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Problem Description
Estimation of the annular pressure at critical locations in the well is
crucial for high-precision
pressure control. Certain parameters which are important in order to
determine the pressure
profile of the well (in particular the friction factor, bulk modulus and
density in the annulus), are
encumbered with high uncertainty and are besides, continuously, but
slowly changing. The
objective of the thesis is to employ various Kalman filter designs
estimation of the bottomhole pressure
and certain important parameters/slowly varying variables, during
drilling.

Topics that should be addressed are:
1) Literature review of the theory of Kalman filters design

2) Design and implement an Extended Kalman filter (EKF) and possibly the
Unscented Kalman filter
(UKF) for

        a) Estimation of the annulus bottom-hole pressure

        b) Esimation of the friction coefficient, bulk modulus and
density in the annulus

3) Analyse the performance/robustness of the observer in important
cases, in particular:

        a) Pipe connection

        b) Pump ramp up/down

4) Examine observer performance to unmodeled dynamics by testing the Kalman filter against
data sets from Wemod
        
5) Evaluate performance of the observer against experimental data from
Grane.





SummaryDuring drilling a drill-�uid is pumped through the drill-string and drill-bit. The drill-mud �ows bak in the well bore and trough a hoke-valve attop-side. To avoid unontrolled in�ux from the reservoir or lost irulationto the formation; the annulus pressure must be kept within the pressure win-dow between pore pressure and frature pressure. The bottom-hole pressuremeasurement is often transfered as pressure pulses through the drill-mud.This gives a slow update rate. Also, during low �ows the bottom-hole as-sembly tool turns itself o�, and the measurement is lost. When pressuremargins are small; proper ontrol of the annulus pressure is ruial. Thisrequires a good estimate or measurement of the pressure.To estimate the bottom-hole pressure the Extended Kalman �lter andUnsented Kalman �lter where evaluated. The �lters are based on a pro-ess model with the states; stand-pipe pressure, hoke di�erential pressureand bit-�ow. The bottom-hole measurement equation onsists the unknownparameters; bit-�ow, annulus density, well-bore frition and bulk-modulus.These parameters are unertain and varying and must therefore be estimatedto obtain a orret estimate of the annulus pressure. To estimate the param-eters the joint-EKF and joint-UKF where designed.The observability analysis of the linearized state equations showed thatthe proess model is not observable when augmenting the state equationswith the parameters; annulus density, well-bore frition and �uid bulk-modulus. To handle this the annulus density was alulated o�-line andnot inluded in the augmented model.During drilling there may be long periods with little exitation from theinputs. The �lters where therefore designed to swith between estimatedparameters. In the Unsented Kalman �lter it is possible to implementedthis in one �lter, whereas in the Extended Kalman �lter; one �lter for eahparameter vetor had to be designed. The Extended Kalman �lter and Un-sented Kalman �lter where ompared with data obtained from simulationson the design model. When augmenting the state equations with annulusfrition and �uid bulk-modulus; both �lters estimated the orret value of theunknown parameters, the bit-�ow and bottom-hole pressure. The UnsentedKalman �lter showed a faster onvergene rate and estimated parameter val-ues loser to the orret value than the Extended Kalman �lter.Based on performane and implementation purposes w.r.t swithing be-tween parameters; it was hosen to examine the Unsented Kalman �lterfurther. The tests performed on the Unsented Kalman �lter where stateand parameter estimation on data sets from the Grane �eld and simulationsagainst Wemod. A pipe-onnetion senario was simulated with Wemod.Annulus frition was estimated during stationary onditions and �uid bulk-modulus was estimated during transients. The �lter estimated the orret



bottom-hole pressure for stationary onditions and had some deviations dur-ing transients. In the simulation against data sets from Grane; the annulusfrition and hoke valve onstant where estimated during stationary ondi-tions. The �lter followed the bottom-hole pressure measurement within anerror of one bar.
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Chapter 1Introdution1.1 BakgroundIn a drilling operation a drilling �uid is irulated thorough the drill-stringand drill-bit. The mud �ows outside the drill-string in the annulus trans-porting uttings form the well-bore. An important objetive during drillingis to ensure that the annulus pressure gradient is onstrained within thewell frature pressure and the reservoir pore pressure. Conventional drillingtehniques suh as over balane drilling involves retaining the bottom-holepressure well above the reservoir pore pressure; this is done to avoid reservoirin�ux. OBD helps prevent unontrolled in�ux, but dereases prodution ratedue to skin damage on the reservoir rok. It's therefore preferred to keep theannulus pressure as lose to the reservoir pore pressure as possible. The an-nulus pressure gradient must also stay below the formation frature pressureto avoid damage to the bore hole and lost irulation. Today the annuluspressure gradient is usually ontrolled by manually by adjusting the top-sidehoke and also by hanging the mud density in the drill string. Changingthe pressure by adding heavier or lighter �uids to the well slowly hanges thepressure gradient. It must therefore be planned ahead. If the hoke valve isontrolled manually; it is nearly impossible to reat to fast pressure hanges.This makes drilling di�ult when the drilling window is small. When drillinginto deeper and more omplex formations; maintaining a onstant bottom-hole pressure is essential to avoid severe problems. Many reservoirs aretherefore undrillable and new solutions must be implemented to ensure astable bore-hole pressure. A good measurement or estimate of the annularpressure is ruial for ontrolling the bottom-hole pressure. The measure-ment available has a slow and irregular update rate and is not suited forfeedbak ontrol. To estimate the bottom-hole pressure; unknown variablessuh as annulus density and annulus frition must also be estimated.
1



2 CHAPTER 1. INTRODUCTION1.2 Desription of the drilling proessFigure 1.1 display a shemati of the drilling proess. Drill-mud is irulatedthrough the drill-pipe and drill-bit utilizing a mud-pump. The mud �owsbak through the annulus transporting uttings from the formation. At top-side a rotating ontrol devie loses the well, and the mud �ows through ahoke-valve.

Figure 1.1: Shemati of a drilling-operationOne important objetive during drilling is to ontrol the pressure gradientin the well bore. When drilling into a formation; the pressure must be keptbelow the formation frature pressure and and above the ollapse pressure.In onventional over balane drilling (OBD) the well pressure is kept wellabove the reservoir pore pressure as the drill-bit enters the reservoir zone.This is to prevent unontrolled in�ux from the reservoir and avoid kiks or ablow-out situation. The mud that penetrate the well in the reservoir is alled



1.3. MEASUREMENTS 3mud-ake and degrades prodution. It is therefore desirable to maintain awell pressure as lose to the reservoir pressure as possible.Managed pressure drilling(MPD) is de�ned as 1 "an adaptive drillingproess used to more preisely ontrol the annular pressure pro�le throughoutthe well bore." In MPD an objetive is to obtain a bottom-hole pressure thatdo not invite reservoir in�ow.
pcoll(x, t) < pres(x, t) ≤ pa(x, t) < pfrac(x, t) (1.1)As seen from equation (1.1); where t is time and x is the position alongthe well; the pore pressure and frature pressure gradients in the well-borewill ause a more narrow drilling window as the well beomes deeper. Thesepressure limits are not known before drilling the well. Also, the reservoir porepressure may hange as the drill-bit enter deeper into the reservoir zone.1.3 MeasurementsThe pressure measurements available are stand-pipe pressure pp, hoke-di�erential pressure pc and bottom-hole pressure pa. The latter measure-ment is often transferred as pressure pulses through the mud along withother measurements. This gives a slow update rate on the pressure mea-surement. Another problem is that the bottom-hole assembly tool is turnedo� during low bit-�ows and the measurement is lost. Other measurementsassumed known are

• True vertial depth (TVD)
• Well length
• Choke valve input
• Mud-pump �ow
• Bak-pressure pump �ow
• Equivalent irulating density (ECD)1.4 Pressure ontrolThe annulus pressure gradient is mainly determined by the hydrostati height,frition in the well-bore and the hoke valve opening. All these three variablemay be utilized for ontrolling the annulus pressure pro�le. Density has thelargest in�uene on annulus pressure and may be altered by hanging theomposition of the drill-mud. The �ow rate generated by the mud-pump1De�ned by the International Assoiation of Drilling Contrators



4 CHAPTER 1. INTRODUCTIONauses a pressure loss due to frition in the well bore. This pressure lossmay lead to a hallenge in ontrolling the pressure as the pump speeds arealtered. In normal operation the pump speed is maintained onstant andpressure is ontrolled with the hoke valve. For small hoke valve openingsthe valve may be logged by uttings from the well. In some installationsa bak-pressure pump is therefore inluded to supply additional pressurewhen needed. Typial pressure disturbanes are variations in reservoir porepressure, drill-string movements and stopping and starting mud-pump ir-ulation. The latter situation is performed during pipe-onnetions; i.e themud-pump is ramped down, a new drill string is onneted, the mud-pump isramped up again and drilling is resumed. In this situation the pressure vari-ations may be large and the bak-pressure pump an by utilized to supplyadditional pressure.To ensure satisfatory pressure management in the well bore; a ontrollerbased on feedbak from the bottom-hole pressure should be utilized. Forpapers related to annulus pressure ontrol see for instane [17℄ and [16℄. In[17℄ a linear MPC and a PID is utilized for ontrolling the pressure and in[16℄; an H∞-ontroller and a PID is ompared for ontrolling the pressurebased on a top-side pressure measurement. When the ontroller is based onfeedbak from the top-side measurement; the annulus frition and densityis not taken into onsideration in the ontroller. However; the ontrollerdampen the e�et of pressure disturbanes to some degree.1.5 Pressure estimationTo properly ontrol the bottom-hole pressure; a measurement or estimateof the bottom-hole pressure is needed. Suh a measurement exists, but thesignal has a very slow bit-rate and is lost during low �ows; for instane duringa pipe-onnetion. This makes the measurement a poor hoie for ontrol. Inorder to estimate the bottom-hole pressure there are a number of unknownvariables that must be determined. As mentioned; the main ontribution tothe bottom-hole pressure is annulus density and annulus frition. To obtainthe dynamis of the system; the pressure pulses and �ow dynamis must alsobe taken into onsideration. The drill-string density an be measured, butdue to uttings and possible in�ux from the reservoir; the annulus density isunknown. The well-bore frition is also ombined with great unertainty.For other soures on bottom-hole pressure estimation; see for instane[18℄. Here an adaptive observer is designed for estimating unknown wellparameters and the bottom-hole pressure.



