
June 2008
Ole Morten Aamo, ITK

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Evaluation of Kalman filters for
estimation of the annular bottomhole
pressure during drilling

Thomas Rognmo





Problem Description
Estimation of the annular pressure at critical locations in the well is
crucial for high-precision
pressure control. Certain parameters which are important in order to
determine the pressure
profile of the well (in particular the friction factor, bulk modulus and
density in the annulus), are
encumbered with high uncertainty and are besides, continuously, but
slowly changing. The
objective of the thesis is to employ various Kalman filter designs
estimation of the bottomhole pressure
and certain important parameters/slowly varying variables, during
drilling.

Topics that should be addressed are:
1) Literature review of the theory of Kalman filters design

2) Design and implement an Extended Kalman filter (EKF) and possibly the
Unscented Kalman filter
(UKF) for

        a) Estimation of the annulus bottom-hole pressure

        b) Esimation of the friction coefficient, bulk modulus and
density in the annulus

3) Analyse the performance/robustness of the observer in important
cases, in particular:

        a) Pipe connection

        b) Pump ramp up/down

4) Examine observer performance to unmodeled dynamics by testing the Kalman filter against
data sets from Wemod
        
5) Evaluate performance of the observer against experimental data from
Grane.





SummaryDuring drilling a drill-�uid is pumped through the drill-string and drill-bit. The drill-mud �ows ba
k in the well bore and trough a 
hoke-valve attop-side. To avoid un
ontrolled in�ux from the reservoir or lost 
ir
ulationto the formation; the annulus pressure must be kept within the pressure win-dow between pore pressure and fra
ture pressure. The bottom-hole pressuremeasurement is often transfered as pressure pulses through the drill-mud.This gives a slow update rate. Also, during low �ows the bottom-hole as-sembly tool turns itself o�, and the measurement is lost. When pressuremargins are small; proper 
ontrol of the annulus pressure is 
ru
ial. Thisrequires a good estimate or measurement of the pressure.To estimate the bottom-hole pressure the Extended Kalman �lter andUns
ented Kalman �lter where evaluated. The �lters are based on a pro-
ess model with the states; stand-pipe pressure, 
hoke di�erential pressureand bit-�ow. The bottom-hole measurement equation 
onsists the unknownparameters; bit-�ow, annulus density, well-bore fri
tion and bulk-modulus.These parameters are un
ertain and varying and must therefore be estimatedto obtain a 
orre
t estimate of the annulus pressure. To estimate the param-eters the joint-EKF and joint-UKF where designed.The observability analysis of the linearized state equations showed thatthe pro
ess model is not observable when augmenting the state equationswith the parameters; annulus density, well-bore fri
tion and �uid bulk-modulus. To handle this the annulus density was 
al
ulated o�-line andnot in
luded in the augmented model.During drilling there may be long periods with little ex
itation from theinputs. The �lters where therefore designed to swit
h between estimatedparameters. In the Uns
ented Kalman �lter it is possible to implementedthis in one �lter, whereas in the Extended Kalman �lter; one �lter for ea
hparameter ve
tor had to be designed. The Extended Kalman �lter and Un-s
ented Kalman �lter where 
ompared with data obtained from simulationson the design model. When augmenting the state equations with annulusfri
tion and �uid bulk-modulus; both �lters estimated the 
orre
t value of theunknown parameters, the bit-�ow and bottom-hole pressure. The Uns
entedKalman �lter showed a faster 
onvergen
e rate and estimated parameter val-ues 
loser to the 
orre
t value than the Extended Kalman �lter.Based on performan
e and implementation purposes w.r.t swit
hing be-tween parameters; it was 
hosen to examine the Uns
ented Kalman �lterfurther. The tests performed on the Uns
ented Kalman �lter where stateand parameter estimation on data sets from the Grane �eld and simulationsagainst Wemod. A pipe-
onne
tion s
enario was simulated with Wemod.Annulus fri
tion was estimated during stationary 
onditions and �uid bulk-modulus was estimated during transients. The �lter estimated the 
orre
t



