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Problem Description
StatoilHydro har som målsetting å bygge fjernstyrte oljeplattformer. I den anledning jobber
SINTEF og NTNU med en robotlab der vi ser på robotløsninger for inspeksjon og vedlikehold av
slike installasjoner. Siden operatørene vil befinne seg på land i stedet for på selve platformen er
menneske-maskin-grensesnittet mellom operatør og roboter på plattformen svært viktig. En
svært relevant problemstilling er hvordan operatøren på en intuitiv måte skal kunne se hva som
foregår på plattformen.

Oppgaven tar sikte på å videreutvikle en strategi som grunnlag for å bestemme posisjon og
orientering (6 frihetsgrader) til operatørens hode ved bruk av LEDs og NIR/IR-kamera (Wiimote).
Dette kan f.eks. benyttes til intuitiv kamerastyring eller direkte robotstyring.

Her er noen resultat fra Dr. Johnny Lee og andre som er morsomme og svært relevante:
http://www.youtube.com/watch?v=Jd3-eiid-Uw
http://www.cs.cmu.edu/~johnny/
http://www.wiili.org/Wiimote
http://www.wiili.org/index.php/Wiimote_driver

Oppgave:
1. Bakgrunnsstoff:
   a. Få en oversikt over eksisterende løsninger for objektfølging vha Wiimote og hvilke muligheter
og begrensninger disse har.
   b. Gjør et litteratursøk på posisjons- og orienteringsestimering.
   c. Gjør en undersøkelse av hvilke metoder som finnes for operatørstyrt kamerastyring
2. Velg en eller flere eksisterende løsninger for objektfølging med Wiimote og implementer
denne/disse.
3. Vurder løsningen(e) med hensyn på begrensninger, nøyaktighet og robusthet, og evnt.
sammenlign løsningene.
4. Eventuell utvidelse hvis det blir tid:
   a. Implementer løsning for styring av pan-tilt-enhet med hodebevegelser.

Assignment given: 12. January 2009
Supervisor: Geir Mathisen, ITK





Summary

The capture of gestures in order to use them as input for intuitive control has
been investigated exhaustively in recent years. However, for the most part
this has resulted in relatively expensive devices. The contribution of this
report is the investigation on the feasibility of the development of a low-cost
vision based input device for the tracking of head movements, concerning
the use of them for motion control.

The input device relies on the infrared camera, along with the built-in
image analysis tools, present on a Nintendo Wii remote for the measurement
of the location and orientation of a head-mountable marker. The marker
consists of a set of optical feature points which are easily detectable, and
organized in a fashion which allows for the determination of its position and
orientation in space.

The developed input device was then evaluated in order to determine
the operating range, accuracy and robustness, and was shown to be feasible
for its intended use. Finally, the implemented device was utilized to control
a mechanical output device, being a unit capable of panning and tilting.
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Chapter 1

Introduction

1.1 Motivation

A user needs to have the means of assessing and altering the state of a me-
chanical or electrical system, in order to efficiently operate it. For this to be
possible, an intuitive interface has to exist, to expose the full potential of the
system to the operator. Obviously, the complexity of the user interface does
depend on the capabilities of the underlying system; however, the reverse is
also equally accurate. Furthermore, depending on the degree of complexity
of the controllable system, a single interface may not be enough to allow an
operator full access to it. Often, full access using a single interface may not
be desirable either, and multiple interfaces may be used to expose a different
set of functions to serve different kinds of users.

A user interface essentially consists of some sort of input device and
some sort of output device. A user may manipulate the system with the
means of the input device, and receive feedback through the output device.
The most widespread types of input and output devices are the computer
mouse and computer keyboard, and the display monitor. Certainly these are
generic devices, where buttons are assigned to specific functions depending
on the interface provided by the running program. For instance, in some
applications the mouse may be used to simply point at graphical objects
appearing on the display monitor or while in other it may be used to rotate
or displace an object.

When applications try to attain a huge degree of immersion, the necessity
for custom, accurate and intuitive input devices arises. Such devices, albeit
possible to create, may be quite costly, and thus low-cost alternatives should
be explored.

1



2 CHAPTER 1. INTRODUCTION

The sensation of immersion is a critical component and highly desired
attribute of most virtual reality or augmented reality applications. For a
high degree of immersion to be attained, the real and virtual world must be
properly aligned with respect to each other. For this illusion to be main-
tained, accurate information about the user has to be gathered. This may
include the position and orientation of the head of the user, which is the
issue we will be studying.

A non-invasive method to determine the position, and orientation, of an
object is through vision. Thus, the input device explored in this report is
comprised of a camera, along with an easily distinguishable object in 3D
space.

1.2 Background

The recovery of the position and orientation of a camera from the images
it acquires has been a fundamental issue for computer visioning systems, as
well as in the photogrammetry community.

This issue is commonly referred to as pose estimation in the computer
vision society, while it is called space resection by photogrammetrists. Being
a fundamental issue, there are a lot of mathematical approaches to solving
the problem.

By analyzing the images acquired by the camera, and extracting certain
features, the analyzation of these features may result in the recovery of the
pose of the camera. There are approaches for multiple types of features, both
for lines and points. Common for the approaches is that the correspondence
between the features in the 3D world and the image has to be known. The
different approaches to the pose estimation problem are presented in more
detail in Chapter 3.

1.3 Contribution

In this report we will attempt to define a low-cost input device which would
allow for computer interaction through motions of the operators head, pos-
sibly as part of a larger system trying to offer an immersive and intuitive
interaction with the environment.
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1.3.1 System Description

To perform head tracking two pieces of hardware are necessary, a camera
and an optical marker. The camera is used to extract features from the
scene. The optical marker provides these feature points, which in turn are
used to assess the markers position and orientation in space.

As is stated in the assignment, the camera which will be used is the
Nintendo Wii remote. The Wii remote is a wireless, and therefore quite
mobile, device, which was initially designed to be the primary input device
for the Wii game console. There is also a camera sensor on this device
which is capable of some image analysis, making it a good candidate for
image feature extraction. Unlike when in use with the game console, where
the Wii remote is the non stationary part of the input system and is actively
used for pointing and navigation, in this appliance it will be stationary. The
Wii remote is further described in Section 4.1.

The optical marker is the non stationary part and it is a more custom
contraption. The function of the optical marker is to provide easily de-
tectable points of interest, allowing the system to determine its position and
orientation in space. The optical marker is further described in Section 4.2.

1.3.2 Limitations

There are certain problems with this type of input device. For instance,
it only works if the marker is in sight of the camera. This limits both
the markers region of operation, as well as its orientation compared to the
camera. Another issue is that visual measurements may contain significant
amounts of noise and be subject to distortions due to use of imperfect lenses.
This is especially the case for low-cost devices.

1.4 Report Outline

This thesis consists of seven chapters and is organized as follows:

• Chapter 1 is an introduction to the assignment, and describes the
motivation, introduces the problem, and describes the contribution of
this report.

• Chapter 2 is a short review of some basic mathematical tools.

• Chapter 3 introduces the pose estimation problem for optical markers
and provides an overview of the existing mathematical approaches for
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solving it. The chapter also includes an overview of the systems which
are similar to the one explored in this report.

• Chapter 4 describes the hardware and various devices the system is
comprised of, and introduces the design of the software implementa-
tion.

• Chapter 5 contains the results of the various test performed on the
developed system.

• Chapter 6 provides a discussion on the hardware and software in use,
as well as the obtained results. Moreover, the chapter also includes
some proposal for future work and extensions to the developed system.

• Chapter 7 concludes the report.

The report also contains six appendices:

• Appendix A describes how the pan-tilt unit may be interfaced, and
gives an overview of the commands used to control it.

• Appendix B provides a description on how the Wii remote can inter-
faced in C# and in MATLAB, and details the functions of the libraries
used in the assignment.

• Appendix C describes how a software library used for the head track-
ing is configured and interfaced.

• Appendix D details how the library OpenCV may be used for pose
estimation for the optical marker used in this report.

• Appendix E includes some more detailed results which complement
Chapter 5.

• Appendix F provides a short overview of the contents on the attached
digital media.



Chapter 2

Theoretical Background

Due to the vision based nature of the input device, some basic mathematical
concepts about spatial representations will be presented in this chapter.

The following topics will be covered:

• Position and Orientation
The section provides a short introduction to how position and orien-
tation can be expressed in mathematical terms.

• Homogeneous Coordinates
This section introduces the concept of homogeneous coordinates and
discusses their usefulness.

• Projection
In this section the concept of projection is presented and described
mathematically.

• Camera Model
This section defines a simple camera model, which are used to describe
the complete transformation of image acquisition, including position,
orientation of the camera, in a unified frame.

2.1 Position and Orientation

The space a rigid body occupies may be uniquely specified by its position,
orientation1 with regards to some global frame of reference.

1The space a rigid body occupied does also rely on its scale and form, but here we
assume that these properties are contained in description of the rigid body.

5



6 CHAPTER 2. THEORETICAL BACKGROUND

In mechanics, the set of independent parameters which describe the pos-
sible independent translations and rotations of an object, are often referred
to as degrees of freedom (henceforth abbreviated with DOF), and an unre-
stricted object in three dimensional space has 6 DOF. Three of these are
related to the position, or translation, of the object, while the rest describe
the rotation of it. The position and orientation of an object is often referred
to as its pose, and there are multiple ways to represent the pose of an object
in a given coordinate system.

The position of a point in 3D space is described by its displacement along
the axes of some frame of reference, which can easily be expressed using
vector notation. Figure 2.1 illustrates a point at an arbitrary position in 3D
space, denoted by the vector t. This arbitrary position is easily described as
the translation of the point from the origin of the coordinate system to its
current position, which is given by the vector addition of the two positions:

t =

0
0
0

+

x′y′
z′

 ∈ R3

where x′, y′ and z′ are the individual translations along their respective axes,
as illustrated in Figure 2.1.

A simple change in orientation is illustrated in Figure 2.2, for the two
dimensional case. Here there are two coordinate systems, where one is ro-
tated by an angle θ compared to the other. There are a number of ways to
parameterize spatial rotations: in matrices, quaternions and Euler angles, to
mention a few. All of these representations have advantages and drawbacks.

2.1.1 Rotations

While translations are easily described by vector additions, rotational changes
may be carried out by matrix multiplications. A general rotation matrix is
defined as any matrix which acts as a rotation in Euclidean space. The
general rotation matrix describing rotations in 3D space can be written as

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 ∈ R3×3 (2.1)

which also has the added properties

• |R| = 1
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Figure 2.1: Translation in a coordinate frame. The vector t denotes the
translation from the origin of the reference frame to the point with the
coordinates (x′, y′, z′).

• RRT = I

where I is the identity matrix of appropriate size.
There are other ways to represent rotations, in addition to the matrix

representation, and all representations have both advantages and drawbacks.
For instance, a rotation expressed as a matrix is parameterized by a total of
nine parameters, with six constraints between those parameters. However,
they are quite efficient for rotational transformations, as only a product
between a matrix and a vector has to be calculated. But, the parameters
do not immediately have any physical meaning, unlike the parameterization
using Euler angles.

Euler Angle Description

Euler’s Rotation Theorem states that an arbitrary rotation may be described
by only three parameters. The Euler angles define the rotation about the
three axes in a Cartesian coordinate frame, which describes the orientation
of an object with respect to an initial frame. For instance, the rotation
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Figure 2.2: A rotation of a reference frame compare to another by θ in two
dimensions.

illustrated in Figure 2.2 is a rotation about an axis2 orthogonal to the x-
and y-axis.

Each of the separate three dimensional rotations, about the x, y and z
axis, can be described as three simple rotation matrices

Rx(φ) =

1 0 0
0 cosφ sinφ
0 −sinφ cosφ


Ry(θ) =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ


Rz(ψ) =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1


(2.2)

where φ, θ and ψ define the rotation about the x, y and z axis, respectively.
The complete conversion of a rotation described in yaw, pitch and roll

is then expressed by the product of the three simple rotations

Rx,y,z(ψ, θ, ψ) = Rz(φ)Ry(θ)Rx(ψ)

=

cφcθ sφcψ + cφsθsψ sφsψ − cφsθcψ
sφcθ cφcψ − sφcθsψ cφsψ + sφsθcψ
sθ cθsψ cθcψ

 (2.3)

2The axis is not illustrated in the figure.
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where φ, θ and ψ are defined as above, and c = cos and s = sin.
While the complete rotation is described with only three parameters,

performing rotations is computationally inefficient as multiple evaluations
of trigonometric functions are required; but the parameters of this represen-
tation match the three degrees of freedoms of 3D orientations, and thus have
physical meaning. Another disadvantage of this representation compared to
the other mentioned is that it has ambiguity problems, as in certain situ-
ations a loss of one degree of freedom may occur. When two of the three
rotation axes align, one rotation has no effect. For instance, if the pitch
rotation is 90◦ up or down, the yaw and roll describe the same motion. The
effect is referred to as gimbal lock.

Unit Quaternions

Rotations in 3D space may also be parameterized as unit quaternions. A
quaternion is a four-tuple which describes a three dimensional vector and
the amount of rotation about this vector. This is a far more compact rep-
resentation than a rotation matrix. In addition, quaternions also avoid the
ambiguity issue which may occur with Euler angles, while also being far
more computationally efficient at performing point rotations.

For a quaternion

q =


a
b
c
d

 (2.4)

where a defines the scalar part, while b, c and d correspond to the vector
part of the quaternion, the associated rotation matrix may be expressed as

R =

a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)
2(bc+ ad) a2 + c2 − b2 − d2 2(cd− ab)
2(bd− ac) 2(cd+ ab) a2 + d2 − b2 − c2

 (2.5)

2.2 Homogeneous Coordinates

Both rotations and translations may be expressed using a single matrix using
homogeneous coordinates. Homogeneous coordinates are a useful concept
in computer vision because they allow many geometric transformations to
be represented uniformly.

