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Abstract

The topic of this paper is to control and synchronize sphere-shaped spacecrafts
in a leader-follower synchronization scheme. In order to achieve this objective, a
nonlinear mathematical model of the vehicles has been developed. The design is based
on rigid body dynamics where the vessel is actuated by means of three orthogonally
mounted reaction wheels. The attitude dynamics is derived using Euler parameters.

In the pursuit of reaching the main goal of controlling and synchronizing the
satellites, it is natural to first develop control algorithms for single vehicle control.
A sliding mode controller and a backstepping controller have been derived for this
matter, and are compared for optimality. Both controllers are based on nonlinear
control theory and are designed to control the angular velocity of the satellite. The
system in combination with both the controllers is proven to be asymptotically stable.

Due to cases where the spacecraft does not have angular velocity measurements,
an estimator for the angular velocity is derived. Using LaSalle’s theorem, asymp-
totic stability is proven for the observer in the time-invariant case, while Matrosov’s
theorem is utilized for system explicitly dependent on time.

For operational assignments where it is not sufficient with only one satellite, a
synchronizing scheme for several satellites has been proposed. The scheme is based
on a leader-follower synchronization design, and is derived assuming that none of the
satellites are equipped with angular velocity measurements. It is therefore possible to
implement and utilize the nonlinear observer for angular velocity estimation in each
vehicle. The controllers are designed in a similar manner for both the leader and the
follower using backstepping control. The leader is set to follow an arbitrarily smooth
trajectory, while the follower’s objective is to track the leader’s attitude, given by
measurements and estimations.

The various systems are tested in a lab setup with the AUVSAT. The AUVSAT
is a sphere shaped, autonomous underwater satellite actuated by means of three
reaction wheels. The experiments are performed when the AUVSAT is submerged in
a water tank, making it possible to emulate a gravity free environment equal to what
a satellite traveling in space is experiencing. The AUVSAT build up is presented
where hardware and software components are chosen with respect to simplicity, cost
and space restrictions.

Several experiments are carried out using the AUVSAT to evaluate the perfor-
mance of the controllers, observer and the synchronization scheme. For all cases,
the system tracks a time-varying sinusoidal reference signal in addition to a square-
shaped sequence. In this way, one can truly validate transient responses, steady-state
and tracking maneuvers to determine the performance of the various systems.

The experiments show that the sliding mode controller and backstepping con-
troller works quite similar and with a satisfactorily behavior throughout the experi-
ments. However, there are some lack of performance of the combined observer and
controller system when tracking the sinusoidal time-varying reference. In the syn-
chronization scheme, the leader follows the desired trajectory and the follower tracks
the leader’s attitude to some extent. Comments on the results are presented in addi-
tion to proposed strategies and thoughts on how to improve the overall performance
of the various systems.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this thesis is to design and test an attitude leader-follower synchronization
scheme for the sphere shaped underwater satellite, AUVSAT. The AUVSAT is equipped
with three reaction wheels that are mounted orthogonally inside the hull, which makes it
possible to control the attitude of the satellite in all three degrees of freedom. The satellite
has also a ballast system so that the sphere can behave like a naturally buoyant rigid body.
When the underwater satellite is lowered into a water tank and submerged, it will emulate
a weightless state, equal to the condition for a satellite in space. You thereby get a mixture
of theories from both the aerospace and maritime literature.

In the pursuit of designing the leader-follower synchronization scheme it is essential to
investigate different attitude control methods and therefore, two nonlinear controllers have
been designed for single vehicle control and compared for optimality.

The first method proposed for controlling the angular velocity of the underwater satel-
lite is a sliding mode controller. This is a well known nonlinear controller considered
to be very robust and thereby practical for systems with external disturbances (Alfaro-
Cid, McGookin, Murray-Smith, and Fossen, 2005). The second proposed controller is a
backstepping controller. The backstepping control method is a systematic and recursive
design methodology for nonlinear control where it is possible to utilize “good nonlineari-
ties” (Khalil, 2002).

Both the sliding mode and the backstepping controller require knowledge about the
angular velocity of the satellite, and in the first part of the experiments, this is given as
a direct feedback from a filtered angular velocity measurement. However, in some cases it
can be of interest to estimate the angular velocity instead, and hence a nonlinear observer
for the angular velocity is developed for this purpose.

The system with both the sliding mode and the backstepping controller are proven to
be asymptotically stable. This is also the case for the observer.

After the controllers and the observer have been developed, one is ready to design
the leader-follower attitude synchronization scheme. The synchronization scheme assumes

1



1. Introduction

that angular velocity measurements are not available, and the previously developed angular
velocity observer is therefore implemented in both the leader and the follower satellite. In
addition, a backstepping controller is implemented in the leader satellite to make sure
that it tracks a mathematically given trajectory, while a similar backstepping controller
is implemented in the follower to track the leader attitude. Finally, it is proved that
the attitude of the leader will track the desired attitude, and the follower’s attitude will
converge towards the leader’s attitude as time goes to infinity.

The thesis is completed by implementing the controllers, observers and the synchro-
nizing scheme in the underwater satellite, AUVSAT, and experiments are carried out to
evaluate the performance of the different systems.

1.2 Previous work

Attitude control of rigid bodies is a well researched field, and numerous text and mono-
graphs have been developed on this subject. A comprehensive introduction to the theory
of spacecraft attitude dynamics can be seen in (Hughes, 1986) whereas a solid foundation
of control, modeling and analyzes of spacecrafts is given by (Wie, 1998).

For controlling the attitude of a spacecraft, (Bryson, Jr., 1994) gives a good introduc-
tion, and presents popular strategies which are thorough researched and well tested. Some
of the proposed methods include the use of reaction wheels, but also thrusters, and spin
stabilization is evaluated for the purpose of attitude control. In (Hall, 1995) the derivation
of the rigid body dynamics with one reaction wheel is presented where the differential
equations are put into a non canonical Hamiltonian form. The article also indicates how
to apply the result when more than one reaction wheel is needed. However this is done
in (Hall, 2002), and (Tsiotras, Shen, and Hall, 2001) includes the aspect of using momen-
tum wheels as an energy storage mechanism, providing power to the vehicle.

The proposed control schemes used for attitude control range from simple PD-regulator
presented in (Wen and Kreutz-Delgado, 1991), to nonlinear regulator with reaction wheels
and thrusters in (Hall, Tsiotras, and Shen, 2002). On the other hand (Fjellstad and Fossen,
1994) presents a unit quaternion feedback approach for underwater vehicles, which is an
excellent reference for the maritime part of the assignment.

The specific sliding mode controller is presented in general settings in (Young, Utkin,
and Ozguner, 1999) and proposed in combination with spacecraft dynamics in (Yongqiang,
Xiangdong, Wei, and Chaozhen, 2008) and (Chen and Lo, 1993). A Lyapunov function
candidate has been constructed to prove asymptotic stability.

For the case of backstepping controllers, numerous texts and papers exist. An excellent
introduction to the backstepping control method and some area of application can be seen
in (Krstić, Kanellakopoulos, and Kokotović, 1995). The backstepping algorithm has also
been proposed in various spacecraft systems and an example can be seen in (Xiao, Hu,
and Ma, 2010). Another is seen in (Li and Ma, 2007) and proposes an adaptive attitude
backstepping controller where the attitude is parameterized using Modified Rodrigues Pa-
rameter (MRP), whereas (Hu, Friswell, Wagg, and Neild, 2009) utilizes the quaternion
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1.3. Outline of the thesis

parameters.
When angular velocity measurements are not available, it is a natural solution to use

an observer and thereby estimate the needed angular velocities. However, (Costic, Daw-
son, De Queiroz, and Kapila, 2000) shows that it is possible to control the attitude of a
spacecraft without using observers. The paper proposes a solution where the attitude con-
troller is developed assuming that angular velocity is available, and then redesigning the
controller such that the need of angular velocity measurements is eliminated. The proof
of asymptotic attitude tracking is also presented. Nonetheless, it is of course possible to
use observers for estimation of the angular velocity, and a proposed solution is presented
in (Salcudean, 1991). The article is essential for most spacecrafts without angular veloc-
ity measurements and the principles have been used in many solutions. Another, slightly
different observer scheme is presented in (Tayebi, 2006). This paper shows that the pro-
posed observer is passive and maps the observer input to the estimated attitude error. It
is therefore possible to design a simple linear feedback in terms of the vector part of the
estimation error, to ensure asymptotic stability.

The topic of spacecraft formation flying has been investigated closely in the last couple
of years. A comprehensive survey on formation flying guidance can be seen in (Scharf,
Hadaegh, and Ploen, 2003) whereas a widespread survey on formation flying control can
be seen (Scharf, Hadaegh, and Ploen, 2004). A solution of the attitude control problem
is presented in (Ren, 2007) and the article proposes three different attitude control laws.
One of them applies a passivity approach to remove the requirement for angular velocity
measurements between the neighboring rigid bodies. (Krogstad, 2010), on the other hand,
presents a mutual six degrees of freedom synchronization scheme for satellites actuated by
means of thrusters and reaction wheels. In addition to the 6 DOF synchronization scheme,
an attitude leader-follower synchronization scheme has also been developed. The paper
also presents real experiments, using the AUVSAT presented in this thesis (see Section 8).
However, the angular velocities are assumed to be known for both the cases.

There has also been a noticeable research in the area of spacecraft formation control
when angular velocity is not present. In (Abdessameud and Tayebi, 2009) this subject has
been investigated, and a synchronizing control-law independent of the angular velocity has
been developed. Numerical simulation has also been carried out where four satellites are
synchronized, to validate the results. (Bondhus, 2010) on the other hand, adapts the prin-
ciples from (Salcudean, 1991) and develops a leader-follower synchronization scheme using
backstepping control in combination with the observer presented in (Salcudean, 1991). In
addition, asymptotic stability is proven for the complete system and a numerical simulation
is carried out and confirms the findings.

1.3 Outline of the thesis

• Chapter 2 - A short introduction to the theoretical background for reference frames,
notations, definitions, attitude representations and rotational kinematic differential
equations.
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1. Introduction

• Chapter 3 - The derivation of equations of motions and modeling of both external
and internal forces are presented in this chapter.

• Chapter 4 - A sliding mode and a backstepping controller is developed based on cal-
culated error dynamics. Asymptotical stability is proven for each combined controller
and system.

• Chapter 5 - A short introduction of some of the non-modeled aspects in the lab
setup is presented in this chapter.

• Chapter 6 - De deduction of the nonlinear observer for estimation of angular velocity
is carried out in this chapter. The stability proof for the time-independent and time-
varying case is carried out, using LaSalle’s, and Matrosov’s theorem, respectively.

• Chapter 7 - Based on work presented in (Bondhus, 2010), a leader-follower attitude
synchronization scheme is presented. The nonlinear observer developed in Chapter 6
is implemented for both the leader and the follower. In addition, a backstepping
controller is implemented in the leader satellite to follow the mathematically given
trajectory, while a similar backstepping controller is implemented in the follower to
track the leader. Finally, it is proved that the leader attitude will converge towards
the desired trajectory, while the follower will converge towards the leader attitude.

• Chapter 8 - This chapter contains a short description of the hardware and software
used in the AUVSAT. The description includes actuators, measurements, CPU,
communication, hull design and software programs.

• Chapter 9 - The results from the experiments with the underwater satellite are
presented in this chapter. First, experiments of the system are performed with fil-
tering of the angular velocity measurements as feedback. Two controllers, a sliding
mode and a backstepping controller, are also implemented. Then, the sliding mode
controller is tested in a combination with the nonlinear angular velocity observer.
Finally, the synchronization scheme is tested with a leader and a follower satellite
where both vehicles have the nonlinear observer implemented.

• Chapter 10 - The results from the experiments are discussed to illustrate strength
and weaknesses of the controllers, observer and synchronization scheme. In addition,
thoughts of how to improve the behavior are presented.

• Appendix A - Some extensive calculations and derivations are presented, including
the attitude dynamic error equation.

• Appendix B - Matrosov’s stability theorem, as it is presented in (Hahn, 1967), is
stated in this appendix.

• Appendix C - Some pictures of the AUVSAT and a sketch of the lab setup is shown
in this appendix.
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1.4. Contributions of the thesis

• Appendix D - Another sliding mode controller experiment is presented in this
appendix. The only difference compared with the first experiment in Chapter 9 is
that another set of gains have been chosen.

• Appendix E - The paper submitted to the 49th IEEE Conference on Decision and
Control in Atlanta, USA, is presented in this appendix.

1.4 Contributions of the thesis

In the section the contributions of the work presented in this thesis are summarized.

• The preliminary theories presented in Chapter 2–3 are mostly based on previous
published materials by other authors, e.g. (Egeland and Gravdahl, 2002) and (Fossen,
2002). However, the detailed deduction of the sphere-shaped satellite actuated by
means of three orthogonal reaction wheels is, to the author’s best knowledge, not
published before.

• The sliding mode and the backstepping controller presented in Chapter 4 are also
proposed and published in many variations before. However, the small section where
it can be seen that the sliding mode controller has in fact finite-time convergence to
the sliding manifold is a new contribution for sphere-shaped satellite control. One
can thereby find an upper bound for the convergence time and utilize it for finding
suitable tuning-gain values.

• In Chapter 5 it is especially the observation of the twisting effect from the Ethernet
cable that can be seen as an important finding. The plots in this section clearly show
that vessels with small drag forces should have wireless transmission if possible.

• The nonlinear angular velocity observer for an internally actuated satellite, shown in
Chapter 6 is an important contribution to aerospace control. However, (Krogstad,
2010) have shown similar results, but the proposed solution presents the findings in
an alternative way. In addition, the last proof in this chapter, showing asymptotic
stability of the observer using Matrosov’s theorem is new, and has not been published
in this content before.

• The synchronization scheme in Chapter 7 is the main contribution of this thesis.
To the author’s best knowledge, a leader-follower synchronization scheme where the
vehicles are internally actuated and none of the vessels have angular velocity mea-
surements have not been published before. The findings in this chapter are therefore
important and should be investigated even further.

• Chapter 9–10 are devoted for testing and validation of the earlier theoretical findings.
The experiments carried out in Chapter 9 show that that the various systems behave
quite good, and thereby validates the theoretical findings. However, the there are
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1. Introduction

always rooms for improvements and the discussion in Chapter 10 presents strategies
and thoughts on how to improve the performance of the various systems.

• Finally, the work performed in the specialization project (Jørgensen, 2009) and during
this thesis has cumulated in a scientific article submitted to the 49th IEEE Conference
on Decision and Control in Atlanta, USA. The article can be seen in Appendix E
and shows an excerpt of the results presented in this thesis where the scope has been
on the proposed sliding mode controller in combination with the nonlinear angular
velocity observer.
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Chapter 2

Kinematics

In this chapter some important mathematical definitions and notations will be presented.
The material is mainly taken from (Egeland and Gravdahl, 2002) and (Fossen, 2002), and
is essentially the same as in (Jørgensen, 2009). However, some changes have been made
for better consistency with the rest of the thesis.

This chapter presents the theory about describing the motion of a vessel without con-
cerning the cause that provoked it. This theory, called kinematics, deals with the basic
relationship between vessel velocity, vessel position and vessel orientation. Since the stud-
ied vessel can not move in a translational way, the focus of this section is the relationship
between angular velocity and orientation.

The experiments takes place in a water tank, and one will thereby only need two
different coordinate frames to represent the kinematics. However, since the thesis is used
to simulate a satellite in space, also relevant coordinate frames for this purpose will be
presented.

2.1 Reference frames

The main idea about kinematics is to describe the motions as relative to some reference
frames and the following reference frames is convenient when describing satellite in 6 DOF.
The first two are Earth-Centered reference frames whereas the last three are geographical
reference frames. The NED reference frame is usually not used for describing satellite
movement, but since the project takes place in a water tank, the NED frame is relevant
for this purpose also.

2.1.1 ECI - Earth-Centered Inertial frame

This frame is a non-rotating reference frame and is assumed fixed in space. The Newton’s
laws of motion applies in this frame, and therefore this frame is used to evaluate the
equations of motion. The origin of the ECI coordinate frame is located at the center of
earth with axes xi, yi and zi shown in Figure 2.1.
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2. Kinematics

Figure 2.1: A sketch of the Earth-centered Earth-fixed (ECEF) frame, Earth-centered
Inertial (ECI) frame, North-East-Down (NED) frame and the BODY reference frame.

2.1.2 ECEF - Earth-Centered Earth Fixed frame

This frame has its origin fixed to the center of earth, coinciding with the ECI-frame origin.
However the axes xe and ye rotate relative to the ECI frame about the axis ze with angular
velocity ωe = 7.2921 · 10−5 rad/s as stated in (Fossen, 2002). This will make it rotate 360◦

about the ze-axis for each day.

2.1.3 NED - North-East-Down frame

The North-East-Down reference frame is a geographical reference frame we refer to in our
daily life. The origin is placed relative to the Earth’s reference ellipsoid. The x-axis points
towards true north, the y-axis points East, while the z-axis points downwards to the center
of Earth as shown in Figure 2.1.

For vessel working in a local area, the NED reference frame can be assumed to be
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2.2. Definitions

inertial and thereby the Newton’s laws of motion will still apply (Fossen, 2002).

2.1.4 BODY fixed frame

The body-fixed reference frame is fixed to the vessel, and the origin is usually placed in
the center of gravity (CG) with the body-axis chosen to coincide with the principal axes
of inertia. This is done to exploit the symmetry of the system.

2.1.5 Orbital frame

The orbital frame has the origin located at the center of gravity of the satellite. The z-axis
points towards the center of Earth. The x-axis points along the orbit trajectory and is
perpendicular to the vector towards the center of the orbit. If the orbit is circular, then
the x-axis points in the velocity direction. The y-axis completes the right hand rule, and
is thereby normal to the orbital plane.

2.2 Definitions

The following section describes some important definitions and notations used in this thesis.

2.2.1 Vectors

The vector �u can be described by its magnitude |�u| and its direction, and is thereby a good
representation for forces, torques, velocities, acceleration etc. If the Cartesian coordinate
frame a is defined by the orthogonal unit vectors �a1, �a2 and �a3, then the vector, denoted
ua, can be expressed in the reference frame a by a 3 × 1 matrix. Such a vector is called a
column vector and must be distinguished from the coordinate free vector �u.

Definition 2.1. The column vector ua with respect to the reference frame a, is defined by

ua �

⎡
⎣ u1

u2

u3

⎤
⎦ , (2.1)

where the components ui is the scalar product between �u and the unit vectors �ai of the
reference frame a as

ui = �u ·�ai, i ∈ {1, 2, 3}. (2.2)

The coordinate free vector �u can be expressed as a linear combination of the orthogonal
vectors �a1, �a2 and �a3 by

�u = u1�a1 + u2�a2 + u3�a3, (2.3)

where the components ui are the same as in Equation (2.2).

9



2. Kinematics

2.2.2 Vectorial notation used in the thesis

We define the three coordinate systems {a}, {b} and {c} with the origin oa, ob and oc,
respectively. Then the following notations for angular velocity, vectors, scalars and matrices
will be used in this paper:

• ωc
ab is the angular velocity of {b} relative to the {a}-frame decomposed in the {c}-

frame. If the sub- and superscript is left out, it means that the angular velocity ω
is the angular velocity of the BODY-frame relative the NED-frame expressed in the
BODY coordinate system, i.e. ωb

nb.

• va is a three-dimensional vector decomposed in the {a}-frame. When the superscript
is left out, it is assumed that the vector is decomposed in the BODY-frame.

• k ∈ R is a scalar and is in general written with non-bold letters.

• A ∈ R
m×n is a matrix and i expressed using bold fonts. The scalars m,n ≥ 2.

2.2.3 Vector cross product

The cross product with reference to the Cartesian frame a can be evaluated from

�u× �v =

∣∣∣∣∣∣
�a1 �a2 �a3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ . (2.4)

To evaluate the cross product between the two column vectors, the skew symmetric matrix
operator S( · ) is defined.

Definition 2.2. The Skew-symmetric cross product matrix

S(�u) �

⎡
⎣ 0 −u3 u2

u3 0 −u1

−u1 u1 0

⎤
⎦ , (2.5)

where ui is given by Equation (2.2).

By using the skew-symmetric operator the cross product in Equation (2.4) can be
evaluated by an ordinary matrix product as

�u× �v = S(u)v =

⎡
⎣ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤
⎦
⎡
⎣ v1

v2

v3

⎤
⎦ , (2.6)

where ui and vi are the same as in previous notation.
The skew-symmetric cross product matrix has some nice properties. If x and y are

vectors ∈ R
3×1, α and β are scalars, then some of the properties of the skew-symmetric

cross product matrix can be shown:
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2.3. Rotation matrix

• S(−x) = −S(x).

• S(x) + S(x)T = 0.

• S(x)x = 0.

• xTS(y)x = 0.

• S(x)y = −S(y)x.

• S(αx + βy) = αS(x) + βS(y).

2.3 Rotation matrix

To describe the attitude of a rigid body, the rotation matrix is essential, and some of the
properties of the rotation matrix are stated in this section.

Since the dynamic model of a satellite can be expressed in several different coordinate
frames, a way to convert between them is needed. This can be done by introducing the
coordinate transformation from frame b to a, given by

va = Ra
bv

b, (2.7)

where
Ra

b = {�ai ·�bj} (2.8)

is called the rotation matrix from a to b. The elements rij = �ai ·�bj of the rotation matrix
Ra

b are called the direction cosines.

2.3.1 Properties of the rotation matrix

It has been shown that the rotation matrix from a to b, Ra
b is orthogonal and satisfies

Rb
a = (Ra

b )
−1 = (Ra

b )
T . (2.9)

The rotation matrix Ra
b has two interpretations:

1. If two vectors vb and va are expressed in b and a, then Ra
b transforms the coordinate

vector in b to the coordinate vector in a according to Equation (2.7) and Ra
b acts as

a coordinate transformation matrix.

2. If the vector pa in a is rotated to the vector qb = pa by Equation (2.10), then Ra
b

acts as a pure rotation matrix.
qa = Ra

bp
a. (2.10)

It is also proven that the determinant of the rotation matrix, det (R) = 1 and one can
thereby introduce the set SO(3) where R is a member, that is,

SO(3) = {R R ∈ R
3×3, RTR = I and detR = 1}, (2.11)

where I is the 3 × 3 identity matrix.
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2. Kinematics

2.3.2 Composite rotations

A rotation from frame a to frame c can be split into two rotations. The first by a rotation
from frame a to b, and then followed by a rotation from frame b to c:

Ra
c = Ra

bR
b
c. (2.12)

2.4 Attitude representation

As stated before, the rotation matrix can act as a pure rotation and thereby represent the
attitude of the satellite relative to the initial reference frame. Since the rotation matrix is
a 3 × 3 matrix, it needs nine elements to be fulfilled. This is not computational effective,
but luckily most of the elements in the rotational matrix are dependent and can thereby
be presented with less than nine parameters.

In this section three of the most popular parameterizations of the rotation matrix are
described; the Euler angles, the angle axis and the unit quaternion. The two first are briefly
explained, whereas the latter is presented thoroughly. The reason for presenting the Euler
angles and the angle axis is because they are very popular and/or make up fundamental
principles for the quaternion representation. The section is completed with a discussion to
evaluate the different parameterizations.