bottom-hole pressure for stationary 
onditions and had some deviations dur-ing transients. In the simulation against data sets from Grane; the annulusfri
tion and 
hoke valve 
onstant where estimated during stationary 
ondi-tions. The �lter followed the bottom-hole pressure measurement within anerror of one bar.
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Chapter 1Introdu
tion1.1 Ba
kgroundIn a drilling operation a drilling �uid is 
ir
ulated thorough the drill-stringand drill-bit. The mud �ows outside the drill-string in the annulus trans-porting 
uttings form the well-bore. An important obje
tive during drillingis to ensure that the annulus pressure gradient is 
onstrained within thewell fra
ture pressure and the reservoir pore pressure. Conventional drillingte
hniques su
h as over balan
e drilling involves retaining the bottom-holepressure well above the reservoir pore pressure; this is done to avoid reservoirin�ux. OBD helps prevent un
ontrolled in�ux, but de
reases produ
tion ratedue to skin damage on the reservoir ro
k. It's therefore preferred to keep theannulus pressure as 
lose to the reservoir pore pressure as possible. The an-nulus pressure gradient must also stay below the formation fra
ture pressureto avoid damage to the bore hole and lost 
ir
ulation. Today the annuluspressure gradient is usually 
ontrolled by manually by adjusting the top-side
hoke and also by 
hanging the mud density in the drill string. Changingthe pressure by adding heavier or lighter �uids to the well slowly 
hanges thepressure gradient. It must therefore be planned ahead. If the 
hoke valve is
ontrolled manually; it is nearly impossible to rea
t to fast pressure 
hanges.This makes drilling di�
ult when the drilling window is small. When drillinginto deeper and more 
omplex formations; maintaining a 
onstant bottom-hole pressure is essential to avoid severe problems. Many reservoirs aretherefore undrillable and new solutions must be implemented to ensure astable bore-hole pressure. A good measurement or estimate of the annularpressure is 
ru
ial for 
ontrolling the bottom-hole pressure. The measure-ment available has a slow and irregular update rate and is not suited forfeedba
k 
ontrol. To estimate the bottom-hole pressure; unknown variablessu
h as annulus density and annulus fri
tion must also be estimated.
1



2 CHAPTER 1. INTRODUCTION1.2 Des
ription of the drilling pro
essFigure 1.1 display a s
hemati
 of the drilling pro
ess. Drill-mud is 
ir
ulatedthrough the drill-pipe and drill-bit utilizing a mud-pump. The mud �owsba
k through the annulus transporting 
uttings from the formation. At top-side a rotating 
ontrol devi
e 
loses the well, and the mud �ows through a
hoke-valve.

Figure 1.1: S
hemati
 of a drilling-operationOne important obje
tive during drilling is to 
ontrol the pressure gradientin the well bore. When drilling into a formation; the pressure must be keptbelow the formation fra
ture pressure and and above the 
ollapse pressure.In 
onventional over balan
e drilling (OBD) the well pressure is kept wellabove the reservoir pore pressure as the drill-bit enters the reservoir zone.This is to prevent un
ontrolled in�ux from the reservoir and avoid ki
ks or ablow-out situation. The mud that penetrate the well in the reservoir is 
alled



1.3. MEASUREMENTS 3mud-
ake and degrades produ
tion. It is therefore desirable to maintain awell pressure as 
lose to the reservoir pressure as possible.Managed pressure drilling(MPD) is de�ned as 1 "an adaptive drillingpro
ess used to more pre
isely 
ontrol the annular pressure pro�le throughoutthe well bore." In MPD an obje
tive is to obtain a bottom-hole pressure thatdo not invite reservoir in�ow.
pcoll(x, t) < pres(x, t) ≤ pa(x, t) < pfrac(x, t) (1.1)As seen from equation (1.1); where t is time and x is the position alongthe well; the pore pressure and fra
ture pressure gradients in the well-borewill 
ause a more narrow drilling window as the well be
omes deeper. Thesepressure limits are not known before drilling the well. Also, the reservoir porepressure may 
hange as the drill-bit enter deeper into the reservoir zone.1.3 MeasurementsThe pressure measurements available are stand-pipe pressure pp, 
hoke-di�erential pressure pc and bottom-hole pressure pa. The latter measure-ment is often transferred as pressure pulses through the mud along withother measurements. This gives a slow update rate on the pressure mea-surement. Another problem is that the bottom-hole assembly tool is turnedo� during low bit-�ows and the measurement is lost. Other measurementsassumed known are

• True verti
al depth (TVD)
• Well length
• Choke valve input
• Mud-pump �ow
• Ba
k-pressure pump �ow
• Equivalent 
ir
ulating density (ECD)1.4 Pressure 
ontrolThe annulus pressure gradient is mainly determined by the hydrostati
 height,fri
tion in the well-bore and the 
hoke valve opening. All these three variablemay be utilized for 
ontrolling the annulus pressure pro�le. Density has thelargest in�uen
e on annulus pressure and may be altered by 
hanging the
omposition of the drill-mud. The �ow rate generated by the mud-pump1De�ned by the International Asso
iation of Drilling Contra
tors



