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Problem Description
The goal of this master thesis is to investigate MIMO system identification in closed loop using
Subspace Identification Methods (SIMs). These methods are known for their numerical
advantages, having the ability to cope with large data sets. Most of the theory on subspace
methods assumes that datasets are collected in open-loop, and earlier results show that ordinary
subspace methods fail when closed-loop data is applied, i.e. giving biased estimates of system
parameters. The first goal of this thesis is to investigate former results of other researchers
through a literature study on this topic. This includes a presentation of a few different subspace
identification methods. Second, a selection of different subspace methods should be tested on
MIMO LTI systems with different structures and characteristics in MATLAB. Third, the methods
should be tested on a nonlinear industrial process using the simulation tool UniSim. The
simulation work to be done is more specifically:
- Identify different idealized test systems in Matlab. It should be tested how different methods
cope with a coupled system with a common denominator, as well as a higher order coupled, stiff
system.
- Industrial case: Nonlinear debutanizer simulated in UniSim. Identify open-loop dynamics while
the process is running in closed loop using different subspace methods.
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Supervisor: Tor Arne Johansen, ITK
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Abstract

The purpose of this thesis was to investigate how different sub-
space identification methods cope with closed loop data, and how
the controller parameters affect the quality of the acquired models.
Three different subspace methods were subject for investigation; the
MOESP method, the N4SID method and the DSR_e method. It is shown
through a simulation example that all three subspace methods will
identify the correct open-loop model from closed-loop data if the data
record is noise-free (deterministic identification with perfect data).
This result is not a new one, but a confirmation of the results from
other researchers. Among the three different subspace methods that
were investigated, the DSR_e method developed by dr. David Di Rus-
cio gave the best overall results. This method is especially designed
to cope with closed-loop data, different from the MOESP and N4SID
methods.

Controller gain is shown to have a significant effect on the quality
of the identified model when there is noise present in the loop. It is
shown by simulations that up to a point, higher controller gain dur-
ing the identification experiment actually gives more accurate open-
loop models than models identified with lower controller gain. One
of the reasons for this is that high gain tuning provides a higher signal
to noise ratio through amplification of the reference signal, rendering
the noise in the data used for identification less significant. Another
reason may be that frequencies in the input signals will be more con-
centrated around the achievable bandwidth of the controller, which
produces system outputs with more information of the frequency re-
sponse around this bandwidth frequency. This is turn will reveal fre-
quency information from the system that is important for control pur-
poses.
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1
INTRODUCTION

This chapter gives a short introduction to the structure of this thesis, as well as an
introduction to the most relevant topics that are subject for investigation1.

1.1 Structure of the thesis

Introduction part

The introduction chapter of this thesis is meant to give an introduction to identi-
fication for control in general, as well as the main issues with closed-loop data in
an identification framework. In addition, a short presentation of state-of-the-art
identification techniques is given.

Theory and literature review part

• Chapter 2 introduces some methods and concepts from system identifica-
tion theory that are relevant for this thesis. This includes the model structure
used, excitation signals used for identification, preconditioning of identifi-
cation data, and definition of model performance metrics.

• Chapter 3 is included to give some insight into the effect of closing feedback
loops, and issues with closed-loop identification.

• In chapter 4, a detailed discussion on subspace identification is given. The
contents therein are definitions of mathematical tools used, an explanation

1It is assumed that the reader of this thesis has some background in system identification and
control theory.

1



2 CHAPTER 1. INTRODUCTION

of different steps of the general subspace algorithm, some different imple-
mentations of the algorithm, and previous work of other researchers using
subspace algortihms with closed-loop data.

Simulation part

• Chapter 5 consists of a discussion of the consequences caused by the most
imporant issues from the theory part, and in addition an introduction to the
simulation part of the thesis. It is in this chapter the problem description of
the thesis is justified.

• In chapter 6, multivariable systems in closed loop with different charac-
terizations are simulated in MATLAB. Identification experiments are per-
formed in order to generate data for closed-loop identification using differ-
ent subspace-methods.

• Chapter 7 discusses an industrial case study, in which a simulated debu-
tanizer with cascaded PI composition control is subject for identification in
closed-loop.

Discussion and conclusion part

• Chapter 8 will give a discussion on the results obtained in the simulation
part. This includes how these results match up with results from other re-
searchers, and a discussion on results that might contribute to answer the
problem description of the thesis.

• Chapter 9 concludes the thesis by summarizing the most important results
obtained, and giving suggestions to further work to be done on the topic.

1.2 Identification for control

In the field of engineering cybernetics, a mathematical model is used as a tool
to develop model-based controllers. Examples of controllers that require a model
are Model Predictive Controllers (MPC), Linear Quadratic (Gaussian) Regulators
(LQR/LQG), H2 and H∞-controllers. In addition, in order to find good tuning pa-
rameters for conventional P/PI/PID-controllers, some information from the sys-
tem to be controlled is required (e.g. a first order model approximation). The term
identification for control stems from the need of a model for either tuning, synthe-
sis, updating or realization of these controllers. As pointed out by Ljung (1999),
control design is actually one of the most important uses of identified models.
When feedback control is used, a model that is reliable around the bandwidth fre-
quency of the closed-loop system is important. The model may be mediocre for
other frequencies, due to the ”forgiving effect” of feedback control. This corre-
sponds to the frequencies where the closed-loop sensitivity function is small.
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Identification for control is also suitable for feed-forward design, i.e. identifi-
cation of disturbance models. This requires knowledge of the disturbance effects,
that is measurements of the disturbances.

1.3 Identification in closed-loop

In many cases the system to be identified is already operating under the presence
of feedback, and controlled by some controller. The classical methodology is to
break the feedback loop of the system, and perform an open-loop experiment on
the system. Consider figure 1.1: The experiment design will involve manipula-
tion of the variable um in order to identify the dynamics from um to y . One of the

Controller Process

um

r y

Switch

uc

1

Figure 1.1: Feedback loop broken before identification experiment

main reasons why open-loop experiments are preferred is the lack of correlation
between process- and measurement noise, and the input u to the system. Un-
der closed-loop operation, the input to the process is the controller command uc ,
which is a function of the output(s) of the system. Hence, the disturbances that
affect the output variables y will also affect the controller command uc through
the feedback loop. A lot of the identification methods that are widely used today
assumes output data that is uncorrelated with noise and disturbances.

Motivation for closed-loop identification

The classical procedure of system identification is shown in figure 1.2. This shows
that some prior knowledge of the system to be identified is required to perform a
successful identification experiment. This applies to e.g. choice of model set and
experiment design. In fact, there are many systems where a bit of prior knowledge
tells us that it is practically impossible to break the feedback loop in order to iden-
tify the open-loop dynamics. This yields in particular for processes with unstable
behavior, and systems with inherited feedback effects (e.g. economic systems). It
may also, in many cases, be too high a risk to break feedback loops for identifi-
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Figure 1.2: The identification procedure loop from Ljung (1999)

cation purposes, since the outputs may drift away from their nominal operating
points during the identification experiment due to unknown disturbances.

Consider also a potential problem when a large process with many inputs and
outputs is subject for identification. If the identification experiment is supposed
to be performed in open-loop, is it even possible to predict what happens when
all feedback loops are broken simultaneously? Also, if one feedback loop is broken
at a time, and the process is interactive, the open-loop identification experiment
may fail because the system characteristics change when one feedback loop is
opened and others are running. An particular example is given in Jacobsen & Sko-
gestad (1993), where an ill-conditioned plant with high steady-state RGA-values
is subject for identification. It is shown that the prediction of process behavior is
particularly poor under partial feedback control.

When a system/process is identified in closed-loop, the open-loop dynamics
of the given system is estimated while the controllers already present are calculat-
ing the input u to the system. When a process G0 is subject to feedback control
by a controller C , the degree of freedom for the user to excite the system is usu-
ally moved from u to the controller reference signal r . Consider the block scheme
in figure 1.3: Here the reference signal is denoted r2, and an additional external
input signal r1 is directly added to the system input u. The signal r1 may be a
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controllable input to be used for identification purposes, but it may also consist
solely of unknown disturbance effects that makes the controller command signal
differ from the process input u, rendering an unknown process input. Through-
out this thesis, it is assumed that this signal is an unknown signal in the form of
process noise, and the reference r2 is instrumental to externally excite the system
dynamics. The common approach to closed-loop identification is to generate an

r2

C G0

r1

+++ +
+

-

v

yu

1

Figure 1.3: A system operating in closed-loop

input sequence to the system by varying the reference signal, and collect u and y
data from the system to be used for identification. This will be further discussed
in chapter 3.

1.4 State-of-the-art identification techniques

A traditional and well-known technique of system identification is the family of
prediction error identification methods (PEM). Shortly explained, these are meth-
ods that find a parametrized model that minimizes the error between system out-
put y and the predicted output ŷ produced by some candidate models. This method
of identification is an iterative approach, relying upon the solution of non-convex
optimization problems. When the system to be identified is multivariable and has
a complex structure, Viberg (1995) gives arguments that favors the use of state-
space models. Even though PEMs are easily adapted to work with state-space mod-
els, the numerical optimization required to calculate the optimal estimate may be
an impractically large problem. However, the PEM methods do cope well with
closed-loop data, according to Ljung (1999) p. 430.

Since the late eighties a system identification technique based on linear alge-
bra has emerged, known as subspace identification.2. A great advantage of sub-
space identification methods is that they are non-iterative, using well-understood
algorithms with good numerical properties. They are also known to cope excel-
lent with large data sets, rendering it possible to identify large systems in a fair

2The general subspace algorithm is given in appendix A, and a walk-through of the different
steps in the algorithm is given in chapter 4.
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amount of time. An example of this is given in Ben C. Juricek (2001), where the
famous Tennessee Eastman challenge process is subject for identification. It is
shown here that the only successful models are the state-space models produced
by two different subspace algorithms.

Other more exotic approaches to system identification have also been investi-
gated during the two last decades.

Kristinsson & Dumont (1992) use a genetic algorithm to identify a pole-zero
model to be used by a pole placement adaptive controller. A closed-loop approach
using a genetic algorithm is given in Whorton (2004). A great advantage of the
genetic algorithm is that it is more likely to converge to a global optimum in the
parameter space than gradient-following optimizers used with the ordinary PEM
methods. A drawback is the computational effort required to run these algorithms,
which may become impractically large for complex systems.

Fliess & Sira-Ramirez (2008) investigates the use of non-commutive ring the-
ory and operational calculus in a closed-loop identification framework, identify-
ing a double-bridge buck converter under bang-bang control. The investigated
method was shown to be robust with respect to noisy data. The drawback is the
lack of convergence analysis of the algorithm used with this identification tech-
nique.

1.5 The contributions provided by this thesis

In this thesis, a quantitative approach is taken to investigate the performance of
three different subspace methods when closed-loop data is applied. The systems
that are subject for investigation here are all multivariable, and operating under
feedback from decentralized PI controllers.

The main contribution of the thesis is investigations on the performance of
these subspace methods when the controller parameters are varied. Closed-loop
identification of multivariable systems seems to the author as a pretty new re-
search area, in particular analysis of the performance of identified models for dif-
ferent controller parameters when noise is present on both measurements and
system inputs. In fact, no literature on this particular field is known to the author.

In order to investigate the significance of controller parameters in this closed-
loop identification framework, both linear systems with different characteristics
and a nonlinear simulated debutanizer process are studied.

The goal is not to find optimal tuning parameters for the controllers before
an identification experiment, but to show the significance of controller tuning pa-
rameters. Insight into this could hopefully contribute to explain why closed-loop
experiments in some cases fail, and provide knowledge on how the controllers
should be tuned to give better identification conditions.
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BACKGROUND THEORY ON SYSTEM

IDENTIFICATION

2.1 Linear state space models

A linear system, generally multiple inputs and multiple outputs (MIMO), may be
described in state space form by

ẋ = Ax +Bu

y =C x +Du
(2.1)

The discrete version reads

xk+1 = Ad xk +Bd uk

y k =Cd xk +Dd uk
(2.2)

where the system quadruple (A,B ,C ,D) of (2.1) is discretized according to Chen
(1999), p. 92. In the continuous case, x denotes states, u inputs, y outputs and ẋ
the time derivative of x . The frequency domain representation of (2.1) is obtained
by taking the Laplace transform:

sx(s) = Ax(s)+Bu(s)

(sI − A)x(s) = Bu(s)

x(s) = (sI − A)−1Bu(s)

⇒ y(s) =C (sI − A)−1Bu(s)+Du(s)

= (C (sI − A)−1B +D)︸ ︷︷ ︸
G(s)

u(s) (2.3)

7
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The relationship between u and y hence is

G(s) =C (sI − A)−1B +D (2.4)

For a system with n states, m inputs and p outputs we have

dim(A) = n ×n

dim(B) = n ×m

dim(C ) = p ×n

dim(D) = p ×m

(2.5)

An important note is that there exists infinitely many state space representations
of (2.4), because we can always perform a similarity transform of (2.1):

x =Q x̄ (2.6)

where Q is the matrix of eigenvectors (or linear combinations of them) of A. In-
serting this into (2.1) yields

Q ˙̄x = AQ x̄ +Bu (2.7)

⇒ ˙̄x =Q−1 AQ︸ ︷︷ ︸
Ā

x̄ +Q−1B︸ ︷︷ ︸
B̄

u (2.8)

y = CQ︸︷︷︸
C̄

x̄ +Du (2.9)

The state-space model structure is an excellent way of describing multivariable
systems, due to their structural simplicity. The stability properties and dynamics
are governed by the A-matrix, while the system gain is reflected by the B- and C-
matrices. The D-matrix reflects wether any of the inputs have a direct effect on the
outputs.