By defining the homogeneous coordinates as (t w) = ( t
w 1), where t

is a translation vector and w is a nonzero constant which we can take to
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be unity, we can express both the translation and rotation, as well as other
geometric transformation such as scaling, shearing and projection, neatly
using a 4× 4 matrix. If we only consider the unification of the rotation and
the translation in this single framework, the matrix is often referred to as
the homogeneous transformation matrix3, and it may be defined as

T =
(
R t
0 1

)
∈ R4×4 (2.6)

where t ∈ R3 is the vector describing the translation, and R ∈ R3×3 is the
orthogonal rotation matrix.

The homogeneous coordinates do not directly correspond to real coordi-
nates, but the real coordinates can be calculated by dividing the first three
parameters by the forth, in this case defined as w. Thus, a usual approach
is to declare w = 1, which has also been done in (2.6), to eliminate the need
for a division.

2.3 Projection

When the world is perceived through a viewing device, the three-dimensional
space is mapped to the image plane of the camera, creating a picture which
represents the complexity of the environment in two dimensions. In this
process, the objects in the 3D space are projected to the image plane as a
snapshot is captured.

Mathematically, projection is defined as the mapping of higher dimen-
sions to lower dimensions. This essentially removes information, as multiple
mappings may yield the same lower dimensional result, often leading to the
case where the higher dimensional information cannot be recovered. In the
sense of computer vision, we are defining projection as the mapping of 3D
points to a 2D plane.

There are multiple ways to visualize objects and information. For in-
stance, engineering drawings generally visualize an object in three views;
a top down, side and front view. These views make it easy to illustrate
features and sizes of objects, making them also popular in modeling soft-
ware. These views are examples of simple orthographic projections, and can
be rendered by projecting all the points on the object along parallel lines
which are orthogonal to the projection plane. There are other ways of repre-
senting 3D images on a flat plane. For instance, Figure 2.1 is an example on

3See Chapter 6.4.6 in [12] for more on the concept of homogeneous transformation
matrices.
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the projection method called oblique projection, or more specifically, Cava-
lier projection. Here, two of the axes are perpendicular to each other, while
the third is draw in diagonal, making arbitrary angles to the other axes.

The objects we perceive in the real world, either through our eyes or
through an imaging device, however, are not projected along parallel lines,
but rather converge at the lens of the imaging device. This type of projection
is called perspective projection and images formed this way are subject to
a change of scale, as well as certain distortions. Unfortunately, perspective
projections have the disadvantage of breaking down simple relations between
feature points. For instance, parallel lines do no longer appear parallel,
and similar objects may differ in scale, complicating the recovery of higher
dimensional information.

2.3.1 The Perspective Transform

The equations describing the projection for an arbitrary vector to = (xo, yo, zo)T ∈
R3 onto the image plane described by z = f are

xc = f
xo

zo

yc = f
yo

zo
zc = f

(2.7)

where f is the focal length of the camera, and ti = (xi, yi, zi)T ∈ R3

denote the coordinates of the projected vector to on the image plane. Both
vectors, to and ti, are stated in the same frame of reference. These equations
are nonlinear, but can be made linear by stating them in homogeneous
coordinates as 

xi

yi

zi
1

 =


f 0 0 0
0 f 0 0
0 0 f 0
0 0 1 0



xo

yo

zo
1

 = Pto (2.8)

where to = (xo, yo, zo, 1) is the vector denoting the position of point on an
object and P is the projection matrix defined as

P =


f 0 0 0
0 f 0 0
0 0 f 0
0 0 1 0

 (2.9)
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An Approximation to the Perspective Transform

A rigid object, depending on its representation, may be described by an
infinite number of feature points, where each point may be projected to the
image plane according to (2.8). However, recovering the depths of all the in-
dependent feature points is a challenge, especially if the object is sufficiently
far away from the camera. In this case, the projection rays are nearly par-
allel, as the depth differences within the object are negligible compared to
the distance to the camera. Thus, the whole object can be assumed to be
at the same distance from the camera. This essentially represents an initial
orthographic projection to a plane located at the assumed object depth, fol-
lowed by a perspective projection to the image plane. This is illustrated in
Figure 2.3(b) for two points with differing depths compared to the center of
projection. This projection is often referred to as weak perspective projec-
tion, or scaled orthographic projection. The full perspective projection is
provided for comparison in Figure 2.3(a), where a single point is projected
onto the image plane.

(a) Full perspective projection (b) Scaled orthographic projection

Figure 2.3: Fig. 2.3(a) illustrates the full perspective projection of a single
point being projected to the image plane. Fig. 2.3(b) illustrates the case
of weak perspective projection, where two points are first projected to a
common plane along parallel lines, followed by a full perspective projection
from that plane. c indicates the center of projection, while f indicates the
length to the image plane. For a camera, this is usually called the focal
length.
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2.4 Camera Model

A pinhole camera is a very simple camera, comprised of a light-proof box
with a small hole through which light enters. Facing the hole is a sheet
of photosensitive material, allowing the forming of an image due to the
light entering through the hole. The simplest mathematical model which
describes the forming of the image is based on an ideal pinhole camera model.
This assumes that the focus point, i.e. the pinhole, is infinitesimally small,
and the image plane4 is perfectly flat, and perpendicular to the principal axis
of the camera. Figure 2.4 is an illustration of the model, where the principal
axis is parallel to the z-axis. Furthermore, the image plane is placed in front
of the focus point, which simplifies the notion of the perspective projection,
as the projection is not inverted.

If the origin of the image plane frame of reference does not coincide with
where the z-axis of the camera reference frame intersects the image plane,
a translation to the principal point has to be defined.

Figure 2.4: The pinhole camera model, where c denotes the center of projec-
tion. to,n denotes the n edges of an object, while ti,n describes the projected
position of the n edges in the image plane.

Finally, in order to define the camera in 3D space the position and orien-
tation of the camera compared to a global reference frame has to be defined.

4In the physical construction of the pinhole camera, the image plane is represented by
the sheet of photosensitive material.
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The complete transformation for the camera is hence

G = P TcTg

=


f 0 0 0
0 f 0 0
0 0 f 0
0 0 1 0




1 0 0 xc

0 1 0 yc

0 0 1 zc
0 0 0 1



r11 r12 r13 xg

r21 r22 r23 yg

r31 r32 r33 zg
0 0 0 1

 (2.10)

where P is the projection matrix, Tc is the transformation matrix which
moves the center of projection of the camera to the correct position and Tg

describes the cameras position and orientation in 3D space.
Usually, the parameters which describe the geometric and optical prop-

erties of the camera, the intrinsic parameters, and position and orientation,
the extrinsic parameters, are grouped together. In this case, PTc are the
intrinsic parameters, while Tg are the extrinsic.

Equation (2.10) has all in all nine parameters, where the six DOFs defin-
ing the cameras position and orientation in 3D space are the extrinsic. The
three intrinsic parameters are the focal length, and the position of prin-
cipal point in the image plane. This however, assumes that the sensor is
known to be Euclidean to a high degree of accuracy. In general, no physical
imaging device is ideal, and thus the pinhole camera model does not suffice
whenever accuracy is of great importance. Potentially, the camera model
should also account for scaling errors, correcting translation errors due to
the misalignment of the sensor, correcting sensor skewing errors due to non-
orthogonality of the sensor axes, and shearing errors due to unequal scaling
along the sensor axes and lens distortions.



Chapter 3

Literature Survey

In this chapter we provide an overview of the various approaches for pose
estimation and camera control, as well as the existing systems which are sim-
ilar to the head tracking system being explored in this report. Furthermore,
an overview of the existing software libraries which are used to utilize the
specific hardware supplied in this assignment is also provided. The chapter
will focus on approaches which are appliable to the provided components,
and due to the function of the Wii remote will mainly consider pose esti-
mation techniques using points as features. The Wii remote is discussed in
Chapter 4.

The chapter is organized as follows:

• Perspective n-Point Problem
In this section an approach for the pose estimation problem which
is applicable to the provided hardware is described. This particular
approach is coined the Perspective n-Point problem.

• Pose Estimation in Research
In this section a short overview of the various approaches for estimating
the extrinsic parameters of a camera is provided.

• Software
This section presents the various software which may be used to im-
plement the system discussed in this report.

• Similar Systems
This section presents an overview of systems which are similar to the
head tracking system explored in this report.

15
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• Camera Control
In this section a short overview of the techniques which have previously
been used for camera control is presented.

3.1 Perspective n-Point Problem

The perspective n-point (henceforth abbreviated as PnP) problem is the
problem of finding the pose of a camera by analyzing the correspondence of
n feature points in an image to their positions in the scene. By accurately
knowing the geometric distribution of the n points in advance, it is possible
to calibrate the exterior parameters of the camera, which define the pose of
the camera.

The PnP problem was first formally defined by Fischler and Bolles in
[13]. They were aiming to solve the problem of determining the position of a
camera by analyzing an image with a set of landmarks with known locations.
They also presented analytic solutions to the P2P and P3P problems as well
as the coplanar case of the P4P problem, and propose an algorithm for
estimating the pose of the camera.

Davis [10] presents more information about the PnP problem, and other
general problems regarding pose recovery and perspective projection. Davis
also studies the number of solutions possible for the PnP problem, for differ-
ent values of n, both in case of weak perspective projection and full perspec-
tive projection. According to Davis, as presented in Table 3.1, the number
of solutions to the PnP problem becomes finite if there are at least three
feature points, as long as the points are not in a critical configuration1.

Table 3.1 shows the number of ambiguous solutions for both the coplanar
configuration of points, where all the points are in the same plane, and non-
coplanar configurations. Obviously, when working with greater than three
feature points, they will always be coplanar. According to Davis, for the case
of full perspective projection, four coplanar points are enough to determine a
unique pose, while for the non-coplanar configuration, six points are enough.
It is also noteworthy that some ambiguous poses are not relevant, or simply
present impossible cases, and can safely be discarded. Section 3.2 presents
some approaches to the solution of the pose estimation problems.

1A critical configuration is a configuration of points where the additional points only
provide redundant information. For instance, when all the feature points are in a collinear
configuration, there is no additional information in the setup if the number of points
exceed two.
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Table 3.1: Number of solutions for n feature points for the full and weak
perspective projections

Arrangement of the Points n WPP FPP
Coplanar ≤ 2 ∞ ∞

3 2 4
≥ 4 2 1

Non-coplanar 4 1 2
5 1 2
≥ 6 1 1

3.2 Pose Estimation in Research

Horaud, Conio and Leboulleux [16] provide an analytic solution to the P4P
problem by solving a bi-quadratic polynomial equation in one unknown.
They examine the case where the feature points are non-coplanar. They
claim that non-coplanar points allow for a more stable solution to the prob-
lem compared to the coplanar case, as the solution is not sensitive to the
relative orientation of the image plane with respect to the scene containing
the points. Also, the computation of the solution is fast, and is therefore
suitable for real time applications. They also explore special cases, for in-
stance when the four points are coplanar, or the configuration form three
co-linear points, and show that these accidental configurations also provide
useful solutions.

DeMenthon and Davis [11] propose a method, called POSIT, for finding
the pose of an object from a single image by analyzing four or more non-
coplanar feature points. This method exploits the fact that perspective
projection can be approximated by scaled orthographic projection for certain
situations. This is an iterative method, which does not need a good initial
condition. Initially, only a scaling is guessed, but the guess does not need to
be accurate. The object pose is calculated through the following iteration
steps:

1. Compute an approximate pose based on scaled orthographic projec-
tion.

2. Deform the object by shifting the object points from their approxi-
mated positions to positions at the same depth but on their lines of
sight with regards to the camera.

3. Find the image of these shifted points by a scaled orthographic pro-
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jection model.

4. If the scaled orthographic image points are not the same as those found
at the previous iteration, go back to Step 1 using these image points
instead of the original ones.

5. Else, the exact pose is the last approximate pose

Clearly, being an iterative approach, divergence is an issue. A solution for
this is not stated in this paper, but implementations of this algorithm do
have upper bounds on the number of allowed iterations. The paper also
states that this algorithm is computationally cheap, only requiring around
24n arithmetic operations and two square root calculations per iterations,
for n feature points. However, they state that the case of four feature points
is a critical case, and the estimates may be less accurate than what is desir-
able. In addition to being fast and not needing an initial pose estimate, the
algorithm is easy to implement.

Oberkampf, DeMenthon and Davis extend the POSIT algorithm to han-
dle coplanar points in [27]. They also further explore the ambiguities that
arise for the P4P-problem with the points in coplanar configuration. In the
case when scaled orthography projection is used for approximating the pose
based on four coplanar feature points, there are always two possible solu-
tions. This is because there is no way to distinguish between the actual pose
and a mirror about a plane parallel to the image plane. They try to remove
unacceptable poses in the iterating process, however a unique solution is
never guaranteed. They also study the noise sensitivity of the algorithm,
and it is considerably less sensitive to noise in the position estimates com-
pared to the rotational estimates. All in all, the algorithm performs well
when more than three points are used, both in favorable and unfavorable
configurations.

Lee, Park and Sung [22] describe a stable real-time marker-based camera
tracking method for augmented reality systems. They proposed an iterative
linear camera match-moving algorithm, where no initial estimates are re-
quired. The proposed algorithm works with both coplanar and non-coplanar
markers, as long as the points are not co-linear. The algorithm is reported
to have good stability and accuracy.

Ansar and Daniilidis [5] developed a fast pose estimation algorithm which
is based on depth recovery. They assume a calibrated camera with well
known intrinsic parameters is used, and the proposed approach works with
either points or lines as tracking features. The emphasis of the paper is
on attaining speed and accurate pose estimation with limited numbers of
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features points or lines. They guarantee a correct solution in the noiseless
case, provided that the feature points are in a configuration where there
are no ambiguities. Furthermore, the performance of the point algorithm is
superior to other linear algorithms, and comparable to the recent iterative
approaches available at that time. In terms of the algorithm using line
features, there are no other linear algorithms, and the performance of this
algorithm is comparable to previous iterative approaches.

Quan and Lan [30] developed a family of linear, unique solution algo-
rithm for 4-, 5- and n-feature point camera pose estimation. This general
algorithm also works for both coplanar and non-coplanar points, and per-
forms almost as well as several other special linear four point algorithms
in coplanar configurations. However, it outperforms the special algorithm
whenever the points are in quasi-coplanar configuration, allowing the algo-
rithm to perform satisfactory with noisy sets.

