 − ϑ2

6

)
+ 1 − ϑ2

2

2ϑ
√
ϑ

< g′′I (ϑ) <
2ϑ2 + 1

2ϑ
√
ϑ

0 <
1 + ϑ2

(
3
2
− ϑ2

3

)
2ϑ

√
ϑ

< g′′I (ϑ) <
1 + 2ϑ2

2ϑ
√
ϑ
, (C.40)

which is lower bounded for ϑ ∈ 〈
0, π

4

]
.

We have shown that the conditions in Lemma C.1 are satisfied and the widen-
ing technique of Theorem C.2 can be used.
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The widened interval The upper and lower bound of (C.33a) can be
found by using (C.36b) in the integral

1 − ϑ2

10
<
C(ϑ)

2
√
ϑ
< 1, (C.41)

further, using that (C.37a) can be rewritten to

C(ϑ) =
xI(e)

a
� dI , (C.42)

we get

2
√
ϑ

αI |ϑ=π
4︷ ︸︸ ︷(

1 − ϑ2

10

)
< dI < 2

√
ϑ

2
√
ϑαI < dI < 2

√
ϑ, (C.43)

so the upper and lower limit of ϑ becomes

dI
2
<

√
ϑ <

dI
2αI

rL =
d2I
4
< ϑ <

d2I
4α2

I

= rH . (C.44)

The widened interval [a, b] which guarantees convergence can thus be found
from (C.2)

h = rH − rL (C.45a)

a = rL − h = 2rL − rH (C.45b)

b = rH + h = 2rH − rL. (C.45c)

A feasible initial choice within the interval is

ϑn=0 =
a+ b

2
=
rL + rH

2

=
1

2

(
d2I
4

+
d2I

4α2
I

)

=
d2I
8

(
1 +

1

α2
I

)
, (C.46)

where αI = 1 − π2

10·16 .
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Phase III

Finding a feasible interval for ϑIII can be found using the same procedure as
in Section C.5.

We have the root-function (5.76) and its first derivative (5.77)

gIII(ϑ) = S(ϑ) − yIII(e)

a
= 0, ϑ ∈ 〈0, ϑIII,0] , (C.47a)

g′III(ϑ) =
sin(ϑ)√

ϑ
, (C.47b)

and the second derivative

g′′III(ϑ) =
cos(ϑ)√

ϑ
− 1

2ϑ

sin(ϑ)√
ϑ
. (C.47c)

Estimates of g′III(ϑ) and g′′III(ϑ) Substituting the lower limit of (C.36a)
into (C.47b) we get

ϑ
(

1 − ϑ2

6

)
√
ϑ

< g′III(ϑ) , ϑ ∈
〈

0,
π

4

]
√
ϑ

(
1 − ϑ2

6

)
< g′III(ϑ) (C.48)

and can conclude that the first derivative satisfies the positivity condition of
Lemma C.1.

Furthermore, the second derivative (C.38) can be upper and lower bounded
with the Taylor series (C.36)

1√
ϑ

(
1 − ϑ2

2
− 1

2ϑ
ϑ

)
< g′′III(ϑ) <

1√
ϑ

(
1 − 1

2ϑ
ϑ

(
1 − ϑ2

6

))
1

2
√
ϑ

(1 − ϑ2) < g′′III(ϑ) <
1

2
√
ϑ

(
1 +

ϑ2

6

)
(C.49)

which is lower bounded for ϑ ∈ 〈
0, π

4

]
.

Once more, we have shown that the conditions in Lemma C.1 are satisfied
and the widening technique of Theorem C.2 can be used.
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The widened interval The upper and lower bound of (C.33b) can by
found by using (C.36a) in the integral

ϑ

3

(
1 − ϑ2

14

)
<
S(ϑ)

2
√
ϑ
<
ϑ

3
. (C.50)

For simplicity, we rewrite (C.47a) to

S(ϑ) =
yIII(e)

a
� dIII , (C.51)

and can write

2

3
ϑ
√
ϑ

αIII |ϑ=π
4︷ ︸︸ ︷(

1 − ϑ2

14

)
< dIII <

2

3
ϑ
√
ϑ

2

3
ϑ3/2αIII < dIII <

2

3
ϑ3/2, (C.52)

so the upper and lower limit of ϑ becomes

3

2
dIII < ϑ3/2 <

3dIII
2αIII

rL =

(
3dIII

2

)2/3

< ϑ <

(
3dIII
2αIII

)2/3

= rH . (C.53)

The widened interval [a, b] which guarantees convergence can thus be found
from (C.2)

h = rH − rL (C.54a)

a = rL − h = 2rL − rH (C.54b)

b = rH + h = 2rH − rL. (C.54c)

