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Problem Description
In existing oil and gas production systems one is often reluctant to introduce modifications to the
control system. The reason is that this normally means that the production system has to be taken
out of operational order to perform specifically designed experiments to identify the dynamics of
the system.

However, a process can be identified from segments of process data that exploit the dynamics of
the process so that obtaining a good model is achievable.

Dynamic Identifiability Analysis (DYNIA) is a method for assessment of and segment
selections from process data. The DYNIA methodology has been studied in an earlier project. This
master thesis will further investigate the method.

Tasks:
1) Account for earlier work done on the subject.
2) Review the DYNIA methodology in the context of data mining on process data.
3) Implement and test the DYNIA methodology. Document the implementation.
4) Investigate the use of the Differential Evolution Algorithm to enhance the functionality of
DYNIA.
5) Perform a system identification case study with real process data where data mining by
the DYNIA methodology is used.

Assignment given: 31. August 2009
Supervisor: Morten Hovd, ITK





Abstract

Updating the model parameters of the control system of an oil and gas produc-
tion system for the reasons of cost-effectiveness and production optimization,
requires a data set of input and output values for the system identification
procedure.

A requirement for the system identification to provide a well performing
model is for this data set to be informative.

Traditionally, the way of obtaining an informative data set has normally
been to take the production system out of normal operational order, in the
interest of performing experiments specificially designed to produce informa-
tive data. It is however desirable to use segments of process data from normal
operation in the system identification procedure, as this eliminates the costs
connected with a halt of operation.

The challenge is to identify segments of the process data that give an
informative data set.

Dynamic Identifiability Analysis (DYNIA) is an approach to locating peri-
ods of high information content and parameter identifiability in a data set. An
introduction to the concepts of data mining, system identification and param-
eter identifiability lay the foundation for an extensive review of the DYNIA
method in this context.

An implementation of the DYNIA method is presented. Examples and a
case study show promising results for the practical functionality of the method,
but also raise awareness to elements that should be improved. A discussion
on the industrial applicability of DYNIA is presented, as well as suggestions
towards modifications that may improve the method.
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1 Introduction

System identification, in the wide sense, is the process of developing a mathe-
matical representation (model) of the dynamic behaviour of the physical sys-
tem at hand, based on observed data from the system. A model is required
in modern monitoring and control to be able to control the system dynamics
so that it acts accordingly to a desired behaviour.

Observed data is stored in a data set, connecting input and output values
of the system. The data set can e.g. be obtained by performing experiments
on the system, specificially designed to exploit the system dynamics such that
the data set to a large extent describe the operational modes of the system.

In existing oil and gas production systems one is often reluctant to recali-
brate the model parameters in order to introduce modifications to the control
system, or to update the system model, for example to changes in reservoir
and wells. The reason being that performing the specificially designed exper-
iments mentioned above means taking the system out of operational order; a
costly undertaking. The data set then has to be obtained from operational
process data.

Process data from normal operation has many properties that can dete-
riorate the performance of the system identification procedure. Segments of
missing data, extraordinarily disturbance in the measurements and long peri-
ods of stationary data that carry little information about the system dynamics
are all properties that can render the data set useless for the solution of the
system identification problem.

DYNamic Identifiability Analysis (DYNIA) has in an earlier project [10]
been presented as a method that might have attributes that make it suitable
to assess how the quality of a data set varies with time, thus potentially
having the ability to identify segments where the data set show good properties
with respect to the system identification procedure. In other words, DYNIA
has been suggested as a method that can raise the threshold for when it is
necessary to perform specifically designed experiments to obtain a data set
rather than to collect data from normal operation.

In this master’s thesis the DYNIA method will be further studied and
reviewed, and its applicability towards the industry assessed. A Matlab im-
plementation of the method will be presented, and relevant tests will be per-
formed on this implementation. Possible modifications to the method will also
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2 CHAPTER 1. INTRODUCTION

be discussed.
This chapter gives background information on data mining, system iden-

tification and identifiability, and concludes with an outline of the contents of
the thesis.

1.1 Data Mining

Data mining is the extraction of implicit, previously unknown, and potentially
useful information from data [34], something that has been done in one way
or another for centuries. Examples of early formal methods of identifying
patterns in data include Baye’s theorem and regression analysis. The increas-
ing power of computing technology has greatly increased data collection and
storage. This has given need for a new generation of tools and techniques for
automatic and intelligent analysis that find useful knowledge in the mountains
of data that arise. These tools and techniques are the subject of the field of
Knowledge Discovery in Databases (KDD) [9], a field that first and foremost
encompass the process of finding interesting data. Generally, the process com-
prises three steps: raw data preprocessing, data mining, and interpretation of
the results.

The preprocessing consists of assembling a target data set. The data min-
ing will only uncover information and patterns that is present in the data set.
Thus, the target data set must be selected so that the analyser can be certain
that the wanted information actually is contained in the selected data. In ef-
fect, the target data set has to be large, but at the same time concise enough
to reach an acceptable balance between computational demands and supplies.

With the KDD approach, the data mining will in the context of the prob-
lems considered in this thesis, consist of two classes of tasks; regression analysis
and clustering. The reasoning for the regression analysis is for each time-series
data point (i.e., input/output data at each time step), to find a model that
reproduce the data, given the same input as the real system, with the least
error. Following this, a clustering algorithm should, based on the results from
the regression analysis, be able to classify the time-series data points according
to how much information is uncovered at each data point (or more precisely,
as shall be seen, the knowledgde uncovered at a number of data points before
and after the data point being considered). In this way, the time-series data
points will be classified by the amount of knowledge discovered at each time
step. In effect, this yields the opportunity to identify segments of the data
set that brings forth an unproportionate large amount of knowledge. This op-
portunity can intuitively be linked with the main problem considered in this
thesis, to identify segments of the data set that show good properties with
regard to the system identification procedure. Hence, the knowledge to be
uncovered by the main data mining algorithm to be considered in this thesis,
that is the beforementioned DYNIA, is precisely that; properties with regard
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to the system identification procedure.
The final step of KDD is to verify the knowledge uncovered by the data

mining algorithms. Since the result of the system identification procedure is a
new or calibrated system model, this verification can be performed by testing
the model performance, not only with the data set used by the data mining
algorithm, but also with other data sets that the data mining algorithm was
not trained on.

This introduction gives a general approach on how the fundamental theory
of data mining and KDD can be used in the solution of problems like the ones
herein to be considered. The next sections serve as introductions to important
theoretical concepts that serve as a background to the specific data mining
approach taken in this thesis.

1.2 System Identification

As was mentioned, system identification is the process of developing a model
to describe the dynamics of the system at hand. More specificially, system
identification deals with the selection of a model structure and a corresponding
parameter set that give a high degree of similarity between the observed and
simulated output data. This section serves as an introduction to the subject,
and it is to a large extent based on the work performed by the author in [10].
[8] and [18] serve as excellent books on the subject.

According to [18], the system identification procedure consists of three
basic entities:

1. A data set ZN

2. A set of candidate models

3. A rule by which candidate models can be assessed using the data set

1.2.1 The Data Set

The data set ZN consists of recorded input and output data. As shall be
seen, the properties of the data set is detrimental to the quality of the overall
solution of the system identification problem. The data set can either be
obtained by performing an experiment on the physical system, or by collecting
data from the normal operation of the system. In the former case, the engineer
often has the opportunity to actuate the system with a predetermined input
sequence designed to exploit a great part of the system dynamics, whereas
in the latter case, collecting a prosperous data set ZN is not necessarily a
straightforward exercise. Collecting data by performing an experiment on
the system is always preferable, but in running production systems one will
often hesitate to implement modifications to the control system if it involves
stopping the production to perform such experiments. Therefore, on many



4 CHAPTER 1. INTRODUCTION

occasions, it is preferable that one has the opportunity to rely on process data
when performing the system identification procedure.

The DYNIA method has been presented as a method possibly giving the
ability to obtain a prosperous data set from large amounts of process data, in
the case where a big part of the process data exploit only small or inconclusible
parts of the system dynamics. This is the background for the further review
and analysis of DYNIA presented in this thesis.

1.2.2 Candidate Models

Specifying a set of candidate models is conceptually the most difficult part
of the system identification procedure [6]. A model set is an unparametrized
collection of models that share a certain property, e.g. a model set that contain
all linear models. A model structure is the parametrization of a model, where
each model in the set is indexed by the parameter vector Θ. The search for
the ’best’ model is performed on the model structure. [18]

A priori knowledge based on physical laws with regard to the system at
hand, relationships to earlier experience of modeling of similar systems and
litterature on the formal properties of models should all be taken into account
when building the set of candidate models. Considerations has to be based
on which kind of model is to be obtained, because mathematical models of
petroleum production system can be divided into three groups [20]:

1. Theoretical models developed using chemical and physical principles

2. Empirical models obtained from mathematical analysis of process data

3. Hybrid models obtained as a combination of theoretical and empirical
approach to model design

The reason for modelling a petroleum production system is usually that you
want to estimate and/or control states that have a real physical meaning,
such as pressures, flow rates, valve opening diameters etc. To achieve this, the
most intuitive approach is to base the model sets on chemical and physical
principles. However, empirical knowledge of the system is often used to reduce
the complexity of the model, such that most practical models used in the
petroleum production industry are hybrid, at least to some degree. Neural
networks are often used as empirical model parts to describe complex parts
and/or parts that do little to the overall dynamics of the system [14].

The problems to be addressed in this thesis are concerned with updates of
the parameter set of a model after modifications has been made to the system
itself, or to the control system. It shall on most occasions be assumed that
the same model structure is to be used with the updated parameters, i.e. that
the ’true’ system representation is a part of the candidate set. When these
assumptions are not made, model structure identification is used to evaluate
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the underlying assumptions of the model structure, e.g. if the model structure
is capable of reproducing different dominant modes of the dynamic behaviour
with a single parameter set [32].

Figure 1.1: The system identification procedure. Based on [18]

1.2.3 Assessment of the Candidate Models

A model has to be selected from the set of candidate models, based on the
model structures’ ability to reproduce the measured data. This entity of the
system identification procedure consists of choosing a criterion of fit, and
calculating the model that is the best in meeting that criterion. An abstract
model of the system identification procedure is shown in Fig. 1.1.

The best model from the model set can be found by estimating the pa-
rameter vector θ that minimizes a certain objective function VN (θ, ZN ). The
objective function is usually a function of the prediction errors for the time
series t = 1 : N of the data set ZN , that is [18]:

VN (θ, ZN ) = 1
N

N∑
t=1

l(εF (t, θ)) (1.1)

When a model has been chosen, it should be tested to determine whether it
performs well enough - according to some criteria. It should be noted that the
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resulting model from the system identification procedure is no more than the
best performing model from the candidate set, given the collected data set. If,
for example, erroneous assumptions have been made in the specification of the
set of candidate models, or the data set gives little information with regard to
the dynamics of the system, the system identification procedure is less likely
to come up with a model that represents the system in a good manner. The
goal of model validation is to ensure a useful model, in the sense that the
model addresses the right problem and provides accurate information about
the system being modelled [19].

There exists numerous parameter estimation methods. The least-squares
method is a widely used one, briefly presented below.

1.2.3.1 The Least-Squares Method

The Least-Squares Method (LSE) is based on minimization of the summed
square of errors between observed and simulated process output [20]. This
project is constrained to linear systems, and linear regressions are very useful
in describing basic linear systems. Using the concept of linear regression, a
regression vector ϕ and the parameter vector θ, a prediction on the model
output can be given as [18]:

ŷ(t | θ) = ϕT (t)θ (1.2)

This gives the following expression for the prediction error:

ε(t, θ) = y(t)− ŷ(t)
= y(t)− ϕT (t)θ (1.3)

With the objective being minimizing the summed square of errors, l(ε) = 1
2ε

2

becomes a natural choice. Inserting this into Eq. 1.1 gives the LSE criterion
for the linear regressor given by Eq. 1.2:

VN (θ, ZN ) = 1
N

N∑
t=1

1
2[y(t)− ϕT (t)θ]2 (1.4)

For a parameter vector of size n, the gradient of the LSE criterion is:

δV

δθj
= 1
N

N∑
t=1

ε(t)δε(t)
δθj

(j = 1, 2, . . . , n) (1.5)

= − 1
N

N∑
t=1

ϕj(t)
(
y(t)−

n∑
k=1

ϕk(t)θk

)
(1.6)

The LSE criterion is minimized when the gradient in Eq. 1.6 is equal to 0.
Considering this, we rearrange the equation as in Eq. 1.7 and write it on
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matrix form in Eq. 1.8.

