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Abstract

Shortly after birth, healthy infants exhibit so-called fidgety movements, while
infants who later develop cerebral palsy (CP) lack these movements. General
Movement Assessment (GMA) which is a clinical method, has proven its ac-
curacy in detecting the absence (or presence) of fidgety movements, but for
practical reasons, this method has not been adopted widely in the clinics.

In order to create a similar but objective computer-based approach, Berg
(2008) and Meinecke (2006) have studied discriminative features based on
movement data collected from electromagnetic sensors and video. In this thesis,
in addition to evaluation and comparison of previously introduced features, dif-
ferent classification methods have been applied to a suboptimal subset of these
features. The results from linear and nonlinear separability analyses of features,
confirm that dynamic features have better descriptive capabilities compared to
statistically characterized features. Furthermore, it turns out that fidgety move-
ments in the head (neck) and the arms show significant potential in distinguish-
ing normal and abnormal infants, compared to signals from the trunk and the
feet.

The achieved results show 86% sensitivity and 90% specificity, which are highly
acceptable, but this study needs further attendance before having any clinical
usability. This study contains the first step of a typical medical research, mean-
ing that the global (generalized) validity of the implemented methods are yet
to be investigated, suppose that a representative selection (data) is available.
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1 Introduction

For the last decades, technical advances and improvements in obstetric and
neonatal care have led to a decrease in prenatal mortality. Especially among the
extremely premature infants, the chance of survival has greatly increased. De-
spite continued decrease in mortality rates, the incidence of neurosensory and
developmental handicaps has remained constant (M.Hack, 2001). This means
that a larger number of premature infants survive without major sequeale, but
there are also a larger number of prematurely born survivors with a high risk
of major handicaps such as cerebral palsy (CP)(L.Adde, n.d.).

In order to limit the consequences of infantile cerebral palsy (ICP), physio-
therapy should start as soon as possible. This requires that infants at risk are
detected at the earliest age possible. Today, diagnosis is based on visual ob-
servation by physicians and as such is influenced by subjective impressions.
Objective methods, quantifying the pathological deviation from normal sponta-
neous motor activity would be preferable as they, for example, allow an inter
-and intra-individual comparison of movements.

1.1 Background

1.1.1 Motivation

C To continue the progression in my study, in a way that it is in accordance
with my background in Medical Cybernetics.

C A personal interest in the field of pattern recognition. This field stems
from the need for automated machine recognition of objects, signals or
images, or the need for automated decision-making based on a given set
of parameters (R.Polikar, 2006). In this case, the decision-making is to
predict if an infant will develop Cerebral Palsy based on collected signals
indicating the child’s movements.

C A personal wish to use acquired knowledge to climb one more step to-
wards creating a technical and objective possibility for CP prediction, in
order to reduce the scope of prospective motor impairment in newborn
infants.

1.1.2 Previous groundwork

To be able to use any kind of pattern recognition techniques, the availability
of data is absolutely necessary. Movement data from 81 infants was collected
in an earlier study and has been used in this project. These movements were
registered using 6 sensors. The sensors were placed on wrists, ankles, chest and
head, as described in Table 1.
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Table 1: Placement of sensors (Berg, 2008)

Sensor nr. Placement
Sensor 1 Left ankle
Sensor 2 Chest
Sensor 3 Right wrist
Sensor 4 Left wrist
Sensor 5 Right ankle
Sensor 6 Head

Each sensor would measure its position in x, y and z coordinate system. In
addition, each sensor would also measure rotation of its appurtenant limb as
quaternions. The applied sampling frequency for data collection was 25Hz.

Figure 1: Coordinate system and sensor placement (Berg, 2008)

The movement data from each infant is a combination of several record-
ings. The interesting and relevant parts of each of recorded measurement, also
referred to as Region Of Interest (ROI), has been analysed and selected by a
physiotherapist. This means that every record contains one or more ROIs. As
an example, Fig. 2 displays measured values for all 6 sensors in xy-plane for a
simple ROI. It can be concluded that all the data accessed and utilized during
this master thesis, is composed of ROIs from infants with normal and abnormal
movements. A ROI contains time series data from all sensors in x, y and z di-
rections, in addition to quaternions. The ROIs have different length and could
vary from 25 seconds and up to 15 minutes.
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Figure 2: Measurements from different sensors (Berg, 2008). The units for the axes
has been unknown and irrelevant to the author. The same reason applies for
Fig. 5 and 6

1.1.3 Contribution

The goal of this project is to combine some predefined features gathered from
(Berg, 2008) and (Meinecke, 2006), and apply some classification methods,
using these combinations. The achieved results will be expressed using criteria
like separability, sensitivity and specificity. In order to obtain the aim of the
study, the author had to carry through the following points:

C Do a literature study on CP, GMS and previous attempts and comprehend
the theory behind them

C Go through and understand the applied methods in Andreas Berg’s work
and the way they were implemented, and if necessary, modify his code

C Carry through L. Meinecke’s approach and understand her procedure

C Implement L. Meinecke’s approach and find all of her statistical features

C Compare the results from Berg’s and Meinecke’s feature extraction based
on linear and nonlinear separability

C Implement an optimal or suboptimal selection and combination algorithm

C Apply the algorithm on the available pool of features

C Classification



4 1 Introduction

1.1.4 Structure of the report

This documentation is organized and divided into the following chapters:

Chapter 1: Introduces the task and background for the project and enlightens
the reader about the previous works and the attempts made today

Chapter 2: Gives the sufficient theoretical insight to understand the purpose of
this research, while explaining related attempts in the field of this project

Chapter 3: Demonstrates construction and interpretation of the study, and clar-
ifies the goals of this master thesis

Chapter 4: Introduces the extracted features and their origin. Furthermore, this
section describes the methods and the way they have been implemented

Chapter 5: Represents the achieved results and points out the best results and
observations

Chapter 6: The important choices made throughout the study and the achieve-
ments illustrated in previous chapters, are discussed in this section. In
addition, possible future works have been suggested and emphasized

Chapter 7: The most essential works and results accomplished during the
project are summarized

1.2 Cerebral Palsy

CP is a non-progressive motor impairment syndrome secondary to lesions or
anomalies of the brain arising in the early stages of development. The type
of motor impairment is divided into different categories according to which
functions or body parts that are affected. The seriousness of CP differs from
almost invisible disability to a serious handicap. Although the brain injury is a
non-progressive one, the clinical picture of CP is changing with increasing age
of the individual (E.Beckung, 2002).

As a consequence of the impairment, normal development and formation of
the central nervous system is retarded. The general clinical symptoms of CP are
characterised by very different, complex dysfunctions, such as tonus, strength,
course of motion and muscle co-ordination as well as other brain functions like
speech, vision or mental capabilities. CP affects approximately 1 in 500 infants.
The risk of CP is highest in extremely premature infants (birth weight less than
1kg and/or gestational age less than 28 weeks) (L.Adde, n.d.).
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1.3 Today’s approach

As a result of the complexity of neonatal brain development and the differ-
ent risk factors in different developmental stages, it is difficult to predict the
neurological outcome in young infants. A diagnosis of CP is often not estab-
lished until the age of 12-18 months (F.Palmer, 2002) and some of the mildest
forms may still not be diagnosed before the age of four. Some authors be-
lieve that early diagnosis of neurological development disorders is important
(H.F.Prechtl, 1997a,b; M.Hadders-Algra, 1996). The aim is to identify as early
as possible those infants who require early intervention for suspected neurolog-
ical abnormalities.

A number of techniques have been used to assess the brain at an early age.
The techniques vary from clinically based methods requiring no equipment,
such as various forms of neurological assessments tests, to sophisticated techni-
cal assessments, such as brain imaging (ultrasound, computer tomography and
magnetic resonance imaging) and neurophysiologic tests, including electroen-
cephalograms (EEG) and visual or sensory evoked potentials.

The introduction of ultrasound (US) techniques and magnetic resonance
imaging (MRI), have contributed to a better and earlier diagnosis of brain de-
fects in neonates. However, normal cerebral MRI and US can be found in infants
who later develop abnormally and vice versa. The accuracy of the different as-
sessment techniques to predict the neurological outcome of newborn babies at
risk shows a large variation. In addition to lack of accuracy in prediction of the
result, some of the methods need advanced technological equipment (L.Adde,
n.d.).

As explained earlier, the spontaneous movement of an infant is dependent
on development level of its motor coordination and can be related to whether
or not the infant has CP. In order to use this knowledge, a special type of spon-
taneous movement has been studied that has been termed general movements
(GM). In diagnosing a developing spasticity, the physician is usually dependent
on his subjective visual observations of the baby’s GMs and traditional neuro-
logical examinations. This is termed the general movement assessment tech-
nique (GMA) (see Section 2.2) and has shown promising scientific outcomes.
Typically, the procedure starts by video-recording infant’s movement. Then the
video-record is observed by a doctor, physiotherapist and etc. Observation and
classification of such movement patterns may predict later neurological results
as CP as early as 3-5 months post term. In research settings, this method has
resulted in a diagnosis of CP with a sensitivity and specificity of about 93%
(L.Adde, n.d.).

However, most methodologies available, although some of which are quan-
titative in nature, do not consider the multitude of potential movement param-
eters available for an objective classification of patients regarding whether they
are healthy or at risk. Quantitative procedures are strongly dependent on the
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relevant movement parameters discriminating reliably between healthy and at-
risk patients (Meinecke, 2006).
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2 Theory

The young human nervous system endogenously, i.e. without being constantly
triggered by specific sensory input, generates a variety of motor patterns which
has been known for more than a century. In the observation of infants the inter-
est has changed from the analysis of the capacities to respond to a manifold of
sensory stimulations, to the observation of the un-stimulated infant. Naturalistic
observations led to the conclusion of the dominance of spontaneous behaviour,
i.e. behaviour not generated by sensory stimulation (H.Prechtl, 2004).

2.1 General Movements

General movements (GMs) are a distinct movement pattern carried out spon-
taneously. Unlike reflexes, spontaneous movements are patterns of movements,
which are not initiated by any obvious external stimuli. They occur in high fre-
quency starting around 7 weeks of gestation and disappearing around 12 month
of age (H.F.Prechtl, 1984). GMs are helpful in the early diagnosis of an impaired
central nervous system and the specific prediction of later neurological deficits.
Observation of the infant’s GM or the so-called general movement assessment
technique (GMA), has shown promising scientific results. Heinz Prechtl studied
motor activity in the human fetus and newborn infants over many years. He
claimed that the quality of spontaneous movements, especially the quality of
GMs accurately reflects the condition of the nervous system of the fetus and
the young infant. GMs involve the whole body in a variable sequence of arm,
leg, neck and trunk movements. They wax and wane in intensity, force and
velocity. Rotations along the axis of the limbs and slight changes in the direc-
tion of movements make them fluent and elegant and create the impression of
complexity and variability (H.F.Prechtl, 1997a).

2.1.1 Preterm General Movements

GMs observed before term are called foetal or preterm GMs. There is no no-
ticeable difference between foetal and preterm GMs, indicating that neither
the increase of force of gravity after birth nor maturation has an influence on
the appearance of GMs. The preterm GMs have typical characteristics like fast
speed and large amplitudes (H.Prechtl, 2004).

2.1.2 Writhing Movements

GMs at term age and until 6 to 9 weeks post term age are called writhing move-
ments. Writhing movements are defined as repetitive wormlike movements of
the limbs and fingers due to brain lesion. They are distinguished by slow to
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Figure 3: Developmental course of general movements (GMs). Foetal GMs do not
change in form at birth (preterm or at term). There is some overlap be-
tween writhing and fidgety GMs at about 6- to 8-weeks postterm. At 12- to
15-weeks postterm infants start with voluntary movements e.g. manipulating
objects, cooing vocalization, and antigravity movements (H.F.Prechtl, 1999)

moderate speed and small to moderate amplitude. Typically, they are ellipsoid
in form, which creates the impression of a writhing quality (H.Prechtl, 2004).