2.4.1 Euler angles

The Euler angles Θ =
[
φ θ ψ

]T
is a three element representation of the rotation

matrix. The three elements in Θ are called the roll-, pitch- and yaw angle (Fossen, 2002).
The rotation matrix can be considered as a composite rotation consisting of φ degree
rotation about the z-axis, θ degree rotation about the current y-axis and finally ψ degree
rotation about the current x-axis. This is shown in Equation (2.13)

R(Θ) = Rz(φ)Ry(θ)Rx(ψ), (2.13)

where Rz(φ), Ry(θ) and Rx(ψ) are “simple rotations”(Egeland and Gravdahl, 2002) about
the z, y and x axis, respectively.

The Euler angles is an intuitive way of describing rotations, and thereby very popular.
One great drawback with the Euler angle representation is that it is singular for θ = ±π

2
.

This is an inconvenience for satellites, and the Euler angle representation is thereby not a
useful alternative for the sphere-shaped vessel.

2.4.2 Angle axis parameter

Every rotation can be viewed as a rotation θ about an arbitrary axis �k. This is referred to
as an angle-axis parameterization and the rotation matrix Rk(θ) can be expressed as

Rk(θ) � cos θI + S(k) sin θ + kkT (1 − cos θ), (2.14)
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2.4. Attitude representation

where I is the 3× 3 identity matrix, S( · ) is the skew-symmetric cross product matrix and

k is the unit column vector of �k.

2.4.3 Unit Quaternion

Unit quaternion is a four parameter representation for the rotation matrix, and the moti-
vation for having this alternative method is to avoid the singularities that can occur when
using Euler angles. A unit quaternion is defined with one real part η and three imaginary

parts given by the vector ε =
[
ε1 ε2 ε3

]T
and expressed in one combined vector.

Definition 2.3. The unit quaternion attitude representation with real part η and imaginary
part ε is defined by the angle axis parameters k and θ as

η = cos(
1

2
θ), (2.15a)

ε = k sin(
1

2
θ), (2.15b)

and combined in one vector q as

q �
[
η ε1 ε2 ε3

]T
=

[
η εT

]T
. (2.16)

The unit quaternion must satisfy the unit condition:

qTq = η2 + εT ε = η2 + ε21 + ε22 + ε23 ≡ 1. (2.17)

The rotation matrix Re parameterized by the unit quaternion can be stated as (Egeland
and Gravdahl, 2002):

Re(η, ε) = I + 2ηS(ε) + 2S(ε)S(ε), (2.18a)

=

⎡
⎣ 1 − 2(ε22 + ε23) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1 − 2(ε21 + ε22) 2(ε2ε3 + ε1η)
2(ε1ε3 + ε2η) 2(ε2ε3 + ε1η) 1 − 2(ε21 + ε22)

⎤
⎦ , (2.18b)

where I is the 3× 3 identity matrix and S( · ) is the skew-symmetric cross product matrix.

Composite rotations with quaternions

To introduce composite rotations, expressed using quaternions, it is necessary to introduce
the quaternion multiplication. Quaternion multiplication is distributive and associative,
but not commutative. This means in general, that q1 ⊗ q2 �= q2 ⊗ q1. The quaternion
product is denoted ⊗ and defined as in Definition 2.4.

Definition 2.4. The quaternion product between the two quaternions q1 =
[
η1 εT

1

]T

and q2 =
[
η2 εT

2

]T
is defined as

q1 ⊗ q2 =

[
η1η2 − εT

1 ε2

η2ε1 + η1ε2 + S(ε1)ε2

]
=

[
η1 −εT

1

ε1 η1I + S(ε1)

]
q2, (2.19)

where S( · ) is the skew-symmetric cross product matrix.
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2. Kinematics

Let Ra
c = Ra

bR
b
c as shown in Section 2.3.2. Then, let the quaternions qac, qab and qbc

correspond to the respective rotation matrices. It can then be seen that:

qac = qab ⊗ qbc, (2.20)

and quaternion multiplication thereby corresponds to rotation matrix multiplication.
Also inverting a quaternion works in much the same way as for rotation matrices. For

a unit quaternion q =
[
η εT

]T
the following relationship always holds:

q ⊗ q−1 = q−1 ⊗ q = 1q, (2.21)

where 1q =
[
1 0T

]T
and q−1 =

[
η −εT

]T
is called the complex-conjugate of q.

2.5 Rotational kinematic differential equations

In this section the differential equations for the rotation matrix and the unit quaternion
are presented. Derivation from the rotational matrix forms the basis for the quaternion-
differential equations.

2.5.1 Rotation matrix

The time derivative of the rotation matrix can most easily be calculated based on the
relationship (Ra

b )(R
a
b )

T = I from Equation (2.11) and taking the time derivative on both
sides;

d

dt

[
(Ra

b )(R
a
b )

T
]

=
d

dt
I,

(Ṙa
b )(R

a
b )

T + (Ra
b )

˙(Ra
b )

T = 0,

and it can thereby be seen that (Ṙa
b )(R

a
b )

T is skew symmetric.
Any 3× 3 skew symmetric matrix can be formed by a 3× 1 vector, and this is also the

case for (Ṙa
b )(R

a
b )

T . It turns out that this vector actually is the angular velocity vector of
frame b relative to frame a decomposed in frame a (Egeland and Gravdahl, 2002). This
gives us the kinematic differential equation of the rotation matrix:

Ṙa
b = S(ωa

ab)R
a
b , (2.22)

or by using the coordinate transformation rule, an alternative representation is given as:

Ṙa
b = Ra

bS(ωb
ab). (2.23)
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2.5.2 Unit Quaternion

The derivation of the kinematic differential equations for the unit quaternion is quite
complex, as can be seen in (Egeland and Gravdahl, 2002). Therefore the calculation is left
out in this paper and only the result for the kinematic differential equation in vector form
is presented:

q̇ =
[
η̇ ε̇T

]T
, (2.24a)

=
1

2

[ −εT

ηI − S(ε)

]
ωa, (2.24b)

=
1

2

[ −εT

ηI + S(ε)

]
ωb, (2.24c)

where I is the 3× 3 identity matrix, S( · ) is the skew-symmetric cross product matrix, ωi

is the angular velocity decomposed in frame i, for i ∈ {a, b}.
Another representation for the quaternion differential equations can be seen in (Bond-

hus, 2010). This representation utilizes the quaternion product and defines an “angular
velocity-quaternion”. The representation is compact in its writing and is therefore suited
when expressions becomes long and complicated.

Definition 2.5. For an angular velocity ω, the angular velocity-quaternion [ω]q is defined
as the quaternion with real part equal to zero, and the imaginary part equal to ω, such that:

[ω]q �
[
0 ωT

]T
. (2.25)

In the literature [ω]q is also called a “pure quaternion”.

The kinematic differential equations in terms of the quaternion qab, that corresponds
to the rotation matrix Ra

b , can then be written as:

q̇ab =
1

2
[ωa

ab]q ⊗ qab, (2.26a)

=
1

2
qab ⊗ [ωb

ab]q, (2.26b)

where ωi
ab is the angular velocity of frame b relative to frame a, decomposed in frame i,

for i ∈ {a, b}.
Remark 2.1. Note that the norm ||[ω]q|| of the angular velocity-quaternion in Defini-
tion 2.5 is in general not equal 1.

2.6 Discussion about choice of attitude

parameterization

Using quaternions as attitude representation has some advantages compared to other rep-
resentations. The most important property is that the representation is not singular for
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any global attitude. It is therefore a popular and frequently used attitude representation in
the literature of spacecraft and satellites. Another important fact is that rotation matrix
parameterized by the unit quaternion is more computational efficient, since it does not
contain any trigonometric functions. This makes it attractive for applications with limited
computational resources, which often are the case for small satellites.

There are also some drawbacks with this choice of orientation representation. First of
all, unit quaternion needs four parameters in stead of the minimum three parameters. This
implies that quaternions do have to satisfy a constraint. This constraint can be seen in
Equation (2.17) and one need to make sure that this “unit constraint” is satisfied at all time.
In addition, the unit quaternion also suffers from a less intuitive representation compared
to Euler angles. More importantly though, unit quaternion is not uniquely defined (Owen,
2009). Even though the physical interpretation of the two attitudes q and −q is the same,
they are not the same mathematically. This introduces a problem since one usually will
get two equilibrium-points, and it is therefore not possible to show global stability result.
This is, among others, pointed out in (Fjellstad, 1994), (Wen and Kreutz-Delgado, 1991)
and (Egeland and Godhavn, 1994).

There are also other orientation parameterizations, each with advantages and disad-
vantages (Bauchau and Trainelli, 2009), (Diebel, 2006), but since the unit quaternion does
not suffer from singularities and is widely used in the satellite literature, we choose the
unit quaternion as the orientation representation for the rest of this thesis.
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Chapter 3

Kinetics

In this chapter the kinetic concept will be introduced and the equations of motions for the
complete system will be derived. In addition, external forces like gravity and damping, are
considered.

The motion of a body consists of rigid translations and rotations, and the theory of
kinetics describes the relationship between these motions and its causes. The kinetic quan-
tities associated with translations are forces, whereas rotations are associated with torques.
Since the satellite only has actuators that can rotate the vessel, only the relationship be-
tween rotations and torques is studied in detail in this paper.

The section starts by introducing some of the internal and external torques, before the
chapter is ended with the deduction of the system equations.

3.1 Internal torques - Reaction wheels

The given AUVSAT is sphere shaped and equipped with three reaction wheels that are
placed orthogonally inside the sphere, with one wheel along each axis. This gives the
theoretical possibility of controlling the vessel’s attitude in three degrees of freedom.

A reaction wheel is essentially a rotor with a motor attached, where the motor can
be controlled. The motor has relatively high inertia and can thereby provide and absorb
momentum to and from the surroundings. The overall angular momentum of the satellite
does not change, and therefore the reaction wheel is often referred as a momentum exchange
device (Krogstad, 2005). The amount of torque that is provided is dependent of the motor
and the size of the rotor, and is often in the range between 0.01 Nm to 1 Nm. For this
specific case, each reaction wheel assembly (RWA) can produce torques up to 0.358 Nm
in loaded condition. It is also common to implement more than three RWA’s for better
performance and redundancy, but this is not the case for the given implementation.
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3.2 External forces

A marine vessel moving through a fluid will be subject to external forces and moment. The
most obvious external force is drag, but also gravity and buoyancy will affect the sphere.
We start by investigating the gravity and buoyancy effect.

3.2.1 Gravity

The origin of the BODY frame is placed in the center of gravity and we can define the

vector rb
b =

[
xb yb zb

]T
as the vector in 3 DOF, expressed in BODY coordinates, from

CG to the center of buoyancy (CB).

Figure 3.1: Gravity and buoyancy forces acting on a submerged submarine.

To calculate the buoyancy and gravity forces we start by defining the gravity and
buoyancy forces like in Figure 3.1. f b

g will act through the center of gravity and f b
b will

act through the center of buoyancy. According to (Society of Naval Architects and Marine
Engineers, 1950) notation, the gravity force fn

g and the buoyancy force fn
b will be defined

in the inertial NED-frame as

fn
g =

[
0 0 mg

]T
, (3.1)

fn
b = − [

0 0 ρg∇ ]T
, (3.2)

where m is the mass of the sphere, g = 9.81 m/s2 is the gravity constant, ρ = 1000 kg/m3

is the mass density of water and ∇ is the submerged volume of the vessel.
The following calculations will be derived in all 6 DOF to demonstrate some results,

but it will be seen that we only need 3 DOF, given some assumptions.
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3.2. External forces

Translational movement

The translational movement of the vessel due to gravity and buoyancy can be stated as

Mab = f b
g + f b

b , (3.3a)

= Rb
n

(
fn
g + fn

b

)
, (3.3b)

where ab is the acceleration of the vessel in BODY coordinates, M is the mass matrix of
the sphere, and Rb

n is the rotation matrix that rotates the n-frame to the b-frame.
The satellite sphere is equipped with a ballast tank. This ballast tank can pump the

surrounding water in or out of the sphere, and thereby change the mass of the satellite.
This can be exploited to balance the mass to be equal ρ∇ and thereby making the force
sum fn

g + fn
b = 0. If this is the case, then the sphere is called naturally buoyant and as

long as the initial translational movement is zero, then the satellite will stay in its starting
point all the time. If we assume this is fulfilled, we can thereby ignore the translational
movement of the satellite and only investigate the rotational movement.

Rotational movement

The moment Tg applied to the system due to gravity and buoyancy can be stated as

Tg = rb
g × f b

g + rb
b × f b

b , (3.4a)

= rb
g × (Rb

nf
n
g ) + rb

b × (Rb
nf

n
b ), (3.4b)

where Rb
n is the rotation matrix that rotates the force vectors fn

g and fn
b to the BODY

frame and rb
g is the vector from the origin to the center of gravity expressed in BODY

coordinates.
Since the origin is placed in the center of gravity, rb

g = 0, simplifying the expression for
Tg. Using one of the properties of the rotation matrix shown in Equation (2.9), it can also
be seen that Rb

n = (Rn
b )T where Rn

b = I+2ηS(ε)+2S(ε)S(ε) and (Egeland and Gravdahl,
2002) have proven that (Rn

b )T = R(η,−ε) giving the simplest form of Tg as

Tg = rb
b × (RT fn

b ), (3.5)

with RT = R(η,−ε) = I − 2ηS(ε) + 2S(ε)S(ε), and fn
b = − [

0 0 ρg∇ ]T
.

Notice that in the design of the sphere satellite it has been attempted to place the
center of gravity in the same position as the center of buoyancy. If this has been perfectly
performed, then Tg = 0 and the system will not be affected by torques due to gravity and
buoyancy at all. Unfortunately this is not the case and even though rb

b is small, rb
b �= 0,

and the system will thus be exposed to momentum due to gravity and buoyancy.

Gravity gradient for satellite in space

Our satellite is supposed to emulate real satellites in space. It is therefore of interest
to investigate the similarities and differences between gravity experienced for the sphere
submerged in water with the gravity field influencing satellites in space.
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3. Kinetics

The gravitational force field in space is due to the gravitational forces that act between
every element in the universe. The gravitational forces that act between two of the elements
is a function of the element’s masses and the square of the distance between them and is
thereby non uniform. This means that any satellite that is not symmetrical in all three
degrees of freedom will experience a torque about its center of mass. The expression for the
torque T∗

g can, with some simplifications and assumptions (Krogstad, 2005), be expressed
as

T∗
g = 3

(
μ

R3
c

)
�z × �L�z, (3.6)

where μ is the gravitational constant for the primary celestial body, Rc is the distance
between mass centers of the two bodies, �z is the nadir pointing vector and �L is the inertia
matrix.

If we decompose Equation (3.6) in the BODY frame we get the following expression

T∗
g = 3

(
μ

R3
c

)
zb × Lzb, (3.7)

where zb = Rb
n

[
0 0 1

]T
and L is the inertia matrix.

The expression for the torque due to gravity for the sphere submerged in water, shown
in Equation (3.5), can be re-written as

Tg = Crb
b × zb, (3.8)

where C = ρg∇ is a constant. It can thereby be seen that the expression for the torque
experienced by a sphere submerged in water is quite similar with the expression for a
non-symmetrical satellite in space.

3.2.2 Drag

Drag is another external force that will affect the satellite submerged in water. This might
be the biggest conceptual difference between a satellites circling in space compared to a
vehicle submerged in water. A satellite operating in space will have almost no drag at all,
but a vessel moving in water can potentially experience high drag forces. This makes it
interesting to investigate the subject closer.

A normal way of modeling the drag forces due to vortex shedding for a marine vessel
moving in a viscous fluid, is by the formula:

f(U) = −1

2
ρCD(Re)A|U |U, (3.9)

where U is the speed of the vessel, A is the projected cross-sectional area under water, ρ
is the density of water and CD(Re) is the drag-coefficient as a function of the Reynolds
number :

Re =
UD

ν
, (3.10)
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3.3. Angular dynamic equations

where ν is the kinematic viscosity coefficient and D is the diameter of the body (Fossen,
2002). The drag coefficient CD is also dependent of the surface roughness, where a smooth
surface has a small drag coefficient and a rough surface has a bigger drag coefficient value.
It is therefore a complex task to derive an acceptable value for the drag coefficient CD.

Nevertheless, experiments were carried out in the pursuit of finding suitable drag coef-
ficients and an open-loop setup with a commanded constant torque-level about the z-axis
were performed. The main idea was to assume that rotation about the x and y-axes were
going to be insignificant and only rotation about the z-axis could be considered. Then,
one could use the measurements of the angular velocity about the z-axis and curve-fit the
measured result with the model seen in Equation (3.9). One could thereby find a suitable
drag-coefficient for the satellite about the z-axis, and due to symmetry, it is most likely
that the coefficient also would be appropriate for the x and y-axes.

Unfortunately, this turned out to be a difficult task to perform due to several reasons.
The main reason was the problem experienced with the transmission wire between the
computer host and the submerged target. The force from the twisting effect of the cable
was clearly higher than the drag force, making it difficult to find suitable coefficient values
(see Section 5.1). In addition, another unforeseen problem arisen. Due to the non-perfectly
balanced satellite, it turned out that angular velocity about the x and y-axes became
noticeable, and thereby influencing the experiment. A final problem arises due to the fact
that it is not possible to know the actual torque provided to the reaction wheels. In the
given setup, one commands a given torque value, but the actual used torque is however
unknown.

All these inconveniences made it hard to find appropriate drag-coefficients. However,
the experiments indicate that the actual drag-forces are small, and can probably be ap-
proximated to be neglected. This is also assumed for the remaining part of the thesis.

3.3 Angular dynamic equations

The rigid body kinetics for the satellite is now to be derived for a BODY reference frame for
which the origin is placed in the center of gravity (CG). Euler’s second axiom can be used
to calculate the angular dynamics of the vessel and is stated in Equation (3.11a)–(3.11b):

�̇h � �m, (3.11a)

�h = L�ω, (3.11b)

where �h is the angular momentum, L is the inertia tensor with respect to CG, and �m is
the external moments applied to the system.

The complete system can be considered as two combined systems; the wheel system,
and the total system. The total system angular momentum W can be expressed as a sum
of the angular momentum due to the total satellite system, and the wheel system:

W = Jω + JwΩ, (3.12)

21



3. Kinetics

where J is the total moment of inertia, Jw is the inertia matrix for the wheel system and

Ω =
[

Ω1 Ω2 Ω3

]T
is the vector that consist of the wheel velocities.

Remark 3.1. Notice that the total moment of inertia matrix J is symmetric (Fossen,
2009), meaning J = JT , and the inertia matrix of the wheels Jw is diagonal.

The angular momentum H for the wheels can be expressed as:

H = Jw (ω + Ω) , (3.13)

By using Equation (3.11a) you get the following set of equations:

nd

dt
(W) = Tn

ex, (3.14a)

d

dt
(H) = Tu, (3.14b)

where Tn
ex it the external moments applied to the system and Tu is the torque applied to

the wheels form the motors and thereby our control variable. Notice that Equation (3.14a)
is expressed in the NED frame, which is an inertial frame. By using Equation (3.14a) and
derive (3.12) with respect to the inertial n frame, you get the following expression:

nd

dt
(W) =

bd

dt
(Jωb

nb) + ωb
nb × (Jωb

nb) +
bd

dt
(JwΩ) + ωb

nb × (Jwωb
nb),

= Jω̇b
nb + JwΩ̇ + S(ωb

nb)W,

which gives the following relationship:

Jω̇ + JwΩ̇ = −S(ω)W + Tex. (3.15)

If we now concentrate about Equation (3.14b), we get that

Jw(ω̇ + Ω̇) = Tu,

⇒ JwΩ̇ = Tu − Jwω̇. (3.16)

This can be substituted into Equation (3.15) and we get the final expression which is used
throughout the paper:

Jsω̇ = −S(ω) {Jsω + Jω (ω + Ω)} − Tu + Tex, (3.17)

where Js = J − Jw is the moment of inertia for the system without the wheels.
We can then set up the complete equation set for the combined kinetics and kinematics

for the satellite.

q̇ =
1

2

[ −εT

T(q)

]
ω, (3.18a)

Jsω̇ = −S(ω) {Jsω + Jω (ω + Ω)} − Tu + Tex, (3.18b)

JωΩ̇ = −Jωω̇ + Tu, (3.18c)
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3.4. Inertial coordinate model

where T(q) = ηI + S(ε), S( · ) is the skew-symmetric cross product matrix, Tex is the
external moments applied to the system, Tu is the moments applied to the system from
the motors, Jw and Js is the moments of inertia for the wheels and the rest of the system,
respectively.

These calculations have also been carried out and used by others in satellite literature
(Jin et al. (2008), Wang et al. (2003), Won (1999), Ismail and Varatharajoo (2009)) and
is thereby a well proven model for a satellite actuated by means of reaction wheels.

3.4 Inertial coordinate model

The system derived in the previous section can also be expressed in inertial coordinates.
The advantage of expressing the system in this form is that the system equations turns
out to be equal to those of a robot manipulator system (Spong et al., 2006), seen in
Equation (3.19). The robot manipulator is a highly researched area, and it exists several
control schemes for controlling robot manipulators. Therefore it is motivating to present
the system in this manner and it is reasonable to expect that some of those control methods
also can be used for the sphere shaped vehicle.

M(q)q̈ + C(q, q̇)q̇ + g(q) = u (3.19)

Using the kinematic relationship in Equation (2.24) and the fact that E(q)TE(q) = I3×3

it can easily be seen that

ω = 2ET (q)q̇ (3.20a)

ω̇ = 2ET (q)q̈ +�����
2ET (q̇)q̇ = 2ET (q)q̈. (3.20b)

Inserting the equation for ω and ω̇ into Equation (3.18b) and pre-multiply with E(q) we
obtain:

M∗(q)q̈ + C∗(q, q̇)q̇ + g∗(q) = u∗ (3.21)

where

M∗(q) = 2E(q)JsE
T (q) (3.22a)

C∗(q, q̇) = −2E(q)S
(
2JET (q)q̇ + JwΩ

)
ET (q) (3.22b)

g∗(q) = −E(q)Tex (3.22c)

u∗ = −E(q)Tu. (3.22d)

It can also be seen that the matrices have the following important properties:

M∗(q) = M∗(q)T ≥ 0 (3.23a)

xT
(
Ṁ∗ − 2C∗(q, q̇)

)
x = 0, ∀ x ∈ R

3. (3.23b)
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3. Kinetics

Remark 3.2. An important drawback with this representation is that M∗ becomes sin-
gular when η = ±1. This contradicts the reason for choosing unit quaternion as attitude
representation and therefore; the inertial coordinate model will not be used in this thesis.
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Chapter 4

Controller Design

This section starts by making an expression of the error-dynamic based on the system
equations described earlier in Chapter 3. The error-dynamic will be used to develop two
different control algorithms; a sliding mode controller and a backstepping controller. It
will also be proven that the system combined with each controller is asymptotically stable.

4.1 Error dynamic

The complete system with kinetics and kinematics combined developed in Chapter 3 is
repeated for the sake of easier reading:

q̇ =
1

2

[ −εT

T(q)

]
ω, (4.1a)

Jsω̇ = −S(ω) {Jsω + Jω (ω + Ω)} − Tu + Tex, (4.1b)

where T(q) = ηI + S(ε) and I is the 3 × 3 identity matrix and S is the skew-symmetric
cross product matrix.

Remark 4.1. Notice that the last equation in Equation-set (3.18) has been removed, since
the scope of this thesis does not include controlling the dynamics of the reaction wheels.

