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Problem Description
The use of robots for inspection and close contact operations is dependent on having an accurate
model to be able to position the robot. In many complex applications, a model may not be 100%
aligned with the real world since the objects that one wishes to inspect or interact with are not
fixed to the same frame as the robot. There is a need for complementary methods to automatically
achieve dynamical accurate positioning of the robot in relation to an object.

The goal of the project is to develop object tracking algorithms based on video capturing devices,
for automatic control of a robot. The algorithm should dynamically position the robot in relation to
an object. The idea is to recognize an object or equipment and position the robot with high
accuracy relative to this object or equipment. The ‘marker’ of the object or equipment must be
designed to be recognized in six degrees (x, y, z, q1, q2, q3, w). Based on available vision libraries
to identify objects and position in relation to this object, it is possible to define the required move
for the robot from its current position to the new position.

The task will be developed stepwise. An example of an approach is:
1. The first step should be to determine the position and  the rotation of a given, simple, fixed
object, in three dimensions.
2. The second step should be to determine the position and the rotation of a given, simple moving
object, in three dimensions, and to predict the position and orientation of the object given a time
horizon.
3. The third step is to use the predicted position and rotation of the object to track the object with a
robot, given a response time for the robot.
4.If possible, extend the complexity of the object.

Thesis work outline:
Literature search/ background research
• Build up basic knowledge in tracking algorithms, robot modeling and programming,
image recognition and 3D modeling. Investigate prior work in the area of the thesis. Find adequate
image processing library to perform the image recognition.

Basic 3D modeling
• Build up a model off-line to be used for the image recognition.

Algorithm development
• Develop the algorithm to track the object according to the steps given above.

Test and validation
• If possible, validate the algorithm on a simple and clearly defined object in ABB's robot
lab in Oslo.





Abstract

In many complex applications an accurate model of the plant is not known.
Consequently, complementary methods are needed to automatically achieve
accurate dynamical positioning of a robot in relation to its surroundings. This
thesis describes the development of a control strategy on vision-based object
tracking for a robot manipulator.

To ensure necessary robustness we assume that four distinct, sircular shapes
are visible on the face of the object to inspect. Based on this information, along
with knowledge of the camera parameters, the position and the orientation of
the object are estimated. The developed system relies on the use of an open-
source vision library, ViSP.

A Kalman filter is used to predict future states of the moving object, in order to
reduce tracking errors introduced by the response time of the system.
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1 Introduction

1.1 Motivation

The term Robot first appeared in the play "Rossum’s Universal Robots", written
by the Czech playwright Karel Capek in 1920 - robota being the Czech word
for work. Work, is the keyword in this context. Perhaps the greatest potential
benefit to humanity that robots can provide, is to alleviate the need for humans
to regularly perform tasks in dangerous environments, such as underground
mines, underwater, in space, and in in hazardous industrial environments such
as an offshore oil or gas rig [2].

Replacing humans with robots has an enormous potential economically as
well. A robot is capable of working non-stop, and it will do exactly what it has
been told to do at all times. Furthermore, if we replace humans entirely from
the plant, many of the safety measures required to protect human beings from
getting injured, are no longer necessary. This may help lowering costs consid-
erably.

In the early 1980’s robot manipulators were characterized as being the ulti-
mate solution to automated manufacturing. Early predictions were that future
factories would be operated by few, if any, human operators. Today, it is evi-
dent that these predictions were somewhat naive, and total human redundancy
in the industrial process is still far from being a reality. One simple, but im-
portant reason is the fact that robotics is difficult or, somewhat equivalently,
that humans are very good at what they do[26]. Robots still have many limita-
tions, and successful implementations are typically highly dependent on static,
predictable environments. The higher the degree of uncertainties involved in a
task, the harder it will be to solve.

In order to use robots for inspection and close contact operations it is nec-
essary to have a precise model of the workspace. However, in many complex
applications a given model will only partially coincide with the real plant. For
this reason it is not possible to position the robot based solely on the knowledge
of the model. Complementary methods are needed to automatically achieve ac-
curate dynamical positioning of the robot in relation to its surroundings. This
thesis describes the development of a control strategy on vision-based object
tracking for a robot manipulator.

Computer vision is concerned with processing images and video with the pur-
pose of extracting useful information. An example is the task of locating an
object of interest within the field of view, and estimating the object’s relative
position. One of the greatest challenges in this field of science, is to process the
data fast enough. For this reason, historically, computer vision has been focus-
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ing on off-line systems. Dealing with with real-time robot navigation, on the
other hand, fast response times are required for making the system work satis-
factorily. Consequently, for a given robotic task, it will be necessary to simplify
and filter out as much information as possible, in order to obtain on-line per-
formance.

The robot, with a camera attached to it, is assumed to be located in the vicin-
ity of the object that one wishes to investigate or interact with, such that the
object itself is within the cameras field of view. To ensure a necessary degree
of robustness, it is assumed that four distinct, sircular shapes are visible on the
face of the object. The center of these dots are extracted as image features and
coupled with their corresponding points in a model of the object. The object
model merely describes how these four points are related to each other in the
objects own coordinate system. This information, along with parameters de-
scribing key properties of the camera used, is sufficient to estimate the position
and orientation of the object relative to the robot with the camera attached to
it. The developed system relies on the use of an open-source vision library, ViSP.

Assuming a non-static object, different models describing potential motion of
this object are presented. The underlying assumption is that the object exhibits
smooth motion that can be described as the sum of one more sinusoidals. The
time needed to process an image and estimate the position and orientation of
the object of interest, along with the response time of the robot suggests that
a tracking scheme that is based on directing the robot relative to the currently
estimated position will suffer from this lag. The error in position will be propor-
tional to the total lag of the system and to the motion exhibited by the object
of interest. Introducing a Kalman filter, we can estimate future states of the sys-
tem, based on a state space model. With an adequate implementation, tracking
errors can be significantly reduced by using feed-forward from the estimated
future states.
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1.2 Thesis Outline

In this thesis a scheme for estimating position and orientation of an object rel-
ative to a reference frame is presented. The emphasize is on making the proce-
dure robust such that it will be applicable in industrial settings. Furthermore, a
Kalman filter is designed and used in order to reduce tracking errors imposed
by the control system’s response time.

Vision-based control of robot manipulators requires a substantial amount of
knowledge in many different fields. The author tries to explain the most im-
portant definitions and methods that are used. In section 2, basic concepts like
rigid motions, homogeneuous transformations, and standard robot modeling
are given. Section 3 focuses on principles from computer vision. It describes
what is necessary to relate pixel coordinates to xyz world coordinates, for a
point in a camera’s field of view. In section 4, further theory on vision-based
control is given. Section 5 describes the algorithm that is used to estimate the
positon and orientation of the goal object. In section 6 we describe how to ex-
tract features from an image and how to track these features efficiently in an
image sequence. Section 7 focuses mainly on state prediction using a Kalman
filter. In section 8, the experimental implementations are described. In section
9, the experimental results are discussed. Section 10 presents concluding re-
marks, and in section 11 future work is discussed.
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2 Describing Motions and Modelling Robots

2.1 Introduction

In order to plan and control an objects motion relative to its environment, it is
necessary to have an effective way of describing the spatial relations between
the object and its surroundings. In the first part of this chapter, fundamen-
tal principles from rigid body kinematics are presented. By assigning different
coordinate frames to different parts of a system, it is possible to relate these
by so-called homogeneous transformations. These transformations represent a
convenient tool in describing motion.

In the second part of this chapter, basic theory from robot modeling is given.

2.1.1 Rigid Motions and Homogeneous Transformations

We need to have a way of representing position and orientation of the various
parts of a system in relation to each other. The first step is often to establish a
fixed coordinate system, a world or base frame, as to which any other part of
the system is referenced.

The translational part of a transformation between different frames is simply
described by a three dimensional vector, defining the relative translation in x,
y, z coordinates. The rotational part of the transformation is in its generality
described by a 3x3 rotation matrix, with a total of nine elements. The rotation
matrix satisfies some convenient properties, which can be exploited when de-
riving kinematic equations. The rotation matrix R between two frames a and
b is denoted Ra

b and is said to belong to SO(3), that is, the special orthogonal
group of order 3

SO(3) = {R|R ∈ R
3x3, R is orthogonal and det R = 1} (1)

Despite the number of elements in a rotation matrix, a rigid body has at most
three rotational degrees DOF, and therefore, at most three parameters are
needed to specify the orientation. Consequently, there are several ways to pa-
rameterize rotation. Euler angles, roll-pitch-yaw angles1 and axis/angle repre-
sentation are examples of such parameterizations [9].

2.1.2 Euler Angles

Euler angles, as mentioned above, is a way of parameterizing a rotation matrix.
We specify the complete rotation from one frame to another as the product of
three successive rotations about pre-defined principle axes.

1It should be noted that the notion of roll, pitch and yaw in robotics terminology refers to
rotations around z, y and x axes, respectively.
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A common choice is to use the zyx-convention. By this convention the rota-
tion matrix is defined as

Rzyx = Rz,φRy,θRx,ψ (2)

=

⎡
⎣cφ −sφ 0
sφ cφ 0
0 0 1

⎤
⎦

⎡
⎣ cθ 0 sθ

0 1 0
−sθ 0 cθ

⎤
⎦

⎡
⎣1 0 0

0 cψ −sψ
0 sψ cψ

⎤
⎦ (3)

=

⎡
⎣cφcθ −sφcψ + cφsθsψ sφsψ + cφcθcψ
sφcθ cφcψ + sφsθsψ −cφsψ + sφsθcψ
−sθ cθsψ cθcψ

⎤
⎦ (4)

By this convention, we typically assume that the rotations are made relative to
the axes in a fixed frame.

Assume that we have a rotation matrix, and that we would like to extract the
Euler angles that parametrize this matrix, in this case by the z-y-x convention.
If we denote the elements of the rotation matrix R by rij, we can find the
corresponding angles φ, θ, ψ as

φ = atan2(r32, r33)

θ = −asin(r31)

ψ = atan2(r21, r11)

(5)
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Rigid Motions

A rigid motion is a pure translation together with a pure rotation, defined as
an ordered pair (d, R), where d ∈ R

3, and R ∈ SO(3). The group of all rigid
motions is known as the special euclidean group, denoted by SE(3).

Define R0
1 as the rotation matrix that determines the orientation of a frame

o1 with axes (x1, y1, z1), with respect to frame o0 with axes (x0, y0, z0). Fur-
thermore, let d be the vector from the origin of frame o0 to o1. Suppose that
the point p i rigidly attached to coordinate frame o1, with local coordinates p1.
Consequently, we can express the coordinates of p with respect to frame o0 as

p0 = R0
1p

1 + d0 (6)

If we introduce a third coordinate frame o2, and let d2 be the vector from the
origin of o1 to the origin of o2, and if we assume that the point p instead is at-
tached to frame o2, with local coordinates p2, we can determine its coordinates
relative to frame o0 as

p0 = R0
1p

1 + d0
1 (7)

in which
p1 = R1

2p
2 + d1

2 (8)

By inserting equation (8) into equation (7) we obtain

p0 = R0
1R

1
2p

2 +R0
1d

1
2 + d0

1 (9)

or equivalently
p0 = R0

2p
2 + d0

2 (10)

From equations (9) and (10) we have the relationships

R0
2 = R0

1R
1
2 (11)

and
d0

2 = d0
1 +R0

1d
1
2 (12)

Homogeneous Transformations

If we consider a series of such rigid motions as described above, the expressions
leading to equation (9), soon become quite big. Thus, a more compact way of
representing the transformation, is by arranging the involved expressions in a
matrix. Considering equations (11) and (12) we see that we have the following
relationship [

R0
1 d0

1

0 1

] [
R1

2 d1
2

0 1

]
=

[
R0

1R
1
2 R0

1d
1
2 + d0

1

0 1

]
(13)
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1d

1
2d

0
2d

p

Figure 1: Rigid Motions

in which 0 denotes the vector (0, 0, 0). Hence, rigid motions can be compactly
described by matrices of the general form

H =

[
R d
0 1

]
, R ∈ SO(3), d ∈ R

3 (14)

A transformation matrix on this form is called a homogeneous transformation.