A feasible initial choice within the interval is

ϑn=0 =
a+ b

2
=
rL + rH

2

=
1

2

((
3dIII

2

)2/3

+

(
3dIII
2αIII

)2/3
)

=
1

2

(
3dIII

2

)2/3
(

1 +
1

α
2/3
III

)
, (C.55)

where αIII = 1 − π2

14·16 .
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C.6 The coefficients of the η−spline

The quintic η−spline is defined by twelve polynomial coefficients. ai and bi,
i ∈ I5 are the coefficients for the x-axis and y-axis, respectively. This result
is taken from (Guarino Lo Bianco & Piazzi 2000).

a0 = xA (C.56a)

a1 = η1 cosχA (C.56b)

a2 =
1

2
(η3 cosχA − η21κA sinχA) (C.56c)

a3 = 10(xB − xA) − (6η1 +
3

2
η3) cosχA − (4η2 − 1

2
η4) cosχB(C.56d)

+
3

2
η21κA sinχA − 1

2
η22κB sinχB

a4 = −15(xB − xA) + (8η1 +
3

2
η3) cosχA + (7η2 − η4) cosχB(C.56e)

−3

2
η21κA sinχA + η22κB sinχB

a5 = 6(xB − xA) − (3η1 +
1

2
η3) cosχA − (3η2 − 1

2
η4) cosχB (C.56f)

+
1

2
η21κA sinχA − 1

2
η22κB sinχB

b0 = yA (C.57a)

b1 = η1 sinχA (C.57b)

b2 =
1

2
(η3 sinχA + η21κA cosχA) (C.57c)

b3 = 10(yB − yA) − (6η1 +
3

2
η3) sinχA − (4η2 − 1

2
η4) sinχB(C.57d)

−3

2
η21κA cosχA +

1

2
η22κB cosχB

b4 = −15(yB − yA) + (8η1 +
3

2
η3) sinχA + (7η2 − η4) sinχB(C.57e)

+
3

2
η21κA cosχA − η22κB cosχB

b5 = 6(yB − yA) − (3η1 +
1

2
η3) sinχA − (3η2 − 1

2
η4) sinχB (C.57f)

−1

2
η21κA cosχA +

1

2
η22κB cosχB
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C.7 The algorithm for a G2-continuous Catmull-

Rom spline

First, some precomputations are needed. No explanations are given. Consult
(DeRose & Barsky 1988).

Algorithm 5 Precompute(V 0, · · ·V m,β1,β2)

β1,0 ← β1,m ← 1
β2,0 ← β2,m ← 0
for i = 1 to m− 1 do
γ2,i ← 1+β1,i

β2,i+β1,i(1+β1,i)

γ3,i ← 2(1+β1,i)

β2,i+2β1,i(1+β1,i)

end for
for i = 0 to m− 2 do
Pbi,0,2 ← Pbi,1,0 ← V i

Pbi,1,2 ← Pbi,2,0 ← V i+1

Pbi,2,2 ← Pbi,3,0 ← V i+2

Pbi,1,1 ← β2
1,i+1γ2,i+1V i+(1+γ2,i+1)(1+β1,i+1)V i+1−γ2,i+1V i+2

(1+β1,i+1)(1+β1,i+1γ2,i+1)

Pbi,2,1 ← V i+1 + β1,i+1(V i+1 − Pbi,1,1)
Pbi,0,1 ← V i + 1

β1,i
(V i − Pbi,1,1)

T 1 ← Pbi,1,1 + γ2,i(Pbi,1,1 − V i+1)
Pbi,0,0 ← Pbi,0,1 + 1

β2
1,iγ2,i

(Pbi,0,1 − T 1)

Pbi,3,1 ← V i+2 + β1,i+2(V i+2 − Pbi,2,1)
T 2 ← Pbi,2,1 + β1,i+2γ2,i+1(Pbi,2,1 − V i+1)
Pbi,3,2 ← Pbi,3,1 + 1

γ2,i+2
(Pbi,3,1 − T 2)

end for

After the precomputations, control polygons for the Bézier curve segments
can be created. Curve segments indexed within q = 2, · · · ,m−3 is computed
through the following algorithm:
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Algorithm 6 ConstructBézierPolygon(V 0, · · ·V m,β1,β2, q)