The angular error velocity ωe is then defined as the difference between the satellite’s
angular velocity ω and the desired angular velocity ωd in BODY coordinates:

Definition 4.1. The angular velocity error ωe is defined as the difference between the
satellite’s angular velocity ω and the desired angular velocity ωd in the BODY-frame:

ωe � ω − ωd, (4.2a)

ωe = ω − RT (η, ε)ωn
d , (4.2b)

where ωn
d is the desired angular velocity expressed in the NED-frame and RT (η, ε) is the

rotation matrix that rotates the NED-vector ωn
d to the BODY-frame.

25



4. Controller Design

The attitude error is somewhat more difficult to define since the difference between two
quaternions does not make any physically sense. However, if the desired attitude is given
by qd, the quaternion product, defined in Definition 2.4, can be exploited to give a better
representation of the attitude error. This can then be used to define the relative attitude
error qe which is used throughout this thesis.

Definition 4.2. The relative attitude error quaternion e is given by the quaternion prod-
uct (Kristiansen et al., 2009):

e � q−1
d ⊗ q, (4.3)

where qd is the desired attitude and q is the rigid body’s present attitude.

In (Egeland and Gravdahl, 2002) it can be seen that the expression q−1
d =

[
ηd −εT

d

]T
,

which gives the relative attitude quaternion e:

e =

[
ηdη + εT

d ε
ηdε − ηεd − S(εd)ε

]
�

[
ηe

εe

]
, (4.4)

where S is the skew-symmetric cross product matrix.
The control objective is to get the attitude q to be aligned with the desired attitude

qd, meaning q = qd. This expression is substituted into the definition of relative attitude
error:

e = q−1
d ⊗ qd, (4.5a)

=

[
η2

d + εT
d εd

ηdεd − ηdεd − S(−εd)εd

]
, (4.5b)

Since q is a unit quaternion, the expression η2
d + εT

d εd = 1. It can also be seen that
S(−εd)εd = 03×1 by using some of the properties of the skew-symmetric cross product
matrix stated in Section 2.2.3. In addition, as discussed in Section 2.6, it is known that
the quaternion attitude q, and −q correspond to the same physical attitude. This gives
the result stated in Definition 4.3.

Definition 4.3. The satellite’s attitude q is aligned with the desired attitude qd when the
relative attitude error becomes:

e =

[ ±1
0

]
� qid, (4.6)

where 0 is the 3 × 1 zero vector.

Dynamic Error Equation

The attitude dynamic error equation can be derived by time differentiation of e in Equa-
tion (4.4). The complete derivation is shown in Appendix A.1, but the result is shown
here;

ė =
1

2

[−εT
e

T(e)

]
ωe, (4.7)
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4.2. Sliding mode control

and T(e) = ηeI + S(εe).
The next step is to derive the angular velocity error ωe, stated in Equation (4.2b), with

respect to time:

ω̇e = ω̇ −
(
ṘT (η, ε)ωn

d + RT (η, ε)ω̇n
d

)
. (4.8)

The calculation of ṘT (η, ε) have been carried out in Appendix A.2, where it can be seen
that ṘT (η, ε) = −S(ωe)R

T (η, ε).
By pre-multiplying Equation (4.8) by the system inertia matrix Js and substitute part

of (4.1) into the equation, one get the error dynamics:

Jsω̇e = −S(ω) {Jsω + Jω (ω + Ω)} − Tu + Tex + JsS(ωe)R
T ωn

d − RT ω̇n
d . (4.9)

This gives the total dynamic error system:

ė =
1

2

[−εT
e

T(e)

]
ωe, (4.10a)

Jsω̇e = −S(ω)W − Tu + Tex + JsS(ωe)R
T ωn

d − RT ω̇n
d . (4.10b)

where W = Jsω + Jω (ω + Ω) actually is the total momentum of the system. This is
explained in detail in Chapter 6.

4.2 Sliding mode control

In this section a sliding mode (SM) controller will be proposed to control the angular
velocity of the satellite. The sliding mode controller is inspired by (Fossen, 2002) and
(Wang et al., 2003), where some modifications are carried out to adapt it to the sphere
satellite. A stability proof for the system and the controller will also be given.

The sliding mode controller is a well known controller that has been applied to many
practically systems such as power systems, robot manipulators and air crafts (Ma and
Boukas, 2009). The controller is nonlinear, and alters the dynamics of the system by
using a switching control. The sliding mode control structure is designed to ensure that all
trajectories move towards the sliding mode with the switching condition. Trajectories from
this sub-space then slides along the surface to a desired equilibrium. The SM controller is
considered to be a robust control method, and thereby practical for systems with external
disturbances (Alfaro-Cid et al., 2005).

Definition 4.4. The sliding control variable s ∈ R
3×1 is defined as:

s � ωe + Kεe, (4.11)

where K ∈ R
3×3, K = KT > 0.
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4. Controller Design

By differentiating the sliding mode variable s with respect to time and pre-multiply the
equation with Js you get the following expression:

Jsṡ = Jsω̇e + JsKε̇e, (4.12a)

= −S(ω)W + JsS(ωe)R
T ωn

d − JsR
T ω̇n

d − Tu + Tex + JsKε̇e, (4.12b)

where W = Jsω + Jω(ω + Ω).
The control input Tu is then chosen to cancel the nonlinearities S(ω)W, Tex and JsKε̇e

together with the terms from the reference: JsS(ωe)R
T ωT

d and JsR
T ω̇n

d . In addition
to canceling all the terms, one also needs dampening, which is implemented by adding
−Js (Dsgn(s) + Ps) to Tu giving the complete controller in Equation (4.13).

Proposition 4.1. The error dynamics in Equation (4.10), with the sliding mode controller
Tu given by

Tu = − S(ω)W + JsS(ωe)R
T ωn

d − JsR
T ω̇n

d + JsKε̇e

+ Tex + JsDsgn(s) + JsPs,
(4.13)

has an asymptotically stable equilibrium in (ωe, e) = (0,qid) where qid =
[±1 0T

]T
.

The gain-matrices K, P and D are all ∈ R
3×3 and positive definite. The sign function

sgn(s) =
[
s1 s2 s3

]T ∈ R
3×1 is calculated using the scalar sign function, defined in

Equation (4.14), for each element in s.

sgn(x) =

{
+1 if x ≥ 0

−1 if x < 0
(4.14)

The final term to comment is ε̇e. This term can easily be calculated by utilizing the
fact that ε̇e = 1

2
T(e)ωe, avoiding time differentiation of εe.

Remark 4.2. Note that sgn(0) = 1, which is not always the case for the sign-function.
This is done to prevent an unwanted equilibrium for later calculations in the thesis.

Proof. To prove Proposition 4.1, we utilize (Shevitz and Paden, 1994). This article states
that systems with discontinuous “right-hand side”, can be evaluated with ordinary Lya-
punov stability theory.

Given the controller in Equation (4.13), the expression for ṡ can be written as:

ṡ = − (Dsgn(s) + Ps) . (4.15)

Consider the radially unbounded Lyapunov function candidate (Khalil, 2002):

V1 =
1

2
sT s > 0, ∀ s �= 0, (4.16)
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4.2. Sliding mode control

and differentiating it with respect to time along the trajectory we get

V̇1 = sT ṡ, (4.17a)

= −sTDsgn(s) − sTPs, (4.17b)

< 0 ∀ s �= 0, (4.17c)

where the fact that sTPs ≥ λmin(P)||s||2 > 0, ∀ s �= 0 where λmin(P) is the smallest
eigenvalue of P, and P is positive definite is used. The first term sTDsgn(s) will also be
grater than 0 since D is positive definite.

Since the Lyapunov function candidate V1 is positive definite and V̇1 is negative definite,
thus according to (Shevitz and Paden, 1994), this proves that the non-smooth s-system is
AS and each trajectory will thereby converge to the sliding manifold.

In fact, one can guaranty finite time convergence (Perruquetti and Barbot, 2002), since

∂V1

∂t
≤ −ϑ

√
V1, (4.18)

where ϑ =
√

2λmin(D) > 0 and λmin(D) is the smallest eigenvalue of D. From Equa-
tion (4.18) it can easily be seen that

2
√
V1 ≤ V1(s(0)) − ϑt. (4.19)

This shows that the system will converge to the sliding manifold with the finite converge-
time Tc, upper bounded by

Tc ≤ V1(s(0))

ϑ
. (4.20)

It is now proven that the controller will bring the system into the sliding mode in
finite time. However, we still have not reached the control objective of getting the angular
velocity error ωe to zero, and the attitude error e to qid as stated in Proposition 4.1.

From the definition of the sliding mode variable s in Equation (4.11) and knowing that
we are in the sliding mode s = 0, we get:

s = 0, ⇒ ωe = −Kεe.

We then introduce the second Lyapunov function candidate:

V2 = 1 − ηe (4.21)

which is a positive definite function since −1 ≤ ηe ≤ 1. The time derivative along the
solution then becomes:

V̇2 = −η̇e =
1

2
εT

e ωe = −1

2
εT

e Kεe (4.22a)

≤ −1

2
λmin(K)εT

e εe = −1

2
λmin(K)(1 − η2

e) (4.22b)

< 0, (4.22c)
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4. Controller Design

where the quaternion unit-length property has been used, in addition to the fact that
xTKx ≥ λmin(K)||x||2 > 0 where λmin(K) is the smallest eigenvalue of K.

Since V2 is positive definite, and V̇2 is negative definite, thus, (1 − η2
e) → 0 as time

goes to infinity, and ηe → ±1. Because η2
e + εT

e εe = 1, also εe → 0 and the attitude error
e → qid. It can also be noticed that ωe will converge to 0 since ωe = −Kεe in sliding
mode, and when εe → 0 so will ωe. We can then conclude that the complete system, with
the given controller, is asymptotically stable.

4.3 Backstepping control

In this section a backstepping controller will be proposed to control the angular velocity
of the satellite. The backstepping controller is inspired by (Jiang et al., 2010), where some
modifications are carried out to adapt it to the sphere satellite. A stability proof for the
system and the controller will also be given.

The backstepping control method is a systematic and recursive design methodology
for nonlinear control. The control method has many similarities with feedback lineariza-
tion (Khalil (2002),Johansen and Hunt (2000), Groves and Serrani (2004)), however some
differences exist. The most important difference is that the backstepping method may uti-
lize “good nonlinearities” as oppose to the feedback linearization method that cancels all
nonlinear terms. Moreover, while the feedback linearization requires precise knowledge of
the system, backstepping offers a choice of design tools for different kinds of uncertainties.
For instance, in mechanical motion systems, it is often hard to model the damping term
as it can be highly non-linear. However, this is not a major problem for the backstepping
method. Since the damping term is dissipative, it does not need to be canceled at all.

The idea of the backstepping method is to select recursively appropriate functions of
state variables as virtual-control inputs for lower dimension subsystems of the overall sys-
tem. Each step of the method results in a new virtual control law, expressed as a functions
of the virtual control law in the previous steps. One thereby “backs” its way from the
inner subsystem, until the algorithm terminates when the overall system is reached. The
resulting feedback controller is then supposed to achieve the original control objective.
This is proved by a final number of Lyapunov functions formed by summing up the Lya-
punov functions corresponding to each individual step in the procedure. In this way, the
backstepping algorithm will thereby consist of equal number of steps as the dimension of
the overall system.

We are then ready to start the recursive backstepping algorithm.
Step 1: The first step involves defining the first backstepping variable z1 that represent

the attitude error. It is therefore of no big surprise that

z1 � εe. (4.23)

Differentiating the definition of z1 with respect to time, shows that

ż1 =
1

2
T(e)ωe =

1

2
[ηeI + S(z1)] ωe. (4.24)
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4.3. Backstepping control

where Equation (4.7) has been used.
By considering ωe as the virtual control variable, defined in Definition 4.5, a Lyapunov

function V1 is constructed to prove that the dynamics of z1 is stable.

Definition 4.5. The virtual control variable ωe in step 1 of the recursive backstepping
algorithm is defined such that

ωe � α1(z1) + z2, (4.25)

where α1(z1) stabilizes the z1 dynamics, and z2 is the second backstepping variable that
links the z1 dynamics with the outer dynamics.

Consider the positive definite Lyapunov function

V1 =
1

2
kzT

1 z1 +
1

2
k (1 − ηe)

2 , k > 0 k ∈ R, (4.26)

where k is a tuning parameter and the time derivative along the trajectory is given by

V̇1 = kzT
1 ż1 − k (1 − ηe) η̇e

=
������1

2
kηez

T
1 ωe +

1

2
k zT

1 S(z1)︸ ︷︷ ︸
=0

ωe +
1

2
kzT

1 ωe −
������1

2
kηez

T
1 ωe

=
1

2
kz1 [α1(z1) + z2]

Choose the stabilizing expression

α1(z1) � −K1z1, K1 ∈ R
3×3 > 0, (4.27)

where K1 is a tuning parameter. Then

V̇1 = −1

2
kzT

1 K1z +
1

2
kzT

1 z2, (4.28)

which is negative definite if z2 = 0 and thereby proves that the z1-dynamics is AS if z2 = 0.
Step 2: The second step in the recursive backstepping algorithm is going to link the

z1-dynamics with the z2-dynamics and specify the final backstepping controller Tu,s. We
start the procedure by investigating the z2-dynamics by differentiating Equation (4.25)
with respect to time, which shows that

Jsż2 = Jsω̇e − Jsα̇1(z1)

= −S(ω)W − Tu,s + Tex + JsS(ω)eR
T ωn

d − JsR
T ω̇n

d − Jsα̇1(z1).

Consider the radially unbounded Lyapunov function,

V2 = V1 +
1

2
zT

2 Jsz2, (4.29)
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4. Controller Design

and its time-derivative along the solution:

V̇2 = V̇1 + zT
2 Jsż2

= −1

2
kz1K1z1 + zT

2

{
1

2
kz1 − S(ω)W − Tu,s + Tex

+ JsS(ωe)R
T ωn

d − JsR
T ω̇n

d − Jsα̇1

}
.

We continue by designing the backstepping controller Tu,s such that it cancels all the terms
inside the bracket, and add a damping-term K2z2. The backstepping controller Tu,s can
then be written as

Tu,s =
1

2
kz1 − S(ω)W + Tex + JsS(ωe)R

T ωn
d − JsR

T ω̇n
d − Jsα̇1 + K2z2. (4.30)

which results in the negative definite Lyapunov function

V̇2 = −1

2
kzT

1 K1z1 − zT
2 K2z2. (4.31)

Remark 4.3. Time-differentiation of α1(z1) in the controller Tu,s can be avoided since
α̇1(z1) = −K1ε̇e = −1

2
K1T(e)ωe.

Proposition 4.2. The closed-loop error dynamics

ż1 = −1

2
T(e)K1z1 +

1

2
T(e)z2 (4.32a)

Jsż2 = −1

2
kz1 − K2z2, (4.32b)

obtained through the backstepping procedure, has an asymptotically stable equilibrium
(z1, z2) = (0,0), which corresponds to asymptotically stability of the closed-loop equilib-
rium (ωe, e) = (0,qid).

Proof. The proof of Proposition 4.2 is straightforward when (Khalil, 2002, Theorem 4.9)
is used. Choose the Lyapunov function candidate V2, as shown in Equation (4.29), with
its derivative, seen in Equation (4.31). Then choose

z �
[
zT

1 zT
2

]T
(4.33a)

W1(z) � 1

2
kzT

1 z1 +
1

2
zT

2 Jsz2 > 0 (4.33b)

W2(z) � W1(z) +
1

2
k(1 − ηe)

2 > 0 (4.33c)

W3(z) � 1

2
kzT

1 K1z1 + zT
2 K2z2 > 0, (4.33d)
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4.3. Backstepping control

such that

W1(z) ≤ V2(z, t) ≤ W2(z) (4.34a)

∂V2

∂t
+
∂V2

∂z
ż ≤ −W3(z) < 0. (4.34b)

All assumptions of Theorem 4.9 are then satisfied and thus, z = 0 is an asymptotically
stable equilibrium. Moreover, we have that z ≡ 0 ⇒ ωe ≡ 0 and z1 ≡ 0 ⇒ εe ≡ 0 and
ηe = ±1. Therefore also (ωe, e) = (0,qid) is an asymptotically stable equilibrium.

Remark 4.4. In (Krogstad, 2010) a similar result has been shown, where the author also
includes integral action. In addition he proves exponential stability (ES) by switching to
modified Rodriguez parameters. This trick allows inversion of the attitude-matrix that
corresponds to the attitude matrix for the unit quaternion; T(q).
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Chapter 5

Non-ideal situations

A model will never be perfectly equal to the physics, even if one uses a nonlinear model,
and this is of course also the situation for the underwater satellite. In this chapter one will
try to point out some of the elements that the model does not take into account, and if it
is possible, try to implement correction action to improve the overall performance.

5.1 Lab environment

In the given lab setup (see Appendix C.1) a water tank with dimensions (55 × 53 × 67) cm
is used. This is a relatively small tank, compared to the satellite, since the diameter of
the satellite is about 43 cm, leaving a maximum of 6 cm free space on each side in the
horizontal plane. Idealistic this should be enough space since the sphere should not move
in the translational direction at all, but this is not the case. Since the sphere has almost
no damping, even small irregularities will cause the sphere to start moving, and only walls
will dampen the movement. However, this will not be the case for a satellite in space or
for our sphere if it was placed in the ocean. The problem with this irregularity is that it
is almost impossible to model, and the only solution is to construct a good controller that
corrects the angular velocity when a crash arises.

The data communication cable between the satellite and the server represents another
problem. This cable has different buoyancy depending on its orientation, but more impor-
tantly, the cable works as a spring when it is twisted. It is quite remarkable that a 42.1 kg
heavy sphere should be affected by this effect, but as can be seen from Figure 5.1 it is quite
noticeable. The plot shows the system affected by a commanded constant torque about
the z-axis, and one should expect that the sphere in steady state had a constant angular
velocity in the positive direction. However this is not the case, and it can be seen that the
satellite has a negative angular acceleration (from about 9 s in the plot) which imply that
the angular velocity of the satellite will go towards zero. Even more surprisingly: it can
be seen that the angular velocity crosses the zero-line and thereby spins in the negative
direction. The reason for this is mostly due to the fact that the sphere experiences very
little friction and thus, only small forces from the cable can influence the movement.
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5. Non-ideal situations

(a) Angular velocity ω. (b) Commanded torque Tu.

Figure 5.1: The spring effect of the cable can be seen when a commanded, constant torque
Tz is pushed on the system about the z-axis.

The best way to fix this problem is by removing the cable between the satellite and
the server completely and use wireless transmission instead. However, this requires a lot
of research, where different solutions for transmitting signals through water must be eval-
uated. Smart solutions for placement of sender and receiver equipments are also essential
and analyzes have to be carried out.

5.2 Filtering of angular velocity measurements

The AUVSAT has restricted space and limited budget, and therefore it is equipped with
small and low-cost sensors for attitude and angular velocity (see Section 8.3). This implies
that the measurements are not perfect, and especially the angular velocity is quite noisy
with high frequent oscillations, as can be seen in Figure 5.2. If these high-frequency
measurements were to be used by the controller, the actuators would respond to the high-
frequency signal and cause wear and tear of the actuators. This is not efficient, and should
be avoided.

The best way to avoid this problem is to filter the noisy measurements in each direction.
A simple first order filter is maybe the best choice of filter, since use of higher order filter
will produce greater phase shifts, which is important to avoid in rapid moving systems. The
filter Hi(s) from input ωi to the filtered output ωi,filt with time constant T then becomes:

Hi(s) =
ωi,filt

ωi

(s) =
1

Ts+ 1
, ∀ i ∈ {x, y, z}. (5.1)

The next part is to find a suitable value for the time constant T . A great value will give a
smooth filtered signal, but with a significant phase shift. A small time constant will have
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5.3. Estimation

the opposite effect, and one should therefore choose something in between. The result for
the chosen filter can be seen in Figure 5.2 with time constant T = 0.5 s.

Figure 5.2: Filtering the angular velocity about the z-axis with time constant T = 0.5 s.

5.3 Estimation

In low cost satellites, measurements of different parameters are often left out. Therefore
it has been done a lot of research of estimation of different parameters that are essential
for rigid bodies. This includes among others, unknown inertia matrices in (Ahmed and
Bernstein, 1999) and (Li and Ma, 2007) and estimation of position in (Gawronski and
Craparo, 2002). Especially estimation of angular velocity has received a lot of attention
in the latest couple of years. The reason for this is that systems for measuring angu-
lar velocity are often expensive, failure-prone, heavy and require a significant amount of
power (Köprübasi and Thein, 2003). Therefore, it is of interest to avoid having angular
velocity measurements at all. Another aspect is for synchronization between more than
one satellite. Information sent between the spacecrafts is often limited and it can therefore
be of interest to synchronize only the orientation instead of both orientation and angular
velocity. Each satellite can estimate its angular velocity locally and one can thereby save
precious bandwidth between the satellites.
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5. Non-ideal situations

On the other hand, if the system actually has angular velocity measurements, it is still
useful to estimate the generalized velocity. One can thereby use it as backup or in case of
equipment failure. This motivates the following chapter, where an observer for the angular
velocity of the sphere-shaped satellite is presented.
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Chapter 6

Observer Design

The problem of controlling motion of rigid bodies has been studied in great detail in the
literature of aerospace, marine and robotics. Many different control algorithms have been
attempted and tested out, ranging from simple linear control schemes to non-linear control
based on backstepping, feedback linearization, adaptive control etc. Most of these control
techniques require knowledge of the actual angular velocity (Salcudean, 1991).

If it is assumed that measurement of angular velocity is not present, then the required
angular velocity must be estimated in some way. One solution is to evaluated the angular
velocity by making use of the derivative and filtering of some orientation parameters.
However, this usually leads to noisy and inaccurate estimates. Another solution is to use
different kinds of observers. This idea will be investigated further in this chapter and a
nonlinear observer will be presented.

The observer is inspired by (Bondhus et al., 2005) and (Krogstad et al., 2005) where a
leader-follower output feedback synchronization scheme for two satellites is developed. It
is assumed that the two satellites do not have measurements of the angular velocity and it
is therefore developed two nonlinear observers for the rigid body angular velocity estimate.
The observer is based on a simple copy of the system with correction terms which are
steered in such a way that the error between the actual and the estimated angular velocity
goes to zero as time goes to infinity. The implementation of the observer will also act
as a filter for the angular velocity, removing the high frequent oscillation mentioned in
Section 5.2.

6.1 Angular velocity observer

In this section a nonlinear observer will be presented, and the stability proof will be carried
out, where it can be seen that the proposed observer is locally asymptotically stable.

Assuming that only attitude and rotation speed of the wheels are available for mea-
surements, an observer is needed to estimate the angular velocity of the satellite. This can
be done in different ways, including an extended Kalman filter and a nonlinear observer.
In this paper the latter alternative is designed and implemented.
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6. Observer Design

We start by repeating the expressions for the total angular momentum W and the
total axial angular momentum H for the wheels given in the BODY-coordinate frame,
respectively:

Wb = Jωb
nb + JwΩ, (6.1a)

Hb = Jwωb
nb + JwΩ. (6.1b)

Since the calculations are easier expressed by the momentum dynamics in the inertial
frame, the system is stated as:

Wn = Rn
b W

b = Rn
b

[
Jωb

nb + JwΩ
]
, (6.2a)

Hn = Rn
b H

b = Rn
b

[
Jwωb

nb + JwΩ
]
. (6.2b)

The time derivative of Wn is equal to the external torques applied to the system Tn
ex in

NED-coordinates as:
Ẇn = Tn

ex = Rn
b T

b
ex. (6.3)

Rearranging Equation (6.2a), using the kinematic relations shown in Equation (2.24) and
collecting the other terms gives the equation set for the system Σ as:

Σ :

⎧⎪⎪⎨
⎪⎪⎩

Ẇn = Rn
b T

b
ex,

q̇ = 1
2
E(q)

⎡
⎣(Rn

b J)−1 Wn − J−1JwΩ︸ ︷︷ ︸
ω

⎤
⎦ , (6.4)

where E(q) =

[−εT

T(q)

]
and T(q) = ηI + S(ε). We then define the observer system Σ̂ as

the copy of the dynamics with correction terms g1(q̃) and g2(q̃) as:

Σ̂ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂
Wn = Rn

b

[
Tb

ex + g1(q̃)
]
,

˙̂q = 1
2
E(q̂)

⎡
⎣(Rn

b J)−1 Ŵn − J−1JwΩ︸ ︷︷ ︸
ω̂

+g2(q̃)

⎤
⎦ , (6.5)

where g1 and g2 are to be determined later.