1
N

N∑
t=1

n∑
k=1

ϕj(t)ϕk(t)θ̂k = 1
N

N∑
t=1

ϕj(t)y(t) (j = 1, 2, . . . , n) (1.7)

(ϕTϕ)θ̂ = ϕTy (1.8)

If the matrix ϕTϕ is invertible, we end up with the following estimate of the
parameter vector:

θ̂ = (ϕTϕ)−1ϕTy (1.9)

The matrix ϕTϕ might become ill-conditioned such that the inverse does not
exist. This is because the matrix contains products of the original data. De-
pending on the quality of the data set, this can cause the condition number of
the matrix to be so high that it is deemed ill-conditioned. A better numeri-
cally behaved method for calculation of the parameter estimate is to factorize
the matrix into an orthogonal and a triangular matrix. QR factorization is
one such method, the theory behind which can among others be found in [4]
and [18].

1.3 Identifiability and Uncertainty

This introduction to the concept of identifiability is largely based on previous
work on the subject, performed by the author in [10]. The motivation for the
introduction is that experience has shown that the identification of a suited
model structure and a corresponding unique parameter set often is difficult.
In many cases, multiple parameter sets yield equally good results in terms
of a predefined objective function. This creates a problem of ambiguity in
the sense that the parameter and prediction uncertainty is increased [32].
Even though the identification procedure might give a model that performs
well with respect to the data set it is based on, this ambiguity reduces the
certainty that the model will give a good representation of the system for
input data that differs in pattern or intensity from that of the data set. If
unique parameter estimates cannot be obtained, the collection of the data set
and/or the choice of model structure has to be reevaluated if the value of the
parameter estimates are to be meaningful [23].

Identifiability is a concept that has implications for the assessment of both
the quality of the data set ZN , and the chosen model structure M. For the
former it deals with whether the model parameters can be uniquely determined
from ZN ; while for the latter it deals with whether different parameter sets can
give equally performing models. The problems to be addressed in this thesis
are mostly concerned with the analysis of a method to assess the identifiability
of the data set, and to identify segments of process data that has propitious
identifiability properties. It is however important to present definitions on
identifiability with regard to model structures as well, because assumptions
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based on these definitions are used extensively throughout the study. From
[18] we have:

Definition 1. A model structure M is globally identifiable at θ∗ if

M(θ) =M(θ∗), θ ∈ DM ⇒ θ = θ∗ (1.10)

In words, this definition states that if the model structure is parametrized
by θ∗, and the only possibility for having an equal model is if the parameter set
of the equal model also is θ∗, then the model structure is globally identifiable
at θ∗. This defines identifiability at a point, but it is naturally desireable to
have a model structure that is globally identifiable for all parameter sets of
the right dimension. However, it is difficult to construct such model structures
[18], so a more conservative and realistically obtainable definition of ’overall’
identifiability of a model structure has been introduced:

Definition 2. A model structure M is globally identifiable if it is globally
identifiable at almost all θ∗ ∈ DM

’Almost all’ means that the model structure can be non-globally identifi-
able on a null set of the parameter set, i.e. on a subset of the parameter set
that is negligible. If a model structure is globally identifiable, there are no
two dissimilar parameter sets that give equal models.

Regarding that the core of this thesis revolves around analysis of the iden-
tifiability of a data set, it is in most cases assumed that the model structure
of the systems being analyzed is globally identifiable. This is not an un-
realistic assumption since the problems to be addressed are concerned with
reparametrization of a model structure that is already in use.

1.3.1 Information Content

Let us assume that the chosen model structure is thoroughly specified based
on a priori knowledge of the system at hand, and well suited to achieve a good
representation of the system. More specificially let us assume that the model
structure is globally identifiable. Then, the most critical part of the solution
of the system identification problem is related to conditions on the data set
ZN . The data set is by far the main source of information on the system being
modelled. The input signals determine which parts of the system dynamics are
excited. Then, by fitting the data to the model structure through a method
such as the least-squares method, a model is obtained. It is then obvious that
the data set to a certain extent must exploit the dynamics of the system in
order to make it possible to find a good, unambigious representation of the
system.

The information content in the data set is a concept related to distin-
guishability between different parameter sets. If there are undistinguishable
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parameter sets, the problem of ambiguity, as mentioned above, occures. From
[18] we have the following formal definitions regarding information content:

Definition 3. A quasi-stationary data set Z∞ is informative enough with
respect to the model set M∗ if, for any two models W1(q) and W2(q) in
the set,

Ē [(W1(q)−W2(q))ϕ(t)[u(t) y(t)]]2 = 0 (1.11)

implies that W1(eiω) ≡W2(eiω) for almost all ω.

Definition 4. A quasi-stationary data set Z∞ is informative if it is in-
formative enough with respect to the model set L∗, consisting of all linear,
time-invariant models.

In a quasi-stationary signal, the expectation value and the covariance of
the stochastic effects are bounded. This holds for the data sets that we are
likely to encounter because the input to these systems is at least partly deter-
ministic, while disturbances on the system are described by random variables
[18]. Definition 3 tells us that a data set is informative enough wrt. to a
specific model structure if having zero (summed) variance of the difference
between two models outputs requires that the models are equal. Definition 4
is a specification that gives conditions on distinguishability between models
in linear systems.

Considering that calculation of the variance is a way to capture the model
output differences’ degree of being spread out, the definition tells us that, as we
stated above, a data set is informative enough with regard to a specific model
set if: for two models to give equal performance, the models, i.e. the parameter
sets, have to be equal. Thus, there will only be one unique parameter set
that gives the best representation of the system if the data set is informative
enough. This implies identifiability of the system, given a well designed model
structure.

The information content of a data set is closely related to a concept re-
garding the input data; persistence of excitation.

1.3.2 Persistence of Excitation

The underlying assumption of the system identification procedure for linear
systems is that the measurements y(t) are linear with respect to both the
unknown parameters θ and the states of the system x(t). Since the system
states, and thus the output, can only be manipulated via the input signal u(t),
we need conditions that ensure an informative data set [21]. Persistence of
excitation is a concept that give such conditions.

The following is based on the discussion on persistence of excitation in
[18]. A formal definition is presented:
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Definition 5. A quasi-stationary signal u(t), with spectrum Φu(ω), is said to
be persistently exciting of order n if, for all filters of the form

Mn(q) = m1q
−1 + · · ·+mnq

−n (1.12)

the relation

|Mn(eiω)|2Φu(ω) ≡ 0 implies that Mn(eiω) ≡ 0 (1.13)

For parameter convergence it is required that the input signal is persis-
tently exciting of at least the same order as the total number of parameters
in the model structure. Usually, there are 2n parameters in an n-th order
linear system, implying that the input must be persistently exciting of order
2n for such a system. The effect of Definition 5 is that the input is persistently
exciting of order n if the power spectrum of the input signal has at least n
non-zero fundamental frequency components. A stronger version of the con-
cepts is that a signal is said to be persistently exciting if the spectrum Φu(ω)
is non-zero for almost all ω.

If you perform an open-loop experiment on the system to collect the data
set, this experiment would be informative (see Def. 4) if the input is persis-
tently exciting. In practice, this implies that the input signal must contain
at least as many distinct frequency components as the number of parameters
to be estimated. It is not very complicated to design an experiment with
an input signal that meet this requirement. However, when you have to use
process data from the normal operation, without any influence on the input
signal, matters get more complicated with respect to finding a data set that
is persistent exciting of a sufficient order.

For a closed loop system, the basic convergence theorem applies, i.e.: a
prediction error assessment method (e.g. least-squares) will estimate the sys-
tem if the data set is informative and the model set contains the true system.
This fact is important because it let us use a similar approach to find an in-
formative data set from a large amount of process data both for open and
closed loop systems. However, it must be mentioned that a requirement for
obtaining an informative data set from a closed loop system is that the set-
point of the controlled system is persistently exciting [18]. For a practical
setpoint-regulated system, this implies that to find an informative data set,
one will have to identify process data segments where there are considerable
setpoint changes. A lot of control systems, this includes many petroleum pro-
duction control systems, has control loops where the setpoints are constant
for long periods of time. An example could be the control of an oil well where
it is important to maintain a desired well-head pressure by adjusting the flow
rate of the fluid being injected back to the well [22]. If, for some reason, a
reparametrization of the model that is used in the control system is wanted,
without the ability to stop the control system to perform open loop experi-
ments; one will have to search through the process data for segments where
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the system seems to be going through a change of operation mode in order to
find periods of informative data.

1.3.3 Uncertainty Analysis

Generally speaking, uncertainty reflects the lack of sureness about something.
In a more specific context, uncertainty can be divided into two subconcepts;
natural variability and epistemic uncertainty, i.e. uncertainty due to lack
of knowledge. Natural uncertainty is a property of the system, it refers to
the randomness of the nature of the system. Knowledge uncertainty reflects
how well you know the nature of the system. Analysis of the knowledge
uncertainty can, in theory, be used to reduce the overall uncertainty of the
system. Parameter uncertainty describes the uncertainty of using a parameter
set based on incomplete system knowledge or a data set with a low information
content. [26]

Figure 1.2: Sources of uncertainty. (Sayers et. al. 2002 [26])

Uncertainty and sensitivity are two notions that can cause a bit of con-
fusion with respect to an analysis of how parameter value changes affect the
model output. One misconception, or at least an exaggerated simplification,
is that sensitivity is related to how variations in the output are based on vari-
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ations of the input and the model parameters, whereas uncertainty merely
concentrates on determining the lack of certainty in the model output per-
formance. However, many uncertainty estimation methods also deal with pa-
rameter identifiability, ambiguity and uniqueness. This has caused sensitivity
analysis to become an integrated part of such uncertainty analysis methods
[12].

The goal of an uncertainty analysis is to quantify the overall uncertainty
of the model as a result of uncertainties in the sources listed in Fig. 1.2. We
will here foucs on the analysis of process model uncertainties. Since a general
assumption used for the system identification/parameter estimation problem
in this thesis is that the model structure is globally identifiable and that the set
of candidate models include the structure of the true system, we can further
specify the focus of the uncertainty analysis to the parameter uncertainties.

The idea of an uncertainty analysis with respect to assessment of parameter
uncertainty, is to observe the behaviour of the model output when uncertainty
is injected into the model. One way of doing this is by selecting the parameter
values from a probability distribution of a specified feasible parameter space.
Then, the model performance, with respect to a certain objective function,
is observed for numerous, semi-randomly chosen parameter sets. From this
we get a measure on the parameter uncertainty, i.e. the uniqueness of the
parameter set(s) that give the best model performance. This can be called
a sample-based parameter uncertainty analysis. Reasonable upper and lower
limits for the different parameter values, and a thought-through selection of
the probability distribution function (PDF) and the number of parameter sets
to use in the analysis is important in order to reduce computational complexity
while maintaining good model assessment properties. These choices should be
based on a priori knowledge of the system, and made independently from case
to case. The implementation of an uncertainty analysis method is often a
trade-off between the quality of the results and the computational difficulty
of the analysis.

Principles for good practice of the conduct of a sampling-based uncertainty
analysis as described above has been given by [24]:

• When deciding upon a PDF for parameter values, consider the following
questions:

(a) Is there any mechanistic basis for choosing a distributional family?

(b) Is the PDF likely to be dictated by physical, geological or other
properties and mechanisms?

(c) What are the bounds on the parameters?

(d) Is the PDF symmetric or skewed, and if skewed, in which direction?

• Base the PDF on empirical, representative data
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Figure 1.3: Scheme of a sampling-based sensitivity / uncertainty analysis.
Courtesy of Andrea Saltelli

In the traditional literature on system identification there seems to be little
to no discussion on the use of uncertainty analysis. There is agreement in that
uncertainty is an important factor in oil and gas production optimization [3].
However, explicit treatment of uncertainty in production optimization with
system identification has received little attention, until the recent doctoral
thesis of Steinar M. Elgsæter from NTNU [7].

The relationship between uncertainty analysis and information content in
the data set and identifiability may seem obscure at the time, but as the deduc-
tion of the suggested method for parameter estimation from large amounts of
process data is brought about, the relationship should become clear. In short,
it can be said that high uncertainty of a parameter value can be interpreted
as a result of lack of information content in the data set. This can later be
thought useable to generate an estimate of the information content for differ-
ent data segments over the time series that is being analysed.
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1.4 Outline of the Thesis

The structure of the thesis is organized as follows:
Chapter 2 is devoted to a thorough presentation of the DYNIA method

and a discussion on the challenges of system identification with respect to
uncertainty.

Chapter 3 presents and documents an implemenation of DYNIA. The im-
plementation is tested by performing two examples and a case study.

Chapter 4 discusses the industrial applicability of DYNIA. Pros and cons
for the practical use of the method are considered.