Schweighofer and Pinz [32] propose a way to improve on existing iterative
pose estimation methods. They explore the ambiguities that arise when
estimating camera pose, and propose system to more robustly reject multiple
plausible estimates for the case of planar targets.

Lippiello, Siciliano and Villani [24] shows how to use an adaptive ex-
tended Kalman filter to estimate position, orientation and the velocities of
these for an arbitrary object based on some preselected feature points. The
objects are matched to model descriptions created in CAD, and this process
is further described in Lippiello and Villani [25]. They describe how to filter
and estimate positions and rotations, and their velocities using the extended
Kalman filter and the adaptive extended Kalman filter. They also fully ex-
plore the prediction capabilities of the Kalman filters, which allows for better
tracking. They then compare the performance of the filters, and show that
the adaptive filter, when correctly configured, holds a performance advan-
tage over the non-adaptive formulation. The advantage comes at a slight
increase in computational cost, making it worth the investment.

Rickard and Davis [31] have recently published a paper where they use
the technology present on a Nintendo Wii remote to track an artifact to
determine its pose. The artifact has six infrared light emitters attached,
as well as a Wii remote which provides an accelerometer. This artifact
is observed by two Wii remotes, tracking the IR emitters on the artifact.
They use the approach proposed by Kreylos to the tracking of the emitters,
which is briefly described in Section 3.4.4. They solve the correspondence
problem of the points, observed by the two sensors, by using a guess-and-
check approach, which, by their account, results in a correct mapping less
than 40% of the time. However, since they try to maintain the discovered
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correspondences between points over multiple frames, the system rapidly
recognizes incorrect mappings as they become inconsistent when the artifact
rotates.

Wimmer et al. [33] use the tracking algorithms implemented in the
software library ARToolkit to determine the pose of the Wii remotes camera.
ARToolkit can both perform the detection, and tracking, of a square. The
detection of the square is not in use here, since the Wii Remote performs this
task. With the utilization of four IR light emitters, they create a square,
and let ARToolkit determine the pose. Furthermore, they let one of the
light emitters blink, to allow it to be distinguished from the rest. This way
they resolve the pose ambiguities which arise when attempting to estimate
the pose from a square marker. However, as not all LEDs are emitting at
all time, multiple frames must be compared, which lowers the sampling rate
of tracking system. They claim to achieve a detection ratio of a little more
than 10Hz.

3.3 Software

There are a few software libraries in areas such as computer vision, computer
graphics, augmented reality and tracking which may perform desirable tasks
for the system discussed in this report. In this section we present a short
overview of these libraries, and some which may be used to interface the
provided hardware.

3.3.1 Computer Vision Software

Computer vision specifies the field which seeks to allow machines to see.
Thus, a software library specializing in computer vision usually include al-
gorithms for image processing, object recognition, event detection, motion
estimation, pose estimation and more. For a head tracking application such
as the one discussed in this report, some of these are relevant issues, and an
appropriate library may prove useful. Therefore, a short introduction to a
few of them is appropriate.

OpenCV

OpenCV [2] is an open source, cross-platform computer vision library, and
initially was an Intel Corporation creation. It was officially launched in
1999, and reached the milestone version 1.0 in 2006. In 2008 it obtained
commercial support from Willow Garage, and is still under active develop-
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ment. Recently a pre-release to version 1.1 was released. It is mainly written
in C, however there are wrappers for other languages available, most notably
the EmguCV C# wrapper which is used in this report. The main focus of
the library is in image analysis, motion tracking, pose estimation, camera
calibration, while also providing several functions for use in robotics and
artificial intelligence. The pose estimation implemented in OpenCV is the
POSIT algorithm.

ARToolkit

ARToolkit [19] is another open source computer vision library, specifically
designed for creating augmented reality applications. In augmented reality
applications virtual objects are overlaid on the real world, and to achieve
this, ARToolkit provides camera viewport calibration and marker tracking
for real-time systems. This library has been used for tracking purposes in
[33].

FreeTrack

FreeTrack [1] is a general purpose optical motion tracking library, which
is able to track and handle up to six degrees of freedom. FreeTrack is
compatible with most web cameras and as such performs image analysis
to extract feature points from images. It also supports the use of the Wii
remote for feature extraction. This is a Microsoft Windows only library,
released under the GNU GPL license. The pose estimation for four points
is achieved using an implementation of the POSIT algorithm.

3.3.2 Additional Software

In this section, the software which may be used for communicating with the
hardware, or is used by some of the systems described later, is presented.

WiimoteLib

WiimoteLib [28] is a .NET managed library for accessing the Nintendo Wii
remote and the extensions from a .NET application. It is easy to use, and has
a comprehensive set of functions. The library supports all of the successfully
reverse engineered Wii remote features, including the buttons, accelerome-
ter, infrared camera, rumble and LEDs, with the exception of the speaker.
It also supports all the Wii remote accessories, as well as the use of multiple
Wii remotes. The usage of this library is further described in Appendix B.
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WiiLAB

WiiLAB [6] is a MATLAB compatible wrapper to the WiimoteLib library,
as well as a set of functions which facilitates the usage of the Wii remote
in the MATLAB environment. It has been developed at the University of
Notre Dame for educational purposes, allowing the Wii remote to be easily
used in teaching. The wrapper provides access and usage of all the functions
implemented in WiimoteLib, and thus has great support for the Wii remote
and its extensions.

XNA

Microsoft XNA [7] is a toolset that facilitates computer game development
for both Microsoft Windows and the Xbox 360. It is primarily targeted
at students, hobbyist and independent developers. The library is written
in managed C#. The underlying technology is based on Microsoft Di-
rectX, which is another graphics library. XNA also provides an extensive
math library, and specifically the support for homogeneous matrices, vec-
tors, quaternions and trigonometric functions is of importance here. The
XNA framework is utilized in the virtual reality library Tgex, while the
math portion of the library is utilized in the tracking library Tvrx, more
closely described in section 3.4.3.

3.4 Similar Systems

In this section, some of the available systems, which are similar to the one
explored in this report are examined. These systems either use the same
hardware as is provided in this report, or have similar functionality.

3.4.1 WiiDesktopVR

WiiDesktopVR, written by Lee [23], was the first application to perform
simple head tracking using the Wii remote. The WiiDesktopVR application
includes two demonstrations, showing how a simple head tracking scheme
can actually provide quite a lot to visualization applications or games in
terms of realism. The first demo is a simple room with targets placed at
different depths, and as the observer moves around and his or hers view
changes, the room is rendered as if the observer is actually altering the
position of the camera. Figure 3.1 shows an image captured from this ap-
plication. The other demo is essentially a virtual window, as it renders
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football stadium, and shows more or less of it, depending on the position
of the observer compared to the camera. Figure 3.2 is a screenshot of this
demo.

Figure 3.1: Rendering of a virtual room with targets at random positions.
With the use of head tracking, the application alters the virtual room and
the position of the targets in order to make the virtual room feel real.

In the setup described by Lee, two feature points are used to estimate
3 DOF, being the three translatory motions. The rotations are not cal-
culated2, or used, and as such some assumptions have been made on the
viewing direction.

There are also quite a few ambiguities in this setup, as Table 3.1 clearly
suggests. For instance, there is no way to actually know which way is up,
and therefore no way to detect if the beacon is upside down. However, for

2Although no rotational parameters have been calculated in the WiiDesktopVR appli-
cations, with two points alone, the roll may also be calculated. However, one must still
assume an “up” direction. Consequently, 4 DOF tracking is possible, albeit not uniquely.
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Figure 3.2: Rendering of a football stadium as if it was observed through a
window. Using head tracking, the application is able to assess the position of
the observer. As the observer moves around, the image changes accordingly,
creating an illusion of a real window.

a very limited situation, this may still be enough.
WiiDesktopVR is used in conjunction with WiimoteLib, which is used

to communicate with the Wii remote, while Microsoft’s DirectX library is
used to present the virtual environment. This system is a proof-of-concept,
and therefore there is little information on its operating ranges, however, it
is clearly limited by the Wii remotes specifications. The IR emitters which
are used by Lee are Vishay TSAL6400 diodes, which are further discussed
in Section 4.2.

Estimating 3 DOF

For this particular implementation we need to know the distance between
the two IR emitters, and the resolution of the camera. Assume that the
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distance is defined in millimeters as d, while the horizontal and vertical
resolutions are defined as Rh and Rv, respectively. In this case, the 3 DOFs
may be approximated as follows. First, the radians each pixel covers have
to be calculated. Lee has assumed that the Wii remote has 45◦ horizontal
field of view, and as such the angular span of each pixel can be calculated
as

α =
π

4
1
Rh

(3.1)

where α is the angular span per pixel in radians, and Rh is the horizontal
resolution of the device.

Assume p1 = (x1, y1), p2 = (x2, y2) ∈ R2 denotes the positions of the
detected IR emitters in the image plane, while pm = (xm, ym) ∈ R2 denotes
the position of the midpoint between the emitters. The angle between these
points can be found as

β =
|p1 − p2|α

2
(3.2)

where β is angle between these points, and α is given by (3.1). The distance
from the camera to the IR emitters is given by

zch =
d

2tan(β)
(3.3)

where zch denotes the distance from the camera to the observers head, and
β is given by (3.2).

Now, the remaining distances, the translations horizontally and verti-
cally, can be found as

xch = sin(αpzch(xm −
Rh

2
))

ych = sin(αpzch(ym −
Rv

2
))

(3.4)

where zch is given by (3.3), Rh and Rv are the horizontal and vertical reso-
lution of the camera, and xch is the horizontal distance from the center of
the camera to the observers head, while ych is the vertical component.

Using these equations to convert the measurements from the input device
to be used in the system, allows us to describe certain actions for the detected
motions. In the case of WiiDesktopVR, the measurements have been used to
define a camera at the estimated position, looking at the origin of the defined
reference frame. Using the equations provided above, this origin is situated
at the center of projection of the physical camera. However, when using
such a device for displaying a virtual environment, it is clearly impractical
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requiring it to be placed at the center of the monitor. The offsets required
to account for this have not been included in (3.1) - (3.4).

3.4.2 TrackIR

Natural Point [29] is a company that creates optical tracking systems both
for the industrial and consumer use. While having a range of products,
the system which resembles the system explored in this report the most is
TrackIR, both in terms of functionality and cost. This system is primarily
aimed at the consumer market, and specifically games, however it has been
in use in research as well, i.e. in [21]. Natural Point provides a software
development kit, to allow for quick integration with third party applications.
This system is currently in its fifth revision.

TrackIR consists of a high frame rate infrared sensitive camera, and a
marker which can be mounted on an operators head. The camera has a
refresh rate of 120 Hz, a raw sensor resolution of 640× 480 pixels and 51.7◦

field of view. The device reports position at 1
150 pixel precision, which is a

total reporting resolution of 96000× 72000. The camera used in TrackIR is
illustrated in Figure 3.3.

There are two markers available, one equipped with three reflective spots,
which reflect the IR light emitted from LEDs mounted on the camera, while
the other is equipped with three IR LEDs mounted in a special configuration.

As this device is made for use in games, its operating range is from 61
cm to 152 cm. Furthermore, Natural Point claims that this system can
uniquely determine six degrees of freedom accurately, even with only three
feature points.

3.4.3 Tvrx and Tgex

Fleisch [14] has created two software libraries for use in the creation of virtual
reality systems. These have been made available at www.vrhome.de. One
of the libraries, Tgex, manages rendering for stereo vision, while the other,
Tvrx, manages six degrees of freedom head tracking for multiple imaging
devices. While the library gains support for the Wii remote through Wi-
imoteLib, support for some other imaging devices is also implemented. The
pose estimation algorithm used in the tracking library is the POSIT algo-
rithm. More specifically it is the implementation of the POSIT algorithm
in OpenCV. OpenCV is employed for some filtering too, in addition to the
tracking.

The optical marker is a custom creation consisting of four infrared emit-
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Figure 3.3: The TrackIR camera. The image is gathered from [29].

ting diodes. Moreover, the library requires the infrared emitting diodes on
the beacon to be in a special configuration. Three of the diodes have be
aligned, while the full four have to be in a non coplanar configuration as per
the requirement of the POSIT algorithm. Finally for the pose estimation
to work properly, the software has to be accurately configured with the ge-
ometrical layout of the infrared emitting diodes. The support for multiple
Wii remotes allows for tracking of multiple beacons, and thus the software
has to be configured with which Wii remote is to be used for head tracking,
and which is used for other tasks. The configuration and use of the tracking
library is described in Appendix C. The optical marker portrayed in chapter
4.2 is based upon the design proposed by Fleisch.

3.4.4 Oliver Kreylos

Kreylos [20] has a website where he writes about his various endeavors re-
garding virtual reality. He has also investigated how the Wii remote may
perform in a virtual reality context, especially for use in 6 DOF tracking.
Here he describes how to design a custom marker, in addition to providing
a software solution performing 6 DOF tracking. He also provides the source
code for the software, although only for GNU/Linux operating system. The
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system consists of a stationary beacon with infrared emitting diodes posi-
tioned in the edges of a tetrahedron, and a moving Wii remote as the imaging
device. This is to also facilitate the information from the accelerometers on
the Wii remote. The system seams promising, and has already seen its use
by others, i.e. in [31].

3.5 Camera Control

In virtual reality applications, goggles with small displays instead of lenses
are often used for visualization purposes, allowing an operator to move his
or her head in any direction without losing sight of the displays. This is a
preferable setup, as the operator will be not be restricted by not being able
to see the display. Tracking the operators head immediately makes sense in
this configuration, as the virtual camera may be made to accurately mimic
the viewpoint of the operator. However, when one is restricted to staying in
front of a screen, the camera control is not quite as trivial.

In that case, the operator has a very limited area in which to move, while
still being able to observe the virtual world. And even if the software, or
hardware, has a capability of turning 360◦, the operator could not exercise
this possibility.

