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Workers’ rest allowance and smoothing of the workload in assembly 

lines 

Ergonomic aspects have a crucial role in manual assembly systems. They impact 

on the workers’ health, final product quality and productivity. For these reasons, 

there is the necessity to integrate them into the assembly line balancing phase as, 

whereas, only time and cost variables are considered. In this study, human energy 

expenditures are considered as ergonomic aspects and we integrate them, for the 

first time, into the assembly line balancing problem type 2 through the rest 

allowance evaluation. We consider as an objective function the minimization of 

the smoothness index. Firstly, a new optimal method based on mixed integer linear 

programming and a new linearization methodology are proposed. Then, a heuristic 

approach is introduced. To complete the study, a computational experimentation is 

presented to validate the mathematical model and to compare the methodologies 

proposed in terms of computational time, complexity and solution. Additionally, 

we provide a detailed analysis of the impact that rest allowance evaluation can have 

on productivity comparing the results obtained, taking into account the rest 

allowance integration before, during and after the assembly balancing process.   

Keywords: assembly line balancing; ergonomics; optimization; rest allowance; 

smoothness index  

1. Introduction 

Manual assembly lines are special flow-line production systems which are typically used 

in the final steps of production of standard products in high quantities (Scholl, 1999). 

Assembly lines were initially introduced to increase the efficiency in the mass production 

of standardized products but over the years, with some appropriate changes, they have 

been widely used also for customized products. A typical manual assembly line consists 

of several workstations, on which a set of tasks are performed by one or more workers, 

and transportation systems that move parts and products between the workstations. 

Furthermore, task times can be deterministic or stochastic (Otto and Scholl, 2011). 



 

 

The manual assembly process required to obtain the final product represents one 

of the most important phases of production systems due to its high added value, its 

contribution to the final product quality and its direct connection with the final market 

(Dolgui and Proth, 2010). For these reasons, practitioners and academics continuously 

tend to develop new approaches and to ameliorate the existing ones to improve the 

efficiency, the productivity and to guarantee the required flexibility. In particular, in the 

last decades, several research studies have been conducted with the aim to evaluate the 

workers ergonomic conditions during the assembly process and to define new strategies 

to integrate the ergonomic measure during the assembly line design phase. The reason is 

closely linked to the fact that some recent available estimations reveal that about 160 

million workers in the world suffer from work-related musculoskeletal disorders 

(WMSDs) and the decrease of the gross national product due to this problem has been 

considered to be equal to 3.94% (ILO, 2019).  

WMSDs are one of the main causes of productivity reduction in fact, especially 

in manual assembly systems, workers have to perform repetitive movements with a high 

level of stress and physical fatigue and awkward postures. In this way, the ergonomic 

risk, the fatigue level and, consequently, WMSDs among workers increase (Falkenauer 

E., 2005) causing a reduction of workers’ well-being, product quality and efficiency (Otto 

and Scholl, 2011).  

For this reason, several studies have been conducted to incorporate ergonomic 

estimation methods into assembly line balancing problems (ALBP) to take into account 

human aspects and working conditions. Generally, in fact, the ergonomics analysis is 

made by experts only after the ALBP and so, sometimes the required modifications are 

infeasible due to technological constraints or to the high impact on the company final 

costs (Battini et al., 2016).  



 

 

One of the first attempts to integrate ergonomics into ALBP was carried out in the 

research conducted by Otto and School (2011). After, other studies and models that 

incorporate traditional ergonomic evaluations and traditional ergonomic indexes have 

been developed and several mathematical models have been proposed integrating 

workers’ conditions and ergonomic aspects (Otto and Battaia, 2017). However, the 

majority of them are non-linear with a high computational complexity. Additionally, the 

ergonomic methods used to evaluate MSDs risks are semi-quantitative indexes, they are 

not applied to single tasks, they require high ergonomic competences and a lot of time to 

evaluate them.  

In order to provide a method to evaluate the ergonomic level in an industrial 

context, Battini et al. (2015, 2016) introduced a new methodology to incorporate human 

aspects in ALBP taking into account human energy expenditure and rest allowance.  

For this reason, starting by these two recent works we propose a new model that 

incorporates rest allowance with the formulation provided by Price (1990) and we 

evaluate the optimal balancing solution that minimizes the smoothness index. 

Additionally, due to the non-linearity of the problem, we suggest a new approach to 

linearize it.  

The rest of the study is organized as follows: Section 2 provides an overview of 

the smoothness index and the role of rest allowance in the assembly systems. In Section 

3, the linearization methodology is discussed and compared with the existing method and 

the model with rest allowance integration is explained. In Section 4, the heuristic 

methodology is described. In Section 5, a numerical experimental analysis is provided 

and discussed to demonstrate the validity of the models. The different methodologies are 

compared, and some guidelines are given. Finally, in Section 6, several conclusions are 



 

 

presented to summarize the contributions of this work and some perspectives will be 

given.  

2. Literature background 

2.1.The smoothness-index 

As stated in the previous section an assembly line consists of a set of workstations where 

a set of operations are carried out with the aim to obtain the final product. The decision 

of which set of tasks must be performed in each workstation is known as the assembly 

line balancing problem (ALBP) (Scholl, 1999). It is possible to divide ALBP into two 

main categories: Simple-ALBP (SALBP) and General-ALBP (GALBP) (e.g., Boysen et 

al, 2008). 

In SALBP the objective function can be the minimization of the workstations 

number (SALBP-1), the minimization of cycle time (SALBP-2) or the minimization of 

the idle time (SALBP-E). Additionally, in a SALBP-F, the feasibility problem is 

evaluated for a given number of workstations and a cycle time. 

The three objective function described above are the most used. Nevertheless, 

other objective functions can be used or can be integrated into one of those described 

above to improve the efficiency or decrease the total cost of the final assembly line (e.g., 

Battaia and Dolgui, 2013).  

One of these supplementary objective functions is the smoothness index (SI) that 

measures the equality of the distribution of work among the stations in order to have 

similar workstation processing times (Scholl, 1999).  

The SI was introduced and discussed for the first time by Moodie and Young 

(1965). Even if in the literature there are several formulations to evaluate the SI the most 

used is defined as follows: 



 

 

2( )kk
c T−  (1) 

Where: 

• c is the cycle time; 

• kT  is the workstation time. 