4 CHAPTER 1. INTRODUCTION
auses a pressure loss due to fri
tion in the well bore. This pressure lossmay lead to a 
hallenge in 
ontrolling the pressure as the pump speeds arealtered. In normal operation the pump speed is maintained 
onstant andpressure is 
ontrolled with the 
hoke valve. For small 
hoke valve openingsthe valve may be 
logged by 
uttings from the well. In some installationsa ba
k-pressure pump is therefore in
luded to supply additional pressurewhen needed. Typi
al pressure disturban
es are variations in reservoir porepressure, drill-string movements and stopping and starting mud-pump 
ir-
ulation. The latter situation is performed during pipe-
onne
tions; i.e themud-pump is ramped down, a new drill string is 
onne
ted, the mud-pump isramped up again and drilling is resumed. In this situation the pressure vari-ations may be large and the ba
k-pressure pump 
an by utilized to supplyadditional pressure.To ensure satisfa
tory pressure management in the well bore; a 
ontrollerbased on feedba
k from the bottom-hole pressure should be utilized. Forpapers related to annulus pressure 
ontrol see for instan
e [17℄ and [16℄. In[17℄ a linear MPC and a PID is utilized for 
ontrolling the pressure and in[16℄; an H∞-
ontroller and a PID is 
ompared for 
ontrolling the pressurebased on a top-side pressure measurement. When the 
ontroller is based onfeedba
k from the top-side measurement; the annulus fri
tion and densityis not taken into 
onsideration in the 
ontroller. However; the 
ontrollerdampen the e�e
t of pressure disturban
es to some degree.1.5 Pressure estimationTo properly 
ontrol the bottom-hole pressure; a measurement or estimateof the bottom-hole pressure is needed. Su
h a measurement exists, but thesignal has a very slow bit-rate and is lost during low �ows; for instan
e duringa pipe-
onne
tion. This makes the measurement a poor 
hoi
e for 
ontrol. Inorder to estimate the bottom-hole pressure there are a number of unknownvariables that must be determined. As mentioned; the main 
ontribution tothe bottom-hole pressure is annulus density and annulus fri
tion. To obtainthe dynami
s of the system; the pressure pulses and �ow dynami
s must alsobe taken into 
onsideration. The drill-string density 
an be measured, butdue to 
uttings and possible in�ux from the reservoir; the annulus density isunknown. The well-bore fri
tion is also 
ombined with great un
ertainty.For other sour
es on bottom-hole pressure estimation; see for instan
e[18℄. Here an adaptive observer is designed for estimating unknown wellparameters and the bottom-hole pressure.



1.6. SCOPE AND EMPHASIS 51.6 S
ope and emphasisIn this report the possibility of estimating the bottom-hole pressure utilizinga Kalman �lter is examined. The Kalman �lter is based on the �uid modelderived in the internal do
ument [12℄. The �lters evaluated are the ExtendedKalman �lter (EKF) and the Uns
ented Kalman �lter (UKF). First an anal-ysis based on whi
h parameters to estimate is performed. Di�erent EKFand UKF �lters are designed based on the observability and limitations ofthe �lter and input ex
itation. The primary obje
tive is to estimate thebottom-hole pressure based on the stand-pipe pressure and 
hoke di�eren-tial pressure measurements. The UKF is then tested against simulations inWemod and data sets from the Grane �eld.
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Chapter 2Kalman �lter theoryThis se
tions des
ribes the dis
rete Kalman �lter and how it 
an be utilizedfor estimating states, disturban
es and parameters of a set of non-lineardi�eren
e equations.2.1 Dis
retization of state equationsIn this report the dis
rete Kalman �lter is 
onsidered. This requires a dis
reterepresentation of the 
ontinuous di�erential equations. Let the nonlineardi�erential equations be des
ribed as
ẋ(t) = f(x, u) + w(t)

z(t) = h(x) + v(t)
(2.1)where x ∈ R

n represents the unobserved states, z ∈ R
m denote the observedvariables and u ∈ R

l is the 
ontrolled variable. w and v are white noisepro
esses with 
ovarian
e
E[w(t + τ)w(τ)] = Q(t)δ(τ)

E[v(t + τ)v(τ)] = R(t)δ(τ)

E[v(t)w(t + τ)] = 0 ∀τ

(2.2)Cal
ulation of the Kalman �lter 
an be performed by 
onsidering a dis
reteform of equation (2.1), or by utilizing the 
ontinuous state equations withdis
rete measurements.The nonlinear di�erential equations (2.1) 
an be represented in a dis
reteform by applying expli
it Euler
xk+1 = xk + hf(xk, uk) + hwk

zk = h(k) + hvk

(2.3)with 
ovarian
e matrix
Qk = Q/h7



8 CHAPTER 2. KALMAN FILTER THEORYwhere h is the step For numeri
 stability the method requires
h ≤ −2/λminwhere λmin is the smallest eigenvalue in the state equations. If the 
ontinuousdi�erential equations are sti� there may be problems with stability, sin
e thisrequire a very small step size.2.2 Mean square estimation1 Consider the estimation of a random ve
tor X given the measurement Z.The obje
tive is to estimate X(Z) so that the error
X̃ = X − X̂is minimized. We de�ne the 
ost fun
tion as the mean square error

J = E
{

(X − X̂)(X − X̂)T
} (2.4)and restri
t the estimate X(Z) to be a linear 
ombination of the measure-ments2.