Chapter 5 presents a number of modifications that may have the capacity
to improve the functionality of DYNIA.

Chapter 6 contains final conclusions and remarks, and suggestions for fur-
ther work and research.



2 Dynamic Identifiability
Analysis - DYNIA

In [10] it was discussed how it is likely that performing an uncertainty analysis
and the calculation of a likelihood distribution for each parameter will uncover
potential lack of parameter identifiability and lack of information content in
the data set. A likelihood function can be defined as

θ → f(y = ym|θ = θ∗), (2.1)

which is a conditional probability distribution function for the system out-
put that give the probability of the model output ym being equal to the system
output y, given that the model uses the parameter set θ∗. It was shown in
[10], with an example of how the maximum a posteriori (MAP) parameter
estimation method (see Appendix6) works, how performing a sample-based
uncertainty analysis as described in the previous section give us all the in-
formation needed to be able to calculate a likelihood distribution for θ. A
sample-based uncertainty analysis test the performance of the model with a
range of parameter sets and, just as the MAP parameter estimation method,
can use this to obtain a distribution of the parameter value likelihood. Upper
and lower confidence limits for the value of each parameter value can be cal-
culated based on these likelihood distributions. As mentioned in [10], a logical
detection is that if a parameter has a narrow confidence band, this is a sign
of low uncertainty, high sensitivity to parameter value changes with regard to
model performance, and high information content in the data set with respect
to this parameter (when applying the assumption that the model structure is
globally identifiable), and an intuitive hypothesis is that uncertainty analysis
can be employed in the search for an informative data set. By determining
how a model’s uncertainty and likelihood towards different parameters vary
over time in a data set, the hypothesis is that one can use the width of the
likelihood confidence band as a measure of how the information content of the
data set, with respect to these different parameters, vary with time. Thus, one
could identify segments of the process data where the information content is
high, and use these segments in the system identification procedure to obtain,
potentially, a unique set of parameter estimates [10].

15
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The search for segments of a data set with a high information content has
only to a minor extent been discussed in the traditional system identification
literature. Ljung [18] dedicate one paragraph to the subject. He states that
when there are long periods of missing data, considerable disturbances or data
that seem to contain ’no information’, it is natural to select segments of the
original data set which are considered to contain relevant information about
dynamics of interest. However, it is also stated that the procedure of how to
select such segments ’will basically be subjective and will have to rely mostly
upon intuition and process insights [18], [10]. As was mentioned in the previous
chapter, the recent doctoral thesis of Steinar M. Elgsæter [7] suggests an
approach to model-updating for the offshore production of oil and gas that is
based on parameter estimation against production data stemming from normal
operation, taking into consideration the challenges that arise when there is low
information content in the data set. Elgsæter mentions that this suggested
approach is motivated by a desire for an updating scheme ’which requires little
human intervention and does not require frequent additional experimentation,
for instance in the form of well tests.’ In the next section system identification
under uncertainty is discussed, with a connection to the work of Elgsæter. This
is followed by the presentation and review of dynamic identifiability analysis
(DYNIA), which is the author’s suggested method to identify segments of the
data set with high information content.

2.1 System Identification under Uncertainty

The basic problem of the system identification procedure is to estimate un-
known model parameters for a given system from observed data. To achieve
uniqueness in the parameter estimates, the importance of which has already
been discussed, there needs to be sufficient information content in the data
set, i.e. the data set has to be informative enough with regard to the se-
lected model structure. If the information content in the data set is low, the
system identification procedure is prone to find multiple parameter sets that
give equal performance. Thus, the parameter uncertainty increases when the
information content is low. Classical system identification literature considers
the design of experiments to obtain a data set with high information content
without considering the cost of performing experiments. The associated costs
of these experiments may make this approach to reduce or eliminate parameter
uncertainty impractical, and it is preferable to fit system models to production
data stemming from normal operation [7]. This section discusses challenges
that arise when the system idenfication procedure is performed with sources
of uncertainty present, and suggests steps that should be taken to improve
system identification performance under such circumstances.

There are three main reasons why a system model might not describe
the system accurately; model structural uncertainty, measurement uncertainty
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and low information content in the data set [7]. Model structural uncertainty
means that the model is a member of a model structure that is unable to
describe the dynamics of the system, regardless of parameter values. In these
cases the model structure is not globally identifiable (see Eq. 2). As men-
tioned in Section 1.3, it is for most of this thesis assumed that the selected
model structures are indeed globally identifiable. Consequently, while model
structural uncertainty is a matter that should not be taken lightly, it is be-
yond the scope of this text to elaborate on it. Model structural uncertainty is
also introduced when the user has reason to believe that parameters or model
structure will change over time. This has to be evaluated on a case-to-case
basis, taking into consideration the changes that the user foresee.

Measurement uncertainty is uncertainty about the difference between mea-
sured and actual input, state and output values. It is important to recognize
that all measurements are wrong in that the measured and actual value are
different. The difference between these two is the measurement error. A state-
ment of measurement uncertainty indicates how large, given a certain level of
confidence, the measurement error might be [1]. The higher the measurement
uncertainty, the more it deteriorates the results of the system identification
procedure, degrading model performance. Incorrect calibration of measure-
ment equipment and unsatisfactory resolution of the measurement values are
two important sources for measurement uncertainty. A more detailed discus-
sion on measurement uncertainty is well beyond the scope of this text, and
will not be done here.

The last main source for degraded model performance is low information
content in the data set. Information content in process data is related to the
persistence of excitation of the input signal. The connection between informa-
tion content and parameter uncertainty has been discussed in sections 1.3.2
and 1.3. Elgsæter [7] presents an extensive case study for a typical offshore
oil and gas production field. In this study the production data from normal
operation is assessed with regards to modeling for production optimization.
It is stated that the difficulties posed by the production data in a context
of information content and measurement uncertainty are not unique to this
field, and it was attempted to make the study as independent to the choice of
production model as possible. The conclusion of the case study is clear: the
production data was observed to have low information content and be subject
to significant measurement uncertainties. Elgsæter highlights three research
challenges which should be faced to improve system identification performance
under such circumstances, but that has received little attention in the liter-
ature; firstly, uncertainty in the production system should be estimated to
assess its significance with regards to lost production potential; secondly, pro-
posed actions to reduce uncertainty should be evaluated by estimating costs
and values of such actions; thirdly, strategies for making decisions in day-to-
day operations under uncertainty should be investigated.

It has been mentioned in this text that using process data from normal
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operation as opposed to data obtained by designed experiments is desirable
because it reduces the cost of the process that has to be done to recalibrate
model parameters. It is however important to solve the problems that arise
when using a data set that has low information content before embarking on
this route, because fitting models to a data set that has low information con-
tent will increase parameter uncertainty significantly. Elgsæter [7] mentions
that significant parameter uncertainty increases the probability that the sys-
tem identification procedure will suggest a parameter set that is erroneously
assumed to describe the system, and can cause the control system to suggest
setpoint changes that are sub-optimal and may reduce profit. He proposes
that rather than giving in to these problems and abandon the use of produc-
tion data from normal operation, parameter uncertainty should be quantified
or estimated and he suggests that further work on the subject should focus
on ’exploiting this quanitifcation of uncertainty to devise strategies for produc-
tion optimization under uncertainty.’ This is very much in line with the main
contribution of this thesis.

In Section 1.3, and earlier by the author in [10], it was mentioned how a
sampling-based uncertainty analysis give a measure on the parameter uncer-
tainty. Elgsæter [7] suggests using bootstrap resampling to numerically esti-
mate parameter uncertainty. Bootstrapping works by estimating the process
that generated the data by an approximating distribution from which sam-
ples may be drawn. Ns bootstrap data sets are obtained and sampled from
this distribution, and system identification is used to determine a parameter
set, θ̂, for each bootstrap data set. The distribution of θ̂i∀i = 1, . . . , Ns is
an estimate of the parameter uncertainty [7], [16]. Even though bootstrap
resampling is a straightforward way to estimate parameter uncertainty it has
certain properties that makes it a poor choice for the DYNIA method, or
one could argue the opposite; that DYNIA has certain properties that makes
bootstrap resampling a poor choice. This will come forth in the presentation
of the DYNIA method.

2.2 The DYNIA Method

Dynamic Identifiability Analysis (DYNIA) is an attempt to avoid the loss of
information through aggregation of the model residuals in time. The method
can be used to estimate the amount of information available to identify a
specific parameter or to detect failure of model structures in an objective
manner [32]. The methodology was developed by Dr. Wagener, assistant
professor of civil engineering at Penn State University, and first presented in
an article in 2002 [31], and in more detail in another article one year later [32].
These are the only articles found that describe how the method works. The
articles are written in a practical user-friendly manner, and a mathematical
review of the basis on the fundamental functionality of the method has not
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yet been published. DYNIA has its origin in the field of hydrology, but it
does not make any assumptions that should degrade the performance of the
method with regards to any other general dynamic mathematical model.

Wagener has implemented a version of the DYNIA method that is available
in a Matlab toolbox called MCAT [33]. The source code of the method is
protected and not available to the user. To get a deeper understanding of how
DYNIA works and to be able to suggest and test modifications to it as well
as providing a basis for further research, it was deemed important to come
up with a new implementation of the method. This implementation will be
documented later in this chapter. Before that though, a general presentation
of the method is appropriate.

DYNIA is an approach to improve the amount of information that can
be retrieved from observations for model evaluation. The methodology is
based on elements from Regional Sensitivity Analysis (RSA) ([27], [13]) and
the Generalized Likelihood Uncertainty Estimation Framework (GLUE) ([11],
[29], [2]).

The basis of RSA is an investigation of whether an initially known param-
eter probability distribution function(PDF) changes when it is conditioned on
a measure of performance, in this case an objective function. Parameter sets
are typically sampled from an independent uniform PDF for each parameter.
Model performance is evaluated for each parameter set with regard to an ob-
jective function such as the sum of squared errors (SSE), and the parameter
sets are ranked according to model performance. A post simulation PDF is
calculated for each parameter, conditioned on model performance. Differences
between the initial and the conditioned parameter distribution indicate not
only parts of the distribution that performs well and poorly, but also the
sensitivity of the model response to changes in the parameter [32], [27].

GLUE is an uncertainty estimation technique based on Monte Carlo simu-
lation where the model output for each parameter set is evaluated with regards
to a goodness-of-fit criterion, typically chosen as SSE. Models with parameter
sets that give an acceptable goodness-of-fit, according to a certain acceptance
limit, are retained in a behavioural set, while parameter sets whos model
performance are below the acceptance limit are rejected from the rest of the
analysis. The goodness-of-fit, in this case the SSE values, for the parameter
sets in the behavioural set is used to construct a likelihood measure of each
parameter set. For each point in time, the parameter samples of the set of
behavioural models are weighted according to a likelihood weight, associated
with each behavioural parameter set, in forming a cumulative probability dis-
tribution function of the model output value at that point in time [2] [33]
[29]. Uncertainty intervals for the model output are obtained based on the
calculation of confidence limits of this distribution. The likelihood measure
associated with each parameter shall be positive and increase monotonically
with increasing model performance, and the method allows updating of likeli-
hood weights as new data becomes available for model evaluation. Figure 2.1
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shows an example of the output when using the GLUE method to estimate
output uncertainty. Observed values are plotted together with the associated
upper and lower confidence limits. The bottom plot on the figure shows the
width of the confidence interval at each time step, making the identification
of regions with large uncertainties easier.

A disadvantage of the GLUE method is the subjective choice of likelihood
function and the assessment of an acceptance limit that separates behavioural
and non-behavioural models, i.e. how bad the performance can be before it can
be rejected as to have no probability to represent the system [33]. However,
the Monte Carlo sampling procedure enables the user to tune the uncertainty
estimation through the choice of objective function and a priori knowledge
combined with experience-based decisions regarding the expected performance
of a model in the face of for example data errors. The performance of GLUE
should also be tested by verification of the results on independent data sets.

Figure 2.1: GLUE output uncertainty limits (from [33])

As mentioned,the DYNIA method draws on elements from both RSA and
GLUE. The basics steps of DYNIA are shown in Figure 2.2. These steps has
earlier been presented by the author in [10]. The describtion of them herein
goes more into details, but is also influenced by the earlier presentation.
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Figure 2.2: The DYNIA procedure (Wagener et. al. 2003 [32])
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2.2.1 Monte Carlo Parameter Sampling

Monte Carlo parameter sampling is a computational algorithm that repeti-
tively perform model simulations with parameters randomly sampled from an
a priori probability distribution. It is assumed here that a globally identifiable
model structure for the system is known beforehand, so that it is known be-
forehand what parameters are to be analysed. With the DYNIA method, each
parameter is individually and uniformly sampled within an interval of feasible
parameter values. The main area of use for this method may be reparametriza-
tion of a model. This imply that earlier used parameter values combined with
an insight of the dynamics of the system could be used to suggest feasible pa-
rameter values. This is particularily true for white-box and grey-box models,
where most or all of the parameters have a physical meaning.