1.6. SCOPE AND EMPHASIS 51.6 Sope and emphasisIn this report the possibility of estimating the bottom-hole pressure utilizinga Kalman �lter is examined. The Kalman �lter is based on the �uid modelderived in the internal doument [12℄. The �lters evaluated are the ExtendedKalman �lter (EKF) and the Unsented Kalman �lter (UKF). First an anal-ysis based on whih parameters to estimate is performed. Di�erent EKFand UKF �lters are designed based on the observability and limitations ofthe �lter and input exitation. The primary objetive is to estimate thebottom-hole pressure based on the stand-pipe pressure and hoke di�eren-tial pressure measurements. The UKF is then tested against simulations inWemod and data sets from the Grane �eld.



6 CHAPTER 1. INTRODUCTION



Chapter 2Kalman �lter theoryThis setions desribes the disrete Kalman �lter and how it an be utilizedfor estimating states, disturbanes and parameters of a set of non-lineardi�erene equations.2.1 Disretization of state equationsIn this report the disrete Kalman �lter is onsidered. This requires a disreterepresentation of the ontinuous di�erential equations. Let the nonlineardi�erential equations be desribed as
ẋ(t) = f(x, u) + w(t)

z(t) = h(x) + v(t)
(2.1)where x ∈ R

n represents the unobserved states, z ∈ R
m denote the observedvariables and u ∈ R

l is the ontrolled variable. w and v are white noiseproesses with ovariane
E[w(t + τ)w(τ)] = Q(t)δ(τ)

E[v(t + τ)v(τ)] = R(t)δ(τ)

E[v(t)w(t + τ)] = 0 ∀τ

(2.2)Calulation of the Kalman �lter an be performed by onsidering a disreteform of equation (2.1), or by utilizing the ontinuous state equations withdisrete measurements.The nonlinear di�erential equations (2.1) an be represented in a disreteform by applying expliit Euler
xk+1 = xk + hf(xk, uk) + hwk

zk = h(k) + hvk

(2.3)with ovariane matrix
Qk = Q/h7



8 CHAPTER 2. KALMAN FILTER THEORYwhere h is the step For numeri stability the method requires
h ≤ −2/λminwhere λmin is the smallest eigenvalue in the state equations. If the ontinuousdi�erential equations are sti� there may be problems with stability, sine thisrequire a very small step size.2.2 Mean square estimation1 Consider the estimation of a random vetor X given the measurement Z.The objetive is to estimate X(Z) so that the error
X̃ = X − X̂is minimized. We de�ne the ost funtion as the mean square error

J = E
{

(X − X̂)(X − X̂)T
} (2.4)and restrit the estimate X(Z) to be a linear ombination of the measure-ments2.

X(Z) = AZ + b (2.5)Substituting this into the ost funtion results in
J = E

{

(X − X̂)(X − X̂)T
}

= trace
[

E
{

(X − X̂)(X − X̂)T
}]

= trace
[
E
{
(X − AZ − b)(X − AZ − b)T

}]

= trace
{[

(X − X̄) − (AZ + b − X̄)
] [

(X − X̄) − (AZ + b − X̄)
]}

= trace
[
Pxx + A(Pzz + Z̄Z̄)AT + (b − X̄)(b − X̄)T + 2AZ̄(b − X̄)T − 2APxz

]where Pzx is the ross ovariane between Z and X. To �nd the optimalvalues this equation is di�erentiated with respet to A and b

∂J

∂b
= 2(b − X̄) + 2AZ̄ = 0

∂J

∂A
= 2A(Pz + Z̄Z̄T ) − 2Pxz + 2(b − X̄)Z̄T = 0solving for A and b

b = X̄ − AZ̄

A = PxzP
−1
zz1Theory from the following setions is aptured from [10℄, [6℄ and [13℄2No assumptions are made on the relation between Z and X̂ . The results are valid forany possible nonlinear relation between measurement and unknown [13, hapter 1℄



2.2. MEAN SQUARE ESTIMATION 9Inserting into equation (2.5) results in the linear mean square estimate
X̂LMS = X̄ + PxzP

−1
zz (Z − Z̄) (2.6)Obtaining Pzz, Pxz and Z̄ is not a trivial task. It requires knowing theonditional probability density funtion of X given Z as it is transformedthrough a funtion; possibly nonlinear. If the relationship between X and Zis a linear state spae system; equation (2.6) simpli�es to the Kalman �lterequations.2.2.1 Disrete Kalman �lterIn the general form the disrete Kalman �lter is utilized for estimation ofthe states in the linear stohasti di�erene equations

xk+1 = Akxk + Bkuk + wk

yk = Ckxk + vk

(2.7)where x ∈ R
n represents the unobserved states, y ∈ R

m denote the observedvariables and u ∈ R
l is the ontrolled variable. wk and vk are white noiseproesses with ovariane

E[wkwi] = Qkδki

E[vkvi] = Rkδki

E[wkwi] = 0

(2.8)
x̂−

k is de�ned as the a priori state estimate alulated at the previous step
k − 1, and x̂k is the posteriori state estimate at step k. The a priori andposteriori error estimate is de�ned as

e−k , xk − x̂−
k

ek , xk − x̂kand the a priori and posteriori error ovariane an then be de�ned as
P−

k = E[e−k e−k
T
]

Pk = E[ekeT
k ]Filtering of the states and ovariane is based on a trade-o� between the apriori estimate and the urrent measurement

x̂k = x̂−
k + Kk(yk − Ckx̂

−
k )

Pk = (I − KkCk)
(2.9)where the Kalman gain Kk is determined by

Kk = P−
k CT

k (CkP
−
k CT

k + Rk)
−1



10 CHAPTER 2. KALMAN FILTER THEORYBased on the new estimate given in equation (2.9); the predited states andovariane an be alulated as
x̂k+1 = Akx̂k + Bkuk

Pk+1 = AkPkA
T
k + Rk2.3 The extended Kalman �lterFor systems where the di�erene equations are nonlinear; the �lter in setion2.2.1 might not be adequate. The extended Kalman �lter solves this by ap-proximating the time and measurement update around the urrent estimate.A set of nonlinear di�erene equations an be desribed as

xk+1 = f(xk, uk) + wk

zk = hk(xk) + vk

(2.10)where wk and vk are white noise proesses with expetation and ovarianeas desribed in (2.8).2.3.1 Time and measurement update equationsThe exat time updates for the �rst two moments of xk and zk are
x̂−

k = E[f(xk, uk) + wk]

Kk = PxzP
−1
ȳȳ

ŷ−k = E[h(x−
k ) + vk]These equations are in general not possible to obtain, sine it requires know-ing the �rst two moments of xk and zk after they have undergone a nonlineartransformation. Instead; the disrete measurement update and time updateare approximated by a �rst order Taylor expansion around the a priori esti-mate. We denote the Jaobian's as

Fxk
=

∂f(x, uk)

∂x

∣
∣
∣
∣
x=x̂−

k

Hxk
=

∂h(x)

∂x

∣
∣
∣
∣
x=x̂k

(2.11)The Kalman �lter measurement updates are then given by
x̂k = x̂−

k + Kk[zk − h(x−
k )]

Kk = P−
k HT

xk
[Hxk

P−
k HT

xk
+ R]−1

Pk = [I − KkHxk
]P−

k

(2.12)and the predited time update is alulated as
xk+1 = f(x̂k, uk)

Pk+1 = Fxk
PkF

T
xk

+ Qk

(2.13)



2.4. THE UNSCENTED KALMAN FILTER 112.4 The unsented Kalman �lter3 When the Kalman �lter estimates the measurement and time update itutilizes the mean and ovariane of xk and zk. When these variables aretransformed through a nonlinear funtion
y = f(x)the preise statistis of y an only be alulated if the onditional probabilitydensity funtion fx|z is known. A Taylor expansion around x̄ is given by

f(x) = f(x̄+ δx) = f(x̄)+∇fδx+
1

2
∇2fδx2 +

1

3!
f∇3fδx3 +

1

4!
∇4fδx4 + . . .where δx is Gaussian white noise with zero mean. It an be shown that themean and ovariane of this Taylor expansion are

ȳ = f(x̄) +
1

2
∇2fPxx +

1

4
E[δx4] + . . .

Pyy = ∇fPxx (∇f)T +
1

2 × 4!
∇2f

(
E[δx4] − E[δx2Pyy] − E[Pyyδx

2] + P 2
yy

) (
∇2f

)T

1

3!
fE[δx4]

(
∇4f

)T
+ . . . (2.14)An approximation to the mean and ovariane is found by linearizing around

x̄

ȳ = f(x̄)

Pyy = ∇fPxx (∇f)and utilizing this mean and ovariane for �ltering and predition. As seenfrom the above equations; this will only give a satisfatory result if the higherorder terms are negletable.2.4.1 Unsented transformThe UKF utilizes the unsented transform (UT) for alulating the mean andovariane of a random variable propagated through a nonlinear funtion. Todetermine the �rst two moments of y; a set of 2n+1 sigma-points with samplemean x̄ and sample ovariane Pxx are transformed through the nonlinearfuntion. The points and are seleted aording to
X0 = x̄

Xi = x̄ +
(√

(n + λ)Pxx

)

i
i = 1, . . . n

Xi = x̄ −
(√

(n + λ)Pxx

)

i
i = n + 1, . . . 2n

(2.15)3The theory in this setion is olleted from [1℄, [5℄ and[7℄



12 CHAPTER 2. KALMAN FILTER THEORYwhere n is the dimension of the state vetor x, (√n + λPxx

)

i
is the itholumn or row of the matrix square root, and λ is a saling parameter

λ = α2(n + κ) + nwhere α determines the spread of the sigma-points around x̄; set to a smallvalue (10−3), β inlude information about the distribution of x; β = 2 fora Gaussian distribution, and κ is a tuning parameter; usually set to zero[7℄.The weights assoiated with eah sigma point is alulated as
Wm0

= λ/(n + λ);

Wc0 = λ/(n + λ) + 1 − α2 + β;

