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Problem Description
The motivation for this thesis is the possibility to divide the task of speech recognition between a
computer and a deaf person. The computer is able to do the  signal processing, feature-detection
and analyzation, but the interpretation of the output, which is difficult for a computer, can be done
by the human after sufficient training.

The ambition of the thesis is to explore the concept, and investigate if a divide as the one
mentioned above is possible.

*A literature study on automatic speech recognition by computers, with especial care given to
signal processing, feature-detection and algorithms will be conducted.

*A set of features must be decided, which can be detected by the computer and gives a foundation
to recognize the speech.

*Experiments can be conducted on existing programs, application programmers interface or
toolkits to evaluate the learning benefits and possibility as a starting point for an application.
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Abstract

Several feature extraction techniques, algorithms and toolkits are re-

searched to investigate how speech recognition is performed.

Spectrograms were found to be the simplest feature extraction tech-

niques for visual representation of speech, and are explored and ex-

perimented with to see how phonemes are recognized.

Hidden Markov models were found to be the best algorithms used

for speech recognition. Hidden Markov model toolkit and Center for

Spoken Language Understanding Toolkit, which are based on hidden

Markov models, were not found to be suitable for the intentions of

the thesis.
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Chapter 1

Introduction

1.1 Overview

A speech recognition system uses material from a lot of various disciplines,

e.g., statistical pattern recognition, communication theory, signal processing

and mathematics.

The main problem with recognizing speech is the variable nature of speak-

ers. When a word is pronounced even by the same speaker two times, the

speech pattern is never the same. Speech is also di�erent for every speaker;

women usually speak with a higher frequency than males. A word can be

uttered fast, slow or with variable speed and noise from other sources can

be heard simultaneously. There is also a problem with dialects and non

native speakers whom pronunciation di�ers severely.

These problems are especially clear when a computer is used for speech

recognition. Most automatic speech recognition systems are speaker depen-

dent, where a program learns how the target speaks.
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6 CHAPTER 1. INTRODUCTION

1.2 Problem Description

The motivation for this thesis is the possibility to divide the task of speech

recognition between a computer and a deaf person. The computer is able

to do the signal processing, feature-detection and analyzation, but the in-

terpretation of the output, which is di�cult for a computer, can be done by

the human after su�cient training.

The ambition of the thesis is to explore the concept, and investigate if a

divide as the one mentioned above is possible.

• A literature study on automatic speech recognition by computers,

with especial care given to signal processing, feature-detection and

algorithms will be conducted.

• A set of features must be decided, which can be detected by the com-

puter and gives a foundation to recognize the speech.

• Experiments can be conducted on existing programs, application pro-

grammers interface or toolkits to evaluate the learning bene�ts and

possibility as a starting point for an application.

1.3 Background

A course about speech recognition has never been a taught at the Depart-

ment of Engineering Cybernetics. All the algorithms, methods and pro-

grams explored in this thesis was not known prior to writing, but some

knowledge about signal processing, probability, statistic, advanced calculus

and programming helped to understand the algorithms and toolkits.

1.4 Disposition

Chapter 2 will look at how human speech is produced, and the basic build-

ing blocks of the English language with emphasis on how phonemes are
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produced.

Chapter 3 is a literature study on how the various ways speech can be pro-

cessed on the computer. Existing methods for feature extraction is explored,

and three algorithms used for automatic speech recognition.

Chapter 4 explores various programs and toolkits that can be used to learn

or use methods discussed in Chapter 3. Personal experience with the pro-

grams and toolkits are given to review how well they are suited for the

purpose of this thesis.

Chapter 5 explores how to understand spectrograms. The di�erent spectral

clues and example are given, as are the experience with spectrograms and

problems encountered while trying to understand them.

Chapter 6 is a discussion looking at the various feature extractions and

algorithms explored in Chapter 3. It also discusses future work based on

this thesis.





Chapter 2

The Human Speech Process

2.1 How Speech is Produced

An average speaker speaks two to three words per second, which is equiv-

alent to ten to twelve phonemes [8]. The vocabulary consists of 50.000 to

100.000 words.

The mechanics of human speech is given in Figure 2.1. One technical term

not present in the �gure is the palate, which is the bone and skin separating

the mouth cavity and nasal cavity.

A better representation of how the speech mechanism works is given in

Figure 2.2.

Speech is produced in the following way [1, 9]:

1. Air is forced from the lungs.

2. If the vocal chords are tense, they vibrate and voiced speech is pro-

duced. When the vocal chords are relaxed, there is still a constriction

causing the air to become turbulent producing unvoiced speech.

9



10 CHAPTER 2. THE HUMAN SPEECH PROCESS

Figure 2.1: The human vocal mechanism, retrieved from [1]

3. Quasi-periodic pulses are modulated in frequency by the pharynx, i.e,

throat cavity, mouth cavity and possibly the nasal cavity.

4. Based on the di�erent position of the jaw, tongue, lips and mouth

di�erent sounds are produced.

2.2 Languages

A language consists of linguistic units called phonemes, where changing a

phoneme in a word will give it another meaning [9]. The changes can be

subtle, and a may take a skilled person in the language to recognize. In

some Chinese dialects, the pitch is very important to distinguish words.

But in English, raised pitch can be used at the end of sentences to indicate

a question.
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Figure 2.2: Representation of the complete physiological mechanism of
speech, retrieved from [1]

2.2.1 Syllables

There are over 10000 di�erent syllables in the English language, but a native

speaker uses only 500 of these 80 percent of the time when speaking[8].

A syllable structure is built up of four parts, where two are obligatory [10].

The structure can be seen in Figure 2.3

The rhyme and nucleus, which is the central segment of the syllable, is

obligatory. The onset and coda are starting and ending segments of the

syllable, respectively.
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onset rhyme

nucleus coda

Figure 2.3: The structure of a syllable

2.2.2 Phonetics

The information and terminology regarding phonetics is mainly gathered

from �Fundamentals of Speech Recognition� [1] and �Speech Analysis Syn-

thesis and Perception� [9]. Lecture notes from the course �Automatic Speech

Recognition� at MIT taught in spring 2003 [11] and the book: �An Intro-

duction to English Phonology� [12] are also used.

A phoneme is a distinct speech sound. Words consist of phonemes which

describe accurately how the word is pronounced.

A complete list of phonemes is given in Appendix A, but a classi�cation of

di�erent phonemes will be given here:

The following list shows a the de�nition of where the di�erent sounds are

generated.
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De�nition Place where sound is made

Labio-dental The upper lips and lower lip

Dental Tongue behind the teeth

Alveolar Tongue to the gum ridge

Palatal Tongue against the hard palate

Velar Tongue against the soft palate

Glottal Vocal chords constricted and �xed

Labial Constricted by the lips

Vowels

There are three di�erent types of vowels depending on where the tongue is

position when the sound is uttered; front, mid and back. The vocal tract

has a stable position when a vowel is pronounced.

Constriction in mouth Tongue position

front central back

High /i/ eve, /I/ It /Ç/ bird /u/ boot, /Ú/ foot

Medium /e/ hate, /E/ met /2/ up /o/ obey, /O/ all

Low /æ/ at /a/ father

The tongue position and constriction can be experienced by pronouncing

the words succeeding each phoneme.

Diphthongs

A diphthong is a vowel which transforms to another vowel before the pro-

nunciation is complete. /aI/ (my), /aÚ/ (now), /ei/ (day), /oÚ/ (no), /Oi/
(boy) and /iÚ/ (few) are the diphthongs in the English language.
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Approximants

The approximants are very vowel and fricative like. They are split into

two groups: glides and semivowels. The glides are dynamic sounds which

precede a vowel. The semivowels cause more constriction in the oral channel

than vowels.