Natural Point showed an example on how this can be solved, and al-
though the example was with a virtual camera, it should be adaptable with
hardware systems as well. By using an amplification variable, which is a
function of the rotation of the IR marker, to amplify the rotation of the
virtual camera, one could dampen unwanted3 orientation changes, as well
as being able to reach rear viewing camera angles while still maintaining
sight of the display.

Another way could be to allow the operator to choose when to move the
camera, for instance by the push of a button. This would be a “mouse”
approach to camera control, as we can essentially pick up the computer
mouse when we need to reposition it. The push of a button is here equivalent
to picking up the mouse.

The IR marker could also be used as a joystick. By simply tilting it in
a direction, the camera could be made to move in that direction. A similar
approach is examined by Goh et al. [15], where they explore how the Wii
remote can be used to simulate joysticks. They utilize the system and devise
procedures for the control of a pan-tilt-zoom camera. They report that the

3Unwanted orientation changes are small motions of the head which probably are un-
intended.
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Wii remote adds a lot in terms of mobility, compared to a mouse or a
joystick interface, as it already is a wireless device, and, depending on the
implementation, can provide a more intuitive control mechanism than the
other devices. They both explored the use of the motion sensor, as well as
the Wii remotes pointing capabilities for the control mechanisms.

Although there are a lot of examples on camera control of pan-tilt plat-
forms in motion tracking applications, i.e. the system presented by Murray
and Basu [26] and the system presented by Daniilidis et al. [9], these how-
ever, focus on the pursuit of a detected object. As the Wii remote already
performs the object detection, such systems may be realized using a single
moving optical marker if the Wii remote is used as the imaging device in
those systems. Obviously, doing this with a regular camera has the addi-
tional feature of actually being able to capture the moving target in addition
to following it. This adds to the value of the camera system in that it keeps
the target in view for longer periods of time compared to stationary camera
systems. This is not the case with the Wii remote, unless it is used in con-
junction with other imaging systems, as the images it captures cannot be
accessed.
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Chapter 4

System Description

In this chapter the hardware which will be used to create the head tracking
system, as well as the device which is going to be controlled using the head
tracking system, will be presented.

We make a distinction between the input and the output devices of the
system. The input device consists of a sensor performing measurements, and
a device we are able to interact with. The measurements will be conducted
using the Wii remote, which has been provided in the assignment, while the
interaction device is a marker with infrared emitting diodes mounted on it.
The marker is not provided in the assignment and has to be designed to
function properly in conjunction with the chosen software solution, and the
provided hardware. The output device, which is the device we will attempt
to control, is a pan-tilt unit. This unit has two degrees of freedom, and has
been provided in the assignment.

The chapter is organized in the following sections:

• Nintendo Wii Remote
In this section the Wii remote is presented, and its functions are de-
scribed.

• Tracking Beacon
In this section the configuration of the tracking beacon is presented.

• Pan-Tilt Unit
In this section the device which is going to be controlled is described.

• System Design
This section presents the overall design of the system, and discusses
its implementation.

31
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4.1 Nintendo Wii Remote

The sensor which is going to be used for the head tracking system explored
in this report is the infrared camera in a Nintendo Wii remote. The Wii
remote was initially intended as a gamepad for use with the Nintendo Wii
game console, where it allows for interaction with the system. The design of
the device bears a resemblance to classical TV remotes, which can be seen
in Figure 4.1(a). It has motion sensing capabilities through a three-axis
accelerometer, and is equipped with a high framerate monochrome camera
which is used to provide pointing and aiming capabilities for the Wii game
console. The connection to and communication with the Wii remote is
performed wirelessly through Bluetooth.

(a) The Wii remote (b) The Wii remote camera

Figure 4.1: The Nintendo Wii remote and its monochrome camera. The
image of the camera is from [3].

The official information about the inner workings of the Wii remote is
scarce, and therefore, its actual capabilities are mostly known through re-
verse engineering and guesswork. However, as this device has caught the
attention of a lot of people, a lot of information has been presented online,
where [4, 3] are notable sources. The contributors of these websites have
discovered how this device operates and made the initial steps of commu-
nicating with it, paving the way for the creation of drivers and libraries
allowing custom application to utilize the hardware. This has generated
extensive interest in research communities as well, and although at first in-
tended for use in conjunction with games, its capabilities have been explored
for multiple research projects, i.e. in [23, 20, 14, 31, 21].

For the system explored in this report, the most interesting part of the
Wii remote is the infrared imaging sensor. The imaging sensor is paired
with hardware capable of performing the image analysis technique called
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blob detection. The imaging sensor is created by PixArt Imaging Inc. [18],
however the exact product specifications are not published, and therefore
only known through actual usage. The device is able to detect up to four
blobs, and is able to determine the size and position of them in the image
plane. It is believed that the imaging sensor has a resolution of 128 × 96
pixels, while the Wii remote outputs data at 1

8 pixel precision, yielding a
total a resolution of 1024 × 768 pixels. This does not appear to be simply
upscaled, so the System-on-a-Chip most likely has a filter implemented in
hardware as well. Some other undocument properties of the camera are its
focal length and principal point. Several reports [14, 20, 23] indicate that
the focal length is in the range of approximately 1280 to 1380 units. The
focal length f = 1380 and the center of projection c = (512, 384) seemed to
work reasonably well in some situations, and is used throughout the work
presented in this report.

As previously mentioned, the Wii game console uses this device for navi-
gational purposes, for instance to allow a user to point or aim on the screen.
For this to be possible Nintendo has created an additional device, called the
Wii Sensor Bar. This device is placed on top of, or below, the screen which
is to be used with the game console. The Sensor Bar has two clusters of
infrared light emitters which allow the Wii remote to capture their position.
Based on this, the game console is able to determine where a user is pointing
on the screen. In this setup, the Sensor Bar is stationary part of the input
device, while the Wii remote is mobile.

While the Wii remote is typically interfaced wirelessly using Bluetooth,
there have been some reports, i.e. [4], suggesting that the imaging sensor is
communicating with the rest of the device using I2C. The reports suggest
that the imaging sensor runs at 200Hz, which is the maximum speed it has
been accessed using I2C. However, when it is interfaced wirelessly, the device
operates at 100Hz. To use the I2C bus however, means that the Wii remote
has to be disassembled, and the Bluetooth module has to be bypassed, which
will not be performed in this work.

4.1.1 Hardware limitations

The implementation of the image analysis in hardware in the Wii remote
has both its advantages and drawbacks. A hardware implementation is fast
and robust, but not particularly flexible. It does not strain the rest of the
system, neither the wireless connection nor the CPU, as there is no need
to first transfer a captured image in order to analyze it to find the position
of the IR emitters. However, as the image cannot be accessed, there is no
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easy way to distinguish the IR sources in software, or even to determine if a
particular source is a desirable one. As there is a limit on how many points
are detected, in situations where more than four sources are detectable, we
have no control over which are actually detected. This means that faulty
detection may cause severe issues when trying to accurately determine the
pose of the marker.

As mentioned, there is no way to uniquely determine which point is
which, as the points are reported rather randomly. This is also a prob-
lem, as most pose estimation algorithms require each feature point to be
distinguishable from the rest, and uniquely identifiable.

4.1.2 Point Detection

The point detection in the Wii remote is implemented in hardware, and
there is no information on how this actually works. However, while per-
forming tests and experiments, some of the features due to the particular
implementation of the detection algorithm were observed.

The two cases of an IR source entering and leaving the scene are handled
slightly differently. When a source is entering the scene, it is not detected
until the entire source is perceived as inside the image. A leaving source
however, continues being detected until it has completely left the image.
Consequently, an entering source will not be reported at the sensor bound-
ary, and will suddenly appear inside the image. Depending on the intensity
of and distance to the source, and therefore the detected size, this may prove
an issue. Figure 4.2 and 4.3 illustrate both these situations.

Furthermore, instead of reporting the position of the center of the de-
tected point, it seems that the upper left position of the bounding box en-
closing a point is reported. This can easily be observed for a source leaving
the scene. For instance, if the point is traversing the scene in a horizontal
fashion, the last detected position stays at either 0 or 10161 for a while,
until the emitter has completely left the scene. Clearly, whenever a point is
detected, and a square bounding box is placed around it, the bounding box
may never leave the image, nor change its size.

When using the Wii remote as the detector for the optical feature points
for pose estimation, a couple more issues have to be addressed. Firstly, any
number of detected points may be detected in any order. For four feature

1As the upper left position of a bounding box denotes the position of a point, the
largest value of pixels which is reported depends on the size of the bounding box. While
(0, 1016) are the last positions reported in the horizontal case, the boundaries seem to be
at (0, 760) for the vertical case.
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Figure 4.2: IR source entering the scene. The red box surrounding the
point indicates whether the point is detected, and where the detected point
is positioned.

Figure 4.3: IR source entering the scene. The red box surrounding the
point indicates whether the point is detected, and where the detected point
is positioned.

points this means 24 possible orders the points may be detected in, which
in use with an algorithm where the knowledge of the exact correspondences
between the points are necessary, poses a problem. Therefore, the detected
points have to be sorted in the correct order after detection. The sorting
will be described with the introduction of the tracking beacon, in Section
4.2.3.

Secondly, when there are more than four sources of infrared light avail-
able in the scene; there is no guarantee that the correct emitters will be
detected. The issue with the sorting may be subdued and even solved for
certain point configurations, but erroneous detections cannot be evaded, ex-
cept by making sure that there are no unwanted emitters in the camera
view. Figure 4.4 illustrates a problematic scenario, with a dominant in-
frared source present in the camera view. If the Wii remote manages the
capture the four desirable dots present in the image at first, they will keep
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being detected until any of them are removed from view. Then, if an addi-
tional source is present, it will be detected, and stay as one of the preferred
detections until it has been removed from view.

Figure 4.4: Non optimal conditions for point detection. In this case, a
dominant light source is present in the image, which may be incorrectly
assumed to be a desirable feature point, and thus detected as such.

4.2 Tracking Beacon

The tracking beacon, or marker, is the object which is going to be observed
by the Wii remote, and it is the complementary part of the input device pro-
posed in this report. Its purpose is to provide a set of easily distinguishable
feature points, detectable to the Wii remote, such that the position and
orientation of the marker may be recovered. To allow us to compute the
full six degrees of freedom, with as much accuracy as possible, four feature
points are going to be used.

Albeit infrared emitting diodes of all types being available, the most
common are diodes which emit light at wavelengths of either 850 nm or 940
nm. But according to most report, i.e. in [4, 23], the Wii remote is much
more sensitive to the latter, and as such the Vishay TSAL6400 diodes were
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chosen for use on the tracking beacon. The TSAL6400 is a high efficiency
infrared emitting diode packed in a dome casing. The specification of these
LEDs is summarized in Table 4.1, while their expected, relative radiant
intensity at different viewing angles is illustrated in Figure 4.5.

According to Figure 4.5, when the diodes are utilized according to their
optimal specifications and the viewing angle exceeds 30◦, the radiant in-
tensity of the diodes is severely diminished. This leads to the diodes being
harder to detect, or possibly becoming non-visible to the infrared camera.

Table 4.1: Vishay TSAL6400 specifications

Parameter Typical value Maximum value
Forward voltage 1.35V 1.6V
Forward current 100mA 200mA
Peak wavelength 940nm -
Radiant intensity 40mW

sr 125mW
sr

Angle of half intensity ±25◦ -

4.2.1 Schematics

Due to the fact that four diodes will be used on the beacon, and according
to their specification, listed in Table 4.1, we need a voltage source capable of
providing at least 1.35 V × 4 = 5.4 V . To retain the mobility of the beacon,
we propose the usage of a battery. By assuming a standard 9 V battery is
to be used as the voltage source, the four diodes have been installed in a
serial configuration. In addition, a resistor has been connected in serial with
the diodes, to limit the current through them. The appropriate size of the
resistor can easily be calculated using Ohm’s law, and the specifications of
the four diodes, and the knowledge of the voltage source which is to be used:

v = Ri

R =
9− (1.35× 4)

0.1
Ω = 36 Ω

(4.1)

Multiple components are needed to attain a resistance of 36 Ω, however, as
we have chosen to use a single resistor, a resistor with resistance of 39 Ω
was used instead. Moreover, a potentiometer was also utilized in order to
control the supply voltage to the rest of the circuit, such that the intensity
of the diodes could be adjusted. The setup is illustrated in Figure 4.6.
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Figure 4.5: The relative radiant intensity of the diode plotted against the
angular displacement it is viewed from. When the angular displacement
increases above 30◦, the radiant intensity decreases significantly. The image
is reproduced from the Vishay TSAL6400 product sheet.

4.2.2 Physical Configuration

The physical placement of the diodes has been devised in accordance with
the setup proposed by Fleisch [14]. This means that the optical points are in
a non-coplanar configuration, while three of the points are nearly co-linear
in most cases when viewed from the camera. This setup has been chosen
for the purpose of being compatible with the Tvrx library, both in order
to test the performance of the implementation of the library, including the
pose estimation algorithm, and the fact that it is a proven design. The
diode configuration is illustrated in Figure 4.7(a), with the positions of the
diode listed in Table 4.2. The positions are stated in a frame of reference
with its origin defined in the lower left corner of the board the diodes are
installed on. The axes of the reference frame are illustrated in the figure.
The implemented marker is shown in Figure 4.7(b).
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Figure 4.6: Schematic of the tracking beacon. A voltage source which can
supply 9 V was used, with a potentiometer with a resistance of up to 500 Ω,
allowing changing the supply voltage to the diodes. The current limiting
resistor in series with the diodes has the resistance of 39 Ω.

Table 4.2: Diode positions

Diode number x y z Unit
1 5.5 6 4.5 mm
2 49 6 19 mm
3 91.5 6 4.5 mm
4 49 74.5 27 mm

4.2.3 Point Sorting

For the beacon illustrated in Figure 4.7(a), we can exploit the geometry of
the points and an approach with some trigonometry and vector calculations
is enough to determine the correct order of the points. The following ap-
proach will in most cases be sufficient for sorting the points pi, for i = 1, ..., 4,
where the emitters are numbered as in Figure 4.7(a).

1. Find the second emitter by, for each detected point, examining the
distances from it to the other points. The point which is closest to the
other points is assumed to be the second emitter.