X(Z) = AZ + b (2.5)Substituting this into the 
ost fun
tion results in
J = E

{

(X − X̂)(X − X̂)T
}

= trace
[

E
{

(X − X̂)(X − X̂)T
}]

= trace
[
E
{
(X − AZ − b)(X − AZ − b)T

}]

= trace
{[

(X − X̄) − (AZ + b − X̄)
] [

(X − X̄) − (AZ + b − X̄)
]}

= trace
[
Pxx + A(Pzz + Z̄Z̄)AT + (b − X̄)(b − X̄)T + 2AZ̄(b − X̄)T − 2APxz

]where Pzx is the 
ross 
ovarian
e between Z and X. To �nd the optimalvalues this equation is di�erentiated with respe
t to A and b

∂J

∂b
= 2(b − X̄) + 2AZ̄ = 0

∂J

∂A
= 2A(Pz + Z̄Z̄T ) − 2Pxz + 2(b − X̄)Z̄T = 0solving for A and b

b = X̄ − AZ̄

A = PxzP
−1
zz1Theory from the following se
tions is 
aptured from [10℄, [6℄ and [13℄2No assumptions are made on the relation between Z and X̂ . The results are valid forany possible nonlinear relation between measurement and unknown [13, 
hapter 1℄



2.2. MEAN SQUARE ESTIMATION 9Inserting into equation (2.5) results in the linear mean square estimate
X̂LMS = X̄ + PxzP

−1
zz (Z − Z̄) (2.6)Obtaining Pzz, Pxz and Z̄ is not a trivial task. It requires knowing the
onditional probability density fun
tion of X given Z as it is transformedthrough a fun
tion; possibly nonlinear. If the relationship between X and Zis a linear state spa
e system; equation (2.6) simpli�es to the Kalman �lterequations.2.2.1 Dis
rete Kalman �lterIn the general form the dis
rete Kalman �lter is utilized for estimation ofthe states in the linear sto
hasti
 di�eren
e equations

xk+1 = Akxk + Bkuk + wk

yk = Ckxk + vk

(2.7)where x ∈ R
n represents the unobserved states, y ∈ R

m denote the observedvariables and u ∈ R
l is the 
ontrolled variable. wk and vk are white noisepro
esses with 
ovarian
e

E[wkwi] = Qkδki

E[vkvi] = Rkδki

E[wkwi] = 0

(2.8)
x̂−

k is de�ned as the a priori state estimate 
al
ulated at the previous step
k − 1, and x̂k is the posteriori state estimate at step k. The a priori andposteriori error estimate is de�ned as

e−k , xk − x̂−
k

ek , xk − x̂kand the a priori and posteriori error 
ovarian
e 
an then be de�ned as
P−

k = E[e−k e−k
T
]

Pk = E[ekeT
k ]Filtering of the states and 
ovarian
e is based on a trade-o� between the apriori estimate and the 
urrent measurement

x̂k = x̂−
k + Kk(yk − Ckx̂

−
k )

Pk = (I − KkCk)
(2.9)where the Kalman gain Kk is determined by

Kk = P−
k CT

k (CkP
−
k CT

k + Rk)
−1



10 CHAPTER 2. KALMAN FILTER THEORYBased on the new estimate given in equation (2.9); the predi
ted states and
ovarian
e 
an be 
al
ulated as
x̂k+1 = Akx̂k + Bkuk

Pk+1 = AkPkA
T
k + Rk2.3 The extended Kalman �lterFor systems where the di�eren
e equations are nonlinear; the �lter in se
tion2.2.1 might not be adequate. The extended Kalman �lter solves this by ap-proximating the time and measurement update around the 
urrent estimate.A set of nonlinear di�eren
e equations 
an be des
ribed as

xk+1 = f(xk, uk) + wk

zk = hk(xk) + vk

(2.10)where wk and vk are white noise pro
esses with expe
tation and 
ovarian
eas des
ribed in (2.8).2.3.1 Time and measurement update equationsThe exa
t time updates for the �rst two moments of xk and zk are
x̂−

k = E[f(xk, uk) + wk]