2.1.3 Fidgety Movements

At 6 to 9 weeks post term age, writhing movements gradually disappear while
fidgety GMs gradually emerge. Fidgety movements are defined by Prechtl et
al as an ongoing stream of small, circular and elegant movements of neck,
trunk and limbs. These movements are characterised by moderate speed and
variable acceleration in all directions. Fidgety movements can be observed best
when the infant is awake, alert and either lying supine or sitting reclined in a
baby seat (H.Prechtl, 2004). Studies carried out by Ferrai et al and Prechtl et
al, documented that the abnormal fidgety movements in preterm infants with
brain lesions and in asphyxiated full term infants predicts later neurological
impairment (L.Adde, 2004).

2.2 General Movement Assessment

The qualitative assessment of GMs is a method, which takes into account fully
the complexity of the nervous system and at the same time fulfils the require-
ment of being not so time consuming at all. In addition, it is totally non-
intrusive and can even be applied under intensive care conditions in very sick
infants, when neurological examinations cannot be carried out.
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This is an empirical method which requires physicians observing GMs of
infants and predicting if there is an indication of later development of CP. It
is usually achieved by video recording the infants periodically, which greatly
assists detailed analysis, and searching for abnormalities in different types of
GMs. Based on the observation, the physician can classify the infant as healthy
or at-risk. There are two specific features of GMs that reliably predict the later
neurological outcome of CP (H.F.Prechtl, 1999):

C "A persistent pattern of cramped-synchronized GMs. These GMs appear
to be rigid and they lack the normal smooth and fluent character. All
limb and trunk muscles contract and relax almost simultaneously. If this
pattern exists over several weeks during preterm and term age, spastic CP
will develop at a later age."

C "The second specific predictor is the absence of GMs of fidgety charac-
ter or the so-called fidgety movements. Their absence predicts CP with a
sensitivity of 95% and a specificity of 96%."

The GMA classification will then be compared with the later neurological
outcome.

2.3 Previous Attempts on Computer-based Movement Analy-
sis

Some work has been conducted in this area by Meinecke et al, as disclosed in
(Meinecke, 2003) and (Meinecke, 2004). During these documents, an estima-
tion method for predicting whether an infant is likely to have CP or not has
been developed based on real-world indications from 3D movement data of the
baby. In order to identify movement features that are cable of discriminating be-
tween healthy and at-risk infants, experienced physicians have been consulted.
This resulted in extraction of 125 parameters based on movements or combina-
tions thereof were determined which are relevant to CP. Such relevant features
like movement speed, trajectory smoothness, periodicity, range of motion and
acceleration. In this approach, in order to estimate whether or not the infant
is healthy or at-risk, parameter data for babies which have already been clas-
sified by a physician are used to select optimum parameter combinations. For
example, five optimum parameters are selected using cluster analysis based on
Euclidian distances. To estimate the risk of having CP in an infant, these five
parameters are measured for the baby, and it is then determined whether they
are within the range of standard deviation for the norm collective in respect of
each parameter. Depending on the number of parameters within or outside the
standard deviation, classification is effected (L.Adde, n.d.).
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Furthermore in 2006, Meinecke et al carries out a similar approach to her
previous work, with the title "Movement analysis in the early detection of new-
borns at risk for developing spasticity due to infantile cerebral palsy" (Meinecke,
2006). Based on a 3D motion analysis system, the aim of the study was to
develop a methodology which allows for the objective and quantitative de-
scription of unconstrained spontaneous movement in newborns. The identified
movement parameters reflect those factors used by the clinicians during visual
assessment of the baby’s movement. These parameters quantitatively describe
the differences between healthy and affected participants. Subsequently, opti-
mized parameter combinations had to be found to categorize the participants’
movement into homogeneous classes entitled healthy or at-risk, respectively,
using an adequate classification procedure.

Twenty-two infants, 15 healthy full-term and seven high-risk pre-term in-
fants took part in the study. All infants were clinically examined by use of
ultrasonography and cranial computer tomography. Pathology of the at-risk
patients was ensured through ultrasound-based detection of cerebral haemor-
rhage and/or follow-up examinations for two years.

3D motion analysis was performed using a commercially available Vicon 370
motion analysis system. It is a passive detection system, allowing the contact-
free capturing of an arbitrary number of reflecting markers with a temporal
resolution of 50Hz and a high spatial precision. The kinematic biomechanical
model used to describe the relation between the marker trajectories and the
child’s movement, is a full body model. It is based on the rigid segment ap-
proach in which each segment is assigned to one bone and consists of segments
for the hand, forearm, upper arm, head, trunk, thigh, lower leg and foot.

Besides establishing a procedure for reliably retrieving the 3D movement
analysis data of newborn babies, the second aim of the study was to extract
those parameters of babies’ movements that would best describe the differ-
ence between healthy and affected participants. To acquire the parameters,
five experienced physicians in the field of neuropediatrics were asked for their
methodology of visual assessment. In the next step the visual criteria stated
by the physicians were reviewed for their applicability in parameter extrac-
tion and computer-based evaluation. Additionally, several physical parameters
were found, which so far were not used in this clinical context. These param-
eters, such as skewness, cross-correlation, Moving average and periodicity are
of a statistical and mathematical nature. Altogether 53 quantitative parameters
could be extracted from the patient’s data. In order to select the most signifi-
cant parameters, all possible combinations of 8 out of the 53 parameters in total
were tested for their selectivity. Cluster analysis was performed, utilising Euclid-
ian distances, to find the one combination of parameters that best discriminates
between healthy and affected participants. For classification, quadratic discrim-
inant analysis was applied. The capability of quadratic discriminant analysis
together with optimized parameter combination was tested for measurements
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of 11 healthy and 3 affected children that were part of an evaluation database.
Measurements that were already part of the training database were detected
with a specificity, sensitivity and overall detection rate of 95% each. Measure-
ments of the evaluation database were classified with a positive predictive value
of 30%. The negative predictive value reached 100%. Sensitivity also was 100%,
whereas specificity only reached 70%. Finally, the overall detection rate (accu-
racy) was 73%.

In 2008, Andreas Berg disclosed a computer-based movement analysis in his
master thesis, titled as "Model-based classification of infant’s movements". The
aim of the study was to use dynamic models to classify infants as healthy or
at-risk, based on their movement patterns. Movements were measured using 6
sensors placed on ankles, wrists, trunk and forehead. Each sensor measured its
position and rotation in 3D, but only the position data was processed during the
project. As part of the feature extraction, Principal Component Analysis (PCA),
which is a dimension reduction approach, was used to calculate parameters
along the dimensions with most variance. In order to describe the movements,
linear models with white noise as the input were applied.Both Single Input Sin-
gle Output (SISO) and Multiple Input Multiple Output (MIMO) were considered
while using Autoregressive (AR) and Autoregressive Moving Average (ARMA) as
models. The parameters that were calculated by these models were considered
as features during classification.

Before classification, the separability of parameters and their combinations
was evaluated using Bayes classification rule and Scatter matrix. The achieved
feature vector was classified using Linear Discriminant Analysis and K-nearest
neighbours. The results showed that the movements of arms and head are most
significant in discriminating between healthy and at-risk participants. By only
considering the head’s movement in y direction, side to side movement, 78.26%
specificity and 78.64% sensitivity was achieved. By combining the parameters
with high selectivity, a specificity of 90.91% and a sensitivity of 85.71% were
accomplished.

A methodological modular framework was presented in "Automated feature
assessment in instrumented gait analysis", by Sebastian Wolf. The goal was au-
tomated assessment of gait patterns. The processing steps of data selection,
gait parameter calculation and evaluation were not limited to a specific field of
application and were largely independent of case-based clinical expert knowl-
edge. A set of 3670 parameters was ranked by relevance for classification of
a group of 42 diplegic cerebral palsy patients and an age-matched reference
group.

The novel approach described in this paper partly eliminates the limitations
of manual procedures in evaluating gait and has produced a semi-automated
modular system for objective analysis of gait data. This new method semi-
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automatically replicates results from previous studies which were obtained us-
ing conventional methods and features were extracted which have not been
considered so far, but which emphasize additional group specific differences.
The new method was put in context with the normalcy index as an important
alternative approach for assessment of CP gait. The normalcy index yields a
scalar number in terms of a distance measure, which makes it a very intuitive
and practical tool for research and clinical applications.

Since the method here uses clinical expert knowledge on a more general
level than the normalcy index does, it can be assumed that it has the potential
to be transferred in an objective way to different kinds of pathologies. The new
method needs to be demonstrated in more detail in future work.

2.4 The validity of the GMA

When introducing an assessment technique, the effectiveness of the method
must be considered carefully. This could be measured based on the following
criteria:

C "How accurate is the method when it comes to detecting disease positive,
i.e. later neurological deficits."

C "How accurate is the method at excluding disease negatives, i.e. those
who don not have later neurological deficits."

The conventional indicators employed to determine these points are sensi-
tivity and specificity.

Sensitivity is the number where both disease positive and test positive indi-
viduals are divided by the number of those who are disease positive. In other
words, it is the percentage of cases which are correctly identified as high-risk
for later neurological impairment. Specificity is the number which both dis-
ease negative and test negative patients are divided by the number of disease
negative participants. In other words, it is the percentage of cases which are
correctly identified as normal (H.Prechtl, 2004).

As a simpler definition containing information from both sensitivity and
specificity, the Youden Index is demonstrated as follows:

Y = Sensitivity + Specificity − 1 (1)
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3 Aim of the study

The goal of this thesis is to comprehend the importance of the General Move-
ment Assessment (GMA) method and the GMA-based features extracted by Berg
(2008) and Meinecke (2006). In addition to implementing the suggested fea-
tures, they must be evaluated and compared. For this purpose, techniques like
Scatter matrix and k-means clustering shall be studied and applied. Further-
more, an algorithm has to be designed in order to carefully select and combine
the implemented features. The performance of the algorithm is expected not to
be divergence. Subsequently, Linear Discriminant Analysis and Quadratic Dis-
criminant Analysis have to be used as classifiers, in order to assess how optimal
the feature combination has been.

Finally, the achieved classification results should be introduced and discussed.
Among the discussion topics are the choice of methods, their performance and
the clinical perspective and usability of this project.



14 4 Method description and implementation

4 Method description and implementation

The present project provides a method of categorising data derived from the
movements of living subject, comprising: processing the data to extract infor-
mation and classify the extracted information into one of a plurality of cate-
gories using a classification model, wherein the classification model is trained
using data derived from the movements of other subjects whose category is
known.

The extracted information relates to patterns of movement which may, or
may not, be readily recognisable to a human observer. Since this approach does
not involve or require these patterns to be defined or recognised as such, the
method is not dependent on particular human-defined parameters. Instead, the
information is extracted from the movement data in order to classify data. Thus,
the present technique can take into account movement phenomena that are
otherwise incomprehensible to humans (or at least not readily recognisable or
describable), for example because they involve complex inter-relationships of
the movements of a plurality of limbs.

This chapter describes the approaches applied in order to carry out feature
extraction, feature selection and classification.

4.1 Feature Extraction

Feature extraction involves simplifying the amount of resources required to
describe a large set of data accurately. When performing analysis of complex
data one of the major problems stems from the number of variables involved.
Analysis with a large number of variables generally requires a large amount of
memory and computation power or a classification algorithm which overfits the
training sample and generalizes poorly to new samples. Feature extraction is a
general term for methods of constructing combinations of the variables to get
around these problems while still describing the data with sufficient accuracy
(Wikipedia, 2009a).

Based on the achieved results from Meinecke et al. and Andreas Berg, only
the most appropriate features are chosen to be implemented in this project.
Meinecke et al. proposed that features like skewness, cross-correlation, moving
average and periodicity were powerful choices, while Andreas Berg applied Prin-
cipal Component Analysis and different types of Autoregressive models.