2. Find the fourth point by examining the angles between the vectors
ti,2 = pi−p2, i = 1, 3, 4. The largest angle will be between t1,2 and
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(a) Diode positions

Figure 4.7: The optical marker. The four diodes are placed at the positions
designated by the number on the marker illustrated in Figure 4.7(a), with
their spatial positions as described in Table 4.2, stated in the reference frame
defined as in the figure. Figure 4.7(b) illustrates the implemented marker.

t3,2, and therefore, the fourth point is not one of these.

3. Determine which point is the first and which the third is. This can be
done by finding the right normal to the vector v2,4, and then comparing
the angles between the remaining vectors. The vector yielding in the
smallest angle is the third point, the largest being the first point.

4. Finally, store the points in the correct order.

4.3 Pan-Tilt Unit

The provided device which is to be controlled is a pan-tilt unit (hence-
forth abbreviated with PTU) produced by Directed Perception Inc. [17],
designated model number PTU-D46-17P70T. The unit is computer control-
lable through communication with a control device, the Directed Perception
PTU-D46 Pan-Tilt Controller, which includes a RS485 and a RS232 port
for communication, using either a binary or an ASCII-based protocol.

The unit is capable of panning in the range [−159◦, 159◦]2, with a
maximum attainable pan velocity of 300◦/sec. The tilt range is [−47◦, 31◦]
with a maximum attainable tilt velocity of 60◦/sec. The specifics on the

2The actual ranges may vary slightly from the used model, as it recalibrates at initial-
ization.
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interaction procedure of the device, including connecting to it and aiming,
are covered in Appendix A. The PTU and its dimensions are illustrated in
Figure 4.8.

Furthermore, the device may be controlled either by assigning a posi-
tion, or a velocity in either direction. This allows it to be just as easily
integrated with mechanical input devices such as joysticks, as with a soft-
ware implementation. Instead of controlling the PTU to aim at desired pan
or tilt angles in degrees or radians, the total range of the axes are split into
a certain number of positions. The angle at which the PTU is aiming at can
be calculated based on its current position on the axis and the axis resolu-
tion. The axis resolutions are given in seconds of arc per position3, which
corresponds to 0.0002778◦ per position. For the angle of the pan axis, this
conversion can be calculated as

γp = 0.0002778RpPp (4.2)

where γp is the pan angle, Rp is the resolution of the pan axis, and Pp is the
current pan position. Rp may be queried from the unit, and for this given
PTU is 185.1428 positions per degree.

For the angle of the tilt axis, the conversion is as

γt = 0.0002778RtPt (4.3)

where γt is the tilt angle, Rt is the resolution of the tilt axis, and Pt is the
current tilt position. Rt is 46.2857 positions per degree for this given unit.

4.4 System Design

The system explored in this report is comprised of a measuring device, the
Wii remote, and an interaction device, the tracking beacon. The Wii remote
has been presented in Section 4.1, while a possible beacon was presented
in Section 4.2. Furthermore, the PTU presented in Section 4.3 is to be
controlled in a fashion intuitive to the user interacting with the beacon. The
software solution developed in this report attempts to combine the various
software and hardware examined in this report to achieve an intuitive way
to control a device capable of panning and tilting.

The measurements provided by the Wii remote have to be converted to a
signal which can be applied to the PTU. This can be done by attempting to

3Minutes and Seconds of arc are units of angular measurement. A minute of arc is
equal to 1

60

◦
, while a second of arc is defined as 1

60
arcmin.
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(a) The PTU (b) PTU dimensions

Figure 4.8: The PTU and its dimensions in millimeters. The images are
reproduced from the PTU-D46 product sheet.

estimate the full 6 DOFs of the tracking beacon using one of the algorithms
described in Section 3.2, or using one of the more complete systems described
in Section 3.4, and then converting the estimated beacon pose to a signal
which may be used to aim the PTU.

Figure 4.9 illustrates the general program flow of the implemented solu-
tion. When the program starts, an initialization of both the software and
hardware is performed. The initialization includes the following:

• Detect and connect to the Wii remote.

• Connect to the PTU.

• Reset the PTU, moving it to a resting position4.

When the initialization is done, the main program loop is entered. First,
the program polls for events, and acts accordingly on the results. Only two
events are considered in the application; the quit event and the detection of
four IR sources. If neither of these have occurred, the program returns to
the start and continues to poll for events.

If however, four emitters have been discovered by the Wii remote, these
points are first sorted before being used to calculate the pose of the beacon.
After this has been performed, a control signal is created and sent to the

4The resting position is here when the PTU is at pan angle 0◦ and tilt angle 0◦.
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PTU. This procedure is continued until a quit event has happened, which
concludes the program.

4.4.1 Implementation Specifics

There are a few key elements needed in order to implement the software
solution described above. The first is to communicate with the Wii remote.
Although there are a lot of existing libraries which achieves this, the Wi-
imoteLib library introduced in Section 3.3.2 was chosen due to its feature
set and ease of use. This library is used to retrieve the measurements per-
formed by the Wii remote, which then are sorted in the correct order using
the procedure defined in Section 4.2.3.

Second, a pose estimation algorithm is needed to determine the pose of
the beacon based on the sorted feature points. For this task, the POSIT
algorithm proposed by DeMenthon and Davis [11] was considered, because
it is a proven algorithm and has been implemented in both the OpenCV
and the FreeTrack library. However, since the Tvrx library, mentioned in
Section 3.4.3, provides a more complete solution for the pose estimation
problem with the use of the OpenCV implementation of the algorithm, it
was employed for this task. The configuration and usage of the Tvrx library
can be found in Appendix C, and the use of the pose estimation algorithm
in OpenCV is described in Appendix D.

Last, the serial communication protocol needed to control the PTU needs
to be implemented. This includes the initialization of a serial socket with the
appropriate settings, and creating a conversion from the pose parameters to
the PTU parameters. Appendix A contains more specifics about this.

4.4.2 Camera Control

As mentioned in Section 4.3, the PTU is able of panning in the range
[−159◦, 159◦] and tilting in the range [−47◦, 31◦], and the viewing an-
gle at which the diodes are still visible to the camera has been measured
to be approximately 50◦ for all viewing directions Thus, the operating area
of the PTU is greater than the effective operating area of both the optical
marker and of its user, and as such the control mechanism should account
for this. Therefore, in order to cover the entire panning and tilting range of
the PTU, the following control mechanisms were considered:

1. Aim the PTU using estimated yaw and pitch angles.

2. Aim the PTU using an upscaled estimate of the yaw and pitch angles.
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3. Aim the PTU using estimated yaw and pitch angles, and maintain an
offset of the achieved angle.

The first procedure is the simplest one, but using it, the whole range of the
PTU is not achievable. This was initially implemented in order to investigate
if the input device is usable to control the PTU. Using the second procedure
however, the complete range is covered, but with the loss of resolution due
to the upscaling of the estimated angles. Using the third option, both the
original tracking resolution is retained and the whole range of the PTU
is covered. However, this procedure needs some user input, in order to
distinguish between when to aim the PTU and when not to do this. This
procedure was implemented in the manner that whenever an operator keeps
a button pushed, the tracking becomes active and the current aiming angles
keep being updated until the button is released. This then allows the user
to reposition the beacon, in order to further pan or tilt the PTU when
reactivating the tracking.
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Figure 4.9: A flow chart representing the general program flow using the
Wii remote to estimate the beacon pose, and consequently aim the PTU.
The notion of an event is here either the discovery of an optical point by the
camera, or the push of a button to end the execution of the program.



46 CHAPTER 4. SYSTEM DESCRIPTION



Chapter 5

System Evaluation

The most sensitive part of the system discussed in this report is the input
device. Because the user input is devised through vision measurements,
the performance of the system relies heavily on the camera in use, and the
pose estimation algorithm. Therefore, in this chapter the operating range
of the input device will be determined, in addition to an evaluation of the
pose estimation algorithm. The pose estimation algorithm evaluated is the
POSIT algorithm developed by DeMenthon and Davis [11]. It has since been
implemented in OpenCV [2], which is the implementation being assessed
here, and in FreeTrack [1].

The chapter is organized into the following sections:

• Evaluation of the Wii Remote
The field of view of the Wii remote will be determined in this section,
and consequently the operating the range of the input device.

• Experiment Equipment
In this section the equipment which will be used to perform the ex-
periments is presented.

• Evaluation of Pose Estimation
The experiment procedure and the achieved results of the pose esti-
mation algorithm are presented in this section.

5.1 Evaluation of the Wii Remote

A lot of the specifications of the Wii remote are, as previously mentioned,
unknown. However, there are a few properties which can easily be deter-
mined to some degree of certainty. Although the properties of the lenses,

47
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the focal length and other intrinsic parameters require more complex mea-
surements, the field of view may be determined. Knowing the field of view
also allows us to determine the operation range of the input device.

5.1.1 Field of View

With the use of a single infrared emitter1 and measuring the last position
it is detectable when leaving the camera view, the horizontal and vertical
fields of view may be computed. The measurements were conducted by
registering the position of the emitter, just as it has left the scene, for
upward, downward, left and right directions and a number of distances to
the camera. For the set of measurements, the probability density function
was computed, and is illustrated in Figure 5.1(a) for the horizontal field of
view, and Figure 5.1(b) for the vertical, and Table 5.1 summarizes these
results. According to the calculated mean of the measurements, the Wii
remote has slightly lower field of view than the 45◦ horizontal field of view
assumed in [23], and significantly higher than the 33◦ horizontal and 23◦

vertical field of view assumed in [3]. Furthermore, the pixels are seemingly
square, but a slight difference in their dimensions was measured. This may
be due to the lens, or even the image analysis algorithm.

Table 5.1: Measured field of view

Field of view Mean σ deg/pixel
Horizontal 42.7883◦ 0.9073◦ 0.0418◦/px
Vertical 33.4350◦ 1.2932◦ 0.0435◦/px

Additionally, the distance at which the infrared emitters could be de-
tected by the camera was measured. As the 940 nm LEDs are detected with
more intensity then equivalent sources with other wavelengths, they are way
too bright to be resolved at close distances. For a single emitter, the near
limit was measured to be around 60 mm, while it kept being detected at
distances greater than 10 m.

For a head mounted beacon, and the camera mounted on the display
monitor, we can assume a distance from the beacon to the camera of about
80 cm. With the mean of the measured field of view, this yields an operating
area of almost 63 cm horizontally, and 48 cm vertically.

1The emitter is the Vishay TSAL6400, with its specification described in chapter 4.2.
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Figure 5.1: Plot of probability density function for horizontal and vertical
field of view based on a set of measurements. This is denoted by the blue
line, while the red line is the mean of the measurements, and the green line
denotes a standard device distance from the mean.

5.2 Experiment Equipment

To be able to reliably review the pose estimation algorithm in a real world
setting, a test rack was devised. The test rack has a mount for the Wii
remote such that it may stay completely stationary while the experiments
are performed. The camera is facing a pan-tilt unit, on which the tracker
may be mounted. The PTU is described in more detail in Section 4.3, and
it can be controlled to aim at certain angles with good accuracy.

Certainly, using a device only able of panning and tilting to alter the pose
of the optical marker, only a few of the degrees of freedom may be examined.
However, as changes in yaw, pitch and, to some degree, the translations may
be measured, an assessment can still be obtained. It also directly indicates
whether the system may be used as the input for the control of the PTU.

5.2.1 Geometric Properties of the Experiment Equipment

In order to determine the pose of the marker while it undergoes geometric
transformation due to the motions of the PTU, the actual distances to the
marker have to be measured. As the estimated pose, provided by the POSIT
algorithm, defines the pose at the feature point defined first in accordance
with Figure 4.7(a), the distances to this diode have been measured. Sketches
of the setup of the experiment equipment are provided in Figure 5.2(a) and
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Figure 5.2(b), with the distance measurements listed in Table 5.2. Here,
the global frame of reference is also defined, with the orientation of it as
shown in the figure. Furthermore, the origin of the global frame of reference
is placed at the center of the lens of the Wii remote, and consequently all
distances are described with regards to the this position.

(a) Top view of the experiment equipment

(b) Side view of the experiment equipment

Figure 5.2: Experiment equipment. (a) is a top view of the equipment, and
(b) illustrates a side view. The distance measurements here are defined in
Table 5.2.

5.2.2 Experiments

The experiments have been devised in order to determine the accuracy and
consistency of the chosen algorithm. To determine the accuracy we will look
at the case where the pose of the marker is slowly changing. This is done for
both the panning and tilting motions using the PTU. In order to evaluate
the consistency, the pose of the marker was repeatedly altered in the same
fashion as above, but at a higher velocity. This allows us to detect whether
there are significant differences in the estimated poses for similar motions.
For all the experiments, the velocities of the rotary motions achieved by the
PTU are all constant. This is due to a mechanical capability of the PTU.
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Table 5.2: Distances on the test equipment

Parameter Value Description
zop 15mm Distance from the significant point to

the panning axis in the z direction
zco 821mm Distance from the camera to the significant point
xpo 44mm Distance from the significant point to

the panning axis in the x direction
yc 172mm The height of the camera
yo 132mm The height of the significant point with the marker at rest
yt 92mm The height of the tilting axis

The experiments are summarized as follows:

• Experiment 1: Panning at low, constant velocity.

• Experiment 2: Tilting at low, constant velocity.

• Experiment 3: Repeated panning at constant velocity.

• Experiment 4: Repeated tilting at constant velocity.

The experiment procedures, along with the results, will be presented in
Section 5.3. For the experiments 1 and 3, the PTU was instructed to keep
the tilt axis at 0◦, while panning in the range [−51.43◦, 51.43◦]. For the
PTU, these pan angles correspond to the commands pp-1000 and pp1000,
where the positions are calculated from (4.2) and the command is defined
in Appendix A. The pan angles were chosen such that not all of the IR
LEDs were detectable in the limits. As a bonus, the behavior of the various
implementations could be witnessed whenever an emitter disappeared and
reappeared in the image.