2.2 Robot Modelling

In robotics, an initial problem is to derive a model that relates joint values to
link positions, and vice versa. A thorough introductory textbook on robotics in
general, which the writer frequently refers to throughout this report, is [26].

A robot manipulator is composed of links connected by joints. Each joint
represents the interconnection between two links, and is typically either of
prismatic or revolute character. A prismatic joint enables relative linear mo-
tion between adjacent links, whereas a revolute joint enables relative rotation
between two links. The system composed of links and joints forms a so-called
kinematic chain.
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The first step of robot modelling can be to establish a fixed coordinate sys-
tem located at the base of the manipulator, and proceed by attaching frames
to each successive link. The origins of these frames will be related through
homogeneous transformations as described earlier this chapter. By multiplying
successive homogeneous transformation matrices we can calculate the position
and orientation of a specific frame.

The configuration of a manipulator specifies the location of every point on
the manipulator. Consequently, the set of all possible configurations makes up
the manipulators configuration space. Considering a manipulator composed of
rigid links connected by revolute or prismatic joints, it suffices to know the joint
angles for revolute joints, and joint offsets for prismatic joints in order to de-
termine the location of any point on the manipulator. Accordingly, a convenient
way of describing a manipulators configuration is by its joint values.

The number of joints determines the number of degrees of freedom (DOF).
A rigid object in three dimensional space will have six DOF. Three of these cor-
respond to its relative position, and the last three relates to the objects orienta-
tion. This means that for a manipulator to be able to obtain arbitrary position
and orientation, it will need to have at least six DOF. A manipulator having
more than six DOF is said to be kinematically redundant.

Revolute Prismatic

Figure 2: Symbolic representation of robot joints

2.2.1 Forward Kinematics

The forward kinematics problem can be stated as follows. Given the joint vari-
ables of the robot, find the position and orientation of the end effector. However,
if the robot to be analyzed has a large number of links, finding the forward kine-
matics may become a complex problem. For this reason, it is very convenient to
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apply a convention that simplifies matters.
An initial problem is how to select the reference frames of the robot. The

Denavit-Hartenberg (DH) convention offers a simple way of achieving this. 2 In
the DH convention, each homogeneous transformation Ai is represented as a
product of four basic transformations

Ai = Rotz,θi
Transz,di

Transx,ai
Rotx,αi

(15)

=

⎡
⎢⎢⎣
cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 cαi −sαi 0
0 sαi sαi 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

⎤
⎥⎥⎦

The quantities θi, ai, di and αi are parameters associated with link i and joint i,
and are commonly known as link length, link twist, link offset and joint angle,
respectively. The short forms sθ, cθ denotes sin(θ) and cos(θ) respectively. When
deriving the transformations between links, we assume that each joint only has
one DOF. Hence, in each homogeneous transformation between adjacent links,
only one variable will appear, the other parameters are constants. This may
seem like a constraint as to when it is appropriate to apply the DH convention,
but in fact it is not. For links with more than one DOF, we merely have to
decompose it into simpler parts, where each resulting part, only possesses one
DOF. It is worth mentioning that a link may very well have zero length.

For a given matrix Ai, the variable parameter will be either θi, or di, depend-
ing on whether the specific joint is revolute, or prismatic. While, in general, any
homogeneous transformation may be represented using six parameters, corre-
sponding to translation and rotation, the above transformation is described by
only four parameters θi, ai, di and αi. The consequence, is that we can not as-
sign the related frames as we see fit; on the contrary, we have to obey by some
simple rules.

DH1: Axis xi+1 must be assigned such that it is perpendicular to axis xi.

DH2: Axis xi+1 must be assigned such that it intersects axis zi

This principle is illustrated in Figure 3
2To be precise, it should be noted that the method described, refers to the classical DH

convention, as apposed to the less known, modified DH convention [7].
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o0

o1

x1

y0

y1

z0

z1

x0

d

θ

α

a

Figure 3: Coordinate frames assigned by DH convention

Consider a kinematic chain, consisting of several successive frames. The
transformations between adjacent frames are denoted by Ai, such that the
transformation between frame 0 and 1 becomes A1, and the transformation
between frame 1 and 2 becomes A2. The total transformation from frame 0 to
frame 2 is denoted by T 0

2 .

2.2.2 Inverse Kinematics

By forward kinematics we can determine the end-effector position given the
manipulator joint variables. Inverse kinematics is the problem of solving for
the joint variables given the end-effectors position and orientation in space.
Formally, we can express the problem as follows. Given a 4 × 4 homogeneous
transformation

H =

[
R o
0 1

]
∈ SE(3) (16)

find a solution of the equation

T 0
n(q1, ..., qn) = H (17)

where T 0
n is the homogeneous transformation from base to end-effector frame,

andH represents the desired position and orientation of the end-effector. Equa-
tion 17 results in twelve3 nontrivial, non-linear equations in n unknown vari-
ables.

3Since the bottom row of T 0
n and H are (0, 0, 0, 1), 4 of the 16 entries are trivial.
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The forward kinematics problem will always have a unique solution. The in-
verse kinematics problem, on the contrary, may or may not have a solution.
The complexity of the problem increases with the number of nonzero DH pa-
rameters. Even if a solution exists, it may or may not be unique. In addition,
since the forward kinematic equations in general are complicated nonlinear
functions of the joint variables, solutions can be difficult to obtain even when
they do exist.

Although the general problem of solving the inverse kinematics is difficult,
for manipulators having six joints with the last three joint axes intersecting at
a single point, it turns out that it is possible to decouple the problem into two
simpler problems, namely finding the inverse position kinematics and finding
the inverse orientation kinematics. As a matter of fact, many manipulators are
designed such that this property is fulfilled, partly because it makes inverse
kinematics easier to solve[26].

2.3 Velocity Kinematics

We will adopt the following notations for the linear and angular velocities,
decomposed in a certain reference frame.

vij = linear velocity of frame j decomposed in frame i

wik,j = angular velocity of frame j with respect to frame k

decomposed in frame i

The differential equation for the rotation matrix between two frames can be
described as

Ṙi
j = Ri

jS(ωii,j) (18)

where S(ωii,j) is the skew symmetric matrix formed by the the vector of angular
velocities ωii,j.

Consider a point p that is rigidly attached to a moving frame j. Suppose
that frame j rotates and translates relative to a frame i. The coordinates of p
decomposed in frame i are given by

pi = Ri
j(t)p

j (19)

The velocity of p relative to frame i is

ṗi = Ṙi
j(t)p

j +Ri
j(t)ṗ

j (20)

= S(ωii,j)R
i
j(t)p

j +Ri
j(t)ṗ

j (21)

= S(ωii,j)p
i +Ri

j(t)ṗ
j = ωi × pi +Ri

j(t)ṗ
j (22)

where ωi × pi is the tangential velocity in terms of the familiar vector cross
product.
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3 Computer Vision

The problem of inferring 3-D information of a scene from a set of 2-D images has
a long history in computer vision. By its very nature, this problem falls into the
category of so-called inverse problems, which are prone to be ill-conditioned and
difficult to solve in their generality unless additional assumptions are imposed.
While, in general, the task of selecting a correct mathematical model can be elusive,
simple choices of representation can be made by exploiting geometric primitives
such as points, lines, curves, surfaces, and volumes. [27]

3.1 The Geometry of Image Formation

Computer vision starts with the acquisition of images. A digital image is a two-
dimensional brightness array in which its elements are called pixels. The term
pixel is derived from the two words picture and element. In the case of a color
image, its RGB (red, blue, green) values represent three such brightness arrays.
In the case of a greyscale image, there is only one.

Formally, the image is a map I defined on a compact region Ω of a two-
dimensional surface, taking values in the positive real numbers. For a camera,
Ω is a planar, rectangular region occupied by the sensing elements. 4

I : Ω ⊂ R
2 → R+; (x, y) �→ I(x, y) (23)

By using a lens with focal length λ, light is focused onto a two-dimensional
array of sensing elements. The value of each pixel5 is determined by the inten-
sity of the light that is radiated onto the corresponding element.

The image plane is defined as the plane containing the sensing array. The
axes xc and yc form a basis for the image plane, and are taken to be parallel
to the horizontal and vertical axes (respectively) of the image. The axis zc is
perpendicular to the image plane and aligned with the optical axis of the lens.

The origin of the camera frame is known as the center of projection and is
located at a distance λ behind the image plane. The intersection between the
image plane and the optical axis, is known as the principal point. Consequently,
a point in the image plane will have coordinates (u, v, λ).

3.2 Imaging Through a Pinhole

The pinhole camera model is an idealization in which the lens is regarded to be
an ideal, infinitesimally small pinhole, situated at the focal center of lens. With
this assumption, the process of image formation is basically reduced to tracing

4Typically composed of charged couple device (CCD) sensors, although other types exist and
are being used as well.

5or values, if we are considering a color image
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Optical Axis

p= (u, v)

λ

y

x

z

Figure 4: Camera Coordinate Frame

rays from points on objects to pixels. In reality, the pinhole will have a finite
size and each point in the image plane will collect light from a cone of rays sus-
taining a finite, solid angle. Hence, this idealized and extremely simple model
of the imaging geometry will not strictly apply. However, due to its simplicity,
the pinhole model is very convenient to use, and in many cases it provides an
acceptable approximation of the imaging process [12].

Suppose that P is a point in the real world with coordinates (x, y, z) relative
to the camera frame. If we denote p as the projection of P onto the image
plane, p will have the coordinates (u, v, λ). Assuming that we apply the pinhole
model, the points P , p and the origin of the camera frame will be collinear.
Consequently, the relationship between the two points can be written as

k

⎡
⎣xy
z

⎤
⎦ =

⎡
⎣uv
λ

⎤
⎦ (24)
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By solving for k as k = λ/z, and substituting into 24 we obtain

u = λ
x

z
, v = λ

y

z
(25)

which is known as the equations for perspective projection[18].

3.3 The Image Plane and Sensor Array

Since the image is a discrete formation of pixels, it is necessary to relate pixel
coordinates to image plane coordinates. We denote pixel coordinates by (r, c),
and the coordinates of the principle point in the pixel array plane by (or, oc).
Furthermore, we denote the horizontal and vertical dimensions of a pixel by
sx and sy respectively. The origin of the pixel array is commonly chosen to be
located at a corner point, instead of at the image center. Also, equation (25)
was derived with respect to the model illustrated in Figure 4. In this model the
center of projection was placed behind the image plane, in order to simplify
the model. As a result of this, the horizontal and vertical axes of the pixel ar-
ray coordinate system usually point in opposite directions from the horizontal
and vertical axes of the camera coordinate frame. Consequently, the relations
between image plane coordinates and pixel array coordinates become

− u
sx

= (r − or), − v

sy
= (c− oc) (26)

This is an approximation, as the coordinates (r, c) will be integers.