Wmi
= 1/(2(λ + n));

Wci
= Wmi

∀i ≥ 1Eah sigma-point is transformed through the nonlinear funtion
Yi = f(Xi)and the transformed points are utilized for determining the new mean andovariane aording to

ȳ =

2n∑

i=0

WiYi

Pyy =

2n∑

i=0

Wi (Yi − ȳ) (Yi − ȳ)TBeause the mean and ovariane of x is alulated to the seond order;the transformed mean and ovariane are at least aurate to the seondorder. It is possible to tune the �lter so that a higher order is obtained. Inomparison; the EKF alulates the ovariane to the same seond order andthe mean to the �rst order.2.4.2 Unsented transform and the unsented Kalman �lterThe UT an easily be inorporated into the Kalman �lter. Considering thestate and measurement equations (2.10); the UT an be employed in theKalman �lter as1. Predit states x̂−
k and ovariane P−

xx by transforming sigma-points Xithrough state equations f(xk, uk) + hwk2. Predit expeted measurements ŷ−k and ovariane Pȳȳ by transformingthe sigma-points Xi through the measurement equation h(x) + hvk



2.5. AUGMENTATION OF THE STATE-SPACE MODEL 133. Calulate ross-ovariane Pxy

Pxy =

2n∑

i=0

Wi

(
Xi − x̄−

k

) (
Yi − ȳ−

)T4. Determine Kalman gain and �ltrate estimated state and ovariane
Kk = PyyP

−1
xy

x−
k = x̂−

k + Kk(yk − ŷ−k )

Pk = P−
k − KkPȳȳK

T
k2.5 Augmentation of the state-spae modelTo be able to estimate parameters and disturbanes utilizing the Kalman�lter; the unknown variables are modeled as additional states in the pro-ess model. If we onsider parameter estimation in the linear state spaeequations

xk+1 = Axk + Bu + Bddk + Bbbk + wx
k

zk = Hxk + vx
kwhere dk and bk is unknown disturbanes and bias. To estimate the param-eters and unknown parameters this model an be augmented as

xk+1 = A(θ)xk + B(θ)uk + B(θ)dk + B(θ)bk + wx
k

dk+1 = dk + wd
k

bk+1 = bk + wb
k

θk+1 = θk + wθ
k

zk = H(θ)xk + vk

(2.16)where wx
k , wd

k, wb
k and wθ

k are white noise proesses with ovarianes
E[wx

kwx
i

T ] = Qx
kδki

E[wd
kwd

i

T
] = Qd

kδki

E[wb
kw

b
i

T
] = Qb

kδki

E[wθ
kwθ

i

T
] = Qθ

kδkiThe state vetors for equation (2.16) an now be de�ned
χk =







xk

dk

bk

θ







wk =







wx
k

wd
k

wb
k

wθ
k







uk =







uk

0
0
0









14 CHAPTER 2. KALMAN FILTER THEORYwith state matries
F (θ) =







A(θ) Bd(θ) Bb(θ) 0
0 Ir 0 0
0 0 Is 0
0 0 0 It







G(θ) =







Bu(θ)
0
0
0





If an EKF is used for estimation; the new state equations may be linearizedw.r.t F (θ) and G(θ) to get the full augmented state spae model

f(χk, uk) = F (θ)χk + G(θ)uk

h(χk) = H(χ)xk

F̄k =
∂f(χk, uk)

∂χT
=

(
Fk(θ) ∂

∂θT [F (θ)χk + G(θ)uk]

0 Ir+s+t

)

χk=χ̂k,θk=θ̂k

(2.17)
H̄k =

∂h(χ−
k )

χT
k

=
(

H(θ) ∂
θT

k

[H(θk)χk]
)

χk=χ̂−

k
,θk=θ−

k

(2.18)The disrete state augmentation an be applied to both extended and un-sented Kalman �lters, the latter does not require the state equation Jao-bian's derived above; instead the �lter is applied to the augmented nonlinearsystem.



Chapter 3Dynami �uid modelIn this hapter the proess model utilized for Kalman �lter design is derived.The equations where originally dedued in the internal doument [12℄. It isassumed that the �uid mud an be onsidered as a one phase hydrauli �uid.The the momentum equation and equation of ontinuity was applied to theshemati in �gure 3.1. Temperatures are assumed to be slowly varying andare treated as onstant. The energy equation is therefore not onsidered. Aswe an see from the �gure; the drill-string and annulus is divided into twoseparate ontrol volumes onneted through the drill-bit. The mud pumpis onneted to the drill-string at top-side, and a hoke valve and a bak-pressure pump is onneted at top-side on the annulus side.3.1 Dedution of three state �uid modelThe assumptions made when deriving the model are as follows
• Turbulent �ow; i.e Re > 2300

• One dimensional �ow along the �ow path.
• Homogeneous ross setion area onditions.
• Constant density in the momentum equation.
• Temperature hanges are negligible and are treated as onstant.3.1.1 Equation of stateVisosity µ as a funtion of temperature T and pressure p is treated as aonstant. This is based on the assumption of a slowly varying temperature,and the fat that µ only hanges slightly with p.15
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Figure 3.1: Shemati of drilling-on�gurationMud density ρ is given by ρ = ρ(p, T ). Sine the temperature and pres-sure hanges in a liquid have a small e�et on the density, it may be approx-imated
ρ(p, T ) ≈ ρ0 +

∂ρ

∂p

∣
∣
∣
∣
T0

(p − p0) +
∂ρ

∂T

∣
∣
∣
∣
p0

(T − T0) (3.1)Aording to the assumptions above; temperature hanges have negligiblee�ets on the �uid and are therefore omitted. The bulk modulus; whih anbe viewed as a measure of liquid ompressibility; is de�ned as
β , ρ0

∂p

∂ρ

∣
∣
∣
∣
T0

= −V0
∂p

∂V

∣
∣
∣
∣
T0Inserting this into equation (3.1) gives

ρ = ρ0 +
ρ0

β
(p − p0) (3.2)



3.1. DEDUCTION OF THREE STATE FLUID MODEL 173.1.2 Control volumeAording to the priniple of mass onservation the mass of a material volume
Vm is onstant

m =

∫∫∫

Vm(t)
ρdV ⇒ D

Dt

∫∫∫

V

ρdV = 0 (3.3)If we assume that ρ is the same all over the ontrol volume and onsiderReynolds' transport theorem [4, hapter 10℄
d

dt

∫∫∫

Vc

ρdV =
D

Dt

∫∫∫

Vc

ρdV

︸ ︷︷ ︸

equals zero, see (3.3)

−
∫∫

∂Vc

ρ ·~ndA (3.4)Equation (3.4) states that the hange in mass equals the net �ow into theontrol volume. Denoting w = ρq and di�erentiating the left side of equation(3.4) results in
Vc

dρ

dt
+ ρ

dVc

dt
=
∑

i

ρqin,i −
∑

j

ρqout,j (3.5)Inserting the bulk modulus
dρ

ρ
=

dp

β
⇒ ρ̇ =

ρ

β
ṗinto equation (3.5) gives the mass balane for the ontrol volume Vc

Vc

β
ṗ + V̇c =

∑

i

qin,i −
∑

j

qout,j (3.6)3.1.3 The momentum equationNavier-Stokes for one dimensional �ow is given by
ρ
dv

dt
= −∂p

∂x
− 1

A

∂F

∂x
+ ρg

∂h

∂x
(3.7)where A is the ross setion of the pipe, F aounts for frition losses, x isthe position along the �uid path and v is the veloity in the x diretion.Frition lossesThe frition term in equation (3.7) aounts for all fritional losses and ismodeled as

∂F

∂x
= Sτw, τw = f

1

4

ρ

2
v2



18 CHAPTER 3. DYNAMIC FLUID MODELwhere S is the pipe perimeter, τw is the wall shear stress, and f is the fritionfator. For minor losses suh as restritions and pipe bends the frition isgiven by
p1 − p2 = K

ρ

2
v2If the veloity v is replaed by v = q/A(x) the total frition gradient is

∂F

∂x
=

1

4
fS(x)

ρ

2

(
q

A(x)

)2

+
∂K

∂x
A(x)

ρ

2

(
q

A(x)

)2 (3.8)where ∂K/∂x is the minor loss gradient along the �ow path.3.1.4 Flow dynamisTo simplify the �ow dynamis the �ow rate q̄ = Av̄ and density ρ = ρ0 isassumed onstant along the �ow path
ρ0

A(x)
dx

dq̄

dt
= −∂p

∂x
− 1

A(x)

∂F

∂x
dx + ρ0g

∂h

∂x
(3.9)Integrating along x gives

∫ l

0

ρ0

A(x)
dx

dq̄

dt
= −

∫ l

0

∂p

∂x
dx −

∫ l

0

1

A(x)

∂F

∂x
dx +

∫ l

0
ρg

∂h

∂x
dx

⇓
ρ0l

Ā

dq̄

dt
= p(0) − p(l) − (B0(l) − fB1(l))

ρ0

2
q̄2 + ρ0g(h(l) − h(0)),

(3.10)where B0(l) and B1(l) are de�ned as
B0(l) ,

∫ l

0

∂K

∂x

1

A(x)2
dx B1 ,

∫ l

0

1

4

S(x)

A(x)3
dx (3.11)and Ā is

Ā ,
1

l

∫ l

0
A(x)dx (3.12)3.1.5 Drill-string dynamisThe only atuator in the drill-string is as mentioned the mud pump. Dy-namis in the pump is not onsidered and the �ow is desribed by qpump.Drill-string pressureFrom the ontrol volume equation (3.6) the pressure dynamis an be de-sribed as

Vd

βd
ṗp = qpump − qbit (3.13)where pp is the stand-pipe pressure and V̇d = 0 sine the drill string volumeis onstant between pipe onnetions.