After the work of Moodie and Young (1965), several heuristics and meta-

heuristics models have been developed with the aim to improve the existing ones and to 

evaluate the SI as a part of multi-objective functions. In particular, a two stage-heuristic 

algorithm is proposed by Rachamadugu and Talbot (1991) and by Eswaramoorthi et al. 

(2012) that integrate SI in a multi-objective model with lean perspectives. On the other 

side, meta-heuristic models (i.e. genetic algorithms, differential evolution algorithms) 

have been proposed by Nearchou (2008) and Hamta et al. (2013) in which SI is considered 

in different multi-objective functions.  

To the best of our knowledge, in only two cases (Esmaeilbeigi et al. 2015, 

Azizoğlu et al. 2018) exact approaches are proposed. In particular, Esmaeilbeigi et al. 

(2015) propose a mixed integer linear programming formulation for the SALBP-E while 

in the recent work of Azizoğlu et al. (2018) a branch and bound approach to minimize SI 

in a SALBP-F is proposed.  

These last two papers provide also some interesting linearization methodologies. 

In particular, in Esmaeilbeigi et al. (2015) three linear methods are proposed, the SI is 

defined considering the idle time as a variable and they assume a range of values that idle 

time can assume. To further strengthen their formulation additional valid inequalities and 

auxiliary variables are introduced. On the other side, Azizoğlu et al. (2018) minimize the 

SI, considering that for a SALBP-F it is equivalent to the minimization of the 



 

 

workstations time as the cycle time is constant between stations. In this way, they 

linearize only kT and additional variables and constraints are introduced. However, one 

of the main limitations of this method is the high number of variables required as 

underlined also by the authors.  

As defined in the literature, there are several reasons to consider SI: 

• it establishes the sense of equity among workstations (Rachamadugu and Talbot, 

1991); 

• it contributes to increasing the final output (Smunt and Perkins, 1985); 

• it reduces the breakdown probabilities of machines and consequently, it increases 

the remaining lifetime of the machines (Otto and Scholl, 2011); 

• it increases the chance of reaching the target production rate (Otto and Scholl, 

2011); 

• it reduces the ergonomic risk (Groover, 2013). 

However, even if Groover (2013) underlines the importance to evaluate SI as a 

method to reduce the ergonomic risk, until now no methods have been proposed to 

evaluate the impact that ergonomic aspects can have on the smoothness index. 

Furthermore, when additional non-linear constraints, such as those linked to the 

ergonomic field, are introduced in the SI formulation the methodologies proposed are not 

able to give a solution in a reasonable computational time, and so it is necessary to create 

ad hoc methods and models or adapt the existing ones to the specific problem.  

2.2.Ergonomic aspects 

Recently, Otto and Battaia (2017) provided a literature review about the integration of 

ergonomics into ALPs. They evaluate only papers that propose optimization models for 



 

 

the assembly balancing and scheduling and it emerges that the literature on this topic is 

quite scarce and traditional ergonomic risk indexes (e.g., OCRA, RULA, REBA, NIOSH) 

are the most used. Baykasoglu  et al. (2017) integrates the ergonomic risk in the assembly 

system design through a systematic approach divided in three phases on which OCRA 

index is considered to evaluate the ergonomic risk. Recently, Akyol and Baykasoğlu 

(2019) have proposed a multiple-rule based constructive randomized search approach to 

solve an assembly line worker assignment and balancing problem (ALWABP) which 

considers ergonomic risks through OCRA index. However, as underlined by Carnahan et 

al. (2001) the workers’ fatigue level also can negatively impact the productivity and it 

should be considered during the assembly line design. The workers’ fatigue could affect 

the whole body or only some parts and, for this reason, it can be evaluated with several 

methods (Konz, 1998). 

Recently, Abdous et al. (2018) have proposed a new optimal method based on 

mixed integer linear programming with consideration of both fatigue and recovery of 

workers. They introduce in the SALBP the dynamic fatigue through the Ma et al. (2009) 

model. Recently, El Mouayni et al. (2019) have proposed a simulation-based approach 

for time allowances assessment in three production system configurations considering 

also worker’s fatigue, learning and reliability aspects.  

However, when the whole body is used to execute a task it could be better to 

evaluate the energy expenditure level as defined by Astrand (1967). Additionally, this 

type of measure could be evaluated for every single task, despite other methodologies 

that evaluate macro-activities.  

To avoid the decreasing physical level of workers, some models have been created 

to evaluate the so-called rest allowance (RA) that can be defined as the time needed for 

adequate rest after the execution of static or dynamic exertion (Rohmert, 1973). In the 



 

 

literature review compiled by Imbeau (2009) five rest allowance formulations are 

compared and the advantages and disadvantages of each are analyzed. The majority of 

them evaluate the fatigue level in a non-straightforward way and a lot of parameters are 

required to calculate RA. Furthermore, the input data required is very difficult to obtain 

and, consequently, there are limits to practical applications. To the best of our knowledge, 

only the model proposed by Price (1990) can be used to define in a very simple way the 

RA required after the execution of tasks that involve the whole body. In his model, the 

ratio between energy expenditure and the time required to execute a task (called mean 

working rate, MWR) and the maximum acceptable working level (MAWL) are used.  

The model proposed is very simple and at the same time can be very useful for 

managers and practitioners who want to evaluate the required recovery time to give to 

workers. Following this formulation, RA occurs only if the MWR exceeds the threshold 

value, MAWL. Additionally, it can be easily modified if the characteristics of the worker 

change.  

As RA is used to protect the workers’ health during the working period, it can be 

considered as a support of a fixed allowance that takes into account only the workers’ 

personal needs and the basic fatigue.   

Considering the application of human energy expenditure in the field of ALBP, 

Gunther et al. (1983) represent the first attempt to introduce it into assembly balancing 

problem. In his work the necessity to avoid the assignment of several heavy tasks to the 

same worker also represents one of the main goals that companies would obtain. 

After this work, to the best of our knowledge, Battini et al. (2016) propose the 

Predetermined Motion Energy System (PMES) and a multi-objective model for a 

SALBP-2 considering the task times and the task energy expenditures. 



 

 

On the other side, the RA has been introduced for the first time into ALBP in 2015 

when Battini et al. (2015) proposed a comparison between the multi-objective model 

(Battini et al., 2016) and a single-objective one where energy expenditure has been 

converted into RA with Rohmert’s formulation (1973).  