Kk = PxzP
−1
ȳȳ

ŷ−k = E[h(x−
k ) + vk]These equations are in general not possible to obtain, sin
e it requires know-ing the �rst two moments of xk and zk after they have undergone a nonlineartransformation. Instead; the dis
rete measurement update and time updateare approximated by a �rst order Taylor expansion around the a priori esti-mate. We denote the Ja
obian's as

Fxk
=

∂f(x, uk)

∂x

∣
∣
∣
∣
x=x̂−

k

Hxk
=

∂h(x)

∂x

∣
∣
∣
∣
x=x̂k

(2.11)The Kalman �lter measurement updates are then given by
x̂k = x̂−

k + Kk[zk − h(x−
k )]

Kk = P−
k HT

xk
[Hxk

P−
k HT

xk
+ R]−1

Pk = [I − KkHxk
]P−

k

(2.12)and the predi
ted time update is 
al
ulated as
xk+1 = f(x̂k, uk)

Pk+1 = Fxk
PkF

T
xk

+ Qk

(2.13)



2.4. THE UNSCENTED KALMAN FILTER 112.4 The uns
ented Kalman �lter3 When the Kalman �lter estimates the measurement and time update itutilizes the mean and 
ovarian
e of xk and zk. When these variables aretransformed through a nonlinear fun
tion
y = f(x)the pre
ise statisti
s of y 
an only be 
al
ulated if the 
onditional probabilitydensity fun
tion fx|z is known. A Taylor expansion around x̄ is given by

f(x) = f(x̄+ δx) = f(x̄)+∇fδx+
1

2
∇2fδx2 +

1

3!
f∇3fδx3 +

1

4!
∇4fδx4 + . . .where δx is Gaussian white noise with zero mean. It 
an be shown that themean and 
ovarian
e of this Taylor expansion are

ȳ = f(x̄) +
1

2
∇2fPxx +

1

4
E[δx4] + . . .

Pyy = ∇fPxx (∇f)T +
1

2 × 4!
∇2f

(
E[δx4] − E[δx2Pyy] − E[Pyyδx

2] + P 2
yy

) (
∇2f

)T

1

3!
fE[δx4]

(
∇4f

)T
+ . . . (2.14)An approximation to the mean and 
ovarian
e is found by linearizing around

x̄

ȳ = f(x̄)

Pyy = ∇fPxx (∇f)and utilizing this mean and 
ovarian
e for �ltering and predi
tion. As seenfrom the above equations; this will only give a satisfa
tory result if the higherorder terms are negle
table.2.4.1 Uns
ented transformThe UKF utilizes the uns
ented transform (UT) for 
al
ulating the mean and
ovarian
e of a random variable propagated through a nonlinear fun
tion. Todetermine the �rst two moments of y; a set of 2n+1 sigma-points with samplemean x̄ and sample 
ovarian
e Pxx are transformed through the nonlinearfun
tion. The points and are sele
ted a

ording to
X0 = x̄

Xi = x̄ +
(√

(n + λ)Pxx

)

i
i = 1, . . . n

Xi = x̄ −
(√

(n + λ)Pxx

)

i
i = n + 1, . . . 2n

(2.15)3The theory in this se
tion is 
olle
ted from [1℄, [5℄ and[7℄



12 CHAPTER 2. KALMAN FILTER THEORYwhere n is the dimension of the state ve
tor x, (√n + λPxx

)

i
is the ith
olumn or row of the matrix square root, and λ is a s
aling parameter

λ = α2(n + κ) + nwhere α determines the spread of the sigma-points around x̄; set to a smallvalue (10−3), β in
lude information about the distribution of x; β = 2 fora Gaussian distribution, and κ is a tuning parameter; usually set to zero[7℄.The weights asso
iated with ea
h sigma point is 
al
ulated as
Wm0

= λ/(n + λ);

Wc0 = λ/(n + λ) + 1 − α2 + β;

Wmi
= 1/(2(λ + n));

Wci
= Wmi

∀i ≥ 1Ea
h sigma-point is transformed through the nonlinear fun
tion
Yi = f(Xi)and the transformed points are utilized for determining the new mean and
ovarian
e a

ording to

ȳ =

2n∑

i=0

WiYi

Pyy =

2n∑

i=0

Wi (Yi − ȳ) (Yi − ȳ)TBe
ause the mean and 
ovarian
e of x is 
al
ulated to the se
ond order;the transformed mean and 
ovarian
e are at least a

urate to the se
ondorder. It is possible to tune the �lter so that a higher order is obtained. In
omparison; the EKF 
al
ulates the 
ovarian
e to the same se
ond order andthe mean to the �rst order.2.4.2 Uns
ented transform and the uns
ented Kalman �lterThe UT 
an easily be in
orporated into the Kalman �lter. Considering thestate and measurement equations (2.10); the UT 
an be employed in theKalman �lter as1. Predi
t states x̂−
k and 
ovarian
e P−

xx by transforming sigma-points Xithrough state equations f(xk, uk) + hwk2. Predi
t expe
ted measurements ŷ−k and 
ovarian
e Pȳȳ by transformingthe sigma-points Xi through the measurement equation h(x) + hvk