For the experiments 2 and 4, the PTU was instructed to keep the pan axis
at 0◦, while tilting in the range [−30.22◦, 30.22◦]. The tilt angles correspond
to the commands tp-2350 and tp2350, where the positions are calculated
from (4.3) and the command is defined in Appendix A. The mentioned tilt
angles were chosen to be symmetric and close to the limit of the PTU. In
this case, the upper tilt limit is nearly reached.

5.2.3 Expected Pose

Based on the geometric composition of the test rack, with the positions of the
mounted devices available, we can calculate the expected pose for the test
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cases. For the expected pose, we are concerned with the translation along
the axes and the rotation about the axes during the panning and tilting
motions. The rotations will here be parameterized using Euler angles, in
order to easily compare them. While the yaw and pitch rotations of the
system provide the most notable motions and are of most interest, all the
parameters where computed and provided as comparisons in the figures of
the results for the performed experiments.

5.3 Evaluation of Pose Estimation

In this section, we will evaluate the performance of the pose estimation
algorithm when used in conjunction with the Wii remote, in order to discover
what is to be expected in terms of accuracy and consistency of the estimate,
for the whole system.

The estimation algorithm which is reviewed is the POSIT algorithm,
proposed by DeMenthon and Davis [11]. An example of the implementation
of the algorithm can be found in OpenCV, which has been used by Fleisch
[14] to achieve pose estimation in the library Tvrx. However, the Tvrx
library also provides additional functionality, such as filtering of the detected
points, as well as the estimated parameters. The parameters of the filters
in use may be configured, and the configuration options, further explored
in Appendix C, also suggest the possibility of turning the filters completely
off. This however, proved not to be the case, since the enabling of this
option immediately caused the library to malfunction. Therefore, to also
evaluate the performance of the algorithm without the use of a filter, the
pose estimation function of the Tvrx library was re-implemented2 using
OpenCV. The Tvrx library was implemented and configured as described in
Appendix C, and this implementation will henceforth be referred to as the
Tvrx implementation, while the re-implementation of the pose estimation
functions of Tvrx will be referred to as the OpenCV implementation, even
though both employ the use of the same algorithm. The implementation
specifics of the latter are described in Appendix D.

The procedure and results for the experiments are described in Section
5.3.1 through 5.3.4. The results will be presented as Euler angles in degrees
for the rotations, while the translations will be presented in millimeters,
with the plot figures organized as follows:

• (a) The rotation around x-axis (pitch)
2Although the same camera parameters were used, the implementations may slightly

vary.
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• (b) The rotation around y-axis (yaw)

• (c) The rotation around z-axis (roll)

• (d) The translation along x-axis (sway)

• (e) The translation along y-axis (heave)

• (f) The translation along z-axis (surge)

The rotation and translations mentioned here are of the local reference frame
defined in Figure 4.7(a), which is compared to the global reference frame
defined in Figure 5.2.

5.3.1 Experiment 1: Low Velocity Panning

The procedure followed for this experiment is described in Table 5.3 for
both the Tvrx and OpenCV implementations. The estimates of the poses
are illustrated in Figure 5.3. The blue lines in the figure indicate the es-
timates achieved by Tvrx, the green lines indicate the estimates gathered
from the OpenCV implementation, while the red lines denote the expected
pose described in Section 5.2.3.

For this experiment, the most prominent motion is in yaw, which is in the
range [−51.43◦, 51.43◦], while the pitch, roll and heave should not change
during the experiment. However, due to the PTU panning some change in
surge and sway should also be observed.

Inspecting the plots in Figure 5.3, we can see that both implementations
have some trouble estimating the translatory parameters. For the case of the
heave and sway parameters, the form, and the magnitude to some degree,
are similar to the expected parameters. Looking at Figure 5.3(f), both
implementations have some trouble estimating the distance to the beacon,
as well as detecting any change in the parameter. The Tvrx library performs
better in this regard, as it does calculate a more correct distance to the
beacon. The roll and the pitch angles are poorly estimated, but considering
the signal sizes, the error is rather small and was expected. Especially the
pitch has large fluctuations around the expected results, while roll suffers of
an incline, which should not be present.

The Tvrx library does a good job of estimating the yaw of the beacon.
Albeit having some fluctuations, the estimate is fairly close to the actual
angle. The OpenCV implementation, on the other hand, provides a more
erroneous estimate in this experiment.
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Common to all the results shown in Figure 5.3, the Tvrx library yield
the better estimates of the two, with the exception of the heave parame-
ter. This clearly indicates that the usage of the POSIT algorithm is better
implemented in Tvrx than using the procedure described in Appendix D.

Table 5.3: Experiment 1: Low velocity panning

Step Description PTU Command
1 Initialize and reset the system. ‘r’
2 Instruct the PTU to move to starting po-

sition
‘pp-1000’

3 Set the rotation velocity for the PTU ‘ps100’
4 Open a new log -
5 Record the start-up time -
6 Instruct the PTU to rotate to destination ‘pp1000’
7 When PTU is finished panning, conclude

the experiment.
-

This implies closing the log, and resetting
the device

‘r’
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Figure 5.3: Estimates of pose parameters based on the OpenCV implemen-
tation (green lines) and the Tvrx implementation (blue lines), while panning
at low velocity. The red lines are the actual parameters.
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5.3.2 Experiment 2: Low Velocity Tilting

The procedure for performing experiment 2 is described in Table 5.4. In this
experiment, the most prominent motion is in pitch, which is in the range
[−30.2◦, 30.2◦]. Figure 5.4 illustrates the results of this experiment. The
blue lines in the figure indicate the estimates achieved by the Tvrx imple-
mentation, with the green lines being from the OpenCV implementation and
the red lines denoting the expected results.

Considering the plots in Figure 5.4, both implementations have trouble
estimating the roll and yaw, and also yield in some error in the translatory
parameters. With the exception of heave, the Tvrx implementation provides
better estimates, both in terms of detecting the correct change in parameters
and the correct magnitude of the signals.

Both implementations provide reasonable estimates of the pitch param-
eter, but both are less than optimal. The Tvrx implementation seems to
be the better, because of the less noisy estimate, but it initially estimates
a lower value than the true angle. The OpenCV implementation however
estimates a slightly higher incline in the parameter than the true value.

Table 5.4: Experiment 2: Low velocity tilting

Step Description PTU Command
1 Initialize and reset the system. ‘r’
2 Instruct the PTU to move to starting po-

sition
‘tp-2350’

3 Set the rotation velocity for the PTU ‘ts100’
4 Open a new log -
5 Record the start-up time -
6 Instruct the PTU to rotate to destination ‘tp2350’
7 When PTU is finished panning, conclude

the experiment.
-

This implies closing the log, and resetting
the device

‘r’



5.3. EVALUATION OF POSE ESTIMATION 57

0 10 20 30 40 50
−40

−30

−20

−10

0

10

20

30

40
Pitch under tilting

Time [sec]

P
it
c
h

 [
ra

d
]

(a) Rotation around the x-axis

0 10 20 30 40 50
−14

−12

−10

−8

−6

−4

−2

0

2
Yaw under tilting

Time [sec]

Y
a

w
 [

ra
d

]

(b) Rotation around the y-axis

0 10 20 30 40 50
−8

−6

−4

−2

0

2

4
Roll under tilting

Time [sec]

R
o
ll 

[r
a
d
]

(c) Rotation around the z-axis

0 10 20 30 40 50
−70

−65

−60

−55

−50

−45
Travel on x−axis under tilting

Time [sec]

X
 [

m
m

]

(d) Translation along the x-axis

0 10 20 30 40 50
−60

−50

−40

−30

−20

−10

0

10

20
Travel on y−axis under tilting

Time [sec]

Y
 [

m
m

]

(e) Translation along the y-axis

0 10 20 30 40 50
−900

−880

−860

−840

−820

−800

−780

−760
Travel on z−axis under tilting

Time [sec]

Z
 [
m

m
]

(f) Translation along the z-axis

Figure 5.4: Estimates of pose parameters based on the OpenCV implemen-
tation (green lines) and the Tvrx implementation (blue lines), while tilting
at low velocity. The red lines are the actual parameters.
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5.3.3 Experiment 3: Repeated Panning

The procedure for the repeated panning experiment is explained in Table 5.5,
while the results for the forward passes are presented in Figure 5.5. For this
experiment the number of passes has been set to 2000, which consequently
yields 1000 passes from pan angle −51.43◦ to angle 51.43◦, and the same
amount in the reverse direction. Because of the number of results, only
the mean and standard deviation of the forward panning motion have been
include in Figure 5.5. However, the full plots of both forward and reverse
passes have been included in Appendix E.

The lines marked with a square indicate the estimates from the Tvrx
library, while the lines marked with a triangle denote the parameters es-
timated by the OpenCV implementation. The blue lines indicate the cal-
culated mean, and the dashed green lines indicate a standard deviation
distance to the mean.

By inspecting the results, we can see that the PTU needs around two
seconds3 to complete the whole panning motion. For the OpenCV imple-
mentation, the parameters come to rest at this time, but the effects of the
Kalman filter employed by the Tvrx implementation can be witnessed. Due
to the panning velocity the Tvrx implementation has an overshoot and a
whole second is needed before it comes to rest. In terms of consistency,
both implementations perform well for the parameters which have distinc-
tive motions. But the Tvrx implementation is also very consistent for the
remaining parameters as well. This can be seen by the low variability of the
estimates as evident by the plotted standard deviation.

3A complete pass is performed in five seconds, and 250 samples are taken.
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Table 5.5: Experiment 3: Repeated panning

Step Description PTU Command
1 Initialize and reset the system. ‘r’
2 Initialize run counter to 0 -
3 Set the rotation velocity for the PTU ‘ps1000’
4 Instruct the PTU to move to starting po-

sition
‘pp-1000’

5 Wait 5 seconds -
6 Record run number -
7 Open a new enumerated log -
8 Record the current time as the start-up

time
-

9 Instruct the PTU to rotate to destination ‘pp1000’
10 Wait 5 seconds -
11 Increase run number -
12 Record run number -
13 Open a new enumerated log -
14 Record the current time as the start-up

time
-

15 If run number has not reached the run
limit,

-

go to step 4
else, conclude the experiment -
This implies closing the log, and resetting
the device

‘r’
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Figure 5.5: Estimates of pose parameters based on the OpenCV imple-
mentation (solid line marked with triangles), and the Tvrx implementation
(solid line marked with squares) for repeated panning motions. The dashed
lines above and below both of the mean plots indicate a standard deviation
distance from the mean.



5.3. EVALUATION OF POSE ESTIMATION 61

5.3.4 Experiment 4: Repeated Tilting

The procedure for the repeated tilting experiment is explained in Table 5.6,
while the results for the forward passes are presented in Figure 5.6. Similar
to the repeated panning experiment, 2000 passes were conducted in this
instance as well. The PTU was instructed to start at −30.2◦ and tilt to
angle 30.2◦ at first, before returning. Only the upward pass is illustrated in
Figure 5.6, and also here the lines marked with squares correspond to the
Tvrx estimates, while the triangle marked lines correspond to the OpenCV
estimates. The complete plots of all the passes are included in Appendix E.

By inspecting the results, much of the same conclusions can be drawn.
However, for the case of the Tvrx implementation the overshoot from the
last experiment is not observable in this instance. This may be due to the
slower velocity of the tilting compared to the panning. The PTU requires
around five seconds completing the entire tilting motion. The Tvrx im-
plementation generally provides more consistent estimates compared to the
OpenCV implementation, for all the parameters. However, there are quite
a lot of fluctuations present in the estimate of the pitch, even in the case
of the mean. Evidently, both implementations have trouble capturing the
motion of the marker in this case. This may be due to the design of the
beacon, as the positions of the diodes compared to each other change less
than in the case of panning.
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Table 5.6: Experiment 4: Repeated tilting

Step Description PTU Command
1 Initialize and reset the system. ‘r’
2 Initialize run counter to 0 -
3 Set the rotation velocity for the PTU ‘ts1000’
4 Instruct the PTU to move to starting po-

sition
‘tp-2350’

5 Wait 5 seconds -
6 Record run number -
7 Open a new enumerated log -
8 Record the current time as the start-up

time
-

9 Instruct the PTU to rotate to destination ‘tp2350’
10 Wait 5 seconds -
11 Increase run number -
12 Record run number -
13 Open a new enumerated log -
14 Record the current time as the start-up

time
-

15 If run number has not reached the run
limit,

-

go to step 4
else, conclude the experiment -
This implies closing the log, and resetting
the device

‘r’
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Figure 5.6: Estimates of pose parameters based on the OpenCV imple-
mentation (solid line marked with triangles), and the Tvrx implementation
(solid line marked with squares) for repeated tilting motions. The dashed
lines above and below both of the mean plots indicate a standard deviation
distance from the mean.
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Chapter 6

Discussion

The chapter contains some closing remarks and is organized in the following
sections:

• Nintendo Wii Remote
Remarks about the imaging hardware used in the assignment are pre-
sented here.

• Optical Marker
The optical marker is discussed in this section.

• Pan-Tilt Unit
The pan-tilt unit which acted as the output devices is discussed in this
section.

• Experimental Setup
Remarks about the experimental test bench used in the assignment are
presented here. The achieved results are also debated in this section.

• Future Work
In this section some extensions to the assignment and future work are
discussed.

6.1 Nintendo Wii Remote

The Wii remote is an impressive device, which has proven to be very use-
ful in much more diverse areas than for which it was originally intended.
The device has been successfully utilized in both research and educational
projects, where its area of application has been extended due to the vision

65
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and motion sensing capabilities of the device. Some of these areas are virtual
and augmented reality applications, where the Wii remote is used to interact
with the virtual world or track objects in space, and motion control, where
its motion sensing capabilities are used to control a robotic arm or a vehicle.
Some of the success of the device is due to the fact that it is versatile, and
may be used in a variety of applications, while still being a low-cost device.

In the system explored in this report, the mobility and motion sensing
capabilities of the Wii remote were not utilized. The only part of the device
actually necessary for the system function is the infrared camera. In an
application where the device is to remain stationary, there is less need for
a wireless communication protocol and a compact, mobile voltage source.
However, in contrast to the system explored in this report, reversing the
roles of the tracker and the camera is possible, and can be equally fitting
for some applications. This is actually how the system proposed by Kreylos
[20] is initially configured, but it is applied by Rickard and Davis in [31] in
a manner similar to the system explored in this report.