Place of articulation Glides Semivowels

Palatal /w/ we /r/ read

Labial /j/ you

Alveolar /l/ let

Nasal Consonants

There is a total closure is present in the front of the mouth, either by the

lips, the tongue and the gum ridge, or the tongue and the palate. The velum

is opened, and the nasal tract is the route out for the air. This cause the

nostrils to vibrate when pronouncing a nasal consonant.

Place of articulation

Labial /m/ me

Alveolar /n/ no

Palatal/velar /N/ sing

Fricatives

A fricative can be recognized by the hissing sound made by friction when air

leaves the mouth. There are two types of fricatives: voiced and unvoiced.

The di�erence between voiced and unvoiced fricatives is the vibration in the

vocal cords when a voiced fricative is pronounced.
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Place of articulation Voiced Unvoiced

Labio− dental /v/ vote /f/ for

Dental /D/ then /T/ thin

Alveolar /z/ zoo /s/ see

Palatal /Z/ azure /S/ she

Glottal /h/ he

Stops

A stop is produced by stopping the air�ow in the mouth. Depending on

the stop, it might be behind the lips, behind the teeth or in the back of the

mouth. For voiced, a small vibration can be seen in the waveform before

the outlet. The unvoiced have a complete lack of signal during the build up

for the outlet.

Place of articulation Voiced Unvoiced

Labial /b/ be /p/ pay

Alveolar /d/ day /t/ to

Paletal/velar /g/ go /k/ key

A�ricates

A�ricates are the combination of a stop and fricative. The two used in

English are: /tS/ (chew) and /dZ/ (judge).

2.3 Speechreading

Visual image of the speaker improves speech recognition [13]. Speechreading

give a high association between recognizing isolated words and words in

sentences, but low to moderate association between phoneme and word

recognition.
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The visual image of the talker in�uences how the word is interpreted. The

McGurk e�ect illustrates this. If a syllable /bi/ is heard, while a video of

a talker saying the syllable /gi/ is seen, the syllable is perceived as /di/.
This e�ect is also present when there is a male voice with a female face in

the video, or if the sound and video are not synchronous.



Chapter 3

Human Speech on the

Computer

3.1 Speech Waveform

When a word is spoken, it creates a variation in the air pressure [14]. The

human ear is capable of noticing a variation of 0.00002 Pascal. A computer

needs to convert an analog signal into a digital to be able to process them.

This conversion takes place in three steps [4].

1. Sampling: The signal is made discrete by taking samples at a time

interval. The Nyquist rate is the sampling rate which conserves the

higher frequencies given by:

FN = 2 ∗ FMAX (3.1)

Where FN is the sampling rate, and FMAX is the maximum frequency

it is possible to distinguish.

2. Quantization: The value which represents the signal by a digital value.

It is chosen from a �nite set of possible values.

17
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3. Coding: Each discrete value is represented by a b-bit binary sequence.

The numbers of bits are the standard for the computer, 8, 16 or 32.

Most of the frequencies for regular speech fall below 3000Hz for , which is

why the telephone range can be: 200−3400Hz[15], and still be understand-

able.

It is possible to classify several characteristics of speech from the waveform

[1]. Silence is where no sound is recorded. There are natural silences while

talking, e.g., commas and punctuation. There are also natural silences

before speci�c phonemes, such as stops, where the pressure is building in

the mouth. Voiced, where the vocal chords are vibrating, and unvoiced,

where they are not vibrating is also possible to determine.

3.2 Feature Extraction from Speech

After speech is recorded, there are a lot of possible ways to extract relevant

information from it. This section will look at di�erent methods which is

used in later algorithms and methods.

3.2.1 Short-Time Fourier Transform

A problem with the normal Fourier transform is that it does not show how

the frequency changes over time [16]. Short time Fourier transform cuts the

signal up in windows and computes the Fourier transform, usually with the

fast Fourier transform, for each window.

Let x(n) be a signal, and Xn(ejωk) is the short-time Fourier transform of

x(n) evaluated at time n and frequency ωk. Given a window function, w(n),

the short-time Fourier transform can be de�ned as [17]:

Xn(ejωk) =
∞∑

m=−∞

w(n−m)s(m)e−jωkm (3.2)
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The size of the window, de�ned as L, in�uences the function in the following

way [1]:

• Large L relative to the signal periodicity gives good frequency resolu-

tion but gives a bad time resolution.

• Small L relative to the signal gives poor frequency resolution but gives

a good time resolution.

To improve the result of the short-time Fourier transform, the windows can

be overlapping [16].

For more information about calculating the reverse of the short-time Fourier

transform and sampling rate in correspondence to the windows, �A Uni�ed

Approach to Short-Time Fourier Analysis and Synthesis� [17] should be

read.

3.2.2 Window functions

To create a spectrogram, di�erent window shapes can be used. Matlab uses

Hamming window by default [18].

Praat[2] gives the choices of:

• Gaussian, Square (none, rectangular)

• Hamming (raised sine-squared)

• Bartlett (triangular)

• Welch (parabolic)

• Hanning (sine-squared)

and argues that the Gaussian window is superior because it doesn't show

sidelobes in the spectrogram. But the computation for Gaussian window is

twice as expensive as the other windows.
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Four window functions will be shown here, rectangular for reference, Ham-

ming and Gaussian because those are the best suited for creating spec-

trograms and triangular window because it is used for computing Mel-

frequency cepstral coe�cients. All �gures are retrieved from Wikipedia

after the Matlab code to create them was checked for correctness. The

de�nition of the windows is retrieved from [19].

Rectangular Window

A Rectangular window is given by the formula.

w(n) = 1 (3.3)

A problem with the rectangular window is that it creates discontinuities of

the signal at the start and end of the window [20]. This is caused because

the math assumes the signal to be periodic.

Figure 3.1: The window function and spectral leakage for the rectangular
window.

Hamming Window

A Hamming window is de�ned by:
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w(n) = 0.54− 0.46 cos(
2πn

N − 1
), 0 ≤ n ≤ N − 1 (3.4)

Figure 3.2: The window function and spectral leakage for the Hamming
window.

Gaussian Window

The Gaussian window is de�ned by:

w(n) = exp(−1

2
(α

π

N/2
)2) (3.5)

Where −N
2
≤ n ≤ N

2
, 2.5 ≤ α and window length L = N + 1. α is the

reciprocal of the standard deviation.

Triangular Window

The triangular window is de�ned by:

w(n) =

{
n
N
2

, n = 0, 1, · · · , N
2

w(N − n), n = N
2
, · · · , N − 1

(3.6)
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Figure 3.3: The window function and spectral leakage for the Gaussian
window.

Figure 3.4: The window function and spectral leakage for the triangular
window.

3.2.3 Spectrograms

A spectrogram is de�ned as an intensity plot of the short time Fourier

transform magnitude [21].

The spectrogram is calculated by:

spectrogram(x, t) =| STFT (x, t) |2 (3.7)

Where the windows in the short-time Fourier transform is allowed to overlap
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by 25− 50 percent.

An example of a spectrogram can be seen in Figure 3.5.

Figure 3.5: Spectrogram of the word �spectrogram�, created with Praat [2]

An experienced spectrogram reader is able to recognize which words were

uttered by looking at a spectrogram [14]. Understanding speech from spec-

trograms will be closer examined in Chapter 5.