Recently, Finco et al. (2018) have analyzed the impact that human energy 

expenditure can have on ALBP. In particular, they propose a heuristic procedure and they 

compare the results obtained when human energy aspects are considered before, during 

and after the balancing phase. In Tiacci et al (2018) an approach to simultaneously finding 

solutions for the ALBP and the Rest Time Assignment Problem is proposed.  

3. Problem description and notation 

3.1.Smoothness-index linearization 

3.1.1. SALBP-2-SI formulation 

In this paper the objective function is the minimization of the smoothness index as defined 

in (1). The final model (SALBP-SI-2) can be formally stated as follows: 

• m workstations arranged along an assembly line; 

• n tasks to obtain the final product; 

• deterministic execution time for each task 𝑡𝑖; 

• task i can be assigned only if its predecessors have already been assigned; 

• each station k has a station load defined as 𝑇𝑘; 

• each workstation should complete its assigned tasks within a specific cycle time, 

c.  

The objective function, in a SALBP-SI-2, is to find a feasible line balance that 

minimizes: 
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SI c T= − (2) 

While the constraints are defined as follows:  

i i
ijj [E ,L ]

x =1 i=1,...,n


 (3) 

1,..,kT c k m  = (4) 

hk[ , ] [ , ]
x ( , )

h h i i
ij h ik E L j E L

k jx h i Aand L E
 

      (5) 

Where: 

• c Z + ; 

• ikx =1,...,m
k

k ii B
T t k


=  ; 

• ikx {0;1} i=1,..,n k=1,..,m   ; 

Constraint (3) ensures that each task is assigned to exactly one workstation. 

Constraint (4) guarantees that the cycle time, c, is not exceeded. Constraint (5) maintains 

precedence and technological priority among tasks.  

In this model, there are two types of decision variables which are the cycle time 

c, an integer decision variable, and 𝑥𝑖𝑘, Boolean variables associated to each task.  

As defined by Scholl (1999) the workload smoothing line balancing is strongly 

NP-hard. If we consider a SALBP-2 and we want to minimize the SI, it is necessary to 

investigate a method to linearize SI as it is a non-linear function. However, it is obvious 

that instead of minimizing the SI directly, one can minimize SI².  Furthermore, it is 

possible to replace the difference between c and and 𝑇𝑘 with an additional variable called 

idle time (𝜕𝑘) and add in the model this following constraint: 



 

 

1,..,k kT c k m+ =  = (6) 

that permits to evaluate the idle time for each workstation. 

In this way, minimizing equation (2) is equivalent to minimize: 

2 2( )kk
SI =  (7) 

The quadratic term of equation (7) implies that a major c can be a solution to have 

a lower SI as demonstrated in this following example. 

We assume to have a list of 4 tasks to execute in 3 workstations. The precedence 

graph is illustrated in Figure 1. We consider two values of c, respectively, 10 s and 11 s 

and we evaluate the possible solutions. In this case, for the higher c we have found a 

lower SI (see Table 1). This is due to the quadratic term of 𝜕 that appears in (1). So, the 

minimization of c does not imply the SI one. 

Please insert here Figure 1 

Please insert here Table 1. 

As in a SALBP-2, c is unknown as the task to station assignment, so, the 𝜕 of each 

workstation is also unknown, however, the theoretical upper bound presented in 

Proposition 1 (see Appendix 1) can be used to limit the value that 𝜕 can assume.  

For m workstations a lower (resp. upper) bound, LB(m) (resp. UB(m)), of c exist. 

Under LB(m) some tasks could remain unsigned while above UB(m) some workstation 

cannot have tasks. To evaluate UB(m) we consider the case in which in a workstation 

there are the n-(m-1) bigger tasks while in the others m-1 ones there are, in each of them, 

one of the remaining m-1 lower tasks. In this case, UB(m) is defined as the sum of the n-

(m-1) bigger tasks. So, if c is equal to the UB(m) this implies that in at least one 

workstation only one task is assigned, and its time is at least equal to the minimum task 



 

 

time. Thus, for this workstation the 𝜕 is equal to   (see Appendix 1). On the other side, 

𝜕 has a minimum value equal to zero since in at least one workstation its total time is 

equal to the c. 

As  𝜕𝑘  is a positive integer variable we can use the Property 1 (see Appendix 1) 

to linearize the quadratic term of equation (6). We assume that an integer variable can be 

written using the base 2 formulation. Consequently, 𝜕𝑘  and its quadratic term becomes a 

linear function of Boolean variables (see Appendix 1).  

In this way, the objective function (7) can be replaced by (8): 

min 2

kk
SI = (8) 

where: 

• 2

k k =  ; 

• the constraints set (21)-(25) (see Property 1, Appendix 1) is also included 

in the final model.  

Finally, the objective function (8) with constraints (3)-(6), (21)-(25) represent the 

final linear formulation. Note that m·p real and m·p Boolean additional variables are 

required.  

If this method is compared with the similar approach proposed by Esmaeilbeigi 

et al. (2015) we can note that the number of additional Boolean variables required to 

linearize SI with their formulation is equal to m· that is greater than our method. 

Furthermore, our methodology can easily adapt to cases where idle time does not assume 

integer value.  

This happens if we want to integrate the worker’s fatigue evaluation, through the 

RA as will be explained in the next sections.  



 

 

3.1.2 SALBP-2-SI with RA integration before the balancing process 

In this case, we assume to know, for each task, the energy expenditure, 𝑒𝑖, expressed in 

kCal/min. Initially we convert 𝑒𝑖 in rest allowance before the optimization process. 

Considering Price’s formulation (Price, 1990) we can define, for each task, the rest 

allowance, RA, as follows: 

60-4.3

RA =max(0; )
4.3-1.86

i

i
i

e

t


(9) 

Where: 

• 𝑡𝑖 are measured in seconds;  

• 4.3 represents the MAWL (expressed in kCal/min); 

• 1.86 represents the relaxation rate in a standing position (expressed in 

kCal/min). 

In this way, the final time (execution time + recovery time) for each task is equal to: 

i i it' = t (1+Ra ) (10) 

Replacing 𝑡𝑖 by 𝑡′𝑖 we can apply the same model explained in the previous section. 

However, 𝜕𝑘  does not assume only integer value and for this reason a new approach must 

be used according to Proposition 2 (see Appendix 1).  

In this way, by integrating Proposition 2 in Property 1 the model can be easily 

used to evaluate the minimization of the SI with task times that can assume real values.  