2.2 Persistence of Excitation

In order to generate consistent estimates of model parameters in system identi-
fication, there are some requirements to the input sequence used in the identifi-
cation routine. The most important property of the input signal is that it reveals
information from the system at hand, i.e. excites the dynamics in the system rele-
vant for control purposes. Persistence of excitation of order n of an input signal u is
a property that guarantees that the signal cannot be filtered to zero by an (n−1)th-
order moving average filter on the form

Mn(q) = m1q−1 +·· ·+mn q−n (2.10)

A more formal definition is given in Ljung (1999):

Definition 1. A quasi-stationary signal {u(t )}, with spectrum Φu(ω), is said to be
persistently exciting of order n if, for all filters on the form (2.10), the relation

|Mn(e jω)|2Φu(ω) ≡ 0 implies that Mn(e jω) ≡ 0 (2.11)
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2.3 PRBS-signals

A celebrated way of generating input signals in the system identification litera-
ture is by using Pseudo-Random Binary Signals (PRBS-signals). These signals are
periodic, deterministic signals with properties of white noise. A great advantage
of these signals is that they are easy to implement in practice, making them suit-
able for real identification experiments. Figure 2.1 shows an example of a PRBS-
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Figure 2.1: An example of a PRBS-signal

sequence. The signal is generated by the difference equation

u(t ) = rem(A(q)u(t ),2) = rem(a1u(t −1)+·· ·+anu(t −n),2) (2.12)

The expression rem(x,2) means the remainder as x is divided by 2, and it assumed
that the calculations are performed modulo 2. The value of u hence is either 0
or 1, but this value may of course be shifted after the signal is generated. Since
the binary vector

[
u(t −1) . . . u(t −n)

]
only can assume 2n different values, the

sequence u must be periodic with a period of at most 2n . The maximum period
length is M = 2n − 1 since n consecutive zeros would make further values of u
zero, see equation (2.12). According to Ljung (1999) p. 421, PRBS-signals are per-
sistently exciting of order M −1.

2.4 Preconditioning of identification data

In order to generate good models using identification algorithms, it is imperative
that the data used for identification is properly conditioned. It is not a given that
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the data record collected is in shape for immediate use in the identification algo-
rithm. Ljung (1999) mentions some possible deficiencies in the data that should
be attended to

1. High-frequency disturbances in the data record, above the frequencies of
interest to the system dynamics

2. Occasional bursts and outliers, missing data, non-continuous data records

3. Drift and offset, low-frequency disturbances, possibly of periodic character

In the case of off-line applications, Ljung (1999) recommends to always plot the
data to investigate for these deficiencies.

Signal offsets

A dynamic model should be able to simulate the system dynamics of interest to the
user. In a control setting, the steady-state properties are in many cases of minor
importance, since integral action will take care of steady state errors. Consider a
model on the form

A(q)y(t ) = B(q)u(t )+ v(t ) (2.13)

where q is the time delay operator. This model describes the dynamic properties
between the input u and the output y . For constant signals u(t ) = ū, the resulting
steady-state value is noted y(t ) = ȳ . The steady-state relation between the input
and output hence is

A(1)ȳ = B(1)ū (2.14)

The difference between (2.13) and (2.14) is that the first describes dynamic prop-
erties within different frequency bands, while the latter only describes the relation
between signal magnitudes. These two equations have very little to do with each
other, and according to Ljung (1999) equation (2.14) is an unecessary constraint
for (2.13). To deal swith this problem, a reasonable approach is to subtract means
from the data record. Let y raw(t ) and uraw(t ) be the raw measurements from the
system. The data input to the identification algorithm will now be

y(t ) = y raw(t )− ȳ (2.15)

u(t ) = uraw(t )− ū (2.16)

where we calculate the near-equilibrium values ȳ and ū as

ȳ = 1

N

N∑
t=1

y raw(t ) (2.17)

ū = 1

N

N∑
t=1

uraw(t ) (2.18)
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2.5 Metrics for evaluating model performance

In order to say something about model performance, it is imperative to define a
performance measure metric. Oscar A.Z Sotomayor (2003) defines two different
performance indicators, given by (2.19) and (2.20).

MRSE = 1

l

l∑
i=1

√√√√√∑N
j=1 (yi ( j )− ŷi ( j )2∑N

j=1 yi ( j ))2
(2.19)

MVAF = 1

l

l∑
i=1

(
1− variance(yi − ŷi )

variance(yi )

)
(2.20)

The MRSE index given in equation (2.19) is used to measure the Mean Relative
Squared Error between the real process outputs and the outputs produced by the
model. As seen by equation 2.19, an MRSE index of 0 indicates a perfect model.

MVAF in equation (2.20) stands for Mean Variance Accounted For, and is a
good measure for evaluating the dynamic properties of the produced models. If
the ratio variance(yi−ŷi )

variance(yi ) is small, then the model has reproduced the dynamic prop-
erties of the real system well, and the MVAF index is close to 1.
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3
LITERATURE ON CLOSED LOOP

IDENTIFICATION

The purpose of this chapter is to give a brief introduction to closed loop identifi-
cation, and to summarize some of the research that has been done on closed loop
identification for control.

3.1 The goal of closed-loop identification

A problem with a lot of the literature on closed-loop identification, is that the ul-
timate goal of the identification is not stated. This might lead to confusion about
what system identification in closed loop really is. In order to illustrate this, con-
sider figure 3.1. The goals might be different, i.e.

r2

C G0

r1

+++ +
+

-

v

yu

1

Figure 3.1: Closed-loop system
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• Identification of the open-loop dynamics (estimate G0) in order to tune the
existing controller C using model-based tuning rules

• Identification of a disturbance model from the disturbance input signal r1

to y in order to design a feed forward controller.

• Identification of the dynamics from the reference signal r2 to y , i.e. identifi-
cation of the transfer function G0C

I+G0C . This is a common approach, including
the controller C in the loop and design a cascaded control system based on
the derived model. Since the controller C now is a part of the system, the
tuning of this controller will affect the identification. Possibly, it can ren-
der the model useless if the tuning of the controller C later is dramatically
changed (changing the effective time constant of the system).

• Identification of the open loop dynamics with purpose of swapping the ex-
isting control structure with a new one.

The goal can also be combinations of these, i.e. estimating a disturbance model
and the open loop dynamics with purpose of implementing an MPC controller,
with or without the existing controller C in the bottom control layer. To avoid
misunderstandings, the following definition is made to yield for this thesis:

Definition 2. Closed-loop identification is defined as identification of the open-
loop dynamics G0 of figure 3.1 while the controller C tracks the reference signal r2.

3.2 The effect of closing controller loops

Consider a system G0 with a controller C that has a zero reference, as depicted
in figure 3.2. Suppose that the system G0 is a simple stable first-order process,

C G0

r1

++
-

yuy

1

Figure 3.2: Closed-loop system without measurement noise and zero reference
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described in state-space form as

ẋ =−x +u

y = x
(3.1)

or y = 1
s+1 u in the frequency domain. In addition, suppose that the controller C is

a PI-controller

C (s) = Kc

(
τi s +1

τi s

)
(3.2)

The controller is tuned so that the closed loop time constant matches the open
loop time constant, and so that the closed-loop gain equals the open-loop gain by
using e.g. the SIMC tuning rules from Skogestad & Postlethwaite (2005). The tun-
ing parameters are Kc = τi = 1. In this case, the system gain and time constant are
known parameters, and the controller is tuned based on this knowledge. Suppose
that an impulse signal r1 is injected into the closed-loop system. Now, the effect
of closing the feedback loop is that that the open loop impulse response formerly
seen on the output y is moved to the controller command signal u, with opposite
sign because of the negative feedback. Figure 3.3 shows a simulation of the open
loop impulse response on y and the controller command u in closed loop when
the impulse signal is injected as shown in figure 3.2. The closed loop impulse re-
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y − open loop
u − closed loop

Figure 3.3: Impulse response moved from y in open-loop to u in closed loop

sponse on u will be a function of the controller tuning parameters. In this case it
is possible to identify the open-loop dynamics G0 solely from closed-loop u-data,
but only because the controller is tuned based on system parameters assumed
known beforehand. If the purpose is to determine the unknown transfer function
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G0, both u- and y-data are generally required. However, there are some fallacies
using these data for identification purposes, as discussed in the next section.

3.3 Known issues with closed-loop data

There are some problems with closed loop identification that are not present in
the open loop case. In this section some of the classical problems with closed-
loop data will be presented. First of all, a very important aspect is that the very
purpose of feedback is to make the closed loop system less sensitive to changes in
the open loop system. Hence closed loop data typically has less information about
the open loop system than open loop data has.

Effect of controller tuning

Rivera (1998) discusses how the controller tuning affect the information content
of the controller command u. It is shown that aggressive tuning attenuates the
low-frequency portion of the input signal, and amplifies the high-frequency por-
tion. If the tuning is similar to open-loop (as in section 3.2), the controller will
not introduce substantial bias into the input signal. Ljung (1999) mentions a sce-
nario where the structure of the controller is too simple to identify the open-loop
dynamics, even with persistently exciting controller commands. This shows that
persistence of excitation of the controller command u is not a sufficient condition
for closed-loop experiments.

Model structure requirements

Consider the feedback structure in figure 3.2, and suppose that u- and y-data is
collected for identification purposes. I. Gustavsson (1977) mentions a persistent
problem with identification methods that do not assume a causal model structure,
namely the danger of identifying the inverse of the controller. This may be viewed
as identifying the system from−y to u through the the controller C , calculating the
transfer from u to y as − 1

C . This implies that the controller command at a specific
time instant is known in advance of the output from the process at that specific
time instance, which is improper. For identification methods based on spectral
analysis, Ljung (1999) shows that the estimate of the open-loop transfer function
will converge to

Ĝ0( jω) = G0(e jω)Φr (ω)−C (e− jω)Φv (ω)

Φr (ω)+|C (e jω)|2Φv (ω)
(3.3)

whereΦr (ω) andΦv (ω) are the frequency spectra of the reference signal and noise
signal respectively. If we assume that either the reference signal is identically zero,
or that the magnitude of the controller is large compared to the system, the esti-
mate of G0 will converge to

Ĝ0(e jω) = −C (e− jω)Φv (ω)

|C (e jω)|2Φv (ω)
= −C (e− jω)

C (e− jω)C (e jω)
=− 1

C (e jω)
(3.4)
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This may be avoided by postulating a causal model structure to be identified, e.g.
a state space structure.

Correlation as a consequence of feedback

The most famous argument against closed-loop identification is that model esti-
mate becomes biased due to the correlation between disturbances and controller
command u induced by feedback. This is mentioned in Forssell & Ljung (1999),
and it is stressed that there always is a correlation between unmeasurable noise
(both process and measurement noise) when the feedback mechanism is not iden-
tically zero. Standard subspace identification algorithms are mentioned as an ex-
ample of methods that might fail when closed-loop data is used. This yields in
particular for the methods that utilize the IV method, where it is assumed that
the noise is uncorrelated with the instrumental variables. Since the instrumental
variables usually are formed by past input and output data, and this data is cor-
rupted by correlation to the process and measurement noise in closed loop, the
assumption made in the subspace algorithm fail for closed-loop data. This does
not necessarily mean that these methods will not work at all, but they are likely to
give biased estimates of the open-loop transfer function.

Quality of the open-loop transfer function estimate

Ljung (1999) defines the covariance of the open-loop transfer function estimate as

CovĜ0 = n

N

Φv (ω)

|S0|2Φr (ω)
(3.5)

where S0 is the sensitivity transfer function (the transfer from r1 to u on figure
3.2), and Φv and Φr are the power spectra of the noise and reference signals re-
spectively. n is the model order while N is the number of data. Equation (3.5)
is, according to Ljung (1999), the asymptotic Cramér-Rao lower limit (CRLL), see
Erlendur Karlsson (2000). This means that it tells us precisely the ”value of infor-
mation” of closed loop experiments. This may also be interpreted as the ”noise to
signal ratio”, where lower noise to signal ratio gives lower uncertainty of the esti-
mate of G0. It is stated that the part of the input that originates from the feedback
only (zero reference), has no information value when estimating the open-loop
transfer function. Hence, it is the part of the input that stems from amplification
of the reference signal that will reveal information from the system.

3.4 Motivation for performing closed-loop experiments

There are also benefits from performing identification experiments in closed-loop.