Simulated model output and corresponding objective function value, for
example SSE, is stored for each sampled parameter set for later assessment.
Figure 2.3 shows an example of the SSE values corresponding to one specific
parameter of Monte Carlo sampled parameter sets. This plot and the rest of
the plots in this section are included to clarify the concepts that are described
in the text. For the curious the plots stem from the analysis of a linear storage
model with two parameters; gain and residence time (rt).

Figure 2.3: Example plot of SSE values corresponding to one specific param-
eter of Monte Carlo sampled parameter sets

Monte Carlo sampling can often be computationally heavy. To achieve
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good repeatability and accuracy of the results from the sampling and simula-
tion procedure it is important to have a good coverage of the feasible ranges
for each parameter. Consequentially it is in most situations necessarily to
perform a large amount of samples.

It has been stated that Monte Carlo sampling using a uniform prior PDF
over a relatively large parameter space, can result in an algorithm that after
billions of model evaluations may not have generated even one good solution
[29]. If numerous parameters are to be analysed, and there is a lack of a pri-
ori system knowledge in order to come up with a compact parameter space,
the computational requirements are likely to become very large. The obvious
problem is that the basic Monte Carlo sampling technique suffers badly from
the curse of dimensionality, i.e. the requirement that the number of sam-
ples per parameter variable increase exponentially with the total number of
parameter variables in order to maintain a given level of accuracy.

When performing the sampling procedure, the principles for sample-based
uncertainty analysis given in Section [?] should be employed. Some other
suggestions on how to reduce the computational demands of the Monte Carlo
sampling procedure follows [10]:

• One obvious suggestion is to increase computing power.

• Perform a preliminary parameter estimation using non-sampling based
methods over a subjectively selected part or all of the available time
series data. Depending on the result, the information gathered can be
used to reduce the feasible parameter space and/or to find a non-uniform
a priori parameter PDF.

• Perform the DYNIA method on pre-selected data segments. The selec-
tion of data segments to study will have to rely on intuition and process
insights.

• Applying a stratified sampling method, such as Latin hypercube sam-
pling. Given n parameters with upper and lower bounds, each param-
eter can be divided in m equally probable intervals. This will give a
hypercube consisting of M divisions and N parameters giving C possible
combinations, where

C =
N∏
n=0

(M − n)N−1, (2.2)

with the requirement that M > N . A few samples are made within each
component, until all components have been sampled. This give better
control of how many samples you need to achieve a certain accuracy. It
should also be possible to combine it with a non-uniformal PDF. Then,
the number of components could be reduced and more samples made in
components where one or more parameters have a certain probability.
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Later in the thesis, modifications to reduce the complexity of the DYNIA
method are discussed in more detail.

2.2.2 Constructing a Measure of Likelihood and
Identifiability

The second step of the DYNIA method introduces elements from the GLUE
methodology. First, the parameter sets from the Monte Carlo sampling are
ranked based on their SSE value. As with the GLUE technique, the parameter
sets are deemed behavioural or non-behavioural based on the model perfor-
mance they give. Only the behavioural parameter sets are considered further
on in the analysis. In the DYNIA method, a collection of the parameter sets
that give the least SSE value are deemed behavioural. [32] suggests the top
10% performing parameter sets to be used further on, but this is a consid-
eration where user experience and knowledge of the system at hand has to
be influential. The behavioural set for the parameter shown in Figure 2.3 is
shown in Figure 2.4.

It has been suggested to use more sophisticated methods of specifying an
acceptance threshold. An example is to accept models that describe certain
characteristics of the response well by solving a multi-objective optimization
problem [33]. This is not treated in greater detatil here.

Figure 2.4: SSE values of the behavioural set of Fig. 2.3

Another element from the GLUE method is the construction of a likeli-
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hood measure. In both GLUE and DYNIA, likelihoods are regarded as any
performance measure that can be used to differentiate how likely it is that the
model is representative for the system at hand. The main requirements are
that the likelihood measure is monotonically increasing, above zero and that
it adds up to one. The MCAT toolbox construct the likelihood measure for
each parameter set with regards to the objective value (usually SSE) of the
model simulation for each parameter set. The following pseudo code describes
this [33]:

likelihood = 1 - objective_value;

if min(likelihood) < 0
likelihood = likelihood - min(likelihood);
end

likelihood = likelihood / sum(likelihood)

This is obviously a very simple likelihood measure to calculate, but it
clearly meets the mentioned requirements. However, this method has been
criticised for treating likelihood in a wider context than the traditional sta-
tistical one [29]. It is stated that it is critical that the likelihood measure
function depend on the determination coefficient, R2, of the maximum like-
lihood estimate, and that Bayesian statistics should be used to construct it.
Section ?? give some insight on the use of Bayesian statistics to calculate a
likelihood function. Nevertheless, the described likelihood measure is being
suggested used by the developer of DYNIA, and it will also used here. Possible
modifications are presented later.

Whereas the GLUE method uses the likelihood measures to estimate model
output uncertainty, the DYNIA method at this point draws use of elements
from the RSA method in order to change the focus over to the estimation of
parameter uncertainties. The likelihood measures are used to create a cumu-
lative distribution of the likelihood (CLD) for each parameter. Assessment is
then performed based on the shape of the CLD. Figure 2.2.b is an example
of this. When this plot show a (nearly) straight diagonal line, it implies that
the likelihood is about equal over the parts of the parameter space that are
members of the set of behavioural parameter values. This is evidential of a
poorly identified parameter, low sensitivity of the model response to changes
in the parameter value, and high parameter uncertainty as there is a low de-
gree of uniqueness of the most optimal parameter values. An estimate on
the parameter uncertainty is easily obtained by calculating upper and lower
uncertainty limits corresponding to a specific uncertainty interval (e.g. 95%).

In the opposite case, when the plot of the CLD is curved, i.e. conditioned
on the likelihood weighting, which in turn is conditioned on model perfor-
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mance, you have evidence for a better identified parameter. The narrower
the CLD is, i.e. there is a small behavioural set, and when it is steep over a
small part of the feasible and behavioural parameter values, you have indica-
tion on a strongly identified parameter. The close relationship between the
identifiability of a parameter, the sensitivity of a model to parameter changes
and the uncertainty of the ’true’ parameter value has been discussed earlier in
the thesis. The connection between information content in the data set and
these concepts has also been discussed. DYNIA exploits these connections to
interpret the conditioning of the CLD in the context of information content
in the data set. This will be described in the next section.

Figure 2.5: A parameter with a low uncertainty band and steep CLD, indicat-
ing high information content in the data set wrt. this parameter. The same
parameter as in Fig. 2.3

Figures 2.5 and 2.6 shows examples of the plot of CLD and uncertainty
bands. For both parameters the Monte Carlo sampling had a feasible param-
eter space equal to the entire x-axis of each parameter.

Further on in the DYNIA method, the parameter range is divided into an
arbitrary number of regions. A high number of regions increase computational
complexity later, but can give more accurate results. 20 regions is suggested as
an example [33]. The gradient of the CLD is calculated in each region. These
gradients will indicate the average strength of conditioning to the objective
function for the parameter values within that specific range. In the DYNIA
method, this is looked upon as an indicator of the identifiability of each range,
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Figure 2.6: A parameter with a wide uncertainty band and CLD with a gentle
slope, indicating low information content in the data set wrt. this parameter

resulting in that the region with the highest gradient marks the location of
greatest identifiability of the parameter [32]. Figure 2.7 shows an example
plot.

2.2.3 Moving Window Calculation of Likelihood and
Identifiability Measures

The third and final main step is where the likelihood and identifiability mea-
sures are employed in a dynamical manner to arrive at a method that give a
measure on the information content and the identifiability of the process data
as a function of the time series.

Dynamic employment of likelihood and identifiability here means that a
cumulative likelihood distribution (CLD) is calculated at each time step. This
is done in a moving-window approach. At each time step t in a data set with
a constant sampling interval, a window is created consisting of t and the n
time steps before and after t, for a total of 2n+ 1 time steps. 2n+ 1 is called
the window size. Each time step has its own appurtenant window, and the
methods described in the previous section are performed for each window.
Thus, for each window a behavioural set is obtained from the Monte Carlo
sampled parameter sets, and likelihoods, CLD and gradients of the CLD are
calculated. This give an aggregated CLD at each time step. Notice that the
Monte Carlo sampling is only performed once.
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Figure 2.7: Plot of the CLD and gradients (eight ranges) for the same param-
eter as in Fig. 2.3

The window size depends upon the length of the period where the param-
eter is influential on the system dynamics, for example after a setpoint step
change. This will in most cases to some degree have to be subjectively chosen
or . A large window size is less prone to e.g. measurement errors, but is not
suited for systems where the parameters have short influential periods.

2.2.3.1 Information Content

As mentioned, the parameter uncertainty is estimated by calculating up-
per and lower uncertainty limits from the cumulative likelihood distribution
(CLD) for each window. In the DYNIA method the width of this confidence
band is not only regarded as an estimate on the parameter uncertainty, but
with the dynamic employment of the results provided by the moving-window
approach also as a measure on the information content at and around the
midpoint of each window. A narrow confidence band in the CLD of a window
implies that there is high information content because the uncertainty is low
and the sensitivity to parameter changes high.

In the MCAT toolbox, a 90% confidence interval is suggested as a versatile,
’allround’ value. It is however hard to give firm advices on this because it
depends on the quality of the data set.

A plot that shows how the information content for a parameter vary with
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the time series of the process data can then be generated. An example is
shown in Figur 2.8. The value of the information content (IC) at each time
step t is suggested to be calculated as:

IC(t) = 1− pu(t)− pl(t)
pmax − pmin

, (2.3)

where pu and pl are the parameter values at the upper and lower confidence
limits, and pmax and pmin are the maximum and minimum acceptable values
of the parameters in the behavioural set. This normalizes the estimate of the
information content to a value between 0 and 1, where a higher value means
more information content.

Figure 2.8: Plot of the information content of the same parameter as in Fig.
2.3

2.2.3.2 Parameter Estimation with DYNIA

The dynamic employment of the principles of DYNIA can be taken one step
further to get a complete parameter estimation method. The user may only
be interested in identifying data segments with high information content and
estimate the model parameters with a traditional method, e.g. the least-
squares method described in 1.2.3.1, but parameter estimation with DYNIA
is nevertheless presented here.

The basis of the method lies in combining the cumulative likelihood distri-
bution (CLD) in each window with its gradien. First, the gradient is used to
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obtain an aggregated identifiability distribution within the uncertainty band
of the CLD for each window. The upper and lower bound of the uncertainty
band indicate the range that the ’true’ parameter value is a part of. The
information content is a normalized version of the uncertainty band, better
suited to compare data segments for different parameters and models. The
identifiability distribution, on the other hand, indicate the parameter values
from the uncertainty band that give the best model performance. If the CLD
has a gradient that is high for a small range of parameter values, but low for
the rest of the uncertainty interval, it indicates a high degree of identifiability
and uniqueness for the parameter values in that range.

Next in the parameter estimation, the uncertainty band of the CLD for
each window is plotted, along with its gradient, over the time series. The gra-
dient at each time step is indicated by varying the color inside the uncertainty
band, depending on gradient value. The difference of this plot compared to
the plot of the information content is that instead of showing how the infor-
mation content vary with time, with a value between 0 and 1, it shows the
uncertainty band, with parameter values, at each time step, and in addition
indicates the identifiability of the parameter values inside that band. The
optimal parameter value estimates are then likely to lay in an area of the plot
where the uncertainty band is narrow and the gradient of the CLD reaches its
highest value. Figure 2.9 shows an example of this.

Figure 2.9: Parameter estimation with DYNIA for the same parameter as in
Fig. 2.3. Darker color means larger gradient. The true parameter value is 1.



3 Implementing DYNIA

A goal of this thesis is to produce and present an implementation of the
DYNIA method. There is an implementation of the method in the MCAT
toolbox for Matlab [33], but the source code of the implementation is not
available. A presentation of the implementation is included to provide further
insight to the functionality of DYNIA, in addition to giving ground for a
discussion and research on possible modifications to improve its functionality.
Some of the Matlab files that were created for the implementation and the
examples are found in Appendix B. All are delivered digitally to the faculty
at the time of submission of the thesis.