3.4 Camera Calibration

Camera calibration is concerned with determining the parameters necessary
to relate pixel coordinates (r, c) to world coordinates (x, y, z) of a point in the
cameras field of view. Knowing the position and orientation of the camera frame
relative to the world frame we have the relation

xw = Rw
c x

c +Ow
c

and conversely
xc = Rc

w(xw −Oc
w)

In order to simplify notation, we define

R = Rw
c x

c, T = −Rc
wO

w
c

such that
xc = Rxw + T

R and T are known as the extrinsic camera parameters.
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From equations (26) and (25) we obtain the relations

r = − λ
sx

x

z
+ or, c = − λ

sy

y

z
+ oc (27)

which define a mapping from 3D world coordinates to pixel coordinates. It is
not necessary to know both λ, sx and sy explicitly in order to determine (r, c).
It suffices to know the ratios

r =
λ

sx
c =

λ

sy

The parameters fx, fy, or and oc are known as the intrinsic parameters, and
they are constant for a given camera.

3.5 Determining Camera Parameters

The parameters or and or are fairly easy to determine. This can be done by
using the principle of vanishing points. The vanishing points for three mutually
orthogonal sets of parallel lines in the world will project onto three lines in the
image, defining a triangle. The orthocenter of this triangle will be the image
principal point, with coordinates (or, oc). In practice, this can be achieved by
placing a cube in the cameras field of view and locating its edges in the image.
Then, we find the intersections of the image lines corresponding to each set of
parallel lines. Finally, we compute the orthocenter for the resulting triangle.

The next step is to acquire a data set D = {ri, ci, xi, yi, zi}, for i = 1 · · ·N .
Here, xi, yi, zi are the world coordinates of the projected point with image pixel
coordinates ri, ci. Subsequently, we can form a set of linear equations in which
the unknowns in our equations correspond to the camera parameters that we
seek to determine. In general, we define the extrinsic parameters of the camera
as

R =

⎡
⎣r11 r12r13
r21 r22r23
r31 r32r33

⎤
⎦ , T =

⎡
⎣TxTy
Tz

⎤
⎦

Hence, the coordinates of a point in the world with respect to the camera frame
are

xc = r11x+ r12y + r13z + Tx (28)
yc = r21x+ r22y + r23z + Ty (29)
zc = r31x+ r32y + r33z + Tz (30)
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Substituting these expressions into (27) we obtain

r − or = −fxxc
zc

= −fx r11x+ r12y + r13z + Tx
r31x0r32y + r33z + Tz

(31)

c− oc = −fy y
c

zc
= −fy r21x+ r22y + r23z + Ty

r31x0r32y + r33z + Tz
(32)

Because the principal point (or, oc) is known, for simplicity, in the remaining we
will use the coordinate transformation

r ← r − or, c← c− oc
By solving equations (31) and (32) for zc and equating them, we can express
the above projection equations as functions of the unknown variables rij , Tx,
Ty, Tz, fx, fy. For data Di we obtain

rify(r21xi + r22yi + r23zi + Ty) = cifx(r11xi + r12yi + r13zi + Tx)

which, by defining α = fx/fy, can be rewritten as

rir21xi + rir22yi + rir23zi + riTy − αcir11xi − αr12yi − αr13zi − αTx = 0 (33)

Now, let N be the number of samples in D. We can arrange N equations as
in (33) in a matrix

Ax = 0 (34)

in which x denotes the vector

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r21
r22
r23
Ty
αr11
αr12
αr13
αTx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

For any solution x̄ = [x̄1, ...., x̄8]
T of the equation(34), we can only conclude

that this solution is a scalar multiple kx of the desired solution x. However,
at this stage it is possible to exploit properties of R being a rotation matrix6.
Specifically, we know that

(x̄2
1 + x̄2

2 + x̄2
3)

1
2 = (k2(r2

21 + r2
22 + r2

23))
1
2 = |k| (36)

6Remember the definition of special orthogonal groups 1
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and

(x̄2
5 + x̄2

6 + x̄2
7)

1
2 = (α2k2(r2

21 + r2
22 + r2

23))
1
2 = α|k| (37)

The scalar value, α > 0, and it remains to decide the sign of k. By equation
(27)7 we conclude that rxc < 0, and by this reason k is chosen such that r(r11x+
r12yr13z + Tx) < 0. Proceeding, we then need to determine Tx, fx, fy. We know
that the third column ofR can simply be described as the vector cross product of
columns one and two. Furthermore, we know that α = fx/fy. Hence, it suffices
to determine Tz and fx. Recall that

r = fx
xc

zc
= −fx r11x+ r12y + r13z + Tx

r31x0r32y + r33z + Tz
(38)

By proceeding in a manner analogous to that of finding the first eight parame-
ters, (38) can be written as

r(r31x+ r32yr33z + Tz) = −fx(r11x+ r21y + r13z + Tx) (39)

This resulting equation is readily solved for Tz and fx.

3.6 Camera Parameters from Experimental Data

Several different cameras have been used throughout this work. First, a Quick-
Cam web camera from Logitech was used. This is a simple camera which trans-
mits its data to a computer via an USB port. Later on, this camera was replaced
by a FireWire camera from CAMTEK. Choosing FireWire instead of USB should
enhance the data transmission rate. In addition, it generates less noise in the
image than USB camera does. In connection with the implementations at the
robotics labs at ABB and Sintef, camera calibration was used to identify the
camera parameters for the cameras that were used there.

To determine the camera parameters a camera calibration toolbox[1] for
Matlab was used. This toolbox is really a program operated by means of a
graphical user interface. Below is a short summary of the procedure.

The first thing that needed to be done was to print out a checkerboard pat-
tern consisting of black and white squares of equal, known sizes. Then, a series
of pictures were taken of this checkerboard pattern from different positions and
orientations. Once this was done, the pictures needed to be loaded into memory
by the Matlab program. In the following the pictures were treated one by one,
specifying the size of the squares, and clicking on the extreme corners of the
patterns by means of the computer mouse. When all the pictures had been pro-
cessed this way, the program performed several optimization algorithms. The
camera parameters, with specified uncertainties, were then determined.

7Recall the transformation r ← r − or.
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In addition, the program enabled the user to take new pictures of the checker-
board pattern. After clicking on the extreme corners, the system would then out-
put information regarding the position and orientation of the camera relative to
the checkerboard pattern, corresponding to the moment when the picture was
taken.

The identified camera parameters for the cameras from Logitech and CAMTEK
are summarized in Table 1 and Table 2, respectively8. The camera parameters
for the robot cameras used at ABB and at Sintef can be found in Table 3 and
Table 4. In addition to the numbers listed here, the program also determined
the uncertainties associated with the parameters, along with several other pa-
rameters not mentioned here.

Focal length λ 833.28 823.31
Principal point (or, oc) 467.75 346.41

Table 1: Camera Parameters for Quickcam

Focal length λ 381.02 382.46
Principal point (or, oc) 159.50 119.50

Table 2: Camera Parameters for CAMTEK

Focal length λ 774.01 777.90
Principal point (or, oc) 308.75 211.93

Table 3: Camera Parameters for ABBs robot camera

Focal length λ 759.19 770.08
Principal point (or, oc) 338.66 242.15

Table 4: Camera Parameters for Sintefs robot camera

3.7

In the preceding sections, some aspects of computer vision have been addressed.
Certainly, computer vision in general covers a huge amount of different theoret-
ical and practical fields and the presented material cover only a small fraction
of it. A textbook that offers an in-depth look into computer vision is [19].

8The reason that there are two numbers for λ is that the focal length here is actually given
in pixels
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4 Vision-Based Control

The problem faced in vision-based control is that of extracting a relevant and ro-
bust set of parameters from an image and use these parameters to control the
motion of the manipulator in real time[26].

Over the last decades, a number of different approaches have been suggested
for the task of vision-based control. Their differences arise from aspects such as
how camera(s) and manipulator are configured, in what way image data are
being used, how the coordinate systems are chosen and so on.

Visual sensing and manipulation can be combined in an open-loop kind
of way, "looking" then moving. Consequently, the results depend on the accu-
racy of the visual sensor and the robot end-effector. By using a visual-feedback
control loop, the performance of the system can be greatly improved. Closed-
loop position control for a robot end-effector is commonly referred to as vi-
sual servoing[15]. In general, visual servoing comprises principles from a vast
number of areas including high-speed image processing, kinematics, dynamics,
control theory and real-time computing. The overall goal is to control a robot
to manipulate its environment using vision.

4.1 Configuration Issues

When designing a vision-based control system, a number of different questions
must be addressed before the actual system can be constructed. A fundamen-
tal point to consider is the camera configuration. Amongst other things, this
involves deciding on how many cameras to incorporate, where to locate it (or
them), and the type of camera(s) to use9.

Location of the camera(s) is basically a question of whether to attach the
camera(s) to the robot, or to place it (or them) somewhere around the workspace.
These two possibilities are referred to as fixed camera and eye-in-hand config-
urations, respectively[18]. In the latter, there exists a known, often constant
relationship between the pose of the camera and the pose of the end-effector.
The two approaches are shown in Figure 5.

An advantage with fixed camera, is that the view is kept constant when robot
moves. This means that there exists a fixed relation between the workspace and
the camera. However, a disadvantage with this approach is that the cameras
field of view may be blocked as the robot manoeuvers, which would be unac-
ceptable. Furthermore, if the workspace of the manipulator covers a large area,
many cameras may be needed in order to cover it all.

In an eye-in-hand configuration, the camera is typically mounted above the
manipulators wrist, such that possible wrist movements will not propagate onto

9An important difference being whether a camera with a zoom lens, or a lens with fixed
focal length should be used.
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the camera. A downside to with this system is that the geometry between cam-
era and workspace is in constant change as the manipulator moves.

Figure 5: Eye-in-hand configuration vs fixed camera

Single camera vision systems are most commonly used, because they typi-
cally will be less expensive and simpler to build than multi-camera systems[21].
However, using two cameras in a stereo configuration [14][16][17] makes cer-
tain computer vision problems easier to handle.

4.2 Vision-Based Control Configurations

Vision-based control methods differ in the error used to compute the control
law. In position-based visual servo control10, the vision data are used to build a
three dimensional representation of the surroundings. The main problem with
this approach is to build the 3D model in real time. It is also highly depen-
dent on the camera being accurately calibrated, as it tends to be sensitive with
respect to calibration errors[26].

In image-based visual servo control the image data are being used to directly
control the robot. An error is computed in the two dimensional image space,
based on visual features such as coordinates of points or the orientation of lines.
Image-based visual servoing is generally considered to be quite robust to both
camera calibration errors and robot calibration errors [10]. On the other hand,

10Also known as 3D visual servoing
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Figure 6: Position-based visual servo (PBVS) structure

convergence can be theoretically ensured only in a region around the desired
position[21].

4.3 The Manipulator Jacobian

For a general n-link manipulator the Jacobian represents the instantaneous
transformation between the n-dimensional vector of joint velocities q̇(t) and
the 6-dimensional vector of linear and angular velocities of the end-effector.
This transformation is then represented by a 6xn matrix. It can be shown[26]
that

S(ω0
n) = Ṙ0

n(R
0
n)
T (40)

defines the angular velocity vector ω0
n of the end-effector, in which S denotes

the skew-symmetrical matrix as defined in for instance [9]. Furthermore, let

v0
n = ȯ0

n (41)
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denote the linear velocity of the end-effector. We then seek expressions such
that

v0
n = Jv q̇ (42)

ω0
n = Jωq̇ (43)

in which Jv and Jω are 3xn matrices. Equations (42) and (43) can be written
together as

ξ = Jq̇ (44)

The 6xn matrix J is called the manipulator Jacobian.