3.1. DEDUCTION OF THREE STATE FLUID MODEL 19Drill-string �owThe drill-string �ow dynamis an be derived from equation (3.10)
ρd0LdN

Ād

q̇d = pp − pbit − (Bd0 + fdBd1)
ρd0

2
q2
d + ρd0ghbit (3.14)where LdN is the total length of the drill-string, pbit is the pressure at thedrill-bit and hbit is the hydrostati height of the �uid; i.e well depth.3.1.6 Annulus dynamisFrom �gure 3.1 we see that atuators on the annulus side inlude a hokevalve and a bak-pressure pump. The hoke valve is modeled as

qchoke = AKcz

√
2

ρa
∆pc (3.15)Annulus pressureApplying equation (3.6) to the annulus ontrol volume results in

Va

βa
ṗc + V̇a = qbit + qres + qres + qback − qchoke (3.16)where qres is reservoir in�ow and qback is the bak-pressure �ow.3.1.7 Annulus �owWe de�ne qa = qres + qbit and apply equation (3.10)

ρ0lbit
Āa

q̇a = pbit − pc − (Ba0 + faBa1)
ρa0

2
q2
a + ρd0ghbit (3.17)3.1.8 Three state �uid modelFrom �gure 3.1 we see that qd = qbit and we have that; qa = qbit + qres,where qbit is the �ow through the drill-bit. If we ombine the drill-string�ow dynamis (3.14) and annulus �ow dynamis (3.17) the state equationsan be derived. For simpli�ation the following de�nitions are inluded:

Md ,
ρd0LdN

Ād

Ma ,
ρa0lbit
Āa(lbit)

(3.18)
Fd , (Bd0 + fdBd1)

ρd0

2
Fa , (Ba0(lbit) + faBa1(lbit))

ρa0

2
(3.19)



20 CHAPTER 3. DYNAMIC FLUID MODELThe �nal proess model is shown in equation (3.20).
Vd

βd
ṗp = qpump − qbit

Va

βa
ṗc = −V̇a + qbit + qres + qback − zAcKc

√
2

ρa0
(pc − p0)

(Ma + Md) q̇bit = pp − pc − Fdq
2
bit − Fa(qbit − qres)

2 + (ρd0 − ρa0)ghbit(3.20)The annulus pressure an now be desribed as
pa(l) = pc + Ma(l)q̇bit + Fa(l)q

2
bit + ρa0gh(l) (3.21)



Chapter 4Model onsiderations andanalysis4.1 Parameter identi�ationIn the model desribed in setion 3.1.8 there are several parameters thatneeds to be determined. These parameters an be divided into time-varying,onstant and unknown. It is also distinguished between parameters that anbe estimated during stationary onditions and parameters that only an beestimated during transients.In addition to the pressure measurements pp and pc; it is assumed that
qpump, qback, z, hbit and lbit are known. The drill-string and annulus volumesmay be determined from the well length lbit. Based on o�-line measurementsof the mud density it is possible to alulate the drill-string density ρd. Thepump �ows an be determined by

qpump = NpVp2πωp

τpω̇p = −ωp + Kpumpupwhere ωp rad/s is the pump rotational speed, Np is the number of pistons and
Vp is the volume per strokes per piston [12℄. The hoke �ow is determinedfrom the valve equation

qchoke = Cvz
√

∆pc

τcż = −z + ucwhere z ∈ (0, 1) is the valve opening and 0 is fully losed and 1 is fully open.
Cv is the valve onstant and uc is the manipulated variable. Note that whenthe valve harateristi and annulus density is known; it is also possible toutilize the valve equation (3.15).The remaining parameters that needs to be identi�ed are βa, βd, ρa, Fd,
Fa, Ma and Md. The following identi�ation method for o�-line estimationare suggested in the internal doument [11℄.21



22 CHAPTER 4. MODEL CONSIDERATIONS AND ANALYSISUtilizing stationary measurements of hoke pressure pc and bottom-holepressure pa; the annulus and drill-string density and frition may be deter-mined from the stationary equations for bit-�ow and bit pressure
qbit = qpump

pp − pc = (Fd + Fa)q
2
bit − (ρd − ρa)ghbit

pa − pc = Faq
2
bit + ρaghbitHere we have two equations with four unknowns. The number of equationsmay be expanded by measuring the pressures for di�erent bit-�ows qbit, andsolving for frition and density. A least square algorithm may be utilized toensure a more aurate result.A method for estimating �uid ompressibility in the drill-string and an-nulus; βd and βa is suggested in [11℄. The identi�ation methods allow forestimation of parameters without the unknown bit-�ow qbit. In this report;o�-line estimation of these parameter is not onsidered and the results from[11℄ is utilized in the simulations against Wemod and data from Grane. Theparameters Ma and Md are approximated by onsidering the average densi-ties and applying equation (3.18).4.2 Augmented modelFor online estimation of a set of unknown time varying parameters; the model(3.20) is augmented as desribed in setion 2.5. The augmented state vetoris de�ned as

x =
(
pp pc qbit θ

)T (4.1)where x ∈ R
n and the vetor θ ontains the parameters to be estimated;here alled parameter vetor. The belonging state equations are

f(x) =








βd

Vd

(qpump − qbit)
βa

Va

(

−V̇a + qbit + qres + qback − qchoke

)

1
Ma+Md

(
pp − pc − Fdq

2
bit − Fa(qbit − qres)

2 + (ρd − ρa)ghbit

)

0










4.2. AUGMENTED MODEL 23The augmented system an now be represented in the ompat form
ẋ = f(x) + w (4.2)where w is a olumn vetor of white noise proesses with zero mean, ovari-ane E[wwt] = Q and dimension w ∈ R

nThe measurement equation for the two measurements pp and pc is linearand given by
yk =

(
pp

pc

)

+ v (4.3)where the vetor v is measurement noise and is normally distributed withovariane E[vvT ] = R. For the bottom-hole pressure; the measurementequation is given by
pa = pc + Maq̇bit + Faq

2
bit + ρa0ghIn this report; estimation of qres is not onsidered and so qres is set to zero.Inserting q̇bit and qres = 0 into the above equation results in

pa = pc + Faq
2
bit + ρa0ghbit+

Ma

Ma + Md

(
pp − pc − Fdq

2
bit − Faq

2
bit + (ρd0 − ρa0)ghbit

) (4.4)If we de�ne M and M̄ as
M ,

Ma

Ma + Md

, M̄ = 1 − M =
Md

Ma + Mdthe measurement equation an be simpli�ed to
pa = pc (1 − M) + Faq

2
bit (1 − M) + ρaghbit (1 − M)

+ M(pp − Fdq
2
bit + ρdghbit)

= M̄(pc + Faq
2
bit + ρaghbit) + M(pp − Fdq

2
bit + ρdghbit)Combining the measurement equation with measurements for pp and pc gives

h(x) =





pp

pc

M̄(pc + Faq
2
bit + ρaghbit) + M(pp − Fdq

2
bit + ρdghbit)



 (4.5)The total system with state equations and measurement equations an nowbe desribed in the ompat form
ẋ = f(x) + w

y =

{
Cx ,with pp and pc measurement
h(x) ,with pp, pc and pa measurement (4.6)



24 CHAPTER 4. MODEL CONSIDERATIONS AND ANALYSIS4.3 ObservabilityTo obtain the orret parameter values when estimating the annulus parame-ters online; the augmented model needs to be observable. Aording to linearsystem theory (see for instane [9℄) this an be determined by alulating theobservability matrix; O and examine if the rank of O equals the dimensionof the linearized state spae model f(x,u). The state spae equations
ẋ = Ax + Bu

y = Cxfor the augmented �uid model (4.6) is found by linearizing around the urrentoperating point
A =

∂f

∂x

∣
∣
∣
∣
x=x∗,u=u∗

B =
∂f

∂u

∣
∣
∣
∣
x=x∗,u=u∗

C =
∂h

∂x

∣
∣
∣
∣
x=x∗

(4.7)where A is the state matrix, C is the measurement matrix, u is the ontrolsignal and B is the input matrix. The input matrix onsists of mud-pump,bak-pressure pump and hoke valve, but it is not relevant for system observ-ability. With a state matrix dimension of A ∈ R
n; the observability matrixis given by

O =








C
CA...

CAn−1






An algebrai expression for the observability matrix is to intriate to displayand to analyse. Instead; the observability matrix was alulated numeriallyby linearizing the model around some seleted operating points. Observabil-ity was tested for both measurement equations; with and without pa mea-surement. For the ase with two measurements; pp and pc; the measurementequation is linear and given by

C =

(
1 0 0 . . . 0
0 1 0 . . . 0

) ,where C ∈ R
2×n (4.8)If pa is available as a measurement or estimate the linearized measurementequation depends on the augmented state vetor

C =





1 0 0 0 . . . 0
0 1 0 0 . . . 0

M M̄ 2qbit(FaM̄ − FdM) ∂h3

∂θ1
. . . ∂h3

∂θn





x=x∗

(4.9)When the state vetor is augmented with the parameter vetor θ as
θ =

(
ρa Fa βa

) , or
θ =

(
Cv Fa βa

)



4.4. PRAGMATIC APPROACH TO PARAMETER ESTIMATION 25the observability matrix has rank(O) < dim(A) for both measurement equa-tions; (4.8) and (4.9). This indiates that an EKF where all these parametersare estimated annot be designed for this ase. However; the model is ob-servable when reduing the number of estimated parameters. For example;any augmented pairing of ρa, Fa, Cv and βa is possible. An analysis forparameter onvergene in the UKF has not been analyzed this report. Su�-ient onditions for a bounded estimation error in the UKF an been foundin [3℄.4.4 Pragmati approah to parameter estimationIn normal operation little exitation of the manipulated variables qpump, qbackand z an be expeted[11℄. This implies that there will be long periods wherethe model and �lter is stationary and the β parameters in equation (3.20)are anelled. It is then possible estimate two stationary parameters1; orthree if pa is available. These estimated are independent of the value of βaand βd. Normally the observability problem would ause the Kalman �lterto estimate a linear ombination of the parameters and not the atual values,but due to the anellation of βa it should be possible to obtain the orretvalues.When the system is stationary it is possible to identify the state qbitand at most three more parameters. Equations (4.10) - (4.13) display thestationary ase of the �uid model (3.20) and the bottom-hole measurementequation (3.21).
qpump = qbit (4.10)

qchoke − qres = qbit + qback (4.11)
pp − pc = Fdq

2
bit + Fa(qbit + qres)

2 − (ρd − ρa)ghbit (4.12)
pa − pc = Fa(qbit − qres)