• It eliminates the need to put the control loop in manual during the identifi-
cation experiment
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• den Hof (1998) mentions that controllers may linearize possibly nonlinear
plant behavior around a relevant operating point, enabling accurate linear
modelling around this operating point.

• Closed-loop operation makes it possible to perform identification while keep-
ing the plant within operating limits

The pioneering work of Ziegler & Nichols (1942) is actually based on identifica-
tion in closed loop by tuning of the controller. By increasing the controller gain
until the output response is persistently oscillating to a reference step, the con-
troller may be tuned using the period of oscillation and the gain which produced
the oscillations. This is maybe the most famous set of tuning rules in the control
community, but not all are aware of the fact that this is a closed-loop identification
experiment.

3.5 Approaches to closed-loop identification

When the feedback loop is closed, a number of different strategies may be applied
in order to estimate the open-loop characteristics. The most common three will
be discussed here.

The Direct Approach

Identification under closed loop using the so called ”direct approach” involves
that issues with feedback is ignored, and the estimation is done using unaltered
input/output signals. Hence, this is a simple approach. Ljung (1999) mentions a
number of advantages with this approach:

• It works regardless of the complexity of the regulator, and requires no knowl-
edge about the character of the feedback

• No special algorithms and software are required

• Given that the model structure contains the true system, consistency and
optimal accuracy are obtained

The main problem with the direct approach is that the estimate may be biased due
to correlation between disturbances and controllable inputs, see e.g. Katayama &
Tanaka (2007).

The Indirect Approach

The indirect approach of closed loop identification assumes that the controller
transfer function is known. The idea is to identify the closed loop transfer function

Gcl =
GC

1+GC
(3.6)
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by manipulating the reference signal (r2 of figure 3.1). Since this is a open-loop
problem, all the identification techniques that work for open-loop data may be
applied. The drawback is that this approach demands a linear time-invariant con-
troller. In industrial practice, this method is strongly disfavored due to nonlin-
earities that almost always exist in the controllers. Delimiters, anti-resetwindup
functions and other nonlinearities are reasons why the controllers deviate from
the LTI-form. In addition, estimates of the plant by the indirect approach are of
higher order, and some model reduction procedure is needed.

The Joint Input-Output Approach

It is possible to view a closed-loop system as a system with input r , and two out-
puts u and y . The system is driven by the reference, producing outputs in the form
of controller outputs and process outputs. The joint input-output technique use
models of how both u and y are generated. Consider again figure 3.1, and define
the transfer functions

Gry(s) = G0C

1+G0C
= the transfer from r to y (3.7)

Gru(s) = C

1+G0C
= the transfer from r to u (3.8)

By perfoming identification experiments and finding estimates Ĝry and Ĝru, the
open-loop transfer function may now be estimated as

Ĝ0 =
Ĝry

Ĝru
(3.9)

Equations (3.8) and (3.7) shows that the denominator of Gry and Gru is equal, and
ideally these should cancel out when performing the calculation in (3.9). The
problem is that even small estimation errors from the identification of Gry and
Gru will prevent this cancellation, since the estimates Ĝry and Ĝru will have slightly
different denominators. A solution to this is to use e.g. the normalized coprime
factor method, proposed by den Hof et. al (1995) to perform a model-reduction on
the estimate Ĝ0.
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4
SUBSPACE IDENTIFICATION

During the two last decades the subspace identification method has gained much
attention in the identification research community. There are several reasons for
this, the most important being the fact that the algorithms spawned from this
identification technique are non-iterative, removing any possible convergence prob-
lems. They also identify state space models directly, which is a well-understood
model structure with numerous nice features. The numerical computations are
taken care of by well-understood algorithms from linear algebra, such as the QR-
decomposition and SVD. This assures computational effiency. As pointed out by
Katrien De Cock (2003), this makes the subspace technique suitable for identifica-
tion using large datasets. In this section, the different concepts and mathematical
tools that make up the family of subspace identification algorithms will be revised.
The theory in this section yields for combined deterministic and stochastic iden-
tification. Of special interest is the research that has been done on closed loop
identification using subspace methods.

4.1 The basic idea behind subspace algorithms

The family of subspace algorithms seek to estimate the system matrices A, B C
and D of the state space model from input-output data of the system. The sub-
space identification algorithm in its most general form is given in appendix A. All
subspace identification methods consist of three main steps:

1. Estimating the predictable subspace for multiple future steps

2. Extract the state variables from the estimated subspace

3. Fitting the estimated states to a state space model (Calculating the matrices
Ad , Bd , Cd and Dd of (2.2)).

21
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Input-output data

Orthogonal or

State sequence

Least squares

System matrices
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oblique projection

and SVD

1

Figure 4.1: The subspace method
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4.2 Block Hankel matrices

Socalled block Hankel matrices are important in subspace identification algorithms.
They are constructed solely from recorded input-output data, see Katrien De Cock
(2003):

U0|2i−1 =



u0 u1 u2 . . . u j−1

u1 u2 u3 . . . u j
...

...
... . . .

...
ui−1 ui ui+1 . . . ui+ j−2

ui ui+1 ui+2 . . . ui+ j−1

ui+1 ui+2 ui+3 . . . ui+ j
...

...
... . . .

...
u2i−1 u2i u2i+1 . . . u2i+ j−2


=

(
U0|i−1

Ui |2i−1

)
=

(
Up

U f

)
(4.1)

=



u0 u1 u2 . . . u j−1

u1 u2 u3 . . . u j
...

...
... . . .

...
ui−1 ui ui+1 . . . ui+ j−2

ui ui+1 ui+2 . . . ui+ j−1

ui+1 ui+2 ui+3 . . . ui+ j
...

...
... . . .

...
u2i−1 u2i u2i+1 . . . u2i+ j−2


=

(
U0|i

Ui+1|2i−1

)
=

(
U+

p

U−
f

)
(4.2)

Y0|2i−1 =



y0 y1 y2 . . . y j−1

y1 y2 y3 . . . y j
...

...
... . . .

...
yi−1 yi yi+1 . . . yi+ j−2

yi yi+1 yi+2 . . . yi+ j−1

yi+1 yi+2 yi+3 . . . yi+ j
...

...
... . . .

...
y2i−1 y2i y2i+1 . . . y2i+ j−2


=

(
Y0|i−1

Yi |2i−1

)
=

(
Yp

Y f

)
(4.3)

=



y0 y1 y2 . . . y j−1

y1 y2 y3 . . . y j
...

...
... . . .

...
yi−1 yi yi+1 . . . yi+ j−2

yi yi+1 yi+2 . . . yi+ j−1

yi+1 yi+2 yi+3 . . . yi+ j
...

...
... . . .

...
y2i−1 y2i y2i+1 . . . y2i+ j−2


=

(
Y0|i

Yi+1|2i−1

)
=

(
Y +

p

Y −
f

)
(4.4)
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The subscripts p and f means ”past” and ”future” respectively. The number of
block rows i is a user-defined index which should be larger than the maximum
order of the system to be identified. Since the identified system could be multi-
variable, each block row contains m inputs, and the matrix U0|2i−1 contains 2mi
rows.

The number of columns j is typically s −2i +1, where s is the number of sam-
ples in the data record. The asymptotic requirement for estimating ”perfect” noise
models is that s →∞, but this is of course impossible in practice. For purely de-
terministic models the only requirement is that the input is persistently exciting
of the same order as the model to be identified.

4.3 Geometric tools

In the following we assume that the matrices

A ∈Rp× j , B ∈Rq× j , C ∈Rr× j

are given. The elements of a row of one of these given matrices can be considered
as the coordinates of a vector on the j -dimensional ambient space. The rows of A,
B and C thus defines a basis for a linear vector space in this ambient space. The
operatorΠΓ is defined to have the property of projecting the row space of a matrix
onto the row space of the matrix Γ,

ΠΓ = Γ>(ΓΓ>)†Γ (4.5)

where (ΓΓ>)† means the Moore-Penrose pseudo-inverse of the matrix ΓΓ>. The
reason for this is that in general, the matrix ΓΓ> may be singular.

Orthogonal projections

For simplicity, the notation

A/B = AΠB = AB>(BB>)†B (4.6)

is introduced, a shorthand for the projection of the row space of A onto the row
space of B. An example of this projection when the ambient space is two-dimensional
is given in figure 4.2. In addition we have the definition

A/B⊥ = A− A/B = A(I j −B(BB>)†B) (4.7)

The two projections ΠB and ΠB⊥ decompose the matrix A into two matrices, of
which the row spaces are orthogonal:

A = AΠB + AΠB⊥ (4.8)

As proposed by Katrien De Cock (2003), these projections may be computed via

QR decomposition of

(
B
A

)
. This algorithm is described in detail in Strang (2006).
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A/B B

A
A/B⊥

1

Figure 4.2: Orthogonal projection of a vector A in two dimensions

The purpose of using orthogonal (or oblique) projections is to remove noise from
the data. In the general subspace algorithm stated in appendix A, it is shown that
the projections are tools used to remove unknown terms in the identification ob-
jective equation. The use of these projections makes sure that an estimate of the
matrix of Markov parameters (see equation A.3) is not needed.

Oblique projections

The orthogonal projection is achieved by decomposing the rows of matrix A as
a linear combination of the rows of two orthogonal matrices, as in (4.8). Another
possibility is to decompose the rows af A as a linear combination of the rows of two
non-orthogonal matrices B and C , and of the orthogonal complement of these.
The oblique projection of the row space of B into the row space of C is defined as

A/BC = LC C (4.9)

and the equation for A is

A = LB B +LC C +LB⊥,C⊥

(
B
C

)⊥
(4.10)

Figure 4.3 shows an example of an oblique projection of a vector A. This projection
may also be computed numerically by QR decomposition, as proposed by Katrien
De Cock (2003).

4.4 Calculation of the state sequence

With the geometric tools defined in section 4.3 and the block Hankel matrices at
hand, it is possible to calculate the state sequence of the sought model in two
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Figure 4.3: Oblique projection of a vector A in three dimensions

steps. First, the future output rowspace is projected along the future input row
space into the joint row space of past inputs and past outputs

Oi = Y f /U f

(
Up

Yp

)
(4.11)

Oi−1 = Y −
f /U−

f

(
U+

p

Y +
p

)
(4.12)

The following is required from the input-output data for these projections to give
a perfect estimate of the state sequence:

(a) The process noise wk and measurement noise vk are uncorrelated with the
input uk

(b) The input uk is persistently exciting of order 2i , that is the input block Han-
kel matrix H0|2i−1 is of full row rank.

(c) The sample goes to infinity, j →∞

(d) The process noise wk and the measurement noise vk are identically zero.

Note that it is possible to get a very good model even if these requirements are not
completely fullfilled.

Second, an SVD is carried out to obtain the model order. This is shown in
Henriksen (2001),

W1Oi W2 =
[
U1 U2

][
S1 0
0 0

][
V >

1
V >

2

]
=U1S1V >

1 (4.13)

By inspection of the magnitude of the singular values (diagonal components of
S1), it is possible to estimate the model order. This is usually the step where the
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algorithm needs help from the user, by looking at a singular value plot and select
an order that includes the dominant singular values.

The choice of two weighting matrices W1 and W2 is one of the most impor-
tant distinctions between different subspace identification algortihms. This will
be discussed further in section 4.6.

The extended observability matrix Oi may be calculated as

Oi =U1S
1
2
1 (4.14)

Now, the state sequence and shifted state sequence may be estimated as

X̃i =O†
i Oi (4.15)

X̃i+1 =O†
i−1Oi−1 (4.16)

The matrix Oi−1 denotes the matrix Oi without the last l rows, where l is the num-
ber of outputs of the system.

4.5 Calculation of the system matrices

The last step of the subspace identification routine is to estimate the system ma-
trices A, B , C and D . This is done in a least squares sence, solving the following set
of equations: [

X̃i+1

Yi |i

]
=

[
Â B̂
Ĉ D̂

][
X̃i

Ui |i

]
+

[
ρw

ρv

]
(4.17)

The matrices ρw and ρv are residual matrices, from which it is possible to estimate
the covariances of the process and measurement noise. The two state estimates
X̃i and X̃i+1 however, is obtained with different initial conditions. This means
that the set of equations (4.17) is not really theoretically consistent, giving slightly
biased estimates of the system matrices. In order to guarantee unbiased estimates,
one of the following conditions have to be satisfied:

1. i →∞
2. The system is purely deterministic, that is vk = wk = 0∀k

3. The input uk is white noise

4.6 Different subspace methods

During the recent years a number of different subspace-algorithms have been de-
veloped. They all share the structure shown in figure 4.1, and utilize the mathe-
matical and geometrical tools described in this section. One of the main differ-
ences between these is the choice of weighting matrices W1 and W2 used in the
SVD, equation (4.13). There is also different ways of estimating the system ma-
trices, either by using the state estimates or by using the extended observability
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matrix Oi . The general algorithm described in appendix A from Ljung (1999) uses
the extended observability matrix to compute the system matrices. A handful of
different realizations of the subspace algorithm will be discussed here.