The main difference between the method previously proposed is the larger number 

of Boolean variables required to represents 𝜕𝑘   which depends on the precision level we 

want to assure according to the   value.  



 

 

Additionally, as in this case 𝜕𝑘  is defined with a precision equal to it is necessary 

to replace Equation (6) by (11) which means that 𝜕𝑘  can be evaluated with an accuracy 

equal to  . 

1,..,k kc T k m− +    = (11) 

In conclusion, the final model becomes: 

min 2

kk
SI = (12) 

sub to 

(2)-(5), (11), (21)-(25). 

3.1.3. SALBP-2-SI with RA evaluation after the balancing process 

Another way to evaluate the RA required to alleviate the fatigue effort is to evaluate it 

after the balancing phase considering the following equation: 

60 4.3

max(0; ) 1,..,
4.3 1.86

ii Bj

ii Bj

j

e

t
RA j m





 −

=  =
−




(13) 

Where 𝐵𝑗 represents the set of tasks associated to station j. 

The tasks to station assignments are defined using the model explained in Section 

3.1.1 and during the post-processing the energy expenditure values are introduced to 

evaluate, for each workstation, the RA and, finally, the workstation time. Due to the RA 

integration the c could increase with a consequent change of the SI. Therefore, the final 

solution cannot be the one that minimizes the SI. 

3.2.SALBP-2-SI with RA integration  

The models proposed in the previous section have some limits. In fact, if RA is evaluated 



 

 

for each task, the final solution can overestimate the RA and, consequently, the non-value 

production time tends to increase. In fact, the worker rests for a time which does not 

represent his real recovery necessity. On the contrary, considering the RA evaluation after 

the balancing phase the recovery can be underestimated.  

For this reason, according to Price (1990), it is necessary to evaluate the correct 

tasks to station allocation considering that for a set of tasks the RA is equal to: 

60 4.3

max(0; )
4.3 1.86

ii

ii

e

t
RA

 −

=
−




(14) 

This means that a task with a low energy expenditure can balance a task with a 

higher energy expenditure and, consequently, the RA evaluated in this way is lower than 

the sum of each RA associated to each task.  

Considering equation (15) the final execution time for a workstation becomes: 

' (1 )ii
T t RA=  + (15) 

These assumptions can now be used to define the new model to evaluate the SI.  

Considering the model presented in the previous section we are now able to formulate a 

new approach to integrate RA. The objective function remains the same as in (6) however, 

the workstation time kT becomes: 

' (1 ' ) 1,..,
k

k ik i ki B
T x t R k m


= +  = (16) 

Where: 

k

k

ik ii B

ik ii B

x e
60-4.3

x t
' max(0; )

4.3-1.86
kR







=




(17) 



 

 

It is possible to note that equation (16) and (17) are not linear, and 'kT (resp. 'kR

) are real values. However, using Property 2 (see Appendix 1.) we can convert this set of 

equations into linear ones. 

Finally, considering Property 1 and 2 we are now able to present the final model 

where RA is evaluated during the balancing phase.  

The final model is as follows: 

min 2

kk
SI = (18) 

sub to 

(3), (5), (21)-(32) and  

' 1,..,k kc T k m− +    = (19) 

Where equation (19) evaluates 𝜕𝑘  with an accuracy at least equal to . 

4. Heuristic method 

In this Section, we propose a heuristic approach to evaluate the SI with the integration of 

RA.  

As defined in Scholl (1999), ALBPs problems fall into the NP-hard class of 

combinatorial optimisation problems. For this reason, over the years several heuristic 

algorithms have been developed (e.g., Becker and Scholl, 2006). Some of them define a 

procedure to obtain a lower SI (e.g., Moodie and Young, 1965) however they cannot be 

easily adapted to our problem because station time depends on the RA, which can change 

according to the time and the energy associated to each task. For this reason, an ad-hoc 

heuristic is here proposed (see Figure 2). For a given number of tasks, n, their time, human 

energy expenditure and precedence relations are known. Additionally, for a given number 



 

 

of workstations, m, we can evaluate the lower and upper bound according to Table 2. 

Then, an ordered list (OL) is created to list tasks following the descending order of their 

time as the aim is to allocate first the task with a longer time. Initially, cycle time, c, is 

set equal to the maximum value of the lower bound while the idle time, 𝜕, for each station 

is equal to c. The first task of the OL is taken and its earliest and latest station are 

calculated. In particular, the earliest, as well as the latest station, are calculated with and 

without the integration of RA. If the earliest station is bigger than the latest one c is 

incremented by 1 and the procedure restarts. Otherwise, for the task chosen the feasible 

station list (FS) is created considering that each station must have a sufficient 𝜕, at least 

equal to the task time with its RA. If the FS is empty, c is incremented by 1 and the 

procedure restarts. On the contrary, a station is randomly chosen evaluating the not yet 

assigned predecessors and successors of the task chosen. In particular, if the number of 

predecessors is greater than that of the successors the probability to choose the latest 

station of the FS will be higher than the other available station. On the contrary, if the 

successors time is greater than that of the predecessors, the earliest station belonging to 

the FS will be selected.  

After the selection of the station, its time (T) and energy expenditure (E) are 

updated and, accordingly the RA is updated as well, considering equation (14). Finally, 

the station time (T’), with RA integration, is evaluated and 𝜕 for this station is revised. 

The task assigned is deleted in the OL and the procedure is repeated until all tasks are 

assigned to a workstation.  

To avoid the violation of precedence constraints the earliest and latest station of 

each task are updated taking into account the following assumptions: 

• The earliest station must be greater or at least equal to the greater station of the 

previously assigned predecessor tasks; 



 

 

• The latest station must be lower or at the least equal to the lower station of the 

already assigned successor tasks. 

After the assignment phase, the SI is calculated. 

Focusing on the station selection phase these additional assumptions can be useful 

to better understand the assignment process.  

For a generic task, i, we know: 

• the ratio between the number of successors and predecessors not already assigned, 

RSP(i); 

• the set of stations on which task i can be assigned, FS(i); 

• the number of stations on which task i can be assigned, Nb_St(FS(i)). 

and, for each station belonging to FS(i), we define its normalized weight according to 

(20): 

_ ( ( ))
( - )

2

_ ( ( ))
( - )

2

( ( ))
_

( ( ))

Nb St FS i

j Nb St FS i

RPS i
Norm W

RSP i

 

 



 
 

 

 
 

 

=



(20) 

Where: 

• 
_ ( ( ))

{0,.., _ ( ( ))} \{ }
2

Nb St FS i
Nb St FS i

 
  

 
 if the station number is even; 

• {0,.., _ ( ( )) -1}Nb St FS i  otherwise; 

• ( )j FS i ; 

• ]0;1] ; 

Please insert here Table 2.  