2 + ρaghbit (4.13)From these equations we see that qbit is given by the mud-pump. The un-known parameters in equation (4.11) are qres, ρa and the valve onstant Cv; ifvalve equation (3.15) is utilized. Annulus density and frition from equations(4.12) and (4.13) are assoiated with large unertainty. These parametersenter in both equations, but it is still only possible to identify one of thesein the stationary ase. This is seen when writing out the bit-pressure pa asseen from the drill-string
pa = pp + ρdghbit − Fdq

2
bitInserting for pa in equation (4.13) gives equation (4.12); i.e, the two equa-tions are linearly dependent, and we gain no new information useful for1In this ontext; stationary parameters are the ones not anelled when the given stateequations are stationary



26 CHAPTER 4. MODEL CONSIDERATIONS AND ANALYSISestimating Fa and ρa stationary. So, to be able to estimate Fa and ρa onlinewe need exitation; whih again requires the orret values for βa and βd.The parameters βd, βa, Md and Ma an only be estimated during tran-sients.4.4.1 Parameter estimation onlusionsConsidering the points mentioned in this setion; some estimation frame-works are suggested. As noted in the observability analysis; it is not feasibleto estimate ρa, Fa and βa at the same time in the Kalman �lter. A possi-bility here is to determine ρa based on stationary o�-line observations. Forexample; by measuring stationary pressures and �ows and applying a least-squares algorithm to equations (4.10)-(4.13). The least-square result an beused to orret parameters not estimated online in the Kalman �lter; suhas annulus density ρa. Also; it should be tested whether it is possible toestimate ρa and Fa during exitation; and how this estimation is a�eted byerror in the �uid bulk-modulus.Sine annulus density and the hoke valve harateristi is not know;there are unertainties assoiated with the hoke-�ow qchoke. If a measure-ment of this �ow is not available; Cv an be estimated together with theannulus frition and bulk-modulus. The parameter vetor for the stationary�lter an then be represented as
θs =

(
Cv Fa

)whereas the transient parameter vetor is
θd =

(
βa

)When the bit-�ow is zero; it is not possible to estimate either frition or �uidbulk-modulus. In this situation the parameter vetor is empty and only thebit-�ow is estimated. Also, sine there might arise problems as qbit → 0; theparameter estimation should be turned o� in advane.The parameter vetors suggested require that transients and stationaryonditions are know. Sine exitations from the hoke-valve and mud-pumpis known beforehand; it should be possible to shift between the stationaryand transient Kalman �lters and obtain a orret estimate. To ensure aorret estimate when swithing between �lters; the stationary parametersmust onverge before hanging �lter.4.5 Disretization of augmented modelFor implementation purposes; the augmented state equations are onvertedto di�erene equations. This was aomplished by applying Euler's method



4.5. DISCRETIZATION OF AUGMENTED MODEL 27for numerial integration on equation (4.2). The disrete model is given by
f1 = ppk+1

= ppk
+ h

βd

Vd
(qpumpk

− qbitk) + hwk1

f2 = pck+1
= pck

+ h
βa

Va

(

−V̇a + qbitk + qresk
+ qbackk

− zAcKc

√
2

ρa0
(pck

− p0)

)

+ hwk2

f3 = qbitk+1
= qbitk +

h

Ma + Md

(
pp − pc − Fdq

2
bit − Fa(qbit − qres)

2 + (ρd0 − ρa0)ghbit

)
+ hwk3

fθ1
= θ1,k+1 = θ1,k...

fθn
= θn,k+1 = θn,k (4.14)where h is the disrete time shift. Aording to [4℄; Euler's method fornumerial integration is stable for

h ≤ − 2

λ
(4.15)where λ is the smallest eigenvalue of the ontinuous state equations. Thehoke pressure equation from the proess model (3.20) is given by

Va

βa
ṗc = −V̇a + qbit + qres + qback − zAcKc

√
2

ρa0
∆pc (4.16)When all inputs are zero the linearized pressure equation an be written as

ṗc = − C

2
√

∆pc

, where C =
βa

Va
zAcKc

√
2

ρa
(4.17)The eigenvalues for the linearized system is

λ = − C√
∆pc

(4.18)As we an see from the equation above; the eigenvalue λ → −∞ as ∆pc → 0.Aording to the stability requirement (4.15); the disrete system is loallyunstable. This will ause osillations around qbit = 0, and might lead toproblems in the Kalman �lters. Espeially in the UKF, where a negativede�nite ovariane matrix auses imaginary values when alulating the ma-trix square root. One solution is utilizing another valve equation. In [4,hapter 4 ℄ a valve equation with smooth transition between laminar �ow;
q = Cl∆p; and turbulent �ow is suggested. The problem may also be solvedby inreasing the bit-�ow proess noise ovariane during low bit-�ows. An-other way of solving the problem is to utilize an impliit integration solverthat is stable for the hole left half plane.
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Chapter 5Kalman �lter designThis hapter presents an overview of the implemented EKF and UKF. Basedon the onlusions from the former hapter; the Kalman �lter must be ableto swith between estimated parameters. In the EKF this involve designinga di�erent �lter for eah set of parameters and hanging between �lters. Forthe UKF this an be aomplished by utilizing the same �lter. It is assumedthat the proess noise and measurement noise is diagonal and not orrelatedwith eah other.5.1 Extended Kalman �lter designParameter vetors onsidered in the EKF are
θ =

(
ρa Fa βa

) (5.1)
θ =

(
Fa β

) (5.2)
θs =

(
Fa

)
θd =

(
βa

) (5.3)The observability analysis indiated an observability problem when estimat-ing annulus density, frition and bulk-modulus at the same time. The �rstparameter vetor in the list above is inluded only to verify this and toompare it to the UKF.As mentioned in setion 2.3; the EKF approximates the propagated meanas
E [f(x)] ≈ f(x̄)The apriori error ovariane matrix is approximated by onsidering a lin-earization around the urrent estimate, and alulating the propagationthrough the linear system. To design the �lter we must therefore augmentthe state equations and determine the state matrix A.29



30 CHAPTER 5. KALMAN FILTER DESIGN5.1.1 EKF with parameter vetor θ = (ρa Fa βa)As an example the augmentation of the �rst parameter vetor in (5.1) isshown. The state equations are
ppk+1

= ppk
+ h

βd

Vd

(qpumpk
− qbitk) + hw1

pck+1
= pck

+ h
βa

Va

(

−V̇a + qbitk + qresk
+ qbackk

− qchoke

)

qbitk+1
= qbitk +

h

Ma + Md

(
pp − pc − Fdq

2
bit − Fa(qbit − qres)

2 + (ρd0 − ρa0)ghbit

)
+ hw3

ρa,k+1 = ρa,k + hw4

Fa,k+1 = Fa,k + hw5

βa,k+1 = βa,k + hw6 (5.4)and the belonging Jaobian matrix with state vetor x =
(
pP pc qbit ρa Fa βa

)is
Ak =

∂f

∂x
=












1 0 −βd

Vd
0 0 0

0 ∂f2

∂pc

βa

Va

∂f2

∂ρa
0 ∂f2

∂βa

1
Ma+Md

−1
Ma+Md

∂f3

∂qbit

−ghbit

Ma+Md

−(qbit−qres)2

Ma+Md
0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1












(5.5)
where the unspei�ed terms; ∂f/∂x are shown in appendix B. The mea-surement equation for �ltrating the estimated state and ovariane dependson the measurements available. When pp and pc are measured the mea-surement equation is given by (4.8), and when pa is inluded; the linearizedmeasurement equation (4.9) is utilized. Initial onditions for the state vetorare

xa =
(
pp,0 pc,0 qbit,0 ρa,0 Fa,0 βa,0

)T (5.6)with the orresponding initial error ovariane matrix
Pk,0 =












∆p2
p,0 0 0 0 0 0

0 ∆p2
c,0 0 0 0 0

0 0 ∆q2
bit,0 0 0 0

0 0 0 ∆ρ2
a,0 0 0

0 0 0 0 ∆F 2
a,0 0

0 0 0 0 0 ∆β2
a,0












(5.7)The initial error ovariane matrix is a measure of the unertainty in theinitial values of the state vetor (5.6). The EKF with parameter vetors



5.2. UNSCENTED KALMAN FILTER DESIGN 31(5.2) and (5.3) is simply obtained from (4.14) and omputing the belongingJaobin aording to (2.11). An overview of the EKF algorithm is displayedin appendix A.1.5.1.2 Changing between estimated parametersTo be able to swith between estimated parameters online in the EKF; one�lter was designed for eah parameter vetor. The �lters designed where; onefor stationary onditions, one for transients and one when qpump is under aertain value. The transient mode was set based on pump or valve movementof a given size; plus a time period to let the system obtain its stationary state.For the �lters to maintain its previous state after a swith, the value of thebelonging state and ovariane where saved in eah iteration. The savedstates and parameters where set to onstants when utilized in another �lter.5.2 Unsented Kalman �lter designAs mentioned in setion 2.4; the UKF utilizes the unsented transform foralulating the mean and ovariane propagated through the state and mea-surement equations. Proess and measurement noise is inorporated in thepropagation of sigma-points by expanding the state vetor and error ovari-ane matrix as
xa =





xn

vk

wk



 Paxx
=





Pxx 0 0
0 Q 0
0 0 R



where
E[wkwT

k ] = 0 E[vkvk] = 0The new state vetor has dimension xa ∈ R
2n+m, where n is the dimensionof the augmented state vetor and m is the number of measurements. Thismeans that the number of alulated sigma-points are 2(2n + m) + 1. Thesigma-points are plaed in the matrix

X a
k−1 =

(

x̂a
k−1 x̂a

k−1 +
√

(N + λ)Pa
k−1

x̂a
k−1 −

√

(N + λ)Pa
k−1

)with dimension X a
k−1 ∈ R(2n+m)×(2(2n+m)+1) . The �rst 2n rows of the matrix

X x
k−1 and Xw

k−1; assoiated with the error ovariane Pk and proess noise Qare propagated through the state equations
X x

k|k−1 = f(X x
k−1,Xw

k−1),whereas the �rst n rows X x
k−1 and last m rows X v

k−1 are propagated throughthe measurement equation
Yk|k−1 = h(X x

k−1,X v
k−1) (5.8)