Definition 6.1. The error variables between the real and estimated values for attitude,
momentum and angular velocity, respectively, are defined as:

q̃ � q−1 ⊗ q̂, (6.6a)

W̃n � Ŵn − Wn, (6.6b)

ω̃b
nb � ω̂b

nb − ωb
nb, (6.6c)

where ⊗ is the quaternion product, defined in Equation (2.19), and q−1 =
[
η −εT

]T
is

the complex conjugate of q.
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6.2. Proof of AS observer without trajectory tracking

From the definition of the momentum and angular velocity estimation error you get
that:

W̃n = Ŵn − Wn,

=
(
Rn

b Jω̂b
nb + Rn

b JwΩ
)− (

Rn
b Jωb

nb + Rn
b JwΩ

)
,

= Rn
b Jω̃b

nb. (6.7)

If Equation (6.6b) is differentiated with respect to time, it can be seen that ˙̃Wn = Rn
b g1(q̃).

Furthermore, it can also be seen by using similar calculations as in Appendix A.1, that:

˙̃q =

[
˙̃η
˙̃ε

]
=

1

2
E(q̃)

[
ω̃b

nb + g2(q̃)
]
. (6.8)

Therefore, the complete error dynamics Σ̃ between the estimated system Σ̂ and the actual
system Σ can be written as:

Σ̃ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̃Wn = Rn
b g1(q̃),

˙̃q = 1
2
E(q̃)

⎡
⎣(Rn

b J)−1 W̃n︸ ︷︷ ︸
ω̃

+g2(q̃)

⎤
⎦ , (6.9)

which leads to the following proposition:

Proposition 6.1. The observer Σ̂, defined in Equation (6.5), with

g1(q̃) = −kpsgn(η̃)J−1ε̃, (6.10a)

g2(q̃) = −kvsgn(η̃)ε̃, (6.10b)

will converge asymptotically towards the actual system Σ, seen in Equation (6.4), if the
tuning parameters kp, kv > 0. This results in an asymptotic stable equilibrium (ω̃, q̃) =
(0,qid) for the closed-loop observer.

6.2 Proof of AS observer without trajectory tracking

Nonlinear systems can be divided into two classes based on whether they are dependent
on time t or not. A system that is nonlinear, but not directly dependent on t can be
expressed with the equation ẋ = f(x) and is called a nonlinear time-invariant system
(NTI). If a system on the other hand, is dependent on t, it can be expressed with the
equation ẋ = f(x, t) and is called a nonlinear time-varying system (NTV).

Whether the system is NTI or NTV is quite important for the upcoming proof of
Proposition 6.1. If the system is NTI, it means that LaSalle’s Invariance Principle (Khalil,
2002, Corollary 4.1) can be utilized when the Lyapunov function candidate only is negative
semidefinite.
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6. Observer Design

For this specific system, it is dependent on the angular velocity reference ωn
d whether

the system is time-invariant or time-varying. If ωn
d is constant, it means that the system

is NTI, whereas if ωn
d(t) is dependent on t, it is a NTV-system.

In the proof of Proposition 6.1 for a NTI system, one utilize Theorem 3.1 and Theo-
rem 3.2 in (Shevitz and Paden, 1994). Theorem 3.1 states that a system with discontinuous
“right-hand side” can be shown asymptotically stable with a non-smooth Lyapunov func-
tion. However, the Lyapunov function candidate has to belong to the “regular” function
class, stated in Appendix A.3. Moreover, Theorem 3.2 proves that LaSalle’s Invariance
Principle also can be used for systems even when the system has “discontinuous right-
hand side”.

Proof. Assume that the angular velocity reference ωn
d is constant, which gives a nonlinear

time-invariant system. Consider the “regular” Lyapunov function candidate:

Vo =
1

2

(
W̃n

)T

W̃n + kp(1 − |η̃|)2 + kpε̃
T ε̃, (6.11)

where kp > 0 is a scalar. The time derivative of Vo along the trajectories then becomes:

V̇o =
(
W̃n

)T ˙̃Wn − 2kpsgn(η̃) ˙̃η + 2kpη̃ ˙̃η + 2kpε̃
T ˙̃ε,

=
(
W̃n

)T

Rn
b g1(q̃) + kpsgn(η̃)ε̃T [ω̃ + g2(q̃)]

−
������������
kpsgn(η̃)ε̃T [ω̃ + g2(q̃)] +

���������������
kpε̃

T (η̃I + S(ε̃)) [ω̃ + g2(q̃)].

= −kpsgn(η̃)

[(
W̃n

)T

Rn
b J

−1 − (
ω̃b

nb

)T
]

︸ ︷︷ ︸
Υ

ε̃ − kpkv (sgn(η̃))2 ε̃T ε̃

where Equation (6.9)–(6.10) have been used in addition to the fact that xTS(x) = 0, ∀ x ∈
R

3.
Let us concentrate about the expression for Υ. Notice from Equation (6.7) that W̃n =

Rn
b Jω̃b

nb. This means that Υ becomes:

Υ =
(
W̃n

)T

Rn
b J

−1 − (
ω̃b

nb

)T
,

=
(
ω̃b

nb

)T [
JT (Rn

b )TRn
b J

−1
]− (

ω̃b
nb

)T
.

Since (Rn
b )TRn

b = I and the inertia matrix J is symmetric, meaning JT = J, you get that
Υ = 0, and the derivative of Vo then becomes:

V̇o = −kvkp (sgn(η̃))2 ε̃T ε̃ ≤ 0. (6.12)

Clearly, V̇o is negative semidefinite, and one can thereby conclude that the observer is sta-
ble. Unfortunately V̇o is only negative semidefinite, and therefore one can not conclude with
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6.3. Proof of AS observer with trajectory tracking

asymptotically stability. However, by using LaSalle’s theorem (Khalil, 2002) asymptotic
stability can be proven as it is done in the following section:

We define the set S according to LaSalle’s theorem as:

S �
{

(ε̃,W̃n) ∈ R
6|V̇o = 0

}
=

{
(ε̃,W̃n) ∈ R

6|ε̃ = 0
}
. (6.13)

This leads to the following calculations:

ε̃ ≡ 0,⇒ ˙̃ε ≡ 0 =
1

2
(η̃I + S(ε̃))

[
ω̃b

nb + g2(q̃)
]
,

=
1

2
η̃
[
ω̃b

nb − kvsgn(η̃)ε̃
]
,

=
1

2
η̃ω̃b

nb,

= ±1

2

√
(1 − ε̃T ε̃) ω̃b

nb,

= ±1

2
(Rn

b J)−1 W̃n,

where Equation (6.8), (6.10b), (2.17) and (6.7), have been used respectively.
Since the expression (Rn

b J)−1 never is equal the zero-matrix, it means that W̃n = 0.
Therefore, the only solution that can stay identically in the set S is the trivial solution
(ε̃,W̃n) = 0. Thus, according to LaSalle’s theorem, the equilibrium (ε̃,W̃n) = 0 is
asymptotically stable and the observer Σ̂ will converge to the actual system Σ as time goes
to infinity.

Remark 6.1. Notice that we still require sgn(x) �= 0 ∀ x ∈ R to avoid getting an extra
equilibrium point for η̃ = 0.

6.3 Proof of AS observer with trajectory tracking

Assume now that the desired angular velocity ωn
d(t) is explicit dependent on time. We will

therefore have to deal with a nonlinear time-varying system. This adds some difficulties
to the stability analysis, since the invariance principle due to LaSalle is no longer valid.
A common solution for this problem is to use Barbalat’s lemma (Khalil, 2002) and prove
convergence, but this does not allow to conclude with asymptotic stability. Instead we
use the stability results due to Matrosov’s theorem (Matrosov, 1962) which can be used to
analyzing nonlinear time-varying systems where the Lyapunov function candidate deriva-
tive is only negative semi-definite. The theorem propose to use an auxiliary function W ,
where the time derivative of this auxiliary function must be “definitely non-zero” on the
set where the Lyapunov function derivative is identically zero. The Matrosov’s theorem is
stated in Appendix B with its four requirements.

We are now ready to state the proof of Proposition 6.1 when the system is tracking a
trajectory that is an explicit function of time:
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6. Observer Design

Proof. First of all, define the state-vector x ∈ R
7 as the combined vector consisting of the

two vectors W̃n and ε̃, and one scalar such that

xT �
[(

W̃n
)T

ε̃T 1 − |η̃|
]
. (6.14)

Satisfying Assumption B.1: Choose the same Lyapunov function candidate as seen
in Equation (6.11) such that V (x, t) = Vo, with its time derivative

V̇ = −kpkvε̃
T ε̃. (6.15)

This proves that the system is uniformly stable (US) and the system is therefore bounded.
In addition, V is positive definite and decrescent and thereby satisfying Assumption B.1.

Satisfying Assumption B.2: Choose the non-positive continuous time-independent
function

U(x) � −kpkvε̃
T ε̃

⇒ V̇ (x, t) ≤ U(x) ≤ 0

which satisfies Assumption B.2.
Satisfying Assumption B.3: Since the origin is US, then W̃n, ε̃ and η̃ are bounded

functions of time. We can therefore construct the auxiliary function W (x, t) as shown in
Equation (6.16). We choose

W (x, t) � −η̃ (Wn)T Jε̃, (6.16)

and thereby satisfying Assumption B.3 of the Matrosov’s theorem.

Remark 6.2. Notice that W does not need to be positive definite, but may be chosen
freely as long as it is bounded.

Satisfying Assumption B.4: The derivative Ẇ then becomes

Ẇ (x, t) = − ˙̃η (Wn)T Jε̃ − η̃
(
Ẇn

)T

Jε̃ − η̃ (Wn)T J ˙̃ε, (6.17)

and on the set N = {x | U(x) = 0} = {x | ε̃ = 0} it can easily be seen that

Ẇ (x, t) = −η̃ (Wn)T J ˙̃ε. (6.18)

Inserting for ˙̃ε, and using Equation (2.17), (6.7) and (6.10b), you get the following calcu-
lations:

Ẇ (x, t) = −1

2
η̃ (Wn)T J (η̃I + S(ε̃)) [ω̃ + g2(q̃)]

= −1

2
η̃2 (Wn)T Jω̃

= −1

2

(
1 − ε̃T ε̃

)
(Wn)T J (Rn

b J)−1 Wn

= −1

2
(Wn)T Rb

nW
n

< 0
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Therefore, the derivative Ẇ is definitely non-zero on the set N, and Assumption B.4 is also
satisfied.

Remark 6.3. This holds as long as η̃ differ from zero. However, (Krogstad, 2010) states
that if the US property of Assumption B.1 is used in addition to the fact that η̃ = 0 is an
unstable equilibrium point, it can be seen that the conditions are meat by requiring η̃ �= 0
initially.

Finally, all the Assumptions of Matrosov’s theorem are satisfied, and we may conclude
that the error-dynamics in Equation (6.9) has an asymptotic stable equilibrium in (ω̃, q̃) =
(0,qid) for the closed-loop observer.

6.4 Stability for the complete system

In Section 4.2–4.3 it was proven that the system with the given controller was asymp-
totically stable, assuming that the system is modeled exactly and that the system is not
effected by noise. In Chapter 6 it was also proven that the observer would converge to
the real angular velocity, and asymptotic stability was proven. The idea is then to hope
that the combined observer and controller system, seen in Figure 9.5, also is asymptoti-
cally stable. If the system was linear this would clearly be the case due to the separation
property (Chen, 1999). However this is not necessarily the case for a nonlinear system.

To prove the stability for the system with the nonlinear observer and controller, there
are essentially two methods. The first is to look at the system as one big and complex sys-
tem and try to find a Lyapunov function candidate that can prove asymptotic stability. The
other method is to use the theory of cascaded systems (Khalil, 2002). Both methods can
be quite complex and hard to solve, and is therefore not performed in this paper. In future
studies this should however be investigated more closely. Nevertheless, the asymptotically
stable observer and controller give a good stability-guess about the complete stability for
the combined observer and controller system.
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Chapter 7

Synchronization Design

A scheme for synchronization of the attitude of two (or more) rigid bodies will be presented
in this chapter. The work is based on (Bondhus, 2010), where changes have been carried
out to adapt it to satellites actuated by means of reaction wheels.

7.1 Motivation

Synchronization has been seen in biological system as long as man has lived. It is therefore
no big surprise that phenomenons like synchronized herring motions and bird flocks have
inspired several directions within control theory. And all the theories have the same aim
of utilizing the advantages that synchronization brings.

Since the subject of this thesis is the autonomous underwater satellite, it is natural to
present submerged synchronization schemes in addition to systems where satellites are syn-
chronized. There are of coarse other areas where synchronization has been utilized, includ-
ing robotic manipulators (Bouteraa and Ghommam, 2009), unmanned air vehicles (Casbeer
et al., 2005) and formation control of floating marine crafts (Kyrkjebø et al., 2007).

Use of autonomous underwater vehicles (AUV) can be used to perform difficult tasks
which are too complicated or time consuming for a single autonomous vehicle. In particular,
the mapping of the seabed (see Figure 7.1) and monitoring of large objects are excellent
examples where synchronization is desirable. Using synchronized AUVs for mine sweeping
is also advantageous, since it is vital to avoid risking human lives. Another area of research
that suddenly became extremely relevant after the agreement of the Norwegian continental
shelf, is surveillance of ice behavior. It is now possible to produce oil in the northern regions
where ice exists, but if this should render possible, it is essential to know how ice behaves
and how it affects different types of vessels. One can thus use the synchronized AUVs
to monitor the ice from below, and thereby use the information to perform the optimal
action.

Spacecraft formation flying missions is an area that has gained more interest in recent
years. The reason for this is that synchronization brings essential advantages compared
to having only one complex spacecraft. The main benefit is that having multiple space-
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Figure 7.1: Two AUVs mapping the seabed.

craft avoids the risk of total mission failure, and one thereby gains crucial redundancy.
Several cooperating spacecraft can in addition perform assignments that are more diffi-
cult and expensive, or even impossible to do for a single spacecraft. Launching of several
distributed vehicles will also be less expensive since the payload can be split onto several
vehicles, making it is possible to use smaller and cheaper launching systems. However, the
major disadvantage of formation flying is that it requires feedback control to be able to
function as specified. This results in strengthen requirements on the control algorithm and
measurement accuracy.

Figure 7.2: Satellites scanning the Earth-surface is a possible area of application for syn-
chronized space vehicles.
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7.2. Different synchronization schemes

7.2 Different synchronization schemes

Synchronization control means in general that the difference between state trajectories of
two or more systems are controlled in a more direct way than by controlling each system on
its own. This implies that there are some interactions between the systems. However, there
are several different main structures used in synchronization schemes. Among others, this
includes “speed-synchronization along geometric paths”, “leader-follower synchronization”
and “tight synchronization” (Bondhus, 2010).

A formation of vehicles may be achieved by designing a geometric path for each vessel
given by a supervisor. Each vessel can then synchronize its speed along this given trajectory
to achieve a desired formation. This specific scheme is called speed-synchronization along
geometric paths and an illustration of the structure can be seen in Figure 7.3(a). However,
it is also possible to define one of the vessels as supervisor.

The leader-follower synchronization scheme is illustrated in Figure 7.3(b) and is the
scheme used for this thesis. A vehicle is defined leader, while the others are followers. The
head vehicle sends its position and velocity to its followers, and they are going to follow the
leader. It is however possible to add an offset. The leader can either be controlled manually
by an operator or a supervisory unit can generate a desired mathematical trajectory. Using
this scheme implies that the followers are more complex to design since they have to take
care of both the leader information in addition to its own. A disadvantage with this
configuration is that the leader is a single point of failure for the formation. However, it is
possible to design redundancy algorithms such that another vessel takes leadership in case
of leader failure.

A variation of the leader-follower configuration is achieved by rearranging the infor-
mation flow seen in Figure 7.3(b). This is done by letting the follower follow each closest
neighbor in stead of following the master vehicle. This is called leader-follower synchro-
nization with nearest neighbor as leader.

A tighter form of synchronization is seen in Figure 7.3(c). As seen from the figure,
information is sent between all, or at leas many of the vehicles. This implies that the
communication load is significantly higher, and each vehicle will have a complicated control
structure. The advantage is that it is now possible to make each vessel behave such that
the overall system looks like one rigid/virtual structure.

7.3 Modeling and definition of parameters

The notation from (Bondhus, 2010) is borrowed in this chapter, and an example can be
seen in Section 2.5.2. Nevertheless, some of the fundamental notations will be presented
again, to facilitate the readability.

From Equation (2.22) and (2.23) it can be seen that

Ṙa
b = S(ωa

ab)R
a
b = Ra

bS(ωb
ab) (7.1)
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Supervisor

Vessel 1

Vessel 2 Vessel 3

Vessel 4 Vessel 5

(a) Formation keeping by speed-
synchronization along geometric
path.

Supervisor

Vessel 1

Vessel 2 Vessel 3

Vessel 4 Vessel 5

(b) Formation keeping by leader-
follower synchronization.

Supervisor

Vessel 1

Vessel 2 Vessel 3

Vessel 4 Vessel 5

(c) Formation keeping by tight
synchronization.

Figure 7.3: Schemes for synchronization control.

and written in terms of the corresponding unit quaternion qab such that

q̇ab =
1

2
[ωa

ab]q ⊗ qab =
1

2
qab ⊗ [ωb

ab]q (7.2)

where ⊗ is the quaternion product operator defined in Definition 2.4, and [ωi
ab]q is the

angular-velocity quaternion defined in Definition 2.5 with i ∈ {a, b}. Further, it can be
shown that

ωc
ab = ωc

nb − ωc
na (7.3)

for any frame a, b, c and n. This is quite an important relationship and will be used in the
upcoming calculations.

To carry on, it is essential to define different variables and error variables used in the
calculations. This includes five different attitudes variables and all the attitude errors
between them. The angular velocity errors between the estimated and actual generalized
velocities for the leader and the follower come in addition.
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7.4. System equations

Definition 7.1. Define the following quaternions for the tracking and synchronization
scheme, such that all the different frames can be compared against each other and the
inertial frame {n}:

qd = qnd =
[
ηd εT

d

]T
: Desired attitude of the leader

ql = qnl =
[
ηl εT

l

]T
: Attitude of the leader

qf = qnf =
[
ηf εT

f

]T
: Attitude of the follower

q̂l = qnl̂ =
[
η̂l ε̂T

l

]T
: Estimated attitude of the leader

q̂f = qnf̂ =
[
η̂f ε̂T

f

]T
: Estimated attitude of the follower

Table 7.1: Quaternions for the desired attitude, the leader and the follower attitude, and
the estimated attitude for the leader and the follower.

Definition 7.2. Define the following error quaternions for the tracking and synchroniza-
tion scheme where ⊗ is the quaternion product and q−1

i is the complex-conjugate quaternion
for i ∈ {d, l, f}:

el = edl � q−1
d ⊗ ql =

[
ηel

εT
el

]T

ef = elf � q−1
l ⊗ qf =

[
ηef

εT
ef

]T

êl = edl̂ � q−1
d ⊗ q̂l =

[
η̂el

ε̂T
el

]T

êf = el̂f̂ � q̂−1
l ⊗ q̂f =

[
η̂ef

ε̂T
ef

]T

q̃l = qll̂ � q−1
l ⊗ q̂l =

[
η̃l ε̃T

l

]T

q̃f = qff̂ � q−1
f ⊗ q̂f =

[
η̃f ε̃T

f

]T

Table 7.2: Error quaternions between all quaternions shown in Definition 7.1. An illustra-
tion can be seen in Figure 7.4

Definition 7.3. The angular velocity error is defined as the difference between the esti-
mated and the actual angular velocity, similar as in Equation (6.6c), such that

ω̃n
nk � ω̂n

nk − ωn
nk (7.4)

where k = l for the leader and k = f for the follower.

7.4 System equations

The calculations in (Bondhus, 2010) is done in the inertial frame, as will be the case for
this section also. Calculations expressed in the BODY-coordinate has been investigated,
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qd

ql

q̂l q̂f

qf

q̃l q̃f

ef

êf

el

êl

Figure 7.4: Illustration of quaternion errors and variables used in the synchronization
scheme.

but it turned out that some of the needed variables for the controller where unknown when
the system was stated in the BODY-frame.

The kinematic equations for the leader and the follower in the inertial frame can be
expressed as one equation as

q̇k =
1

2
[ωn

nk]q ⊗ qk (7.5)

where k = l for the leader, and k = f for the follower.
To define the kinetic system equation in the inertial frame, one need to state the inertia

matrix for the wheels and for the complete satellite in the inertial frame.

Definition 7.4. The inertia matrix for the complete system, the wheels and the system
without the wheels, expressed in the inertial NED frame, is given by

Jn
k = Rn

kJkR
k
n (7.6a)

Jn
ω,k = Rn

kJω,kR
k
n (7.6b)

Jn
s,k = Jn

k − Jn
ω,k = Rn

kJs,kR
k
n (7.6c)

where k = l for the leader and k = f for the follower.

One can thereby state the kinetic differential equation for the complete system, as

d

dt
(Jn

kω
n
nk)︸ ︷︷ ︸

A

+
d

dt

(
Jn

ω,kΩ
n
k

)
︸ ︷︷ ︸

B

= Tn
ex,k (7.7)

where Tn
ex,k is the external torque applied to system k. Notice that the control variable

Tn
u,k is “hidden” inside the B-dynamics, as will be seen.
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7.5. Control objective

First, focus on the expression for A. From (Spong et al., 2006) it can be seen that
ωa

ab = −ωa
ba for all frames a and b, which gives the following calculations:

A = Jn
kω̇

n
nk + Ṙn

kJkR
k
nω

n
nk + Rn

kJkṘ
k
nω

n
nk

= Jn
kω̇

n
nk + S(ωn

nk)R
n
kJkR

k
nω

n
nk − Rn

kJkR
k
nS(ωn

nk)ω
n
nk

= Jn
kω̇

n
nk + S(ωn

nk)J
n
kω

n
nk − Jn

kS(ωn
nk)ω

n
nk

= Jn
kω̇

n
nk + LJ (ωn

nk,J
n
k) ωn

nk

where LJ( · , · ) is a matrix-operator defined such that

LJ(ω,J) � S(ω)J − JS(ω) ∈ R
3×3. (7.8)

In the same way as for A, it can be seen that the following calculations holds for B:

B = Jn
ω,kΩ̇

n

k + LJ

(
ωn

nk,J
n
ω,k

)
Ωn

k

= Rn
kJω,kΩ̇

k

k + LJ

(
ωn

nk,J
n
ω,k

)
Ωn

k

= Rn
k

[
Tk

u,k − Jω,kω̇
k
nk

]
+ LJ

(
ωn

nk,J
n
ω,k

)
Ωn

k

= −Jn
ω,kω̇

n
nk + LJ

(
ωn

nk,J
n
ω,k

)
Ωn

k + Tn
u,k

where Equation (3.16) have been used. Therefore, Equation (7.7) may be written as

Jn
s,kω̇

n
nk + LJ (ωn

nk,J
n
k) ωn

nk + LJ

(
ωn

nk,J
n
ω,k

)
Ωn

k = Tn
ex,k − Tn

u,k. (7.9)

Remark 7.1. It can be seen that the kinetic system equation above is the same as the ki-
netic equation, shown in Equation (3.17). The only difference is that the latter is expressed
in the BODY-frame.