 

 

Please insert here Figure 2. 

4.1. Illustrative example 

In this paragraph a small illustrative example is proposed to better understand in which 

way the proposed heuristic approach works. In figure 3, precedence graph with time and 

energy expenditure is illustrated.  

Please insert here Figure 3. 

We assume to assign tasks to 3 workstations and we assume λ=0.5. According to Table 

2, LB(m) (resp. LB’(m)) is equal to 39 seconds (resp. 39 seconds, this means that no rest 

allowance is required for these tasks). With this first value of c, 𝐸𝑖 (resp. 𝐸′𝑖) and 𝐿𝑖 (resp. 

𝐿′𝑖) have been defined for each task (see Table 3, note that tasks are listed by descending 

order of their time). According to Figure 3, procedure to assign tasks to stations starts 

with the bigger task time, in this case Task 7 that is assigned to station 3 as it is the only 

available station. The same procedure is applied for tasks 3 that is assigned to station 1. 

For task 2 the procedure to assign task to station is more complicated as we must choose 

between station 1 and 2. In this case, 1_Norm W and 2_Norm W are equal to 0.5 as the 

number of not already assigned tasks is 1 and RPS(2) is 1. This means that when can 

choose in the same way station 1 or 2, however, as station 2 is empty we assign task 2 to 

station 2. The procedure continues, task 6 is assigned to station 2 while task 1 is assigned 

to station 1. All stations have idle time greater than 0 so other tasks can be assigned. For 

task 9 we can choose between station 2 and 3. In this case the RSP(9) is equal to 0.5 and, 

applying Equation (20) we obtain 2_ 0.4142Norm W = and 3_ 0.5858Norm W =

respectively, so we select station 3 for task 9. In the same way, task 4 will be assigned to 

station 1, task 5 and 10 respectively to station 2 and 3 as idle time is greater than 0. 

However, the last task, task 8, cannot be assigned to a station as there is not available time 



 

 

in any stations. It is necessary to increase by 1 cycle time obtaining new values of E(i) 

(resp. E’(i)) and L(i) (resp. L’(i)) as defined in Table 3, in brackets. In this case, applying 

the same procedure we can assign all tasks to a station. In station 1 tasks 1, 3 and 4 are 

assigned, in station 2 we have tasks 2, 5, 6 and 8 while in station 3 tasks 7, 9 and 10. Idle 

time is equal to 2 for station 1 and 3 while it is 0 for station 2.  

Please insert here Table 3.  

5. Computational experimentation and discussion 

To evaluate the performance of the proposed formulations, a computational study, on the 

benchmark data, is carried out. We solve the optimisation model with software IBM 

ILOG CPLEX 12.7.1 with default settings (e.g. parallelisation, automatic selection of the 

optimisation method) while the heuristic approach is coded in C++ language with 

VisualStudio2017. All the experiments run on a computer i7-6500U Intel Core, 2.5 GHz, 

and 12.0 GB RAM. 

5.2. Comparison with the method from the literature 

In this Section, we present the comparison between the linearization methodology 

proposed in Section 3.1.1 and the one developed by Esmaeilbeigi et al. (2015). As in their 

work a SALBP-E has been considered we have adapted their formulation for a SALBP-

2. In particular, the execution time, the gap, as well as the number of constraints and 

variables have been compared. 

For our analysis we have selected 13 datasets that come from Scholl benchmark 

dataset. Additionally, we have randomly selected 3 instances for small, medium and large 

dataset group provided by Otto et al. (2013). Both dataset categories are available in the 

website https://assembly-line-balancing.de. For each of them we have varied the number 

of workstations between 5 and 10.  

https://assembly-line-balancing.de/


 

 

However, due to the fact that these instances contain only the number of tasks, 

task times and precedence relations, we have generated a random dataset of energy 

expenditure values. We assume, according to Astrand (1967), that for each task the MWR 

can assume a value between 2 kCal/min and 10 kCal/min and starting from this 

assumption we generate, for each dataset, 6 random sets of energy expenditure data 

assuming a beta distribution with different alpha e beta value according to Table 4. Table 

3 includes also the mean energy values and the standard deviation obtained for the alpha 

and beta value selected.  

In this way, we have analysed 87 instances when only task times are used and 792 

instances when energy expenditure is introduced. In both cases the execution time limit 

has been set at 900 seconds. 

Please insert here Table 4.  

Table 5 presents the final results obtained for the SALBP-SI-2 without the 

integration of ergonomic aspects. Note that with M1 we have indicated the Esmaeilbeigi 

et al. (2015) approach while M2 defines ours. Both methods provide equivalent results 

with a slightly larger time for M2 but a slightly lower gap when Scholl dataset is 

considered while the execution time for M2 is lower when Otto et al. dataset is 

considered.  In both datasets, M1 needs a lot of variables despite M2 and this is due to 

the method we have used to linearize the quadratic term of each workstations idle time, 

using a base 2 notation. 

Please insert here Table 5. 

The high number of variables required with the Esmaeilbeigi et al. (2015) 

approach tends to significantly increase when the RA is introduced as illustrated in Table 

6. In this way in the maximum time limit we have fixed, the M1 model is never able to 

give us a solution. On the other side, with M2 the number of variables is lower, and we 



 

 

always obtain a solution even if in some cases it is not the optimal one. Moreover, the 

time required is greater than that one illustrated in table 4, but this is due to the additional 

constraints we have considered to introduce RA. 

In conclusion, the new proposed approach works well and it outperforms, if real 

values are considered, the other approaches that the current literature proposes. 

Please insert here Table 6.  

5.2. Choice of the best way to integrate RA 

Another issue of this paper is to define when it is better to evaluate the RA associated 

with each workstation to have a minimum SI and a minimum cycle time. For this reason, 

in this section we compare the models explained in Section 3.1.2, 3.1.3, 3.2 and 4.  