MOESP

The Multivariable Output Error State Space (MOESP) family of subspace algo-
rithms was proposed by Michel Verhaegen, and discussed in Verhaegen (1994) and
Muharar (2006). As the name indicates, these algorithms assumes that the input-
output relationship may be described in an output-error fashion, which means
that the relationship between inputs and undisturbed outputs may be written
as a linear difference equation. There are different kinds of MOESP algorithms
(Muharar (2006)):

• Ordinary MOESP - Designet to cope with systems contaminated with white
measurement noise only. Assumes that outputs are independent of past
noise.

• PI-MOESP - Stands for ”Past Input”-MOESP. This algorithm is designed to
cope with systems contaminated by colored measurement noise (correla-
tion between noise samples). Uses instrumental variables constructed from
past inputs, hence the name.

• PO-MOESP - ”Past Output”-MOESP. Different from the PI-MOESP algorithm,
this algorithm cope with colored input noise and colored measurement noise.
It uses both past inputs and past outputs to construct instrumental vari-
ables, so the name might be confusing.

All the MOESP algorithms use the extended observability matrix Oi to estimate the
system matrices.

The weighting matrices used in the SVD in step 2 of the MOESP algorithm (see
appendix A for an explanation of this step), are according to Ljung (1999)

W1 = I (4.18)

W2 = (
1

N
ΦΠ⊥

U>Φ
>)−1ΦΠ⊥

U> (4.19)

The MOESP algorithm requires two inputs. The first is the embedded dimension
used in the algorithm, that is the number of block Hankel rows used before the
singular value decomposition (SVD). The second is the number of states of the fi-
nal model, which is usually decided by inspection of the singular values from the
SVD. An example where the two parameters of the MOESP algorithm are varied is
shown in figure 4.4. The system to be identified here is a 2×2-plant, and the frobe-
nius norm of the error between the real plant output and the outputs produced
by the output is indicated on the z-axis. Since the MOESP algorithm assumes an
output-error structure of the system to be identified, the algorithm typically pro-
duces good low order models for high signal-to-noise ratios in the identification
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Figure 4.4: The error using the MOESP algorithm for varying embedded dimen-
sion and final states of the identified model. In this example, the best model was
obtained by using an embedded dimension of 88, and 3 states in the final model.

data. This is also seen in figure 4.4, where the optimum appears for a third-order
model. The reason for the low order is that the model structure is not trying to
describe noise properties by adding more states to the model.

In this thesis, only deterministic identification is performed (only the A,B ,C ,D-
quadruple, and no identifcation the noise properties). This means that the deter-
ministic part of the system is to be found from both noise-free and noise-corrupted
data.

The MOESP algorithm used in this thesis is the ordinary MOESP algorithm,
and the implementation is made by Yi Cao at Cranfield University, UK.

N4SID

The numerical algorithms for subspace state space system identification (N4SID,
read ”enforce it”) is a class of subspace algorithms first proposed by Overschee &
Moor (1994). One of the main differences between the N4SID algortihms and the
MOESP algortihsm, are the choice of weighting matrices used in the SVD step. The
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general N4SID algoritms use the weighting matrices

W1 = I (4.20)

W2 = (
1

N
ΦΠ⊥

U>Φ
>)−1Φ (4.21)

It should be noted though, that the Matlab implementation of the algorithm offers
the possibility to use weighting matrices similar to other subspace algorithms, like
MOESP or CVA (Canonical Variate Analysis). In this thesis though, the original
weighting is used in order to test the original algorithms against each other.

The ordinary N4SID algorithm is, unlike MOESP, not based on describing the
input-ouput characteristic in an output-error form. A consequence of this is that
N4SID tend to give more accurate models when a higher model order than MOESP
is choosen during the identification routine. This is because the noise in the input-
data is not removed before the state sequence is estimated, and a ”full” state space
model is estimated.

The only input parameter to the N4SID algorithm is the number of states in
the final model, which makes it very convenient for easy identification of large
systems. The number of states in the final model is derived in the same fashion as
for the MOESP algorithm, by inspection of the singular values from the SVD step.

The N4SID algorithm used in this thesis is the version implemented in the
Matlab Identification Toolbox. As stated above, this implementation is quite gen-
eral, because it offers different choices of e.g. the weighting matrices of the SVD.
The only input parameter given to the algorithm used in this thesis will be the
number of states in the final model, and only deterministic identification is per-
formed (as for the MOESP algorithm).

DSR and DSR_e

The DSR_e algorithm by David Di Ruscio is spawned from the combined deter-
ministic and stochastic system identification and realization framework given in
Ruscio (1996). This version of the subspace algorithm is designed to especially
cope with closed-loop data. The general DSR algorithm uses orthogonal projec-
tions, see section 4.3.

The ordinary DSR algorithms are complete subspace methods, where both the
deterministic part (A,B ,C ,D-quadruple) and the stochastic part (noise properties
and kalman-gain) are estimated without solving the Riccati equation or using pa-
rameter error methods.

The DSR_e algorithm uses three input parameters, where one of them is re-
lated to the embedded dimension parameter of the MOESP algortihm. This pa-
rameter is denoted L, and the relation to the MOESP parameter is ”EDMOESP =
L+1”, where ED means embedded dimension.

The second input parameter is a parameter J , that is the size of the past hori-
zon used to define instrumental variables. This parameter should enforce the
eigenvalues of (A−BK )J to approach zero, where K is the identified Kalman-gain.
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J should hence be relatively large. This parameter is related to the stochastic part
of the identification, but is also important to separate the noise components from
the deterministic part of the model.

The third parameter is, as for the MOESP and N4SID algorithms, the number
of states in the final model. This parameter is set after an inspection of the singular
values from the SVD step, as for the other algorithms.

A brief explanation of the DSR_e method is given by David Di Ruscio, after
personal communication with the author

The DSR_e method is a two-stage method. In the first step, future in-
puts in the Hankel matrices are splitted into signal and noise. In order
to achieve this, past inputs and outputs are used, where the horizon
used is defined by the parameter J (which should be large). When
the signal part of the data is found, the state space model is found by
solving a deterministic subspace problem using the ordinary DSR al-
gorithm.

4.7 Application of subspace methods using closed-loop
data

In the standard subspace algorithm, one of the assumptions is that the noise in
the data record is uncorrelated with the input data. In appendix A, the general
subspace algorithm and criterions for good model identification are given. When
the instrumental variables are formed to remove the noise terms in the data, it is
to ensure that equation (A.14a) is satisfied. For noisy closed-loop data, the mea-
surement noise as well as the input noise will be correlated with the system input
through the feedback loop. This violates the assumption of uncorrelated input
and noise data. Numerous researchers have proposed modified algorithms that
tries to cope with this problem.

Verhaegen (1993) proposes a method that solves an open-loop problem by
combining the models of process and controller, using a standard subspace iden-
tification method (MOESP) to solve the full scale problem. This approach also
gives an estimate of the controller.

Subspace identification methods are primarily based on the estimates of k-
step ahead output predictors. Ljung & McKelvey (1996) proposes the use of a high
order ARX one-step ahead predictor model to recompute these k-step ahead out-
put predictors. This way, closed-loop data may be handled. It is stressed by Ljung
& McKelvey (1996) that the algortihm they proposed to cope with this problem is
not the best in any sence, merely a feasible solution.

Ruscio (2003) shows that standard subspace identification algorithms (see ap-
pendix A) works perfectly with closed-loop data for purely deterministic systems,
i.e. systems not corrupted by noise. An algorithm that uses the controller param-
eters in order to overcome the bias problem is proposed. In addition, the idea of
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using a filter in the feedback loop to avoid that the process input is directly pro-
portional to the measurement noise is introduced.

Katayama & Tanaka (2007) proposes a subspace identification method based
on orthogonal decomposition for closed-loop identification. The idea of this ap-
proach is to project input and output data onto the space of exogenous inputs by
using an LQ (similar to QR) decomposition to obtain the deterministic compo-
nents of the system to be identified.
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5
PROBLEM STATEMENT AND METHODS

The purpose of this chapter is to introduce and justify the choice of methods used
in the simulation parts (chapters 6 and 7), and to clearly state the questions to be
answered in this thesis.

5.1 Choice of identification methods

The following subsections will justify the choice of identification techniques.

Closed-loop identification technique

The three different approaches to closed-loop identification discussed in section
3.5 use different methods of estimating the open-loop transfer function.

In order to keep the results produced in this thesis as practical applicable as
possible, the indirect approach of closed-loop identification is ruled out. This is
because knowledge of the controller parameters may not always be a sufficient
condition for knowledge of the real controller. This approach is also limited to
linear controllers only. Nonlinear effects like anti reset-windup and additional
logic in the controllers may render the controller models useless for calculating
the open-loop transfer function from equation (3.6).

As shown in section 3.5, the joint input-output approach has proven to per-
form well in numerous cases. The main problem with this method is the com-
plexity, and the need to estimate two transfer functions instead of only one. When
forming the transfer functions from the reference input to controller output, and
from reference input to system output, a decision on the order of these transfer
functions have to be made. This may be hard even when using singular value
analysis during the subspace identification routine, since the controllers may re-
quire a high order approximation. After the model reduction step, this may leave a

33
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simplified model where the controllers are dominating in the open-loop transfer
function estimate. In addition, the inverse of the transfer function from reference
inputs to controller outputs has to be calculated. If this transfer function is singu-
lar, or close to singular, the estimate will be very sensitive to estimation errors.

Being a simple approach, the direct approach is not using any knowledge of
the controllers, operating solely on controller output and system output data. This
strongly favors the use of this method when the purpose is to find an estimate of
the open-loop transfer function only. If the purpose is to find a model of the con-
troller as well, the direct approach may be used on controller inputs and outputs
as well. In this thesis, the purpose is to find the open-loop transfer function only.
Hence, the only approach to closed-loop identification will be the direct approach.

Choice of subspace methods

The subspace identification methods that will be compared are

• N4SID by Van Overschee and De Moor

• MOESP by Michel Verhaegen

• DSR_e by David Di Ruscio

The N4SID and MOESP methods are selected because they are among the most
widely used subspace algorithms. MATLAB implementations of these algorithms
are comercially available. As stated in section 4.6, these are primarly used with
open-loop data. The DSR_e algorithm by David Di Ruscio is available on request.
This algorithm is tailored to especially cope with closed-loop data, see section 4.6.
The purpose is to investigate how the open-loop methods perform compared to
the tailored closed-loop method. By comparing the methods, a better understand-
ing of how the different methods work is sought.

5.2 Choice of simulated control structure

One of the most common control strategies in the industry is to use single loop
PI-control. This means that each control loop is closed individually regardless of
the multivariable nature of the system. As a consequence of this, the identifica-
tion problem very often consists of finding the open-loop dynamics of a system
operating under decentralized PI-control. It is also natural that one wants to re-
place such a control structure with e.g. MPC or LQR/LQG, that naturally handles
multivariable systems.

The systems to be identified in the next chapters will hence operate under
decentralized PI-control. To keep the structure relatively simple, the systems (or
plants) discussed in chapters 6 and 7 will be restricted to 2×2-systems, controlled
by a diagonal PI-controller.



5.3. PROBLEM STATEMENT 35

A block diagram of the system structure used in chapter 6 is shown in figure
6.1. The focus of this chapter will be to identify systems with different dynamic
properties, with and without measurement noise and unmeasured input distur-
bances.

In chapter 7, a more practical case study is revised. Here, a nonlinear plant is
subject for identification. The focus here will be to identify a linear model around
an operating point in closed-loop, with measurement and process noise present
in the loop.

5.3 Problem statement

The main purpose of this thesis is twofold; First, the objective is to investigate
the performance of the three subspace methods N4SID, MOESP and DSR_e when
closed-loop data is applied. In order to indicate the performance of the differ-
ent methods, the performance indices defined in section 2.5 will consequently be
used. This will be studied in both chapter 6 and 7.

Second, these methods will be instruments to investigate how tuning of the
controllers affect the identified open-loop model. This is also studied in both
chapter 6 and 7.
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6
IDEALIZED CASE STUDIES

This chapter presents simulations and subspace identification of different systems
using Matlab and Simulink. Three different subspace algorithms will be tested,
namely

• DSR_e by David Di Ruscio

• MOESP by Michel Verhaegen

• N4SID by Van Overschee and De Moor

The performance of the subspace methods will be evaluated by the performance
indices defined in section 2.5. The results are listed in appendix B, tables B.1 and
B.2.

6.1 The system structure and identification configurations

As stated in section 5.2 , the systems at hand will all be linear and multivariable
(2× 2). The control structure is in all cases a decentralized PI-structure, and the
system is depicted in figure 6.1. The controller equations are

C1(s) = Kp1
τi s +1

τi 1s
(6.1)

C2(s) = Kp2
τi s +1

τi 2s
(6.2)

The goal is to find an estimate Ĝ0(s) of the matrix

G0(s) =
[

g11(s) g12(s)
g21(s) g22(s)

]
(6.3)

37
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uc2 u2

1

Figure 6.1: Closed-loop identification structure

The different signals in figure 6.1 are defined as follows1:

• {r1,r2} - These are reference signals to be tracked by the controller. They are
used to excite the system for identification in closed-loop.