32 CHAPTER 5. KALMAN FILTER DESIGNIf the measurement equation is linear; as in the situation when measuring ppand pc; the measurement update may be omputed aording to the lassialKalman �lter equations
ŷk = Cx̂−

k

Pyy = CP−
k CT + R

Pxy = P−
k CT

x̂k = x̂−
k + PxyP

−1
yy (yk − ŷk)

Pk = P−
k − PxyP

−1
yy P T

xy

(5.9)and the measurement propagation in equation (5.8) is omitted.5.2.1 UKF with parameter vetor θ = (ρa Fa βa)Here the same example shown for the EKF is presented. The state equationsare given by the augmented model (5.4). The initial state vetor is
xa =

(
xk,0 0 0 0 0 0 0 0 0

)Twith the orresponding initial error ovariane matrix
Pa,0 =





Pk,0 0 0
0 Q 0
0 0 R



where xk,0 and Pk,0 is given by (5.6) and (5.7). From these initial onditionsthe UKF algorithm in appendix A.2 is applied.5.2.2 Changing estimated parametersChanging between estimated parameter-sets in the UKF an be performedsimply by freezing and unfreezing the orresponding sigma-points before theyare propagated through the proess model. To explain this further; an ex-ample where estimation of one parameter in a nonlinear funtion is turnedon and o�. Let the augmented proess model be
xk+1 = xk + f(xk, θk) + hw1

θk+1 = θk + hw2
(5.10)with an error ovariane matrix and proess noise ovariane matrix

Pk =

(
p11 p12

p21 p22

)

Q =

(
q11 0
0 q22

)The augmented state vetor and ovariane matrix are
xa

k =
(
xk θk 0 0

)T
P a

k =

(
Pk 0
0 Q

) (5.11)



5.2. UNSCENTED KALMAN FILTER DESIGN 33Calulating the matrix square root and the sigma-points results in the ma-tries
S =

√

(λ + n)P a
k =







s11 s12 0 0
s21 s22 0 0
0 0 s33 0
0 0 0 s44







X a
k−1 =

(
x̂a

k−1 x̂a
k−1 ± Si

)

=







xk xk + s11 xk + s12 xk xk xk − s11 xk − s12 xk xk

θk θk + s21 θk + s22 θk θk θk − s21 θk − s22 θk θk

0 0 0 q11 0 0 0 −q11 0
0 0 0 0 q22 0 0 0 −q22





Eah olumn vetor in the matrix above represents one sigma-point for theaugmented state vetor xa

k, and one by one the olumn vetors are propagatedthrough the augmented proess model (5.10). Halting the θ parameter is nowahieved by assigning all entries in the seond row equal to the �rst elementin the row, and all elements in the last row to zero
X a

k−1 =







xk xk + s11 xk + s12 xk xk xk − s11 xk − s12 xk xk

θk θk θk θk θk θk θk θk θk

0 0 0 q11 0 0 0 −q11 0
0 0 0 0 0 0 0 0 0





This will allow the θ parameter to be unhanged after propagation. Thesum of the weights utilized for determining the �nal value of θk equals one,and thus; the parameter remains equal to the last time step. To be able tounfreeze the parameter; the belonging error ovariane elements of Pk mustbe saved before estimation of the parameter is halted. When estimation isresumed; the error ovariane elements orresponding to the parameter arerestored.



34 CHAPTER 5. KALMAN FILTER DESIGN5.3 Constraint handling in the EKF and UKFAnother important part of state and parameter estimation is onstraint han-dling. Figure 5.1 display a shemati in two dimensions of how onstraintsan be performed in the EKF and UKF. In the EKF; this is simply performedby moving the predited states and parameters to the violated onstraint.For the states; this involve keeping the absolute pressure and bit-�ow non-negative. As seen from the �gure; the error ovariane is not a�eted bymoving the state or parameters. In the UKF; onstraint handling is per-

Figure 5.1: Constraint handling in the EKF and UKFformed be moving all propagated sigma-points bak to the violated on-straint. This ensures that the omputed mean is within the onstraints. Theerror ovariane matrix is also a�eted by the onstraint handling, and thusontains information about the nearby onstraint as the omputed ovarianeis smaller [1℄.



5.4. COVARIANCE TUNING 355.4 Covariane tuningSeveral methods for online tuning of the ovariane matries Q and R whereattempted, see for instane [14℄, [15℄, [8℄ or [2℄. All these methods rely on alinear observable state spae model. The idea was to implement a linearizedmodel during stationary onditions and apply the method proposed in [14℄ tothe original proess model. The method was implemented for the linearizedversions of the state equations (3.20).Sine the model is also utilized for parameter estimation; online tuning ofthe ovariane matries might not be the best solution. Instead the ovari-anes where determined by alulating an initial value aording to Bryson'sinverse quadrati method. The ovarianes where then tuned to obtain asatisfatory result.Assuming the proess noise and measurement noise ovariane matriesis not orrelated mutually or between eah other
Q0 = diag(q1, q2, . . . qn) R = diag(r1, r2 . . . rm)an initial value for the proess noise and measurement noise ovarianes anbe determined with Bryson's inverse quadrati method.1. Assign the maximum allowed estimation deviation as δxi = max(|xi −

x̂i|) and alulate
{

qi =
1

(δxi)2

}n2. Choose the measurement matrix elements as
{

rj =
1

(δyj)2

}nwhere δyj = |yi − ȳj|, and ȳj is the mean of stationary measurement, and
yj is the maximum observed measurement deviation from this mean. Whenthe elements in the ovariane matries have been determined; the �lter istuned aording to

Qk = σQ0where σ is a salar value that determines the saling between Rk and Qk.To get an aeptable estimation of the bottom-hole pressure; it is impor-tant to not add to muh unertainty in the proess model. The unertaintywas therefore added to the estimated parameters. For example; if to muhunertainty is ombined with qbit; it is impossible to obtain a orret fritionestimate.
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Chapter 6Observer performane androbustnessTo verify that the estimated states and parameters onverge to the orretvalues; the EKF and UKF algorithms where tested against data obtainedfrom simulations on the design model (3.20). To be able to ompare the UKFand EKF; the same noise set was utilized in simulations of both �lters. Theovariane matries where also equal in the EKF and UKF. All parametersin the design model and Kalman �lters are idential; exept for the onesestimated. The parameters utilized in the simulations are displayed in table6.1. Parameter Value Desription
p0 1 bar Atmospheri pressure
ρ̄a 1250 kg/m3 · 10−5 Average annulus density
ρ̄a 1250 kg/m3 · 10−5 Average drill-string density
Fa 20800 Annulus frition fator
Fd 165000 Drill-string frition fator
Ma 5730 Annulus mass oe�ient
Md 5730 Drill-string mass oe�ient
βa 14000 Annulus bulk-modulus
βa 14000 Drill-string bulk-modulus
Va 28.27 m3 Annulus volume
Vd 96.13 m3 Drill-string volume
hbit 2000 m Well depth
lbit 3600 m Well length
LdN 3600 m Drill-string length
Kc 0.0046 Choke valve onstant
Ac 0.04 m2 Choke valve openingTable 6.1: Design model parameters37



38 CHAPTER 6. OBSERVER PERFORMANCE AND ROBUSTNESS6.1 Input exitation and parameter estimationFirst the Kalman �lters where simulated with exitations from the mud-pump to determine how aurate they an estimate the unknown parameters.The bak-pressure pump and hoke valve where maintained onstant duringthe simulation.6.1.1 Estimation of ρa, Fa and βaIdeally the parameters ρa, Fa and βa should be estimated at the same time.Aording to the observability analysis in setion 4.3 this is not possible. Toverify this the UKF and EKF where augmented with the parameter vetor
θ =

(
ρa Fa βa

)All parameter and the state; qbit where here estimated at the same time.The initial values for the parameters where set toParameter Value
qbit,0 1000 l/min
pp,0 74 bar
pc,0 125 bar
ρa,0 1150 kg/m3

Fa,0 15800
βa,0 9000Table 6.2: Initial state and parameter valuesThe measured and estimated parameters; along with mud-pump exita-tions are displayed in �gure 6.1. Figure 6.2 and 6.3 present the deviationfrom the desired states and parameters. The left olumn of the �gures showthe initial estimation transient, and the right olumn display the response forthe remaining simulation period. It is not possible to see the error betweenthe measured states pp and pc and the states �ltrated by the UKF sine thesaling is to large. Figure As an be seen from �gures 6.1 and 6.2; both theEKF and UKF omputes an aurate estimate of the bottom-hole pressureand bit-�ow, even though the augmented model is not observable. However;in the parameter deviation plot 6.3; we see that the EKF does not onvergeto the orret parameter values. The UKF approximates the nonlinearitiesbetter and the parameter error onverges to zero.
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Figure 6.1: Pressure estimation when estimating ρa, Fa and βa with UKFand EKF
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Figure 6.2: Pressures estimation error when estimating ρa, Fa and βa withUKF and EKF
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Figure 6.3: Parameter estimation error when estimating ρa, Fa and βa withUKF and EKF



42 CHAPTER 6. OBSERVER PERFORMANCE AND ROBUSTNESS6.1.2 Estimation of Fa and βaWhen augmenting the proess model with Fa and βa the system is observableand it should be possible to estimate orret values for these parameters.Initial values for qbit, Fa and βa where set as in table 6.2. In this simulationannulus frition was estimated during stationary onditions, and �uid bulkmodulus was estimated during transients. Simulation senarios where bothparameters where estimated at the same time has also been onduted, butthis did not give as good results.In this simulation; the data from the design model where obtained withEuler's method; desribed in setion 2.1. Sine the method has a �xed stepsize; the proess noise added to pp and pc is known, and the Kalman �lterovariane matries ould be determined diretly.To measure the di�erene between the EKF and UKF the Integral SquareError (ISE) was omputed on the bottom-hole pressure di�erene aordingto
ISE =

n∑

i=0

|pa − p̂a|2∆tThe results of the ISE where
ISEUKF = 2.4 ISEEKF = 18.4This shows that the UKF performs better than the EKF; with an ISE ofover 7 times larger in the EKF. Figure 6.4 display the pressure progress; andboth �lters estimate a orret bit-�ow and bottom-hole pressure. The errorsfrom the real values are displayed in �gure 6.2, and we see that the UKFonverges a little bit faster than the EKF. In �gure 6.1.2 we also see that theparameters onverge onverges faster in the UKF and that the �nal valuesin the UKF lie loser to the orret value.
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Figure 6.4: Pressure when estimating Fa and βa with UKF and EKF
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Figure 6.5: Pressure error when estimating Fa and βa with UKF and EKF
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Figure 6.6: Parameter estimation when estimating Fa and βa with UKF andEKF