7.5 Control objective

The control objective for the tracking and synchronization scheme is to design Tu,l and
Tu,f such that one will get asymptotic converges of ql → qd and qf → ql. In addition to
this, an observer will be presented for both the leader and the follower, as it is assumed
that angular velocity measurements is not present.

It is important to distinguish the tracking problem from the synchronization problem.
All though they are similar in many ways, there are some essential differences which will be
clear through the rest of this section. Therefore, we define the tracking and synchronization
problem according to Definition 7.5–7.6:

Definition 7.5. The problem of getting the attitude of the leader ql to track the desired
attitude qd will be called “the tracking problem”.

Definition 7.6. The problem of getting the attitude of the follower qf to track the leader
attitude ql will be called “the synchronization problem”.
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7. Synchronization Design

These problems are different since for the tracking problem, the desired trajectory qd

is given mathematically, while the desired trajectory for the synchronization problem, ql,
is only a measured trajectory. The advantage of having a mathematically expression for
the desired trajectory, is that it is possible to design the reference qd such that all higher
derivatives is known at all time. Therefore, it is also possible to find the desired angular
velocity ωn

nd and all higher derivatives of the desired angular velocity. This is however not
the case for the synchronization problem. Since ql is only measured, and since the satellites
are assumed not to have angular velocity measurements, the desired angular velocity for
the synchronization problem ωn

nl is unknown. This clearly adds an extra difficulty to the
synchronization problem, which has to be handled. The proposed solution for this matter
is to use the observer in the leader satellite to estimate its own angular velocity in addition
to ω̇n

nl and send this information to the follower. In addition comes the problem of that
the angular velocity of itself is not known, which means that one need an observer for that
as well.

Despite the differences between the tracking and synchronization problem, both prob-
lems will be designed in a similar manner, using the backstepping control method (Khalil,
2002). The structure of the system can be seen in Figure 9.7.

7.6 Observer equation

It is assumed that measurement of angular velocity is not present for the satellites, and one
will therefore use the nonlinear observer presented in Chapter 6 to estimate the generalized
velocity. In Chapter 6 the observer was presented using BODY-coordinates, and in order
to fit the calculations with this chapter, it is necessary to state the observer equations
in the inertial frame. However, the observer is essentially the same, and the proofs in
Section 6.2–6.3 will also hold when the system is stated using NED-coordinates.

The observer, expressed in the inertial frame {n}, have the following structure:

˙̂qk =
1

2
[ωn

nk + gn
2,k(q̃k)]q ⊗ q̂k (7.10a)

d

dt
(Jn

kω̂
n
nk)︸ ︷︷ ︸

Â

+
d

dt

(
Jn

ω,kΩ
n
k

)
︸ ︷︷ ︸

B̂

= Tn
ex,k + gn

1,k(q̃k) (7.10b)

where k = l for the leader and k = f for the follower.
The tuning parameters gn

1,k(q̃k) and gn
2,k(q̃k) are chosen to have the same expression as

in Equation (6.10), only rotated such that it is aligned with the inertial frame. Therefore:

gn
1,k(q̃k) � Rn

kg1,k = −kp,ksgn(η̃k)R
n
k (Jk)

−1 ε̃k (7.11a)

gn
2,k(q̃k) � Rn

kg2,k = −kv,ksgn(η̃k)R
n
k ε̃k (7.11b)

where kp,k and kv,k are positive scalars and the observer error q̃T
k =

[
η̃k ε̃T

k

]
.
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7.7 Error dynamics for the tracking and

synchronization scheme

As explained in Section 7.5 the tracking and synchronization problem will be designed in
a similar manner and one will therefore try to express the error dynamics for the tracking
and synchronization problem equally. The kinematic and kinetic error dynamics will be
presented in the following two sections.

7.7.1 Kinematic error dynamics

The error variables for the kinematics are chosen to be êl and êf , and one will design Tn
u,l

and Tn
u,f such that êl → qid and êf → qid. It is also possible to use el and ef as error

coordinates, but (Bondhus, 2010) found out that this choice lead to a more complicated
controller design. In any case, it can be seen from Figure 7.4 that if êl, êf , q̃l and q̃f

converge to qid also el and ef will converge to qid. This implies that ql → qd and qf → ql,
which are the control objectives.

Using Equation (7.2)–(7.3) and the fact that the angular velocity of the estimated
system is given by

ωn
nk̂

= ω̂n
nk + gn

2,k(q̃k) (7.12)

it can be seen that the differential equation for êl may be written as

˙̂el =
1

2

[
ωd

dl̂

]
q
⊗ êl

=
1

2

[
Rd

nω
n
dl̂

]
q
⊗ êl

=
1

2

[
Rd

n

(
ωn

nl̂
− ωn

nd

)]
q
⊗ êl

=
1

2

[
Rd

n

(
ω̂n

nl − ωn
nd + gn

2,l

)]
q
⊗ êl. (7.13)

Similarly the differential equation for êf is given by

˙̂ef =
1

2

[
ω l̂

l̂f̂

]
q
⊗ êf

=
1

2

[
Rl̂

n

(
ωn

nf̂
− ωn

nl̂

)]
q
⊗ êf

=
1

2

[
Rl̂

n

(
ω̂n

nf − ω̂n
nl + gn

2,l − gn
2,f

)]
q
⊗ êf . (7.14)

Both ˙̂el and ˙̂ef are in the form

˙̂e =
1

2

[
RT

1 (ω̂ − ωD + vo)
]
q
⊗ ê (7.15)

and this equation will be used in the upcoming backstepping design. It should also be
noted that vo is a disturbance term caused by the observer errors. For both problem there
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7. Synchronization Design

is a bound on |vo|, as can be seen from the analysis of the observer, and therefore, vo will
converge to zero when the observer converge to the actual value.

For the tracking problem it can easily be seen that Equation (7.15) represents Equa-
tion (7.13) if ê = êl, R1 = Rn

d , ω̂ = ω̂n
nl, ωD = ωn

nd and vo = gn
2,l. For the synchronization

scheme, ê = êf , R1 = Rn
l̂
, ω̂ = ω̂n

nf , ωD = ω̂n
nl and vo = gn

2,f − gn
2,l.

7.7.2 Kinetic error dynamics

The calculations of the kinetic error dynamics uses the definition of the kinetic observer,
seen in Equation (7.10b), as basis. Then, Definition 7.3 can be used to get the following
calculations for Â and B̂:

Â = Jn
k

˙̂ωn
nk + LJ(ωn

nk,J
n
k)ω̂n

nk

= Jn
k

˙̂ωn
nk + LJ(ω̂n

nk,J
n
k)ω̂n

nk − LJ(ω̃n
nk,J

n
k)ω̂n

nk

B̂ = −Jn
ω,kω̇

n
nk + LJ(ωn

nk,J
n
ω,k)Ω

n
k + Tn

u,k

= −Jn
ω,k

˙̂ωn
nk + Jn

ω,k
˙̃ωn

nk + LJ(ω̂n
nk,J

n
ω,k)ω̂

n
nk − LJ(ω̃n

nk,J
n
ω,k)ω̂

n
nk + Tn

u,k.

Then Equation (7.10b) may be written as

Jn
s,k

˙̂ωn
nk = LJ (ω̃n

nk,J
n
k) ω̂n

k + LJ

(
ω̃n

nk,J
n
ω,k

)
Ωn

k − LJ (ω̂n
nk,J

n
k) ω̂n

nk

− LJ

(
ω̂n

nk,J
n
ω,k

)
Ωn

k − Jn
ω,k

˙̃ωn
nk + Tn

ex,k − Tn
u,k + gn

1,k(q̃k).
(7.16)

This can then be written in a more compact expression

J∗
s
˙̂ω = −J∗

ω
˙̃ω + Γ̃(ω̃, ω̂,Ω) − Γ̂(ω̂,Ω) + T∗

ex − T∗
u + g∗

1, (7.17)

where

Γ̃(ω̃, ω̂,Ω) = LJ (ω̃,J∗) ω̂ + LJ (ω̃,J∗
ω)Ω, (7.18a)

Γ̂(ω̂,Ω) = LJ (ω̂,J∗) ω̂ + LJ (ω̂,J∗
ω)Ω, (7.18b)

and LJ(ω,J) is the matrix operator defined in Equation (7.8).
Equation (7.17) is then going to represents Equation (7.10b) for both the leader and the

follower. This implies that J∗ = Jn
k , J∗

s = Jn
s,k, J∗

ω = Jn
ω,k, ω̃ = ω̃n

nk, Ω = Ωn
k , T∗

ex = Tn
ex,k,

T∗
u = Tn

u,k and g∗
1 = gn

1,k where k = l for the leader and k = f for the follower.
We are then ready to start the vectorial backstepping method for the control design.

7.8 Backstepping control

In this section a vectorial backstepping controller will be derived for the tracking and
synchronization scheme. An introduction to this recursive control method is presented in
Section 4.3.

Step 1: We start the recursive backstepping method by choosing ω̂ as virtual control
for Equation (7.17).
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7.8. Backstepping control

Definition 7.7. The virtual control variable ω̂ in step one of the recursive backstepping
algorithm is defined such that

ω̂ � ω̂r + u, (7.19)

where ω̂r is a chosen desired reference trajectory for ω̂, and u is a variable that connects
the kinematic dynamics with the kinetics.

The stabilizing term ω̂r may be chosen such that

ω̂r � R1α(ê) + ωD (7.20)

where α(ê) is chosen such that it stabilizes the kinematic dynamics, given that the observer
error converge to zero. In (Bondhus, 2010) several choices for α(e) have been presented,
but in this thesis, α(ê) is chosen such that

α(ê) � −sgn(ηê)Λεê. (7.21)

where Λ is a positive definite tuning parameter and Λ = ΛT ∈ R
3×3. One can thereby

state the following proposition:

Proposition 7.1. Chose α(ê) according to Equation (7.21). Further, assume that |u| and
|vo| are bounded, in addition to u → 0 and vo → 0 as t→ ∞, then

ê → qid as t→ ∞, (7.22)

for both the leader and the follower. This means that the actual attitude will be aligned
with the desired attitude when time goes to infinity.

Proof. In the proof of Proposition 7.1, one will use some of the same ideas as in previous
proof of kinematic error convergence. However this time one also has to deal with the error
terms from the observer. This adds an extra difficulty to the proof, but as long as |u| and
|vo| are bounded, one can utilize the proof of Theorem 9.5 in (Bondhus, 2010) and (Khalil,
2002, Theorem 4.18).

If α(ê) is chosen as in Equation (7.21), the estimated kinematic error dynamics for the
leader and the follower, may be written as

˙̂e =
1

2
[α(ê) + Δ]q ⊗ ê , with Δ = RT

1 (u + vo) (7.23)

Consider the positive definite Lyapunov function

V = 1 −
√

1 − εT
ê εê = 1 − |ηê| (7.24a)

⇒ 0 ≤ V ≤ 1, ∀t. (7.24b)

We may again think of V as either a function of εê or as a function of ηê, and since
η2
ê + εT

ê εê = 1 for all time, we may only use |ηê| or εê in the analysis.
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Using Equation (7.23), (7.21) and (2.19), the time-derivative of V along solution is
given by

V̇ = −sgn(ηê)η̇ê

=
1

2
sgn(ηê)ε

T
ê (α(ê) + Δ)

= −1

2
εT
ê Λεê +

1

2
sgn(ηê)ε

T
ê Δ.

Define
||Δ||[t1,∞〉 = sup

t∈[t1,∞〉
|Δ| (7.25)

From the assumption that |u| → 0 and s → 0 as t → ∞, we have that ||Δ||[t1,∞〉 → 0 as
t1 → ∞. Therefore, for t ≥ t1 where t1 is any t larger than the initial time t0, we get that

V̇ ≤ −1

2
εT
ê Λεê +

1

2
||Δ||[t1,∞〉|εê|

≤ −1

2
λmin(Λ)|εê|2 +

1

2
||Δ||[t1,∞〉|εê|

where λmin(Λ) > 0 is the smallest eigenvalue of Λ. Now we want to use parts of −|εê|2
to dominate ||Δ||[t1,∞〉|εê| for large |εê|. We thereby introduce the scalar θ ∈ 〈0, 1〉 and
rewrite the forgoing inequality as

V̇ ≤ −1

2
(1 − θ)λmin(Λ)|εê|2 − 1

2
θλmin(Λ)|εê|2 +

1

2
||Δ||[t1,∞〉|εê|

≤ −1

2
(1 − θ)λmin(Λ)|εê|2 � −WV (|εê|) ∀ |εê| ≥ μt1 ,

where

μt1 � ||Δ||[t1,∞〉
θλmin(Λ)

. (7.26)

Therefore, Theorem 4.18 in (Khalil, 2002) is satisfied, and the solution is uniformly ulti-
mately bounded for all t1 ≥ t0.

Then choose t1 so large that μt1 < 1. This is possible because of the assumption that
||Δ||[t1,∞〉 → 0 as t1 → ∞.

We know that V ≤ 1 ∀ t, which means that V is bounded for t = t1. We can therefore
start the analysis at time t1 instead of t0. Since

V (|εê|) > V (μt1) ⇒ |εê| > μt1

we have that V̇ ≤ −WV (|εê|) for V (|εê|) > V (μt1), and therefore V decreases until ulti-
mately

V (|εê|) ≤ V (μt1) ⇒ |εê| ≤ μt1 .

By letting t1 → ∞ in the above analysis we get μt1 → 0. Finally, this means that |εê| → 0,
ηê → ±1 and ê → qid which proves Proposition 7.1.
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7.8. Backstepping control

Remark 7.2. By assuming that the initial value for u, vo and ε̂ are small, it is possible
to find a smaller bound than 1 for |εê| during the transient response. This is carried out
in (Bondhus, 2010).

Step 2: The aim of the second, and last step of the backstepping algorithm is to find a
controller T∗

u such that the u-dynamics are asymptotically stable. Remember that the the
dynamics of vo are already proven to be AS by the observer analysis, so we do not need
to worry about that.

From the definition of ω̂ in Equation (7.20) it can be seen that

J∗
su̇ = J∗

s
˙̂ω − J∗

u
˙̂ωr. (7.27)

If the right-hand side of the above equation was exactly known, one could use Equa-
tion (7.17) and choose the ideal control as

T∗
u,ideal = Γ̃(ω̃, ω̂,Ω) − Γ̂(ω̂,Ω) − J∗

ω
˙̃ω + T∗

ex + g∗
1 − J∗

s
˙̂ωr + J∗

sAuu (7.28)

which will give the following closed loop system

J∗
su̇ = −J∗

sAuu. (7.29)

The u-dynamics above is clearly linear, and as long as Au = AT
u > 0, the dynamics of u

will converge to zero.
Unfortunately, several of the terms in the ideal controller T∗

u,ideal are not known exactly.

For instance, the terms Γ̃(ω̃, ω̂,Ω) and ˙̃ω are unknown for both the tracking and the
synchronization problem. In addition, the time derivative of the desired reference, ˙̂ωr, is not
known for the synchronization problem. It is therefore quite difficult to design a controller
such that the system is AS independent of the observer errors. Therefore (Bondhus, 2010)
presents a control design such that the u-dynamics depend on the observer errors, but still
manages to make u → 0 as t → ∞. This is achieved by using an approximation to the
ideal controller where the approximation error goes to zero as the observer error converges.

Firstly, let us focus on the time-derivative of the desired reference, ˙̂ωr for the synchro-
nization problem. From Equation (7.20) it can be seen that

˙̂ωr =
d

dt
[R1α(ê)] + ω̇D. (7.30)

In Equation (7.30), ω̇D is unknown for the synchronization scheme and we therefore propose
the approximation

ω̇D ≈ aD + δD, (7.31)

where the approximation error δD goes to zero as ω̃n
nl goes to zero. To use the same

equation for both the leader and the follower, we define δD = 0 and aD = ω̇n
nd for the

tracking problem. On the other hand, the expression for aD and δD for the synchronization
problem, is given by

aD = ˙̂ωn
nl =

(
Jn

s,l

)−1 {
Tn

ex,l − Tn
u,l + gn

1,l(q̃l) − LJ(ω̂n
nl,J

n
l )ω̂n

nl − LJ(ω̂n
nl,J

n
ω,l)Ω

n
l

}
(7.32a)

δD =
(
Jn

s,l

)−1 {
LJ(ω̃n

nl,J
n
l )ω̂n

nl + LJ(ω̃n
nl,J

n
ω,l)Ω

n
l − Jn

ω,l
˙̃ωn
nl

}
. (7.32b)
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7. Synchronization Design

where Equation (7.16) has been divided into terms that are known and unknown for the
controller. In addition it can be seen that δD → 0 as ω̃n

nl goes to zero.
Further, define

ar =
d

dt
[R1α(ê)] + aD (7.33)

such that Equation (7.30) may be written as

˙̂ωr = ar + δD. (7.34)

In the above equation, ar is known for both the tracking and synchronization since aD and
the angular velocity of R1, ˙̂e are known.

We are now ready to state the proposed approximation for the ideal controller in the
following proposition:

Proposition 7.2. The approximation to the ideal controller, see in Equation (7.28), is
given by

T∗
u = −Γ̂(ω̂,Ω) + T∗

ex + g∗
1 − J∗

sar + J∗
sAuu (7.35)

where Γ̂(ω,Ω) is defined in Equation (7.18b). If this controller is applied to the system,
with α(ê) chosen as in Equation (7.21) and the states of the leader and the follower are
estimated with the observer seen in Equation (7.10b), then

u → 0 as t→ ∞, (7.36)

for both the leader and the follower. This implies asymptotic stability of the closed-loop
system and therefore, ql → qd and qf → ql as t goes to infinity.

Proof. In the proof of Proposition 7.2 we will rewrite the controller in Equation (7.35) such
that

T∗
u = T∗

u,ideal − Γ̃(ω̃, ω̂,Ω) + J∗
ω

˙̃ω + J∗
sδD (7.37)

where Γ̃(ω̃, ω̂,Ω) can be seen in Equation (7.18a). From the analysis of the observer, it is
seen that the angular velocity of the observer error will converge to zero as the observer
errors converge. Therefore, also the terms Γ̃(ω̃, ω̂,Ω), J∗

ω
˙̃ω and J∗

sδD will go to zero, and
the approximated controller will be equal the ideal controller.

By defining w = −Γ̃(ω̃, ω̂,Ω) + J∗
ω

˙̃ω + J∗
sδD the closed-loop dynamics become

J∗
su̇ = −J∗

sAuu + w (7.38)

and the system can thereby be seen as a perturbed system (Khalil, 2002) where w rep-
resents modeling errors. Note that it is also possible to remove g∗

1 from the controller in
Equation (7.35) and instead add it to w as also g∗

1 goes to 0 as the observer converge.
Before we proceed in the proof of Proposition 7.2 we define two norms which is going

to be used in the upcoming calculations.
For any function v : [0,∞〉 → R

n we define

||v||∞ � sup
t∈[0,∞〉

|v(t)| ||v||a � lim sup
t→∞

|v(t)|, (7.39)
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7.8. Backstepping control

where each supremum is understood to be an essential supremum. The initial value of a
function or variable x will be denoted x0.

Consider the radially unbounded Lyapunov function

Vu =
1

2
uTu (7.40)

with its time-derivative along the solution

V̇u = −uTAuu + uTw

≤ −λmin(Au)|u|2 ∀ |u| ≥ |w|
λmin(Au)

> 0,

where λmin(Au) > 0 is the smallest eigenvalue of Au. Using the theorem of uniform
ultimated boundedness (Khalil, 2002, Theorem 4.18) one get that the solution can be
bounded by

||u||∞ ≤ max

{
βu(|u0|, t− t0),

||w||∞
λmin(Au)

}
, (7.41)

where βu is a class-KL function. According to (Bondhus, 2010) it is possible to choose

βu(|u0|, 0) ≤ |u0| since, if |u0| ≥ ||w||∞
λmin(Au)

it can be seen that Vu decreases, which implies

|u| ≤ |u0|. Using time invariance and taking the limit when t → ∞ on each side of the
bound in Equation (7.41), gives that

lim
t→∞

||u||∞ ≤ max

{
lim
t→∞

βu(|u0|, t− t0), lim
t→∞

||w||∞
λmin(Au)

}
. (7.42)

The left-hand side of the above bound is equal ||u||a. In addition, due to the definition of
KL-class functions,

lim
t→∞

βu(|u0|, t− t0) = 0

Therefore, using Equation (7.39), it can be seen that

||u||a ≤ lim
t→∞

||w||∞
λmin(Au)

=
||w||a

λmin(Au)
.

We know from the analysis of the observer that ||w||a = 0 and therefore ||u||a = 0. This
implies that u → 0 as t→ ∞. Further, it can be seen from Figure 7.4 that

el = êl ⊗ q̃−1
l (7.43a)

ef = q̃l ⊗ êf ⊗ q̃−1
f . (7.43b)

Then Proposition 7.1 and Proposition 6.1 shows that êl, êf , q̃l and q̃f converge to qid,
which implies the convergence of el and ef . Finally, this means that the main object of
the controller of getting ql → qd and qf → ql are satisfied.
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Chapter 8

Lab setup: Hardware and software

In this chapter a short summary of hardware and software used in the underwater satellite
are presented. The section is based on (Krogstad et al., 2008) and describes the designing
and planning of the underwater satellite. It must be noted that the article was written
before the assembly of the satellite and therefore, small modifications have been made after
the article was written. The AUVSAT is shown in Figure 8.1.

Figure 8.1: The AUVSAT opened to revel the inner constructions of the satellite.
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8. Lab setup: Hardware and software

Device Name Description

Actuators:

Motor SmartMotor
SM2330D

Compact servo motor with integrated
motor control hardware.

Ballast System XP250-12 Piston
Tank

Ballast system capable of adjusting the
mass of the vessel by 250 g.

Computer:

PC/104 CPU
card

Kontron MOP-
SlcdLX

Main board with 0.5 GHz Pentium pro-
cessor and 1 GB RAM.

PC/104 Serial
communication
extension card

Xtreme-4/104 Four extra 16C654 UARTS,
RS232/RS484 connections.

PC/104 IO card Access 104-
AIO12-8

Analog and digital inputs and outputs.

Power supply HESC104 Vehicle
power supply

Powers the PC/104 stack together with
the sensors and piston ballast motor.

Solid state stor-
age

Flash-Drive/104 4 GB of flash storage.

Table 8.1: Hardware overview (Krogstad et al., 2008).

Background

The underwater satellite is a part of the AUVSAT project at NTNU, with a goal of creating
an experimental laboratory for formation control of underwater vessels:

The motivation for building an experimental platform is to provide a setup for
experimental verification of theoretical results on spacecraft formation flying
demonstrating the strength and shortcomings of the theory, and in this way
contribute to bridge the gap between theory and practice. (Krogstad et al.,
2008).