for r = 0 to 3 do
Rr,0 ← Pbq+r−2,3−r,0

Rr,1 ← Pbq+r−2,3−r,1

Rr,2 ← Pbq+r−2,3−r,2

end for
for c = 0 to 2 do
T 1 ← β2

1,qγ3,qR0,c+(1+γ3,q−1)R1,c

1+γ3,q−1+β2
1,qγ3,q

S1,c ← (1+β2
1,q+1γ3,q+1)R1,c+γ3,qR2,c

1+γ3,q+β2
1,q+1γ3,q+1

S2,c ← β2
1,q+1γ3,q+1R1,c+(1+γ3,q)R2,c

1+γ3,q+β2
1,q+1γ3,q+1

T 2 ← (1+β2
1,q+2γ3,q+2)R2,c+γ3,q+1R3,c

1+γ3,q+1+β2
1,q+2γ3,q+2

S0,c ← β1,qT 1+S1,c

1+β1,q

S3,c ← β1,q+1S2,c+T 2

1+β1,q+1

end for
Q0 ← S0,0

Q1 ← 3S1,0+2S0,1

5

Q2 ← 3S2,0+6S1,1+S0,2

10

Q3 ← S3,0+6S2,1+3S1,2

10

Q4 ← 2S3,1+3S2,2

5

Q5 ← S3,2

return (Q0, · · · ,Q5)
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C.8 Cascaded nonlinear time-varying systems

(NLTV)

This material is taken from (Lamnabhi-Lagarrigue et al. 2005). A cascaded
NLTV can be written in the form

Σ1 : ẋ1 = f1(t,x1) + g(t,x)x2 (C.58a)

Σ2 : ẋ2 = f2(t,x2), (C.58b)

where x1 ∈ R
n, x2 ∈ R

m, x � [x1 x2]
�. Further, f1(·, ·), f2(·, ·), g(·, ·) are

continuous, locally Lipschits in x, uniformly in t, and f1(·, ·) is continuously
differentiable in both arguments. There must also exist a nondecreasing
function G(·) such that

|g(t,x)| ≤ G(|x|). (C.59)

In (Lamnabhi-Lagarrigue et al. 2005) sufficient conditions is outlined for the
subsystem

ẋ1 = f1(t,x1) (C.60)

to ramain UGAS (or UGES) when it is perturbed by the output of another
UGAS (or UGES) system on the form Σ2.

We now restate the relevant assumptions needed to guarantee stability for
the cascaded system developed in this thesis.

Assumption C.1.

a) (C.60) is UGAS (or UGES)

b) There exist a known C1 Lyapunov function V (t,x1), α1, α2 ∈ K∞, a posi-
tive semidefinite functionW (x1), a continuous non-decreasing function
α4, such that

α1(|x1|) ≤ V (t,x1) ≤ α2(|x1|) (C.61)

V̇(C.60)(t,x1) ≤ −W (x1) (C.62)∣∣∣∣ δVδx1

∣∣∣∣ ≤ α4(|x1|). (C.63)

181



182 Appendix C. Complementary material

Assumption C.2. The subsystem Σ2 is UGAS (or UGES).

Assumption C.3. There exist a continuous non-decreasing function α6 :
R≥0 → R≥0, and a constant a ≥ 0, such that α6(a) > 0 and

α6(s) ≥ α4(α
−1
1 (s))α5(α

−1
1 (s)), (C.64)

where α5 is taken from

|g(t,x(t; t◦,x◦))| ≤ cg(r)α5(|x1(t; t◦,x◦)|), ∀|x2,◦| < r, ∀t ≥ t◦, r > 0

(C.65)

cg(·) � θ1(β(·, 0)), a class K function, (C.66)

and ∫ ∞

a

ds

α6(s)
= ∞. (C.67)

Assumption C.4. The function g(t,x) is majorized by the function f1(t,x1)
in the following sense: for each r > 0 there exist λ > 0, η > 0 such that, for
all t ≥ 0 and all |x2| < r

∣∣∣∣δVδx g(t,x)

∣∣∣∣ ≤ λW (x1), |x1| ≥ η, (C.68)

where W (x1) is defined in Assumption C.1.

Theorem C.3. If Assumptions C.1-C.4 hold, the cascade (C.58) is UGAS
(or UGES) because f1(t,x1) majorizes g(t,x).

C.9 Local stability of the path-tracking con-

troller

We have the system (5.128)

˙̃sp = −Ua,max
s̃p√

s̃2p + Δ2
s

= f(s̃p). (C.69)
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Let us linearize around the origin to determine the stability close to this
equilibrium. First, find the Taylor series linearization around the solution:

df

ds̃p

∣∣∣∣
s̃p=0

=
−Ua,max

√
s̃2p + Δ2

s − 1

4
√

s̃2p+Δ2
s

s̃2p + Δ2
s

∣∣∣∣∣∣
s̃p=0

=
−Ua,maxΔs − 1

4Δs

Δ2
s

= −
(

Δ2
sUa,max

Δs

+
1

4Δ3
s

)
. (C.70)

We get the linearized system

Δ ˙̃sp =
df

ds̃p

∣∣∣∣
s̃p=0

Δs̃p

= −
(

Δ2
sUa,max

Δs

+
1

4Δ3
s

)
︸ ︷︷ ︸

A

Δs̃p, (C.71)

where A clearly is Hurwitz; that is A < 0, and hence the system is LES.