46 CHAPTER 6. OBSERVER PERFORMANCE AND ROBUSTNESS6.2 Pipe-onnetion and �lter swithingIn the pipe-onnetion senario; Fa was estimated during stationary ondi-tions and βa was estimated during transients. Sine there are some problemswith numerially stability when qbit → 0; the data from the design modelhad to be omputed by a solver with variable step size. The added proessnoise was therefore not known and the ovariane matries had to be tuned.Figures 6.7 - 6.9 display the estimated states and parameters during apipe-onnetion. The initial values where set as in table 6.2; When themud-pump is ramped down from qpump = 1000 l/min to 0; the bak-pressurepump was ramped up from 200 l/min to 400 l/min. At the same time thefrition estimation is turned o� and the �lters starts to estimate βa. Whenthe bit-�ow approah 100 L/s; the parameter estimation is turned o� andonly qbit is estimated. Figure 6.7 display both estimated and real pressures.It is not possible to see any di�erene between estimated and real pressures;the plots are merely shown to see the pressure and bit-�ow progress. Insteadthe state errors an be seen in �gure 6.8. Both �lters estimates the orretvalues, but the UKF onverges faster. The ISE values for the UKF and EKFare
ISEUKF = 645 ISEEKF = 893The large ISE-values are the result of larger proess noise varianes than inthe previous senario, and that the �lters deviates somewhat from the truebottom-hole pressure when qbit = 0. As seen from the parameter estimation6.9; it is theoretially possible to exploit the dynamis during pump-shutdown to estimate βa. The �gure also show that the UKF onverges fasterand loser to the orret value than the EKF.
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Figure 6.7: Pressure estimation during pipe-onnetion. Swithing between
Fa and βaThe deviation in �gure 6.8
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Chapter 7Wemod simulationTo see how the UKF handles unmodelled dynamis the �lter was testedagainst simulation sets from Wemod. Wemod is a rigid, high-order simula-tor developed for simulating the �ow dynamis in a well. In the simulationsenario; step-responses from mud-pump and a pipe-onnetion where per-formed. The in�ux from the reservoir was set to zero during the simulation.First the unknown parameters in the proess model had to be adaptedto Wemod. The parameters ρd, ρa,Fd and Fa where identi�ed by applyingsteps in the mud-pump and reording stationary onditions in the pressures
pp, pc and pa. These pressures where then utilized to �t the parameters witha least square algorithm aording to the stationary equations

qbit = qpump

pp − pc = (Fd + Fa)q
2
bit − (ρd − ρa)ghbit

pa − pc = Faq
2
bit + ρaghbitFor the dynami parameters; βd, βa, Md and Ma; the results given in [11℄where utilized. The hoke valve was modeled as

qchoke = Cv

√

2∆pc

ρawhere the hoke valve onstant Cv was alulated aording to the stationaryequation
Cv =

qpump + qback
√

2∆pc/ρaThe identi�ed parameters are shown in table 8.1. The pressures are shownin bar and other units follow after this1. Figure 7.1 display the pressure andbit-�ow progress. The mud-pump is ramped down from 1000 L/min to zero,and at the same time the bak-pressure pump is ramped up from 200 L/min1Exept for qbit; that for onveniene is shown in liter per minute51



52 CHAPTER 7. WEMOD SIMULATIONParameter Value
ρ̄d 1250 kg/m3 · 10−5

ρ̄a 1250 kg/m3 · 10−5

Fd 1.676 · 105

Fa 1.1926 · 105

βd 13090
βa 7317
Md 6064
Ma 1622
Vd 26.71 m3

Va 99.9 m3

Cv 2.819 · 10−4 hbit 2014 mTable 7.1: Results of �uid model �t to Wemodto 400 L/min. The Kalman �lter estimates the orret stationary valuesfor the bottom-hole pressure, and deviates somewhat during transients. Abit-�ow measurement was not available in the Wemod version utilized forsimulation2, but the estimated bit-�ow onverges to the stationary pump-�ow. Figure 7.2 show the estimated pressure deviations, and as mentioned;the bottom-hole pressure has error peaks of up to 15 bar during transients.Other parameter vetors where also tested against this Wemod senario.When estimating the hoke valve onstant and annulus frition during sta-tionary onditions; the valve onstant onverged to the value in table 8.1.Another parameter vetor with βa and βd estimated during transients; re-sulted in βa onverging to zero.Figure 6.3 shows the estimation of Fa during stationary onditions and
βa during transients. The annulus frition onverges to a stationary valuewhereas βa does not, is but ontinuously hanged during the simulation. Aase where βa �rst was estimated from pump exitations; and then haltedbefore the pipe-onnetion has also been onduted. This gave a larger ISE-value; than ontinuous estimation of βa during the mud-pump ramp down.

2Version s01r01 of Wemod was utilized for simulation
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Chapter 8Simulation with data fromGrane8.1 Parameter identi�ationThe observer was tested against a data-set from Grane well G2 Y1. Thesame data set has also been simulated in [18℄ against a non-linear adaptiveobserver. In the simulated data set there was not enough stationary values of
qpump to properly estimate all parameters well. Some assumptions about theparameters where therefore made. In the drill-log the mud spei� gravitywhere set to SG = 1.18. This gives a �uid density of ρ0 = 1.18 · 998 =
1177.6 kg/m3. In [18℄; the average density ρ̄ = 1200 kg/m3 is applied in thesimulation. This is based on the density inrease

ρ = ρ0 +
ρ0

β
(p − p0)as the well beomes deeper. If we assume that the density in annulus is thesame as in the drill-string; the frition an be solved from equations

qbit = qpump

pp − pc = (Fd + Fa)q
2
bit − (ρd − ρa)ghbit

pa − pc = Faq
2
bit + ρaghbitThe density term anels and, this gives enough equations to solve for Fdand Fa. The parameters Md and Ma where alulated aording to equations(3.18). All parameters utilized in the simulations are shown in table 8.1.There is a large unertainty ombined with the hoke �ow; qchoke. Thisis partially beause the hoke harateristi is not exatly known, and alsothere is an unertainty in the annulus density. To overome this problem thevalve onstant Cv is inluded in the parameter vetor. As already mentionedin setion 4.4.1; it is possible to estimate both Fa and Cv during stationary57



58 CHAPTER 8. SIMULATION WITH DATA FROM GRANEParameter Value
ρ̄d 1200 kg/m3 · 10−5

ρ̄a 1200 kg/m3 · 10−5

Fd 1.4577 · 105

βd 14000
βa 14000
Md 5998
Ma 1764
Vd m3

Va 145.11 m3

hbit 1827 m
lbit 3926 mTable 8.1: Results of �uid model �t to Wemodonditions. Sine there is some unertainty ombined with the dynamiparameters; βd, βa Md and Ma; the frition and valve onstant where onlyestimated when the �lter was stationary. The valve equation utilized in thesimulation was derived by Lars Imsland and is displayed in �gure The valve
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Figure 8.1: Choke-valve harateristiequation alulates the �ow in l/s, and must be onverted to m3/s.



8.2. GRANE PIPE-CONNECTION SIMULATION 598.2 Grane pipe-onnetion simulationThe data set was taken from a pipe-onnetion at Grane well G2 Y1. Themeasurements utilized in the simulation where
• True vertial depth (TVD), hbit

• Well length, lbit

• Stand-pipe pressure pp

• Choke di�erential pressure pc

• Pump �ow qpump

• Choke valve opening ucTVD was alulated on-line aording to
hbit =

BHP · 105

ECDρwgwhere ρw is water density. The well length was utilized for alulating theannulus and drill-string volumes online. The drill-string length is pieewiseonstant and during pipe-onnetions it was extended with 27 meters. Thiswas performed after pump-shut down. Drill-string frition was also realu-lated and applied after a pipe-onnetion. Figure 8.2 display the measuredpressures; stand-pipe pressure and hoke di�erential pressure. It also showsthe estimated and measured bottom-hole pressure. The last entry in the �g-ure present the estimated bit-�ow along with the pump-�ow and hoke-valveinput. The bottom-hole pressure measurement is as mentioned lost whenthe bit-�ow approahes zero. This happens at t ≈ 2300 s and t ≈ 6800 s.The bottom-hole estimate stays within an error of approximately one bar.Figure 8.3 show the estimated annulus frition and hoke-valve onstant.
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Figure 8.3: Estimated annulus frition and �uid bulk-modulus