8.1 Hull design

The main consideration when the hull was designed was to minimize the drag and other
hydrodynamic forces. It was also important to have a hull that made the center of mass
coincide with the center of buoyancy. It is therefore an obvious choice to use a spherical
hull. Due to the space requirements for actuators, batteries, CPU and other necessary
equipments a 17” spherical housing was chosen. The spherical shape has a lot of buoyancy
force, and therefore it was important that the housing was dense, and glass housing seemed
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8.2. Internal lineup

to be a sensible solution. Another practical effect by this choice is that it always is handy
to see what is going on inside of the vessel. Both for fault detection, but perhaps more
importantly, to “show off” the rotating and flashing parts of the assembly to a potential
audience. The housing is manufactured by Nautilus Marine Service GmbH, and is typically
used in deep sea research, and can be used in depth down to 3000 m below sea level.

8.2 Internal lineup

The hardware components are mounted on a solid aluminum framework, to avoid vibration
and free floating objects. In addition to the required hardware, also lead weights are placed
to make the center of gravity coincide with the center of buoyancy and thereby making the
vessel naturally buoyant.

8.3 Sensor

The available space and budget for the underwater satellite is limited. That is why the
low-cost and small-size Xsens MTi inertial measurement unit (IMU) is chosen. The IMU
is easy to use and it has earlier been used in underwater vehicles. The Xsens MTi consists
of a three-axis gyro combined with a magnetometer and can thereby obtain the attitude
and the angular velocity for all three dimensions.

The sensor can be programmed to send the attitude data as quaternions, Euler Angles
or as a direction cosine matrix. This is practical and one can thereby use the representations
that suit oneself or experience with different representations to compare them. The sensor
is connected to the CPU with a serial connection and can be programmed to send data
at different rates with a maximum rate of 100 Hz. This is sufficient for our use, since the
controller runs at 50 Hz.

In addition to the IMU, a pressure sensor is also implemented. The pressure sensor is
used to control the vertical position of the vessel and thereby keeping the satellite natural
buoyant at all time.

The accuracy of the IMU and the pressure sensor can be seen in Table 8.2.

8.4 Actuators

8.4.1 Reaction wheels

The main actuators for the underwater satellite are the reaction wheels. They are mounted
orthogonally along the x, y and z-BODY-axis inside the hull. This solution has the advan-
tage of reduced drag force compared to actuators placed outside of the hull. Each reaction
wheel assembly consists of an aluminum and lead momentum wheel, mounted to a servo
motor. By controlling the servos you also control the momentum delivered and absorbed
by the reaction wheels.
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8. Lab setup: Hardware and software

Sensor Property Accuracy

XSens MTi Angular resolution 0.05◦

Static accuracy (Roll/Pitch) < 0.05◦

Static accuracy (Yaw) < 1◦

Dynamic accuracy 2◦ RMS

Pressure sensor Range 0 − 1 bar

Accuracy 0.01 m

Table 8.2: Sensor properties and accuracy (Krogstad et al., 2008).

The servo chosen for the satellite is the Animatics SM2330. This servomotor can provide
relatively high torque and thereby suppress high restoring momentums. The problem with
a motor that can provide high torque is that it has limited maximum speed. Therefore
speed and torque are competing features and a trade off between the two factors has to
be made. In this case the high torque was chosen more important since the inability to
suppress the restoring moments would make the vehicle uncontrollable.

In Figure 8.1, it is possible to see all three reaction-wheel assemblies. The x and y-
wheels can easily be seen in the foreground and background of the satellite, while the third
RWA is placed horizontal in the lower right side of the picture.

8.4.2 Ballast system

The ballast system is implemented as an actuator for vertical positioning. The principal of
the system is that a piston is placed inside a cylinder and an assembly with a servo motor,
gear wheels and electrical units makes the piston move inside the tank. The movement
will pump water inn or out of the tank and thereby regulate the gravitational force acting
on the underwater satellite. If this is performed the right way one can make the buoyancy
force equal the gravitational force and make the vessel naturally buoyant.

The ballast system chosen for the satellite is the model XP250-12 Piston Tank, made
by Engel, equipped with a 250 mL water tank and capable of adjusting the mass of the
vessel by 250 g.

8.5 Communication

Communication between the satellite and the main stationary PC is done using Ethernet
LAN. This is not an ideal solution at all (see Section 5.1), and a feature extension should be
to replace the Ethernet cable with an acoustic or radio frequency wireless communication
scheme. One might think that a solution like this would have problem with the high
bandwidth, but since the satellite runs its own controller, most of the information will only
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be sent in one direction from the satellite to the stationary PC, reducing the bandwidth
requirements.

8.6 CPU board

The main calculating unit in the underwater satellite uses a PC/104 embedded computer
board. This computer board can be seen in the middle of the picture in Figure 8.1.
Important components of the PC/104 embedded computer board are: CPU, serial com-
munication card, power supply and solid state storage. The PC/104 is a modular and
stackable electrical circuit developed for embedded applications requiring the desktop PC
bus. The CPU board has a 500 MHz low power Pentium processor with 1 GB of RAM.
The system has also 4 GB of solid storage, which is sufficient to store the operating system
(OS), programs and data.

8.7 Software

The software needed for the sphere satellite should also be available for other similar
projects, and therefore, the software was designed to be easy maintainable, straightforward
and intuitive. This implies that the specific code is placed in low level drivers.

Testing of new and different control schemes is perhaps the main motivation for this
platform, and therefore, it is important to be able to switch between control algorithms
in an intuitive, fast, and easy way. In the following section a short description of software
used to satisfy these requirements is presented. The overall structure of the software is
shown in Figure 8.2.

8.7.1 Operating system

Since the most important part in control applications is to communicate with sensors and
actuators to provide data to the control algorithm, a real-time operating system (RTOS)
is needed. The QNX Neutrino real-time operating system was chosen for this matter. This
RTOS is designed specifically for embedded applications, and it includes features like task
prioritizing, scheduling and resource sharing. The OS is also very scalable and one can
thus exclude non-relevant functions, saving computation time and data storage.

8.7.2 Matlab Real-time workshop and Simulink

To satisfy the requirement for easy implementation of new control schemes, the Matlab
Real-time workshop (RTW) in combination with Simulink is used. Simulink has a graph-
ical user interface, and it is easy and intuitive to develop control algorithms. When the
control algorithm is produced the Matlab Real-time workshop can be used to transform
the graphical interface in Simulink to C source code. The source code can then be moved
to the satellite, compiled and run on the target QNX system.
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Another feature of the combined solution with Matlab Real-time workshop and Simulink
is that it provides a communication interface between the stationary host computer and
the QNX target. The host is running the graphical Simulink program and it is possible
to send and view the measurement and control signals sent from the satellite on the host
computer. This is very practical and one can thereby see the live measurements and store
them for later analysis.

8.7.3 Low-level interfaces

Low level drivers have be developed to take care of the communications between the ac-
tuators, sensors and the general system. These interfaces includes the servo motors, IMU,
ADC/DAC and the Ethernet interface. The low-level drivers are implemented as shared
libraries on the QNX target, and are loaded by the code generated by the RTW toolbox.
It is therefore not necessary to compile these low-level drives for each time a new, higher
level software is tested.

Simulink
RTW

Matlab

drivers

Low-level

actuators

Sensors and

S
of

tw
ar

e
H

ar
d
w

ar
e

On-shore host Submerged target

Windows XP QNX RTOS

Figure 8.2: Overall structure of the soft- and hardware.
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Chapter 9

Experiments and results

This chapter contains the most important experiments and results from the tests of the
AUVSAT. The chapter is divided into three parts where the first part presents the results
when sliding mode and backstepping control were implemented. In this section, angular
velocity measurements were available for both controllers. The second part implements
the nonlinear observer for the angular velocity and the output from this observer is feed
to the sliding mode controller. The third and final part of this chapter shows the results
from the experiments of attitude synchronization without angular velocity measurements.

9.1 Pre-testing of controller and observer

All systems have been simulated prior to the real experiments with Matlab and Simulink.
The simulations do not use the AUVSAT at all, and thus serve as a fine tool to test if
the controller and observer functions properly. In addition, the simulations gave a good
indication of suitable values for different gains used by the controllers and observers. How-
ever, these results are left out of the paper, since the main focus of the thesis is to control
the underwater satellite. The “off-line” simulations was just a step on the way to reach
the main goal. It may however be mentioned that simulations showed that the controllers,
observers and the synchronization scheme behaved really well, even with realistic noise
ratios and modulation errors.

9.2 Angular velocity tracking

The setup of the lab is described in Chapter 8 and after the satellite was assembled the
Ethernet cable was connected between the on-shore host and the submerged target. The
cable was attached to a rotating device above the water tank, to minimized the unwanted
effect from the cable (see Section 5.1).

The control objective is to track an commanded angular velocity reference signal ωn
c

given in the NED-coordinate frame. The reference signal is stated in Equation (9.1) and is
a sequence of a square signal with a period of 60 s and a time varying sinusoidal reference
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Figure 9.1: The reference-block diagram.

signal. In this way one can truly validate the performance of the controller. The experiment
was sampled at 50 Hz for about 550 s.

ωn
c (t) =

⎧⎪⎨
⎪⎩

0.3 sin
(

2π
110

(t− 30)
)

if 30 ≤ t ≤ 360

0.2 square
(

1
60
, t
)

if 400 ≤ t ≤ 550

0 Else

(9.1)

An overview of the Simulink diagram can be seen in Figure 9.2 where the filter box is
the first order filter described in Section 5.2, and the controller is placed in the “Attitude
controller”-box.

The “Reference”-box can be seen in Figure 9.1 and calculates the desired attitude in
addition to the desired angular velocity and its derivative. The generalized velocities are
all given in the NED-frame. To avoid having infinite ω̇n

d(t) a simple second order filter
with time constants T1 = 1 s and T2 = 2 s has been implemented. The filter can be seen
in Equation (9.2) where s is the Laplace-transform variable.

Hf (s) =
ωd,i

ωc,i

(s) =
1

(T1s+ 1)(T2s+ 1)
∀i ∈ {x, y, z} (9.2)

Remark 9.1. In the given setup only commanded angular velocity about the z-axis is
performed. This was not the intention from the beginning, but testing showed that com-
manding angular velocity about all three axes made the satellite crash with the walls
constantly. One crash was even so powerful that the Ethernet-cable was torn off, resulting
in a big leakage. This was quite serious since the electronic inside the sphere does not
endure humidity, but luckily only three small cables had to be fixed and replaced.

Remark 9.2. Note that the satellite is equipped with a “depth controller”. The depth
controller makes sure that the vehicle stays in the right vertical position such that the
satellite always is submerged and at the same time makes sure that it does not touch the
bottom of the tank. The depth controller is not shown in the overall diagrams, since it is not
in the scope of this thesis, and it does not influence the attitude behavior. It should however
be mentioned that the depth controller is implemented as a PID-controller, taking pressure
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measurements as input and returning relative vertical position. This vertical position is
then sent to the ballast system which is presented in Section 8.4.2. The controller is
developed by Thomas Krogstad.

Remark 9.3. Notice that no torques are provided to the actuators before 10 seconds have
gone in the logging sequence. In this way, one makes sure that the hardware and software
are properly initialized and ready for the experiment.

Remark 9.4. It is assumed throughout the rest of this paper that when angular velocity
is shown in a plot, it is actually the filtered angular velocity. This is done to facilitate the
readability of the experiments and can be carried out since it is shown in Section 5.2 that
the filter works satisfactorily, smoothening out the high frequent measurements and is still
capable of responding quickly.

9.2.1 Sliding mode controller

This section presents the results from experiments with the sliding mode controller, seen
in Equation (4.13). The different plots from the experiment can be seen in Figure 9.3. The
sliding mode gains, used in the experiment, can be seen in Table 9.1 and have been found
using a combination between the trying and failing method and the pre-testing explained
in Section 9.1.

In addition to the series of plots presented in this section, it is also shown an experiment
in Appendix D where the same system has been tested. However, this time, a different
choice of tuning parameters has been chosen where the ratio between the tuning parameters
K and P is different. In this section, P � K resulting in a high weight on the angular
velocity error. The controller will thereby penalize angular velocity errors hard and force
the satellite to converge to the desired velocity. The experiment in Appendix D, on the
other hand, tries to balance the attitude and angular velocity error. In this way, it tries
to make both attitude and angular velocity converge to the desired values simultaneously.
This is of coarse much harder than only controlling the angular velocity, since the satellite
now has to have the desired angular velocity and be at the right attitude at the same time.

Since the controller is designed as an angular velocity controller, the main objective is
to track the desired angular velocity. One will thereby choose P � K which results in less
weight on the attitude error. Having a more balanced weight between the attitude and the
angular velocity will nevertheless be investigated in Section 9.4.

Gain-symbol Value Denomination

K 0.5 · 10−3 · I 1/s

D 1.3 · 10−3 · I 1/sm

P 1.1 · I 1/sm

Table 9.1: Sliding mode controller gains where I is the identity matrix.
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Figure 9.2: Block diagram of the controller and the system with filtering of the angular
velocity measurement.

Plots and descriptions

• Figure 9.3(a) presents the angular velocity in all three degrees of freedom. The
generalized velocity about the x and y-axis were supposed to be zero, but this is
clearly not the case. However, the mean values for these parameters are close to
zero, and no significant peaks are spotted.

• Figure 9.3(b) illustrates the overall performance of the controller and is thereby the
most important plot of this experiment. The figure compares the desired angular
velocity reference against the measured angular velocity about the z-body axis.

• Figure 9.3(c) shows the angular velocity errors for all three degrees of freedom. Not
surprisingly, it can be seen that the biggest peaks arises when the reference signal
changes from one constant set point to the next in the square sequence of the signal.
In addition, it can be seen that the errors are well below 0.05 rad/s most of the time.

• Figure 9.3(d) shows the output from the sliding mode controller. Note that the
commanded torque Tu is far from the maximum allowed torque τmax = 0.358 Nm.
However, experience showed that commanded torques above 30 % of max torque
made the system uncontrollable.
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(a) Angular velocity of the satellite.

(b) Reference and angular velocity about the z-axis.

Figure 9.3: Plots from the experiments with sliding mode controller and observer.
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(c) Angular velocity error.

(d) Torque applied to the satellite.

Figure 9.3: Plots from the experiments with sliding mode controller and observer.
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9.2.2 Backstepping controller

This section presents the results from experiments with the backstepping controller, seen
in Equation (4.30). The different plots from the experiment can be seen in Figure 9.4. The
chosen backstepping gains, used in the experiment, can be seen in Table 9.2 and have been
found using a combination between the trying and failing method. In addition, knowledge
learned from the SM controller has also been used to find suitable gain values since each
term of the controllers can more or less be compared directly. An overview of the system
is shown in Figure 9.2 and is in general equal the system stated in the previous section.
However, the “attitude control”-box is changed with the backstepping controller.

Gain-symbol Value Denomination

k 0.5 · 10−3 1/s

K1 0.5 · 10−3 · I 1/sm

K2 1.2 · I 1/sm

Table 9.2: Backstepping controller gains where I is the identity matrix.

Plots and descriptions

The experiments was again sampled at 50 Hz for about 550 s with the commanded an-
gular velocity ωn

c , seen in Equation (9.1). The different plots from the experiments with
backstepping controller can be seen in Figure 9.4.

• Figure 9.4(a) compares the desired angular velocity reference against the measured
angular velocity about the z-body axis.

• Figure 9.4(b) shows the angular velocity errors for all three degrees of freedom. It can
be seen that the errors are well below 0.05 rad/s except in the transactions between
two different setpoint in the square sequence of the signal.

• Figure 9.4(c) shows the output from the backstepping controller. The commanded
torque Tu is far from the maximum allowed torque.
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(a) Reference and angular velocity about the z-axis.

(b) Angular velocity error.

Figure 9.4: Plots from the experiments with backstepping controller.
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(c) Torque applied to the satellite.

Figure 9.4: Plots from the experiments with backstepping controller.
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9.3 Angular velocity tracking with observer

The setup for this part of the assignment is identical with the setup from the last section
except the topic regarding the angular velocity feedback which is estimated instead of
filtered. The resulting block diagram is shown in Figure 9.5. The observer and controller
gains shown in Table 9.3, have been found with the trying and failing method in addition
to the “off-line” simulation testing described in Section 9.1. It can also be noted that the
controller gain P had to be lowered to reach a satisfactorily behavior.

Remark 9.5. The observer system is expressed in the BODY reference frame with the
angular velocity dynamics instead of the angular momentum dynamics described in Sec-
tion 5.3. This allows us to utilize knowledge of the known commanded torque Tu into the
satellite system and copy this signal into the observer.

Remark 9.6. Because of the derivative term of the reference signal, ωn
d(t), marked oscilla-

tions occurred when the system were to follow the squared reference signal. This happened
even though the reference signal was run through a second-order filter with the intention of
avoiding the problem with high derivative values. Therefore it was decided that the time
derivative of the reference should be switched to zero in this part of the experiment. In
example, ω̇n

d(t) = 0 when the system is tracking the squared signal. However, this is no
significant loss of generality since the derivative of a squared signal is always zero except
where jumps occur.

Observer

controller

Attitude Underwater
Satellite

Tu

ωb
nb

ω̂b
nb

q

Ω

Reference

ωn
d

qd

ω̇n
d

Figure 9.5: Block diagram of the system with a nonlinear observer for angular velocity.

Plots and descriptions

Once again the experiment was sampled for about 550 s where the commanded angular
velocity ωn

c changed between different constant set points and a time varying sinusoidal
reference signal. The different plots from the experiment with sliding mode controller and
observer for angular velocity can be seen in Figure 9.6.
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9.3. Angular velocity tracking with observer

Gain-symbol Value Denomination

K 0.9 · 10−3 · I 1/s

D 1.3 · 10−3 · I 1/sm

P 0.9 · I 1/sm

kp 17.0 kg2m4/s2

kv 12.0 1/s

Table 9.3: Sliding mode controller and observer gains where I is the identity matrix.

• Figure 9.6(a) compares the estimated angular velocity ω̂ with the measured angular
velocity. The plot thereby shows whether the observer works or not. Note that
the angular velocity about the x-axis is left out since it is almost identical with the
angular velocity about the y-axis. It should also be noted that the plot about the
y-axis is investigated in a shorter time period to emphasize the filtering and time
delay caused by the observer.

• Figure 9.6(b) shows the desired angular velocity plotted against the measured angular
velocity. The measured velocity is of coarse not used in the closed-loop system, but
works as comparison for the estimated angular velocity. In this way one can easily
see and validate the performance of the observer.

• Figure 9.6(c) illustrates the difference between the desired and the measured angular
velocity.

• Figure 9.6(d) shows the commanded torque applied to the system. This time, it can
be noted that the values are getting close to the critical value τ c = 0.3 τmax.

• Figure 9.6(e) shows that during the startup period the observer uses some time to
converge to the real angular velocity. In this phase, called the detumbling phase,
there is no regulation of the satellite and the controller is disabled. For satellites in
general, this is a popular strategy. Right after the satellite has left the mother ship
and is sent into space it has a lot of initial generalized velocities. However it is not
a good idea to turn on the regulator right a way, but instead let the external forces
suppress the movement for a while. When most of the initial generalized speed has
become stable and as small as possible, one can turn on the regulator and go into
the next phase of ordinary satellite control.
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9. Experiments and results

(a) Estimated and measured angular velocity about the y and z axis.

(b) Reference and angular velocity about the z-axis.

Figure 9.6: Plots from the experiments with sliding mode controller and observer.
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9.3. Angular velocity tracking with observer

(c) Angular velocity error.

(d) Torque applied to the satellite.

Figure 9.6: Plots from the experiments with sliding mode controller and observer.
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9. Experiments and results

(e) The initialization period for the angular velocity observer.

Figure 9.6: Plots from the experiments with sliding mode controller and observer.
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9.4. Synchronization control with angular velocity observers

9.4 Synchronization control with angular velocity

observers

This section presents the results form the synchronization experiment with controller seen
in Equation (7.35) and the observers seen in Equation (7.10).

Due to the limited test facility, explained in Section 5.1, it was impossible to run an
experiment with both the leader and the follower satellite at the same time. Since the leader
satellite is completely independent of the follower, it is possible to divide the experiments
into two different simulations. The first part includes the leader satellite while the follower
satellite is going to be used in the second part of the experiment. The overall structure
of the leader can be seen in Figure 9.7(a) whereas the follower system can be seen in
Figure 9.7(b). The measured and estimated parameters ql(t), q̂l(t), ω̂n

nl(t), aD(t) and the
corresponding time-vector for each parameter were stored in the memory of the computer
after the experiment with the leader. These sets were then going to be used as inputs for
the next part of the experiment with the follower satellite.

Despite the above mentioned case, the synchronization scheme setup is similar to the
setup used for the angular velocity tracking with observer, explained in Section 9.3. How-
ever, one significant difference in this setup, is that the observer and controller are both
expressed in the NED coordinate frame, even though measurements and torque input are
still given in the BODY frame. However, this is not a significant problem since it is as-
sumed that the attitude of both the leader and the follower are known exactly at any time,
and one can thus easily express the vectors in the NED or the BODY frame according to
own choices.

The results from the synchronization scheme experiment can be seen in Figure 9.8
whereas the gains used by the controller and observer can be seen in Table 9.4. Remember
that the derivative of the desired angular velocity were set to zero during the squared part
of the tracking when the leader satellite was examined (see Remark 9.6).

Remark 9.7. In this part of the experiment, it is attempted to control both the attitude
of the satellite and the angular velocity at the same time. It is therefore important to
choose the tuning gains Au and Λ to have approximately same values. This is a different
strategy as compared to the cases in Section 9.2–9.3 where the main focus were to control
the angular velocity. It is therefore assumed that the angular velocity tracking for these
experiments will be harder to control.

Plots and descriptions

The plots from the synchronization scheme can be seen in Figure 9.8 and were sampled
at 50 Hz for about 550 s. The commanded angular velocity ωn

c , seen in Equation (9.1),
were again sent through the second order reference-filter to remove unwanted jumps in the
reference signal.
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(a) Diagram of the leader satellite.
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(b) Diagram of the follower satellite.

Figure 9.7: Structure of the tracking and synchronization scheme. In reality, the right side
of (a) is connected with the left side of (b).

Gain-symbol Value Denomination

Au 0.3 · I 1/s

Λ 1.1 · I 1/s

kp,l 17.0 kg2m4/s2

kp,f 17.0 kg2m4/s2

kv,l 12.0 1/s

kv,f 12.0 1/s

Table 9.4: Synchronization control and observer gains where I is the identity matrix.
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9.4. Synchronization control with angular velocity observers

• Figure 9.8(a) compares the desired attitude with the leader and the follower. All
though the figure might look disorderly, it gives an insight in the development of the
different attitudes. It can be seen that the leader satellite converges faster than the
follower, which is not surprising.

• Figure 9.8(b) illustrates the attitude error for the tracking problem. It can be seen
that the attitude error stays below 0.3 which corresponds to approximately 32◦ about
the z-axis. In the squared part of the experiments the attitude error is somewhat
smaller and is always less than 28◦.

• Figure 9.8(c) shows the attitude error for the synchronization problem. The errors
are clearly more significant in this plot than in Figure 9.8(b) and it can be seen that
the error remains below the threshold 0.4 ≈ 56◦. When the system is tracking the
sinusoidal reference, this is somewhat better and the error stays below 24◦ about the
z-axis.