3.2.4 Frequency Formants

A formant is the resonant frequency of the spoken phoneme. Identifying

some phonemes based on the formant is possible for a trained individual.

Vowels have three formants, F1, F2 and F3. Each of these formant occur at

1000Hz intervals, i.e. F1 at 0-1000Hz, F2 at 1000-2000Hz [22].

An example of a formants in a spectrogram can be seen in Figure 3.6.

One problem with formants are that every talker have a variance from the

mean values G.E. Peterson and H.L. Barney recorded 76 speakers and made

a graph of the variances in formants by the speakers; shown in Figure 3.7.

The vowels are mostly separate, and can be distinguished. But some over-

lap, e.g., /Ú/ and /Ç/. Semivowels adapt to the surrounding phonemes, so

their formants vary depending on the context.
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Figure 3.6: Spectrogram with formants of the word �spectrogram�, created
with Praat [2]

Figure 3.7: Di�erence in formant for di�erent talkers, retrieved from [3]
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3.2.5 Linear Predictive Coding

Linear predictive coding is a low bitrate encoding based on a speech coding

system [4]. Since speech signals change rapidly, the model is used for very

short segments, i.e., 10 − 20ms. To smooth out the discontinuities from

frame to frame, the model parameters measured from the previous segments

The idea is to model the vocal tract as a linear all-pole �lter, as shown in

Figure 3.8. The unvoiced and voiced speech is generated by a random noise

generator and periodic impulse train with a period equal to the desired

pitch, respectively.

The transfer function for the �lter is given by:

H(z) =
G

1−
p∑

k=1

akz
−k

(3.8)

Where ak is a predictor coe�cient for each pole, and G is a gain factor.

The model improves the more poles which are used, but the 10 poles is an

acceptable number to use [1, 23].

Given an input signal x(n), an estimate x̂(n) can be calculated by linearly

combining the previous signals:

x̂(n) =

p∑
k=1

akx(n− k) (3.9)

The error between the observed value and estimate can be calculated as:

e(n) = x(n)−
p∑

k=1

akx(n− k) (3.10)

ak can be solved from a set of linear equations by using the least-square

criterion.
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White noise
generator

Periodic
impulse
generator

All-pole filter

Voiced and
unvoiced switch Speech signal

Figure 3.8: Block diagram of the vocal tract model, inspired by [4]

p∑
k=1

akrxx(l − k) = rxx(l) (3.11)

Where l = 1, 2, . . . , p and rxx(l) =
∞∑

n=−∞

x(n)x(n + l) is the time average

autocorrelation of the sequence x(n).

The gain G can be calculated by:

G2 = rxx(0)−
p∑

k=1

akrxx(k) (3.12)

More information on linear prediction can be read about in �Linear Pre-

diction: A Tutorial Review� [23]. A linear predictive coding processor for

speech recognition is explained in �Fundamentals of Speech Recognition�

[1].
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3.2.6 Perceptual Linear Predictive

The principle behind perceptual linear predictive is the same as for linear

prediction, to approximate the auditory spectrum of speech by an all-pole

model. Perceptual linear predictive analysis is more consistent with human

hearing than linear predictive coding [5]. The consistency is achieved by

warping the frequency into the Bark frequency scale. The Bark frequency

scale corresponds to the �rst 24 critical bands of hearing, i.e., the frequencies

with the most information related to hearing.

The idea behind perceptual linear predictive analysis can be seen in Figure

3.9.

Critical
band
analysis

Equal
loadness
pre-
emphasis

Intensity-
loudness
conversion

Inverse
discrete
Fourier
transform

Solution for
autoregressive
coefficients

Speech

All-pole model

Figure 3.9: Block diagram of perceptual linear predictive speech analysis,
inspired by [5]

More info about perceptual linear predictive can be read about in [5]. The

paper proves a 5th order pole model to be the most consistent with the

human sensitivity to the frequency changes of the �rst three formants. The

advantage of perceptual linear predictive analysis for speaker independent

automatic speech recognition is also demonstrated.
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3.2.7 Mel-Frequency Cepstral Coe�cients

The Mel scale was devised through human perception experiments to adjust

the frequency scale so it was better suited for human hearing [24].

Mel(f) is a logarithmic scale of the of the normal frequency scale. It has

linear properties for frequencies under 1000Hz, and logarithmic above, and

is calculated by[25]:

Mel(f) = 2595log10(1 +
f

700
) (3.13)

The Mel-Frequency cepstral coe�cients are computed from fast Fourier

transform power coe�cients �ltered by triangular windows. Triangular win-

dows were explored in Section 3.2.2.

An example of Mel-frequency cepstral coe�cients can be seen in Figure

3.10, but extracting information from a visual image of the coe�cients are

not of much use.

3.2.8 Cepstrum

Cepstrum is a Fourier analysis of a logarithmic amplitude spectrum of a

waveform [26]. The cepstrum have peaks corresponding to the spacing be-

tween the harmonics of the signal. It is possible to calculate the formant

frequencies by using the cepstrum and linear predictive coding.

The conversion from a speech signal to cepstrum can be seen in Figure 3.11.

3.3 Dynamic Time Warping

Dynamic time warping is a dynamic programming algorithm which use in-

duction to compute the similarity of two sequences [20]. The algorithm

compares an input sequence to several references, i.e., stored words, to �nd
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Figure 3.10: Mel-frequency cepstral coe�cients of the word �Buy�, created
with Praat [2]

Framing Windowing FFT Mel-freq.
Conversion

MFCC

Speech
signal Spectrum

Mel
spectrum Cepstrum

Figure 3.11: Block diagram for speech signal to cepstrum, inspired by [6]
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the best match. For speech recognition, the sequence consists of features

extracted from equally spaced frames of a word.

One problem with using dynamic time warping for speech recognition is the

variable speaking rate, even when it is the same person who utters the word

[27].

3.3.1 An Algorithm for Dynamic Time Warping

Speech is not proportional to the duration of the utterance, so it is not

advisable to take a linear time normalization of the sequences [1].

The two speech pattern X and Y can be represented by two sequences;

(x1, x2, . . . xTx) and (y1, y2, . . . yTy), where ix and iy are used to denote time

indices. The idea is to minimize the distortion between the sequences, where

the distortion is de�ned as:

d(ix, iy) (3.14)

To normalize the sequences, two warping functions:

ix = φx(k), iy = φy(k) (3.15)

where k = 1, 2, . . . , T , and T is a common time for both sequences, are

introduced.

By introducing a nonnegative weighting coe�cient: m(k) and a normaliz-

ing factor: Mφ =
T∑
k=1

m(k), a global pattern dissimilarity measure can be

de�ned:

dφ(X, Y ) =
T∑
k=1

d(φx(k), φy(k))m(k)

Mφ

(3.16)
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To �nd the best path, i.e., the one with the least dissimilarity, the minimum

of all possible paths can be found:

d(X, Y ) , min
φ
dφ(X, Y ) (3.17)

In Figure 3.12, the basic idea of how dynamic time warping is shown. The

optimal alignment path is drawn where the distortion between ix and iy is

minimum.

(1,1)

(Tx,Ty)
(1,Ty)

(Tx,1)

i

i

y

x

Figure 3.12: Example of dynamic time warping

Warping Constraints

There are several constraints that φ must satisfy.

1. Endpoints constraints: Even if the utterances have di�erent lengths,

the endpoints will be the same.