In Table 7 the computational time is illustrated. Considering the exact methods, 

the computational time required to obtain a solution is significantly lower when the RA 

is integrated in the final model after the balancing phase. Still, as it is possible to deduce 

the heuristic approach perform always better despite the exact approaches, but the 

solution obtained cannot be the exact one. 

Please insert here Table 7.  

 

However, computational time is not the best way to compare the methods. In fact, 

it is necessary to evaluate and to compare the solutions these methods give us. For this 

reason, we compare the cycle time and the SI of each instance and we define the relative 

percentage difference with the solutions obtained with the application of M2 with the RA 

integration during the balancing phase as it is the exact approach to integrate RA. In Table 

8 the mean value of relative percentage differences for both cycle time and smoothness 

index is given. As we can see the RA integration during the balancing phase provides a 

better solution both for cycle time and SI than other methods. Moreover, even if the 



 

 

difference in terms of cycle time is limited we cannot say the same for the SI, especially 

when RA is integrated before or after the balancing phase.  

The heuristic approach gives solutions very close to the exact method to integrate 

RA in terms of cycle time and, generally, it gives a solution with a lower cycle time but 

a higher SI. This is linked to the approach used to allocate tasks to stations because each 

time a task is assigned the RA linked to the station chosen is also update. Additionally, 

this approach stops when all tasks are assigned to a station and so it gives a major 

importance to the cycle time. As a consequence, the smoothness index could be reduced 

increasing the cycle time as we have demonstrated is Section 3.1.  

However, if we compare the relative percentage difference obtained with the 

heuristic approach to the other two exact methods, we can note that it is always lower and 

so it is more performant. So, if it is possible it is better to apply the exact method to 

integrate the RA during the balancing phase otherwise the heuristic approach, in a lower 

computational time, is able to provide a solution very close to the exact one.  

In conclusion, the RA integration made before or after the balancing phase cannot 

be applied as they tend to reduce the productivity and the workload among stations is 

very unbalance. Thus, for some workers the recovery time is overestimated, while the 

heuristic procedure provides a high SI but in this case the cycle time is very close or lower 

than M2 and consequently the productivity is higher.  

Please insert here Table 8.  

Furthermore, if we compare the exact solution obtained with M2 without and with 

the RA integration we can evaluate the impact of energy expenditure in the cycle time as 

illustrated in Table 9. Note that in this case we have considered and thus compared only 

the exact solutions obtained with M2 with RA integration. As illustrated in Table 9, for 

the higher value of energy expenditure the cycle time tends to increase. 



 

 

Please insert here Table 9.  

6. Conclusion  

In this paper we have considered the impact that human energy expenditure can have on 

the SI for a SALBP-2. Starting with the methodology proposed by Battini et al. (2015) 

we have converted the energy expenditures into a rest allowance using Price’s 

formulation (Price, 1990) and we have proposed several approaches to introduce it into 

ALBP.    

Because RA can assume real values, the approaches proposed by literature 

required a high computational time, so we have proposed a new linear approach to 

minimize the SI in a SALBP-2.  

Furthermore, a heuristic approach is proposed to search for a solution when the 

computational time is limited or the number of tasks to assign to a station is very high. 

In conclusion, after lengthy computational experimentation, the introduced model 

has been demonstrated to allow for active application in industrial systems as data 

required to apply them is easy to obtain, such as heart rate for example. Additionally, it 

allows improvement of the performance of the assembly process considering not only 

productivity aspects but also the workers’ well-being.   

As future work we propose the integration of workers characteristics since for the 

moment, we assume that all workers have the same features. In fact, gender, age, 

sedentary level or health problems can give different energy expenditure values, and, at 

the same time, the threshold value proposed by Price (Price, 1990) cannot be efficiently 

applied. Thus, the RA obtained could underestimate or overestimate the necessary 

recovery time. Additionally, an application of the method proposed here to an industrial 

context could be a more appropriate way to see benefits for the two main subjects 

involved: the company and the workers.  
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Appendix 1. 

Proposition 1. In the SALBP-2, : ( ) min( )iUB m t = −   represents the upper bound, while 

zero represents the lower bound that 𝜕𝑘 , the idle time of a generic workstation k, can 

assume. So [0, ]k     and it assumes integer values. 

Property 1. For each [0, ]k    , for 2log ( 1)p


 
= + 
 

  and for ϑk ∈ R, 2

k k =    if 

and only if there exists a variable  0,1lky   and there exists an integer positive variable 

p

lkq R+  such that the following constraints have to verify simultaneously: 



 

 

1

1

2 1,..,
p

l

k lk

l

q k m  −

=

=  =  (21) 

1

1

2 1,..,
p

l

k lk

l

y k m −

=

 =  =  (22) 

1,.., 1,..,lk lk itq y k m l p   =  =  (23) 

1,.., 1,..,lk kq k m l p   =  =   (24) 

(1 ) 1,.., 1,..,lk k it lkq y k m l p  − −  =  =  (25) 

Where   represents a constant value that is equal to 1 if integer values are considered 

otherwise it is equal to 0.0005 for real values. 𝑞𝑙𝑘  represents the products 𝜕𝑘𝑦𝑙𝑘  which is 

defined through the set of equations (21)-(25).  

Equation (21) represents the quadratic term of idle time as a linear function of real positive 

variables. 

Equation (22) represents the idle time as a linear function of Boolean variables, while 

equations (23)-(25) are required to evaluate the exact value of  𝑞𝑙𝑘  . 

Proposition 2. A real positive variable i   lower than iU   can be written as 

1

1
2

W w

i ww
s  −

=
= +   where s is a real positive variable, lower than  , w  are Boolean 

variables and 2log (( / ) 1)iW U = +   . If variable s is omitted 
1

1
2

W w

ww
 −

=  can be 

considered as an approximation of i  with a precision  . Furthermore, a low value of 

implies a better representation of a real variable and a better approximation if variable s 

is omitted. 



 

 

Property 2. The workstation time 

k

k

ik ii B

ik ii B

x e
60-4.3

x t
' [1 max(0; )]

4.3-1.86k
k ik ii B

T x t









= +




 , that 

includes the worker’ recovery time, can be linearized using the following additional 

equations: 

' ' 1,..,
k

k ik i ki B
T x t RA k m


= +  =  (26) 

'kT c  (27) 

60 4.3
1,..,

4.3 1.86 4.3 1.86k k
k ik i ik ii B i B

RA x e x t k m
 

= −  =
− −

   (28) 

' 1,..,k kRA RA k m  =  (29) 

' 0 1,..,kRA k m  =  (30) 

' (1 ) 1,..,k k kRA RA UB k m − −  =  (31) 

' 0 1,..,k kRA UB k m +   =  (32) 

Where constraint (26) defines the station time while (27) assures that it is lower than c. 