2.5. AUGMENTATION OF THE STATE-SPACE MODEL 133. Cal
ulate 
ross-
ovarian
e Pxy

Pxy =

2n∑

i=0

Wi

(
Xi − x̄−

k

) (
Yi − ȳ−

)T4. Determine Kalman gain and �ltrate estimated state and 
ovarian
e
Kk = PyyP

−1
xy

x−
k = x̂−

k + Kk(yk − ŷ−k )

Pk = P−
k − KkPȳȳK

T
k2.5 Augmentation of the state-spa
e modelTo be able to estimate parameters and disturban
es utilizing the Kalman�lter; the unknown variables are modeled as additional states in the pro-
ess model. If we 
onsider parameter estimation in the linear state spa
eequations

xk+1 = Axk + Bu + Bddk + Bbbk + wx
k

zk = Hxk + vx
kwhere dk and bk is unknown disturban
es and bias. To estimate the param-eters and unknown parameters this model 
an be augmented as

xk+1 = A(θ)xk + B(θ)uk + B(θ)dk + B(θ)bk + wx
k

dk+1 = dk + wd
k

bk+1 = bk + wb
k

θk+1 = θk + wθ
k

zk = H(θ)xk + vk

(2.16)where wx
k , wd

k, wb
k and wθ

k are white noise pro
esses with 
ovarian
es
E[wx

kwx
i

T ] = Qx
kδki

E[wd
kwd

i

T
] = Qd

kδki

E[wb
kw

b
i

T
] = Qb

kδki

E[wθ
kwθ

i

T
] = Qθ

kδkiThe state ve
tors for equation (2.16) 
an now be de�ned
χk =







xk

dk

bk

θ







wk =







wx
k

wd
k

wb
k

wθ
k







uk =







uk

0
0
0









14 CHAPTER 2. KALMAN FILTER THEORYwith state matri
es
F (θ) =







A(θ) Bd(θ) Bb(θ) 0
0 Ir 0 0
0 0 Is 0
0 0 0 It







G(θ) =







Bu(θ)
0
0
0





If an EKF is used for estimation; the new state equations may be linearizedw.r.t F (θ) and G(θ) to get the full augmented state spa
e model

f(χk, uk) = F (θ)χk + G(θ)uk

h(χk) = H(χ)xk

F̄k =
∂f(χk, uk)

∂χT
=

(
Fk(θ) ∂

∂θT [F (θ)χk + G(θ)uk]

0 Ir+s+t

)

χk=χ̂k,θk=θ̂k

(2.17)
H̄k =

∂h(χ−
k )

χT
k

=
(

H(θ) ∂
θT

k

[H(θk)χk]
)

χk=χ̂−

k
,θk=θ−

k

(2.18)The dis
rete state augmentation 
an be applied to both extended and un-s
ented Kalman �lters, the latter does not require the state equation Ja
o-bian's derived above; instead the �lter is applied to the augmented nonlinearsystem.



Chapter 3Dynami
 �uid modelIn this 
hapter the pro
ess model utilized for Kalman �lter design is derived.The equations where originally dedu
ed in the internal do
ument [12℄. It isassumed that the �uid mud 
an be 
onsidered as a one phase hydrauli
 �uid.The the momentum equation and equation of 
ontinuity was applied to thes
hemati
 in �gure 3.1. Temperatures are assumed to be slowly varying andare treated as 
onstant. The energy equation is therefore not 
onsidered. Aswe 
an see from the �gure; the drill-string and annulus is divided into twoseparate 
ontrol volumes 
onne
ted through the drill-bit. The mud pumpis 
onne
ted to the drill-string at top-side, and a 
hoke valve and a ba
k-pressure pump is 
onne
ted at top-side on the annulus side.3.1 Dedu
tion of three state �uid modelThe assumptions made when deriving the model are as follows
• Turbulent �ow; i.e Re > 2300

• One dimensional �ow along the �ow path.
• Homogeneous 
ross se
tion area 
onditions.
• Constant density in the momentum equation.
• Temperature 
hanges are negligible and are treated as 
onstant.3.1.1 Equation of stateVis
osity µ as a fun
tion of temperature T and pressure p is treated as a
onstant. This is based on the assumption of a slowly varying temperature,and the fa
t that µ only 
hanges slightly with p.15
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Figure 3.1: S
hemati
 of drilling-
on�gurationMud density ρ is given by ρ = ρ(p, T ). Sin
e the temperature and pres-sure 
hanges in a liquid have a small e�e
t on the density, it may be approx-imated
ρ(p, T ) ≈ ρ0 +