The flowchart in Figure 3.1 gives a general overview of the steps that are
taken in the developed implementation. The first step is to provide all the
necessary data that the DYNIA algorithm rely on. This includes obtaining a
data set with time, input and output values, the choice of a model structure
with parameter ranges for each parameter, and the selection of the number of
Monte Carlo samples, the window size, the number of bins used in the CLD
gradient calculation, and the percentage x of the best performing parameter
sets that are to be used in the moving-window calculations.

The Monte Carlo sampling is performed by simulating the model struc-
ture for each sampled parameter set. The whole time-series of the simulated
output is stored for each of these parameter sets. In this implementaton the
simulations are taken care of by using the Matlab function lsim on a system
model in the form of a transfer function or a state space model.

When the Monte Carlo sampling and the simulations have finished, the
moving-window calculations begin. These are the ones that are iteratively
performed for each time step as shown in the flowchart. The Matlab file
movingWindowCalcs.m presents how this is implemented.

The first step of the moving-window calculation is to calculate the summed
square error (SSE) over the window period, for each sampled parameter set.
Next, the parameter sets are ranked according to their SSE value and the
top x percent performing parameter sets are contained in the behavioural set.
x was mentioned as a parameter that is set before the start of the DYNIA
algorithm. Alternatively, one could set an upper limit on the acceptable SSE
value over a window period. The selection of the best performing parameter
sets for a window is implemented in selectBestParameters.m.

31
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Figure 3.1: A scheme of the DYNIA implementation
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Next up is to perform the DYNIA analysis on the behavioural parmeter
sets for the current time step (i.e. window). The DYNIA analysis consists
of four steps that all are done for each behavioural parameter set for the
current time step; calculation of a likelihood measure (calcLikelihood.m),
calculation of the CLD (cumulLikelihood.m), calculation of the gradient of
the CLD (cld gradient.m) and calculation of the confidence interval of the
CLD (confLimits.m).

The calculation of likelihood in this implementation is equal to the method
suggested in [33], as presented in Section 2.2.2. The likelihood measure for
each behavioural parameter set is then used to calculate the CLD for the
parameter being analyzed.

For the range of parameter values that are in the behavioural set, the CLD
is calculated by sorting the parameter values and then cumulatively adding
the likelihood measure for each sampled parameter value. With the likelihood
measure that is applied this give a CLD that is monotonically increasing to a
value of one. Parameter samples that have a value below the lowest value in
the behavioural set are given a CLD value of zero, while parameter samples
with a value above the highest value in the behavioural set are given a CLD
value of one.

The third main step of the moving-window calculations is to calculate the
gradient of the CLD. The feasible parameter range that is set before running
the Monte Carlo sampling is divided into bins of equal size, the number of
which was also set in the preamble. If all parameter values in a bin is lower or
higher than the lower and upper limit of the paramter values in the behavioural
set, the gradient of this bin is zero since the CLD will have a constant value
throughout this bin. Otherwise, the gradient value for a bin is calculated as
the difference between the CLD value at the beginning and the end of the bin.
The number of bins relative to the size of the feasible parameter range is thus
obviously the deciding factor with respect to the resolution of the gradient
calculations.

Finally in the moving-window calculation, confidence limits are calculated
for the CLD. Upper and lower confidence limits are obtained by calculating
the upper and lower index that correspond to the interval that encompass a
central percentage of the data. This percentage is decided by the choice of
an uncertainty level. The parameter values of the confidence limits are then
found at these indexes from the sorted vector of the behavioural parameters.
After this, the information content for the parameter under analysis, at a given
time step, is calculated as shown in Eq. 2.3. Information content, confidence
limits and the gradient for each parameter bin is saved for each time step.

When the moving-window calculations have been completed for all time
steps, presenting the gathered knowledge to the user is the next task. The
code for the generation of these plots are found in the files that are used to
run the examples in the next section.
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3.1 Examples

Two examples and one case study are presented in this section, all of which
have been performed with the presented implementation of DYNIA. The ex-
amples are included to give a general insight into the functionality of the
implementation, and to assess its performance to a known model. The case
study uses real process data from an offshore oil production facility that uses
the PIMAQ system of Siemens for management and acquisition of process
data. The DYNIA method is then applied to this data set.

3.1.1 Example 1: First Order System

The first example consider a first order linear time-invariant (LTI) system.
The time constant and gain parameters characterize the exponential response
to step changes on the input. Although first order systems describes dynam-
ics that are simple of complexity, many control systems in the oil and gas
production industry can be described well with a first order model.

Input data were chosen to be constant for large parts of the data set, with
some step changes inbetween. From the experience of the author this is also
the case with control systems in many real-life scenarios. The output data
was generated by:

y

u
(s) = k

T1 + 1 k = 2, T1 = 3 (3.1)

Some noise was added to the output signal to imitate measurement noise.
The input and output data for the experiment is show in Figure 3.2.

Figure 3.2: Input/output data for this example. A first order system
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This data set was then subject to an analysis with the DYNIA method.
First, the preliminary conditions had to be decided. This includes choice of
model structure, setting parameter ranges and deciding window size number
of Monte Carlo samples. The model structure was selected to be corrspondent
with the “true” one, a first order LTI system. The parameter range for both
parameters was set to be θ ∈ [0, 7]. The example can be run in Matlab with
the file example firstorder.m.

As can be seen from Figures 3.3 and 3.4, the gain parameter has a high
information content and is easily identifiable whenever there is a constant
input value not equal to zero. This is as expected, since the gain describes the
relationship between the input and output when the system is in a stationary,
non-zero condition. As we can see from the plots, the data set has a high
information content with regards to the gain parameter until the system goes
to its zero condition.

Figure 3.3: Information content of the gain parameter

The next two plots, Fig. 3.5 and 3.6 show the corresponding information
for the time constant. It is observed that the information content of this
parameter is very close to being the exact opposite of that belonging to the
gain parameter. This is fairly obvious since there can not be made a decision
about the time constant as long as the system is in a stationary state. The last
input step puts the system in a stationary zero state. Consequentially, from
that point and out, the data set contains information regarding, in its near
entirety, the time constant. It is observed how the information content steadily
increase and the parameter uncertainty steadily diminish after the input step
to zero. This goes in line with the thought that the more (informative) data,
the better.
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Figure 3.4: Parameter identifiability plot of the gain parameter

Figure 3.5: Information content of the time constant parameter

In addition to this, there are small spikes of higher information content
for the time constant around the two short input step changes. But, with
the noise on the output signal, the short duration of the input steps before



3.1. EXAMPLES 37

Figure 3.6: Parameter identifiability plot of the time constant parameter

they return to their previous value and the relatively small number of Monte
Carlo samples (2000) compared to the large parameter ranges, the parameter
uncertainty is still large. However, these spikes in the information content
are not “worthless”. They do indicate segments of the data that are inter-
esting with regards to this parameter. Knowing this, there are numerous
options on how to proceed. One option is to select a data segment around a
spike and use it directly as the data set in a traditional system identification
method. That would surely work well in this case, but the low peak, i.e. high
parameter uncertainty, of the spikes imply a risk that the segment may not
describe this parameter well after all. Alternatively, one could use the DY-
NIA method again to reduce this risk. One option is to simply icnrease the
number of Monte Carlo samples. This will always improve the performance
of any sampling-based uncertainty analysis, one of which the DYNIA method
is based upon. The computational cost is likely to increase by a large amount
though, rendering this option less attractive. A more enticing approach is to
reduce the parameter ranges for the Monte Carlo sampling for the parameters
that are well identified. The first run of the DYNIA method gave a very strong
and unique indication on the value of the gain parameter. By minimizing the
feasible range for the gain parameter, a new run of the DYNIA method on
the data set give increased performance with regard to the other parameters,
in this case the time constant. Figures 3.7 and 3.8 show the DYNIA output
for the time constant when a much tighter range on the gain parameter is
applied.
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Figure 3.7: Information content of the time constant parameter after the
second run

Figure 3.8: Parameter identifiability plot of the time constant parameter after
the second run
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3.1.2 Example 2: Second Order System

In this example the system output was generated by the following overdamped
second order LTI model with time delay:

y

u
(s) = k

(T1s+ 1)(T2s+ 1)e
−Θs k = 2, T1 = 2, T2 = 2

3 ,Θ = 100 (3.2)

All the parameters, i.e. the gain k, the time constants T1 and T2 and the
time delay Θ, were subject to the DYNIA analyis. Figure 3.9 show the input
and output data. As can be seen, the data set is in its zero state most of the
time, with two input steps of short duration. It is also obvious that there is
a significant time delay and considerable noise on the output signal. In this
example, as in the previous, the model structure that the DYNIA method was
performed with was the same as the one used when generating the output. The
parameter ranges, which correspond to the y-axis intervals of the parameter
identifiability plots, must also be considered as quite large.

Figure 3.9: Input/output data for this example. A second order system with
time-delay

Beginning with the time delay parameter, we see that this parameter has
a high information content and is well identified at the time when an input
change acts on the system output (Figures 3.10 and 3.11). It is important to
notice here that the temporal variance of information content and parameter
uncertainty are calculated and plotted with regard to the time when this
information is discovered. In the case of the time delay this means that a
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strong estimate on the time delay was not first found when the first input
change was applied, but when the first input change actuated the system
output.

Figure 3.10: Information content with regards to the estimation of time delay

Figure 3.11: Parameter identifiability plot of the time delay parameter
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Figure 3.12: Information content of the first time constant parameter

Figure 3.13: Information content of the gain parameter
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When selecting data segments in systems with time delay with the DYNIA
method, it is important to keep in mind that the input data corresponding to
high information content for a certain parameter might occure a considerable
amount of time (i.e. one time delay) before an increase in information content
is discovered.

This second order system has two time constants. Figure 3.12 show the
DYNIA analysis of T1. At this stage in the process, with the given choices
of parameter ranges etc., this parameter is poorly identified by the DYNIA
method, and the plot of the information content does not give reliable results
for data segment selection. As will be seen later in the example this does not
mean that it is not possible to get a stronger indication on data segments that
carry information with regards to this parameter.

The second time constant, T2, show substantially better properties with
respect to information content and parameter identifiability than T1(Fig. 3.14
and 3.15). The parameter identifiability plot show that the gradient of the
cumulative likelihood distribution is considerably larger for the lower part of
the uncertainty interval. Looking at the model that generated the output this
corresponds very well with a true parameter value of 2

3 .

Figure 3.14: Information content of the second time constant parameter

The last parameter to be analyzed is the gain, k. From Figure 3.13 we
see that there are tendencies to increased information content when the in-
put actuates the output, but in a real-life scenario these results surely would
have been likely to be considered inconclusive. So, after performing the DY-
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Figure 3.15: Parameter identifiability plot of the second time constant

NIA analysis on the four parameters, with fairly large parameter ranges one
should add, we have two parameters, Θ and T2, for which a good amount of
information in the data set has been discovered, and two, T1 and k, for which
this not has happened. As mentioned in the previous example, the DYNIA
method is highly dependent on the number of Monte Carlo samples. How-
ever, narrowing down the parameter ranges for the parameters that have been
found to have a strong indication on being well identified will also improve
the performance of the method for the parameters that have not yet been
properly identified.

Figures 3.16 to 3.19 show that this indeed is the case in this example when
stricter parameter ranges are set for the parameters that were well identified
after the first run of DYNIA.
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Figure 3.16: Information content of the first time constant on the second run
of DYNIA

Figure 3.17: Parameter identifiability plot of the first time constant on the
second run
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Figure 3.18: Information content of the gain on the second run

Figure 3.19: Parameter identifiability plot of the gain on the second run



46 CHAPTER 3. IMPLEMENTING DYNIA

3.1.3 Case study

A case study has been performed in order to test the impementation of DYNIA
with real process data obtained by the PIMAQ system of Siemens. PIMAQ
is an advanced process information management and acquisition system that
has storage capacity for the process data generated throughout the lifetimes
of oil and gas production systems. The data in this case study stems from the
Al Shaheen oil field, which is a part of the Dukhan field which is the largest
producing oil field on the west coast of the Qatar peninsula. Al Shaheen is
operated by Maersk Oil Qatar AS, producing 200000 barrels per day.

The data set used in this example consists of input and output data ob-
tained from the control of CWR (cooling water return) in a cooling water
system. Details of the specific system herein considered is not given, the
data is purely used to analyze its information content. Generally though, the
objective in treating heat exchangers that use cooling water as a heat dis-
charge fluid is to keep the water side as clean and corrosion free as possible.
Open recirculating cooling systems are prime candidates for contamination
problems. If left untreated, contaminants are allowed to concentrate in the
system as the cooling water evaporates. This can lead to numerous problems,
e.g. scale, fouling, microbiological growth and corrosion. These problems can
among other things cause breakdown of the metal parts of the cooling system
and reduced heat transfer efficiency. Loss of heat transfer efficiency can cause
reduced production. In fact, if the heat transfer falls below a critival level,
the entire system may need to be shut down and cleaned. For these reasons
the temperature and pressure of the cooling water that is returned into the
system is controlled.