• {uc1,uc2} - Control signals calculated by the controller. These equal the sig-
nals {u1,u2} in the special case of noise-free inputs.

• {ud1,ud2} - These are unmeasured, external signals entering the closed-loop
system. Due to these, the controller command uc will differ from the input
to the system u. These signals will be referred to as process noise signals.

• {u1,u2} - The actual inputs to the system. These are the sum of {uc1,uc2} and
{ud1,ud2}.

• {v1, v2} - Measurement noise entering the feedback loop. This signal may be
a mixture of low-frequency and high-frequency components, i.e. measure-
ment bias/drift and high-frequency noise.

• {y1, y2} - Outputs of the system. Note that these are different from the mea-
surements, since the measurements are in general corrupted with noise,
while these are the ”real” outputs.

The controller C in figure 6.1 is a socalled one degree-of-freedom controller, since
the controller is operating on a single error signal (no feed-forward). It can be
useful to define some transfer functions for the system at hand. First, we observe
that the input to the process is u = uc+ud , and the controller command is given by

1In compressed notation, all the indices of the variables are dropped, e.g. u = [
u1 u2

]
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the controller uc =C (r −y−v). Second, the open-loop transfer is given by y =G0u.
By insertion, we get

y =G0u =G0(uc +ud ) =G0(C (r − y − v))+G0v

=G0Cr −G0C y −G0C v +G0ud

(I +G0C )y =G0Cr +G0ud −G0C v

y = (I +G0C )−1G0C︸ ︷︷ ︸
T

r + (I +G0C )−1︸ ︷︷ ︸
S

G0ud − (I +G0C )−1G0C︸ ︷︷ ︸
T

v

= Tr +SG0ud −T v (6.4)

The transfer functions S and T are defined as

S = (I +G0C )−1 : the sensitivity function (6.5)

T = (I +G0C )−1G0C : the complementary sensitivity function (6.6)

Notice that the unmeasured disturbance ud is filtered through the open-loop trans-
fer function G0 and the sensitivity function S. Now, the smaller the sensitivity
function is in magnitude, the more will the unmeasured disturbance affect the
process input u instead of the output y (recall section 3.2). If the controller gain is
high, the magnitude of the sensitivity is reduced, and the disturbance effect from
ud on the output y will be reduced also.

6.2 Procedure

The identification procedure for identifying the different test systems will be ex-
plained. This includes input design, subspace algorithm parameter choices, and
validation experiment.

Input design

Theorem 13.2 of Ljung (1999) states that a closed loop experiment is informative
if and only if the reference signal r is persistently exciting. It is also mentioned
that whatever choice of input experiment that is easier to implement accuratly is
to be preferred. Due to these reasons, PRBS-signals will be generated in order to
identify the closed-loop systems in this chapter. As mentioned in section 2.3, these
signals are persistently exciting of a relatively high order (this order is given by the
maximum period length M of the signal). These signals are also easy to generate,
even for a real process. This is because the signal itself only consists of a series of
steps up and down.

An implementation by David Di Ruscio of the algorithm from section 2.3 for
generating PRBS-signals will be used. In this implementation, it is possible to ad-
just the minimum and maximum period of the signals. Some prior knowledge of
the system to be identified is useful for deciding these parameters; if we know ap-
proximately how fast the slowest time constant of the system to be identified is,
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we may set the maximum period of the PRBS-signal to be about four or five times
this value to catch the steady-state properties. The minimum period parameter
will be set to about ten times the sampling time of the system, in order to catch
any possible fast time constants.

For all the systems in this chapter, the sampling time will be 0.1s, and discrete
time state space models are identified.

Since the systems to be identified in this section are known to be linear, it is
possible to excite both references to the system at the same time. This is governed
by the super position principle for linear systems, which let us sum up the contri-
butions from different inputs to the systems, one at a time.

Subspace algorithm parameters

The three different subspace algorithms DSR_e, MOESP and N4SID require differ-
ent input parameters. These are discussed in section 4.6. The number of states in
the final model is needed for all three, and this decision is made after studying the
magnitude of the singular values from the SVD of the Hankel matrices constructed
from input-ouput data. The best dimension is not always easy to determine even
from these values, and the performance indices will be used to find the best or-
der of the models produced by each algorithm. When the performance indices
for the different methods are compared, the model with the best performance in-
dices from each of the methods is used. The performance is decided after running
validation experiments on the produced models. The validation experiments are
discussed in the next subsection.

The MOESP and DSR_e algorithms require additional input parameters which
have to be decided. As shown in figure 4.4, it is possible to run a brute force ex-
periment by varying different input parameters in search for the set of parameters
that minimizes the error between system and model outputs. This will, however,
not yield a global solution to the problem, since this optimum only corresponds to
the data from the given validation experiment. In addition, these experiments are
cumbersome and computationally nonefficient. Since there is no known easy way
to determine these parameters, trial and error will be used to find sets of parame-
ters that yield reasonable good results. Selection of optimal input parameters for
subspace algorithms could actually be an interesting topic to investigate in future
work.

Validation

The validation process consists of producing a set of inputs different from that
used in the identification experiment, testing the identified models abilities to re-
produce output data from the real system. In this thesis, the approach is simply to
generate new reference input PRBS-signals to the real system, and record the out-
put data. The controller output from the real system is then fed to the identified
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open-loop system. At last, the outputs from the real system are compared to those
produced by the models.

6.3 Simple, weakly coupled system

The system to be identified in this section is a simple system with a common de-
nominator, given by

S1 =G0(s) =
[

g11(s) g12(s)
g21(s) g22(s)

]
= 1

2s +1

[
1 1
1 2

]
(6.7)

In the identification experiments, the order is assumed known.
In order to check how strongly coupled the system is, the steady-state RGA

matrix for the system is calculated as (Skogestad & Postlethwaite (2005) p. 83)

Λ(G0) =
[
λ11 λ12

λ21 λ22

]
=

[
λ11 1−λ11

1−λ11 λ11

]
; λ11 = 1

1− g12g21

g11g22

(6.8)

where (g11, g12, g21, g22) are the steady state elements of G0(s). For the system at
hand the value of the relevant RGA parameter is

λ11 = 1

1− 1
2

= 2 (6.9)

This indicates that there is some interaction in the system. This will be shown
during the following subsection.

When the system is identified with noise, different simulation will yield differ-
ent results. Hence, the system is identified multiple times, using the mean value
of the performance indices as performance indications. This will be referred to as
Monte Carlo simulations, since it is a (simplified) Monte Carlo experiment. The
noise is bandlimited white noise for both process noise and measurement noise.
The variance of the noise is 0.001 for both the process noise and the measurement
noise. The system will be identified with no noise, with measurement noise only,
with process noise only, and with both process and measurement noise. In the
latter case, nine different tuning configurations will be tested, while only two dif-
ferent will be tested when the noise is either process or measurment noise. This is
because the most realistic case is the one where the system is corrupted by both
process- and measurement noise.

Controller configurations

In order to identify the system, the controller parameters have to be decided. The
system will first be tuned relatively ”smooth”, which means that a reference step
will result in a ”smooth” controller command u to achieve y = r . This tuning will
be referred to as configuration 1. Figure C.1 shows the step response of the closed-
loop system with controller parameter configuration 1 given in table 6.1. Figure
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C.1b exposes the interaction in the system, y2 jumps up a bit at t = 50 as a result
of the control command u1, and y1 jumps a bit down at t = 150 as a result of the
control command u2. These two different configurations are used to illustrate the
difference between ”smooth” and ”tight” tuning of this system. When the system is
corrupted by noise, several different tuning configurations will be compared. This

Table 6.1: ”Smooth” and ”tight” controller parameters for the simple, weakly cou-
pled system

Parameter Value Configuration
Kc1 0.8 1
Kc2 0.8 1
τi 1 5 1
τi 2 5 1

Kc1 3 2
Kc2 3 2
τi 1 2 2
τi 2 2 2
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Figure 6.2: Sensitivity function for two different parameter configurations

is also seen in figure C.2, where controller parameter configuration 2 is applied.
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This tuning is relatively aggressive, as seen by the controller command response
in figure C.2a. The closed-loop sensitivity function is plotted for these two tuning
configurations, and shown in figure 6.2.

No noise

The technique of direct identification discussed in section 3.5 was applied to the
system at hand. Shortly explained, it involves direct usage of u- and y-data from
the closed-loop system for identification, ignoring feedback in the data record.
The system is excited by a PRBS-sequence shown in figure 6.3. The PRBS-signal
consists of steps with durations between 0.5s and 10s. Figure 6.4 shows that the
system is perfectly estimated with perfect data, even if the experiment is performed
in closed-loop. The simulation was carried out with different tunings of the con-
troller, but all tuning configurations gave the same result as shown in figure 6.4.

The subspace parameters used was

• MOESP - Embedded dimension = 60, Order = 2

• N4SID - Order = 2

• DSR_e - L = 20, J = 20 Order = 2
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Figure 6.3: PRBS sequences used for direct identification
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Figure 6.4: Identification error without process and measurement noise
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Measurement noise only

Here the subspace algorithm parameters were chosen as follows

• MOESP - Embedded dimension = 60, Order = 2

• N4SID - Order = 2

• DSR_e - L = 50, J = 50 Order = 2

Figure 6.5 shows the result from the Monte Carlo simulation for tuning configura-
tion 1, and figure 6.6 shows the result for tuning configuration 2. Notice that both
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Figure 6.5: Performance indices for tuning configuration 1, measurement noise
only
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Figure 6.6: Performance indices for tuning configuration 2, measurement noise
only

indices are better when the tight tuning configuration is applied to the controllers
(configuration 2).
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Process noise only

Here the subspace algorithm parameters were chosen as follows

• MOESP - Embedded dimension = 60, Order = 2

• N4SID - Order = 2

• DSR_e - L = 20, J = 20 Order = 2

Figure 6.7 shows the result from the Monte Carlo simulation for tuning configura-
tion 1, and figure 6.8 shows the result for tuning configuration 2. In this case the
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Figure 6.7: Performance indices for tuning configuration 1, process noise only
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Figure 6.8: Performance indices for tuning configuration 2, process noise only

performance is almost equal for both tuning configurations. This is also seen in
table B.1, where the numbers are listed.
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Measurement and process noise

The subspace parameters used in this case was

• MOESP - Embedded dimension = 80, Order = 2

• N4SID - Order = 2

• DSR_e - L = 50, J = 50 Order = 2
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(a) Kp = 0.8, τi = 2

1 2 3 4 5 6 7 8 9 10
0.85

0.9

0.95

1

1.05

Simulation nr.

M
V

A
F

 

 
DSR

e

MOESP
N4SID

(b) Kp = 0.8, τi = 2
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(c) Kp = 0.8, τi = 5
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(d) Kp = 0.8, τi = 5
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(e) Kp = 0.8, τi = 10
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Figure 6.9: Performance indices for different values of τi = τi 1 = τi 2, Kp = Kp1 =
Kp2 = 0.8
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(a) Kp = 3, τi = 2
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(b) Kp = 3, τi = 2
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(c) Kp = 3, τi = 5
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(d) Kp = 3, τi = 5
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(e) Kp = 3, τi = 10
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Figure 6.10: Performance indices for different values of τi = τi 1 = τi 2, Kp = Kp1 =
Kp2 = 3
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Figures 6.9, 6.10, and 6.11 shows clearly that the performance in this case is
better with increased controller gain. The integral time seems to have little effect
on the performance.
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(c) Kp = 10, τi = 5
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Figure 6.11: Performance indices for different values of τi = τi 1 = τi 2, Kp = Kp1 =
Kp2 = 10
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Signal to noise ratio for different controller gains

Figure 6.12 shows a simplified measure for the signal power compared to the noise
power for frequencies up to the Nyquist frequency for system. In these plots, the
power spectrums of the input signals u1 and u2 are found by FFT (Fast Fourier
Transform), and the result is scaled with the power of the noise. These input sig-
nals are generated with both measurement and process noise present in the loop.
Notice that the input power is amplified at high frequencies with increased con-
troller gain, as discussed in section 3.3.
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Figure 6.12: Power spectrum of identification inputs u1 and u2 scaled with noise
power
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6.4 Stiff, weakly coupled system

The system to be identified in this section is

G0(s) =
[

g11(s) g12(s)
g21(s) g22(s)

]
=

[
2s−1

(3s+1)(s+1)
1

2s+1
1

50s+1
2s+1

(70s+1)(30s+1)

]
(6.10)

This system is more complex than S1, since it has a zero in the right half plane,
which will give inverse responses. As shown further down in this section, its eigen-
values are spread by a factor of 70, which means that this is a relatively stiff system.