4.4 The Interaction Matrix

As commented in 2.2.2 the inverse kinematics problem is hard to solve. The
inverse velocity problem on the other hand, is generally much easier to solve.
This can be done by simply inverting the manipulator Jacobian, assuming it
is non-singular. Whereas inverse kinematics equations represent a non-linear
mapping between complicated geometrical spaces, the mapping of velocities is
a linear map between linear subspaces. In the same way, the relation between
vectors defined by means of image features and camera velocities will be a
linear mapping between linear subspaces.

Now, let s(t) denote a vector of image feature values, and ˙s(t) its rates of
change. The latter is referred to as an image feature velocity. If we consider a
single point, the corresponding feature vector is

s(t) =

[
u(t)
v(t)

]

If we denote the camera velocity by ξ we have

ξ =

[
v
ω

]
(45)

where v and ω are the linear and angular velocities of the camera, respectively.
The relation between ṡ and ξ is given by

ṡ = L(s, q)ξ (46)

in which L is called the interaction matrix[18]. This matrix describes how image
feature parameters change with respect to changing camera pose. Its explicit
form relies on the features chosen. In its simplest form, the features are merely
coordinates of points in an image.
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4.5 The Interaction Matrix for Point Features

Consider the scenario with a moving camera observing a point with fixed posi-
tion. For instance, this could involve a camera positioning itself relative to an
object that is to be manipulated in some sense. At time t the position of the
origin of the camera frame, relative to the fixed frame, is denoted by o(t). Like-
wise, the orientation is given a rotation matrix R0

c = R(t). Let P be the fixed
point of interest, with s = [u, v]T being the corresponding feature vector. This is
shown in Figure 7. Now, the aim is to derive the interaction matrix L, relating

Optical Axis

p= (u, v)

ωω

o

v

Figure 7: The camera frame moves with linear velocity v and angular velocity ω rela-
tive to a fixed point in space.

velocity of the camera ξ to the image feature velocity, ṡ
Let p0 be the time-invariant coordinates of P relative to the world frame, and

pc(t) its time-varying coordinates relative to the moving camera frame. Then by
6 we can write

p0 = R(t)pc(t) + o(t) (47)

It follows that we can solve for the coordinates of P relative to the camera frame
as

pc(t) = RT (t)[p0 − o(t)] (48)
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Dropping the explicit reference to time, by notational convenience, the velocity
of the point P relative to the moving camera frame becomes

d

dt
pc(t) = ṘT (p0 − o)− RT ȯ (49)

From equation (40) we know that Ṙ = S(ω)R, and it follows that ṘT =
RTS(ω)T = RTS(−ω), which enables us to write equation (49) as

ṘT (p0 − o)− RT ȯ = RTS(−ω)(p0 − o)− RT ȯ

= RTS(−ω)RRT (p0 − o)− RT ȯ

= −RTω × RT (p0 − o)− RT ȯ

(50)

From equation (48) we know that RT (p0 − o(t)) = pc. Furthermore, since ω
expresses angular velocity for the moving frame in coordinates expressed with
respect to the fixed frame, we see that RTω = Rc

0ω
0 = ωc gives the moving

frames angular velocity expressed with respect to the moving frame. Also, it
is clear that RT ȯ = ȯc. By these expressions, the velocity of P relative to the
moving frame is

ṗc = −ωc × pc − ȯc (51)

4.6 Constructing the Interaction Matrix

To derive the interaction matrix for point features, we simply apply equation
(51) and the expression for perspective projection derived in 3.2. For notational
convenience the coordinates for P relative to the camera frame are defined as
pc = [x, y, z]T . The coordinates for the angular velocity vector is denoted by
ωc = [ωx, ωy, ωz]

T = RTω. Furthermore, we assign RT ȯ = ȯc. By the above
conventions, equation (51) can be rewritten as

⎡
⎣ẋẏ
ż

⎤
⎦ = −

⎡
⎣ωxωy
ωz

⎤
⎦×

⎡
⎣xy
z

⎤
⎦−

⎡
⎣vxvy
vz

⎤
⎦

and if we write it out

ẋ = yωz − zωy − vx (52)
ẋ = zωx − xωz − vy (53)
ẋ = xωy − yωx − vz (54)
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We know that u and v represents the image coordinates of P s projection in
the image. By 25, x and y can be expressed as

x =
uz

λ
,y =

vz

λ
(55)

which substituted into equations (52), (53) and (54) yields

ẋ =
vz

λ
ωz − zωy − vx (56)

ẋ = zωx − uz

λ
ωz − vy (57)

ẋ =
uz

λ
ωy − vz

λ
ωx − vz (58)

The equations above, describe velocity ṗc by means of image coordinates
u and v, the depth of the point z, and the angular and linear velocity of the
camera. The next step is to derive expressions for u̇ and v̇ and combine these
with equations (56), (57) and (58).

Clearly, these are given by

u̇ =
d

dt

λx

z
= λ

zẋ− xż
z2

(59)

v̇ =
d

dt

λy

z
= λ

zẏ − yż
z2

(60)

(61)

Substituting 56 and 58 into 59 yields

u̇ =
λ

z2

(
z[
vz

λ
ωz − zωy − vx]− uz

λ
[
uz

λ
ωy − vz

λ
ωx − vz]

)

= −λ
z
vx +

u

z
vz +

uv

λ
ωx − λ2 + u2

λ
ωy + vωz (62)

v̇ =
λ

z2

(
z[−uz

λ
ωz + zωx − vy]− vz

λ
[
uz

λ
ωy − vz

λ
ωx − vz]

)

= −λ
z
vy +

v

z
vz +

λ2 + v2

λ
ωx − uv

λ
ωy − uωz (63)

If we combine equations (62) and (63) we can stack them in a matrix such
that
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[
u̇
v̇

]
=

[−λ
z

0 u
z

uv
λ

−λ2+u2

λ
v

0 −λ
z

v
z

λ2+v2

λ
−uv

λ
−u

]
⎡
⎢⎢⎢⎢⎢⎢⎣

vx
vy
vz
ωx
ωy
ωz

⎤
⎥⎥⎥⎥⎥⎥⎦

(64)

This matrix is the interaction matrix for a point. Moreover, the interaction
matrix may be split into two parts such that

ṡ = Lv(u, v, z)v + Lω(u, v)ω (65)

where Lv(u, v, z), consisting of the three first columns of L, is a function of both
image coordinates and depth. Lω(u, v) on the other hand, contains the last three
rows of L and is only a function of the image coordinates, not of the depth. In
real world implementations this can prove useful, when the true depth may be
unknown.

Due to the fact that the camera velocity has six degrees of freedom, while
at same time, only two of these, u and v, are being observed it follows that
not all motions will introduce observable changes in the image. To elaborate,
since L ∈ R

2x6 it has a null space of dimension four. For the interaction matrix
derived in equation 64, the null space can be shown to be spanned by the four
vectors[18]

⎡
⎢⎢⎢⎢⎢⎢⎣

u
v
λ
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
u
v
λ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

uvz
−(u2 + λ2)z

λvz
−λ2

0
uλ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

λ(u2 + v2 + λ2)z
0

−u(u2 + v2 + λ2)z
uvλ

−(u2 + λ2)z
uλ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(66)

It is trivial to augment the derived interaction matrix to incorporate several
feature points. Simply define a vector of features, s = [u1v1...unvn]

T and a vector
of depths z = [z1...zn]

T . The composite interaction matrix Lc will be a function
of the image coordinates of n points and n depth values,

ṡ = Lc(s, z)ξ (67)

in which the individual matrices, corresponding to each feature point, are sim-
ply stacked on top of each other.
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Lc(s, z) =

⎡
⎢⎣
L1(u1, v1, z1)

...
Ln(un, vn, zn)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
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λ
−λ2+u2
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λ
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λ2+v2n
λ
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λ
−un

⎤
⎥⎥⎥⎥⎥⎥⎦

(68)

4.6.1 The Interaction Matrix for Other Features

In the previous subsection the interaction matrix for a point was derived. It
is also possible to consider more complex features such as lines, circles and
cylinders. A general framework for computing L is given in [11]. Below, the
interaction matrix for a straight line is given, but its derivation is omitted.

The Interaction Matrix for a Line

A straight line can be considered as the intersection of two planes

A1X +B1Y + C1Z = 0

A2X +B2Y + C2Z +D2 = 0
(69)

The corresponding equation for the projected line in the image plane is given
by

x cos θ + y sin θ − ρ = 0 (70)

The interaction matrix associated to pm = (θ, ρ) is given by

Lθ =
[
λθ cos θ λθ sin θ −λθρ ρ cos θ − ρ sin θ −1

]
Lρ =

[
λρ cos θ λρ sin θ −λρρ (1 + ρ2) sin θ − (1 + ρ2) cos θ 0

] (71)

4.7 Image-Based Control Laws

As mentioned in section 4.2, with image-based control methods the image error
function is given by

e(t) = s(t)− sd (72)

in which sd denotes the desired configuration of image features. The problem is
then to find a mapping from the error function to a commanded camera motion.
Henceforth, it is assumed the robot is controlled on a lower level, such that
feasible, desired trajectories can be followed. A standard approach to image-
based control is to compute a desired camera velocity, xi, and use this as an
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input to the system. Usually, relating image feature velocities to camera velocity,
is done solving equation 46 [26]. This will then give the camera velocity that
produces the desired feature velocity, ṡ. If the interaction matrix is square and
non-singular, the solution can be obtained simply by inverting this matrix.

Let k be the number of feature vectors and m the number of components in
the camera body velocity, ξ, it follows that L ∈ R

k×m. If k = m and L is full
rank, then the solution is given by

ξ = L−1ṡ (73)

If k < m, the system is under constrained, and L−1 does not exist. This basi-
cally means that too few feature velocities are being observed to unambiguously
determine the camera motion ξ. Nevertheless, a solution can be computed as

ξ = L†ṡ+ (Im − L†L)b (74)

in which L† is the pseudo inverse for L given by

L† = LT (LLT )−1 (75)

,Im denotes the mxm identity matrix, and b ∈ R
m is an arbitrary vector.
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In general, when k < m, (I−LL†) �= 0 and all vectors of the form (I −LL†)b
lie in the null space of L, implying that those components of the camera that
are unobservable lie in the null space of L. Letting b = 0, the value for ξ that
minimizes the norm ||ṡ− Lξ|| is obtained.

In the final possibility, when k > m and L is full rank, the system will typi-
cally behave in an inconsistent matter, implying that more feature velocities are
observed than what is required to uniquely determine the camera motion. The
rank of the null space of L will be zero, and a least squares solution can be used

ξ = L†ṡ (76)

where the pseudo inverse is given by

L† = (LTL)−1LT (77)

4.8 Proportional Control

By using Lyapunov theory a stable control system can be designed[26]. Consid-
ering the system given by 46 and the Lyapunov candidate function

V (t) =
1

2
||e(t)||2 =

1

2
eT e (78)

V̇ =
d

dt

1

2
eT e = eT ė (79)

Hence, if a controller could be designed such that

ė = −λe (80)

with, λ > 0, we would achieve

V̇ = −λeT e < 0 (81)

ensuring an exponentially stable closed-loop system, such that asymptotic sta-
bility is ensured even under small perturbations, such as small camera calibra-
tion errors.