C.10 Lawn-mower path planner

C.10.1 Newton’s method for case B

Newton’s method is explained in Appendix C.4. For Newton’s method to
be applicable, Theorem C.1 must be valid. We will now verify most of this
conditions.

The root function is (5.171)

gB(ϑ) = S(ϑ) + C ′(ϑ) − d

2a
, (C.72)

ands its first derivative is

g′B(ϑ) = S ′(ϑ) + C ′′(ϑ) (C.73)

= −C
′(ϑ)

2ϑ
, (C.74)
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which is negative for all ϑ ∈ 〈
0, π

2

]
.

The second derivative is

g′′B(ϑ) = −(C ′′(ϑ)2ϑ− 2C ′(ϑ))
1

4ϑ2
(C.75)

=
3C ′(ϑ)

4ϑ2
+
S ′(ϑ)

2ϑ
, (C.76)

which is non-negative in ϑ ∈ 〈
0, π

2

]
.

These results verify that the conditions a), b) and c) of Theorem C.1 are
met. As for condition d), linearization of the expression and considering
these bounds must be done according to (Meek & Walton 2004). This work
is tedious and considered outside the scope of this thesis. It is however
believed that condition d) in fact can be met. To compensate for the lack
of an approximate initial guess, an increased number of iterations can be
performed with ϑ0 = 10−6, which is applicable in most practical cases.

C.10.2 Newton’s method for case C

Newton’s method is explained in Appendix C.4. For Newton’s method to
be applicable, Theorem C.1 must be valid. We will now verify most of this
conditions.

The root function is (5.186)

gC(φ) = [S(φ/2) + sin(φ) (C(φ/2) + C(ϑc) − S ′(ϑc))

− cos(φ) (S(φ/2) + S(ϑc) + C ′(ϑc))] +
d

2a
, (C.77)

ands its first derivative is

g′C(φ) = S ′(φ/2) (1 − cos(φ)) + C ′(φ/2) sin(φ)

+ cos(φ) (C(φ/2) + C(ϑc) − S ′(ϑc))

+ sin(φ) (S(φ/2) + S(ϑc) + C ′(ϑc)) (C.78)

which can be shown to be positive for all col [ϑc, ϕ] ∈ 〈0, π] × 〈
0, π

2

]
, by

inspecting each term separately.

184



C.10. Lawn-mower path planner 185

The second derivative is

g′′C(φ) =
cos(φ/2)√

φ/2

(
3

4
cos(φ) − 1

φ
sin(φ) +

1

4

)

+
sin(φ/2)√

φ/2

(
3

4
sin(φ) − 1

φ
(1 − cos(φ))

)
− sin(φ)(C(φ/2) + C(ϑc) − S ′(ϑc))

+ cos(φ)(S(φ/2) + S(ϑc) + C ′(ϑc)), (C.79)

which is non-trivial to examine. Fortunately, we know that the x-coordinate
of the circle center always lies to the left of the initial parallel line (in the
nominal case used to deduce the equations) and hence

M�
c,x(φ, ϑc) � gc(φ) − d

2a
≤ 0, ∀ col [φ, ϑc] ∈ IC . (C.80)

To prove that g′′C(φ, ϑc) is positive in the area of interest, that is, col [φ, ϑc] ∈
IC , several approaches apply. It can be proven that

M�
c,x(φ, ϑc) + g′′C(φ, ϑc) > 0∀col(φ, ϑc) ∈ 〈0, π/2] × 〈0, π] , (C.81)

which is sufficient, since Ic ⊂ 〈0, π/2] × 〈0, π]. However, this proof is very
tedious, so a graphical interpretation will be given instead. Consider Figure
C.2, where the second derivative of the root function (C.79), and a scaled
version of the x-coordinate of the circle center (C.80) are plotted together.
It can be seen that whenever (C.80) is negative, equation (C.79) is positive,
and hence condition c) of Theorem C.1 applies.

We have shown that the conditions a), b) and c) of Theorem C.1 are met.
As for condition d), linearization of the expression and considering these
bounds must be done according to (Meek & Walton 2004). This work is
tedious and considered outside the scope of this thesis. It is however believed
that condition d) in fact can be met. To compensate for the lack of an
approximate initial guess, an increased number of iterations can be performed
with ϑ0 = 10−6, which is applicable in most practical cases. Rather than
trying to find a feasible initial condition, a different root finding method
should seriously be considered. This problem will not be considered here.

185



186 Appendix C. Complementary material

Figure C.2: The plot shows that the second derivative is positive whenever
the scaled x-coordinate of the circle is negative.
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