As in section 6.3, the steady state RGA matrix is calculated using the formula

λ11 = 1

1− g12g21

g11g22

(6.11)

in order to determine how strongly coupled the multivariable system is. Recall
that the elements of the transfermatrix used in equation (6.11) are the steady state
elements. For system S2, the steady state RGA value is

λ11 = 1

1− g12g21

g11g22

= 1

1− 1
−1

= 0.5 (6.12)

This indicates that the system is slightly interactive.
A canonical, continuous state-space realization of this system reveals its eigen-

values through the A-matrix:

ẋ =



−1 0 0 0 0 0
0 −0.3333 0 0 0 0
0 0 −0.0333 0 0 0
0 0 0 −0.01429 0 0
0 0 0 0 −0.02 0
0 0 0 0 0 −0.5


︸ ︷︷ ︸

A

x +



−2.121 0
−1.581 0

0 −0.2998
0 −0.2255

0.0625 0
0 1

u

y =
[−0.7071 0.5270 0 0 0 0.5

0 0 0.0778 −0.1077 0.32 0

]
x

(6.13)

Figure C.3 shows the unit step response of this system when both inputs are stepped.
As seen by this response and the A-matrix, the system has both fast and slow dy-
namics. This is the reason why this particular system is selected, in order to test
the subspace algorithms abilities to capture the different time constants of the
system. As mentioned in Hugues Garnier & Young (2008), the main difficulty with
stiff systems is to choose a proper sampling rate. Consider an exact discretization



52 CHAPTER 6. IDEALIZED CASE STUDIES

of the linear system 6.13 with a sampling time of 0.1s:

ẋ =



0.9048 0 0 0 0 0
0 0.9672 0 0 0 0
0 0 0.9967 0 0 0
0 0 0 0.9986 0 0
0 0 0 0 0.998 0
0 0 0 0 0 0.9512


︸ ︷︷ ︸

A

x +



−0.2019 0
−0.1555 0

0 −0.0299
0 −0.2253

0.006244 0
0 0.09754

u

y =
[−0.7071 0.5270 0 0 0 0.5

0 0 0.0778 −0.1077 0.32 0

]
x

(6.14)

As the system matrix Ad shows, the slowest pole of the system is very close to the
unit circle (0.9986). The result of this is that even a slight estimation error may
result in an unstable model (eigenvalues outside the unit circle).

Controller configurations

As for the system in section 6.3, identification will be performed using different
controller parameters. In appendix C.1, the closed-loop step responses for three
different parameter configurations is shown. Since the last section showed that
the integral time was of minor importance compared to the controller gain, only
the controller gain will be varied here. The different tuning configurations are

• Configuration 1 - Kp1 =−0.2, Kp2 = 0.5, τi 1 = 5 and τi 2 = 70

• Configuration 2 - Kp1 =−0.4, Kp2 = 1, τi 1 = 5 and τi 2 = 70

• Configuration 3 - Kp1 =−1, Kp2 = 1, τi 1 = 5 and τi 2 = 70

Notice that controller C1 has negative gain, since the steady state value of the
open-loop transferelement g11 is negative.

For this system, different inputs to the subspace algorithms were tested. There
was only a minor difference on the performance by varying these parameters for
the different controller and noise configuratinos for this system, so the parameters
are, for all of the following simulations,

• MOESP - Embedded dimension = 90, Order = 6

• N4SID - Order = 6

• DSR_e - L = 60, J = 40 Order = 6

The order is, as in section 6.3, assumed known.
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Measurement noise only
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(a) Tuning configuration 1
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(b) Tuning configuration 1
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(c) Tuning configuration 2
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(d) Tuning configuration 2
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(e) Tuning configuration 3
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Figure 6.13: Performance indices for different values of controller gains

Remarks: The MOESP method failed to identify this system when measure-
ment noise was present, giving a strongly biased model. DSR_e performed better
with higher controller gain, while N4SID performed worst for tuning configuration
3.
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Process noise only
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(b) Tuning configuration 1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation nr.

M
R

S
E

 

 

DSR
e

MOESP
N4SID

(c) Tuning configuration 2
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(d) Tuning configuration 2
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(e) Tuning configuration 3
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Figure 6.14: Performance indices for different values of controller gains

Remarks: The MOESP method gave better models with higher controller gain,
but the models are still very biased. Tuning configuration 2 seems to work best for
N4SID and DSR_e in this case, while configuration 3 worked best for MOESP.
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Measurement and process noise
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(a) Tuning configuration 1
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(b) Tuning configuration 1
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(c) Tuning configuration 2
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(d) Tuning configuration 2
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(e) Tuning configuration 3
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Figure 6.15: Performance indices for different values of controller gains

Remarks: The MOESP method gives strongly biased models also in this case.
For tuning configuration 1, N4SID gave the model with best performance. Tuning
configuration 2 seemed to work best overall in this case.
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Signal to noise ratio for different controller gains

Figure 6.16 shows the signal to noise ratio for the identification inputs u1 and u2.
Notice that the ratio here is lower than the signal to noise ratio for system S1 for
all frequencies.
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Figure 6.16: Power spectrum of identification inputs u1 and u2 scaled with noise
power
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7
INDUSTRIAL CASE STUDY: DEBUTANIZER

PROCESS

A well known process in the process control field is the distillation process. The
idea is to separate out a given component of one or several feeds into a distilla-
tion column, using the physical properties of the components at hand. A distilla-
tion column, or more specifically a debutanizer will be used as an example in this
chapter. The simulation tool UniSim is utilized for simulation purposes, and gen-
erating data for identification routines performed in Matlab. In this chapter the
process and control configuration will be explained briefly, and the emphasis will
be put on identification of the dynamics of this process.

7.1 The simulator and the process

The simulator

The following information is gathered from UniSim Design Dynamic Modeling -
Reference Guide, UniSim (2005).

UniSim Design is a simulator used to simulate chemical processes. In addition
to model processes using mass and energy balances, UniSim Design also includes
vapourization, reactions and density changes in the modeling. For a distillation
column, UniSim will model each tray of the column as a hold-up, which describes
an important physical phenomenon. When changes are made to compositions,
temperature, pressure or flow of streams that enters the vessel, there will be a
time delay before changes are seen on the output streams. Because of this holdup,
changes applied to the reflux flow or reboiler effect will not immediately be seen
on the distillate or bottoms flow which leaves the column. Hence, the time delay
that is present in a real process is modeled in this case.

57
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The process

The model for this process was used as an example for teaching advanced process
control in Bakke (2008). Figure 7.1 shows a Process Flow Diagram (PFD) for the
debutanizer. The input feed streams consists of different components, listed in
table 7.1. The compositions of the input streams are assumed to be constant, but
the flowrates are variable.

The reboiler heats the input flow so that hot vapour is sent back into the col-
umn, in order to control the temperature at a specific stage in the column. The
effect of this reboiler is calculated by the temperature controller TIC-100, which in
turn is controlled by a master bottoms composition controller XIC-101. The reflux
flow is controlled by the flow controller FIC-100, which is a slave controller to the
distillate composition controller XIC-100. In addition, there are two pressure con-
trollers that controls the column pressure in a bypass configuration. As seen by
the process flow diagram, this pressure controller will induce a flow into the reflux
drum, which is under level control. This means that pressure control action will
act as an ”unknown disturbance” on the reflux flow through the reflux drum level
controller LIC-102, seen from the flow controller FIC-100. This will in turn have
effect on the compositions, since the flow controller adjust the flow to achieve its
setpoint, and change of reflux flow means change of compositions. This will also
affect the column temperature, as there is a physical interaction between the re-
flux flow into the column and the temperature.

The debutanizer process is nonlinear, because the relation between tempera-
tures in the column and the compositions is described by a nonlinear differential
equation in UniSim. There are also nonlinear effects inside the column that are
modeled in UniSim, e.g. the thermodynamics that describes heat transportion
throughout the column. The valves though, are modeled to have linear character-
istics, and these are fast compared to the rest of the system.

In addition, the process is interactive, since the reflux-flow will directly affect
the bottoms composition, and the temperature inside the column will also affect
the distillate composition. The split in this column is basically between i-pentane
(heavy key component) and n-butane (light key component).

7.2 The control configuration

The control configuration used for this distillation column is the standard LV-
configuration, which is recommended for most distillation columns by Skogestad
(2007). In this configuration, the bottoms flow B and distillate flow D are used
for reboiler level control and condenser level control respectively. The reflux flow
L and vapour V from the reboiler are used for composition control. The control
configuration shown in figure 7.1 is a cascaded PI-approach, letting two decentral-
ized PI-controllers write setpoints to the reflux flow and temperature controllers
respectively. This approach assumes that measurements of the key composition
components in the bottoms and distillate flows are available, which is true in this
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Figure 7.1: Process Flow Diagram for the debutanizer



60 CHAPTER 7. INDUSTRIAL CASE STUDY: DEBUTANIZER PROCESS

Table 7.1

Feed 1 Feed 2
Component Mole fraction Component Mole fraction

Propane 0.019763 Propane 0.020000
i-Butane 0.212413 i-Butane 0.190000
i-Butene 0.010355 i-Butene 0.220000
n-Butane 0.212413 n-Butane 0.200000
i-Pentane 0.140921 i-Pentane 0.160000
n-Pentane 0.140921 n-Pentane 0.210000
n-Hexane 0.092701 n-Hexane 0.000000

n-Heptane 0.094220 n-Heptane 0.000000
n-Octane 0.076293 n-Octane 0.000000

simulation case. In a practical setting one would usually control temperatures in-
side the column only to achieve indirect control of the compositions. The follow-
ing convention is defined to translate the process to ”control language”:

• r1 - setpoint for the controller XIC-100 [Mole Fraction]

• r2 - setpoint for the controller XIC-101 [Mole Fraction]

• u1 - Setpoint to the flow controller FIC-100, which controls the reflux flow

into the column
[

m3

h

]
• u2 - Setpoint for TIC-100, which controls stage 8 temperature [◦C ]

• d1 - Mass flow of Feed 1
[

kg
h

]
• d2 - Mass flow of Feed 2

[
kg
h

]
• y1 - Composition of heavy key component (i-pentane) in the distillate flow

[Mole Fraction]

• y2 - Composition of light key component (n-butane) in the bottoms flow
[Mole Fraction]

The subsystem of the process to be identified hence is multivariable, having two
controllable inputs, two uncontrollable but measured inputs (disturbances), and
two outputs. The system is sampled with a sampling time of 1min = 60s, because
this is a relatively slow process.

Figure 7.2 shows a block diagram for the system at hand. The purpose is to
identify a relatively low order linear model that is suitable around the nominal
operating for the debutanizer. A full state space of the model would require many
states, since each of the trays in the column is modeled to have holdups between
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Figure 7.2: Block diagram to show signal flow in the process

them. The states would then describe the heat transfer between the trays inside
the column, as well as flows between the trays. In addition, a description of the
pressure dynamics would require additional states. For the subsystem of the full
process that is identified here, the effects from the rest of the process that is not
measured during the identification experiment will act as unknown disturbances
to the system, so a perfect model is very hard to achieve. A model that describes
the input-ouput properties reasonbly good is sought, i.e. models that are capable
of reproducing outputs from the real process with the same input data.

7.3 The model

The goal is to identify the transfer function G0 of figure 7.2. Identification of Gd is
not considered here, since this is an open-loop problem.

Open-loop model

In the frequency domain, the open loop model is

y(s) =G0(s)u(s)+Gd (s)d(s) (7.1)

Assuming linearity around an operating point u(s) = u∗ = const, d(s) = d∗ = const,
it is possible to treat the two contributions from u(s) and d(s) separatly by the su-
per position principle. The control signal u(s) is given by the control law

u(s) =
[

C1(s) 0
0 C2(s)

]
(r − y) =

[
k1

τi 1s+1
τi 1s 0

0 k2
τi 2s+1
τi 2s

]
(r − y) (7.2)

The idea now is to identify the two transfer functions using the subspace methods
described in section 4.6.
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Controller configurations

The decentralized controller will be tuned with two different tuning configura-
tions, where the gains of the controllers will be varied. Three different tuning con-
figurations are used, where only the controller gains are varied. The parameters
for the different configurations are

•

• Configuration 1 - Kc1 = 1.29, Kc2 = 0.319

• Configuration 2 - Kc1 = 1.935, Kc2 = 0.4785

• Configuration 3 - Kc1 = 2.58, Kc2 = 0.638

In all cases, the integral times are τi 1 = 38.3[min] and τi 2 = 13.5[min].

Noise properties

The identification data is contaminated by white noise with variance 0.02% of the
respective signal values. This yield for the input-output data used in the subspace
algorithms for different controller configurations, i.e. u1, u2, y1 and y2. When the
model order is decided, noisefree data is used to find the best input parameters
for the subspace algorithms.

The validation data is generated with no noise in order to evaluate the per-
formance of the deterministic models. It as also generated with a different PRBS
sequence than the identification data. The outputs of these deterministic models
are compared with outputs with the noisefree process outputs, where the u-data
generated by the closed-loop process are fed to the models identified by the sub-
space methods.