It turns out designing such a controller in a visual servo control, often can
be achieved. The derivative of the error function is

ė =
d

dt
(s(t)− sd) = ˙s(t) = Lξ (82)

By substituting this result into equation (80) we get

−λe(t) = Lξ (83)
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Now, if k = m and L has full rank, consequently, L−1 exists, leading to an
exponentially stable system

ξ = −λL−1e(t) (84)

However, when k > m, exponential stability can not be achieved, as the
derivative V̇ is only negative semi-definite. In reality, the true values of L or L†

will not be perfectly known, because these matrices rely on knowledge of z, that
is, the depth. These will have to be estimated by the system, and consequently
we will have an estimate for L, L̂. Nevertheless, the same reasoning applies.
Substituting for the estimated value, it follows that the resulting system will
be stable whenever LL̂ is positive definite. This fact helps explain why visual
servoing is a robust scheme with respect to small calibration errors.

4.9 Performance of IBVS systems

The image-based control law described above offers good performance with
respect to image error. However, a downside with the approach is that it can
sometimes induce large camera motions causing a task to fail. The source of
this problem is that the scheme only considers the image error, and in which
direction it should be moving in order to cancel out this error. Consequently,
the manipulator may have to perform impossible motions in order to obey the
systems commands. However, so-called partitioned methods provide one way
of dealing with this problem.

4.10 Partitioned Methods

As have been mentioned, image-based methods are by their nature robust to
errors in calibration and sensing. Their negative sides arise from the fact that
they may cause system failure when a required camera motion exceeds the
systems capabilities. For instance, if the required camera motion is a large ro-
tation about the optical axis, each feature point is caused to move in a straight
line from its currents image position to its desired position. Effectively, the in-
duced camera motion would have been a retreat along the optical axis, and for
a required rotation of π the camera would retreat to z = −∞ at which point
det(L)=0 and the controller fails[26].

The idea of partitioned methods is to use the interaction matrix L to control
only a subset of the camera degrees of freedom, and consequently employ other
methods to control the remaining degrees of freedom. Equation (64) can be
written as
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ṡ =
[
Lvx Lvy Lvz Lωx Lωy Lωz

]
ξ (85)

=
[
Lvx Lvy Lvz Lωx Lωy

]
⎡
⎢⎢⎣
vx
vy
ωx
ωy

⎤
⎥⎥⎦ +

[
Lvz Lωz

] [
vz
ωz

]
(86)

= Lxyξxy + Lzξz (87)

In this equation ṡz = Lzξz gives the component of ṡ causing the camera
to move along and rotate about the optical axis. In this equation control is
allowed to be partitioned into two separated components. If we suppose now
that a control scheme has been implemented to determine the value of ξxy = uz.
By employing an image-based method to find ξxy, equation(87) could be solved
as

ξxy = L†
xy(ṡ− Lzξz) (88)

The term (−L†
xyLzξz) is the required value of ξxy to cancel the feature motion ṡz.

Furthermore, the control uxy = ξxy = L†
xy ṡ gives the velocity along and rotation

about the camera x and y axes, producing the desired ṡ when the image feature
motion resulting from ξz has been accounted for.

Using the same Lypunov design method as earlier, setting ė = −λe, we obtain

−λe = ė = ṡ = Lxyξxy + Lzξz (89)

leading to

ξxy = −L†
xy(λe(t) + Lzξz) (90)

The term (λe(t) + Lzξz) can be thought of as a modified error incorporating
the initial image feature error while also taking into account the feature error
that will be induced by movement along and about the optical axis because of
ξz. Now, what remains is to develop a control law, allowing the value of ξz to
be determined. In order to find ωz, the angle θij from the horizontal axis of
the image plane, to the directed line segment joining two feature points can
be used. Specifically, the longest line segment that can be constructed from the
feature points, should be used, for numerical conditioning reasons. The value
ωz = γwz(θ

d
ij − θij) where θdij denotes the desired value, and γωz is some scalar

gain. The apparent size of an object in the image can be used to determine vz.
If σ2 denotes the area of some polygon, then we define vz as

vz = γvz ln(
σd

σ
) (91)

The apparent size is a well-suited feature as it is a scalar, rotation invariant and,
it can be easily computed.
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5 Pose Estimation

5.1 Introduction

Estimating the pose of an object relative to some base frame is a problem that
lies at the very heart of computer vision. In many applications it is fundamental
that pose computation is performed with high accuracy and, at the same time,
as fast as possible.

Different types of sensors providing measurements to the system may be
considered. These include, but are not limited to cameras, GPS, gyroscopes,
accelerometers, lasers and ultrasonic emitter/detector combinations. Most of
these do not provide the necessary information regarding the object pose di-
rectly, but rather it must be estimated.

Cameras provide large amounts of information that can be exploited in var-
ious ways. However, the fact that cameras supply only degenerate 2D informa-
tion about the witnessed 3D world presents a great challenge. For this reason
it is necessary to make certain assumptions about the scene. One possibility is
to assume that a sufficiently accurate 3D model of the goal object is known in
advance. This is the approach taken in this work.

5.2 Model-Based Object Pose

In this thesis the measurement sensor considered is a single camera and the
pose is estimated from a single image. However, the pose is re-estimated as
frequently as possible, to ensure the best estimate at all times.

The intrinsic camera parameters have been estimated beforehand by means
of camera calibration as described in section 3. Also, a 3D model of the goal
object is assumed to be known with sufficient accuracy. With this assumption
we know how different parts of the target are related physically, which poses
strong constraints that can be exploited in the pose computation.

5.3 Virtual Visual Servoing

The method used for estimating the object pose in this thesis is based on direct
analogy between pose estimation and classical image-based visual servoing. It
goes by the term Virtual Visual Servoing (VVS).

In most image-based control methods, the main computation problem is that
of determining the relation between 3D coordinates of features (points, lines,
ellipses, etc.) and their projections onto the image plane.

In order for these methods to succeed at their task, it is essential that the
location of the considered features in the object frame are accurately known.
It is also very important to be able to track the image features (in the image)
from one image to the next. If the goal object is assumed to be at rest, and
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if the initial computed pose is known to be satisfactorily accurate, it might in
some cases suffice to compute the pose only once and perform the positioning
accordingly. However, chances are that recomputing the pose, as closing in on
the goal object, will improve the quality of the pose estimate, and increase the
likelihood for succeeding at the positioning task.

If the goal object is non-static, that is, if the goal object is moving relative
to the robot and the task to solve is a matter of tracking, then obviously, it is
absolutely necessary that the visual features also are tracked in the image, and
that the pose is recomputed frequently.

In virtual visual servoing, pose computation involves a full scale non-linear
optimization, and the problem of computing the pose is considered as similar
to 2D visual servoing[5]. In visual servoing or image-based control, a camera is
controlled in relation to its surroundings as described in section 4. The task is
specified as regulation of a set of visual features in an image. Defining a number
of constraints in the image space, a control law minimizing the error between
the current and the desired position of the visual features can be automatically
built[22]. Consequently, the camera position is modified according to this con-
trol law, ultimately converging to the desired pose if all goes well. As long as
the combination of visual features are properly chosen, there will be only one
final camera position minimizing the error function.

5.3.1 Principle

As mentioned above, the pose computation problem can in fact be considered as
analogous to visual servoing. The principle can be illustrated by the following
scenario. - Suppose that an object is made up by points, and define a virtual
camera with intrinsic parameters ϑ. Furthermore, let the camera pose relative
to the object be described by the homogeneous matrix T co . The parameters of
this matrix are the extrinsic parameters, introduced in section 3. It follows that
the position of the object points P c in the camera frame is given by:

P c = T coP
o (92)

and its projection in the image is given by:

p = prϑ(P
c) = prϑ(T

c
oP

o) (93)

in which prϑ denotes the projection model with intrinsic parameters ϑ. The
extrinsic parameters are what we wish to estimate. This is done by minimizing
the error between the observed features in the image and the position of those
same features computed by back-projection, corresponding to equation (93).
The optimization is now performed by moving the virtual camera, using a visual
servoing control law. When the error is below a given threshold, minimization
is succesful and the pose is available.
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5.3.2 Method Description

The features extracted from the real image are denoted pmd
, and the corre-

sponding features computed by back-projection pm. Consequently, the error that
we wish to minimize is ||pmd

− pm||. The task function e is defined by

e = C(pm(r)− pmd
) (94)

The matrix C is called the combination matrix, and r denotes the camera ex-
trinsic parameters matrix. The combination matrix C is chosen such that CLpm

is full rank. The differential is given by

ė =
∂e

∂r

∂r

∂t
= CLpmξc (95)

in which the matrix Lpm is the interaction matrix or image jacobian relating the
motion of the visual feature in the image to the camera velocity ξc

˙pm =
∂pm
∂r

∂r

∂t
= Lpmξc (96)

Specifying an exponentially decoupled decrease of the error

ė = −λe (97)

in which λ is a coeffiecient tuning the decay rate, the control law can be derived.
By equation (95) and 97 we see that

CLpmξc = −λe (98)

which gives us the ideal control law

ξc = −λ(CLpm)−1e (99)

The interaction matrix depends on the pose between the camera and the target
and on the value of the visual feature. In practice, we will not know this matrix
explicitly, so a model ˆLpm is used. Hence,

ξc = −λ(C ˆLpm)−1e (100)

If we insert the control law (100) into equation (95) we obtain the behaviour
of the closed loop system

ė = −λ(CLpm)(CLpm)−1e (101)

It is important that convergence and stability are ensured, and the positivity
condition

(CLpm)(CLpm)−1 > 0 (102)
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is enough to obtain a decay in ||e||, implying global asymptotic stability of the
system.

It is possible to consider different choices of C and ˆLpm. The dimension k of
the visual feature vector p should be greater than 6, such that the chosen visual
features are redundant. The combination matrix C must be of dimension 6 x
k, and the most obvious solution, is to define C as the pseudo inverse of the
interaction matrix.

C = ˆLpm

†
(103)

By this choice C ˆLpm = I6 and stability is ensured as long as ˆLpm

†
Lpm > 0.

It is also necessary to choose an estimate for the interaction matrix, ˆLpm.
Possible candidates include ˆLpm = Lpm(pmd

, rd), in which the the interaction
matrix is computed only once, with the final values of the pose and the visual
features. In fact, this is a common choice in many robotics systems. However, in
the context of pose computation, rd is not known; it is what we seek to estimate.

A second alternative is to consider the choice ˆLpm = Lpm(pmi
, ri) , in which

ri is the initial pose of the virtual camera and pi is the initial value of the visual
features. In this case, the positivity condition (102) will be fulfilled only if pmi

−
pmd

is small.
Another possibility is to choose the estimate of the interaction matrix as

ˆLpm = Lpm(pm, r). By this approach, the interaction matrix is computed at each
iteration, using the current values of the pose and visual features. In this case,
since the values of the elements of C varies, only local stability can be assured.
If the error pm − pmd

is too big, convergence may not be reached. Although
only local stability can be shown, this is actually the chosen solution in the
implementation of VVS. However, as long as the object displacement between
successive images is not too great and if at the same time pm and r are initialized
with their respective values calculated from the previous image, convergence is
not an issue. In practice, experiments have shown that convergence is always
reached when the camera displacement has an orientation error less than 30◦

on each axis. Potential problems may therefore arise only for the initial image,
when the initialization has been too coarse [22].
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6 Image Features Extraction and Tracking

6.1 Introduction

Computer vision, and in particularly, vision based control seek to interact with
the physical world, based on input from images. In order to do so, we need to
relate information encapsulated in the images with additional knowledge of the
structure of scene, velocities of the camera, and so on. Extracting information
from the images is not a trivial task, and it has been a research topic for a long
time. The thing about images and specifically, image processing, is that a lot of
data has to be handled. A typical image, in vision based control applications,
has dimensions 640 times 480 pixels. These, in total, 307200 pixels, somehow
describe the instantaneous scene that the camera is witnessing. A human be-
ing is immediately capable of extracting a lot of qualitative information from
this image. A computer algorithm however, may need to consider each and ev-
ery pixel in conjunction with a multiple number of other pixels, searching for
pre-defined patterns. Even though processor speeds continue to increase with
time, image processing algorithms still need to be very cleverly designed, if they
should have any chance to operate in real-time.