Start:

φx(1) = 1, φy(1) = 1 (3.18)

End:

φx(T ) = Tx, φy(T ) = Ty (3.19)
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2. Monotonicity: The path, as shown in Figure 3.12, can not turn back

on itself, so the path must be monotonically increasing:

φx(k) ≤ φx(k + 1), φy(k) ≤ φy(k + 1) (3.20)

3. Local continuity: To ensure that no important information, e.g.,

a phoneme, is ignored, a local continuity constraint is used. There

are several di�erent types of local constraints where the type used

determines the alignment �exibility [11]. The one used by [27] and

recommended by [1] is:

φx(k + 1)− φx(k) ≤ 1, φy(k + 1)− φy(k) ≤ 1 (3.21)

4. Global path constraints: These constraints determine which re-

gions the optimal warping path can traverse. A constraint given by

[27] is:

| φx(k)− φy(k) |≤ r (3.22)

This constraint ensures that the time di�erence between the sequences

does not wander too far from each other.

Another constraint shown in [11] is a slope of 1
2
and 2 from the points

(1, 1) and (Tx, Ty) which reduces the legal range of the global path to

a parallelogram.

5. Slope constraint: To ensure the path does not create an unrealistic

correspondence between the two sequences, a slope constraint is uti-

lized. A way to realize this constraint is to only allow the path to take

m steps horizontally before it takes n steps in the vertical direction.

Computing the Total Distortion

The algorithm for �nding the best path from (1, 1) to (Tx, Ty) is given by:

De�ning a weighted accumulated distortion between point (x′, y′) and (x, y):

ζ((x′, y′), (x, y)) =
L∑
l

d(xl, yl)m(l) (3.23)
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Where l is a legal path, satisfying the constraints, from (x′, y′) to (x, y) from

1 to L.

Initialization:

D(1, 1) = d(1, 1)m(1) (3.24)

Recursion:

D(x, y) = min
(x′,y′)

[D(x′, y′) + ζ((x′, y′), (x, y))] (3.25)

Computing the total distortion for the optimal path:

D(X, Y ) =
D(Tx, Ty)

Mφ

(3.26)

3.4 Hidden Markov Models

Most of the material gathered here are from �Fundamentals of Speech Recog-

nition� [1] and �A Tutorial on Hidden Markov Models and Selected Appli-

cations in Speech Recognition� [28]. The article should be read to get a

better understanding of hidden Markov models. The lectures of �Center for

Spoken Language Understanding� [20] and �Automatic Speech Recognition�

at MIT[11] is also used.

3.4.1 Markov Models

A Markov model can be described as a �nite state machine with transitions

between states at discrete time events. The system can only be in one state

at the time, and the transition between states are expressed as possibility,

i.e., 0 ≤ p ≤ 1.

The terminology used here is based on [28].
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• N is the number of states in the Markov chain, in Figure 3.13 N = 4.

• S is the di�erent states. A number 1, 2, . . . , N is used on each state.

• Time instants associated with state change is denoted t = 1, 2, · · · .

• qt is the state at time instant t.

• aij is the transitional probability from state i → j. The states must

also be 1 ≤ i, j ≤ N .

• aij ≥ 0

•
N∑
j=1

aij = 1.

• πi = P [q1 = Si], 1 ≤ i ≤ N is the initial state probabilities.

• O is used for observations of the model, e.g., O = {S1, S2, S2, S3} is a
possible observation in Figure 3.13.

3.4.2 Example of Markov Chain

To understand how a hidden Markov model works, it is essential to have a

grasp of how a Markov chain works.

Using O = {S1, S2, S2, S3}, where the �rst observation π1 = S1,and the

state transition probabilities are:

A = {aij} =


0 0.5 0.5 0

0 0.2 0.3 0.5

0 0 0.6 0.4

0.7 0.3 0 0


The probability of the series of states is calculated this way:

P (O) = P [S1, S2, S2, S3]

= P [S1] · P [S2 | S1] · P [S2 | S2] · P [S3 | S2]

= π1 · a12 · a22, ·a23

= 1 · 0.5 · 0.2 · 0.3 = 0.03
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0,5 0,5

0,3 0.4

0.2 0.6

S1 S2 S3 S4
0,5

0.7

0.3

Figure 3.13: An example of how a Markov model might look.

3.4.3 Hidden Markov Models

A hidden Markov model is a Markov model where the states are hidden.

There are N sates in the model, but all of these are hidden. All states are

connected to each other, but other connections models are often of interest.

For some practical application, the states can correspond to actual physical

states.

The terminology is the same as for Markov models, with some additions:

• M is the number of distinct observation symbols for each state.

• V = {v1, v2, · · · , vM} is the individual symbols.

• B = {bj(k)} bj(k) = P [vk at t | qt = Sj] 1 ≤ j ≤ N 1 ≤ k ≤ M

at state j, is the observation symbol probability distribution.
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The information can be used as generator to give an observation sequence,

i.e., O = o1, o2, · · · , oT , in this manner:

1. Choose initial state q1 = Sj, according to the initial state distribution

π:

2. t = 1:

3. Choose ot = vk according to bi(k).

4. qt+1 = Sj according to aij.

5. t = t+ 1, and return to step 3 as long as t < T . End otherwise.

The notation:

λ = (A,B, π) (3.27)

is used to describe a complete set of parameters for the model.

There are three problems associated with hidden Markov models.

1. How to e�ciently calculate P (O | λ). When a state transition

from every state to any other state is possible, the runtime for an

observation sequence is O(2TNT ). Calculating this is infeasible with

the number of observation and states which are expected. The prob-

lem can be solved by using the forward part of the Forward-backward

algorithm. The backward part is used in problem 3.

2. Given an observation sequence, how to optimally choose a

state sequence. There are several solutions to this problem depend-

ing on how optimal state sequence is de�ned. The solution to the best

state sequence path can be achieved by maximizing P (Q,O | λ). The

Viterbi algorithm is used to accomplish this.

3. How to adjust the model parameters λ = (A,B, π) to best de-

scribe the observation sequence. This is how the hidden Markov

model trains to adjust to the surroundings. It is considered the most

di�cult of the problems because no algorithm exists which accom-

plishes this. The closest is the Baum-Welch algorithm that adjust λ

to locally maximize P (O | λ).
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3.4.4 Forward-backward Algorithm

The forward variable is de�ned as:

αt(i) = P (o1o2 · · · ot, qt = Si | λ) (3.28)

The probability of the partial observation sequence o1 · · · ot and the state

Si at time t with the hidden Markov model λ.

With this de�nition the variable αt(i) can be solved with:

1. Initialization:

α1(i) = πi · bi(o1), 1 ≤ i ≤ N (3.29)

Checks which state is the most likely to be in given the observation

o1.

2. Induction:

αt+1(j) =

[
N∑
i=1

αt(j)aij

]
bj(ot+1) (3.30)

Where 1 ≤ t ≤ (T − 1), 1 ≤ j ≤ N .

Equation (3.30) iterates over the rest of the observation. αt(j)aij
calculates the possibility of the state to change to Sj from Si, this is

summed and multiplied to the probability of being in state Sj given

the current observation.

3. Termination:

P (O | λ) =
N∑
i=1

αT (i) (3.31)

Because αT (i) = P (o1 · · · oT , qT = Si | λ) the probability P (O | λ) is

calculated by summing the possibilities at time step T .

The runtime for this algorithm is O(N2T ), which is feasible to calculate.

Both the results of the forward and backwards calculations are used in the

Baum-Welch algorithm which will be explored in Section 3.4.6.
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The backward variable is de�ned as:

βt(i) = P (ot+1ot+2 · · · oT | qt = i, λ) (3.32)

The calculation is initialized with:

βT (i) = 1, 1 ≤ i ≤ N (3.33)

Where the value for T is chosen to one so the value of the computation does

not a�ect the result.