7.4 Identification experiment

As explained in section 7.1, the true process has nonlinear dynamics, and it con-
tains time delays that need to be approximated by the identified state space mod-
els. In additino, the data is contaminated by noise. Because of this, it is expected
that the outputs from the identified models will differ some from the real process
outputs.

In order to generate informative data for identification of the debutanizer, a
PRBS sequence is generated for both external inputs r1 and r2. The identification
PRBS-sequences are designed so that the longest steps will give the slowest time
constants of the system time to settle. The disturbances d1 and d2 are left constant
during the identification experiment.

The references are stepped with ±0.0005 mole fractions around their nomi-
nal operiting point, which corresponds to steps of ±2.5% of their absolute values.
Figures 7.3 and 7.4 show the outputs and references, and controller commands.
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This is noisefree data generated with control configuration 2, and it will be used to
decide on the model order.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

y 1 a
nd

 r
1 −

 [m
ol

e 
fr

ac
tio

n]

time [min]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

y 2 a
nd

 r
2 −

 [m
ol

e 
fr

ac
tio

n]

time [min]

Figure 7.3: The outputs y1 and y2 along with the references r1 and r2, no noise.
The broken lines are the references, and solid lines the outputs
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Figure 7.4: The controller commands u1 and u2, no noise
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7.5 Preconditioning of identification data

Since this model is operating around a nominal operating point, the means in the
data record will be removed to capture the dynamics of the process. The reason
for this is explained in section 2.4. When the model order is to be decided, the
input and output data is scaled to be in the range 0 to 1 in order to normalize the
singular value plot.

7.6 Determination of the model orders

In order to decide on the model order, the singular values from the SVD step in the
DSR_e algorithm is utilized. Figure 7.5 shows the singular values along with the
condition number from this step. The idea is to select an order that includes the

0 20 40 60 80 100 120 140 160
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101
Singular Values

System order
0 20 40 60 80 100 120 140 160

100

101

102

103

104

105

106

107
Condition Numbers

System order

Figure 7.5: Singular values to decide on model order

dominant singular values shown in this plot. In this case, the most dominating
singular values seems to corresponds to model orders between 3 and 9. When
the model order was decided here, these different orders was fed to the subspace
algorithms to see which order that gave the best performance indices. For the
DSR_e method, the model order that gave the best performance was 6. The N4SID
gave the best results for a model order of 7, while the MOESP method performed
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best for only 4 states in the final model. These orders will be used as inputs to the
algorithms during the next section, when the controller gains are varied.

7.7 Identification of debutanizer process with different
controller gains

As for chapter 6, the performance of the different algorithms will be evaluated
when the controller gains are varied. The three different controller configurations
given in section 7.3 are used. The input parameters to the subspace algorithms
that seemed to give best results for each of the algorithms were:

• MOESP - Embedded dimension = 90, Order = 4

• N4SID - Order = 7

• DSR_e - L = 80, J = 80, Order = 6

Table 7.2 shows the performance indices for each of the subspace methods for
each of the three different controller configurations. These indices show clearly

Table 7.2: Performance indices for the subspace methods used for identification
of the debutanizer

Configuration Method MRSE MVAF

1
DSR_e 70.11% 76.28%

MOESP 89.46% 49.83%
N4SID 73.13% 69.93%

2
DSR_e 56.32% 89.88%

MOESP 87.9% 43.74%
N4SID 60.01% 86.22%

3
DSR_e 49.76% 93.68%

MOESP 91.7% 46.55%
N4SID 56.43% 88.67%

that the performance of the models was better with higher controller gain for the
two methods DSR_e and N4SID. For the MOESP method, the indices do not re-
flect any clear improvement for higher controller gains. This method though, was
shown to return very biased and unreliable models for noisy closed-loop data in
section 6.4, hence the results from this method will not be dwelled much upon.

An important note though, is that an experiment with even higher controller
gain than configuration 3 was also tested. In this case, the two open-loop methods
N4SID and MOESP produced unstable models, and DSR_e produced a model with
worse performance than all the three other configurations. See figure 7.6 for a
validation test of these models that shows the bad performance.
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To show the validation results more visually, figures 7.7, 7.8, 7.9 and 7.10 show
each of the process output plotted along with the outputs from the models found
using each of the three controller configurations. The DSR_e method is used in
this example, since the results from the N4SID method is equal, except for slightly
worse performance. The plots for each output are splitted in half to give a better
view of the differences between the three controller configurations. Notice that all
the variables are scaled to be in the range 0 to 1. Plots of the controller outputs (u1

and u2) are given in section 7.8.
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Figure 7.7: First half of validation sequence for y1
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7.8. CONTROLLER OUTPUTS IN THE TIME DOMAIN 71

7.8 Controller outputs in the time domain

Figures 7.11 and 7.12 show the controller outputs u1 and u2 for different tuning
configurations in the time domain. These are the inputs used during the identifi-
cation in section 7.7. As seen by the plots of u1, the difference is not big between
the signals generated for different gains. For u2 on the other hand, the difference
between the signals is seen more visually. In the next section, the power of these
signals is shown in the frequency domain
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Figure 7.11: Controller output u1 for varying gains. The gain increases from top to
bottom of this figure
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Figure 7.12: Controller output u2 for varying gains. The gain increases from top to
bottom of this figure
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7.9 Signal to noise ratios

Figures 7.13 and 7.14 show the simplified signal to noise ratios for the controller
outputs u1 and u2. In this case, the signal to noise ratio of u1 is a bit lower for low
frequencies when the gain of both controllers are increased, while the signal to
noise ratio for u2 is significantly higher for the first half of the frequency spectrum
(for increased gain).
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Figure 7.13: Signal to noise ratio for u1
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Figure 7.14: Signal to noise ratio for u2
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8
DISCUSSION

In this chapter, a discussion on the results from the simulation parts will be given
(chapters 6 and 7).

8.1 Matlab case studies

In chapter 6, two different multivariable LTI systems under decentralized PI con-
trol were simulated. The open-loop systems are

S1 = 1

2s +1

[
1 1
1 2

]
(8.1)

S2 =
[

2s−1
(3s+1)(s+1)

1
2s+1

1
50s+1

2s+1
(70s+1)(30s+1)

]
(8.2)

System S1

The identification experiments performed on system S1 showed clearly that in-
creasing controller gains gave better performance of the identified models. This is
for the cases when measurement noise was present in the loop. When only process
noise was present, the results did not show big differences between the different
configurations. The signal to noise ratio illustrated in figure 6.12 shows that the in-
put power was significantly increased with the controller gain, which gives higher
signal to noise ratio.

The open-loop methods MOESP and N4SID were affected most by increased
controller gains, but the closed-loop method DSR_e also gave models with slightly
better performances when the controller gains were increased. To show this more
clearly, a brute force experiment was made by varying the controller gains in steps
of 0.5 (Kc1 = Kc2), and running 30 simulations per gain configuration. These data

75
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are generated with both measurement noise and process noise in the loop, hence
the number of simulations. The result is shown in figure 8.1. The trend is a bit
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Figure 8.1: Performance of identified models for system S1 for increasing con-
troller gains, Kc = Kc1 = Kc2

different for the three methods at hand. This may be explained by the fact that
this experiment also depends on the algorithm input parameters, which are fixed
in this case.

For the MOESP method, the performance keeps getting better with increasing
controller gain, but at one point the gain is too high (K c1 = K c2 = 15.5). As a
consequence, both performance indices are dramatically worse at this point. After
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this point, the method kept returning unstable models.
For the N4SID method, there seems to exist a set of equal controller parame-

ters that minimizes the MRSE index, and maximizes the MVAF index, in this case
at about Kc1 = Kc2 = 6.5. Same as for the MOESP method, the method returned
unstable models for gains at 15.5 or higher.

The DSR_e method was not as sensitive as the other methods to the varying
gain, but the plot shows some improved performance for higher controller gains.
As for the other methods, too high controller gains resulted in unstable models.

System S2

For system S2, the main problem seemed to be to identify the slow time constants
of the system. An example of this is shown in figure 8.2, where the model outputs
are plotted along with the outputs from the system. For the example at hand, the
high gain configuration for system S2 was applied, and both process noise and
measurement noise was present in the identification data. As seen by the figure,
the MOESP method failed to identify the system, while the N4SID method gave
pretty bad results in terms of reproducing output y2. Nevertheless, N4SID man-
aged to reproduce output y1 pretty good. DSR_e reproduced y1 very good, and y2

pretty good considering the relatively low signal to noise ratio.
When the performance indices are calculated, the error between all system

outputs and all model outputs are calculated into a scalar value, and all output
errors are equally worthy. For this example, it is seen by examining figure 8.2 that
it was reproducing the slow output y2 that rendered problems for the two methods
that managed to identify the system.

When there was no noise in the loop, all methods gave perfect performance in-
dices. This contributes to confirm that all correct subspace methods give perfect
deterministic models for noise-free closed-loop data, provided that the identifica-
tion experiment is informative.

The Monte Carlo simulations performed on this system showed the following:

• The MOESP method failed to identify a model with satisfying performance
for all controller configurations when there was either process or measure-
ment noise in the loop. This shows that this method is not trustworthy for
closed-loop identification when noise is present in the data record, and the
signal to noise ratio is relatively low.

• The N4SID method, being an open-loop method, actually managed to pro-
duce models with good performance when there was only process noise in
the loop. When there was measurement noise in the loop as well, the results
were also very good for this method, at least for controller configurations 1
and 2. However, the N4SID method tended to produce unstable models for
some noise realizations, because the slowest time constant was estimated
to be slightly outside the unit circle.
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• The DSR_e method returned models with satisfying performance for all noise
configurations. This method was least affected by the controller parameters,
but it is still observed that the performance is increased from tuning config-
uration 1 to 2 (increased controller gain). For tuning configuration 1 with
both measurement noise and process noise, the N4SID produced a better
model than DSR_e, but the DSR_e method was most consistent on produc-
ing reliable models for the other controller and noise configurations.

• Tuning configuration 2 (medium gain) gave models with the best perfor-
mance in this case. As shown by the signal to noise ratio in figure 6.16, this
configuration gave higher signal to noise ratio for u2 than configuration 3
for a large portion of the frequency spectrum. This is true even though the
controller gain was higher for controller C1 in configuration 3 than configu-
ration 2.

8.2 Debutanizer case study

In this chapter, a nonlinear process was subject for identification in closed loop.
The input design consisted of PRBS sequences on the references to the controllers,
where one input was stepped at a time. The identification was performed when
there was white noise present on both output measurements and controller out-
puts. The validation experiment was generated without noise, so that a compar-
ison between the noisefree outputs from the ”real” process and the outputs from
the identified models was rendered possible.

As shown by the performance indices for the different models, the perfor-
mance of the identified models was better for increasing gain, and best for tun-
ing configuration 3. When the gain was too high though, both gains the double
of configuration 3, the performance of the identified models was drastically re-
duced. The open-loop methods MOESP and N4SID produced unstable models,
while the DSR_e method produced a model with worse performance than any of
the other three configurations. As for the systems S1 and S2, there seems to be a
limit to how much the gain can be increased before the performance of the iden-
tified models is reduced.

The DSR_e method gave models with best performances in all cases, which
shows that this method has an advantage to the other two methods in being able
to remove the noise terms that is correlated with the inputs in the data.

8.3 Comparing the results

The results obtained from studying the three different systems in chapter 6 and
7 yield some similar results. When controller gains are increased, and the identi-
fication data is corrupted by process- and measurement noise, the identification
performance using closed-loop data is increased for the DSR_e method and the
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N4SID method. The MOESP method also gives better performance in some cases,
but these results are not as consistent as for the other two methods. These results
however, are true up to certain values for the controller gains.

As shown for both system S1, S2, and the debutanizer process, the identifi-
cation performance was degraded for too high a value for the gains. A possible
explanation to this is that when the controller gains are increased, frequencies
in the input signals will be more concentrated around the achievable bandwidth
of the controller, which produces system outputs with more information of the
frequency response around this bandwidth frequency. If the controller gains are
pushing this limit, the controller will be so aggressive that it dominates the open-
loop dynamics, and more of the controller is seen on the identified models.

In addition, the signal to noise ratios will come into play when there is noise
present in the loop. As discussed in section 3.3, Ljung (1999) mentions on p. 434
that the part of the system input that originates from the feedback has no infor-
mation value when it comes to identifiying the open-loop dynamics. On the other
hand, it is the part of u (controller output, system input) that stems from the ref-
erence signal that will reveal information from the open-loop system, and give a
lower signal to noise ratio. In this context, it is explained why the models identi-
fied with high gains in the feedback loops performed better than those identified
with the low gains in the loops. Consider the controller equation that have been
used throughout the thesis:

u(s) =
[

C1(s) 0
0 C2(s)

]
(r − y) (8.3)

The same reference sequences are used when comparing all the methods, for all
controller parameter configurations. Notice that u consists of two different sig-
nals, namely the part that stems from the feedback (y), and the part that stems
from the reference signal r . When the reference signal r is manipulated, it is the
controller gain that determines how much the external reference signal is ampli-
fied. As seen by equation (3.5), the amplification of the reference signal will di-
rectly lower the ”noise to signal ratio”, or equivalently increase the signal-to-noise
ratio. As stated in Ljung (1999), it is this ratio that determines how well the open-
loop transfer function may be estimated when there is noise present in the loop.