∂ρ

∂p

∣
∣
∣
∣
T0

(p − p0) +
∂ρ

∂T

∣
∣
∣
∣
p0

(T − T0) (3.1)A

ording to the assumptions above; temperature 
hanges have negligiblee�e
ts on the �uid and are therefore omitted. The bulk modulus; whi
h 
anbe viewed as a measure of liquid 
ompressibility; is de�ned as
β , ρ0

∂p

∂ρ

∣
∣
∣
∣
T0

= −V0
∂p

∂V

∣
∣
∣
∣
T0Inserting this into equation (3.1) gives

ρ = ρ0 +
ρ0

β
(p − p0) (3.2)



3.1. DEDUCTION OF THREE STATE FLUID MODEL 173.1.2 Control volumeA

ording to the prin
iple of mass 
onservation the mass of a material volume
Vm is 
onstant

m =

∫∫∫

Vm(t)
ρdV ⇒ D

Dt

∫∫∫

V

ρdV = 0 (3.3)If we assume that ρ is the same all over the 
ontrol volume and 
onsiderReynolds' transport theorem [4, 
hapter 10℄
d

dt

∫∫∫

Vc

ρdV =
D

Dt

∫∫∫

Vc

ρdV

︸ ︷︷ ︸

equals zero, see (3.3)

−
∫∫

∂Vc

ρ ·~ndA (3.4)Equation (3.4) states that the 
hange in mass equals the net �ow into the
ontrol volume. Denoting w = ρq and di�erentiating the left side of equation(3.4) results in
Vc

dρ

dt
+ ρ

dVc

dt
=
∑

i

ρqin,i −
∑

j

ρqout,j (3.5)Inserting the bulk modulus
dρ

ρ
=

dp

β
⇒ ρ̇ =

ρ

β
ṗinto equation (3.5) gives the mass balan
e for the 
ontrol volume Vc

Vc

β
ṗ + V̇c =

∑

i

qin,i −
∑

j

qout,j (3.6)3.1.3 The momentum equationNavier-Stokes for one dimensional �ow is given by
ρ
dv

dt
= −∂p

∂x
− 1

A

∂F

∂x
+ ρg

∂h

∂x
(3.7)where A is the 
ross se
tion of the pipe, F a

ounts for fri
tion losses, x isthe position along the �uid path and v is the velo
ity in the x dire
tion.Fri
tion lossesThe fri
tion term in equation (3.7) a

ounts for all fri
tional losses and ismodeled as

∂F

∂x
= Sτw, τw = f

1

4

ρ

2
v2



18 CHAPTER 3. DYNAMIC FLUID MODELwhere S is the pipe perimeter, τw is the wall shear stress, and f is the fri
tionfa
tor. For minor losses su
h as restri
tions and pipe bends the fri
tion isgiven by
p1 − p2 = K

ρ

2
v2If the velo
ity v is repla
ed by v = q/A(x) the total fri
tion gradient is

∂F

∂x
=

1

4
fS(x)

ρ

2

(
q

A(x)

)2

+
∂K

∂x
A(x)

ρ

2

(
q

A(x)

)2 (3.8)where ∂K/∂x is the minor loss gradient along the �ow path.3.1.4 Flow dynami
sTo simplify the �ow dynami
s the �ow rate q̄ = Av̄ and density ρ = ρ0 isassumed 
onstant along the �ow path
ρ0

A(x)
dx

dq̄

dt
= −∂p

∂x
− 1

A(x)

∂F

∂x
dx + ρ0g

∂h

∂x
(3.9)Integrating along x gives

∫ l

0

ρ0

A(x)
dx

dq̄

dt
= −

∫ l

0

∂p

∂x
dx −

∫ l

0

1

A(x)

∂F

∂x
dx +

∫ l

0
ρg

∂h

∂x
dx

⇓
ρ0l

Ā

dq̄

dt
= p(0) − p(l) − (B0(l) − fB1(l))

ρ0

2
q̄2 + ρ0g(h(l) − h(0)),

(3.10)where B0(l) and B1(l) are de�ned as
B0(l) ,

∫ l

0

∂K

∂x

1

A(x)2
dx B1 ,

∫ l

0

1

4

S(x)

A(x)3
dx (3.11)and Ā is

Ā ,
1

l

∫ l

0
A(x)dx (3.12)3.1.5 Drill-string dynami
sThe only a
tuator in the drill-string is as mentioned the mud pump. Dy-nami
s in the pump is not 
onsidered and the �ow is des
ribed by qpump.Drill-string pressureFrom the 
ontrol volume equation (3.6) the pressure dynami
s 
an be de-s
ribed as

Vd

βd
ṗp = qpump − qbit (3.13)where pp is the stand-pipe pressure and V̇d = 0 sin
e the drill string volumeis 
onstant between pipe 
onne
tions.