6.2 Moving Edges

The moving edges algorithm[3] presents an efficient method for tracking edges
in an image sequence. The approach uses modeling principles and likely hy-
pothesis testing techniques. A spatiotemporal edge in a series of images is mod-
eled as a surface patch in a three dimensional spatiotemporal space. By using
a likelihood ratio test the detection of an edge is accomplished, along with an
estimate of related attributes. A great advantage of the algorithm is that only
point coordinates and image intensities are manipulated. No prior edge extrac-
tion is required11. As a result, the moving edges algorithm can be implemented
with convolution efficiency, which implies real-time performance[24].

6.2.1 Method Description

A list of pixels L along the contour of the edge is considered at time t. In a
normal displacement computation process, the "‘corresponding"’ pixel pt+1

i of
every point pti ∈ L is sought in the following image I t+1. The search is performed
in the direction normal to the contour. A one dimensional search interval ji , j ∈
[−J, J ], in the direction δ of the normal to the contour is chosen, as described in
Figure 9. Next, a criterion corresponding to the square root of a log-likelihood

11Note that we are here talking about tracking an edge, which at some earlier point was
extracted from an initial image
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ratio ζj is computed for every point pti ∈ Lt, and for every complete position
Qj
i , which for computational issues lie in the direction δ∗ nearest to δ, from

the set {0◦, 45◦, 90◦, 135◦}. This ratio is just the absolute sum of the convolution
values, computed at pti and Qj

i , respectively, in images I t and I t+1, using a pre-
determined mask Mδ function of the orientation of the contour[3].

pt

i

L

pt+1

i

pt

i

Q
j+1
i

Q
j
i

Qj+n
i

δ*

δ

135
90

45

0

Figure 9: Determining point positions of a tracked object contour from one image to
the next using the Moving Edges Algorithm.

Accordingly, the position of point pi at time t+ 1 is found by solving

Qj∗
i = arg max

j∈[−J,J ]
ζj (104)

where

ζj = |I tν(pi)
∗Mδ + I t+1

ν(Qj
i )
∗Mδ| (105)
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, ζj
∗

is larger than a threshold λ, and ν(·) represents the neighbourhood of the
pixel in question. The pixel pt+1

i satisfying equation (104) is then added to the
list Lt+1.

We now have a list containing k pixels and their corresponding displace-
ment components orthogonal to the object model contour (pti, d

⊥
i )i=1...k. This

procedure is repeated on the arrival of each new image frame, as pointed out,
never actually extracting a new contour, only manipulating point coordinates.
Another advantage comes from the fact the method is strictly local. Thus, any
partial occlusion of the considered contour only leads to loosing some local
measurements, not the actual contour itself.

6.2.2 Dot Tracking

A dot is defined by connex pixels with the same gray level. Without going into
details, the underground algorithm is based on a binarisation of the image,
followed by a contour detection step using the so-called Freeman chain coding
to determine the characteristics of the dot such as location and size.
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7 State Prediction

7.1 Introduction

Assuming temporal continuity of the motions experienced by the system, it
is possible to improve the performance of the system by implementing filters
and prediction. Introduced in 1960, the much celebrated Kalman Filter was in-
stantly embraced by the automatic control community. A wealth of both basic
and advanced texts on the subject exists. One extensive introductory reference
is [4].

7.2 The Kalman Filter

In many applications the main reason for applying a Kalman filter is to filter out
noise from the measurements, hence achieving better estimates of the states. In
this case, we assume that the estimates computed by the pose computation al-
gorithm already are fairly accurate. When the goal object is at rest, we want the
the system to position the end effector at a desired pose relative to this target.
In this case, the desired pose, in a world-coordinate system, does not explicitly
change with time. It may change as a result of updated estimates, as the ma-
nipulator closes in on the target, but we know that the target itself will remain
at rest. It is clear that a pose estimate is not instantly available, it must be cal-
culated by our system. These calculations introduce a delay in the system, such
that the measurement y is actually an estimate of the past states. In the case of
a non-moving target, this time delay does not affect the systems performance
much. However, when the target is moving and the flow of measurements are
used for generating time-varying set points for the manipulator, it is clear that
any time delay will cause the manipulator to constantly stay at least one step
behind. The system will also need a certain amount of time to actually reach
the set-point, introducing further delay.

If the target is moving in an unpredictable manner, the scheme presented
above is the best we can do, and we will have to live with the error implied by
the delay. However, if we assume that the target moves as a periodic function
of time (possibly with slowly varying characteristics) we can model this motion
and use it to predict the future states of our system. If the model is accurate
enough, this means that we should be able to eliminate most of the error intro-
duced by the time delay. This is the approach taken in the second part of this
thesis.
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7.3 Modeling the Target Motion

An undamped harmonic oscillation with frequency ω is simply described by the
second order differential equation

ẍ+ ω2x = 0 (106)

which on state-space form becomes

Ẋ =

[
0 1
−ω2 0

] [
x1

x2

]
(107)

Assuming that the targets movement in one DOF can be described by a sinu-
soidal with frequency ω, and that the state of the end-effector is only affected
by the input signal u, the state-space model describing the target and the end-
effectors motion in one DOF becomes

Ẋ =

⎡
⎣ 0 1 0
−ω2 0 0

0 0 0

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦ +

⎡
⎣0

0
1

⎤
⎦u (108)

Recall that what we are measuring is the the relative pose between the end-
effector and the target, consequently the measurement becomes

y =
[
1 0 −1

]
⎡
⎣x1

x2

x3

⎤
⎦ (109)

7.3.1 More Complicated Target Motion

If we assume the targets motion in one DOF can not be described by a single si-
nusoidal, but rather as the sum of several sinusoidals with different frequencies,
our model can easily be expanded to include these

Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0
−ω2

1 0 0 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
0 0 −ω2

2 0 · · · 0 0 0
...

... . . . ...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · −ω2

i 0 0
0 0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4
...

x2i−1

x2i

x2i+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u (110)



7 State Prediction 41

y =
[
1 0 1 0 · · · 1 0 −1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4
...

x2i−1

x2i

x2i+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(111)

7.4 Unknown Frequencies

In the above sections we assumed that the frequencies of the motion that we
were trying to follow, were known and constant. However, we made no as-
sumptions regarding phase or amplitude. Now, let us assume that also the fre-
quencies are unknown. Our only assumption now is that we know how many
frequency components are needed to describe the motion. This assumption is
not really necessary. In case we did not know this number, we could keep aug-
menting our system model with more frequency components until the model
was satisfactorily accurate.

Including the frequencies of the motion as variables to be estimated, we can
write the model as

ẋ1 = x2

ẋ2 = x2
3x1

ẋ3 = 0
ẋ4 = x5

ẋ5 = x2
6x4

ẋ6 = 0
...

˙x3i−2 = x3i−1

˙x3i−1 = x2
3ix3i−2

ẋ3i = 0
˙x3i+1 = u

(112)
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y =
[

1 0 0 1 0 0 · · · 1 0 0 −1
]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6
...

x3i−2

x3i−1

x3i

x3i+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(113)

Including the frequencies as variables, the model becomes non-linear, and
we need to apply an extended Kalman filter. The main difference is that we
need to linearize the model at each time-step. The linearized model becomes

∂f

∂x

∣∣∣∣
X=Xk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 ··· 0 0 0 0
−x2

3 0 −2x3x1 0 0 0 ··· 0 0 0 0
0 0 0 0 0 0 ··· 0 0 0 0
0 0 0 0 1 0 ··· 0 0 0 0
0 0 0 −x2

6 0 −2x6x4 ··· 0 0 0 0
0 0 0 0 0 0 ··· 0 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

. 0
0 0 0 0 0 0 ··· 0 1 0 0
0 0 0 0 0 0 ··· −x2

3i −2x3ix3i−2 0 0
0 0 0 0 0 0 ··· 0 0 0 0
0 0 0 0 0 0 ··· 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X=Xk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δx1
Δx2
Δx3
Δx4
Δx5
Δx6

.

.

.
Δx3i−2
Δx3i−1
Δx3i

Δx3i+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

.

.

.
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δu

(114)

7.5 Complete System

Knowing how the target object moves in a body fixed frame, the next step
is to relate the body fixed velocities of the object to an inertial frame. The
robot manipulator is typically controlled by directing the end effector, relative
to an inertial base frame. Thus, knowing the motion of the target object, in the
inertial frame, allows us to, at least in theory, track it with the end effector. We
assume that the pose estimates of the goal object are given in the inertial frame
of the manipulator. Furthermore, we assume that the orientation of the goal
object is described in terms of Euler angles, by the zyx convention. Let pi be the
position of the target object, in the inertial frame. Then, the body-fixed velocity
vector vbo decomposed in the inertial frame, can be described by

ṗi = Ri
b(Θ)vbo (115)

The body-fixed angular velocity vector ωbi,b and the Euler rate Θ̇ are related
through a transformation matrix TΘ(Θ) as

Θ̇ = TΘ(Θ)ωbi,b (116)
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The assumption of zyx Euler angles, implies that the transformation matrix
TΘ(Θ) should satisfy

ωbi,b =

⎡
⎣φ̇0

0

⎤
⎦ +RT

x,φ

⎡
⎣0

θ̇
0

⎤
⎦ +RT

x,φR
T
y,θ

⎡
⎣0

0

ψ̇

⎤
⎦ := T−1

Θ (Θ)Θ̇ (117)

Expanding the above equation gives us[13]

T−1
Θ =

⎡
⎣1 0 −sθ

0 cφ cθsφ
0 −sφ cθcφ

⎤
⎦ =⇒ TΘ(Θ) =

⎡
⎣1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎦ (118)

Note that by using this definition, TΘ(Θ) is undefined for θ = ±90◦. Alterna-
tively, quaternion representation could be used, avoiding the potential problem
of singularities. However, in this context, it is regarded as highly unlikely that
the object that we are tracking, should be able to rotate ±90◦ in any direction.
Hence, the use of Euler angles should not cause any difficulties.

Combining position and orientation in a pose vector

η =

[
pi

Θ

]
(119)

and linear and angular body-fixed velocities in a velocity vector

ξ =

[
vbo
ωbi,b

]
(120)

the 6 DOF kinematic equations can be arranged as

[
ṗi

Θ̇

]
=

[
Ri
b(Θ) 03×3

03×3 TΘ(Θ)

] [
vbo
ωbi,b

]
⇔ η̇ = Π(η)ξ (121)

We now know how to relate the body fixed velocities of the goal object to an
inertial frame. However, since our description of the goal objects movement
is given in either forms as in equation(114) or equation(110), depending on
whether the involved frequencies are known in advance or not, we need to re-
late these expressions to equation(121). Let Λo be the vector formed by stack-
ing the vectors X, Y , Z, Φ, Θ, Ψ, in the target object frame, where each vector
X, ...,Φ is on the form X = [x1, x2, ..., xn]

T . In the same way, Λi is the corre-
sponding vector decomposed in the inertial frame. Furthermore, we denote Γ
as the augmented Π matrix, formed by stacking each successive row of Π with
multiplicity n on top of each other. If we denote row i of Π with multiplicity n
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as Π(i), such that Π(i) ∈ R
n×6 the augmented system is described by

Λ̇i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Π(1)
Π(2)
Π(3)
Π(4)
Π(5)
Π(6)

⎤
⎥⎥⎥⎥⎥⎥⎦

Λo = ΓΛo (122)

7.6 The Kalman Filter Equations

The robot control system at ABB allows for setting desired position of the end-
effector, and either the time by which it should reach this position, or the ve-
locity by which it should be moving. In this case, the command updating fre-
quency is limited to between 2 and 5 Hz. It is also possible to command the
robot by only specifying a desired position, without specifying velocity or time,
in which case a higher command updating frequency can be accomplished, ap-
proximately 10 Hz.