4.1.1 Skewness

To evaluate the distribution of velocity, the statistical parameter skewness was
used. In probability theory, skewness is a measure of the asymmetry of the prob-
ability distribution of a real-valued random variable. Therefore, in case of a nor-
mal distribution, skewness is zero. Several types of skewness are defined, the
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terminology and notation of which are unfortunately rather confusing. "The"
skewness of a distribution is defined in (Wolfram MathWorld, 2009b) to be

γ1 =
µ3

µ2
3/2

(2)

where µ is the ith central moment. This equation can be simplified using a
sample of n values with g1 as an estimator for the skewness γ1

g1 =
1
n

∑n
j=1(xj − x̄)3

( 1
n

∑n
j=1(xj − x̄)2)3/2

(3)

where xj is the jth value and x̄ is the sample mean. Furthermore, figure
4 illustrates positive and negative skewness. Positive skewness means that the
distribution has a long tail in the positive direction. The long tail in the negative
direction indicates a negative skewness. Thus, skewness can be explained as if
both tails of one distribution have different length.

Figure 4: Skewness in a distribution (Wikipedia, 2008)

Skewness was calculated for the absolute value of velocity of head, trunk,
arms and feet using the function skewness in Matlab.

4.1.2 Cross-correlation

Cross-correlation is a measure of similarity of two waveforms as a function of
time-lag applied to one of them. Based on the cramped synchronized move-
ments observed by Prechtl et al. the movement of the end effectors with regard
to their possible correlation was examined. The aim was to determine whether
movement of certain markers proceeds in the same direction at the same time
(Meinecke, 2006). In this case, the cross-correlation was calculated based on
absolute value of velocity for single trajectories with zero lag. As a result, the
cross-correlation coefficient between the markers of left and right foot, and left
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and right arm. Equation 41 describes cross-correlation between the markers for
left foot and right foot

CCx,LFoot−RFoot =
σ2
x,LFoot−RFoot√

σ2
x,LFoot · σ2

x,RFoot

(4)

σ2
x,LFoot−RFoot =

1

n− 1

n−1∑
i=1

(xLFooti − x̄LFoot)(xRFooti − x̄RFoot) (5)

σ2
x,LFoot =

1

n− 1

n−1∑
i=1

(xLFooti − x̄LFoot)2 (6)

where n is the number of samples. It should be noted that equation 6 is
analogous for σ2

x,RFoot.

4.1.3 Area out of standard deviation of moving average and area differing
from moving average

The movement of healthy children, in contrast to that of affected children, is
characterised by smooth and harmonious marker trajectories of the end effec-
tors. Since the signals contain amplitudes with many different lengths, it is not
easy to compare them. Thus, by applying moving average, a continuous mean
with regard to the past and future values of the signal, a smooth and compa-
rable signal can be obtained. Usually, moving average is used to analyse a set
of data points by creating a series of averages of different subsets of the full
data set. So a moving average is not a single number, but it is a set of numbers,
each of which is the average of the corresponding subset of a larger set of data
points.

With another word, consider a window with k as its width. Furthermore,
the average of contents of this window is continuously calculated, while the
window moves along the signal. The windowing with k is of vital importance:
it has to be large enough to calculate deviations between the marker trajectory
and the moving average. On the other hand, if k is made too large, the analysis
will become diffuse. Meinecke et al. chose k = 99 and the same value was used
in this project.

In a further step, the standard deviation of the trajectory from its moving
average within the windowing width k was calculated. The divergence of a
trajectory’s movement from that same trajectory’s moving average value could
then be quantified in two ways:

1There was a misprint in what Meinecke et al. introduce as CCx,LFoot−RFoot where the
output of the equation 5 was in power of 3 instead of 2.
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5a: Normal

5b: Abnormal

Figure 5: Area differing from moving average

C The first approach quantifies the area in which the trajectory simply dif-
fers from the moving average as illustrated in Fig. 5. As there will always
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be at least a small deviation of the trajectory from the moving average,
this parameter tends to be greater than zero at all times.

C The second approach takes only those areas into account in which the tra-
jectory is out of the standard deviation of the moving average as depicted
in Fig. 6.

In contrast to the first approach, the parameter from the second approach
will only rise as a result of high deviations from a smooth movement (near the
moving average).

The moving average x̃j (here examplarily for x) of uneven order k is defined
(Meinecke, 2006) as follows:

x̃j =
1

k

j+ k−1
2∑

i=j− k−1
2

xi with j =
k + 1

2
, · · · , n− k − 1

2
. (7)

Summing up the differences between moving average and trajectory for each
sample:

∆s,x =

n− k−1
2∑

j= k+1
2

|xj − x̃j| (analogous for y and z axes) (8)

Normalizing the differences between moving average and trajectory on mea-
surment length:

ηs,x =
∆s,x

n− k
(analogous for y and z axes) (9)

Merging the calculated areas of all three spatial axes to one parameter:

ηs,Feet =
∑
h

ηs,LFooth +
∑
h

ηs,RFooth with h = [x, y, z]. (10)

4.1.4 Periodicity

The movement of healthy children is characterized by a high degree of com-
plexity, while an affected baby’s movement is much more monotonous and lacks
variation which means it has a more periodic appearance (Meinecke, 2006). In
contrast to the aforementioned "area" parameters, periodicity is characterized
by repetitive movements of high amplitude of the end effectors, and not by
small variations or shakiness of movement.
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6a: Normal

6b: Abnormal

Figure 6: Area out of standard deviation of moving average

Periodicity could be calculated by first determining the number of intersec-
tions between the signal and its arithmetic mean and then calculating the dis-
tance εs,i between each two intersections. After calculating the mean ε̄ and stan-
dard deviation σs,ε of these distances, the periodicity parameter can be defined
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(exemplarily for the x-axis) as

Ps,x =
1

σs,ε + ε̄s,x
(11)

Merging the periodicities of left and right foot for each of the three spatial
axes:

Ps,Feet =
∑
h

Ps,LFooth +
∑
h

Ps,RFooth with h = [x, y, z]. (12)

Meinecke et al. suggested to use moving average of high order where the
window-width was k > 1000, but they could not apply this method due to gaps
in the trajectories in their data. In addition, an important drawback of using
moving average would have been that many samples in the beginning and end
of the measurement would have been needed for calculation of the moving
average, thus diminishing the available movement data.

Since the data used in current project has not the same problem as Meinecke
et al. had, a similar approach to moving average is applied, using a low-pass
filter. A data signal (position-time curve in motion analysis) normally has a
mixture of different frequency components in it. The frequency contents of the
signal and their powers can be obtained through operations such as the Fast
Fourier Transform (FFT). A low-pass filter passes relatively low frequency com-
ponents in the signal but stops the high frequency components. The so-called
cutoff frequency divides the pass band and the stop band. In other words, the
frequency components higher than the cutoff frequency will be stopped by a
low-pass filter. This type of filter is especially useful since the random errors
involved in the raw position data obtained through reconstruction are charac-
terized by relatively high frequency contents. Butterworth filters are one of the
most commonly used digital filters in motion analysis. They are fast and sim-
ple to use. Since they are frequency-based, the effect of filtering can be easily
understood and predicted. The order and the cutoff frequency chosen for this
project were respectively 5 and 0,025 Hz. The behavior of a filter can be summa-
rized by the so-called frequency response function, H. The frequency response
function of the Butterworth low-pass filter has the following form (J.G.Proakis,
2007):

|H(Ω)|2 =
1

1 + (Ω/Ωc)2N
(13)

where N is the order of the filter and Ωc is the cutoff frequency. In order
to calculate the filter parameters, Butterworth filter design was applied. Fur-
thermore, the Matlab function filtfilt was used for signal processing. The
function filtfilt performs zero-phase digital filtering by processing the input
data in both the forward and reverse directions. After filtering in the forward di-
rection, it reverses the filtered sequence and runs it back through the filter. The
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advantage of this approach is that the result has precisely zero-phase distortion
and a magnitude that is the square of the filter’s magnitude response.

Periodicities were calculated for the feet and arms, using both the position
trajectory and the absolute velocity trajectory.

4.1.5 Principal Component Analysis (PCA)

Andreas Berg considered several features in his master thesis (Berg, 2008), but
not all of the retrieved features were helpful in the process of classification. An-
dreas Berg achieved an acceptable linear separability applying PCA and Single
Input Single Output (SISO) Autoregressive (AR) model.

Component analysis is an unsupervised approach to find the "right" features
from the data. The principal component analysis projects d-dimensional data
onto a lower-dimensional subspace in a way that is optimal in a sum-squared
error sense. First, the d-dimensional mean vector µ (15) and d × d covariance
matrix Σ (14) are computed for the full data set.

Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)T (14)

where xi = [xi1 , · · · , xij ]T and µ =
1

N

N∑
i=1

xi (15)

Next, the eigenvectors and eigenvalues are computed and stored according
to decreasing eigenvalue. Then choose the k eigenvectors having the largest
eigenvalues. Often there will be just a few large eigenvalues, and this implies
that k is the inherent dimensionality of the subspace governing the "signal",
while the remaining d − k dimensions generally contain noise. Next a d × k
matrix whose columns consist of the k eigenvectors is formed and called A.

The representation of data by principal components consists of projecting
the data onto the k-dimensional subspace according to (R.O.Duda, 2001)

F1(x) = AT (x− µ) (16)

As Fig. 7 describes, PCA is used to preprocess the raw data before feeding the
data into the AR model, as an alternative way. In other words, all the possible
inputs to the SISO AR model are the coordinate axis x, y, z, in addition to the
projection onto the axis or plane defined by PCA 2.

In case where PCA is applied in preprocessing level, only the distance from
each sensor to the axis defined by PCA is used as a feature. The reason for this
choice and the parameters from the SISO AR model were selected in this project
based on their performance. The selection criterion was based on a threshold

2This interpretation was not very well revealed through Andreas Berg’s master thesis.
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Figure 7: Application of PCA in preprocessing level

equal to 3, which was calculated using the Youden index (See Eq. 1) for features
represented in (Berg, 2008).

4.1.6 Autoregressive Model (AR)

An AR-model is a type of random process which is often used to model and
predict various types of natural phenomena. The AR-models are usually used in
time series analysis to describe stationary time series. These models represent
time series that are generated by passing the white noise through a recursive
linear filter. The output of such a filter at the moment n is a weighted sum of p
previous values of the filter output. The integer parameter p is called the order
of the AR-model.

yn =

p∑
k=1

akyn−k + en (17)

where en is the noise. As mentioned earlier, Anders Berg demonstrated in
his master thesis that the SISO AR-model showed a good separability. Thus,
the same approach was applied in this project with p = 4 as the order of the
dynamic model. The features achieved by AR model are:

C The distance between each sensor and the axes x, y, z

C The distance between sensors in x-plane

C The distance from the origo of the coordinate system to each sensor in xy,
xz and zy plane. In addition, the absolute distance from origin to every
sensor was also considered.

4.2 Optimization of Parameter Combination

In feature selection and combination, this author specifically means selection of
m features that provide the most discriminatory information, out of a possible
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d features, where m < d. In other words, by feature selection, this author refers
to selecting a subset of features from a set of features that have already been
identified by some preceding feature extraction algorithms (see Section 4.2.2).
The main question to answer under this setting is then "which subset of features
provide the most discriminatory information?"
A criterion function is used to assess the discriminatory performance of the fea-
tures, and a common choice for this function is the performance of a subsequent
classifier trained on the give set of features. In essence, we are looking for a sub-
set of features that leads to the best generalization performance of the classifier
when trained on this subset. It should be noted, of course, the best subset then
inevitably becomes a function of the classifier chosen. The feature selection
is therefore said to be wrapped around the classifier chosen, and, hence, such
feature selection approaches are referred to as wrapper approaches.

There is, of course, a conceptually trivial solution to this problem: evaluate
every subset of features (all possible combinations of features) by training a
classifier with each such subset, observing its generalization performance, and
then selecting the subset that provides the best performance. Such an exhaustive
search, as conceptually simple as it may be, is prohibitively expensive (compu-
tation wise) even for a relatively small number of features. This is because the
number of subsets of features to be evaluated grows combinatorially as the
number of features increase. For a fixed size of d and m, the number of subsets
of features is

C(d,m) =
d!

m!(d−m)!
(18)

Fortunately, more efficient search algorithms exists that avoid the full ex-
haustive search, such as the well-established depth-first search, breath-first search,
branch and bound search, as well as hill climb searches referred to as forward
and backward sequential feature selection. The latter one is applied in this
project.