6.2 Optical Marker

The marker with the optical feature points has been configured according
to the marker proposed by Fleisch [14], but this is not an optimal design. In
general, when using optical markers as feature points, collinear configuration
of points should be avoided. Such a configuration effectively makes one
point insignificant, as its position can be described as a distance between
the edge points. The optical points in this setup do not completely align for
all observation angles, but only when the y-axes are aligned1. But seeing
as the algorithm which is used for pose estimation is not defined for the
coplanar configuration of points, the specific geometric setup of the diodes
can impact its performance. However, the nearly collinear points do provide
very useful information when the point correspondence problem is to be
solved. The special setup is easily distinguished allowing the feature points
to be sorted in correct order.

6.3 Pan-Tilt Unit

The PTU used for both testing purposes and as an output device proved to
be easily controllable. Particularly, the use of human-readable commands

1Assuming the coordinate frames are defined as in Figure 5.2(b) and 5.2(a).
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adds to its ease of use. When used in conjunction with the input device de-
vised in this report, the issue of reducing information about the pose of the
input device to the two degrees of freedom pan-tilt unit had to be managed.
This can be done in a variety of ways, and some procedures were considered.
The assigning the yaw and pitch of the marker to the pan and tilt angles of
the unit proved to be the most functional approach. The pitch and yaw an-
gles were then utilized in different ways in order to account for the increased
range of operation of the PTU compared to the beacon in use. Although the
implemented procedures served their purpose in this assignment, in terms
of proving that camera control with the developed input device is possible,
additional control mechanisms should be investigated.

6.4 Experimental Setup

With the use of the experimental setup illustrated in Figure 5.2, the per-
formance of the pose estimation algorithm could be assessed in a real world
environment. This also indicated how well the entire system would work,
especially with the PTU as the targeted output.

However, because only two degrees of freedom are actuated in the ex-
perimental setup, some restrictions are imposed on the types of experiments
which are possible to perform in order to evaluate the system. With the
actuation provided by the PTU, the primary action on the beacon is the
change of orientation, while the translation changes occur due to the beacon
not being mounted at the center of the pan and tilt axes. Incidentally, the
yaw and pitch angles of the beacon can be actuated by panning and tilting,
respectively. In addition, the roll could have been examined by rotating the
z-axis of the beacon into the x-axis of the global reference frame, and then
actuating the tilt angles of the PTU. This however, was not examined in
this report, as the targeted output was the PTU making the yaw and pitch
of the input of more interest.

Even though only two degrees of freedom are actuated in the experimen-
tal setup, this depicts the intended area of operation of the implemented
system, namely head tracking for computer operation. For the case of a
computer user sitting in front of display monitor, the most prominent mo-
tions would be regarding the changes in head orientation. But for some
applications in a similar setup, the translations of the head are more useful.
This is certainly the case for virtual reality application proposed by Lee
[23], and also for applications providing immersion through stereo vision.
A software library for solving the latter case has been developed by Fleisch
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[14], and was briefly discussed in the report, in Section 3.4.3. This is use-
ful for the stereo vision implementations where a single display monitor is
used to provide slightly different images to the eyes of the operator. In such
systems the sense of depth is due to the difference in the images, but for a
continuously moving user, every single projection has to be recalculated for
the current head position in order to maintain this sensation.

6.4.1 Experimental Results

The results of the experiments conducted in order to examine the accuracy
and consistency of the pose estimation, presented in Chapter 5, indicate that
the system is usable for its intended task. None of the implementations were
accurate enough in terms of estimating the absolute position, but some of
this error can be blamed on mounting errors on the experiment rig and on the
horizontal and vertical alignment errors in the mounting of the camera, and
also on the use of an under parameterized camera model. Even though the
mount of the camera keeps the device in the same position for the duration
of the experiments, the mount does not guarantee that it is completely level
horizontally. Since the true position of the beacon compared to the camera
is not recoverable by exact means, a misalignment of the camera in this
setup would yield in data which is not comparable to the calculated and
expected pose. A solution to this issue may be to initially detect a resting
pose, followed by a registration of the offsets in the 6 DOFs compared to the
expected pose, and finally using these offsets to align the reference frames.

Both implementations do track the relative change in the 6 DOFs rea-
sonably well. In particular, the Tvrx implementation proved to be the better
one, having the better accuracy, less noise and generally low variability in
the estimated values. In this assignment, the particular angles of impor-
tance are the yaw and pitch, which were used to control the PTU. The
results indicate that these angles were estimated the best for the performed
experiments.

However, it is clear that the POSIT algorithm would perform better
if both more feature points and more precise measurements of them were
available, since the four feature points used to estimate the pose are the
lowest possible number of points for use with this algorithm. On the other
hand, the algorithm is very robust, as the estimates proved to be highly
consistent for similar poses.
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6.5 Future Work

An obvious issue with using the Wii remote as an imaging device is the fact
that its properties are poorly documented. Thus, throughout the report,
the effects of errors in the camera properties, such as lens distortion and
image sensor defects, have not been studied. However, due to the nature
of the implementation of the camera, with the integration of image analysis
tools, a conventional calibration process is not easily carried out. In order
to perform a calibration of the camera, a known pattern with easily distin-
guishable features has to be observed. This would yield in a large number
of correspondences, allowing for the determination of the camera calibration
matrix. With the increased accuracy, this system could potentially be used
for more complex tasks, such as robot control.

The impact on the pose estimation accuracy due to the use of several
filter designs should also be investigated. One of the implementations con-
sidered in this report used a Kalman filter for the smoothing of the estimated
values, and this implementation was shown to be superior to the other, but
more attention should be directed to the tuning of it. This could easily
increase the accuracy of the implemented system. Furthermore, there are
numerous approaches to the pose estimation problem, and thus, alternatives
to the POSIT algorithm should be considered.

Although some techniques for camera control on pan-tilt platforms were
discussed in Section 3.5, only a few of the approaches were implemented and
tried out. And even if they did work satisfactory as a proof of concept, they
should be further tuned and more methods should be examined as well.

Even though the created beacon can be mounted on the head of an oper-
ator by some means, little care was taken to this when its design was devised.
Because of the required non-coplanarity of the feature points, the current
design would be somewhat intrusive even if implemented on to goggles. A
coplanar marker would possibly be easier to mount on goggles without it be-
ing disturbing to the user. This would however warrant significant changes
in the software, by the change of both the pose estimation algorithm and
the algorithm used to determine the point correspondences.

The usage of the input system on more suitable output devices should be
studied as well. Even though the estimation of the full 6 DOFs of the beacon
was performed, only the yaw and pitch angles were needed for the control of
the PTU. There are several application which are able to employ the rest of
the estimated values. Such an application could be the replacement of the
mouse as the input device to a computer, and pointing by head orientation.
However, if the beacon was not head mounted, this could also be used as a
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3D mouse. By further coupling the input of the 3D mouse with a motion
planning approach such as inverse kinematics could yield in intuitive control
mechanisms for robot control. As previously mentioned, the head tracking
is also interesting in stereo vision applications where it can aid the system
to produce better image projections. There clearly are a lot of applications
which could benefit from the system explored in this report



Chapter 7

Conclusion

In this report a vision based input device for motion control using head
tracking was explored. The imaging device used was the infrared camera
on a Wii remote, and it was combined with a trackable optical marker. By
employing an algorithm for pose estimation, these devices made it possible
to robustly determine the position and orientation of the marker in 3D space.

The results presented in the report indicate that the system is not en-
tirely accurate, and thus, the absolute position and orientation of the marker
is not perfectly estimated. This means that the system is not entirely suited
for control of devices where perfect spatial information is required, without
further tuning. However, the input device proved to be accurate enough
for the control of a less complex system, namely a pan-tilt platform. More-
over, the system is very robust in terms of yielding consistent estimates for
similar poses. This is a desired property, because faulty estimates are essen-
tially undetectable to systems which rely on visual measurements. So, even
though a very simple and highly optimistic mathematical model was used
to describe the camera, the system could indeed be used for motion control
through head tracking.
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Appendix A

Pan-Tilt Unit

The pan-tilt device is produced by Directed Perception Inc., and consist of a
pan-tilt unit, designated model number PTU-46-17P70T, and a controller,
designated model number PTU-D46. We will only be interacting with the
controller, and letting it interpret our commands and making the unit carry
them out. The commands to control the unit have all been gathered from
the user manual of the unit.

A.1 Serial Communication

The communication input to the controller a female DB-9 connector, ac-
cepting RS-232 connections with the settings in Table A.1 set.

Table A.1: Pan-Tilt unit settings

Setting Value
Baudrate 9600
Start bit 1
Stop bit 1
Data bits 8
Parity None
Handshaking None

After a connection has been made, the communication is performed in
human readable ASCII, and the commands to control the PTU are summa-
rized in Table A.2.
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Table A.2: Pan-Tilt unit control commands

Command Description
PP Query for current pan position
PP<number> Set pan position to number
PN Query for minimum allowable pan position
PX Query for maximum allowable pan position
PS<number> Set pan speed to number
TP Query for current tilt position
TP<number> Set tilt position to number
TN Query for minimum allowable tilt position
TX Query for maximum allowable tilt position
TS<number> Set tilt speed to number
PR Query for pan resolution
TR Query for tilt resolution
C Query for current control mode
CI Set independent mode, where both velocity and

position control is possible
CV Set velocity mode

Table A.3: Queried Pan-Tilt unit properties

Property Value Angle
Maximum pan position 3048 156.7668◦

Minimum pan position −3048 −156.7668◦

Maximum tilt position 2390 30.7310◦

Minimum tilt position −3608 −46.3923◦

A.2 Serial Communication in C#

For the serial communication in C# the .NET class SerialPort was used,
and Microsoft Developer Network [8] has the documentation on all the work-
ings of this class. Listing A.1 shows how a communication port was opened
using this class, while Listing A.2 and A.3 show how reading and writing
is performed, respectively. The port is configured as the stated settings in
Table A.1. The reading example is performed in a separate thread, and the
read string is simply printed to the console. The writing example, on the
other hand, is performed in the parent thread.
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Listing A.1: Creation of the port

SerialPort serialPort = new SerialPort ();

serialPort.PortName = "COM1";

// Following settings are from PanTilt Unit Manual

serialPort.BaudRate = 9600;

serialPort.Parity = Parity.None;

serialPort.StopBits = StopBits.One;

serialPort.DataBits = 8;

serialPort.Handshake = Handshake.None;

serialPort.WriteTimeout = 1000;

serialPort.ReadTimeout = 1000;

serialPort.Open();

if (! serialPort.IsOpen)

quit = true;

Listing A.2: Reading from the port

Thread readThread = new Thread(ReadThreadFunction);

...

// Read function

public void ReadThreadFunction ()

{

while (!quit) {

try {

string msg = serialPort.ReadLine ();

Console.WriteLine(msg);

} catch (TimeoutException) { }

}

}

Listing A.3: Writing to the port

public void Write(string msg)

{

serialPort.WriteLine(msg);

}
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A.3 Serial Communication in MATLAB

In MATLAB, a serial port can be created using the serial function with all
the settings from Table A.1 passed as arguments, while opening is done with
fopen. This is shown in Listing A.4, along with the closing and deletion of
the serial object. Writing is done using fprintf, while fscanf may be used
to receive data. Reading and consequently writing to a port is shown in
Listing A.5.

Listing A.4: Creation of the port

s = serial(’COM1’, ’BaudRate ’, 9600, ’DataBits ’, 8, ...

’FlowControl ’, ’none’, ’Parity ’, ’none’);

fopen(s)

...

fclose(s)

delete(s)

Listing A.5: Reading from and writing to the port

str = fscanf(s,’\%s’);

fprintf(s, str);



Appendix B

Using the Wii Remote

B.1 Connecting to the Wii Remote

First, to connect the Wii remote to a computer, a compatible Bluetooth
adapter is needed. Both a Cambridge Silicon Radio chip using the Toshiba
Bluetooth stack and a D-Link DBT-122 adapter has proven compatible for
this purpose, however, these are not the only ones which are compatible
with the Wii remote. The connection process is similar to when connecting
to a cellular phone, or any wireless, Bluetooth compatible, interface. The
procedure for connecting to the Wii remote is as follows:

1. Start the Bluetooth software, and have it search for a device.

2. Enable Discovery mode on the Wii remote by pressing the buttons 1
and 2 simultaneously until the LEDs start flashing.

3. The Wii remote should now show up as a discovered device named
Nintendo RVL-CNT-01.

4. Make a connection to the device. There is no need to use a security
code or PIN number when connecting to the device.

In particular, it seems that the Wii remote is pickier with regards to the
Bluetooth communication stacks, rather than to the particular adapters in
use. In this regard, the Toshiba stack seems like the best out there, but as
it is not readily available, it is advisable to check [4, 3, 23] before settling
on a particular adapter.
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B.2 Using the Wii Remote in C# with WiimoteLib

B.2.1 Accessing the Wii Remote

Here, we will look at what is needed code-wise to use the library WiimoteLib
to access the Wii remote. A brief description of this library has been made
in section 3.3.2. To properly sets up one Wii Remote allowing us to read the
sensor, we need to setup an event to handle the state changes on the device.
Listing B.1 how to create the Wiimote object, while Listing B.2 shows how
to handle the events generated by the Wii remote.

Listing B.1: Creating an instance of the Wii Remote

using WiimoteLib;

...

// Create a Wiimote object

Wiimote wm = new Wiimote ();

// Create a WiimoteState object

WiimoteState wms;

// Setup event handler

wm.WiimoteChanged += wm_WiimoteChanged;

// Connect to the Wii Remote

wm.Connect ();

// Set the desired report type

wm.SetReportType(WiimoteLib.InputReport.IRAccel , true);

Listing B.2: Handling the events

void wm_WiimoteChanged(object sender ,

WiimoteChangedEventArgs args)

{

// Store the state

wms = args.WiimoteState;

}

B.2.2 Gathering Information from the Wii Remote

If the event handler is setup as previous mentioned, then whenever the Wii
Remote reports a change, such as a button press, acceleration or other, we
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catch it and store its state. The position and the size of the infrared sources
are of particular importance and these are stored in the class WiimoteState.
The members of WiimoteState, and their members are shown in Figure B.1.