Besides the specification of the robot control system, we also need to con-
sider the estimates provided by pose computation. This whole procedure is
quite computational demanding, as one can imagine. First, a new image needs
to be captured, then, the image features need to be located, finally, the pose
must be estimated. The time needed for these operations will depend on sev-
eral factors. Obviously, the hardware/software configuration plays a major role.
With a lot a processing power, time consumption should be significantly re-
duced. Besides this, the time needed will heavily depend on the motion experi-
enced by system, specifically, the displacement of image features in the image,
from one image to the next. A large displacement means that at larger area of
the image needs to be searched, whereas small displacements have the opposite
effect. Tests on the writers office setup suggests a computation time of approxi-
mately 130-140 ms for each iteration of the loop. Consequently, new estimates
are available at about 7-8 Hz.

Since both measurements and control inputs are sampled in discrete time,
we need to apply the discrete time Kalman filter. The equations for the discrete
time Kalman filter are given in table 5

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1

q̂k = q̂k
− +Kk(zk −Hkq̂k

−

Pk = P−
k +KkHkP

−
k − P−

k H
T
k K

T
k +Kk(HkP

−
k H

T
k +Rk)K

T
k

q̂−k+1 = Φkq̂k + Δkuk
P−
k+1 = ΦkPkΦ

T
k +Qk

Table 5: Discrete Time Kalman Filter Update Equations
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8 Implementation

‘If you’re going through hell, keep going’ - Winston Churchill

8.1 Introduction

The practical parts of this thesis can roughly be divided into three main sections.
The parts related to image processing and manipulation, that is - the features
extraction, image feature tracking, and pose estimation based on the extracted
features - where given the main priority for the greater part of the execution of
this thesis. Without this part working, it is obvious that the overall goal of the
thesis could not be fulfilled. Obviously, in order to track a moving object, the
most basic part is to collect measurements that describe the spatial coordinates
of this object.

In the second main section, the focus was on developing prediction schemes
that would allow for the prediction of future states of the tracked object, based
on the at-all-times current knowledge. This way, the control system should be
able to position the manipulator, by using feed-forward from the predicted fu-
ture states, ideally reducing the error in the robots coordinates relative to the
target object as compared to the desired ones, to zero.

The last section was the implementation of the combined pose-estimation
and tracking scheme on an industrial robot test facility.

8.2 Pose Estimation

The pose of the goal object, relative to the camera is estimated by the algorithm
described in section 5.3. This algorithm basically relies on three things. First of
all, we need to know how physical objects project onto images, for the specific
camera in question. The parameters describing this relation are known as the
intrinsic camera parameters. These are estimated through a camera calibration
procedure, as described in section 3. The intrinsic camera parameters have been
estimated for several different cameras, including a web camera, a Fire-Wire
camera, a camera attached to the robot at the ABB lab, and a camera attached
to the robot at the Sintef lab. Secondly, we need to locate reliable features in
the sequence of images. The third thing that we need to know is how the image
features relate to a each other in the physical world.

Different kinds of features may be considered. However, it is important that
the system is capable of tracking these features from frame to frame. Possible
image features include points, lines and curves. The first strategy was to con-
sider more or less arbitrary shaped objects, without any fiducial markers, and
automatically extract reliable features from these. A great deal of effort was
put into this part, but the outcomes were not satisfying. Straight lines were ex-
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tracted from images, and attempted tracked using the Moving Edges algorithm,
described in section 6.2. Using this method, the problem with tracking straight
lines that are considered separately, is that a tracked edge tends to evolve itself
further and further away from the actual edge, as the camera moves, or as the
lighting conditions changes. A possible solution to this problem would be to
impose further constraints on the extracted edges, linking them together based
upon the objects structure, rather than just considering them one by one.

Instead of further pursuing this idea, the choice was made to rather consider
objects with spherical shaped markers on. Assuming that the object that we
seek to track has some clearly defined dots either artificially attached to it, or
that they simply exist as a natural part of the objects geometry, we can track
these from frame to frame. The principle for the dot tracking is described in
section 6.2. Assuming that the dots are successfully extracted from an image,
we use the center of these dots as the image features that the pose computation
will rely on.

For convenience, a black piece of paper with four white dots, attached to
a planar box, has been used to describe the goal object. The target object is
defined by a frame with origin in the common center between the dots. Figure
10 shows the orientation of this frame. The z-axis points into the picture, the
x-axis points to the right and the y-axis points downwards. In this setting, the

Figure 10: Object frame

algorithm described below is used to find the image features and link these
features to their corresponding model features. We define the coordinates of
each image feature in the object frame. Then, we define certain properties that
describe the dot to search for. These include upper and lower bounds for light
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Algorithm 1 Feature matching

define location of features in physical model
define dot← brightness, dot← size, dot← ellipsoid precision
define detected dot list = {∅}
capture initial image

for entire image do
search current area for dot
if current search area matches dot then

detected dot list← dot
end if

end for
if sizeOf( dot list ) == 4 then

sort( dot list ) and link center of dots with features in physical model
end if

intensity and size, and also, to what extent the dot to search for should have an
elliptical shape.

After the initial image has been captured, we search through the entire image
looking for dots that match the pre-defined criteria. Four distinct dots must be
found. If a dot is found, we put it in a list of discovered dots. If four dots are
found we proceed to sorting the list. We are seeking the center point of each
dot. These define the feature location in the image. The list is first sorted with
respect to the features v values, then, by their u-values. When this is done,
each feature is linked with the corresponding point in the physical model, as
illustrated in Figure 11.
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1 2

3 4

Figure 11: Dot detection and model matching
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With a symmetrical object, as far as the model features are concerned, we
need to make an assumption in order to guarantee that the right image feature
is linked to the corresponding feature in the model. We assume that in the inital
image, the camera is never rotated, relative to the object, to such an extent that
the v values of the image features marked as 3 and 4 in Figure 11, exceed the
v values of image features 1 and 2. However, assuming that the object that
we are considering at least has a minimal degree of rigidity with respect to its
surroundings, this should not be an issue.

Figure 12 shows a number of screenshots, depicting the estimated poses as
illustrated by the objects’ body fixed coordinate frames, seen in red. It may be
hard to tell from the figure, but the center of a dot is marked by a red cross.
In the dot center, we can also see a small blue dot. These blue dots represent
the model features computed by back-projection, as described in section 5.3. In
the centered leftmost view, the camera motion from the previous frame to the
current frame has been relatively large such that a greater part of the image
has had to be searched to locate the image features.
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Figure 12: Computed pose visualized by the orientation and apparent size of the ob-
ject’s body fixed coordinate frame
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8.3 State Estimation

The scheme for state estimation was developed through modeling and simula-
tions in Matlab/Simulink. The core of this work is the prediction of motion, and
is based on the models developed in section 7. Figure 13 shows a the model file
describing a single DOF. As a target object is moving, we are trying to identify
the motion, and and predict future states. If we are able to do so, we can use
the estimates for feed-forward control of the robot.

Figure 13: Model representing a single DOF

In the following figures the target object’s motion is described by a single
sinusoidal with known frequency. The measurements are sampled, delayed by
150 milliseconds, and colored by noise with a given power level. Figure(14)
shows the error between predicted and real values of the object’s position. Fig-
ure 15 shows the tracking error. The tracking error describes the difference
between realised position and desired position, relative to the target object. It
should be noted that tuning the regulator has not been given much considera-
tions. The effort has been focused on the performance of the Kalman filter, and
specifically.
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Figure 14: Prediction error. Target moves like one sine.
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Figure 15: Tracking error. Target moves like one sine.
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In the following, the target object moves as the sum of two sine waves in one
DOF - x(t) = 0.5 sin(2π/9) + 0.3 sin(2π/11) In this case neither the amplitudes,
phase, nor frequencies of the motion is known in advance. Figure16 shows the
error between estimated and real position of the target object. For the record,
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Figure 16: Prediction error. Target moves like the sum of two sine waves that are un-
known for the Kalman filter.

Figure 17 shows the real motion exhibited by the target object.
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Figure 17: Target motion
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8.4 Implementation at ABB

The idea was to implement a combined pose computation and tracking scheme
at the ABB test facilities. The ABB setup includes a small scale process plant,
a robot manipulator attached to a gantry crane, capable of moving in a rather
large area, in addition to two more manipulators attached to rails. The gantry
crane mounted manipulator would be used for vision-based tracking. Based on
what was possible to do, we agreed on the procedure described briefly summa-
rized in 2.

Basically, the robot manipulator would be starting out such that the goal ob-
ject was within the cameras field of view. The end-effector coordinates at this
initial position would define a reference frame in which any future command
had to be given. Denote o0 as the reference frame, then T oe(t) defines the transfor-
mation from the origin of o to the end-effector position at time t. Furthermore,
denote the desired move relative to this end-effector position as, at time t as
T
e(t)
ed(t). The desired position decomposed in the reference frame becomes

T oed(t) = T oe(t)T
e(t)
ed(t) (123)

The robot control system requires that we express the translational part of a
desired pose as x-y-z values, while orientation must be given as either Euler
angles or unit Quaternion. Both are fairly easily extracted from the rotation
matrix12. If we stick to the Euler angle zyx convention, the angles can found
according to equation (5).

Figure 18 depicts how the main coordinate frames of the system are related.
With a mild abuse of notation oi denotes the inertial frame, which does not
necessarily coincide with the actual inertial frame of the system as a whole, but
rather it is defined as the initial frame in which all future end-effector coordi-
nates are expressed with respect to.

Denote o as the target object frame. It follows that the transformation from
the inertial frame to o is given by

T io = T ieT
e
c T

c
o (124)

The relation between the end-effector and the target object is given by

T eo = T ec T
c
o (125)

Denote the desired pose of the end-effector relative to the target object as T eo d,
and relative to the inertial frame, as T ied. It follows that the desired pose of the
end-effector in the inertial frame can be expressed as

T io = T ieT
e
c T

c
o = T iedT

e
o d

12The upper right 3× 3 matrix of T o
ed(t)
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⇓
T ied = T io(T

e
o d)

−1 (126)
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Figure 18: Relation between different frames

The author travelled to Oslo and stayed there for a week. The first problem
to overcome was due to the different programming languages used by the un-
dersigned and the developers at ABB. The writer has done all the coding, except
for the Matlab/Simulink simulations, in C++. ABB, on the other hand, do most
of their coding in C#. Since neither the author nor the personnel at ABB had
any experience in cross language programming, different solutions where con-
sidered. One solution was to export the code from the writers system to the ABB
side, by using dynamic link libraries, dlls. With lack of experience this seemed
like a very time consuming job, as it concerned large amounts of data. Another
solution would be for the two systems to operate separatly, reading and writing
data to files. However, this did not seem like a feasible solution for a system
that is supposed to be working in real-time. The third possibility, was to let the
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two systems run separatly, but to communicate via TCP/IP13.The choice fell on
this option. Networking was also a but new topic for the author.