βt(i) =
N∑
j=1

aijbj(ot+1)βt+1(j), (3.34)

Where t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N

For examples several good examples to understand the algorithm, the CSLU

lecture folder [20] should be read.

3.4.5 Viterbi Algorithm

The Viterbi algorithm is used to calculate the most likely path of states given

an observation sequence. It does not compute the probability of being in a

given state. This is the main di�erence from the forward algorithm.

A variable which represents the highest probability along a single path at

time t is de�ned as:

δt(i) = max
q1,q2,··· ,qt−1

P [q1q2 · · · qt = i, o1o2 · · · ot | λ] (3.35)

It accounts for all earlier observations, and ends up in state Si.

For any value of t, we have:
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δt(i) =
(

max
i
δt−1(i)aij

)
bj(ot) (3.36)

The algorithm can be divided in to four steps:

1. Initialization:

δ1(j) = πibi(o1) (3.37)

ψ1(i) = 0 (3.38)

Where 1 ≤ i ≤ N .

2. Recursion:

δt(j) =

[
max

1≤i≤N
δt−1(i)aij

]
bj(ot) (3.39)

ψt(j) = arg max
1≤i≤N

[δt−1aij] (3.40)

Where 2 ≤ t ≤ T, 1 ≤ j ≤ N .

ψt(j) is the best path prior to Sj at time t.

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)] (3.41)

q∗T = arg max
1≤i≤N

[δT (i)] (3.42)

4. State sequence backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, · · · , 1 (3.43)

The backtracking is done because the best sequence can change as t

increases.

The results of the Viterbi algorithm yield very small values. So the calcu-

lations should be done in the log-domain to avoid under�ow errors.
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3.4.6 Baum-Welch Algorithm

The algorithm uses the results of the forward-backward algorithm to rees-

timate the model λ(A,B, π) to locally maximize P (O | λ).

To reestimate the model, the probability of being in state Si at time t and

Sj at time t+ 1 is introduced using the results from the forward-backward

algorithm:

ξ(i, j) = P (qt = Si, qt+1 = Sj | O, λ) (3.44)

=
αt(i)aijbj(ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(ot+1)βt+1(j)

(3.45)

Given the observation sequence and the model, the probability of being in

state Si at time t can be expressed as:

γt(i) =
N∑
j=1

ξt(i, j) (3.46)

The Re-estimated variables can be calculated:

• Re-estimation of initial state probabilities:

π̄i = γ1(i) (3.47)

• Re-estimation of the state transition probabilities:

āij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(3.48)
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• Re-estimation of the observation symbol probability distri-

bution:

b̄j(k) =
expected number of times in state j and observing symbol vk

expected number of times in state j

(3.49)

=

T∑
t = 1

s.t ot = vk

γt(j)

T∑
t=1

γt(j)

(3.50)

By iterating this calculation with the re-estimated values, a local maximum

will be reached.

3.4.7 Hidden Markov Model for Speech Recognition

A hidden Markov model usually corresponds to a phoneme or a word, where

the states can be associated with:

• Sub-phoneme: A phoneme is usually split into three parts. This

is advantageous because the �rst and third is in�uenced by the sur-

rounding phonemes.

• Phoneme: The whole phoneme is used as a state, and can transitions

can build words.

• Sub-word: This approach is designed to recognize words, and states

can be de�ned to best match the word.

The hidden Markov models can be combined to create higher levels systems,

e.g., sequence of hidden Markov models for phonemes⇒ word level system.
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Gaussian Mixture Models

Gaussian mixture models are used to estimate the probability of an obser-

vation given the state [20], i.e., bj(ot). The probability of being in a state

is independent from the probabilities of being in other states.

The probability is given by:

bj(ot) =
M∑
k=1

cjkN(ot;µjk, σjk) (3.51)

WhereM is the number of mixture components and cjk is a mixture weight.

3.5 Arti�cial Neural Network

Arti�cial neural networks is the way a computer mimics the human brain

[29]. It is not well suited for automatic speech recognition, but have been

shown to yield good results for short isolated speech units [30]. There

have been several applications that uses a hybrid hidden Markov model and

arti�cial neural network for automatic speech recognition.

There are several di�erent type of arti�cial neural networks, three popular

are [6]:

• Multilayer Perceptron: The network tries to minimize the di�er-

ences between expected and real outputs from the system.

• Elman Network: Uses back propagation as a learning for the sys-

tem.

• Probabilistic Neural Network: Use a probability distribution func-
tion to calculate the network connections weights.

An example of how a arti�cial neural network works is shown in Figure 3.14.

Mel-frequency cepstral coe�cients, discussed in Section 3.2.7, is usually used
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as input to the model. The number of input, hidden and output layers can

varies in di�erent implementations, and the example shown is an extremely

simpli�ed case.

Input Hidden Output

Figure 3.14: Example of a multilayer perceptron arti�cial neural network,
inspired by [7]

An arti�cial neural network which have not learned anything is ready for

work, but it has not experienced any stimulus yet, so it is not able to do

anything [31]. A multilayer perceptron is trained by giving it an input

pattern where the correct response is known. The output is then observed,

and the error between the expected output and the networks output is

computed. This error is used to adjust the weights within the network.





Chapter 4

Programs and APIs for Speech

Recognition

4.1 Introduction

There are several di�erent toolkits that are designed for speech recognition.

Each uses di�erent methods and is designed for di�erent purposes. This

chapter will look at some promising programs and toolkits used for speech

recognition, and evaluate the purpose and how e�ective they are.

4.2 Free Toolkits and APIs for Speech Recog-

nition

4.2.1 Praat: Doing Phonetics by Computer

Praat [2] is a program developed by Paul Boersma and David Weenink. The

program is used for speech analysis, it is possible to record sound, create

spectrograms and analyze formats, pitch, intensity, Mel-frequency cepstral

45
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coe�cients, linear predictive and several other features.

Getting Started

All objects, e.g., sounds, spectrograms formants, spectrums, intensity plots,

are stored in the Praat objects window, which is shown in Figure 4.1. From

here, new sound �les can be recorded, or already existing sound �les can be

opened.

Figure 4.1: The Praat objects window

The menu on the right gives options to manipulate the object. Sound �les,

e.g., a .wav �le, can be analyzed in several ways and create new object �les:

• Formants: As shown in Figure 4.2, the formants of a sound �le can

be extracted. Praat gives the options of drawing a picture of the

formants, or a list of the frequency of all the di�erent formants at a

various times.

• Spectrogram: Figure 4.3 shows a spectrogram created by Praat.
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Figure 4.2: The Praat formant object picture of the word �Bye�

Figure 4.3: The Praat spectrogram object picture of the word �Bye�
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4.2.2 Hidden Markov Models Tool Kit (HTK)

HTK[32] is a tool kit for building and manipulating hidden Markov models.

The library modules and tool kit is written in C, and the source code is

available on their web site after registering and agreeing to their license.

HTK is primary aimed at recognizing words or sub-words by using hid-

den Markov models. Forward-backward algorithm, Viterbi algorithm and

Baum-Welch re-estimation is used to recognize single words. For continu-

ous speech, several hidden Markov models are connected together. It is also

possible to build a phoneme recognizer or other types of recognizers.

The di�erent programs generated when compiling HTK can be read about

in [33].

4.2.3 Center for Spoken Language Understanding Toolkit

(CSLU)

CSLU is a research center at Oregon Graduate Institute of Science and

Technology. They have created a large toolkit with several applications and

development opportunities.