The input and output values are shown in Figure 3.20. The data set
consists of approximately one months worth of data. A challenge for the use
of the DYNIA implementation on this data set was that the sampling done
by PIMAQ is event-based. Thus, unlike in the previous examples, there is
not a constant time step between samples. In addition, the input and output
values were sampled independently, so their time vectors were not equal. It
was found necessary to preprocess the data to get a common time vector for
the input and output data. This was done by the use of linear interpolation.
It was observed that the sampling interval for both the input and output is
very small when the system is actuated in some sort, i.e. when something
is happening. Consequently, the interpolation and “synchronization” of data
occured predominantly in parts of the data set with steady input and output
values.

The event-based sampling led to some problems with respect to the simu-
lations of the system, and the DYNIA implementation that has been presented
in this thesis is more applicable to systems with a constant sampling inter-
val. Nevertheless, the implementation was used on the data set and promising
results were obtained.
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Figure 3.20: Input/output values of the data set used in the case study

The first step of the case study was to create a baseline model of the
system in order to be better positioned to analyze the results from the DYNIA
method. This was done in the traditional manner of manually searching for
input steps and using the data around these steps to calculate a model based
on the step response. A first order model of the system was obtained:

y

u
(s) = k

T1 + 1 k = 2.04, T1 = 2.16 (3.3)

This model was calculated by fitting the data around the input change at
time 1.6x104 to the step response of a first order model with the method of
least sqaures.

The parameter ranges were set to k ∈ [0, 6] and T1 ∈ [0, 8]. It was observed
that the system had quick responses to input, and it was found appopriate to
use very small window sizes, with n values of 1-3 (window size = 2n+1). The
percentage of the sampled parameter sets giving the lowest summed squared
errors for each window was set to 10%. This has been suggesteg as a decent
choice in the existing literature on DYNIA [33]. This example was performed
with 5000 Monte Carlo samples. Generally, more is more when it comes to
Monte Carlo sampling. This is also the case for DYNIA, but there is an
obvious cost in increased computing time.

Figures 3.21 and 3.22 show that k has a strong indication on being well
identified for most of the time series. The information content is generally
high all over, with a few negative spikes that coincide with step changes on the
input. This is not surprising in this case where the input is close to constant
for most of the data set, given that the gain parameter will determine the size
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of the steady state response when the input settles to to a constant value.

Figure 3.21: Information content of the gain parameter

The parameter identifiability plot for the gain parameter (Fig. 3.22) show
how the parameter uncertainty and the gradient of the cumulative likelihood
distribution varies with time. This plot give a strong indication on that this
parameter is well identified with a parameter value of k ≈ 2. Notice however
that the gradient of the CLD has its highest value (i.e. is darkest on the plot)
for a value of 1.7− 1.9. Taking a look at the input/output plot in Figure 3.20
we see that the input actually has increased quite a bit from a value hovering
around 36 to around 40. This happens without any noticeable change of the
output value, which remain fairly constant around a value of 72. This could
indicate that the system has gone through a change of operational mode,
or that something else has impacted the physical attributes of the system
dynamics. This is an example of how the DYNIA method can be able to
pinpoint the time and magnitude of changes that for some reason, known or
unknown, has been made to the system dynamics.

Figure 3.23 show the information content for the time constant T1, un-
fortunately with very little indication towards data segments with healthy
amounts of information with respect to the parameter. There are some minor
spikes that, when compared to the I/O plot, do correspond to the times when
changes to the input are made, which is also when you would expect informa-
tive data for a time constant. The results are however not of a quality that
makes one able to draw any kind of conclusions towards whether or not this
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Figure 3.22: Parameter identifiability plot of the gain parameter

data set is informative with respect to the time constant.
What we have seen in the two previous examples though, is that the quality

of the results from a DYNIA analysis for a parameter can improve dramatically
when knowledge about the other model parameters is used to improve the
performance of the uncertainty analysis. The gain parameter k was shown to
be strongly identified for this system. After setting a strict parameter range
of k ∈ [1.8, 2.2], a new DYNIA analysis is performed for the time constant.

The results from the second run of DYNIA for the time constant T1 are
shown in Figures 3.24 and 3.25. The results have improved strongly. The
segments of high information content are considerably more pronounced than
after the first DYNIA analysis. This clearly shows the value of exploiting
existing knowledge of the system with regards to improving the performance
of DYNIA.

Looking at the parameter identifiability plot (Fig. 3.25), we see that the
time with the highest information content corresponds with a parameter value
close to 0. Looking at the I/O data again, it is clear that at this time there is
an erroneous reading in the data set where both the input and output values
are zero for one sample before they return to their previous steady state value.
It is unfortunate that this erroneous gives the highest measure on information
content, and this is something the user has to keep in mind when using the
DYNIA method. Consequently, it is sensible to check that the data segments
with high information content does not contain erroneous data.
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Figure 3.23: Information content of the time constant parameter

Figure 3.24: Information content of the time constant after the second run of
DYNIA



3.1. EXAMPLES 51

Figure 3.25: Parameter identifiability plot of the time constant after the sec-
ond run

Figure 3.26: Comparison between modelled and actual output. T1 = 2, k = 2
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The other major spikes on the plot of information content correspond
to input step changes, thus being reasonable with regard to where one would
expect to find informative data for the time constant in this data set. Looking
at the parameter identifiability plot, the quality of the results is not good
enough to give a strong indication on the parameter value. However, the most
probable reason for the use of DYNIA is to indicate data segments that may
be prosperous when used as the data set in a system identification procedure.
In that context the DYNIA analysis has provided promising results for this
case. Even so, the parameter identifiability plot does give indications on a time
constant value in the range of 1 − 3.5. Different values from this range were
used to simulate the system and compare it to the real value. Figure 3.26 show
one such comparison between simulated and actual output. It became clear
that the different time constants gave very similar overall model performance
as measured by SSE, the gain was kept at k = 2 for all simulations:

Time Constant SSE
1 1.8803x104

1.5 1.8776x104

2 1.8772x104

3 1.8772x104

4 1.8772x104



4 Industrial Applicability of
DYNIA

This chapter considers how different aspects related to the DYNIA method
impacts the practical applicability in the industry.

4.1 Window Size Selection

We have seen that parameter identifiability is calculated at each time step
using the residuals for a number of time steps, n, before and after the point
considered. The number of time steps that should be considered in each
window is dependant not only on the response time of the parameter under
investigation, i.e. on the period over which the parameter is influential, but
also on the quality of the data set [32]. An unappropriately large window
size is likely to mix periods of noise and information, blurring the informa-
tion. Running the examples from the previous chapter with increasingly large
window sizes also gave clear indications on this. A suggestion on the choice
of n is to use the parameter range selected for the dominating response time
parameter as a starting point.

In general, smaller window sizes give better results with respect to the
conservation of information, but also increase the risk of obtaining results that
can be distorted by measurement errors and the like. This obviously depends
on the quality of the data. Knowledge of measurement uncertainty and other
aspects on the quality of the data set should be taken into consideration when
the window size is selected.

A note should also be made on the results that are obtained for some of the
first and last points of time in a data set. With DYNIA, the moving-window
approach implies that for the n first and last data points, a full window-size
is not possible. Hence, the results from these parts of the data set will to
some degree be distorted, and care should be taken when they are analyzed.
Decisions made from the DYNIA method should at least not solely be based
upon these results.

53
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4.2 Computational Complexity

The examples in the previous chapter show that the DYNIA method in fact
has the capability to analyze how information content and identifiability, with
respect to a specific parameter and a model structure, vary with time. On
the other hand, they also demonstrate that good results might not be achie-
veable without some effort from the user. It appears that to achieve a good
DYNIA analysis for all the parameters of a system, it will often be necessary
to analyze one parameter at a time and apply conclusions drawn from one
DYNIA instance for a parameter into a new instance for another parameter.
The size of the parameter ranges for the Monte Carlo sampling is especially
decisive in this matter, and it is connected with the decision of the number of
Monte Carlo samples to perform and the number of parameter sets to contain
in the behavioural set. If the DYNIA method is performed with wide param-
eter ranges and a relatively low number of samples, the method will on many
occasions be doomed to give at the best weak indications towards segments of
high information content for a parameter. The problem when this is the case
is that the sampling density is low, and that it impacts and impairs the ability
of the method to “see” how the information content vary with time. This can
be compared with the impaired ability to see details of an image when the
resolution is reduced.

The sampling density, d, for one specific parameter is decided by the rela-
tionship between the number of samples of that parameter, s, and the size of
the parameter range, p. The number of samples to achieve a desired density
is thus the product of the density and the parameter range.

d = s

p

s = d× p (4.1)

If we assume that the parameters of a system have similar demands for
the number of samples required to achieve their desired densities, we find that
the total number of samples, S, required to maintain these densities when the
parameters are put together in parameter sets grows exponentially with the
number of parameters, n:

S = sn (4.2)

Each sampled parameter set is simulated at all points in time, nT , in the
data set, for a total number of nT×S evaluations of the algorithm used to solve
the differential equation of the system. Since the exponential growth is the
dominant factor as n grows larger, the parameter sampling and simulation has
exponential time complexity when considered by the big O notation, when the
sampling density is to be constant and irrelevant of the number of parameters:
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T (n) = O(2n) (4.3)
The parameter ranges can in many cases be reduced, the paramteters

may not need equally many samples to achieve desired sampling density, and
processing power may be increased, but none of these matters can cover up for
the fact that the problem is of exponential complexity. For the practical use
of DYNIA on systems with more than a handful of parameters, this is of huge
impairment. However, the examples have shown some promising practical
functionality, and the following section will display a suggestion on how the
DYNIA method could be included in a process data logging system to achieve
better practicability of the method.

The moving-window calculations of the implemented version of DYNIA
evaluates the SSE of the output for the simulations for each sampled parameter
set, compared to the real output, to obtain a behavioural set of parameters.
This has linear time complexity. Likelihood and CLD of the behavioural
parameters are then evaluated with linear time complexity. Since the size of
the behavioural set is dependent on the total number of samples, the big O
notation for the time complexity of the moving-window calculations, with S
samples, becomes:

T (S) = O(S2) (4.4)

4.3 Practical Inclusion of DYNIA in a Logging
System

The suggestion is to run an instance of the DYNIA method that analyze the
process data while these data are obtained by the logging system. The main
thought is that the Monte Carlo sampling is performed once, and that the
moving-window calculations are done in a “semi-online” way as the logging
collects new process data.

The idea is that when new input and output data is logged at a point in
time, one iteration of the moving-window calculations described in Chapter 3
is performed. Depending on the window size number n, the moving-window
calculations are performed for the data logged at t − (n + 1), where t is the
current time step. This includes simulation of the Monte Carlo sampled pa-
rameter sets to obtain the behavioural set that is to be used for the window
under evaluation. The system will only have to be simulated for the time
steps that are a part of the window, something which should be possible to do
effectively. Then, likelihood values, cumulative likelihood distribution (CLD),
gradients of the CLD and uncertainty intervals are calculated, and the values
for information content and parameter identifiability are stored. In this way
it is possible to see how the information content in the data vary as the data
is being logged.
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When the DYNIA method is applied in this way, a database with the
time-varying information content is readily available when a decision is made
to reevaluate the model parameters by the use of the system identification
procedure. In other words, this way of including DYNIA in a logging system
nearly eliminates the overhead cost and labour that is introduced by stopping
the production to perform specificially designed experiments. It is also more
time-efficient than performing the DYNIA method in the traditional manner,
as per the examples from the previous chapter.

Based on how the information content of the different system parameters
vary with time, the obvious approach in the search for an informative data set
is to base the system identification procedure on data segments where high
iformation content has been suggested by the DYNIA method.

The data segment selection could be automatic, by introducing a lower
limit on the acceptable value of the information content measure. Based on
the experiences drawn from the examples though, it may seem like a subjective
selection based on plots of information content plots is the most appropriate
approach, at least with the current implementation of the method.

4.4 Including DYNIA in the System Identification
Procedure

Based on the properties and possibilites with DYNIA it seems like the method
can be used in a system identification procedure, either solely as a tool for lo-
calizing data segments of high information content, or as a validation method.

A suggestion on a system identification procedure could be to first employ
the DYNIA method on the process data set. Then, based on some criteria,
data segments of high information content are chosen as the data set to be
used in the assessment of the candidate models (the parameter estimation
in this case, since a globally identifiable model structure is assumed). This
assessment could take place with a parameter estimation technique such as
the least-squares method, described in Section 1.2.3.1. The parameter esti-
mates generated by the DYNIA method could then be used for some sort of
verification of the results.