4.2.1 Separability of Features

In order to define how informative a feature is, the separability between the nor-
mal and abnormal data is calculated using the selected feature. Thus, the value
gained from separability measurements, can be considered as a discriminating
criterion between features applied in (Berg, 2008) and (Meinecke, 2006). The
separability can be linear or nonlinear. The first one is achieved using Scatter
matrix and the latter one is defined by analysis from k-means clustering.

4.2.1.1 Scatter Matrix Scatter matrix contains information about how the
feature vectors are dispersed in a n-dimensional space. Different variations of
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Scatter matrixes exist, among them Within-class, Between-class -and Mixture
scatter matrix, which are defined as follows (Berg, 2008):

Within-class scatter matrix:

Sw =
M∑
i=1

PiSi (19)

where M is the number of classes and Si is the covariance matrix for the class
wi:

Si = E[(x− µi)(x− µi)T ] (20)

and Pi is the probability for the class wi and x ∈ Rn:

Pi ≈
ni
N

(21)

Between-class scatter matrix:

Sb =
M∑
i=1

Pi(µi − µ0)(µi − µ0)
T (22)

where µ0 is the global mean:

µ0 =
M∑
i=1

Piµi (23)

Mixture scatter matrix:
Sm = Sw + Sb (24)

In order to measure how good the classes are separated, the criterion J is
introduced:

J = trace(S−1
w Sm) (25)

4.2.1.2 K-means Clustering K-means is one of the simplest unsupervised
learning algorithms that solve the well known clustering problem. The proce-
dure follows a simple and easy way to classify a given data set through a certain
number of clusters (assume k clusters) fixed a priori. The main idea is to de-
fine k centroids, one for each cluster. These centroids should be placed in a
cunning way because of different location causes different result. So, the better
choice is to place them as much as possible far away from each other. The next
step is to take each point belonging to a given data set and associate it to the
nearest centroid. When no point is pending, the first step is completed and an
early groupage is done. At this point we need to re-calculate k new centroids
as barycenters of the clusters resulting from the previous step. After we have
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these k new centroids, a new binding has to be done between the same data
set points and the nearest new centroid. A loop has been generated. As a result
of this loop we may notice that the k centroids change their location step by
step until no more changes are done. In other words centroids do not move any
more. Finally, this algorithm aims at minimizing an objective function, in this
case a squared Euclidean distance where each centroid is the mean of the points
in that cluster. The algorithm for k-means clustering is defined as (R.O.Duda,
2001):

Algorithm (k-Means Clustering)
begin initializing n, c, µµµ1, µµµ2, · · · , µµµi

do classify n samples according to nearest µµµi
recompute µµµi

until no change in µµµi
return µµµ1, µµµ2, · · · , µµµc

end

The computational complexity of the algorithm is O(ndkT ) where d is the
number of features and T is the number of iterations. n denotes the known
number of patterns and k is the desired number of clusters. In practise, the
number of iterations is generally much less than the number of samples.

8a: Step 1 8b: Step 2 8c: Step 3 8d: Step 4

Figure 8: Demonstration of the standard K-Means Clustering algorithm (Wikipedia,
2009b).
1) k initial "means" (in this case k = 3) are randomly selected from the data
set (shown in color).
2) k clusters are created by associating every observation with the nearest
mean. The partitions here represent the Voronoi diagram generated by the
means.
3) The centroid of each of the k clusters becomes the new means.
4) Steps 2 and 3 are repeated until convergence has been reached.

The algorithm is deemed to have converged when the assignments no longer
change. As it is a heuristic algorithm, there is no guarantee that it will converge
to the global optimum, and the result may depend on the initial clusters. As
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the algorithm is usually very fast, it is common to run it multiple times with
different starting conditions.

When it comes to choosing the k as the predefined number of clusters, two
similar approaches have been implemented for the purpose of this project. The
idea behind both approaches is to find the distance between created clusters
and then choose the suboptimal k based on the largest distance. Thus, the clus-
tering algorithm is run with several different numbers of clusters. Afterwards,
for each k, the between-cluster distances and the mean of them are calculated.
Finally, the k with the largest averaged distance is chosen and the k-mean clus-
tering is run with the suboptimal k one more time.

Mahalanobis and Euclidean distances are the two techniques applied here
for calculation of the between-cluster distances. It is up to the user to pick one
of the techniques. Euclidean distance between two points is the length of the
path connecting them. In general, the distance between the points x and y in a
Euclidean space Rn is given by (Wolfram MathWorld, 2009a):

d = |x− y| =

√√√√ n∑
i=1

|xi − yi|2 (26)

In Matlab, the function silhouette was used for measuring the distances
between the clusters based on Euclidean distance.

In statistics, Mahalanobis distance is a distance measure introduced by P. C.
Mahalanobis in 1936. It is based on correlations between variables by which
different patterns can be identified and analysed. It is a useful way of deter-
mining similarity of an unknown sample set to a known one. It differs from
Euclidean distance in that it takes into account the correlations of the data set
and is scale-invariant, i.e. not dependent on the scale of measurements. The
equation for the Mahalanobis distance is defined as R.O.Duda (2001):

r2 = (xxx− µµµ)TΣ−1(xxx− µµµ) (27)

where µµµ = (µ1, µ2, · · · , µN) is the mean vector and Σ is the covariance ma-
trix for a multivariate vector xxx = (x1, x2, · · · , xN). It is in the author’s interest to
find the distance between two clusters. Since Mahalanobis distance is defined
as the distance from a point to a cluster, it is necessary to calculate the distance
between all points in cluster A to cluster B. Then the result should be normal-
ized by dividing it by the product of the number of points in A and B. At the
final step, the mean of all the distances from A to B is found and used as the
Mahalanobis distance between two clusters. In Matlab, the function mahal was
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appropriate for this purpose.

The clustering algorithm is run with normal and abnormal data, separately,
using only the training data. When the suboptimal k is found and the k-means
clustering algorithm has stopped, the separability between the normal and ab-
normal sets is computed. In this case, the same Mahalanobis distance approach
is applied, considering the clusters from normal data and abnormal data as
inputs (Appendix B.1).

4.2.2 Wrapper Method: Backward Sequential Feature Selection

As mentioned before, evaluating all subsets of features is extremely expensive
in a computational manner. Thus a more clever but faster algorithm needs to
be developed at cost of getting a local optimum in stead of a globally optimal
feature combination. Before the applied procedure is explained, it is essential
to note that the sequence and ranking of the feature in a subset plays a vital
role when it comes to performance of the classifier. It can be demonstrated with
a simple example. Assume that there exists a subset containing four features.
Even though each of these features is very informative, individually, it does
not necessary mean that any sequence of their combination together will result
in good separability. So combining them as 1342 might give better result than
3214. Thus the question that comes to mind here will probably be "What feature
should we start our subset with and which one should be the next in line?"

In order to overcome this problem, the first part of the algorithm should
decide the sequence of features based on some weighting criteria. When the
sequence of features is known, the second part of the algorithm will consider
selection of those features who contribute the most, based on the some on-line
classification results. For the first part of approach used in this project, the func-
tion sequentialfs(fun,X,y) in Matlab seemed appropriate. It selects a subset
of features from the data matrix X that best predicts the data in y by sequentially
selecting features until there is no improvement in prediction. Rows of X cor-
respond to observations and the columns correspond to variables or features. y
is a column vector of response values or class labels for each observation in X,
and fun is a function handle to function that defines the criterion used to select
features and to determine when to stop. The output of sequentialfs is a log-
ical vector indicating which features are finally chosen. Since this procedure is
a so-called wrapper method, it uses the fun to implement a learning algorithm.
Methods like this usually apply cross-validation to select features.

The direction of the sequential search is chosen to be backward. This choice
specifies an initial candidate set including all features and an algorithm that
removes features sequentially until the criterion increases. For each candidate



28 4 Method description and implementation

feature subset, sequentilfs performs 10-fold cross-validation by repeatedly
calling fun with different training subsets of X and y, XTRAIN and ytrain, and
test subsets of X and y, XTEST and ytest as follows (Appendix B.2):

criterion = fun(XTRAIN, ytrain, XTEST, ytest)

As the objective function for this algorithm, a linear classifier was applied, using
the classify function in Matlab. The data fed to the algorithm contained only
the predefined training set (see Section 4.3.1). This was done in order to avoid
the classifier, which was used later on in the classification part, from being in-
troduced to the test sets, thus achieving generality.

As explained here, this algorithm returns a subset containing the most dis-
criminatory features. A critical issue that should be noticed about this algorithm
is that it returns different subsets based on its initial values. In order to find out
which feature has higher discriminatory value, the procedure was run several
times, iteratively. The number of iterations were 10, 100, 1000 and 10000. For
each of the chosen iterations, the produced subset was stored and the numbers
of times that every feature was appeared on the resulting subset were regis-
tered. A weight value for each feature was then calculated in percent demon-
strating the importance of the feature based on the total number of its appear-
ance on the subset. At the end of the first part, four subsets were achieved from
10, 100, 1000 and 10000 iterations. Each of the resulted subsets was sorted based
on the weight of the features. In other words, every final subset contained all of
features, but the features were ranked based on their calculated weight value.
Thus, at this stage, the sequence of the features was determined.

The second part of the feature selection algorithm, takes into account the
sorted subset from the first part. Now the selection part could start which was
designed by the author. Using a forward feature selection approach, the algo-
rithm starts with an empty subset. The algorithm goes through the ranked sub-
set of features and picks one by one, starting with the best features (highest
weight value), and places the feature in the subset. For every selection, a classi-
fication procedure is run and the sensitivity and specificity of the classification
result is calculated. Another alternative was the choosing Youden index (see
Eq. 1) as the criterion, instead of sensitivity and specificity. The classification is
done both with a linear and a quadratic classifier. Before adding the next fea-
ture to the subset, the previously calculated Youden Index is stored. Then after
adding the next feature, a new Youden index is calculated and compared to the
previous one. If there has been an increase in Youden index, the lately added
feature is kept in the subset, otherwise, it is removed from the subset. Then, the
algorithm moves on to evaluating the next feature in line and so on, until the
very last feature has been taken into account.
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The resulting subset will finally contain the suboptimal combination of the
optimally selected features.

4.2.2.1 Convergence of the feature combination algorithm Due to lack of
time, the convergence of the mentioned algorithm has not been proven math-
ematically. However, it can be shown that the algorithm will not diverge. The
algorithm is intuitively expected to converge, just as indicated by Fig. 9.

The plots illustrated in Fig. 9, which are only few examples, show that the
calculations are converging towards a linear line, especially after 1000 itera-
tions. The same plots can simply be produced and investigated for all features.
The code for this procedure is created by the author and is available in Ap-
pendix B.2.4. In order to gain more confidence on the convergence of the algo-
rithm, one could continue increasing the iterations up to 105 or even 106. The
idea was not realizable during this project, because of the exponentially high
computation time.

4.3 Classification

The final classification took place during the second part of the feature combi-
nation procedure. Thus, this section only explains the classifiers applied earlier,
in addition to reviewing creation of training -and test sets.

4.3.1 Data Partitioning

Before the implementation of feature extraction, selection, combination and
classification, the collected data were divided into training and test sets. As
explained in Section 1.1.2, there can exist one or several ROI-records from
each baby and every participant has a unique identification number. What that
makes the data partitioning more challenging is to avoid having the ROIs from
one participant in both training and test sets, which is a substantial principle,
and still select and place the participants randomly in training and test sets.

4.3.2 Discriminant Analysis

Originally developed in 1936 by R. A. Fisher, discriminant analysis is a classic
method of classification that has stood the test of time. Discriminant analysis
often produces models whose accuracy approaches (and occasionally exceeds)
more complex modern methods. Discriminant analysis can be used only for
classification, not for regression (P.Sherrod, n.d.). The target variable may have
two (which is the case here) or more categories. For the purpose of this project,
both the linear and quadratic variations of discriminant analysis were applied.
Using the Matlab function classify with the appropriate input arguments, the
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9a: Feature: head in y − plane, AR parameter nr. 2

9b: Feature: right arm in x− plane, AR parameter nr. 4

9c: Feature: area out of standard deviation for arms veloc-
ity

Figure 9: Examples of the suboptimal combination algorithm’s non-divergence be-
haviour
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classification was done during the final step of feature combination.