• Figure 9.8(d) compares the desired angular velocity trajectory with the measured
generalized velocity for the leader and the follower. Not surprisingly, the leader
follows the desired trajectory much better than the follower.

• Figure 9.8(e) shows the angular velocity error for the tracking problem.

• Figure 9.8(f) illustrates the angular velocity error between the leader and the follower.
It can be seen that the errors are clearly worse than for the tracking problem. In
addition, if the error between the desired trajectory and the follower were plotted,
the errors would have been even more visible.

• Figure 9.8(g) is an illustration of the commanded torque to the leader satellite. Notice
that the commanded torque stays below 10 % most of the time, which implies effective
use of commanded torque.

• Figure 9.8(h) shows the calculated output from the controller in the follower satellite.
The torque sequence is rapid and highly oscillating with amplitudes reaching the
maximum allowed torque. This is clearly not a desirable input for the actuators and
may cause wear and tear of the equipment.
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9. Experiments and results

(a) Attitude of leader and follower compared with desired attitude. Note
that qf is multiplied with −1 since eT

f is converging towards qT
id =[−1 0T

]
. See Figure 9.8(c).

(b) Attitude error between the desired and leader attitude, el.

Figure 9.8: Plots from synchronization experiment.
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9.4. Synchronization control with angular velocity observers

(c) Attitude error between the leader and follower attitude, ef .

(d) Angular velocity of the leader and follower compared to the desired
angular velocity about the z-axis.

Figure 9.8: Plots from synchronization experiment.
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(e) Angular velocity error between the desired trajectory and leader satel-
lite, i.e. ωn

id − ωn
il.

(f) Angular velocity error between the leader and follower satellite, i.e.
ωn

il − ωn
if .

Figure 9.8: Plots from synchronization experiment.
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(g) Torque applied to the leader satellite.

(h) Torque applied to the follower satellite.

Figure 9.8: Plots from synchronization experiment.
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Chapter 10

Discussion

This chapter presents a discussion around the results from the experiments presented in
Chapter 9. The various experiments are compared for similarities and differences and
important elements are taken into considerations.

10.1 Experiment with angular velocity tracking

without observer

The sliding mode and the backstepping controller, seen in Equation (4.13) and (4.30),
respectively, were tested in a setup where angular velocity were available for feedback. This
is the best way to test the performance of the controllers and similarities and differences
can therefore be compared accurately.

10.1.1 Sliding mode controller

Figure 9.3(b) illustrates the behavior of the system with the sliding mode controller. It
can be seen that the system tracks the desired angular velocity in an excellent manner
and thereby works satisfactorily. There are none uncontrolled oscillations, which is the
case when an observer for angular velocity is implemented. However, Figure 9.3(b) shows
that there in some cases may occur small standard deviations when the system tracks
different constant set points. To fix this problem, it might be helpful to implement an
integral action in the controller, but this would make the controller more complex and not
necessary improve the performance noticeable. After all, these standard deviations are
acceptable and small deviations will always occur in physical systems.

From Figure 9.3(a) it can clearly be seen that the angular velocity about the x and
y-axis do not follow the zero reference. This effect arises since the satellite is not perfectly
balanced. However, the effect can be minimized by lowering the controller gains, but then
again, the performance about the z-axis will be poorer. This problem has no easy fix, and
will in most cases always be present.
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10.1.2 Backstepping controller

Figure 9.4(a) demonstrates the performance of the system with the backstepping controller.
The controller controls the system in a good manner and the system behaves in the same
way as with the sliding mode controller. This is however of no big surprise, since it can be
seen that they are very much alike. For example, choosing K1 = K, K2 = JsP and setting
D = k = 0 makes the two different controllers identical. With the chosen backstepping gain
values, it can be seen that the system has standard deviations when tracking the squared
reference signal and misalignments in the sinusoidal sequence. The standard deviations
and misalignments are clearly more marked than is the case for the SM controller. When
comparing the commanded torque between the two controllers it may be noticed that the
SM controller uses the torque in a more efficient way (see Figure 9.3(d) and Figure 9.4(c)).
On the other hand it is possible that tuning the backstepping controller gains more closely
will make the behavior better. Nevertheless, since the sliding mode controller has less
standard deviation, is more accurate, and uses less torque, it may be concluded that the
SM controller is noticeable better than the backstepping controller. Thus, the sliding mode
controller was chosen as controller when the angular velocity observer was implemented.

10.2 Experiment with observer for angular velocity

estimation

Figure 9.6(a) shows the comparison between the estimated and the measured angular
velocity signal about the y and z-axis. Notice that ωb

2 in the first plot of this figure is the
unfiltered angular velocity measurement. This is done to illustrate that the observer works
as a low-pass filter smoothening and dampening the high-frequent measurement signal.
By close inspection it can also be seen that the observer adds an unwanted phase shift of
about 0.5 s for this specific case. This is and inescapable drawback for all observers, but
it turns out that the phase shift is acceptable for this system.

Plot number two of Figure 9.6(a) shows the estimate of the angular velocity about the
z-axis. This is where most of the dynamics take place and it can be seen that the observer
works quite good when the squared-shaped signal is tracked. However, the observer has
some small standard deviations in addition to small parts with an oscillating behavior.
Remember that the derivative of the reference signal, ω̇n

d = 0 in this section due to the
problem mentioned in Remark 9.6. This has dramatically improved the behavior compared
to (Jørgensen, 2009) and the article submitted to the “49th IEEE Conference on Decision
and Control”, seen in Appendix E by Jørgensen and Gravdahl.

When the system is tracking the sinusoidal reference, it can be noticed that the observer
performs less satisfying. Some mismatches are due to crashes with the surrounding walls,
but most of them are caused by of the shortcomings of the observer. This can especially be
seen when the observer is estimating the maximum and minimum of the sinusoidal angular
velocity signal. Some improvements can however be achieved by finding better tuning
gains, but another observer strategy might also be an option, e.g. an extended Kalman

92



10.3. Synchronization control with angular velocity observers

filter.
Figure 9.6(b)–9.6(c) presents the overall performance of the system. The reference an-

gular velocity is compared with the angular velocity measurement in Figure 9.6(b) whereas
the difference between the two generalized velocities is seen in Figure 9.6(c). The behavior
of the system is in general acceptable, but it may be seen that the system struggles when
the system is tracking the sinusoidal signal. This is of no big surprise, since the observer
errors are noticeable in this time interval and therefore, the problems experienced with the
observer will be reflected and magnified for the total system. This can clearly be seen from
the responses in the two figures. Nevertheless, the overall performance is acceptable com-
pared to the system without angular velocity estimation, since it is expected that removing
one set of measurements will make the system harder to control.

The commanded torque, calculated by the controller and seen in Figure 9.6(d), should
also be commented. The torque sequence is clearly not as effective as it can be. The
commanded torque is rapid, oscillating and is in general at a higher level than without
angular velocity estimation. It should also be noted that the torque level reached the
experienced critical level of 30 % of τmax at some occasions. This indicates that the system
is tuned to the maximum limit, and should possibly have been lowered to a more suitable
level. This assumption can be strengthened by considering the experiments of the leader in
the synchronization scheme, seen in Figure 9.8(b), (d), (e) and (g). The tracking problem
of the leader is essentially the same as this system, and it can be seen that the leader
satellite tracks the desired trajectory in a similar manner, but with a torque sequence
which is much more effective. Therefore, it may be concluded that it is possible to find a
better sett of gains which will improve the overall performance.

10.3 Synchronization control with angular velocity

observers

First of all, in this part of the experiments, it is attempted to control both the attitude
and the angular velocity at the same time. The controller must therefore make sure that
the satellite has the right angular velocity in addition to being at the right attitude.

The attitude and attitude errors for the leader and follower can be seen in Figure 9.8(a)–
9.8(c). Figure 9.8(a) compares the desired attitude trajectory with the measured attitude
of the leader and the follower. The first 50 seconds of this plot shows that the attitude of
the leader converges towards the desired trajectory, while the follower’s attitude converges
towards the leader’s attitude. The attitude error between the follower and the desired
trajectory will be a function of both the leader and the follower attitude errors, whereas
the attitude error between the leader and the desired trajectory will only be dependent
on the leader. Therefore, the follower will always have a phase shift compared with the
desired attitude as long as there is excitation in the system.

By closer inspection of Figure 9.8(b) it can be seen that the attitude error between the
desired attitude trajectory and the leader stays below 32◦ about the z-axis. This is quite
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much and will in some cases be insufficient for operational requirement. For instance, if
the satellite is going to be used in a communication scheme between the satellite and a
ground station, it is most likely that a message sent or received with a 32◦ error will be
lost. On the other hand, if a message is going to be sent between two closely cooperating
vehicles, it is possible that the error-values are acceptable.

From Figure 9.8(c) it may be concluded that the attitude error between the leader
and the follower is noticeable larger than the error between the leader and the desired
attitude trajectory. As can be calculated from the figure, the maximum attitude error
after the convergence period is approximately 56◦. This is dramatically higher than the
32◦ threshold as calculated from Figure 9.8(b), but to be expected since the input for the
leader is a mathematically given smooth trajectory, while the input to the follower consist
of raw measurements. In addition, these measurements can be exposed to sources of errors
and can thus further aggravate the circumstances.

All though there is no figure illustrating the attitude error between the desired attitude
trajectory and the measured follower’s attitude, it is assumed that this error will be even
higher than the error between the leader and the follower. This claim can also be confirmed
by utilizing the quaternion-multiplication edf = el ⊗ ef , but is left out of the thesis, since
it is a quite obvious fact. Nevertheless, it should be mentioned that the average error
between the follower and the desired attitude is in fact significantly higher, all though the
maximum threshold is approximately the same as in Figure 9.8(c).

The graph in Figure 9.8(d) compares the desired angular velocity with the leader and
the follower. It can be seen from this figure in addition to Figure 9.8(e) that the leader
system tracks the desired angular velocity trajectory in a good manner. The behavior
is in fact comparable with the experiments presented in Section 9.3, and similar angular
velocity responses can be seen. This is according to theory since the two systems have the
same observer-structure, and the only significant distinction is the implemented controllers.
Even so, one important difference can be observed: the use of torque for the leader in the
synchronization scheme is dramatically better than the use of torque in Section 9.3 (See
Figure 9.6(d) and Figure 9.8(g)). The reason for this is probably due to none optimal tuning
of the gains for the system in Section 9.3, but it is also possible that the controller used
in the current experiment is better. One important difference between the two controllers
is that the leader synchronization controller is dependent on the observer errors. This
is not the case for the system with the sliding mode controller, since the SM controller
was developed assuming that angular velocity measurements were available for feedback.
The synchronizing controller, on the other hand, was constructed with the knowledge that
angular velocity measurements were not available, and could thereby utilize knowledge of
the current observer errors in stead. It is therefore possible for the synchronizing controller
to exploit the state of the observer to perform the correct action.

The performance of the angular velocity synchronization problem can be seen in Fig-
ure 9.8(d) and Figure 9.8(f). It is quite clear that the behavior is not as good as for the
tracking problem. The angular velocity performance is occasionally highly oscillating, is
rapid and has tendencies to a drifting behavior. It was also experienced that small un-
foreseen events made the satellite lose track and become unstable. This is obviously an
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undesirable action, but is in some extent anticipated. One reason for this behavior is that
the input to the follower satellite is taken directly from the leader satellite measurements
and its estimations. The errors from the leader will therefore be reflected and magnified
for the follower satellite, and can occasionally even destabilize the satellite.

The oscillating action seen in Figure 9.8(d) can be explained by looking closely at
the commanded torque to the actuators, seen in Figure 9.8(h). It can be seen that the
torque level reaches the critical threshold of 30 % of the maximum allowed torque at sev-
eral occasions. It has in addition a high frequency behavior with high amplitudes. This is
undoubtedly not good for the actuators and probably caused wear and tear for the torque-
providing equipment. The satellite was in fact making strange noises and the experiment
should most likely have been stopped right away. Nevertheless, due to the excitement of a
functioning control system, the experiment was carried out without questioning the con-
sequences. However, in the next experiment, a first order filter was implemented between
the output from the controller and the input to the actuators to smooth out the torque
signal. This clearly made a difference and eliminated the unusual noise. The performance
of the system with the new filter implemented, behaved similar as without the filter, but
with a slightly noticeable drop in performance. It is therefore indisputable that the filter
should be implemented in future experiments.

Another aspect, which can not be seen directly from the figures, is that the follower
satellite’s CPU is running close to its maximum capacity. This is documented by the
communication application used between the on-shore host and the QNX target. Whether
or not this is actually restraining the performance is hard to say, but it is possible that the
system can be affected by the problem.

All these troubles implies that the follower system is on the edge of its capabilities and
it is therefore quite remarkable that the follower is in fact able to follow the leader, to a
certain extent.

Remark 10.1. Note that the experiments with observer often became unstable when a
noticeable unforeseen disturbance affected the system. This disturbance could be a person
pushing the satellite with enough force in the right direction or in some cases, a powerful
crash with one of the walls. This can however not be seen directly from the plots, but is
worth mention since it gives a characterization of the robustness of the system.

The systems without observer could also be manipulated so that they became unstable,
but experience showed that the force needed to do so had to be much higher than compared
to the cases with observer implemented.
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11.1 Conclusions

In this thesis the topic of controlling and synchronizing the attitude of spherical-shaped
spacecrafts have been studied. Each vehicle is actuated by means of three orthogonally
mounted reaction wheels and the vessel can thereby be controlled in three degrees of
freedom. Using methods from nonlinear system theory a robust sliding mode controller in
addition to a backstepping controller have been proposed and implemented on the AUVSAT
for single vehicle control. With the given controllers, two Lyapunov function candidates
have been constructed and asymptotic stability is proven for the overall system.

When angular velocity measurements are not present in the spacecraft, a nonlinear
observer is derived to estimate the generalized velocity. Asymptotic stability is proven for
the observer using LaSalle’s and Matrosov’s theorems.

A leader-follower synchronization scheme has been developed for the cases where more
than one spacecraft is required. It is assumed that angular velocity measurements are not
present, and the nonlinear observer is therefore used in both the leader and the follower
satellite to estimate the angular velocity. Two backstepping controllers are also derived
making sure that the leader follows a mathematically given trajectory, while the follower
satellite follows the leader’s attitude.

The various systems were tested in a lab setup where the AUVSAT was submerged in
water and thereby emulating a gravity free environment. Experiments were carried out
to evaluate the performance of the controllers, observers and the leader-follower synchro-
nization scheme. In each experiment the system is set to track a sinusoidal time-varying
trajectory in addition to a square-shaped angular velocity reference signal.

The results show that the sliding mode and the backstepping controller works quite
similar with a satisfactorily behavior throughout the experiment. However, there is some
lack of performance for the overall system with observer, and especially tracking of the
sinusoidal reference signal is inadequate.

In the leader-follower synchronization experiment, it is seen that the leader follows the
desired trajectory, while the follower converges towards the leader’s attitude. However,
misalignment, drifting, and oscillation have been noticed. These undesirable behaviors
are especially seen for the follower satellite and the system is clearly on the edge of its
capabilities. Nevertheless, all aspect considered, the performance of the complete system
is satisfactorily and good results have been shown.
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11.2 Recommendations

The most obvious next step in the evaluation of the different proposed controllers, observers
and synchronization scheme, is to perform experiments in all three degrees of freedom.
This might be done at the “Marine Cybernetics Laboratory” at Tyholt in Trondheim, an
excellent facility for testing of ocean structures.

Another interesting aspect is to investigate if simple linear controllers, based on lin-
earization, can work satisfactorily. After all, the linear controller is by far the most used
active controller worldwide and is often very robust because of its many tuning theories.
In addition a linear controller is less computational demanding than nonlinear controllers,
which is important in satellite architectures where computational power is limited. A dif-
ferent interesting feature is to see if an extended Kalman filter would make the estimation
of the angular velocity better than the implemented observer. The extended Kalman filter
is a well tested observer and might give a better result.

In Section 5.1 it is mentioned that the experiments tuned out to be greatly affected
by the Ethernet cable connecting the QNX target with the on-shore host. It is therefore
of great interest to remove this cable and use wireless transmission instead. The benefit
would be a system almost fully emulating a true satellite traveling in space. However, this
would require additional equipment and further investigation has to be carried out.

The job of implementing wireless transmission could also be seen as a part of making
the experiment platform more attractive for other students, and it may be possible to
develop a test bench that can be used as a lab exercise in e.g. nonlinear control subjects.
However this would require an examination of the complete lab setup, where the equipment
has to be more robust for ignorance errors and it must be easier to set up the experiments.
Today it takes almost an hour to prepare the experiment and half an hour to restore the
equipment to its startup state. This is of course far too much if many students are going
to use the underwater satellite test bench.

A suggestion for future work on the theoretical part of the assignment, is to investigate
the possibility for a local version of the extended Matrosov’s theorem, presented in (Loria
et al., 2002). The proposed theorem has among others, the advantage of applying an arbi-
trary number of auxiliary functions to prove uniform global asymptotic stability (UGAS).
This was also carried out as a part of the stability analysis for the observer in Chapter 6.
Here it turned out that one was actually capable of satisfying all assumptions for the the-
orem and one could thereby apparently conclude with UGAS for the observer. However,
since unit quaternion has been chosen as attitude parameterization, one actually has two
equilibriums, and it is therefore impossible to conclude with global asymptotic stability. It
is therefore motivating to develop a local version of the extended Matrosov’s theorem, and
utilize all its benefits to conclude with uniform local asymptotic stability.
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Appendix A

Calculations

A.1 Dynamic error calculation

By starting with the expression of the orientation error e stated in Equation (4.3), one can
derive it with respect to time and get the following:

ė = q−1
d ⊗ q̇︸ ︷︷ ︸

Q1

+ q̇−1
d ⊗ q︸ ︷︷ ︸

Q2

. (A.1)

If we look at the expression for Q1 only, we get:

Q1 =

[
ηdη̇ + εT

d ε̇
ηdε̇ − η̇εd − S(εd)ε̇

]
=

[
ηd εT

d

−εd ηdI − S(εd)

] [
η̇
ε̇

]
. (A.2)

In Fossen (Fossen, 2009) it is shown that,[
η̇
ε̇

]
=

1

2

[ −εT

ηI + S(ε)

]
ωb

nb. (A.3)

This can be substituted into Equation (A.2), which results in the expression shown in
Equation (A.4)

Q1 =
1

2

[ −ηdε
T + ηεT

d + εT
d S(ε)

εdε
T + ηdηI + ηdS(ε) − ηS(εd) − S(εd)S(ε)

]
ω. (A.4)

Now considering expressions for −εT
e and ηeI + S(εe), seen in Equation (4.4), a simpler

expression for Q1 is obtained.

−εT
e = − (ηdε − ηεd − S(εd)ε)

T ,

= − (ηdε
T − ηεT

d − εT [S(εd)]
T ),

= − ηdε
T + ηεT

d − εTS(εd).

(A.5)
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A. Calculations

And by using the relation −εTS(εd) = εT
d S(ε), the final expression for −εT

e is found:

− εT
e = −ηdε

T + ηεT
d + εT

d S(ε). (A.6)

Now, the next step in the computation of Q1 is to compute ηeI + S(εe).

ηeI + S(εe) = (ηdη + εT
d ε)I + S(ηdε − ηεd − S(εd)ε),

= ηdηI + εT
d εI + ηdS(ε) − ηS(εd) − S(S(εd)ε).

(A.7)

It may be shown by the properties of the triple product (Egeland and Gravdahl, 2002) that,
S(S(εd)ε) = εεT

d −εdε
T and that εT

d εI = εεT
d −S(εd)S(ε). Substituting these relations into

Equation (A.7) results in:

ηeI + S(εe) = ηdηI + εεT
d − S(εd)S(ε) + ηdS(ε) − ηS(εd) − εεT

d + εdε
T ,

= εdε
T + ηdηI + ηdS(ε) − ηS(εd) − S(εd)S(ε). (A.8)

By comparing Equation (A.8) and (A.6) with Equation (A.4), it is easily seen that Q1 may
be written as:

Q1 =
1

2

[ −εT
e

ηeI + S(εe)

]
ω =

1

2

[ −εT
e

T(qe)

]
ω. (A.9)

A similar calculation can be performed for Q2, knowing that (Fjellstad, 1994)[
η̇d

ε̇d

]
=

1

2

[ −εT
e

ηeI + S(εe)

]
ωd

nd, (A.10)

where ωd
nd is the desired angular velocity given in the “desired” frame d, and can be

expressed in either the BODY or the NED frame by using the relation ωd
nd = Rd

b(qe)ω
b
nd

or ωd
nd = Rd

n(qd)ω
n
nd = RT (qd)ω

n
nd. The expression for Q2 then becomes:

Q2 =

[
η εT

ε −ηI + S(ε)

]
1

2

[ −εT
d

ηdI + S(εd)

]
R(qe)ω

b
nd. (A.11)

With a lot of calculations, similar to the ones for Q1, but left out of this paper due to no
extra insight in the system, you end up with the expression

Q2 = −1

2

[ −εT
e

ηeI + S(εe)

]
ωb

nd. (A.12)

Finally, the complete expression for ė used in this paper can easily be expressed as:

ė =
1

2

[ −εT
e

ηeI + S(εe)

]
ωe, (A.13)

since the definition of the angular velocity error ωe = ωb
nb − ωb

nd.
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A.2. Time derivative of the angular velocity error

A.2 Time derivative of the angular velocity error

To calculate the time derivative of the rotation matrix in the expression for the angular
velocity error we start by listing some of the used properties in the calculation:

• Ṙa
b = Ra

bS(ωb
ab) (Krogstad, 2005).

• ωa
ab = −ωa

ba (Spong et al., 2006).

• Ra
b =

(
Rb

a

)T
.

• S(x)x = 0.

• S(αx + βy) = αS(x) + βS(y).

We start by stating the angular velocity error shown in Equation (4.2b) written in a more
convenient manner:

ωb
e = ωb

nb − Rb
nω

n
d = ωb

nb − ωb
d. (A.14)

Then we can start the calculation of Ṙb
n = ṘT :

Ṙb
nω

n
d = S(ωb

bn)Rb
nω

n
d ,

= −S(ωb
nb)ω

b
d

= −S
(
ωb

e + ωb
d

)
ωb

d,

= −S(ωb
e)ω

b
d − S(ωb

d)ω
b
d,

= −S(ωb
e)R

b
nω

n
d ,

= −S(ωe)R
T ωn

d ,

which gives the final expression used in this project:

Ṙb
n = −S(ωe)R

T . (A.15)

A.3 The “regular function” class

According to (Shevitz and Paden, 1994), the class of functions, called “regular functions”
can be defined as shown in Definition A.1.

Definition A.1. The function f(x, t) : R
m × R → R is called a regular if

1. for all ν, the usual one-sided directional derivative f ′(x; ν) exists,

2. for all ν, f ′(x; ν) = f ◦(x; ν) where

f ◦(x; ν) = lim sup
y→x, t ↓ 0

f(y + tν) − f(y)

t
. (A.16)
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Appendix B

Matrosov’s Theorem

This theorem is useful for analyzing nonlinear time-varying systems where the Lyapunov
function candidate derivative is only negative semi-definite. This theorem adds an auxiliary
function, which does not need to be positive definite. However, the time derivative of this
auxiliary function must be “definitely non-zero” (Hahn, 1967, Def. 55.1) on the set where
the Lyapunov function derivative is identically zero.

Theorem B.1 (Matrosov’s Theorem (Hahn, 1967)). Consider the system

ẋ = f(x, t), f : R
n × R → R

n, f is bounded. (B.1)

Let two functions V (x, t) and W (x, t) be given which are continuous on the domain D and
satisfy the following assumptions:

Assumption B.1. V (x, t) is positive definite and decrescent.