C
H

A
P

T
E

R

9
CONCLUSIONS AND FURTHER WORK

In this chapter, conclusions on the work of this tesis will be drawn, and suggestions
to further work will be stated.

9.1 Conclusions

The purpose of this thesis is to investigate the performance of different subspace
identification methods when the input-output data used in the algorithms is col-
lected in closed-loop. In addition, the significance of varying controller param-
eters are investigated in order to compare performances of the identified mod-
els. Considering the subspace methods, two are originally intended for open-
loop data (MOESP and N4SID), and one is designed to cope with closed-loop data
(DSR_e).

As expected from the theory on the subspace methods, the closed-loop method
gives in general more consistent and reliable models for different experimental
conditions than the open-loop methods. It is shown though, that the open-loop
methods can perform better if the gain of the existing controllers are increased.

The results from this work show quantitatively that tuning of exisiting con-
trollers have a significant impact on the performance of the identified models. It
is shown that when controller gains are increased, controller outputs with higher
signal to noise ratios are generated, and the information content of these signals is
higher because of the amplification of the input reference signals. This is believed
to be the main reason why data produced by the relative high gain systems yield
identified models with better performance than for systems with lower gain, since
noise that corrupts the system will be dominated by the power of these controller
outputs. It is also shown by simulations that there exists a limit to how much the
gains can be increased before the performance of the identified models are de-
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graded. To find this limit analytically, or by numerical approximations, though, is
considered to be a hard problem. Luckily, numerous simulations tools for simulat-
ing dynamic systems exists, and may be used for running multiple identification
experiments with different controller gains for comparison.

The field of closed-loop identification has drawn much attention during the
last decades. One of the main benefits of running identification experiments on
processes without breaking the already existing feedback loops, is that processes
can operate within normal operating conditions during the experiment. This en-
sures both safety and maintenance of economic objectives. The author believes
that closed-loop identification deserves to be looked even more into in the future,
motivated by the need for model-based controllers for large, complicated systems.

9.2 Further work

As stated earlier in the thesis, finding good input parameters to the different sub-
space algorithms can be a cumbersome problem. During this work, the method
of trial and error has been applied to find which input parameters that gave rela-
tively good performance for the different methods. An interesting topic for further
work could be to analyse the effect of input parameters to the different subspace
algorithms for fixed data sets. The goal would be to develop easy ”rules of thumb”
on how to choose these parameters given the input-output data.

As for the effect of increasing controller gain, it would be interesting to run
experiments on a relatively simple, physical plant where the noise properties are
unknown, to verify the results from this thesis.
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A
THE GENERAL SUBSPACE ALGORITHM

This algorithm is a summary of the algorithm given in Ljung (1999), p. 340-351.
From the general expression for a discrete state space system, we may write

the k-step ahead expression for the output as

y(t +k) =C Ak x(t )+C Ak−1Bu(t )+C Ak−2Bu(t +1)+ . . .

+C Bu(t +k −1)+Du(t +k)

+C Ak−1w(t )+C Ak−2w(t +1)+ . . .

+C w(t +k −1)+ v(t +k)

(A.1)

The first task in the subspace algorithm is to generate an estimate of the extended
observability matrix of the system:

Or =


C

C A
...

C Ar−1

 (A.2)

In order to show how Or is approximated, it is useful to introduce some new ma-
trices and vectors to keep the notation compressed. Define the matrix Sr as

Sr =


D 0 . . . 0 0

C B D . . . 0 0
...

...
. . .

...
...

C Ar−2B C Ar−3B . . . C B D

 (A.3)

and the vector V (t ) defined by its k:th block components as

Vk (t ) =C Ak−2w(t )+C Ak−3 + . . .

=C w(t +k −2)+ v(t +k −1)
(A.4)
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Writing equation (A.1) in compressed form using these matrices yields

Yr (t ) =Or x(t )+Sr Ur (t )+V (t ) (A.5)

The input and output vectors are defined as

Ur (t ) = [
u(t ) u(t +1) . . .u(t + r −1)

]>
Yr (t ) = [

y(t ) y(t +1) . . . y(t + r −1)
]> (A.6)

The idea is to correlate both sides of (A.5) with quantities that eliminate the term
with Ur (t ) and make the noise influence from V disappear asymptotically. Fur-
ther, define the matrices

Y= [
Yr (1) Yr (2) . . . Yr (N )

]
X= [

x(1) x(2) . . . x(N )
]

U= [
Ur (1) Ur (2) . . . Ur (N )

]
V= [

V (1) V (2) . . . V (N )
] (A.7)

It is possible to write equation (A.5):

Y=OrX+SrU+V (A.8)

The N ×N matrix

Π⊥
U> = I −U>(UU>)†U (A.9)

defines the orthogonal projection of the matrix U. Note that UΠ⊥
U> = 0. This is

used to remove the U-term from equation (A.5), avoiding the need of an estimate
of the matrix Sr . This is seen by multiplication from the right byΠ⊥

U>

YΠ⊥
U> =OrXΠ

⊥
U> +VΠ⊥

U> (A.10)

In order to also remove the noise term from equation (A.5) another matrix Φ is
defined as

Φ= [
ϕs(1) ϕs(2) . . . ϕs(N )

]
(A.11)

The vector ϕs(t ) is a vector of instrumental variables (IV), and a typical choice for
this is

ϕs(t ) =



y(t −1)
...

y(t − s1)
u(t −1)

...
u(t − s2)


(A.12)
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By multiplying equation (A.10) from the right by Φ> and normalizing by N , G is
defined as:

G = 1

N
YΠ⊥

U>Φ
> =Or

1

N
XΠ⊥

U>Φ
>︸ ︷︷ ︸

T̃N

+ 1

N
VΠ⊥

U>Φ
>︸ ︷︷ ︸

VN

(A.13)

The goal is now that the vector ϕs(t ) assures

lim
N→∞

VN = lim
N→∞

VΠ⊥
U>Φ

> = 0 (A.14a)

lim
N→∞

T̃N = lim
N→∞

Π⊥
U>Φ

> = T̃ has full rank n (A.14b)

The family of subspace algorithms may be summarized by the following (Ljung
(1999)):

1. From the input-output data, form

G = 1

N
YΠ⊥

U>Φ
> (A.15)

with matrices defined by (A.6), (A.7), (A.9), (A.11) and (A.12).

2. Select two weighting matrices, W1 with dimension r p × r p and invertible,
and W2 with dimension (ps1 +ms2)×α and perform SVD

Ĝ =W1GW2 =U SV > ≈U1S1V >
1 (A.16)

The approximation in (A.16) is due to the fact that only the n most significant
singular values in S is kept, and the rest is set to 0.

3. Select a full rank matrix R and define the r p ×n matrix Ôr = W −1
1 U1R. To

obtain estimates of the system matrices A and C , solve

Ĉ = Ôr (1 : p,1 : n) (A.17a)

Ôr (p +1 : pr,1 : n) =Or (1 : p(r −1),1 : n)Â (A.17b)

for Ĉ and Â. Notice that the notation used here is MATLAB-like.

4. Estimate B̂ , D̂ and x̂0 from the linear regression problem

argmin
B ,D,x0

1

N

N∑
t=1

||y(t )− Ĉ (q I − Â)−1Bu(t )−Du(t ) (A.18)

−Ĉ (q I − Â)−1x0δ(t )||2 (A.19)

5. In order to add a noise model, form X̂ as X̂ = R−1U>
1 Ŷ = [

x̂1 x̂2 . . . x̂N
]

and estimate the noise contribution from

w(t ) = x̂(t +1)− Âx̂(t )− B̂u(t )

v(t ) = y(t )− Ĉ x̂(t )− D̂u(t )
(A.20)
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IDENTIFICATION PERFORMANCE

The subspace identification methods are evaluated by the two performance in-
dices given in section 2.5, MRSE and MVAF. The mean values of these indices from
the different Monte Carlo simulations performed in chapter 6 are listed in tables
B.1 and B.2.

The identification experiment is considered failed if both indices are outside
the range used in the plots in chapter 6, i.e. MRSE ∈ (0%,100%) and MVAF ∈
(85%,100%). If one of these indices are inside the range, but not the other one, the
index outisde this given range will be listed as OOR (Out Of Range). In the cases
of only measurement noise and only process noise, only two different controller
gains were used to illustrate the effect of increasing the gain.
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Table B.1: Performance indices from identification of system S1 in chapter 6. PN
= Process Noise, MN = Measurement Noise, LG = Low Gain, MG = Medium Gain,
HG = High Gain.

PN MN Method MRSE/MVAF (LG) MRSE/MVAF (MG) MRSE/MVAF (HG)

No No
DSR_e 0%/100% 0%/100% 0%/100%

MOESP 0%/100% 0%/100% 0%/100%
N4SID 0%/100% 0%/100% 0%/100%

No Yes
DSR_e 12.5%/99.9% 8.9%/100% —

MOESP 49.5%/95.7% 34.7%/98.3% —
N4SID 37%/98.02% 27%/99.4% —

Yes No
DSR_e 11.5%/100% 11.4%/100% —

MOESP 14.5%/99% 15.5%/99.5% —
N4SID 11.5%/100% 11.5%/100% —

Yes Yes
DSR_e 13%/99.99% 10.5%/100% 10%/100%

MOESP 51%/94% 33.5%/98% 24.5%/99%
N4SID 36.5%/98% 27%/99% 22%/99.4%

Table B.2: Performance indices from identification of system S2 in chapter 6. PN
= Process Noise, MN = Measurement Noise, OOR = Out Of Range LG = Low Gain,
MG = Medium Gain, HG = High Gain.

PN MN Method MRSE/MVAF (LG) MRSE/MVAF (MG) MRSE/MVAF (HG)

No No
DSR_e 0%/100% 0%/100% 0%/100%

MOESP 0%/100% 0%/100% 0%/100%
N4SID 0%/100% 0%/100% 0%/100%

No Yes
DSR_e 36.5%/97.4% 29.3%/98.1% 27.2%/98.4%

MOESP failed failed failed
N4SID 50%/91.8% 48%/92.2% 59.8%/88%

Yes No
DSR_e 22.5%/99.1% 11.6%/99.99% 16.2%/99.6%

MOESP failed failed 89.3%/OOR%
N4SID 14.6%/99.96% 13.7%/99.96% 16.2%/99.8%

Yes Yes
DSR_e 19%/99.1% 12.1%/99.9% 27%/98.1%

MOESP failed failed failed
N4SID 14.2%/99.8% 12.1%/99.9% 55.3%/90.4%
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AUXILLIARY PLOTS FOR CHAPTER 6

C.1 System S1

This section shows closed loop stepresponses for system S1 from section 6.3. Two
different tuning configurations are shown for the closed-loop case to illustrate the
difference between ”smooth” and ”tight” tuning configuration. The different con-
figurations are

• Smooth tuning - Kc1 = 0.8, Kc2 = 0.8, τi 1 = 5 and τi 2 = 70

• Tight tuning - Kc1 = 3, Kc2 = 3, τi 1 = 2 and τi 2 = 2

See figures C.1 and C.2 for the different responses.
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Figure C.1: Step response of the system S1 with tuning configuration 1

0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

time [s]

 

 

u
1

u
2

(a) Controller command

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

 

 
y

1

y
2

(b) Outputs

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

 

 

r
1

r
2

(c) References

Figure C.2: Step response of the system S1 with tuning configuration 2
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C.2 System S2

In this section, both open- and closed-loop stepresponses are shown for the sys-
tem S2 from section 6.4. The tuning configurations for the closed-loop case are

• Configuration 1 - Kc1 =−0.2, Kc2 = 0.5, τi 1 = 5 and τi 2 = 70

• Configuration 2 - Kc1 =−0.4, Kc2 = 1, τi 1 = 5 and τi 2 = 70

• Configuration 3 - Kc1 =−1, Kc2 = 1, τi 1 = 5 and τi 2 = 70
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Figure C.3: Open-loop step response for system S2
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(a) Outputs and references, configuration 1
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(e) Outputs and references, configuration 3

0 200 400 600 800 1000 1200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time(s)

 

 
u

1

u
2

(f) Controller command, configuration 3

Figure C.4: Closed-loop step responses of the system S2 with different tuning con-
figurations
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C.3 Identification data for system S2

In this section, identification data from the experiments performed on system S2

is given. The data is generated with both process and measurement noise, and
data for the three tuning configurations is shown in in figures C.5, C.6 and C.7.
The purpose is to show that the different tuning configurations generate different
input-output data.
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Figure C.5: Identification data for tuning configuration 1
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Figure C.6: Identification data for tuning configuration 2
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Figure C.7: Identification data for tuning configuration 3
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