When linear discriminant analysis (LDA) is applied in a two-class problem,
consider a set of features x for each sample of an object or event with known
class ω. This set of samples is called the training set. The classification prob-
lem is then to find a good predictor for the class ω of any sample of the same
distribution (not necessarily from the training set) given only an observation
x. LDA approaches the problem by assuming that the conditional probability
density function p(~x|ω = 1) and p(~x|ω = 0) are both normally distributed. Un-
der this assumption, the Bayes optimal solution is to predict points as being
from the second class if the likelihood ratio is below some threshold α, so that
(Wikipedia, 2009c)

(~x− ~µ0)
TΣ−1

ω=0(~x− ~µ0) + ln|Σω=0| − (~x− ~µ1)
TΣ−1

ω=1(~x− ~µ1)− ln|Σω=1| < α (28)

Without any furthure assumptions, the resulting classifier is referred to as
quadratic discriminant analysis (QDA). LDA also makes the simplifying ho-
moscedastic assumption (i.e. that the class covariances are identical, so Σω=0 =
Σω=1 = Σ) and that the covariances have full rank. Thus, several terms can-
cel and the above decision criterion becomes a threshold on the dot product
~ξ · ~x < β for som constant β, where ~ξ = Σ−1( ~µ1 − ~µ0).

This means that the probability of an input x being in a class ω is purely a
function of this linear combination of the known observations.
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5 Results and observations

This chapter contains the results which are in accordance with the objectives of
the performed study (see Section 3) and the methods applied (see Section 4).
First the features from (Berg, 2008) and (Meinecke, 2006) will be compared us-
ing results from scatter matrix and k-means clustering. Then, the most optimal
set of combined features are introduced, along with the classification results. At
last, a ROC-plot will illustrate an evaluation of the feature combinations based
on their performance during the classification.

Before we start to analyse the results, it is necessary to carry through Table
2 in order to understand the symbols used throughout this section in different
tables. Since the names of some features are quite long, these symbols are used
to reduce the width of columns in tables, making them perspicuous.

Table 2: Explanation of symbols

SYMBOL DECLARATION

σ standard deviation
M̄ moving average
O origin of coordinate system
S sensor
Γ distance between two points

5.1 Feature Selection

As discussed in Section 4.1.6, the AR model was implemented as a 4th order
system identification model. Thus, if the tables in this chapter contain a column
named AR Parameter Number, it is referred to the order of the AR model. In
other words, an output of the AR model will have four features within itself.
For instance, the output "head sensor in y− axis" contains four AR parameters,
each of which being considered as a feature.

5.1.1 Linear Separability

Based on Eq. 25, Table 3 contains the calculated results for only those fea-
tures with good separability. The performance of all features can be found in
Appendix A. As it can be observed, periodicity gives the highest value for sepa-
rability, but the few next best features belong to the AR model.

By taking a closer look at the Eq. 25, it can easily be seen that the J will
increase infinitely when (µi − µ0) → ∞, while the lower boundary will go
toward 1 as (µi − µ0) → 0. With this scaling in mind, the periodicity is not
so separable after all, even though it is the highest calculated value relative
to other features. When considering the linear separability results, the focus
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should be on the decimal portion of the numbers and not the left hand side of
the point.

Using Table 3 as a general overview of linear separability of features, it is
obvious that the features suggested by Berg (2008) are more interesting than
the features applied by Meinecke (2006).

Table 3: Results for Scatter Matrix

(a) Periodicity
NAME OF FEATURE SEPARABILITY

PArms,Position 1.18591.18591.1859
PArms,V elocity 1.14891.14891.1489

(b) Sensors along the y-axis
NAME OF FEATURE SEPARABILITY

S6 in y − axis 1.09211.09211.0921
S3 in y − axis 1.0476

(c) Distance between sensors and PCA-
axis

NAME OF FEATURE SEPARABILITY

ΓPCA from axis to S6 1.08991.08991.0899
ΓPCA from axis to S3 1.0703
ΓPCA from axis to S4 1.0537
ΓPCA from axis to S2 1.0468

(d) Sensors along the x-axis
NAME OF FEATURE SEPARABILITY

S3 in x− axis 1.0635
S4 in x− axis 1.0520
S6 in x− axis 1.0431
S2 in x− axis 1.0424

(e) Distance between the sensors and O
in xz-plane

NAME OF FEATURE SEPARABILITY

Γxz−plane from O to S3 1.0484
Γxz−plane from O to S4 1.0414

(f) Distance between the sensors and O
in xy-plane

NAME OF FEATURE SEPARABILITY

Γxy−plane from O to S4 1.0515
Γxy−plane from O to S6 1.0426

(g) Area out of standard deviation
NAME OF FEATURE SEPARABILITY

Area out of σFeet,V elocity 1.0339

(h) Area differing from moving average
NAME OF FEATURE SEPARABILITY

Area out of M̄Feet,V elocity 1.0401

(i) Distance between arms in x-axis
NAME OF FEATURE SEPARABILITY

Γx−axis between S3 and S4 1.08301.08301.0830

5.1.2 Clustering Analysis

Table 4(a) and 4(b) demonstrate the non-linear separability among the top 20
features. The results are sorted and the highest values are place at the top. The
features represented in Table 4(a) are ranked based on the Euclidean distance
between the clusters. The most separable feature in this case is "the distance be-
tween the PCA axis and the right arm sensor". On the other hand, Mahalanobis
distance was applied in the same manner as the Euclidean distance. Table 4(b)
shows also the top 20 features selected and sorted based on Mahalanobis dis-
tance between the clusters. Here, the best value belongs to "the periodicity in
position signal from the infant’s arms".
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Table 4: Clustering Analysis

(a) Euclidean between-cluster distance

NAME OF FEATURE AR PARAMETER NUMBER DISTANCE

ΓPCA from axis to S3 4 2.4855
Area out of σFeet,V elocity - 1.8874
Γzy−plane from O to S4 4 1.2216
ΓPCA from axis to S3 3 0.9420
Γxz−plane from O to S4 4 0.9170
Γzy−plane from O to S6 4 0.6666
Area out of σArms,Position - 0.6643
ΓPCA from axis to S4 4 0.6422
ΓPCA from axis to S3 1 0.6218
Γxz−plane from O to S6 3 0.5146
ΓPCA from axis to S3 2 0.4352
Γx−axis between S3 and S4 1 0.4348
S6 in x− axis 3 0.4117
Γx−axis between S3 and S4 2 0.3215
ΓAbsolute from O to S3 3 0.3186
S3 in x− axis 3 0.3140
ΓAbsolute from O to S3 4 0.2441
Area out of M̄Arms,V elocity - 0.2357
Γxz−plane from O to S6 2 0.2011
S3 in x− axis 4 0.1957

(b) Mahalanobis between-cluster distance

NAME OF FEATURE AR PARAMETER NUMBER DISTANCE

PeriodicityArms,Position - 5.7060
Area out of M̄Feet,V elocity - 3.4041
Γxz−plane from O to S4 4 3.0031
Area out of σFeet,V elocity - 2.2721
Area out of σFeet,Position - 1.7555
Γxy−plane from O to S6 1 1.4939
ΓPCA from axis to S3 1 1.2522
ΓPCA from axis to S3 2 1.1393
ΓPCA from axis to S3 4 0.9473
Γx−axis between S3 and S4 1 0.7696
ΓPCA from axis to S3 3 0.7487
ΓAbsolute from O to S3 4 0.6974
Γzy−plane from O to S4 4 0.5724
S3 in x− axis 1 0.5508
S3 in x− axis 4 0.5238
ΓPCA from axis to S4 4 0.5148
Γxz−plane from O to S6 3 0.5146
S6 in x− axis 3 0.5119
Γzy−plane from O to S6 4 0.4196
Γx−axis between S3 and S4 2 0.3980



5 Results and observations 35

Considering both tables, the features from (Berg, 2008) and (Meinecke,
2006) are well included, both in quantum and quality. Furthermore, 15 of 20
features are mutually selected using both procedures, but the sequence and
ranking of the features are different. It can be observed that features like "the
distance from the PCA axis to arms and head", "the area out of standard devia-
tion for the feet sensors" and "the distance from the origin to head and arms in
different planes" are often selected. This could be an indication for how infor-
mative these features are, compared to the rest of them.

5.2 Feature Combination and Classification

In total, there were produced up to eight different combinations regarding the
10, 102, 103, 104 and criteria like Youden Index and sensitivity and specificity. Ta-
ble 5 only demonstrates the top four combinations which showed the best clas-
sification capability. It is noticeable that size of combinations are not restricted
and Table 5(c) contains the largest number of features. Furthermore, three of
the four presented tables apply Youden Index as their selection criterion while
only one of the tables uses QDA as its classifier. It is essential to take notice of
the sequence of features in each combination. If the AR parameter numbers of
a feature are separated by comma, this means that most left digit has higher
ranking than the following numbers. Despite the relatively good performance
of the features suggested by Meinecke (2006) as in separability value, very few
of them are taken into account in these combinations. Specially in Table 5(d),
there are none features belonging to Meinecke (2006).

In addition to explanation of the source of every feature in Section 4.1, there
is a simple way to distinguish them in represented tables. By considering the
column for AR parameter number in every table, it can be seen that only the
features belonging to Berg (2008) have such parameter number. Thus, features
who do not have an AR parameter number could be said to be originated from
(Meinecke, 2006). So it is easy to observe that the dynamic features extracted
from AR model are much more interesting than the statistic features. Further-
more, features related to the head sensor are highly informative and discrimi-
native, thus supporting Andreas Berg’s conclusion. A surprising observation is
the difference between the number of times the arms and feet sensors have
participated in combinations. Both during the separability analysis and feature
combination, the AR parameters from arms sensors play a much more impor-
tant role, compared to the signals from baby’s feet.
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Table 5: The most suboptimal feature combinations achieved

(a) Combination A with sensitivity and
specificity as selection criterion and lin-
ear classifier as @fun (see Section 4.2.2)

FEATURE AR PA-
RAMETER

NUMBER

S6 in y − axis 3
Γx−axis between S3 and S4 3
Γx−axis between S3 and S4 4
S4 in z − axis 3, 2, 4 3

S6 in y − axis 1
Γzy−plane from O to S6 2
S4 in x− axis 2
S4 in x− axis 4
Γxz−plane from O to S6 4
Γx−axis between S3 and S4 1
ΓAbsolute from O to S4 3
Γxz−plane from O to S4 4
ΓAbsolute from O to S3 4
ΓPCA from axis to S3 2
Area out of M̄ArmsPosition -
ΓPCA from axis to S6 1
Cross-correlationArms -

(b) Combination B with Youden Index
as selection criterion and linear classifier
as @fun (see Section 4.2.2)

FEATURE AR PA-
RAMETER

NUMBER

S3 in x− axis 3
S6 in y − axis 3
Γx−axis between S3 and S4 1
Γzy−plane from O to S4 2, 4 3

S3 in x− axis 4
S4 in z − axis 1
Γx−axis between S3 and S4 4
ΓPCA from axis to S4 4
ΓAbsolute from O to S3 3
Γxz−plane from O to S6 2
S4 in z − axis 4
ΓAbsolute from O to S4 1
Γxz−plane from O to S6 1
Cross-correlationArms -
Γxz−plane from O to S4 4
Cross-correlationFeet -
Area out of σFeetPosition -

(c) Combination C with Youden Index
as selection criterion and linear classi-
fier as @fun (see Section 4.2.2)

FEATURE AR PA-
RAMETER

NUMBER

S6 in y − axis 3, 43

S6 in x− axis 2, 33

Γzy−plane from O to S6 4
S4 in x− axis 4
Γzy−plane from O to S6 2, 33

S4 in z − axis 4
S6 in y − axis 1
S4 in z − axis 2
Γxy−plane from O to S6 2
S3 in x− axis 4
S4 in z − axis 1
ΓAbsolute from O to S4 2
Γxy−plane from O to S6 1, 33

Γzy−plane from O to S4 3
S4 in x− axis 2
Γxy−plane from O to S6 4
Γxz−plane from O to S6 1, 43

Area out of σArmsV elocity -
Area out of M̄ArmsV elocity -
ΓPCA from axis to S6 3, 43

Area out of σFeetV elocity -
ΓPCA from axis to S3 4
Area out of σArmsPosition -
ΓPCA from axis to S4 1
Cross-correlationArms -
SkewnessS3 -

(d) Combination D with Youden Index
as selection criterion and quadratic clas-
sifier as @fun (see Section 4.2.2)

FEATURE AR PA-
RAMETER

NUMBER

S6 in y − axis 2
Γx−axis between S3 and S4 1
S6 in x− axis 3, 23

S4 in z − axis 1
S6 in y − axis 3, 13

S4 in z − axis 2, 43

Γx−axis between S3 and S4 4, 43

S6 in x− axis 1
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Each of combinations has been denoted by a capital letter which is later on
used to link them to the appurtenant classification result in Table 6. The most
appropriate results are achieved by using LDA as the classifier, where the high-
est Youden Index acquired was 0.76 as shown in Table 6. Number of iterations
for the top result is known to be 103, which indicates the number of iteration
during the combination procedure (see Section 4.2.2).