Content of the Toolkit

• Users, i.e., people who use the �nished product to learn a language.

� Rapid Application Developer (RAD): Is a graphical tool

for creating structured dialogs between the user and a computer.

RAD makes it possible to quickly create a speech interface with-

out any prior knowledge. Text-to-speak is a part of this program.

� Baldi: Animated head that is anatomically correct. It can be

made transparent, so the user can watch how the mouth looks

when a word is produced. The face can be used within RAD and

the user can record voice and have Baldi speak with the voice of

the user. Baldi is primary made for the teaching aspect of CSLU

toolkit.
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� Tutor: Available in English and Spanish. Is designed to help

people recognize words and pronounce them.

� SpeechView: SpeechView is similar to Praat in that speech can

be recorded and analyzed. The SpeechView program is shown in

Figure 4.4. The top spectrogram is the default spectrogram, the

second is manually manipulated to remove noise. The panel at

the button shows where the di�erent phonemes are located, this

has been entered manually. 2D, 3D and color 3D spectrograms

can be shown, pitch contour and energy contour can also be

displayed.

Figure 4.4: SpeechView, a part of the CSLU Toolkit. The word uttered was
�Bye� recorded at 8000 samples per second.

• Developers.

� Tool Command Language (Tcl): CSLU toolkit supports

scripting with Tcl. Several packages are included in the toolkit,
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and it is possible to develop word based recognizers as demon-

strated in the Viterbi package [34], or more complex applications

as demonstrated in the Toolkit Development Guide[35].

� C library: The library gives the possibility to develop speech

recognition programs with C code.

The feature extractions possible with the library are [36]:

∗ Power spectral analysis (FFT)

∗ Linear predictive analysis (LPC)

∗ Perceptual linear prediction (PLP)

∗ Mel scale cepstral analysis (MEL)

∗ Relative spectra �ltering of log domain coe�cients (RASTA)

∗ First order derivative (DELTA)

∗ Energy normalization

Phoneme probability models used for word models, lexical trees

and grammar can also be created.

The English subset of Worldbet[37] is used to write phonetic symbols be-

cause IPA symbols are di�cult to write in plain text.

In stead of having a model for each phoneme, CSLU argues that phonemes

are in�uenced by the adjacent phonemes [38]. They group phonemes in

eight broad context groups depending on what they spectrally look like:

• Front: Phoneme that resembles a front Vowel.

• Middle: Phoneme that resembles a middle Vowel.

• Back: Phoneme that resembles a back Vowel.

• Sil: Silence.

• Nasal: Nasal phoneme.

• Retro: Retro�exe semivowel. The only English phoneme in this cat-

egory is /r/ but many vowels becomes retro�exed when an /r/ is

succeeding.

• Fric: A fricative vowel.
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• Other

To recognize a phoneme in a word, three models are needed. One for the

preceding phoneme, one for the context free part of the model, and one for

the succeeding phoneme. There are eight possibilities for each proceeding

and succeeding phoneme, so each phoneme have 17 categories de�ned. This

results in a total of 576 categories for English phonemes.

The toolkit uses both hidden Markov model and arti�cial neural networks

for automatic speech recognition. It is possible to train a recognizer for

speci�c words. Each word must be phonetically described, and new context

groups can be speci�ed depending on the words which will be recognized.

Each phoneme then needs to be split into three parts where the �rst and

third part is dependent on the preceding or succeeding phoneme, respec-

tively. The more training data the model have, the more precise the end

result will be.

4.3 Experience with the Toolkits

4.3.1 Experience with Praat

Praat is easy to use and is excellent for learning the various methods used in

speech recognition. Praat is not open source, which mean it is not possible

to look at the implementations of the methods or use it as a basis for an

implementation.

4.3.2 Experience With HTK

An error was encountered when trying to compile HTK on Windows XP

Professional x64, with Microsoft Visual Studio 2005. After some research,

it was discovered that HSLab is dependent on �X Window System� for GUI,

which is only supported on UNIX systems. The dependency can be removed

in the make�le, but the program HSLab will not be compiled.
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To overcome this problem, other solutions were tried:

• Ubuntu 8.04 64 bit: HTK was made for a 32 bit system, a lot

of problems were encountered while trying to compile it on a 64 bit

system.

• Ubuntu 9.10 32 bit through Virtualbox: Trying to run Ubuntu

with Virtualbox on 64 bit XP was caused the computer to restart 80-

90 percent of the time. When Ubuntu booted, no sound was heard

and it was impossible to record anything.

• Ubuntu 9.10 32 bit: HTK compiled without problem, but the there

was a problem with the sound card so recording sound did not work.

• Cygwin: There same problem with 64 bit and 32 bit was encountered

while trying Cygwin.

After using several weeks learning about HTK, trying to install it with

various methods and operating systems further experimentation was aban-

doned.

4.3.3 Experience With the CSLU Toolkit

The CSLU-C Toolkit for automatic speech recognition i interesting because

it is possible to create own recognition models for speci�c words, but it

is heavily integrated in the phonetic model used by CSLU, and described

in Section 4.2.3. The toolkit is not open source, but the header �les are

available with some commentary. One example program of a digit recognizer

is also available and compiles without any problems, but the lack of tutorials

and source code to examine make it di�cult to use.

A tutorial on the training of hybrid hidden Markov models/arti�cial neural

networks is given at [39]. This method requires a lot of data for training,

which is given for the tutorial, but to train the model for new words, would

require a lot of work.

One error in the tutorial was found.
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Corpora.txt should be changed from:

corpus : numbers

wav_path / t u t o r i a l /data/ s p e e c h f i l e s

txt_path / t u t o r i a l /data/ t x t f i l e s

phn_path / t u t o r i a l /data/ phn f i l e s

format {NU−( [0−9]+)\. [A−Za−z0−9_]+}

wav_ext wav

txt_ext txt

phn_ext phn

cat_ext cat

ID : { regexp $format $ f i l ename f i l ematch ID}

to:

corpus : numbers

wav_path t u t o r i a l /data/ s p e e c h f i l e s

txt_path t u t o r i a l /data/ t x t f i l e s

phn_path t u t o r i a l /data/ phn f i l e s

format {NU−( [0−9]+)\. [A−Za−z0−9_]+}

wav_ext wav

txt_ext txt

phn_ext phn

cat_ext cat

ID : { regexp $format $ f i l ename f i l ematch ID}





Chapter 5

Understanding Spectrograms

5.1 Introduction

This chapter will focus on how to recognize speech with spectrograms. The

theory will be presented �rst,where the sources are �Spectrogram Reading�

[14] and the website of Robert Hagiwara, assistant professor at the depart-

ment of linguistics university of Manitoba examples[40].

All speech �les are recordings of the authors voice using the program Praat

[2]. All words were recorded with stereo sound at 44100 Hz, which is enough

to represent the whole human hearing frequency. Spectrograms were also

made by Praat, using a Gaussian window.

Since the author is not a native English speaker, the �gures might vary from

spectrograms found at other sources.

5.2 Analyzing Spectrograms

Spectrogram reading can be di�cult because two spectrogram of the same

utterance can always have little variations. The best way is to look for clues

55
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of di�erent phonemes.

5.2.1 Vowels

Vowels are not important for comprehension of written text, but many

speech recognition systems rely on vowels to perform well.

Vowels are considered the easiest phonemes to recognize. Three formants are

visible in the spectrogram as concentration of energy moving horizontally.