Constraint (28) evaluates the required RA. It can assume also negative values, but 

constraints set (29)-(32) permits to consider its the real value as the maximum value 

between zero and the value calculated with (28). UB represents an upper bound of 'kRA  

and k  is an additional Boolean variable required to evaluate which value assumes 'kRA

. 

 

 



 

 

Figure 1. Precedence graph 
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Figure 2. Heuristic process. 

 

 

  



 

 

Figure 3. Precedence graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1. SI values for different cycle time. 

Station C=10 C=11 
 Tasks Station 

time 
Tasks Station 

time 
1 1, 2 10 1 5 
2 3 10 2 5 
3 4 1 3, 4 11 

SI  9  8.485 

 

  



 

 

Table 2. Notations and parameters for the implemented heuristic procedure 

Notation Definition 

LB(m) (resp. LB’(m)) 

Lower bound of cycle time with m workstations (resp. with RA) 

𝐿𝐵(𝑚) = max {𝑡𝑚𝑎𝑥 , ⌈
∑ 𝑡𝑖𝑖

𝑚
⌉} (resp. max

(1 )

'( ) max{ (1 ); }
i tot

i
t RA

LB m t RA
m

 +
 

= +  
 
 


) 

UB(m) (resp. UB’(m)) See Section 3.1.1. 

𝐸𝑖 (resp. 𝐸′𝑖) 

The earliest workstation for task i (resp. with RA) 

i.e. 𝐸𝑖 = ⌈
𝑡𝑖+𝑡𝑃𝑖

𝑐
⌉ (resp. 

(1 ) (1 )

' i

j j i i
j P

i

t RA t RA

E
c



 + + +
 

=  
 
  


) 

𝐿𝑖 (resp. 𝐿′𝑖) 

The latest workstation for task i (resp. with RA) 

i.e. 𝐿𝑖 = 𝑚 + 1 − ⌊
𝑡𝑖+𝑡𝐹𝑖

𝑐
⌋ (resp. 

(1 ) (1 )

' 1 i

j j i i
j F

i

t RA t RA

L m
c



 + + +
 

= + −  
 
  


) 

𝐹𝑆𝑖 (resp. 𝐹𝑆′𝑖) 

The set of workstations to which task i is feasibly assignable 
𝐹𝑆𝑖 = {𝐸𝑖, 𝐸𝑖 + 1, . . , 𝐿𝑖}\{𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑎𝑛 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒} 

(resp. 

𝐹𝑆𝑖 = {𝐸′𝑖, 𝐸′𝑖 + 1, . . , 𝐿′𝑖}\{𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑎𝑛 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒}) 

 

  



 

 

Table 3. Earliest and Latest station for a cycle time equal to 39 seconds (resp. 40 

seconds). 

Task Time(i) Energy(i) ET(i) RA(i) T-RA(i) E(i) L(i) E'(i) L'(i) 

7 21 0.87 2.49 0.00 21.00 3(3) 3(3) 3(3) 3(3) 

3 17 0.74 2.61 0.00 17.00 1(1) 1(1) 1(1) 1(1) 

2 14 0.12 0.51 0.00 14.00 1(1) 2(3) 1(1) 2(2) 

6 14 0.62 2.66 0.00 14.00 2(2) 2(2) 2(2) 2(2) 

1 12 0.74 3.70 0.00 12.00 1(1) 1(1) 1(1) 0(1) 

9 12 0.96 4.80 0.20 14.46 2(2) 3(3) 2(2) 3(3) 

4 9 0.5 3.33 0.00 9.00 1(1) 2(2) 2(1) 1(2) 

5 8 0.8 6.00 0.70 13.57 2(2) 2(2) 2(2) 2(2) 

10 5 0.54 6.48 0.89 9.47 3(3) 3(3) 4(3) 3(3) 

8 4 0.14 2.10 0.00 4.00 2(2) 3(3) 2(2) 3(3) 

 

  



 

 

Table 4. Alpha e beta value used to create random datasets of energy expenditure  

  MWR1 MWR2 MWR3 MWR4 MWR5 MWR6 
 Alpha 1 1 2 3 2 3 
 Beta 8 4 8 8 4 4 
 Energy mean value [kcal/min] 2.842 3.553 3.684 4.317 4.868 5.777 
 Std Dev [kcal/min] 0.874 1.395 1.086 1.186 1.613 1.503 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5. Comparing our approach with that one of Esmaeilbeigi et al. (2015). 

Scholl 
Dataset 
(1999) 

# 
Tasks 

Mean 
Gap% 

M1 

Mean 
Gap % 

M2 

Mean 
Time 

M1 [s] 

Mean 
Time 

M2 [s] 

Mean # of 

constraints 

M1 

Mean # of 

constraints 

M2 

Mean # of 

variables 

M1 

Mean # of 

variables 

M2 

Arcus 83 83.33% 31.04% 900.49 659.11 242 609 549074 894 

Buxey 29 0.00% 0.00% 1.35 3.02 111 298 2449 369 

Gunther 35 0.00% 0.00% 2.08 2.63 126 313 3790 414 

Hann 53 0.00% 0.00% 99.65 33.22 181 480 102329 624 

Kilbridge 45 0.00% 0.00% 1.54 1.73 153 362 4268 504 

Lutz1 32 0.00% 0.00% 24.82 3.50 116 415 95119 466 

Lutz2 89 0.00% 0.00% 4.79 4.97 253 440 4255 819 

Lutz3 89 0.00% 0.00% 11.75 14.22 253 485 12844 849 

Mukherje 94 0.00% 2.30% 11.11 256.22 321 598 31786 916 

Sawyer 30 0.00% 0.00% 1.96 2.69 108 295 2489 376 

Tonge 70 0.00% 16.67% 41.44 215.26 202 456 26544 721 

Warnecke 58 0.00% 0.00% 7.70 20.18 174 406 11548 616 

Wee-Mag 75 0.00% 0.00% 8.53 5.99 208 440 11584 744   
6.41% 3.85% 85.94 94.06 188 430 66006 639 

Otto et al. 
Dataset 
(2013) 

         

Small 20 0.00% 0.00% 27.32 22.19 94 362 32805 354 

Medium 50 16.67% 7.40% 337.37 225 142 441 76605 601 

Large 100 24.15% 19.80% 441.39 314.70 341 662 262176 943 

  13.61% 9.07% 268.68 187.30 192 488 123862 633 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6. Comparing the two approaches considering RA evaluation during the 

balancing phase. 