Table 6: Classification

COMBINATION CLASSIFIER SENSITIVITY SPECIFICITY YOUDEN INDEX NUMBER OF ITERATIONS

A LDA 0.86 0.90 0.76 103

B LDA 0.90 0.84 0.74 101

C LDA 0.86 0.88 0.74 102

D QDA 0.76 0.90 0.66 102

Figure 10 illustrates Table 6 in a more standardized and comprehensive way,
using a ROC-plot.

Figure 10: Illustration of Table 6

3It is essential to take notice of the sequence of these AR parameter numberings.
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6 Discussion

6.1 Linear Separability of Features

Based on the values displayed in Table 3, features like "periodicity", "distance
between arms along the x − axis", "distance between PCA axis and sensors" and
"sensors along x and y − axis" give the highest linear separability values. Spe-
cially, the penultimate and last one are the most repetitive ones. Furthermore,
the sensor signals from head and arms are quite informative, substantiating the
results from Berg (2008). Surprisingly, the signals from feet sensors are not as
interesting as they were assumed to be. On the other hand, movements along
the x and y−axis are much more enlightening than the movements in direction
of z−axis, which is explainable by considering Figure 1. It is obvious that most
of the movement variation happens in x and y − axis, since the infant is lying
on his/her back, particularly the head movements, which are mostly from right
to left and vice versa.

Even though that the features "periodicity in position signal from arms" and
"periodicity in velocity signal from arms" show the best linear separability achieved
by Scatter Matrix, they are the only top feature which belong to the subset de-
fined by Meinecke (2006). All the remaining top features demonstrated in Table
3 belong to Berg (2008).

If the same "belonging" pattern of features repeats itself both in analysis from
k-means clustering and feature combination, it will be a very strong indicator for
supporting features from Berg (2008) in preference to features from Meinecke
(2006).

As explained in Section 5.1.1, the lower boundary for Eq. 25 is 1, while
the upper boundary is unlimited. With that in mind, a linear separability value
like 1.1859 (consider only the right hand side of the point) is not an extreme
value. Thus, the achieved results in Table 3 illustrate a poor linear separability
among the features included in this study. It would be interesting to see if a
non-linear classifier could also support this behaviour. A not so time-consuming
attempt should be done in future, defining the rate of dependency and connec-
tion between the value of linear separability and a classifier’s performance (like
Youden Index). The main part of such a future work shall focus on the ratio and
find out whether the relation between the classifier’s perfomance and the lin-
ear separability of a feature is linear or exponential. In other words, how good
should the linear separability of a feature be in order to achieve an acceptable
performance in classification.

Still, it can not be concluded that a subset of these features will necessarily
show poor classification performance, using a linear classifier. Usually, by com-
bining two weak features, a better classification result could be obtained, since
each feature is independent from the other one and adds new information to
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the classification procedure. One alternative would be to use the linear sepa-
rability value as a criterion for feature selection and combination. But in this
project, it has only been used to evaluate every feature individually and com-
pare them with each other.

During the calculation of Scatter matrix for the outputs of AR model, the
AR parameters were not considered as individual features. As an improvement,
this should be recalculated separately, so that the effect of each parameter can
be correctly evaluated.

6.2 Clustering Analysis

During the clustering procedure, first, the intra-class clusters were created within
each of classes. Then, the clusters from the Normal and the Abnormal classes
were analysed all together. For both of mentioned stages, Euclidean and Maha-
lanobis distance were applied. Table 4 demonstrates the final inter-class clus-
tering analysis. As mentioned earlier, 15 of the top 20 features are common in
both Table 4(a) and Table 4(b), but the sequence and ranking of the mutual
features are quite different. Features from Meinecke (2006) constitute 20% and
40% of the top 10 features, respectively in Table 4(a) and Table 4(b). On the
other hand, when using the Euclidean distance, only 1 out of 5 top features
belongs to Meinecke (2006), while the ratio is 4 out of 5 when applying Maha-
lanobis distance. Furthermore, 85% and 80% of the top 20 features respectively
in 4(a) and Table 4(b) belong to Berg (2008). It seems that the clustering anal-
ysis also confirms and supports the conclusion from linear separability analysis.
Obviously, the outputs of AR model are more fitted and suitable for describing
the dynamic of the infant’s movements, than the statistic features introduced
by Meinecke (2006). The reason for this phenomenon will be overviewed later
on in Section 6.3.

Compared to the results from linear separability analysis, features like "dis-
tance between arms along the x− axis", "distance between PCA axis and sensors"
and "sensors along x and y − axis" are well represented and quite contributive.
In addition, "periodicity in arms" and "the area out of standard deviation of the
moving average of feet’s velocity" are of great value, too. It can not be assumed
that features with significant linear separability value, will necessarily achieve
high performance in nonlinear separability. Therefore, there should not be any
expectation about having common features appearing both in Table 3 and Ta-
ble 4. On the contrary, if some features take part in both tables, then it’s an
indication for how versatile and essential these features are.

It is also interesting to take notice of the AR parameters. Apparently, param-



40 6 Discussion

eters of 3th and 4th order are more informative and have better discriminative
capabilities, than the parameters of lower orders. This observation is based
on how often each parameter is appeared in Table 4. Since the infant’s move-
ments have a highly sophisticated nature, it might be more precise to describe
and distinguish them by a more complex AR model. An idea could be to try a
higher order than 4 in the AR model or take advantage of other heavy system
identification models. But as it is reviewed in (Berg, 2008), principles like final
prediction error and Akaike information criterion were used in order to define an
appropriate order for the AR model. Both of these criteria penalize high orders.

A suggestion for future work could be to somehow use k-means clustering
results as a feature selection and combination criterion, specially, if it has been
decided to implement a nonlinear classifier.

Investigating both procedures, it can not simply be decided which of the ap-
plied distances obtains better results and is more suited for problems of this
kind. As we know, Mahalanobis distance assesses the scattering and dispersion
of the data within each cluster, in addition to taking the distance between the
centers of clusters into account. So, it can be said that the Mahalanobis distance
is more complex and complete, compared to the Euclidean distance. Thus, it is
not so strange that numerical values for distances have different ranges.

The author has spent some time and tried to compute a scale for the values
achieved in Table 4 without any success. It would be interesting to know how
good an inter-cluster distance with 2.48 or 5.70 as the distance value is. Does
this mean that the clusters show good separability or do they have any overlap?
Questions like this can be suggested as a part of future work in this area. The
idea is to calculate the distance between clusters of two different classes, and
then perform a classification, using same clusters. The Youden Index from the
classification and the calculated distance can be used to create a scale for the
nonlinear separability of a feature. The data used by the author for creating a
scale was generated randomly in order to hold a general view. K-means cluster-
ing and LDA was used as before. Since the K-means clustering is usually used
for calculation of nonlinear separability and the LDA considers the linear rela-
tions among the data, the attempt was neither appropriate nor successful. Thus
in the future work, care must be taken to apply a nonlinear classifier, instead of
a linear one, when creating a scale for distance between clusters.

6.3 Feature Comparison

Both feature evaluation techniques, the linear separability achieved by scatter
matrix and nonlinear separability calculated by clustering analysis, indicate that
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the features produced by Berg (2008) are much more reliable and show bet-
ter discriminative abilities, compared to the features introduced by Meinecke
(2006).

One essential point is to notice the amount of statistically characterized fea-
tures in the work of Meinecke (2006). This means that just the majority of her
features were statistical. Meinecke (2006) applied also feature with dynamical
properties, like moving average, which functions as a low-pass filter. In a more
precise point of view, it is the outputs of the autoregressive model that con-
tribute the most. The AR model was originally used to describe a linear model,
because of the lack of information and knowledge about any physical model,
which could interpret the child’s unpredictable movements.

In most system identification and estimation techniques, it is necessary to
assume that the signal is stationary. This requires that the underlying statis-
tics and the model parameters that characterize the process are not dependent
on time. However, this assumption is often incorrect for many physical signals
encountered in speech processing, EEG analysis, and seismology. No general
mathematical framework exists, and in practice, the problem of time depen-
dency is circumvented by presuming that the process is locally stationary over
a relatively short time interval, but globally nonstationary.

An important reason for the good performance of AR is the generality that its
poles give to the model, while the statistical features, like cross-correlation coef-
ficient, lack this vital capability. It is a well-known connection between the poles
of a model and its time constants. The complexity of a multivariable system can
be decomposed to simpler monovariable subsystems. Each of these subsystems
has its own unique time constant describing the components behaviour, indi-
vidually. It is the (linear) relation between the subsystems that builds up the
multivariable system. .From a technical point of view, it is the eigenvalues or
poles of the system that express the functionality and performance of the sys-
tem. These eigenvalues can be extracted from the system matrix. The interest-
ing part is that different system matrixes can be obtained from the same set of
eigenvalues, thus explaining how general, complete and descriptive these poles
can be.

Furthermore, the AR model takes the sequence of samplings in to account,
thus producing a smooth output. On the other hand, the statistical approaches
might only consider the distribution of samples without caring about the order
of samplings.

Linear autoregressive models (AR) have a broad spectrum of applications
ranging from identification, prediction and control of dynamical systems, but
a problem with this method lies with the appropriate model order selection.
As one can surmise, the AR model can be of any order as desired. However, it
should be as accurate as possible. From our intuition, we know that a model
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order, which is too small will not represent the properties of the signal, whereas
a model order which is too high will also represent noise and inaccuracies and
thus, will not be a reliable representation of the true signal. Therefore, methods
that will determine the appropriate model order must be used. As mentioned
earlier, criteria like final prediction error and Akaike information criterion has
been applied by Berg (2008) in order to ensure an relatively optimal choice of
order. As mentioned in Sec. 6.2, there could be some benefit in evaluation of
an AR model of higher order. But, as explained here, it might turn out to be
useless. The main idea to look at would be the criterion selected to choose the
order. Is it certain that final prediction error and Akaike information criteria are
the most appropriate criterion for the purpose of the current study? Are there
other type of criteria that could fit the objective of this project better? These are
questions that can be answered during a closer investigation of the AR model,
as part of a future study.

6.4 Classification

The highest achieved performance in Table 6 belongs to the LDA with a 86%
and 90% as sensitivity and specificity, respectively. The combination which is
the source to such interesting and valuable result contains features that mostly,
if not all, belong to the work of Berg (2008). The combination spoken of (
combination A), has a total of 19 features, where only 2 of them has been sug-
gested by Meinecke (2006). As discussed earlier, such behaviour was predicted
and supported by both linear and nonlinear separability analysis. Thus it can
be concluded that features produced by autoregressive model have a powerful
and rich influence in classification of healthy and at-risk infants.

By reviewing the discussion chapter in (Berg, 2008), the best result is con-
tributed by movement signals from child’s head in y − direction and the dis-
tance between infant’s arms along the x − axis. This observation has been
supported in the current work, too. Considering combination A, which is the
highest ranked one, the top 3 features are the third AR parameter of infant’s
head in y − direction, the third and the fourth AR parameter from the distance
between baby’s arms in x− direction.