Assumption B.2. The derivative V̇ can be bounded from above by a non-positive contin-
uous t-independent function U(x) such that

V̇ (x, t) ≤ U(x) ≤ 0. (B.2)

Assumption B.3. The function W (x, t) is bounded.

Assumption B.4. The derivative Ẇ is “definitely non-zero” on the set

N = {x | U(x) = 0} . (B.3)

Then the equilibrium of Equation (B.1) is uniformly asymptotically stable (UAS) on D.
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Appendix C

Lab setup and pictures

In this appendix a sketch of water tank with the submerged AUVSAT is shown. In addition
two pictures taken from the experiments are also presented, together with explanations.

50cm

67cm

53cm

55cm

Ethernet cable

Figure C.1: Sketch of the water tank where the experiments and testing are taking place.
The Ethernet cable connecting the QNX target with the host, is fasten in a rotating device
above the satellite.

113



C. Lab setup and pictures

(a) The wheel at the left is one of the reaction wheels, whereas the PC/104
CPU card can be seen in the middle. At the bottom of the figure, a 20 cm
ruler is placed to see the ratios.

(b) The picture shows the submerged AUVSAT in the water tank. The seen
cable is the Ethernet cable connecting the QNX target with the laptop host.

Figure C.2: Pictures of AUVSAT.
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Appendix D

Another sliding mode controller
experiment

Another sliding mode experiment has been tested in this appendix. The setup is identical
with the setup in Section 9.2.1, but with another choice of tuning parameters. The reason
for this is to illustrate the consequences of choosing the values of K and P almost the same,
and in this way attempt to control both the attitude and the angular velocity together, at
the same time. This is clearly harder than only controlling the angular velocity and it can
be seen that the angular velocity tracking is undoubtedly poorer.

The choice of tuning parameters can be seen in Table D.1 and the results of the exper-
iment can be seen in Figure D.1.

Gain-symbol Value Denomination

K 0.9 · I 1/s

D 1.3 · 10−3 · I 1/sm

P 1.1 · I 1/sm

Table D.1: Sliding mode controller gains where I is the identity matrix.
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D. Another sliding mode controller experiment

(a) Attitude error between the desired and the measured attitude.

(b) Desired angular velocity compared with measured angular velocity.

Figure D.1: Plots from a second experiments with sliding mode controller.
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Appendix E

Paper sent to the 49th IEEE
Conference on Decision and Control

Based on the work performed in (Jørgensen, 2009) and this thesis, a scientific article has
been submitted to the 49th IEEE Conference on Decision and Control. The conference
will be held Wednesday through Friday, December 15-17, 2010 at the Hilton Atlanta Hotel
in Atlanta, Georgia USA.

The submitted article can be seen in the next pages of this appendix and has been
constructed in cooperation with Professor Jan Tommy Gravdahl.
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Observer Based Sliding Mode Attitude Control:
Theoretical and Experimental Results

Ulrik Jørgensen
Department of Engineering Cybernetics,

Norwegian University of Science and Technology

7491 Trondheim, Norway

Jan Tommy Gravdahl
Department of Engineering Cybernetics,

Norwegian University of Science and Technology

7491 Trondheim, Norway

Abstract—In this paper we present the design of a sliding mode
controller for attitude control of spacecrafts actuated by three
orthogonal reaction wheels. The system with controller is proved
to be asymptotically stable in the sense of Lyapunov. Due to cases
where spacecrafts do not have angular velocity measurements, an
estimator for the generalized velocity is derived and convergence
is proven. The approach is tested on an experimental platform
with a sphere shaped Autonomous Underwater Vehicle SATellite:
AUVSAT, developed at the Norwegian University of Science and
Technology.

I. INTRODUCTION

The contribution of this paper is the design of a output

feedback nonlinear attitude control scheme and its verification

on the sphere shaped underwater satellite, AUVSAT [1], [2].

Several control schemes have been proposed for attitude

control of satellites, ranging from linear control in [3], H2

and H∞ in [4], to the nonlinear control based on vectorial

backstepping in [5].
The attitude of AUVSAT is actuated by means of reaction

wheels. This is a popular and well proven attitude control

method and it has been implemented for both small [6] and

large satellites [7]. A solution with three orthogonally mounted

reaction wheels can be seen in [8], whereas a redundant

solution with four reaction wheels can be seen in [9]. In

addition, [10] presents a comparison of several configurations

based on three or four reaction wheel actuators.
The method proposed for controlling the angular velocity

of the AUVSAT is a sliding mode (SM) controller. The SM

controller is a well known nonlinear controller that have been

applied to many practically systems [11]. It is considered to

be very robust and thereby practical for systems affected by

disturbances [12].
The problem of controlling motion of rigid body systems

has been studied in great detail in the literature of aerospace,

marine systems and robotics. However, most of these control

techniques require knowledge of the actual angular veloc-

ity [13]. Unfortunately, angular velocity measurement is often

omitted due to cost or space restrictions and it is therefore

important to estimate the angular velocity. [14] and [15]

presents similar results for attitude stabilization control when

angular velocity is not present using a velocity filter. Another

solution is to estimate the angular velocity using an extended

Kalman filter [16] or a nonlinear observer [5], [17]. The latter

solution is used in this paper.

The paper is completed with implementing the sliding

mode controller and the observer in the submerged underwater

satellite. The AUVSAT is equipped with a ballast system,

making it naturally buoyant. The naturally buoyant system will

make it possible to emulate a weightless state, similar to the

conditions for a satellite in space. The AUVSAT is therefore

an ideal vehicle for testing and demonstrating the proposed

control method.

II. MODELING

In this section, the model of a satellite actuated by means

reaction wheels will be derived.

A. Kinematics

The attitude kinematics will be described using Euler pa-

rameters, due to the properties as a nonsingular and computa-

tional effective representation. The Euler parameters may be

defined from the angle-axis parameters θ and k as

η � cos(
1

2
θ), ε � k sin(

1

2
θ), (1)

and gathered in one attitude vector

q �
[
η εT

]T
, (2)

which has unit length and is called a unit quaternion.

According to [18], the rotation matrix corresponding to the

quaternion (2) is given by

R(η, ε) = I+ 2ηS(ε) + 2S(ε)2, (3)

where I ∈ R
3×3 is the identity matrix and S( · ) ∈ R

3×3

is the skew-symmetric vector cross product operator defined

such that x1 × x2 = S(x1)x2, ∀ x ∈ R
3×1. Note that the

quaternion representation has an inherent redundancy and the

quaternions q and −q represent the same physical orientation,

but q is rotated 2π relative to −q about an arbitrary axis [19].

Let {b} be a coordinate frame attached to a rigid spacecraft

and {i} an inertial reference frame. Then it can be seen that

the kinematic differential equations can be expressed [20] as

Ṙi
b = −S(ωb

ib)R
i
b, (4)

where ωb
ib is the angular velocity of the body frame {b} rela-

tive the inertial frame {i} decomposed in the body frame, and
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Ri
b is the rotation matrix between the frames. For simplicity,

Ri
b is denoted R throughout the paper.

Using (2)–(4) the kinematic differential equations can then

be expressed as

q̇ =
1

2
E(q)ωb

ib, (5)

where E(q) =

[−εT

T(q)

]
and T(q) = ηI+ S(ε).

B. Kinetics

Assuming that the satellite is a rigid body with the origin

of the body frame placed coinciding with the center of gravity

(CG), we may use Euler’s second axiom to express the

momentum for the wheels and the complete system [21]. The

momentum of the wheels can be written as

Hw = Jwω
b
ib + JwΩ, (6)

where Jw is the inertia matrix of the wheels and Ω =[
Ω1 Ω2 Ω3

]T
is the angular velocity rate of each reaction

wheel. The complete angular momentum of the vehicle is

expressed as

H = Jωb
ib + JwΩ, (7)

where J is the total moment of inertia including the reaction

wheels. Differentiating (6)–(7) with respect to time and using

Euler’s second axiom, one may write the dynamic equation

for the satellite actuated by means of three orthogonal reaction

wheels as [9], [22]

Jsω̇
b
ib =− S(ωb

ib)H− τ b
u + τ b

ex, (8a)

JwΩ̇ =− Jwω̇
b
ib + τ b

u, (8b)

where Js = J−Jw is the inertia matrix for the system without

wheels, τ b
ex is the external torque applied to the system and

τ b
u is the commanded torque to the motors and thereby the

manipulative variable.

III. CONTROL DESIGN

The control objective is to control the angular velocity of the

satellite to a desired time varying angular velocity reference

ωi
d(t). From (5) it can be seen that the corresponding time

varying desired attitude qd(t) can be expressed as

q̇d =
1

2
E(qd(t))R

T (qd(t))ω
i
d(t), (9)

where R(qd) is the rotation matrix from the desired to the

inertial frame.

A. Error dynamics

We may define the angular velocity error as

ωe = ω −RT (η, ε)ωi
d(t), (10)

where the desired angular velocity is given in the inertial frame

and ω = ωb
ib. It is also assumed throughout the paper that

angular velocities without superscript is decomposed in the

body frame.

The relative attitude error is defined using the quaternion

product [19] as

qe � q−1
d ⊗ q =

[
ηe εTe

]T
, (11)

where qd and q are the desired and actual attitude, respec-

tively. q−1
d is called the complex conjugate of qd and it can

be seen that q−1
d =

[
ηd −εTd

]T
. ⊗ denotes the quater-

nion product, which is defined between the two quaternions

q1 =
[
η1 εT1

]T
and q2 =

[
η2 εT2

]T
as

q1 ⊗ q2 =

[
η1 −εT1
ε1 η1I+ S(ε1)

] [
η2
ε2

]
. (12)

It can be seen from (11)–(12) and the inherent redundancy of

the quaternion parameterization that qe =
[±1 0T

]T
when

the attitude of the satellite is aligned with the desired attitude.

0 denotes the 3× 1 zero-vector.

Using (8)–(11) it can be seen that the error dynamics may

be written as

q̇e =
1

2
E(qe)ωe, (13a)

Jsω̇e = JsS(ωe)R
Tωi

d − JsR
T ω̇i

d

− S(ω)H− τu + τ ex,
(13b)

where ṘT = −S(ωe)R
T has been used. A detailed derivation

of (13a) can be seen in [23].

B. Sliding mode controller

In this section a sliding mode controller will be proposed to

control the angular velocity of the satellite. The SM controller

is inspired by [20] and [22], while some modifications are

carried out in order to adapt it to the sphere shaped satellite.

The derivation of the SM controller consists of two parts:

making every trajectory converge to the sliding manifold

(s = 0) and then making sure that the trajectories reach the

desired equilibrium.

Let the sliding variable s ∈ R
3×1 be defined as

s � ωe +Kεe, (14)

where K ∈ R
3×3, K = KT > 0 is a tuning parameter.

If (14) is differentiated with respect to time and pre-

multiplied with Js we get

Jsṡ = JsS(ωe)R
Tωi

d − JsR
T ω̇i

d − S(ω)H

− τu + τ ex + JsKε̇,
(15)

where (8a) and (10) have been used in addition to the fact that

ṘT = −S(ωe)R
T .

Choose the control variable τu to cancel all the nonlinear

terms in (15) and include proportional and derivative action

by adding the terms Dsgn(s) and Ps, where D, P ∈ R
3×3

are positive definite. Note that ε̇ can be calculated from the

relationship in (13a), avoiding time differentiation of ε, and

sgn(s) is the sign function defined in (16) performed on each

element in s.

sgn(x) =

{
+1 if x ≥ 0,

−1 if x < 0.
(16)
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Proposition 1. The error dynamics (13), with the sliding mode
controller given by

τu = JsS(ωe)R
Tωi

d − JsR
T ω̇i

d − S(ω)H+ τ ex

+ JsKε̇+ JsDsgn(s) + JsPs
(17)

have an asymptotically stable equilibrium in (ωe,qe) =

(0,1q) where 1q =
[±1 0T

]T
.

Proof: Consider the radially unbounded Lyapunov func-

tion candidate:

V1 =
1

2
sT s > 0, ∀ s �= 0, (18)

and differentiating it with respect to time along the trajectory

we get

V̇1 = −sTPs− sTDsgn(s) < 0, ∀ s �= 0. (19)

According to [24], this proves that the non-smooth s-system is

AS, thus every trajectory will converge to the sliding manifold.

In fact, one can guaranty finite time convergence [25], since

∂V1

∂t
≤ −ϑ

√
V1, (20)

where ϑ =
√
2λmin(D) > 0 and λmin(D) is the smallest

eigenvalue of D. From (20), we get

2
√
V1 ≤ V1(s(0))− ϑt. (21)

This shows that the system will converge to the sliding

manifold with the finite convergence time Tc, upper bounded

according to

Tc ≤ V1(s(0))

ϑ
. (22)

Given that we are in sliding mode, s = 0, we may write

ωe = −Kεe. (23)

We then introduce the second Lyapunov function candidate:

V2 = 1− ηe, (24)

which is a positive definite function since −1 ≤ ηe ≤ 1. The

time derivative along the solution then becomes

V̇2 = −η̇e =
1

2
εTe ωe = −1

2
εTe Kεe (25a)

≤ −1

2
λmin(K)εTe εe = −1

2
λmin(K)

(
1− η2e

)
, (25b)

where λmin(K) > 0 is the smallest eigenvalue of K and (13a)

and (23) have been used, in addition to the unit-length property

of qe.

Since V2 is positive definite, and V̇2 is negative definite,

thus, (1 − η2e) → 0, as times goes to infinity, and ηe → ±1.

Because η2e + εTe εe = 1, also εe → 0 and the error attitude

qe → 1q . It can also be noticed that ωe will converge to 0
since ωe = −Kεe in sliding mode, and when εe → 0 so will

ωe. We can then conclude that the complete system, with the

given controller, is asymptotically stable.

IV. OBSERVER DESIGN

Assuming that only attitude of the vehicle and speed of the

wheels are available for measurements, an observer is needed

to estimate the angular velocity of the satellite. This can be

done in different ways, including an extended Kalman filter

and a nonlinear observer. In this paper the latter alternative is

used and the observer scheme is inspired by [5] and [17].

A. Observer dynamic equations

As the calculations are less involved in the inertial frame,

we express the momentum dynamics as

Σ :

⎧⎪⎨
⎪⎩
Ḣi = Ri

bτ
b
ex,

q̇ = 1
2E(q)

[(
Ri

bJ
)−1

Hi − J−1JwΩ
]

︸ ︷︷ ︸
ω

. (26)

We then define the observer system Σ̂ as the copy of the

dynamics with correction terms g1(q̃) and g2(q̃) as:

Σ̂ :

⎧⎨
⎩

˙̂
Hi = Ri

b

[
τ b
ex + g1

]
˙̂q = 1

2E(q̂)
[(
Ri

bJ
)−1

Ĥi − J−1JwΩ+ g2

] (27)

where Ĥi and q̂ are the estimated momentum and attitude,

respectively. The correction terms g1(q̃) and g2(q̃) are to be

determined later.

B. Error definition

The error variables between the real and estimated values

for attitude, momentum and angular velocity, respectively, are

defined as:

q̃ � q−1 ⊗ q̂, (28a)

H̃i � Ĥi −Hi, (28b)

ω̃b
ib � ω̂b

ib − ωb
ib. (28c)

The error between the estimated system Σ̂ and the real system

Σ is denoted Σ̃ and can be derived by differentiating (28) with

respect to time, resulting in

Σ̃ :

⎧⎨
⎩

˙̃Hi = Ri
bg1(q̃),

˙̃q = 1
2E(q̃)

[(
Ri

bJ
)−1

H̃i + g2(q̃)
]
.

(29)

Notice that ω̃b
ib =

(
Ri

bJ
)−1

H̃i, as can be seen using (26)–

(28).

Proposition 2. The observer Σ̂ defined in (27) with

g1(q̃) = −kpsgn(η̃)J
−1ε̃, (30a)

g2(q̃) = −kvsgn(η̃)ε̃, (30b)

and kp, kv > 0, will converge to the actual system Σ, shown
in (26).

Proof: To prove Proposition 2, we utilize [24, Th. 3.1].

This theorem proves that the ordinary smooth Lyapunov

stability theory can be used for a class of non-smooth Lipschitz

continuous Lyapunov functions and absolutely continuous

state trajectories.
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Consider the non-smooth Lyapunov function

Vo =
1

2

(
H̃i

)T

H̃i + 2kp(1− |η̃|), (31)

The time derivative of Vo along trajectories then becomes:

V̇o =
(
H̃i

)T

Ri
bg1(q̃) + kpsgn(η̃)ε̃

T
[
ω̃b

ib + g2(q̃)
]

(32a)

= −kvkp (sgn(η̃))
2
ε̃T ε̃ (32b)

≤ 0 ∀ ε̃e �= 0. (32c)

where it is assumed that J is symmetric [26], meaning JT =
J. Clearly, V̇o is negative semidefinite, and one can thereby

conclude that the observer is stable. Vo will also continue to

decrease as long as the actual attitude differ from the estimated

attitude, but when ε̃e = 0, Vo vanishes. It is therefore essential

to evaluate if the system can get stuck in these points with

H̃i �= 0.

Assume that ε̃e = 0 and H̃i �= 0. Then:

ε̇e = ±1

2
(Ri

bJ)
−1H̃i �= 0 ∀ H̃i �= 0, (33)

since (Ri
bJ)

−1 is never equal the zero-matrix. Therefore,

the system will continue to evolve and converge towards

(εe, H̃
i) = (0,0). Thus, the observer Σ̂ will converge towards

the actual system Σ as time goes to infinity.

This proof is also presented in [27] for rigid body systems

actuated with external torques.

V. EXPERIMENTS

This section contains simulations and results from the

experiments with AUVSAT. The sphere shaped satellite is

equipped with small-size and low-cost IMU sensor for attitude

and angular velocity measurements, and a PC/104 embedded

computer board with 0.5 GHz Pentium processor, running

QNX Neutrino OS. In addition to the satellite, a host computer

is provided for a graphical communication interface, and Eth-

ernet LAN is used between the host and the QNX target. The

host is running Matlab Real-time workshop in combination

with Simulink which enables a rapid implementation of control

laws, in addition to graphically represent measurements and

control signals in real-time. Pictures of AUVSAT are showed

in Figure 4.

The first part of the chapter presents the results of the sliding

mode controller. To avoid noisy signals to the controller, the

measurements of the angular velocity is filtered with a standard

first order filter. In the second part we implement the nonlinear

observer. The estimated angular velocity from this observer is

used by the same sliding mode controller.

The control objective is to track an angular velocity ref-

erence signal ωi
d(t) given in the inertial coordinate frame.

The reference signal is stated in (34) and is a sequence

of a square signal with a period of 50 s, and time varying

sinusoidal reference signal. In this way one can truly validate

the performance of the controller. The experiment was sampled

at 50 Hz for about 400 s with the gains shown in Table I and

the parameters used for the satellite in Table II. The plots from

the case without observer can be seen in Figure 2, whereas

the results with angular velocity estimation can be seen in

Figure 3. Note that desired trajectory is filtered by a second-

order filter inside the “Reference”-block in Figure 1 and qd(t)
is calculated using (9).

ωi
d(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−0.2square

(
1
50 , t

)
20 s ≤ t ≤ 145 s

−0.3 sin
(
2π
30 (t+ 5)

)
175 s ≤ t ≤ 280 s

−0.4 sin
(
2π
30 (t+ 5)

)
280 s ≤ t ≤ 370 s

0 Else

(34)

Table I
SLIDING MODE CONTROLLER AND OBSERVER GAINS.

Parameter Value

Controller gains: K 2.0 · 10−3I 1/s

D 1.0 · 10−3I 1/sm

P* 1.2I 1/sm

Observer gains: kp 17.0 kg2m4/s2

kv 12.0 1/s
* When observer is implemented: P = 0.5 · I 1/sm

Table II
AUVSAT PARAMETERS

Parameter Value

Inertia matrix J

⎛
⎜⎝

0.776 −0.004 0.009

−0.004 0.848 −0.000

0.009 −0.000 0.945

⎞
⎟⎠ kgm2

Wheel inertia matrix Jw 0.0142 · I kgm2

Max wheel torque 0.358 Nm

Max wheel speed 419 rad/s

Satellite mass 42.1 kg

Satellite diameter 42.8 cm

VI. DISCUSSION

A. Experiments without observer

Figure 2 shows the behavior of the system with the sliding

mode controller. It can be seen that the system tracks the

desired angular velocity quite good. There are almost no

uncontrolled oscillations, as we have ω available for feed-

back. However, small adjustments can be made to make the

performance even better.

B. Experiments with observer

Figure 3(a) shows the comparison between the estimated

and the real measurements. Plot number three shows the

estimation of the angular velocity about the z-axis. It can be

seen that the observer works satisfactorily when the sinusoidal

signal is tracked. However, the observer seems to have diffi-

culties with estimation of the maximum and minimum angular

velocity of the sinusoidal signal. When the system is tracking

the constant reference signal, stationary deviation, oscillations

and drift can be seen. It thereby looks like the observer perform

satisfactorily when there is enough excitation in the system.

Some improvement may be achieved by finding better gains,
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but other observer strategies might also an alternative, e.g.

extended Kalman filter.

In Figure 3(b) the overall performance of the system is

shown. The reference angular velocity is compared with a

filtered angular velocity measurement. (The filtered signal is

selected as the comparison to facilitate the readability.) The be-

havior of the system is acceptable when the system is tracking

the sinusoidal reference signal. However, the performance is

clearly not as good as without the observer.

We can also see that the low performance of the observer

in connection with the square signal still is present.

VII. CONCLUSION

In this paper the topic of controlling the attitude of a spher-

ical spacecraft actuated by three orthogonally reaction wheels

has been studied. Using methods from nonlinear system theory

a robust nonlinear sliding mode controller has been designed

and implemented on the AUVSAT to control the attitude.

When angular velocity measurements are not present in the

spacecraft, a nonlinear observer is derived to estimate the

velocity.

The various systems were tested in a lab setup where the

AUVSAT is submerged in water and thereby emulating a

gravity free environment. Experiments were carried out to

evaluate the performance of the controller, observer and the

overall system. In each experiment the system is set to track a

sequence of a square-shaped signal, in addition to a sinusoidal

time varying angular velocity reference signal. The results

show that the sliding mode controller works satisfactorily

throughout the experiment, whereas the performance of the

overall system with observer and controller is lower when

tracking the squared reference signal. Nevertheless, all aspect

considered; the performance of the complete system is satis-

factorily.

Reference

Filter

Attitude
controller

Underwater

Satellite

Tu

ωb
ib

ωb
f,ib

q

Ω

ωi
d

qd

(a)

Reference

Observer

controller
Attitude

Underwater

Satellite
τu

ωb
ib

ω̂b
ib

q

Ω

ωi
d

qd

(b)

Figure 1. Block diagram of system where (a) filters the angular velocity
measurement, whereas (b) estimates the angular velocity.

Figure 2. Experiments without observer. Comparing the angular velocity
against the desired generalized velocity. All signals in the inertial frame.

(a)

(b)

Figure 3. Plots from experiments with observer. (a) compares measured and
estimated velocity about x, y and z axis, whereas (b) compares the reference
against the filtered angular velocity about the z-axis.
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(a)

(b)

Figure 4. AUVSAT. (a) shows when the top sphere is detached to expose the
inner construction and (b) shows the submerged satellite during experiments.
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