A prerequisite of both DYNIA and traditional system identification tech-
niques is the selection of a model structure that the analysis is carried out on.
A priori knowledge of the system is usully the basis on which the model struc-
ture is selected. An asset of the DYNIA method in this context is that it has
the capability to indicate model structural failures. If the time-variation of the
gradients of the CLD, i.e. the measure of the parameter identifiability, varies
with time, this should be investigated as a possible sign of the selected model
structure not being able to properly represent the system dynamics. This
assumes however that the specific parameter does not describe time-varying
characteristics of the system response.



5 Modifications to DYNIA

An advantage of the DYNIA method is that it can be used with any appro-
priate objective function, likelihood construction method, uncertainty interval
etc. This means that the method easily can be modified if better approaches
in one of these or other areas connected to the method are found. This chapter
introduces concepts that are thought to have good opportunites with respect
to an increased and more efficient functionality of DYNIA.

5.1 Parallel Computing

Parallel computing is a cost-effective method for the fast solution of copmu-
tationally large and data-intensive problems. The principle behind parallel
computing is that large problems can often be divided into many small prob-
lems that can be solved in parallel. Inexpensive parallel computers such as
desktop multiprocessors and clusters of PCs have made methods for parallel
computing generally applicable [17]. Parallel computing will now be intro-
duced as a benefitial modification with respect to the efficiency of the moving
window calculations, and also to the Monte Carlo parameter sampling.

Even though an evaluation of the simulation results for all the time steps
that make up the current window is performed in order to obtain the behaviour
parameters at that specific time step, this does not mean that the moving
window calculations of one time step depends on these calculations done at
another time step, neither before or after the time step being under analysis.
The simulations for all the sampled parameter sets are performed before the
moving window calculations begin, giving the differences between real and
modelled output for all parameter sets at all time steps. Thus, the moving
window calculations are computationally independent of each other, and they
are appropriate for parallel computing.

Parallel computation of moving window should provide large reductions of
the total computation time when performing a DYNIA analysis on a system
in an “offline” manner, as per the examples. The magnitude of the reductions
will naturally depend upon the number of time steps to be analyzed as well
as the available supply of parallel computing equipment.

No large modifications to the presented implementation are necessary to
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facilitate for parallel computation of the moving windows. However, the ini-
tialization of the parallel processes will obviously have to be performed before
the commencement of the moving window calculations, and the moving win-
dow results from each of these processes must be gathered in an appropriate
manner.

Parallel computing can also be applied to Monte Carlo parameter sam-
pling in an intuitive and appealing way, that improves the efficiency of the
sampling scheme. We have seen how the DYNIA method need a large number
of Monte Carlo samples and simulations to give robust results. With parallel
Monte Carlo sampling, we can achieve linear speed-up of the sampling proce-
dure [25]. Suppose it was found that n parameter sets had to be sampled to
achieve the desired sampling density. If C computers are available for the sake
of parallel computing, each computer need only to produce n

C samples (and
corresponding simulations) to achieve the same sampling density as the tra-
ditional sampling method. If the computers used for both the traditional and
parallel Monte Carlo sampling are assumed to have equal processing power,
the parallel MC sampling will have achieved linear speed-up compared to the
traditional method.

As with parallel computing of the moving windows, this modification re-
quires small modifications to the implemented version of DYNIA, and the
perceived efficiency for the operator should improve well in practice.

5.2 Improving the Parameter Sampling

The DYNIA method has been shown to be flexible and the moving window
calculations suitable for parallel implementation. However, the Monte Carlo
sampling of the parameter space is not efficient, and a major disadvantage of
Monte Carlo sampling is the large number of samples necessary to achieve good
density of the samples and thereby reliable answers from the overall method.
Parallel Monte Carlo sampling was shown to give linear speed-up, but with the
exponential time complexity of the sampling procedure it is important to do
more research on the possibility of improving the efficiency of the parameter
sampling. Some thoughts on this is provided in this section. Unfortunately, it
was found difficult to provide definite suggestions on how this could be done
for the DYNIA method, but some guidelines towards what one might focus
on in future work is given.

Parts of the DYNIA method builds on aspects from the Generalized Like-
lihood Uncertainty Estimation (GLUE) technique, which has been described
earlier in this text. The Monte Carlo parameter sampling over the feasible
parameter space is one of the aspects that has been derived from the GLUE
method.

Some research has been put into the investigation of the possibilities to
alter the parameter sampling towards better efficiency. [5] discusses the use
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of adaptive Markov chain Monte Carlo sampling as an alternative to the tra-
ditional Monte Carlo algorithm, while [15] discusses the use of a sampling
scheme based on genetic algorithms. These new alternative sampling schemes
have shown improved efficiency compared to the traditional Monte Carlo al-
gorithm.

There has also been performed research on the integration of a genetic
algorithm in a Markov chain Monte Carlo sampling algorithm, though not with
regards to neither DYNIA, GLUE or any other sampling based uncertainty
analysis.

It should be said from the start that DYNIA has some attributes that
makes the changes done with the sampling scheme of the GLUE method far
from straightforward to replicate with DYNIA, but it is nevertheless con-
sidered by the author as an important area for further research in order to
increase the practicability of the method. For this reason, an introduction to
these concepts are included here, together with thoughts on the possibility to
use them to enhance the efficiency of DYNIA.

Markov chain Monte Carlo is the name of algorithms that uses the previ-
ous sample value to randomly generate the next sample value, thus generating
a Markov chain. For a Markov random variable, only information about the
current state of the variable is needed to predict the future value. A Markov
chain refers to a a sequence of random variables generated by a Markov pro-
cess.

The basic idea of Markov chain Monte Carlo sampling is to sample from a
probability distribution that based on constructing a Markov chain that has
the desired distribution as its equilibrium distribution. This can be used to
generate “good” solutions with a higher probability because the samples are
made from a distribution where “good” solutions have higher probabilities.

Genetic algorithms are search techniques used in computing to find so-
lutions to optimization problems that serve as an alternative to traditional
optimization techniques by using directed random searches to locate optimal
solutions [28]. The search methods of genetic algorithms have their root in
the mechanisms of evolution and natural genetics, and are as such a sub-
class of evolutionary algorithms. The techniques that are used are inspired by
evolutionary traits such as inheritance, mutation, selection and crossover.

In evolutionary algorithms, the candidate solutions to the optimization
problem play the role of individuals in a population. The search technique
of the algorithm implements evolutionary traits that then are applied to gen-
erate a new generation of candidate solutions, i.e. a new population. The
individual solution candidates of a population are evaluated with respect to
a optimization function, thereby indicating how “strong” the individual is.
The consequence of the evolutionary traits of the search algorithm is that
the creation of the new generation of candidate solutions follow the natural
phenomenon of “survival of the fittest”, where individuals best suited to com-
petition for resources and to a changing environment are most likely to survive
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and reproduce.
Genetic algorithms rely on crossover, a mechanism of probabilistic and

useful exchange of information among solutions, to locate better solutions.
The probability of two individuals, “parents”, in a population to produce an
offspring is dependant on how well the parents perform with respect to the
objective function, i.e. how “fit” they are. The new candidate solution, i.e. the
offspring of the parents, is formed my inheritance and crossover of the genetic
material of the parents. In the context of parameter estimation, where the
“genes” of an individual consist of a model parameter set, this means that
the offspring inherits a parameter set from the parents that is influenced by
crossover of the parameter sets of the parents. In addition the parameter set
of an offspring will be subject to a random mutation, which represent changes
in the DNA sequence of a cell’s genome during DNA replication.

Differential evolution (DE) is one genetic type of algorithm created for
mathematical optimization of multidimensional functions that has good con-
vergence properties to a global minimum [30]. The DE algorithm has demon-
strated faster convergence with more certianty than many other acclaimed
global optimization techniques, and ever more researchers are working with
and on differential evolution. The DE algorithm requires few control variables,
is robust and easy to use, and lends itself well to parallell computing [30].

Since a practical problem for the GLUE method is that the sample size
has to be very large to achieve a reliable estimate of model uncertainties for
models with a large number of parameters, there has been performed research
on how to make this more effective. It has been shown that using an adaptive
Markov Chain Monte Carlo algorithm improves the computational efficiency
[5], the same with the use of a genetic algorithm [15]. These methods both
reduce the necessary number of samples, and the sampled parameter sets they
provide are all behavioural with respect to a certain threshold cost value. The
reason why this is possible for GLUE is because this method is concerned with
overall model output uncertainty, this means that the samples can be deemed
behavioural or non-behavioural in the sampling and simulation process. For
the DYNIA method however, these changes to the sampling scheme are not
as intuitive to implement. Since the DYNIA method is concerned with how
the parameter uncertainty is varying with time, it is not possible to decide if a
sampled parameter set is behavioural or non-behavioural without performing
the moving window analysis of the entire time series.

If these methods are to be applied to the DYNIA method, it seems like the
only option is to perform the parameter sampling with respect to each time
step, i.e. each window. In this case, a possible way of generating behavioural
parameter sets (for each window) is to use a genetic algorithm such as DE.
Multiple “threads” of the DE algorithm could be run. A selection, from all
these runs of the algorithm, between the population members that exist after
a specific number of generations, could be put together to obtain behavioural
parameter sets. As mentioned, this will have to be done at each time step.
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It is fairly obvious that a lot of more work has to be done before this theory
could be implemented and tested. Unfortunately, it has not been possible to
achieve this in this thesis, therefore it is rather proclaimed as an important
topic for further research.

If it turns out that such an integration of a genetic algorithm effectively can
be applied to the DYNIA method, it would also be interesting to investigate
whether or not this approach to obtaining behaviour parameter samples im-
proves efficiency with regards to the method for including DYNIA in a logging
system that was discussed in Section 4.3





6 Conclusion and Further
Work

This thesis has provided a thorough presentation of Dynamic Identifiability
Analysis (DYNIA) and the concepts on which it is built upon, such as Gener-
alized Likelihood Uncertainty Estimation and Regional Sensitivity Analysis.
A goal of the thesis has been to create a text that can serve as a thorough in-
troduction to the DYNIA method, in order to promote interest for the method
with respect to system identification. The DYNIA method has not received
attention in the scientific literature on system identification, and this text will
hopefully raise awareness to the possibilities of the method. Another contri-
bution of the thesis has been to show how the DYNIA method can be applied
in the context of the work performed by Elgsæter [7], who suggested that
research should be done to investigate how measures of uncertainty can be
exploited to devise strategies for production optimization under uncertainty.

The possibility to be able to observe how the information content vary with
time, and then using this to reevaluate process model parameters without the
need to stop the production in order to perform experiments designed for
the purpose of creating informative data, is an asset of the DYNIA method
that could provide increased cost-effectiveness for many industrial systems,
perhaps particularily in the oil and gas production industry.

Another main goal of the thesis was to implement the method, and to
document and provide source code for this. As of this date, there does not
exist any other information on how to implement the method, in fact there
is generally little existing literature on the DYNIA method. The implemen-
tation will hopefully provide ground for testing and ideas that can lead to
modifications that can improve the functionality of the method.

It has to be said that the DYNIA method has some limitations that are
constraining the industrial applicability of the method and the implementa-
tion, at least in its current state. Exponential time complexity is obviously a
major concern. Another concern is how selection of feasible parameter ranges,
window size and tolerance limits for the behavioural parameter sets affect the
results, this is an area for further research. These matters affects the reliability
one can expect to have in the results, something that is especially problematic
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if the DYNIA method is wanted to perform with little manual involvement.
The examples do however show promising results with respect to the basic

functionality of DYNIA. The method does indicate periods of high and low
information content, and the measurement of parameter identifiability also
gave promising results in the examples.

One area for further research has already been mentioned, other important
topics in this regard are mainly the modifications that were discussed in the
previous chapter.

Parallel computation of the Monte Carlo sampling scheme and the moving
window calculations were shown to have the possibility to yield good increases
in efficiency. More research on this should be performed, and the theories
should be applied to the implementation and testes.

Another important area is research on ways to improve the efficiency of the
parameter sampling. Some ideas on possible modifications in this context have
been given, and further research based on these ideas should be performed.
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Appendix A: A Bayesian
Approach to Identifiability

This appendix is based on information in [10]
A sample-based uncertainty analysis can be linked to a concept that is bet-

ter known in the traditional discussion on system identification; the maximum
a posteriori (MAP) estimate. The MAP estimate uses a Bayesian approach
to the parameter estimation problem by considering the parameter set θ as a
random variable with a certain a priori probability distribution function. Let
us first define the a priori PDF as

gθ(θ∗) = P (θ = θ∗), (1)

which give the probability of θ being equal to θ∗.
Then, let us define a likelihood function as

θ → f(ym|θ), (2)

this is a conditional PDF for the system output that give the probability of
the model output ym being equal to the system output y, given that the model
use the parameter set θ.