The overlapping performance and connexion between this thesis and the An-
dreas Berg’s thesis could be an indication, suggesting a completely acceptable
convergence of the designed feature combination algorithm. Both, the features
selected for this combination and the weighting (ranking) procedure applied,
confirm a quite optimal performance from the constructed algorithm.

When it comes to the complexity of classifiers, it can be suggested as a fu-
ture work to apply a powerful classifier like Artificial Neural Network or Sup-
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port Vector Machine, even though the LDA used in this study showed better
performance than QDA.

6.4.1 Feature Combination

During the feature combination approach, there was no restriction on the num-
ber of chosen features. In other words, a subset could involve up to 84 features.
It might be helpful to try and reduce the number of features down to only those
features with the most information. First of all, one should be able to measure
the contribution from every single feature. With that in mind, the algorithm
can start removing features one by one, while monitoring the classifiers perfor-
mance. A weighting function will be appropriate for this part. Since the subsets,
originally, are suboptimal, only features with minimal performance decrease
shall be removed.

As a role, this feature elimination has something to do with the reduction
of processing and calculation time. One should be reminded that these feature
and subsets will be used in a real-time approach, if their performance is ap-
proved by technician, physicians and doctors. Thus, collecting, processing and
classification of the data online should not take much time, in order to make
the approach user-friendly.

Most of the features observed in the locally optimal feature subset [Table
5(a)] are in accordance with Table 3 and Table 4. This illustrates that linear
and nonlinear separability analysis could effectively be used as feature selec-
tion criteria. All these evidence illustrate the great importance of monitoring
the movements of infant’s head and arms, when classifying them.

One conclusion can be that combining signals from different body parts will
help us get closer to the optimal solution, instead of considering limbs, indi-
vidually. This statement is fairly intuitive and not so surprising at all, since
characteristic movements can appear in different body parts at various points
in time.

6.4.2 Clinical Perspective

In order to gain a clinical point of view, an interview has been conducted with
Lars Adde, who is a physiotherapist (physician). He has been working with
diseases related to children for more than ten years, specially with CP among
newborn babies with premature birth. In addition, he has had a few publica-
tions in this field.

During the current section, it has clearly been reflected that signals recorded
from head and arms have been more informative than the signals collected from
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the feet sensors. To start with, the observed conclusion sounded quite surprising
to Lars Adde. But he could neither reject nor completely accept the suggestion.
Lars Adde has taken some courses in visual recognition of Fidgety Movements
(see Section 2.1.3) and has become an expert in the area. By studying video
records from an infant, he can predict if the child is at-risk of developing CP
or not. The way he explained it, he looks for fidgety movements as an overall
movement pattern. That means that he does not search for detailed limb move-
ments, thus considering a combination of movements in all limbs (head, arms,
trunk and feet). This means that his brain has not been trained to weight move-
ments in limbs differently. Such behaviour can be explained by Gestalt Theory
of Visual Perception 4. Therefore, he could not agree or disagree whether move-
ment patterns in head and arms are more informative than movement patterns
in feet. However, he was quite positive to the results achieved in this project.

An interesting future work could be to find out what a physician searches
for when he/she is observing fidgety movements. An idea would have been to
somehow track physician’s eyes and locate the points on the recorded video
which the physician mostly focuses on. This could after all give us some infor-
mation about the distinction and influence of different limbs, regarding predic-
tion of CP.

The sensor placement has also been investigated. Sensors that belong to feet
are placed above the ankle, so they are actually located on the leg and not the
foot. Thus, the movements of feet around the ankle-point are not registered.
According to Lars Adde, the variation in feet movements contribute a lot as
part of fidgety movements. Similarly, sensors on the arms are placed between
the wrist and elbow and will not register any movements from the hand and
fingers. Furthermore, it is probably higher degree of activity (motion) in arms
than in feet for an infant. This might be a reason for better response from arms.
Based on what Lars Adde has experienced, he stated that fidgety movements
from child’s head are very clear and certain. This statement is in accordance
with the results obtained here.

Since the best sensors have been presented, the worst one should also be
introduced. During this study, the contribution from the trunk sensor has been
minimal. One logical explanation could be that the movements from arms and
head (via neck) are damped through muscles and joints before affecting the
chest, making the trunk movements steady and peaceful. In addition, contrac-
tion and expansion of the lungs during respiration can generate some noise,
making the signal less informative.

4a psychologic phenomenon is perceived as a total configuration or pattern, rising from
the relationships among its constituent elements, rather than as discrete elements possessing
attributes of their own, and that the pattern, or Gestalt, cannot be derived from the summation
of its constituents (Dictionary, 2009).
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Medically, a research study can be comprised of two main steps. The first step
starts with collection of data. After that, a method is evaluated and selected in
connection with the purpose of the study. At last, the chosen methodology is
applied, using the collected data and the results are introduced. A way to eval-
uate the result is to calculate the sensitivity and specificity. At the second step of
the research, the presented system/method is tested with data from random pa-
tients. The performance of the method is measured by Positive Predictive Value
and Negative Predictive Value. The positive predictive value tells you how likely
it is that you actually have a disease if you test positive for it. It is defined as
the number of true positives (people who test positive who have the disease)
divided by the total number of people who test positive, and it varies with test
sensitivity, test specificity, and disease prevalence. The negative predictive value
of a test is the probability that the patient will not have the disease when re-
stricted to all patients who test negative.

Some of the major differences between these two stages in medical research,
are in the data collection part. During the first step, data is recorded from a
group of participants. These participants, are known in advance to have some
essential features (like a disease), and are chosen based on the predefined char-
acteristic and not randomly. In our case, the infants contributed in data collec-
tion have been selected from two divided groups. One group contains infants
who are highly at risk of developing CP, based on results from MRI. On the
contrary, the other group covers infants that have small chances of being at
risk. When it comes to data recoding at the second stage, the participants are
selected from a representative assortment (a random selection). That means
that for the purpose of this thesis, infants that are brought to hospital for CP
examination are a suitable representative population.

In addition, during a 2-years follow-up program, the outcome of the CP pre-
diction for infants in this project (step one) has been known, thus giving the
possibility to calculate sensitivity and specificity for the implemented method.
Calculation of Positive Predictive Value and Negative Predictive Value is depen-
dent on the number of at-risk patients involved in the test group, while the
number of participants with CP has no influence on measurement of sensitivity
and specificity.

So, this study contains only the first step of a typical medical research, mean-
ing that the global (generalized) validity of the implemented methods are yet
to be investigated in a later project, suppose that a representative selection is
available.
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7 Conclusion

During the conducted study, unfamiliar fields have been examined, new meth-
ods and techniques have been implemented and meaningful results have been
achieved.

At the beginning, the concept of Fidgety Movement and General Movement
Assessment has been studied and understood. This has led to confirmation of
the valuable predictive capabilities of the GMA approach. The idea behind the
current project has been to create a computer-based method with hopefully ac-
ceptable ability to predict CP among infants, accomplishing an objective diagno-
sis, rather than the subjective solution produced by GMA method. This goal has
successfully been achieved, but more studies are needed on well-defined tech-
niques for feature extraction, selection, combination, and classification. Fur-
thermore, the produced procedure needs to be carried through several tests, in
order to define a standardized level of predictive functionality.

Along the way, introduced features from previous studies has been imple-
mented and evaluated, using linear and nonlinear separability values. Later
on, a suboptimal algorithm has been designed to select and combine the ex-
tracted features. The performance of the introduced algorithm was experimen-
tally shown to converge. Afterwards, the calculated combinations were assessed
applying discriminant analysis. At the end, the performance of all mentioned el-
ements of the project has been discussed in-depth.

As a conclusion, the author can certainly state that comparing the sensors,
movements in head and arms contained the most discriminative information
and the results indicated that features produced by dynamic models were more
powerful than statistically characterized features. Furthermore, LDA combined
with the relatively optimal feature subset resulted in 86% sensitivity and 90%
specificity.

From the clinical perspective, the results are highly interesting and accept-
able, but this study needs further attendance, before having any clinical usabil-
ity. The final and futuristic purpose and objective is to get the reliability and
credibility of the introduced procedure confirmed. Afterwards, this study can
be an essential part of a sophisticated system, which will assist many doctors
and physicians in prediction of CP.
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Appendix A Tables

Table 7: Definition of GMs and their abnormal appearance officially agreed upon by
the GM Trust (H.F.Prechtl, 1999)

Period Normal general movements Abnormal general movements
Prenatal and Gross movements, involving whole Poor repertoire of general
preterm age body. They may last from a few movements: the sequence of

seconds to several minutes or the successive movement
longer. Variable sequence of arm components is monotonous
leg, neck, and trunk movements. and the movements of the
Wax and wane in intensity, force, different body parts do not
and speed, and have a gradual occur in the complex way as
beginning and end. seen in normal GMs.
Majority of sequences of extension
and flexion movements of arms and Cramped-synchronized general
legs are complex, with superimposed movements: these appera rigid
rotations and often slight changes and lack normal smooth and
movement. These added components fluent character; all limb
in the direction of the make the and trunk muscles contract
movements fluent and elegant and and relax almost simultaneously.
create the impression of
complexity and variability.

Term age Writhing movements are characterized Chaotic general movements:
until 8 by small-to-moderate amplitude and movements of all limbs are of
weeks’ by slow to moderate speed. Fast and large amplitude and occure in
postterm large extension movements may a chaotic order with no fluency
age occasionally break through, nor smoothness. They

particularly in the arms. Typically, consistently appear to be
such movements are elliptical in form; abrupt.
this component creates the impression
of writhing quality of movement.

6 to 20 Fidgety movements are circular Absent fidgety movements:
weeks’ movements of small amplitude and fidgety movements are never
postterm moderate speed and variable acceleration observed from ages 6 to 20
age of neck, trunk, and limbs in all weeks postterm. Other movements

directions. They are continual in the can, however, be commonly
awake infant, except during focused observed.
attention. They may be concurrent with
other gross movements, such as kicking, Abnormal fidgety movements:
wiggling-oscillating and swiping of the look like normal fidgety
arms or pleasure bursts. Fidgety movements except that their
movements may be seen as early as 6 amplitude, speed, and
weeks postterm but usually occur jerkiness are moderately or
around 9 weeks and are then present greatly exaggerated.
until 15 to about 20 weeks.
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Table 8: Result for Scatter Matrix

(a) Skewness
NAME OF FEATURE SEPARABILITY

JChest 1.0040
JLeftFoot 1.0014
JHead 1.0013
JLeftFoot 1.0007
JRightArm 1.0004
JRightArm 1.0002

(b) Cross-correlation
NAME OF FEATURE SEPARABILITY

JAcceleration,Arms 1.0205
JAcceleration,Feet 1.0041

(c) Area differing from moving average

NAME OF FEATURE SEPARABILITY

JV elocity,Feet 1.0401
JPosition,Feet 1.0282
JV elocity,Arms 1.0096
JPosition,Arms 1.0024

(d) Area out of standard deviation
NAME OF FEATURE SEPARABILITY

JV elocity,Feet,std 1.0339
JV elocity,Arms,std 1.0112
JPosition,Arms,std 1.0032
JPosition,Feet,std 1.0020

(e) Periodicity

NAME OF FEATURE SEPARABILITY

JPosition,Arms 1.1859
JV elocity,Arms 1.1489
JPosition,Feet 1.0379
JV elocity,Feet 1.0367

Table 9: Result for Scatter Matrix, all sensors and axes

(a) Separability of sensors along the x-
axis

NAME OF FEATURE SEPARABILITY

Sensor3x 1.0635
Sensor4x 1.0520
Sensor6x 1.0431
Sensor2x 1.0424
Sensor1x 1.0345
Sensor5x 1.0243

(b) Separability of sensors along the y-
axis

NAME OF FEATURE SEPARABILITY

Sensor6y 1.0921
Sensor3y 1.0476
Sensor4y 1.0394
Sensor2y 1.0339
Sensor1y 1.0185
Sensor5y 1.0032

(c) Separability of sensors along the z-
axis

NAME OF FEATURE SEPARABILITY

Sensor4z 1.0383
Sensor6z 1.0315
Sensor3z 1.0293
Sensor1z 1.0093
Sensor5z 1.0042
Sensor2z 1.0035
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Table 10: Result for Scatter Matrix, distance between sensors and origo

(a) Distance calculated in xy-plane

NAME OF FEATURE SEPARABILITY

Sensor4xy 1.0515
Sensor6xy 1.0426
Sensor3xy 1.0389
Sensor5xy 1.0262
Sensor1xy 1.0245
Sensor2xy 0

(b) Distance calculated in xz-plane

NAME OF FEATURE SEPARABILITY

Sensor3xz 1.0484
Sensor4xz 1.0414
Sensor6xz 1.0312
Sensor1xz 1.0275
Sensor5xz 1.0054
Sensor2xz 0

(c) Distance calculated in zy-plane

NAME OF FEATURE SEPARABILITY

Sensor4zy 1.0347
Sensor6zy 1.0262
Sensor3zy 1.0240
Sensor1zy 1.0141
Sensor5zy 1.0031
Sensor2zy 0

(d) Distance calculated in absolute
value

NAME OF FEATURE SEPARABILITY

Sensor4abs 1.0390
Sensor3abs 1.0381
Sensor6abs 1.0272
Sensor1abs 1.0230
Sensor5abs 1.0017
Sensor2abs 0

Table 11: Result for Scatter Matrix, distance between sensors and PCA-axis

NAME OF FEATURE SEPARABILITY

Sensor6PCA 1.0899
Sensor3PCA 1.0703
Sensor4PCA 1.0537
Sensor2PCA 1.0468
Sensor5PCA 1.0282
Sensor1PCA 1.0078
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Appendix B Source code from Matlab

Comment: All my programs are tested in Matlab R2008a and require the Statistics
Toolbox.