Scholl 
Dataset 
(1999) 

# 
Tasks 

Mean Gap% 
M1 

Mean 
Gap % 

M2 

Mean 
Time 

M1 [s] 

Mean 
Time 

M2 [s] 

Mean # of 

constraints 

M1 

Mean # of 

constraints 

M2 

Mean # of 

variables 

M1 

Mean # of 

variables 

M2 

Arcus 83 No solution 70.43% 900.00 47.22 249 1040 3614256 836 

Buxey 29 No solution 0.00% 900.00 181.35 126 549 643575.3 575 

Gunther 35 No solution 4.23% 900.00 33.41 141 605 960287 607 

Hann 53 No solution 5.22% 900.00 186.45 177 811 2043621 769 

Kilbridge 45 No solution 29.04% 900.00 445.92 168 684 1100029 640 

Lutz1 32 No solution 0.00% 900.00 341.71 135 651 749651 700 

Lutz2 89 No solution 45.11% 900.00 716.60 268 975 962358.7 681 

Lutz3 89 No solution 8.00% 900.00 602.83 268 1002 3280692 723 

Mukherje 94 No solution 46.55% 900.00 770.99 336 1060 8412332 821 

Sawyer 30 No solution 5.33% 900.00 893.03 123 557 643582.8 574 

Tonge 70 No solution 52.56% 900.00 548.19 217 888 7017550 714 

Warnecke 58 No solution 72.74% 900.00 246.67 189 801 3091126 691 

Wee-Mag 75 No solution 75.00% 900.00 761.24 223 895 2989587 675   
 31.86% 900.00 444.28 202 809 2731434 693 

Otto et al. 
Dataset 
(2013) 

 

 

 

 

     

Small 20 No solution 0.00% 900.00 195.26 106 492 625482 496 

Medium 50 No solution 8.51% 900.00 294.65 174 742 2994562 639 

Large 100 No solution 62.85% 900.00 801.36 384 1125 8648541 884 

   23.79% 900.00 430.42 221.33 786.33 408952 673 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 7. The mean computational time required to obtain a solution  
Scholl 

Dataset 
(1999) 

Mean Time M2 with RA 
integration during 
balancing phase [s] 

Mean Time M2 with RA 
integration before 
balancing phase [s] 

Mean Time M2 with RA 
integration after balancing 

phase [s] 

Mean Time Heuristic 
approach [s] 

Arcus 47.22 821.95 659.11 2.253 
Buxey 181.35 56.75 3.02 1.562 

Gunther 33.41 217.70 2.63 1.414 
Hann 186.45 312.54 33.22 1.984 

Kilbridge 445.92 772.13 1.73 1.641 
Lutz1 341.71 39.36 3.50 1.246 
Lutz2 716.60 425.88 4.97 1.384 
Lutz3 602.83 388.32 14.22 1.743 

Mukherje 770.99 900.23 256.22 1.947 
Sawyer 893.03 228.49 2.69 1.238 
Tonge 548.19 560.69 215.26 1.896 

Warnecke 246.67 474.17 20.18 1.695 
Wee-Mag 761.24 876.72 5.99 1.349 

 444.28 453.84 94.06 1.642 

Otto et al. 
Dataset 
(2013) 

    

Small 195.26 34.16 22.19 1.124 
Medium 294.65 652.21 225 1.871 

Large 801.36 796.54 314.70 1.983 
 430.42 494.30 187.30 1.659 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 8. Relative percentage difference between the exact method and the other 

approaches 

Scholl 
Dataset 
(1999) 

Cycle time 
relative 

difference M2 
with RA 

integration 
before 

balancing 
phase [%] 

Cycle time 
relative 

difference M2 
with RA 

integration 
after balancing 

phase [%] 

Cycle time 
relative 

difference 
Heuristic 

approach [%] 

SI relative 
difference M2 

with RA 
integration 

before 
balancing 
phase [%] 

SI % relative 
difference M2 

with RA 
integration 

after balancing 
phase [%] 

SI % relative 
difference 
Heuristic 

approach [%] 

Arcus 15.16% 9.68% -1.44% 16940.40% 21148.69% 343.34% 
Buxey 3.68% 15.93% -0.93% 656.13% 1478.74% 113.22% 

Gunther 3.97% 18.29% -0.99% 615.21% 1555.89% 165.08% 
Hann 1.59% 13.34% -0.36% 98.59% 288.04% 74.00% 

Kilbridge 5.01% 11.96% -1.30% 30243.08% 19270.45% 606.74% 
Lutz1 3.35% 11.11% -0.59% 142.43% 393.37% 37.59% 
Lutz2 5.28% 11.11% -1.00% 74435.03% 84070.98% 1790.30% 
Lutz3 5.48% 12.58% -0.79% 4130.88% 6842.29% 2129.66% 

Mukherje 3.87% 10.56% -1.62% 532333.60% 387190.12% 12774.86% 
Sawyer 3.51% 22.84% -0.73% 943.25% 3812.14% 140.10% 
Tonge 9.29% 20.39% 19.57% 125094.23% 819.83% 643.13% 

Warnecke 9.26% 11.50% -1.21% 342.65% 9495.17% 64.76% 
Wee-Mag 5.80% 8.52% -1.50% 292960.54% 264283.82% 870.40% 

 5.79% 13.68% 0.55% 82995.08% 61588.42% 1519.48% 

Otto et al, 
Dataset 
(2013) 

      

Small 2.36% 8.64% 1.08% 485.62% 2674.84% 167.54% 
Medium 2.94% 13.52% -0.74% 185.65% 96485.74% 697.65% 

Large 5.41% 14.95% 3.87% 17946.25% 264743.64% 256.34% 
 3.57% 12.37% 1.40% 6205.84% 121301.41% 373.84% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. The increment of cycle time due to energy expenditure integration. 
 Mean increase of cycle time 

MWR1 0.14% 
MWR2 7.64% 
MWR3 3.24% 
MWR4 13.15% 
MWR5 23.74% 
MWR6 68.21% 

 19.35% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