The two lowest formants are needed to recognize a vowel. Usual formants

frequencies for the vowels are shown in the table below:

Vowel F1 F2 F3

Collected from [1]/[14] [1]/[14] [1]/[14]

/i/ 270/280 2290/2250 3010/2900

/I/ 390/400 1990/1900 2550/2550

/E/ 530/550 1840/1770 2480/2490

/æ/ 660/690 1720/1660 2410/2490

/2/ 520/640 1190/1190 2390/2390

/a/ 730/710 1090/1100 2440/2640

/O/ 570 840 2410

/Ú/ 440/450 1020/1030 2240/2380

/u/ 300/310 870/870 2240/2250

/Ç/ 490 1350 1690

The phoneme /Ç/ is actually an r-coloring of the phoneme /2/.

Figures 5.1, 5.2 and 5.3 shows spectrograms of the vowels while pronouncing

the example words given in Appendix A. The arrow points to where the

phoneme is located in the word.

5.2.2 Diphthongs

Diphthongs are similar to vowels in having a very clear intensity for the

formants. The way a diphthong moves from one vowel to another can be
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eve it bird boot

Figure 5.1: Spectrogram example of the �rst four vowels

foot hate met up

Figure 5.2: Spectrogram example of the four mid vowels
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obey all at father

Figure 5.3: Spectrogram example of the four end vowels

seen in the spectrogram.

Even though the diphthongs are written in IPA as the vowels they move

from to the ones they move to the spectrogram clues for recognizing each

diphthong is a bit more complex:

• /aI/: Begins near /2/, moves to /i/. F2 has a sharper rise than /ei/.

• /aÚ/: Begins near /2/, moves to /u/.

• /ei/: Begins near /E/ and /I/, moves to /i/.

• /Oi/: Is very similar to /aI/, but F1 and F2 are lower.

• /iÚ/: F1 contains higher energy than the other formants, and F2 sinks

towards F1.

• /oÚ/: F1 and F2 can merge together, and are lower in value than

/aÚ/.

Figures 5.4 and 5.5 show spectrograms of all the diphthongs respectively.
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my now day

Figure 5.4: Spectrogram example of the �rst three diphthongs

boy few no

Figure 5.5: Spectrogram example of the latter three diphthongs
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5.2.3 Approximants

Approximants are more di�cult to recognize than vowels, mostly due to

their nature to adapt to the nearby phonemes. The intensity of the formants

are less than the vowels.

All approximants have in common that F1 is in a mid to high position and

the formants are lesser intense than for vowels. The speci�c clues about the

phonemes are:

• /l/: Can be identi�ed by the lack of resonance in the 1500− 2000Hz

range. F2 and F3 diverge through the /l/.

• /r/: F3 is always below 2000Hz, and has the same shape as F2, they

might be overlapping.

• /w/: Starts out week with only F1 visible, F2 and F3 becomes clearer

later if at all with F3 usually above 2000Hz.

• /j/: F2 and F3 nearly collide and which causes the pattern to look

like an X. Some friction can also be seen.

we read you let

Figure 5.6: Spectrogram example of the approximants



5.2. ANALYZING SPECTROGRAMS 61

5.2.4 Nasal Consonants

Nasal consonants are di�cult to recognize. The spectral clues they have

in common is less energy than vowels, and the areas between the formants

contain almost no energy at all. It is also very little energy in the higher

formants.

The formant F2 of nasal consonants is the one most a�ected by the preceding

and succeeding phonemes. Clues for each phoneme are listed below:

• /m/: The formants are descending F2 is usually 900− 1400Hz.

• /n/: Formants are discontinuous at the beginning and end of the

phoneme. F2 is usually 1500− 1800Hz.

• /N/: F2 rises to 1900 − 2000Hz, F3 and F4 get pinched together.

Depending on the speaker, the /g/ may be pronounced which shows

up as a stop.

me no sing

Figure 5.7: Spectrogram example of the nasal consonants
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5.2.5 Fricatives

To recognize a phoneme as a fricative is not that di�cult, the problem is to

distinguish them from each other.

Fricatives have a lot of energy in the higher frequency bands. If a formant

is present in the spectrogram, it is not caused by the harmonics of the

phoneme, but by the noise which is caused by the friction.

• /f/: An upwards triangle shape is present around 1200Hz. The en-

ergy of the higher frequencies are also stronger than for /v/, /T/ and

/D/.

• /s/: Contains the most energy of the fricatives and is considered the

easiest to recognize. There is a lot of energy between 3000 − 4000H

and 8000Hz.

• /S/: Similar to /s/, but the strong energy begins at 2500Hz.

• /T/: Similar to /f/, but the energy will start at 1500− 2500Hz with

a highest concentration above 3000HZ.

• /h/: Contains weak energy which looks like noise, and is a very

volatile phoneme. The best clue is given by the succeeding phoneme,

where the transition from an /h/ is very strong.

• /v/: There are several possible ways a /v/ can look in a spectrogram:

� A strong noise friction around 4000Hz.

� Several burst-like noise friction.

� No friction at all.

One common factor is that /v/ is usually similar to /f/, but with the

triangle pointing downwards around 1200Hz.

• /D/: The fricative with the least energy. If it is visible the energy is

concentrated around 1500− 2500Hz with some higher energy noise.

• /z/: Similar to /s/ with friction in the same area, but will usually

have a glottal stops below 500Hz.
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• /Z/: Similar to /S/ with friction in the same area, but there is glottal

stops below 500Hz.

Figures 5.8, 5.9 and 5.10 shows the examples of the fricatives as mentioned

respectively. The formants are not shown because they are not that essential

when recognizing fricatives. The spectrogram is represented in the range

0− 8000Hz to illustrate the energy in the higher frequency bands.

for see she

Figure 5.8: Spectrogram example of the three �rst fricatives

thin he vote

Figure 5.9: Spectrogram example of the three mid fricatives
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then zoo azure

Figure 5.10: Spectrogram example of the three latter fricatives

5.2.6 Stops

Stops goes from almost total silence, also called a closure, to the release of

the words. This can be seen in the spectrogram as a period of almost no

energy, to a sudden burst of high energy.

Stops also in�uence the formants of the preceding and succeeding vowels.

Each voiced/unvoiced, i.e., /b/-/p/, /d/-/t/ and /g/-/k/, pair have the

same e�ect on the vowel.

• /b/ and /p/: /b/ is the weakest of the voiced stops, which is the

best way to recognize it if the spectrogram shows a closure and burst.

F2 and F3 of the transition phonemes is downward pointing.

• /d/ and /t/: Formants starts forming at 1800Hz and 2800Hz which

moves to vowel, nasal or approximant.

• /g/ and /k/: /g/ is the strongest of the voiced stops, and can contain
multiple bursts of energy. The formants usually come together in a

triangular pattern, also called a velar pinch.
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be pay

Figure 5.11: Spectrogram example of /b/ and /p/

day to

Figure 5.12: Spectrogram example of /d/ and /t/
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go key

Figure 5.13: Spectrogram example of /g/ and /k/

5.2.7 A�ricates

Since a�ricates starts as a stop, and end as a fricative, the spectrogram has

similar clues to those groups.

• /tS/: A short burst which looks like a /t/ followed by a frication as

an /S/ where the frication is strongest in the range 2500− 3000Hz.

• /dZ/: Starts as a /d/, ends in a /Z/, except the frication is asymmet-

rical, and the strongest energy is in the range 2500− 3000Hz.