Appendix B.1 K-means Clustering

Appendix B.1.1 k-mean-Separability.m

% Should be used as the starting function. Calculates the separability
% of clusters based on Euclidean and Mahalanobis distances. The clustering
% algorithm applied is k-means clustering, which can be found in Help.

%% Modification History
% When Who What
%----------------------------------------------------
% 2009.05.01 Parsa Rahmanpour Original version
%----------------------------------------------------
load ’../Saved/Features/Normal_Features_for_Clustering.mat’
load ’../Saved/Features/Abnormal_Features_for_Clustering.mat’

columnN=size(Normal_Features_for_Clustering,2);
columnA=size(Abnormal_Features_for_Clustering,2);

% Define the criteria function for selecting the number of clusters
% func = ’mahalanobis’;
% func = ’euclidean’;

Result_clustering = zeros(columnN,1);
% Separability for each feature
for i = 1:columnN

n = Normal_Features_for_Clustering(:,i);
ab = Abnormal_Features_for_Clustering(:,i);
current_dist = mahal_kmean(n,ab,i,func);
Result_clustering(i)=current_dist;

end
[d,i] = sort(Result_clustering, ’descend’);

Appendix B.1.2 mahal-kmean.m

% Starts by finding the clusters and calculating the centroids of each
% cluster. The input consists of data from normal and abnormal babies, in
% addition to the features previously found. "func" is used to define the
% appropriate distance method, chosen by the user. This function returns
% the final mean distance between clusters
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%% Modification History
% When Who What
%---------------------------------------------------
% 2009.05.01 Parsa Rahmanpour Original version

function mahal_average = mahal_kmean(normal,abnormal,feature,func)

% Clustering only the training sets from Normal and Abnormal data
if(strcmp(func, ’mahalanobis’))

[cidx1, cnt1, k1] = run_kmean_Mahala(normal);
[cidx2, cnt2, k2] = run_kmean_Mahala(abnormal);

end
if(strcmp(func, ’euclidean’))

[cidx1, cnt1, k1] = run_kmean_Euclid(normal);
[cidx2, cnt2, k2] = run_kmean_Euclid(abnormal);

end

% Mahalanobis distance between all the points within each cluster and
% all the points inside the opposite cluster
columnN=size(normal,2);
columnA=size(abnormal,2);

for i = 1:k1
for j = 1:columnN

eval([’cluster_’ num2str(i) ’_n(:,j)= [normal(cidx1==i,j)];’])

end
end
for i = 1:k2

for j = 1:columnA
eval([’cluster_’ num2str(i) ’_ab(:,j)= [abnormal(cidx2==i,j)];’])

end
end
for i = 1:k1
for j = 1:k2
try
eval([’tmp = mahal(cluster_’ num2str(i) ’_n, cluster_’ num2str(j) ’_ab);’ ])
eval([’Norm = length(cluster_’ num2str(i) ’_n) * length(cluster_’ num2str(j) ’_ab);’ ])
MEAN = mean(sqrt(tmp))/Norm;
c = isnan(MEAN);
if(c == 1)

eval([’mahal_’ num2str(i) ’_n_’ num2str(j) ’_ab = 0;’])
else

eval([’mahal_’ num2str(i) ’_n_’ num2str(j) ’_ab = MEAN;’])
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end

catch ME
errmsg = ME.identifier;
if(strcmp(errmsg,’stats:mahal:TooFewRows’))
sprintf(’**Error: Singelton cluster’)
else

disp(errmsg)
end
end

end
end

for i = 1:k1
for j = 1:k2

eval([’TableOfDistance(i,j) = mahal_’ num2str(i) ’_n_’ num2str(j) ’_ab;’])
end

end
mahal_average = mean(mean(TableOfDistance));
sprintf(’Separability of feature %d is %d’,feature,mahal_average)
end

Appendix B.2 Sequential Feature Selection

Appendix B.2.1 SeqFeatSelect.m

% Using the function "kombiner.m", the "sequentialfs" is run as many times
% as the variable "iter" defines it. Remember that the computation time
% appears to be exponential.
% This code calculates the number of times that each feature has appeared
% in the subset
%% Modification History
% When Who What
%-----------------------------------------------------
% 2009.05.01 Parsa Rahmanpour Original version

load ’../Saved/Features/Features_Tr.mat’ Features_Tr;
TrainingData = Features_Tr;
[Xrow,Xcolumn] = size(TrainingData);
% Choose iter to be the number of iteration you wish
iter = 10;
method = {’linear’, ’diagquadratic’};
result_lin = zeros(Xcolumn,1);
result_quad = zeros(Xcolumn,1);
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for t = 1:length(method)
clear comb;
for s = 1:iter

[fs, c] = kombiner(TrainingData, cell2mat(method(t)));
comb(s,:) = fs;

end

[row, column]=size(comb);
if(t == 1)

for i = 1:row
for j = 1:column

if(comb(i,j)==1)
result_lin(j) = result_lin(j) + 1;

end
end

end
end

if(t == 2)
for i = 1:row

for j = 1:column
if(comb(i,j)==1)

result_quad(j) = result_quad(j) + 1;
end

end
end

end
end

Appendix B.2.2 kombiner.m

% Using the function "sequentialfs" defined in Matlab (see Help) to
% remove the poor features from the subset. The selection criterion is
% the performance of a classifier
%% Modification History
% When Who What
%----------------------------------------------------
% 2009.05.01 Parsa Rahmanpour Original version

%%
function [fs, c ] = kombiner(X, Func)
% ***************************FEATURE SELECTION****************************%
n=’Normal’;
m=’Abnormal’;
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% N = 198;
% M = 48;
N = 101;
M = 27;
for i=1:N

Y(i)=cellstr(n);
end
for i=1:M

Y(i+N)=cellstr(m);
end
y = Y’;

% c = cvpartition(group,’holdout’,p)randomly partitions observations into a
% training set and a test set with stratification, using the class
% information in group; that is, both training and test sets have roughly
% the same class proportions as in group. The parameter p must be a scalar.
% When 0 < p < 1, cvpartition randomly selects approximately p*n
% observations for the test set. When p is an integer, cvpartition
% randomly selects p observations for the test set.
% The default value of p is 1/10.
c = cvpartition(y,’holdout’,1/3);
opts = statset(’display’,’iter’);
fun = @(XT, yT, Xt, yt)(sum(~strcmp(yt, classify(Xt,XT,yT,Func))));
fs = sequentialfs(fun,X,y,’cv’,c,’direction’,’backward’,’options’,opts);
end

Appendix B.2.3 run-classify.m

% Calculating sensitivity and specificity which will be used as
% selection criteria in "Manueal_Kombinering"
%% Modification History
% When Who What
%----------------------------------------------------
% 2009.05.01 Parsa Rahmanpour Original version

function [Sensitivitet, Spesifisitet] =
run_classify(Features_Tr, Features_Te, y_Tr,func)

test_sett_norm = 97;
test_sett_abnorm = 21;

[C,err,P,logp,coeff] = classify(Features_Te, Features_Tr, y_Tr, func);

TN=sum(C(1:test_sett_norm));
FP=test_sett_norm - TN;
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FN=sum(C(test_sett_norm + 1: test_sett_norm + test_sett_abnorm));
TP=test_sett_abnorm - FN;

Sensitivitet=TP/(TP+FN);
Spesifisitet=TN/(TN+FP);
end

Appendix B.2.4 convergence.m

% Plots the convergence of the "SeqFeatSelect.m" based on the number
% appearance of each feature during every iteration of the algorithm.
%% Modification History
% When Who What
%---------------------------------------------------
% 2009.05.01 Parsa Rahmanpour Original version

%%
clear all
clc
close all
load ’../Saved/Combination/New/10/result_lin.mat’ result_lin;
load ’../Saved/Combination/New/10/result_quad.mat’ result_quad;
[data_lin_10, index_lin_10]=sort(result_lin, ’descend’);
[data_quad_10, index_quad_10]=sort(result_quad, ’descend’);

load ’../Saved/Combination/New/100/result_lin.mat’ result_lin;
load ’../Saved/Combination/New/100/result_quad.mat’ result_quad;
[data_lin_100, index_lin_100]=sort(result_lin, ’descend’);
[data_quad_100, index_quad_100]=sort(result_quad, ’descend’);

load ’../Saved/Combination/New/1000/result_lin.mat’ result_lin;
load ’../Saved/Combination/New/1000/result_quad.mat’ result_quad;
[data_lin_1000, index_lin_1000]=sort(result_lin, ’descend’);
[data_quad_1000, index_quad_1000]=sort(result_quad, ’descend’);

load ’../Saved/Combination/New/10000/result_lin.mat’ result_lin;
load ’../Saved/Combination/New/10000/result_quad.mat’ result_quad;
[data_lin_10000, index_lin_10000]=sort(result_lin, ’descend’);
[data_quad_10000, index_quad_10000]=sort(result_quad, ’descend’);

% Choose your wanted feature ranging from 1 to 84
feature = 20;
count = 1;
for i = [10 100 1000 10000]



58 Appendix B Source code from Matlab

eval([’ind_l = find(feature==index_lin_’ num2str(i) ’);’])
eval([’ind_q = find(feature==index_quad_’ num2str(i) ’);’])
eval([’percent_l(count) = 100 * data_lin_’ num2str(i) ’(ind_l) /i;’])
eval([’percent_q(count) = 100 * data_quad_’ num2str(i) ’(ind_q) /i;’])

sprintf(’Linear: Feature nummer %d has %d percent for %d iterations’
,feature,percent_l(count),i)
sprintf(’Quadratic: Feature nummer %d has %d percent for %d iterations’
,feature,percent_q(count),i)
count = count + 1;

end

% Plot
xRange = [0 5];
yRange = [0 101];
x = [1 2 3 4];
y1 = percent_l;
y2 = percent_q;
plot(x,y1,’gx’); hold on
plot(x,y2,’bx’);
set(gca,’XTick’,[1:1:4])
set(gca,’XTickLabel’,{’10’,’100’,’1000’,’10000’})
xlim(xRange); ylim(yRange);
ylabel(’[%]’); xlabel(’number of iterations’);
title(’Convergence of SequentialFS for feature number 20’);
legend(’Linear’,’Quadratic’,’location’,’SouthEast’);
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Appendix C DVD

Here is a short explanation of what is put on the DVD.

References Contains most of the references as PDF files, and the BibTEX file
bibliography.bib.

LaboratoryWork Contains all files from the laboratory.
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