62 CHAPTER 8. SIMULATION WITH DATA FROM GRANESine there is some unertainty in the parameters estimated o�-line; thee�et of a larger density in annulus than drill-string was simulated. Insteadof identifying Fd o�-line; the total frition Fa + Fd was estimated online andannulus frition was set to Fa = 0.11 ·Fd. The same data set was utilizedhere as in the simulation desribed above. Three ases where tested.1. Fa = 0.11Fd and ρa = ρd2. Fa = 0.11Fd and ρa = 1.05 · ρd3. Fa = 0.11Fd and ρa = 1.1 · ρdIn the �rst ase annulus density is equal to drill-string density, and in theseond and third ase the annulus density is set 5% and 10% larger than thedrill-string density. Figure 8.4 shows the bottom-hole pressure measurementand estimate for the three ases. When the annulus density inreases thepeaks during mud-pump shut down is muh larger than when annulus anddrill-string density is equal. Figure 8.5 display the frition and hoke valveestimates.
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Chapter 9ConlusionsIn the observability analysis it was found that the proess model is not ob-servable when augmenting the parameter vetor with ρa, Fa and βa. Toverify this; estimation of the unobservable state vetor was simulated. Both�lters onverged to the orret bottom-hole pressure. The UKF onvergedto the orret parameter values; whereas the EKF onverged to the wrongvalues. The orret bottom-hole estimate was probably obtained sine thebit-�ow equation and bottom-hole measurement equation both ontains thesum of the estimated parameters; ρa and Fa. However; if estimation of theseparameters are halted before pump-shut down; the total sum would givethe wrong bottom-hole pressure estimate. The proess model was also notobservable for the parameter vetor; ρa, Fa and βa; when the bottom-holepressure measurement was inluded. This was also veri�ed in simulations.Sine the measurement equation ontains all the unknown values for esti-mating the pressure, the measurement will estimate biased values beforethe parameters onverges. On the other hand; a bottom-hole measurementwould add robustness to obtaining the orret parameter values. Based onthe observability analysis; the �lters where designed to estimate well-borefrition and annulus �uid bulk-modulus. The hoke valve onstant was alsoinluded in the parameter vetor for some simulations. Sine no more in-formation was gained from the bottom-hole pressure measurement; only thestand-pipe pressure and hoke di�erential pressure where utilized as mea-surements in the �lters.In the simulations with data generated from the design model; the UKFand EKF where ompared. When frition and �uid bulk-modulus in theannulus where estimated; both �lters onverged to the orret parametervalues. The annulus frition was estimated during stationary onditionsand �uid bulk-modulus was estimated during transients. Simulations whereboth parameters where estimated at the same time where also onduted,but they did not give as good results. In the pipe-onnetion senario; the�lters managed to estimate �uid bulk-modulus during mud-pump shut down.65



66 CHAPTER 9. CONCLUSIONSHowever; other soures of exitation; suh as step-responses from the mud-pump; would be more useful for estimating β.The UKF had the lowest ISE-value in all simulation senarios and on-verged faster to the orret states. It also onverged loser to the orretparameter values than the EKF. Based on better performane and easierimplementation purposes; w.r.t hanging parameters; the UKF was seletedfor further testing against Wemod and data sets from Grane.When testing the UKF against data sets from Wemod; di�erent param-eter vetors where investigated. Estimation of annulus and drill-string �uidbulk-modulus resulted in βa onverging to zero. This parameter vetor wastherefore disarded. Estimation of annulus frition during stationary on-ditions and annulus bulk-modulus during transients gave the lowest ISE-values. The βa parameter did not onverge, but was ontinuously alteredby the �lter during simulation. The reason for this ould be the e�ets ofmodel-errors and that the assumed onstant parameters where slightly o�.The �lter estimated the orret stationary values, and had some deviationsduring transients.It was also tried to halt the parameter estimation of βa after a period ofexitation from mud-pump. This gave higher ISE-value than when estimat-ing the parameter during all transients. Simulations where the hoke valveonstant was estimated along with frition was also onduted. In this asethe valve onstant onverged to its orret value.The UKF was also tested against a data set from the Grane �eld. Thedata set onsisted of a pipe-onnetion senario. Annulus frition and thehoke valve onstant where estimated during stationary onditions. The�lter estimated the bottom-hole pressure within an error di�erene of 1 bar.The e�et of a larger density in annulus than the drill-string was also tested.As expeted; this gave muh larger peaks during mud-pump shut down thanduring simulation with equal densities. This shows that it is ruial to havea orret estimate of the annulus density.Overall the UKF gave promising results in estimating the bottom-holepressure. The largest onern is the observability problem in estimatingannulus density, frition and bulk-modulus. A solution to this problem ouldbe to estimate the densities and frition based on stationary onditions andupdating the Kalman �lter with these.9.1 CommentsIn the UKF there where some problems where the ovariane matrix was notpositive de�nite. In this situation; there may be problems with omputingthe matrix square root for determining the sigma-points. This was solved byexamining the ovariane matrix, and if it had negative eigenvalues the o-variane matrix from last iteration was utilized instead. Another possibility



9.2. FUTURE WORK 67is to evaluate the ovariane matrix about Xk+1|k. The UKF did not handlethe situation where qbit → 0 to well. Sine the UKF alulates sigma-pointsbased on the ovariane and proess noise ovariane matrix; this was atu-ally solved by dereasing the proess noise ovariane during low bit-�ows.Also, areful tuning of the ovariane matries is important in obtaining theorret estimates. If the ovariane matrix is not properly tuned; the �ltermay estimate wrong parameter values.9.2 Future workThe annulus density and bore-hole frition are two very important parame-ters when estimating the bottom-hole pressure. The possibility of designingan observer for both of these parameters should therefore be investigated.One possibility is to see if the Kalman �lter is able to estimate the orretvalues during exitation. Here; the e�et of an error in the �uid ompress-ibility should also be tested. Another way is to implement a reursive leastsquare algorithm based on stationary pressures and pump-�ows. This alsorequires knowing exatly when the proess is stationary and a method fortransient detetion should be implemented.There are some problems with numerially stability during low bit-�ows.A solution for this problem might be to utilize a di�erent solver. An impliitsolver with �xed step size that is stable for the hole left half-plane an beimplemented. The problem ould also be solved by modifying the hokevalve equation during low �ows.There are also more simulations that must be onduted. Simulationagainst real data sets with bottom-hole measurements must be examinedto see if the observer estimates the orret values during pipe-onnetion.Transients may also be utilized for bulk-modulus estimation and this mustbe tested against real data. An important variable not onsidered here isin�ux from the reservoir. The UKF should be implemented and tested within�ux as an estimated parameter.Other versions of the UKF might be advantageous and should be onsid-ered. The square root unsented Kalman �lter (SRUKF) ensures numerialstability and guarantee a positive de�nite ovariane matrix. The SRUKFan also be implemented to run at a omputational omplexity of O(n2)when utilized for parameter estimation. This ould be aomplished by im-plementing a dual-UKF; where the states are estimated in one �lter and theparameters in another �lter. In omparison; the EKF has a omputationalomplexity of O(n2) for parameter estimation; whereas the UKF has O(n3)for the same problem.
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Appendix AKalman �lter algorithmsLet the nonlinear state and measurement equations be given by
xk+1 = f(xk, uk) + hwk

yk = h(xk, uk) + hvkwhere xk represents the states, uk are inputs, wk is proess noise and vk ismeasurement noise.A.1 EKF algorithmInitialization
x̂0 = E[x0]

Px,0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

Q = E[(w0 − ŵ0)(w0 − ŵ0)
T ]

R = E[(v0 − v̂0)(v0 − v̂0)
T ]For k ∈ {1, 2, . . . ,∞} repeat steps 1 to 51. Determine measurement model Jaobian's

Hxk
= ∇x h(x, uk, wk)|x=x̂−

k2. Compute Kalman gain and �ltrate states and ovariane
Kk = P−

xk
HT

xk
(Hxk

Pxk
HT

xk
+ Q)

x̂k = x̂−
k + Kk(yk − h(x̂−

k ))

Pxk
= (I − KkHxk

)P−
xk

(I − KkHxk
)T + KkRKT

k69



70 APPENDIX A. KALMAN FILTER ALGORITHMS3. Compute proess model Jaobian's
Fxk

= ∇x f(x, uk, wk)|xk=x̂−

k4. Calulate time update for proess states and ovariane
x̂−

k = f(x̂k, uk)

P−
xk

= Fxk
Pxk

F T
xk

+ R5. Chek onstraintsA.2 UKF algorithmInitialization:
x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]

xa
0 =

(
x̂0 0 0

)T

Pa
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)T ] =





P0 0 0

0 Q 0

0 0 R



For k ∈ {1, 2, . . . ,∞} repeat steps 1 to 91. Calulate sigma-points
X a

k−1 =
(

x̂a
k−1 x̂a

k−1 ±
√

(N + λ)Pa
k−1

)2. Time update for state equations
X x

k|k−1 = f(X x
k−1,Xw

k−1)3. Chek state onstraints
X x

k|k−1 =

{

X x
k|k−1 if X x

k|k−1 < b

b if X x
k|k−1 ≥ b4. Determine state output mean and state output ovariane

x̂−
k =

2N∑

i=0

W
(m)
i X x

i,k|k−1

P−
k =

2N∑

i=0

W
(c)
i (X x

i,k|k−1 − x̂−
k )(X x

i,k|k−1 − x̂−
k )T



A.2. UKF ALGORITHM 715. Time update for measurement equations
Yk|k−1 = h(X x

k−1,X v
k−1)6. Chek onstraints

Yk|k−1 =

{
Yk|k−1 if Yk|k−1 < c

b if Yk|k−1 ≥ c7. Measurement output mean and ovariane
ŷ−

k
=

2N∑

i=0

W
(m)
i Yx

i,k|k−1

Pȳkȳk
=

2N∑

i=0

W
(c)
i (Yx

i,k|k−1 − ŷ−k )(Yx
i,k|k−1 − ŷ−k )T8. Compute measurement and state ross ovariane

Pxkyk
=

2N∑

i=0

W
(c)
i (X x

i,k|k−1 − x̂−
k )(Yx

i,k|k−1 − ŷ−k )T9. Calulate Kalman gain and �ltrate �ltrate
Kk = Pxkyk

Pȳȳ
−1

x̂k = x̂−
k + Kk(yk − ŷ−

k )

Pk = P−
k + KkPȳȳKT

k
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Appendix BJaobian for parameter vetor
θ = (ρa Fa βa)

F =
∂f

∂x
=












0 0 −βd

Vd
0 0 0

0 ∂f2

∂pc

βa

Va

∂f2

∂ρa
0 ∂f2

∂βa

1
Ma+Md

−1
Ma+Md

∂f3

∂qbit

−ghbit

Ma+Md

−(qbit−qres)2

Ma+Md

0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1












(B.1)
∂f2

∂pc
= −1

2

βazAcKc

√
2

√
pc−p0

ρa0
ρa0Va

∂f2

∂ρa
=

1

2

βazKc

√
2(pc − p0)

√
pc−p0

ρa
ρ2

aVa

∂f2

βa
=

1

Va

(

−Va + qbit + qres + qback − zKc

√
2

√

(pc − p0)

ρa

)

∂f3

∂qbit

=
−2Fdqbit − 2Fa(qbit − qres)

Md + Ma

(B.2)
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