Using Bayes’ theorem we can use these PDFs to find the posterior condi-
tional PDF for θ:

h(θ) = P (θ|y) = f(ym|θ) · gθ(θ)∫
θ f(y|θ′)gθ(θ′)dθ′

(3)

h(θ) give a distribution of the likelihood for the different parameter values.
The MAP estimate is the parameter value that maximize h(θ).

By comparing this to the description of the sample-based uncertainty anal-
ysis in Section 1.3, we see that the uncertainty analysis give us all the infor-
mation we need to calculate the probability/likelihood distribution h(θ). This
means that by performing an uncertainty analysis, we can acquire information
on uncertainty, sensitivity and likelihood distribution of the parameter values.
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Appendix B: Matlab Code

Matlab code for the file that runs the first example, and for the files that are
the “meat” of the implementation of DYNIA.

example firstorder.m:

clc;
close all;
clear all;

size = 500;

time = 1:size;

u = 35*ones(size,1);

u(140:160) = 10; u(330:332) = 10;
u(400:size) = 0;

b1 = 2;
a1 = 3;
delay = 0;

sys = tf(b1, [a1 1], ’InputDelay’, delay);
sys = ss(sys);
[a,b,c,d] = ssdata(sys);

y0 = 0;

[y, t] = lsim(sys, u, time, y0/c);

noiselev = 0.5;
yn = y + randn(length(y),1)*noiselev;

figure
plot(time, u, time, yn)
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% Model structure: 1st order. No time delay. y/u (s) = K/(T_1 + s)

% MC options
a1_lb = 0; % time constant lower [minutes]
a1_up = 7; % time constant upper [minutes]
b1_lb = 0; % gain lower
b1_up = 7; % gain upper

% delay_lb = 80;
% delay_up = 120;

ns = 2000; % no. of MC sims

% generate matrix of random samples from parameter distributions
a1_mc=(rand(ns,1)*(a1_up-a1_lb))+a1_lb;
b1_mc=(rand(ns,1)*(b1_up-b1_lb))+b1_lb;
% delay_mc=(rand(ns,1)*(delay_up-delay_lb))+delay_lb;

% intialise output matrices
sse=zeros(ns,1);abias=zeros(ns,1);peako=zeros(ns,1);
mct=zeros(ns,size);

h = waitbar(0,’Running Monte-Carlo simulation, please wait...’);

for k=1:ns
% First order
sys = tf(b1_mc(k),[a1_mc(k) 1], ’InputDelay’, delay);
sys = ss(sys);
[a,b,c,d] = ssdata(sys);
x = 70;

% Euler method
for(i = 1:size)

x_d = a*x + b*u(i);
x = x + x_d; %time step = 1
mct(k,i) = c*x;

end
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% Alternative simulation method (longer running time)
%[mct(k,:), t_mc] = lsim(sys,u, 1:size);

e=y-mct(k,:)’;
sse(k)=sum(e.ˆ2); % sum of squared errors
%abias(k)=abs(sum(e)/length(mct(k,:))); % absolute bias
%peako(k)=max(mct(k,:));
waitbar(k/ns)

end
close(h)

%% RUN DYNIA - MOVING WINDOW

bins = 40; % # of bins for gradient calculation of CLD
percentage = 10; % percentage to be included in behavioural set
n = 10; % window size = 2*n + 1

for i=1:2

selectedPar = i;

if selectedPar == 1
par = a1_mc;
lb = a1_lb;
ub = a1_up;
partitle = ’Time Constant1’;

end

if selectedPar == 2
par = b1_mc;
lb = b1_lb;
ub = b1_up;
partitle = ’Gain1’;

end

% if selectedPar == 3
% par = delay_mc;
% lb = delay_lb;
% ub = delay_up;
% partitle = ’Time Delay’;
% end

[IC, CI, gradient_data] = movingWindowCalcs(size, par, lb, ub, ns, mct, y, bins, percentage, n, partitle);
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%% Information content plot
figure
%plot(t, IC(t));
plot(time, IC);

xlabel(’Time Step’)
ylabel(’Information Content’)
title([’Information content of parameter: ’, partitle])
ylim([0 1])

%% Parameter estimation plot
figure
plot(time, CI(:, 1), time, CI(:, 2))

hold on

colormap(flipud(gray))
x_range = time;
y_step = (ub-lb)/(bins-1);
y_range = lb :y_step:ub;

pcolor(x_range, y_range, gradient_data)
shading flat
axis([time(1), time(size), lb, ub])

xlabel(’Time Step’)
ylabel(’Parameter Value’)
title([’Uncertainty band and CLD gradient of parameter: ’, partitle])

hold off

end



Appendix 75

movingWindowCalcs.m

%% Moving-Window Calculations. Dynamic employment of the DYNIA method.

function [IC, CI_t, gradient_data] = movingWindowCalcs(TIME, par, lb, ub, ns, mct, yn, bins, percentage, n, partitle)

% Window size
wSize = 2*n + 1;

% Set up vectors for storage
IC = zeros(TIME,1);
CI_t = zeros(TIME, 2);
gradient_data = zeros(bins, TIME);

best = zeros(TIME,ns*(percentage/100),2);
tStep = 1;

% Output which parameter is being analyzed
h = waitbar(0,[’Performing Moving-Window calculations for parameter: ’, partitle,’ ...’]);

% Perform moving-window calculations for each time step
while (tStep <= TIME)

wPar = par; % parameter to be analyzed
wMAE = zeros(ns,1); % mean absolute error

% Calculate MAE for the time steps before full window size is possible
if(tStep <= n)

for k = 1:ns
wMAE(k) = (sum(abs( yn(1 : tStep+n) - mct(k, 1 : tStep+n)’ )))/(tStep+n);

end
end

% Calculate MAE for time steps where full window size is possible
if (tStep > n && tStep <= (TIME - n))

for k = 1:ns
wMAE(k) = (sum(abs( yn(tStep-n : tStep+n) - mct(k, tStep-n : tStep+n)’ )))/wSize;

end
end

% Calculate MAE for time steps after full window size is possible
if (tStep > (TIME - n))

for k = 1:ns
wMAE(k) = (sum(abs( yn(tStep-n : TIME) - mct(k, tStep-n : TIME)’)))/(TIME - tStep + n);
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end
end

wCost = wMAE.ˆ2; % SSE value for the window

% Select top percentage of MC parameter sets
count_max = floor(length(wCost) * (percentage/100));

%best_mat column 1: cost values, column 2: corresponding parameter values
[best_mat, best_indices] = selectBestParameters(wCost, wPar, count_max);

% Save the behavioural set for each time step
best(tStep,:,1) = best_mat(:,1);
best(tStep,:,2) = best_mat(:,2);

% Run the DYNIA algorithm for the current window
[lhood_cumulated CI lhood, gradient_vec] = runDynia(ns, par, best_mat, lb, ub, bins);

% Save confidence interval for each time step
CI_t(tStep, 1) = CI(1);
CI_t(tStep, 2) = CI(2);

% Calculate and save information content measure for each time step
IC(tStep) = 1 - (CI(2) - CI(1))/(ub - lb);

%% Identifiability

% Save gradient data for each time step
gradient_data(:,tStep) = gradient_vec(:,1);

%% Go to next time step
waitbar(tStep/TIME);

tStep = tStep + 1;

end
close(h)
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runDynia.m:

%% Run the DYNIA analysis

function [lhood_cumulated, CI, lhood, gradient_vec] = runDynia(ns, par, best_mat, lb, ub, bins)

size = length(best_mat(:,1));

%% Calculate likelihood measure for each simulated parameter set.

lhood = calcLikelihood(best_mat);

%% Cumulative likelihood distribution

[par_sorted, par_sorted_indices] = sort(best_mat(:, 2));
[all_par_sorted, all_par_sorted_indices] = sort(par);

[lhood_cumulated, lhood_c_all] = cumulLikelihood(ns, all_par_sorted, par_sorted, par_sorted_indices, lhood);

%% Gradient of cumulative likelihood distribution

gradient_vec = cld_gradient(bins, ub, lb, par_sorted, lhood_cumulated, size);

%% Calculate confidence interval for cumulative likelihood distribution

conf_level = 90;
CI = confLimits(par_sorted, size, conf_level);

calcLikelihood.m:

%% Calculation of likelihood measure

function [lhood] = calcLikelihood(best_mat)

size = length(best_mat);
lhood = zeros(1, size);

% Algorithm for calculation of the likelihood measure
for it = 1:size

lhood(it) = 1 - best_mat(it, 1);
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end

if( min(lhood) < 0)
lhood(:) = lhood(:) - min(lhood);

end

lhood(:) = lhood(:)/sum(lhood);

cumulLikelihood.m:

%% Calculation of cumulative likelihood distribution (CLD)

function [lhood_cumulated lhood_c_all] = cumulLikelihood(ns, all_par_sorted, par_sorted, par_sorted_indices, lhood)

size = length(par_sorted_indices);

lhood_cumulated = zeros(1, size);

% Calculate CLD for each sampled (behaviour) value of the parameter being analyzed
lhood_cumulated(1) = lhood(par_sorted_indices(1));
for it = 2:size

lhood_cumulated(it) = lhood_cumulated(it-1) + lhood(par_sorted_indices(it));
end

% CLD value is set to zero and one for parameter values lower, respectively
% higher than the lowest, respectively highest parameter value in the behavioural set
it=1;
while(all_par_sorted(it)<par_sorted(1))

it = it+1;
end

lhood_c_all(1 : (it-1) ) = 0;
count=0;
while( (all_par_sorted(it)>=par_sorted(1)) && (all_par_sorted(it) < par_sorted(size))) %endret siste ulikhet fra <= til <

count = count + 1;
it = it + 1;

end

lhood_c_all(it : it+size-1) = lhood_cumulated(:);
lhood_c_all(it+size : ns-count) = 1;
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cld gradient.m:

%% Calculation of gradients of a cumulative likelihood distribution

function gradient_vec = cld_gradient(bins, ub, lb, par_sorted, lhood_cumulated, size)

gradient_vec = zeros(bins, 4);

next_limit = lb + (ub-lb)/(bins-1);
prev_limit = next_limit;

bin = 1;

% Gradient is zero for parameter values below the lowest value in the
% behavioural set (since the CLD is constant for these values)
while ( (next_limit < par_sorted(1)) && (next_limit <= ub) && (bin<=bins))

next_limit = next_limit + (ub-lb)/(bins-1);

gradient_vec(bin,1) = 0;
gradient_vec(bin,2) = prev_limit;
gradient_vec(bin,3) = (prev_limit + next_limit)/2;
gradient_vec(bin,4) = next_limit;
bin = bin + 1;
prev_limit = next_limit;

end

% Gradient for a bin (of parameter values) is calculated by subracting the CLD value at the
% beginning of the bin from the CLD value at the end of the bin.

start_index = 1;
while( (next_limit <= par_sorted(size)) && (next_limit <= ub) && (bin <= bins) )

index = start_index;
while ( (par_sorted(index) < next_limit) && (index <= size-1) )

index = index + 1;
end
end_index = index-1;
next_limit = next_limit + (ub-lb)/(bins-1);

gradient_vec(bin,1) = lhood_cumulated(end_index) - lhood_cumulated(start_index);
gradient_vec(bin,2) = prev_limit;
gradient_vec(bin,3) = (prev_limit + next_limit)/2;
gradient_vec(bin,4) = next_limit;
bin = bin+1;
prev_limit = next_limit;
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start_index = end_index + 1;
end

% Gradient is zero for parameter values above the highest value in the
% behavioural set (since the CLD is constant for these values)
while( (next_limit > par_sorted(size)) && (next_limit <= ub) && (bin <= bins))

next_limit = next_limit + (ub-lb)/(bins-1);

gradient_vec(bin,1) = 0;
gradient_vec(bin,2) = prev_limit;
gradient_vec(bin,3) = (prev_limit + next_limit)/2;
gradient_vec(bin,4) = next_limit;

prev_limit = next_limit;
bin = bin+1;

end

confLimits.m:

%% Calculate confidence limits of the CLD

function [CI] = confLimits(par_sorted, count_max, conf_level)
c1 = (1 - conf_level/100)/2;
c2 = 1 - c1;

cl = [c1 c2]; % confidence levels
cli = floor(cl*(count_max - 1)) + 1; % confidence interval indexes

CI = par_sorted(cli);
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