Algorithm 2 Tracking ABB

init : read end-effector coordinates and define coordinate system start
receive end-effector coordinates and image from robot control system
estimate pose and predict future pose
send predicted pose to robot control system
goto receive

We needed to figure out how to send images and robot end-effector coordi-
nates from the ABB side to the authors side. Then, do the necessary computa-
tions and send back the desired end-effector coordinates to the robot control
system. When the first part was solved, that is, successfully sending and receiv-
ing images, new problems arose. It seemed that the libraries used for image
processing did not support the image formats available from the sender side.
Although we at that point managed to convert the received images to the "re-
quired" format, by using another external image processing library, it turned
out that there were even differences within this specific format. As a result, we
were unable to process these images. The week went by and no experiments
were conducted.

8.5 Implementation at Sintef

Since we did not get to do any experiments at ABB, alternative solutions were
considered. Sintef division for Applied Cybernetics has got a robot lab which
resembles the ABB setup. As far as the workspace is concerned, it is basically a
somewhat a downscaled version of the setup found at ABB, with one robot less.
However, integrating the authors system with the existing one at Sintef, a lot
more problems were initially unresolved, as compared the ABB setup.

The authors system would need to communicate through TCP/IP with sev-
eral other systems. One server provides images, one server provides robot joint
angles and a third server can receive coordinates that are used to control the
robot. The author still had to resolve the problem that remained from the at-
tempt at ABB, namely the conversion of images to the right format whilst keep-
ing data in computer memory.

Having solved this problem, communication with the different servers had
to be resolved, as well as computing the forward kinematics of the manipulator,
based on received joint angles. Figure 19 shows a principle description of the

13TCP/IP is an abbreviation for Transmission Control Protocol/Internet Protocol. Shortly de-
scribed, it is a gathering of communication protocols to connect computers in a network.
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manipulators forward kinematics, and Table 6 summarizes the DH parameters
for robot.

Figure 19: Forward kinematics of the Sintef robot

Solving these parts turned out to be cumbersome. Without going into details,
getting message byte orders correct for sending and receiving took a lot time.
Even so, it turned out that DH parameters given did not describe the forward
kinematics correctly. To overcome this problem, A. Transet and T. Mugaas, who
works at Sintef, found a way of sending end-effector coordinates directly, in-
stead of joint angles. This is not normal procedure, but due to the situation at
hand it was decided to do so anyway.

Before starting the experiments, there was one last practical problem to
solve. We needed to identify the static transformation from the end effector
frame to the camera frame, since this was not know in advance.

The idea was to place the goal object as accurately as possible in a known
pose relative to the inertial frame. By orienting the object such that its axes
are in line with the axes of the inertial frame, the transformation from inertial
frame to object frame becomes a pure translation. If the effector is positioned
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Table 6: DH parameters for the Sintef robot

Link ai αi di θi

1 −0.4 −π/2 q1 −π/2
2 0 −π/2 q2 π/2
3 0 0 q3 −π/2
4 0.26 −π/2 0.675 q4
5 0.68 0 0 q5
6 0.035 π/2 0.07 q6
7 0 −π/2 0.67 q7
8 0 π/2 0 q8
9 0 0 0.15 q9

relative to the object, such that its coordinate axes are aligned with the axes
of the inertial frame, they will also be aligned with the axes of the goal object.
Hence, the transformation from the end-effector frame to the camera frame will
also be a pure translation. Let T io denote transformation from the inertial frame
to the object frame and let T ie be the transformation from the inertial frame to
the end-effector frame. Subsequently, positioning the end-effector such that the
goal object is within the cameras field of view, we can find the homogeneous
transformation from the end-effector frame to the camera frame by

T io = T ieT
e
o

⇓
T eo = (T ie)

−1T io (127)

Following this procedure, the identified transformation did not seem to make
any sense. As it turned out, the coordinates that were supposed to describe the
position and orientation of the end effector, did not really provide this informa-
tion at all. Possibly, the coordinates that we received from the system, may be
related to a joint further back in the kinematic chain.

Without knowing neither the configuration of the robot, the coordinates of
the end effector nor how to command it to desired coordinates, we could not
perform any experiments. It should be noted that the way that we were trying
to control the robot, is not how the staff at Sintef normally do it. And by their
own approaches things do work properly. It should also be mentioned that due
to the nature of the situation, that is, the author requesting to use Sintefs lab
at such a late stage, it is clear that author could not simply be granted to use
this very expensive equipment without restrictions. Consequently, the author
could only access fractions of the complete system during the implementation
attempt. The camera that was used here, is the Fire Wire camera described in
section 3.
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8.5.1 Validation of the Pose Estimates

Since we did get not get a chance to conduct real experiments in a highly con-
trolled environment, an alternative solution was needed to verify the pose esti-
mates provided by the algorithm. With very little time left, it was not possible to
obtain accurate data for comparison. By using millimetre paper and relying on
the authors eye measurements, comparisons where made between "true" values
for position and orientation, and the estimated ones. Table 7 and Table 8 show
the comparisons for five different data sets. ηi refers to the "real" pose, while η̂i
refers to the estimates provided by the pose computation algorithm.

Table 7: Comparison between "true" and estimated values for the pose - 1

Data η1 η̂1 η2 η̂2 η3 η̂3

x 0.0 −0.44 0.0 0.50 −2 −2.2
y −4.0 −3.96 −4.0 −4.2 −4 −4.1
z 39.0 39.1 43.0 42.9 40 38.9
φ 0.0 −4.6 0.0 −4.5 0.0 −4.0
θ 0.0 −1.6 0.0 4.5 0.0 1.0
ψ 0.0 0.5 0.0 0.1 0.0 0.4

Table 8: Comparison between "true" and estimated values for the pose - 2

Data η4 η̂4 η5 η̂5

x 0.0 −0.5 0.0 −0.2
y −4.0 −3.7 −4.0 −3.7
z 40.0 40.3 40.0 40.7
φ 0.0 −0.3 0.0 −0.5
θ 45.0 −45.0 45.8 −44.1
ψ 0.0 0.0 0.0 1.3

The x, y and z values are given in centimetres. The angles φ, θ and ψ denote
the Euler angles, according to the zyx convention, and are given in degrees.

It clear that the obtained results do not qualify as scientifical data. The setup
is very roughly organized. Hence, we cannot draw any absolute conclusions
regarding the accuracy of the pose estimates. In the three first sets, it looks as if
the estimated angles are a bit inaccurately estimated, showing errors of a few
degrees, but in the next two sets the errors are considerably smaller. The most
likely explanation for this is that author has been a little too inaccurate in the
arrangement phase. As stated, the experiments are imprecise. However, based
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on the comparisons, it is reasonable to assume that algorithm does provide
good estimates.
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9 Discussion

One of the hopes, prior to the execution of this thesis, was that at the end of the
line we would have demonstrated a fully working pose-estimation and tracking
system at the ABB test facilities in Oslo. However, anyone who has ever had to
transfer modules developed on one system to a different setup, knows that this
may be a lot easier said than done.What is supposedly just minor differences,
can turn out to be major difficulties that need to be overcome. This is exactly
what happened in the implementation stage at ABB. Even so, dealing with real
hardware it seems inevitable to stay clear of all obstacles on the way. In light of
what happened, it is clear that the undersigned should have taken further steps
in the preparation phase, before going to Oslo. At the same, the workload on
the author has continuously been large, and for that reason, it has not always
been possible to do all the things that one had wished for.

Another practical problem arose from the fact that the initiator of this thesis
- ABB Strategic R&D for Oil&Gas - is located in Oslo. They agreed to pay for
the flights there and back, but could not compensate for expenses associated
with accommodation. With this restriction, it is clear that it is only possible for
a not-too-wealthy student to be staying somewhere for a fairly limited period
of time. As a result, the undersigned made one trip to Oslo, that lasted for one
week. The system did not become operational during this time.

As an alternative solution, Sintef - division for Applied Cybernetic - was kind
enough to let us use their robotics test lab, which is quite similar to the ABB
lab, at first glance. Sintef, in their experiments, are doing things by a completely
different approach than what we would be attempting to do. Before starting,
we were informed by dr. Axel Transeth, that it would surely require a great deal
of effort to make the necessary adjustments to get an operational setup. This
turned out to be true. Intensive work was put into the task of trying to solve
all the details. However, just at the finishing line, all hope vanished when it
turned out the we were unable to get the accurate, or even remotely close to
accurate, data that we needed from the robot, in order to control it. Sadly, this
meant that we would not get to see the system tested on a real robotic system.
However, the separate parts themselves are functioning. The interface between
the system developed by the author and the ABB robot system, should also be
working, with little effort. This is due to the fact all the problems faced during
the initial stay at ABB were solved while trying to make the system operational
in the Sintef setup. Surely, some work will be needed at ABB, but at least for a
relatively simple testing scenario, the problems faced should severe.

As a concluding remark: the author has spent a lot of time and effort work-
ing on this thesis, and hopefully, the results will come to use. Implementational
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issues, both initially and at later stages, have required most of the author’s
time throughout. Although parts of this thesis were written in parallel with the
practical parts, many things were put on hold, trying to achieve the desired
results. In shortage of time, parts of the written thesis has had to suffer the
consequences.
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10 Suggestions for future work

With respect to the ABB setup, the undersigned believes that it should not re-
quire much work before initial vision-based experiments can be made. That is,
if ABB choose to go further with what has been done in this thesis. The system
should be capable of positioning the end-effector relative to a target object with
reasonable accuracy, as long the necessary assumptions are made.

Furthermore, depending on the true nature of real target objects movement
patterns, not to say the amplitude of such motion, the available resources for
processing power, and the requirements of the system, further work can take
on different directions.

Assuming that the computational power available is but unlimited, image
processing and pose computation can potentially be done very fast, introducing
only negliable time delays in the system control loop. If, at the same time, the
robot response time is kept low enough, the system as a whole should be able to
react to disturbances very fast, enabling accurate real-time tracking of a moving
object. In this setting, there is no need to introduce any additional state model,
or state prediction, as it will not improve the systems overall performance.

If, on the other hand the overall time delay in the system loop is not negli-
able, and if the target object exhibits smooth motion, the control system is
likely to benefit greatly from introducing feedforward from an observer, such
as a Kalman filter. The state space model describing the system, is perhaps the
most essential part of the observer, and with an accurate14 model highly precise
predictions can be made.

A different aspect relates to the low level control of a robot. Certainly, indus-
trial robots cannot afford to make mistakes, and it follows that the robot should
behave in a predictable manner at all times. At the same time, in the context
of vision-based control, it is not very common to control the robot strictly by
giving it coordinates that it should go to. Controling a robot this way means
that we need to have very precise model when it comes to camera parameters
and the physical structure of the target object. The latter should not be too hard
to figure out, but the former may not be as easy to identify with hundred per-
cent certainty. Partly, for these reasons, it is common to use more robust control
techniques, such as described in section 4.10.

14Certainly, if designed correctly, the parameters of a Kalman filter will approach the true
system parameters as time passes. However, in order for this top happen, the structure of the
model must be sufficiently describing for the true system.
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Appendix A Source code

Both the source code written in C++, and the code written in Matlab can be
found on the CD. For the source code to work, several external libraries are
required. The most important one is the Visual Servoing Platform (ViSP) library.
An explanation is given on the CD.
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