IRState holds all the information about the infrared sensor, and what it
has found. The variables Midpoint and RawMidpoints hold the midpoints
of the first two points in the IRSensors array.

IRSensors is an array holding the states of the four infrared sources
as they are detected by the sensor. The variable Found holds whether the
point has been detected or not. Both RawPosition and Position hold its
position, where the first is the unprocessed data as it is reported from the
Wii remote, and its range is in [0, 1023]. The latter holds the normalized
position of the detected point, in the range [0.0, 1.0]. Size describes how big
the found object is. This value is in the range [0, 15]. Listing B.3 shows an
example of retrieving the positions of the first detected IR LED, and storing
them in local variables.

Listing B.3: Retrieving the positions of the IR points

float x = wms.IRState.IRSensors [0]. Position.x;

float y = wms.IRState.IRSensors [0]. Position.y;

Figure B.1: The WiimoteState class structure expanded.
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B.3 Using the Wii Remote in MATLAB with Wi-
iLAB

WiiLAB [6] is a set of MATLAB functions which allow the use of the Wii
remote in MATLAB. The actual communication with the device is done
using WiimoteLib, but some work has been done to make it possible to
access this library in unmanaged code such as MATLAB.

B.3.1 Using the Wii remote

A lot of MATLAB functions have been made to ease the use of the Wii
remote. Table B.1 shows the most common functions. This list has been
retrieved from [6].

Table B.1: Useful WiiLAB functions

Class Function Name Description
Connection initializeWiimote() Connects to and initializes

the Wii remote
isWiimoteConnected Checks if any devices are

connected
disconnectWiimote Disconnects and shuts

down the Wii remote
Wiimote State isButtonPressed(button) Checks if button is pressed

getWiimoteAccel() Retrieves acceleration data
from the device

getAccelData(seconds)
getWiimoteIR() Retrieves the IR values

from the Wii remote
Feedback setWiimoteLEDs(led1,

led2,led3,led4)
Sets the LEDs to the de-
sired values

setWiimoteRumble(on) Turns on rumble

In addition, the structure wiimote can be accessed if it has been declared
as a global. The structure holds all the current states of the Wii remote,
as of its last update. This allows for more custom usage of the device, which
may not be possible through the use of the available functions.
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Tvrx

C.1 Interfacing the Library

The library has a very simple interface, making it quite easy to use. All the
other libraries are handled through Tvrx, including OpenCV, which is used
for the pose estimation and filtering, as well as WiimoteLib, which is used
to connect to the Wii remote. As the Wii remote is event driven, and the
library creates an event handler for this event, the sensor readings will at
all times be updated.

The library creates a singleton of type TrackerManager, which contains
all the relevant transforms for the pose estimation. First the system needs
to be initialized, using a call to the objects initialize method, as well as
starting the pose estimation.

Listing C.1: Main methods in the library

// initialize

TrackerManager.Instance.Initialize ();

TrackerManager.Instance.StartTracking ();

...

// update

TrackerManager.Instance.Update ();

...

// stop

TrackerManager.Instance.StopTracking ();

After initialization, whenever a need to calculate and update the pose
arises, a call to the update method has to be made. This call, based on
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the currently detected points, also recalculates all the transform which were
defined in the configuration file. The configuration file is treated more closely
in Appendix C.2. The tracking algorithm can be stopped at any time by
calling the StopTracking method, and this has to be called for a gracefully
exit of the program too. All these method calls are summarized in Listing
C.1.

As previously mentioned, whenever the update method is called, the li-
brary recalculates the pose of the marker. The transform may be accessed
using the method GetDeviceTransform. This method returns a matrix
of type Microsoft.Xna.Framework.Matrix, which is a 4 × 4 transforma-
tion matrix in homogeneous coordinates. The same can be done for the
configured proxy. Listing C.2 shows both these calls. The parameter of
GetDeviceTransform, and also for GetProxyTransform, is noteworthy here;
the parameter has to match the id the device has been assigned in the pre-
viously mentioned configuration file. For the device transform, this setting
is set as an attribute to <TrackedDevice>, while for the proxy transform,
it is set in <TrackerProxy>.

Listing C.2: Get transform matrices

Matrix dtransform = TrackerManager.Instance.

GetDeviceTransform (1);

Matrix ptransform = TrackerManager.Instance.

GetProxyTransform (1);

C.2 Tvrx Configuration

The Tvrx library has quite a few configuration options, and even though
most of the options are described in [14], some more options had to be altered
in order to get the correct rotation and translation transformations. All the
options are defined using XML in the configuration file Config/tracker.xml.
And as such, the configuration file has to start with the standard XML de-
scription, before the environment is defined. Listing C.3 shows how this is
done, and also how to close off the environment.

Listing C.3: Start and end of the configuration file

<?xml version="1.0" encoding="utf -8" ?>

<Tvrx>
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...

</Tvrx>

The camera, with its make, may now be declared as a TrackerCam object.
Here we are able to rearrange the axes, as well as state the camera’s position
and orientation. In our system we assume that the camera is placed in the
center of the frame of reference, with no rotation, and thus is defined as in
Listing C.4

Listing C.4: The TrackerCam object

<TrackerCam

id="0" cameramodel="Wiimote"

translation="0,0,0" rotation="0,0,0" scale="0.001"

xAxis="x" yAxis="y" zAxis="z">

</TrackerCam >

Next, the geometrical setup of the custom marker has to define in the ob-
ject MarkerBody. For the marker illustrated in Figure 4.7(a), the definition
of the XML object is as in Listing C.5.

Listing C.5: MarkerBody object

<MarkerBody >

<WiiMarkerBody id="5" name="Head Beacon"

nearClip="20" farClip="1500"

translation="0,0,0" rotation="0,0,0">

<point3d value="5.5, 6, 4.5"/>

<point3d value="49, 6, 19"/>

<point3d value="91.5, 6, 4.5"/>

<point3d value="49, 74.5, 27"/>

</WiiMarkerBody >

</MarkerBody >

As this library supports tracking of multiple markers using multiple cam-
eras, the markers have to be matched to their respective cameras. This is
done in the TrackedDevice object. In addition, the filters which are to be
used with these particular devices are defined here. Listing C.6 shows how
our device is configured. Here, the TrackerCamId with id = 0 has been
matched with the MarkerBodyId with id = 5, and a filter with the settings
in id = 4 will be used for both rotation and the translation. Additionally,
the library has been instructed to reverse the translation along the x− and
y−axes, and offset the rotation for yaw and roll by π. Additional offsets
may be defined in <LocalTranslation> and <LocalRotation>.
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Listing C.6: TrackedDevice object

<TrackedDevice id="1" type="WiiMote" rotation="True"

translation="True">

<MarkerBodyId >5</MarkerBodyId >

<TrackerCamId >0</TrackerCamId >

<ReverseTranslation >True ,True ,False </ReverseTranslation >

<ReverseRotation >False ,True ,False </ReverseRotation >

<LocalTranslation >0,0,0</LocalTranslation >

<LocalRotation >0 ,3.1416 ,3.1416 </LocalRotation >

<WorldTranslation >0,0,0</WorldTranslation >

<WorldRotation >0,0,0 </WorldRotation >

<RotationFilterId >4</RotationFilterId >

<TranslationFilterId >4</TranslationFilterId >

</TrackedDevice >

The filters with their parameters may be defined in the Datafilter
object. The five filters shown in Listing C.7 have been defined by the author
of the library, and the filter with id = 4 have been used in conjunction with
the Wii remote.

Listing C.7: Filter definitions

<Datafilter >

<PassThrough class="PassThroughFilter" id="0"/>

<!--A value is hz of measure updates. for 60fps use

0.01666 and for 30fps use 0.0333 -->

<Kalman class="KalmanFilter" id="1" A="1, 0.0333 , 0, 1"

measurement_noise_cov="0.05"

process_noise_cov_1="0.0001"

process_noise_cov_2="0.0001"/>

<Kalman class="KalmanFilter" id="2" A="1, 0.0333 , 0, 1"

measurement_noise_cov="0.1"

process_noise_cov_1="0.00001"

process_noise_cov_2="0.00001"/>

<Kalman class="KalmanFilter" id="3" A="1, 0.0333 , 0, 1"

measurement_noise_cov="0.3"

process_noise_cov_1="0.0001"

process_noise_cov_2="0.0001"/>

<Kalman class="KalmanFilter" id="4" A="1, 0.005, 0, 1"

measurement_noise_cov="1.0"

process_noise_cov_1="0.0000001"

process_noise_cov_2="0.0000001"/>

</Datafilter >

Furthermore, the library needs a definition of a proxy, which may be used
to hold the complete calculated device rotation and translation. However,
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in this system, the proxy would have the same pose as the marker. Listing
C.8 defines our proxy.

Listing C.8: Proxy definition

<TrackerProxy id="0" type="HEADTRACKER" activity="Camera">

<TranslationDeviceIds >1</TranslationDeviceIds >

<RotationDeviceIds >1</RotationDeviceIds >

</TrackerProxy >
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Appendix D

OpenCV

This chapter describes how the POSIT algorithm in OpenCV may be used to
estimate pose, and the code needed to achieve that objective. Actually, the
description is made for the C# wrapper library EmguCV, but the procedure
is valid for the C/C++ OpenCV library if care is taken to the language and
library differences.

The procedure covers the initialization and finalization of the estimation
algorithm, as well as the update steps which yield the pose estimates.

D.1 Initialization

The creation of the POSIT object requires only two parameters; an ar-
ray with the feature points which define the geometric setup of the optical
marker, and the number of the feature points.

The n-feature points have to be stored in an n × 3 float array with
the positions given in any given units. When this is done, the method to
create a POSIT object may be invoked, allowing it to return a pointer to
the object. Listing D.1 shows an example on this for our particular marker.

Listing D.1: POSIT Initialization

float[,] points = {{5.5f, 6.0f, 4.5f},

{49.0f, 6.0f, 16.5f},

{91.5f, 6.0f, 4.5f},

{49.0f, 74.5f, 27.0f}};

IntPtr positObject = CvInvoke.cvCreatePOSITObject(

testpoints , points.GetLength (0));
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D.2 Update

For any given POSIT object, a pose may be estimated for a number of image
points. However, the image points have to be compared to their respective
optical feature point. So, any given image point has to be the projected
representation of its respective physical feature point. In Listing D.2, we
have assumed that the correct mappings are known, and the image point
coordinates have been correctly stored in imagePoints. We also have to
make sure that the image points are defined in a coordinate system where
the origin is in the center of the image.

Furthermore, the termination criteria, the focal length of the camera
and the variables in which to store the estimated rotation and translation
are needed for the update step. As per DeMenthon and Davis in [11] the
termination criteria is to determine when a pose is accepted, or when it has
failed. The success criterion is the amount of change between the estimated
poses in consecutive iterations, while the fail criterion is defined as an upper
limit for the number of iterations. A complete update step is shown in
Listing D.2.

Listing D.2: POSIT pose estimation

// declare variables

float[] rotationMatrix = new float [9];

float[] translationVector = new float [3];

// store the detected image points in correct order

float[,] imagePoints = {{u1 , v1},

{u2, v2},

{u3, v3},

{u4, v4}};

// shift points around the principal point (u_p , v_p)

for (int i = 0; i < imagePoints.GetLength (0); ++i) {

points[i, 0] -= u_p;

points[i, 1] -= v_p;

}

MCvTermCriteria criteria;

criteria.type = TERMCRIT.CV_TERMCRIT_EPS | TERMCRIT.

CV_TERMCRIT_ITER;

criteria.epsilon = 0.00001f;

criteria.max_iter = 100;

double focalLength = 1380;
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CvInvoke.cvPOSIT(positObject , points , focalLength ,

criteria , rotationMatrix , translationVector);

D.3 Finalization

When finishing up the program, we need to tell OpenCV to release the
allocated memory, which it has allocated for the use in the pose estimation
for a POSIT object. This is easily done as shown in Listing D.3.

Listing D.3: POSIT finalization

CvInvoke.cvReleasePOSITObject(ref positObject);
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Appendix E

Additional Plots

In this chapter some of the additional results which were referred to in the
report are organized. This includes the full plots of Experiment 3 and 4,
including the pose estimates during the reverse motions.
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E.1 Estimated Values For Forward Panning Mo-
tion

(a) Rotation around the x-axis (b) Rotation around the x-axis

(c) Rotation around the x-axis (d) Translation along the x-axis

(e) Translation along the y-axis (f) Translation along the z-axis

Figure E.1: Estimates of pose parameters while panning repeatedly.
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E.2 Estimated Values For Forward Tilting Motion

(a) Rotation around the x-axis (b) Rotation around the x-axis

(c) Rotation around the x-axis (d) Translation along the x-axis

(e) Translation along the y-axis (f) Translation along the z-axis

Figure E.2: Estimates of pose parameters while tilting repeatedly.
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E.3 Estimated Values For Reverse Panning Mo-
tion

(a) Rotation around the x-axis (b) Rotation around the x-axis

(c) Rotation around the x-axis (d) Rotation around the x-axis

(e) Rotation around the x-axis (f) Rotation around the x-axis

Figure E.3: Estimates of pose parameters while panning at low velocity.
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E.4 Estimated Balues For Reverse Tilting Motion

(a) Rotation around the x-axis (b) Rotation around the x-axis

(c) Rotation around the x-axis (d) Rotation around the x-axis

(e) Rotation around the x-axis (f) Rotation around the x-axis

Figure E.4: Estimates of pose parameters while tilting at low velocity.
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Appendix F

Contents of the Attached CD

The directory structure of the attached CD is as follows:

• /software/
All the software is included in this directory.

– /ext_lib/
The external libraries used in this assignment are placed in this
directory.

– /vs/
The Visual Studio project including all the code is place here.

– /matlab/
The MATLAB specific code is included here.

• /report/
This report in digital form is placed in this directory.

In addition, the README file included on the CD should be examined for
more information.
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