5.3 Experiments with Spectrograms

This section will look at some of the problems experienced with spectrogram

reading. The word �see� will be used in most examples because of the

high energy in the phoneme /s/ and the easily recognizable formants of the

phoneme /i/. All examples are made with the program Praat[2], recorded

with stereo sound at 44100 samples per second. The spectrogram is shown

in the range 0− 8000Hz to see the energy in the higher frequencies.
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chew judge

Figure 5.14: Spectrogram example of the a�ricates

5.3.1 Distance From Source

As the distance increases from the microphone, the signal recorded decreases

in energy. Figure 5.15 and Figure 5.16 were recorded in a quiet environment

with no background noise from heard by the human ear. The arrows show

where the word starts and ends.

Phonemes /s/ and /i/ can be recognized in both samples, but the reduced

energy does not make the word stand particularly out, causing Praat to

compute formants of the background noise as well. Comparing the phoneme

/i/ with the one produced in Figure 5.1, the formants are still in the correct

ranges, but the energy is much less.

5.3.2 Noise

The background noise used in these experiments was hard rock music. Noise

will be present at the spectrogram. If the noise is at the same loudness as

the speaking source, as seen in Figure 5.17, the relevant information will

seem to blend with the noise. It was still possible to hear the word �see� in

the audio example without problems.
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Figure 5.15: Spectrogram and waveform of the word �see� with the micro-
phone 1 meter from source

Figure 5.16: Spectrogram and waveform of the word �see� with the micro-
phone 2 meter from source
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In Figure 5.18, the noise was not as loud as in the previous example. It

is possible to distinguish the word �see� in the spectrogram without much

di�culty. But the spectral noise is still present in the spectrogram.

Figure 5.17: Spectrogram and waveform of the word �see� with loud noise

Figure 5.18: Spectrogram and waveform of the word �see� with the micro-
phone 2 meter from source
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5.3.3 Length of Utterance

The length of the utterance a�ects the spectrogram. In Figure 5.19, the

�rst utterance was pronounced in 0.21 seconds, the second took 1.38 sec-

onds. The spectral clues are still the same, but the various speaking rate of

di�erent people must be considered when looking at spectrograms.

Figure 5.19: Spectrogram and waveform of the word �see�, pronounced fast
then slow
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Discussion

6.1 Which Features are Best Suited

6.1.1 Waveforms

Waveforms are one of the simplest features of speech on the computer, but

it is impossible to recognize speech directly through a waveform. Some

elements can be recognized, as stops and fricatives, but there are several

problems. Two waveforms for the same word uttered by the same speaker

are often very di�erent. The amplitude and length of the waveform will

vary a lot depending on how loud and fast the speaker is speaking. It does

not show enough speech relevant data.

6.1.2 Mel-Frequency Cepstral Coe�cients and Cepstrum

These features extract a lot of speech relevant data, but o�er very little

visual meaning when looked at. They are often used as input to recognition

algorithms.
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6.1.3 Spectrograms and Formants

A spectrogram also varies when created from two di�erent samples, but a

spectrogram contains enough information to recognize spectrograms with

some training. Spectrograms o�er a good visual recognition system.

But a spectrogram is very a�ected by noise. The speaker should speak di-

rectly into a microphone one at the time to get the best results. Di�erent

people pronounce words at di�erent rates and frequencies, especially appar-

ent with men and women, some samples are needed to fully di�erentiate

the vowels and other spectral clues.

Spectrograms are the feature extraction technique chosen as the one with

the most potential, and a lot of work has gone into learning how to recognize

spectrogram to see if this is a feasible technique. The downside to recog-

nizing speech by a spectrogram is that the words should be spoken directly

into the microphone without any background noise for the best results. The

practicality of using a real time spectrogram reader for a person who is deaf

on a daily basis is also in question. The person has to look at a screen or

interface to get the information, and the training required is extensive.

6.2 Algorithms for Speech Recognition

Because speech is very dynamic, most algorithms are based on the software

learns and adapts to the speaker. This is very apparent in hidden Markov

models and arti�cial neural networks. Algorithms based on these algorithms

will tend to recognize speech similar to what they were taught, and not be

very speaker independent.

Hidden Markov models are the most used algorithm in speech recognition

at the present time. This is re�ected in the extensive examination of the

algorithm in Section 3.4. Arti�cial neural networks and hybrid systems are

also in use, but the extensive learning aspect present when using arti�cial

neural networks make hidden Markov models a better algorithm to achieve

speaker independence.

Dynamic time warping compares two samples independent from time. Even
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though there is over 10000 syllable in the English, as explored in Section

2.2.1, only 500 of these are used 80 percent of the time. It could be feasible

to compare 500 samples for each syllable, but there was not enough time

to calculate the run time for dynamic time warping, or if it is feasible to

extract syllable in continuous speech.

6.3 The Split Between Human and Machine

Humans are superior to machine when it comes to understanding speech.

When young children speak, humans are often able to comprehend the

meaning, even though the sentences are incomplete and phonemes are pro-

nounced wrong. An advice for teachers and parents whom child have not

fully developed speech or have a speaking disability, is to carry context card

which lists the things the child likes to talk about to help comprehension

[41]. The same idea can be applied to a person who is deaf. Context cards

for di�erent situations and persons to assist an application.

Praat is able to record and analyze speech �les, but there is no real time

support. It is well suited for learning spectrogram reading, and see the

results of the various feature extraction techniques discussed in Section 3.2.

Hidden Markov model toolkit showed a lot of potential when studying how

it worked before trying to implement it, but as a result of not being able to

get it to work properly; it could not be fully explored.

CSLU toolkit is a bit complex for the idea behind this thesis, and the lack

of open source and documentation make it di�cult to create an application

based on feature extraction. It is not designed to work on real time data,

so making a stand alone application based on the toolkit is not considered

feasible.

6.4 Future Work

This thesis lay the groundwork for another master thesis or Ph.D. All feature

extraction techniques, algorithms and programs are well documented by the
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scienti�c community, and the sources given should be consulted for more

information.

A real time spectrogram reader can be developed, but the negative aspects

discussed under Section 6.1.3 means this is better used as a training tool

than a practical application.

To use Mel-frequency spectral coe�cients can be used as input to an ap-

plication which extracts the speech relevant information and displays them

to a user as vibrations, colors or another interface. More research about

how little information is needed to preserve comprehension is needed if this

approach is pursued.

Hidden Markov models are the most used algorithms at a higher level than

feature extraction. The implementation of hidden Markov models for speech

recognition is di�cult, and an already existing toolkit could be used as a

basis for further implementation.

6.5 Conclusion

A split between human and machine is possible, as demonstrated by spec-

trograms that was found to be the best simple feature extraction method for

visual recognition of speech through a computer interface. An application

for a deaf person to recognize speech is feasible based on real time spec-

trogram reading, but such an application would not be practical. Getting

the computer to perform more of the recognition based on hidden Markov

models is the most promising approach.
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Appendix A

IPA for English

/i/ eve /l/ let

/I/ it /m/ me

/Ç/ bird /n/ no

/u/ boot /N/ sing

/Ú/ foot /v/ vote

/e/ hate /f/ for

/E/ met /D/ then

/2/ up /T/ thin

/o/ obey /z/ zoo

/O/ all /s/ see

/æ/ at /Z/ azure

/a/ father /S/ she

/aI/ my /h/ he

/aÚ/ now /b/ be

/ei/ day /p/ pay

/oÚ/ no /d/ day

/Oi/ boy /t/ to

/iÚ/ few /g/ go

/w/ we /k/ key

/r/ read /tS/ chew

/j/ you /dZ/ judge
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