3.1. DEDUCTION OF THREE STATE FLUID MODEL 19Drill-string �owThe drill-string �ow dynami
s 
an be derived from equation (3.10)
ρd0LdN

Ād

q̇d = pp − pbit − (Bd0 + fdBd1)
ρd0

2
q2
d + ρd0ghbit (3.14)where LdN is the total length of the drill-string, pbit is the pressure at thedrill-bit and hbit is the hydrostati
 height of the �uid; i.e well depth.3.1.6 Annulus dynami
sFrom �gure 3.1 we see that a
tuators on the annulus side in
lude a 
hokevalve and a ba
k-pressure pump. The 
hoke valve is modeled as

qchoke = AKcz

√
2

ρa
∆pc (3.15)Annulus pressureApplying equation (3.6) to the annulus 
ontrol volume results in

Va

βa
ṗc + V̇a = qbit + qres + qres + qback − qchoke (3.16)where qres is reservoir in�ow and qback is the ba
k-pressure �ow.3.1.7 Annulus �owWe de�ne qa = qres + qbit and apply equation (3.10)

ρ0lbit
Āa

q̇a = pbit − pc − (Ba0 + faBa1)
ρa0

2
q2
a + ρd0ghbit (3.17)3.1.8 Three state �uid modelFrom �gure 3.1 we see that qd = qbit and we have that; qa = qbit + qres,where qbit is the �ow through the drill-bit. If we 
ombine the drill-string�ow dynami
s (3.14) and annulus �ow dynami
s (3.17) the state equations
an be derived. For simpli�
ation the following de�nitions are in
luded:

Md ,
ρd0LdN

Ād

Ma ,
ρa0lbit
Āa(lbit)

(3.18)
Fd , (Bd0 + fdBd1)

ρd0

2
Fa , (Ba0(lbit) + faBa1(lbit))

ρa0

2
(3.19)



20 CHAPTER 3. DYNAMIC FLUID MODELThe �nal pro
ess model is shown in equation (3.20).
Vd

βd
ṗp = qpump − qbit

Va

βa
ṗc = −V̇a + qbit + qres + qback − zAcKc

√
2

ρa0
(pc − p0)

(Ma + Md) q̇bit = pp − pc − Fdq
2
bit − Fa(qbit − qres)

2 + (ρd0 − ρa0)ghbit(3.20)The annulus pressure 
an now be des
ribed as
pa(l) = pc + Ma(l)q̇bit + Fa(l)q

2
bit + ρa0gh(l) (3.21)



Chapter 4Model 
onsiderations andanalysis4.1 Parameter identi�
ationIn the model des
ribed in se
tion 3.1.8 there are several parameters thatneeds to be determined. These parameters 
an be divided into time-varying,
onstant and unknown. It is also distinguished between parameters that 
anbe estimated during stationary 
onditions and parameters that only 
an beestimated during transients.In addition to the pressure measurements pp and pc; it is assumed that
qpump, qback, z, hbit and lbit are known. The drill-string and annulus volumesmay be determined from the well length lbit. Based on o�-line measurementsof the mud density it is possible to 
al
ulate the drill-string density ρd. Thepump �ows 
an be determined by

qpump = NpVp2πωp

τpω̇p = −ωp + Kpumpupwhere ωp rad/s is the pump rotational speed, Np is the number of pistons and
Vp is the volume per strokes per piston [12℄. The 
hoke �ow is determinedfrom the valve equation

qchoke = Cvz
√

∆pc

τcż = −z + ucwhere z ∈ (0, 1) is the valve opening and 0 is fully 
losed and 1 is fully open.
Cv is the valve 
onstant and uc is the manipulated variable. Note that whenthe valve 
hara
teristi
 and annulus density is known; it is also possible toutilize the valve equation (3.15).The remaining parameters that needs to be identi�ed are βa, βd, ρa, Fd,
Fa, Ma and Md. The following identi�
ation method for o�-line estimationare suggested in the internal do
ument [11℄.21



22 CHAPTER 4. MODEL CONSIDERATIONS AND ANALYSISUtilizing stationary measurements of 
hoke pressure pc and bottom-holepressure pa; the annulus and drill-string density and fri
tion may be deter-mined from the stationary equations for bit-�ow and bit pressure
qbit = qpump

pp − pc = (Fd + Fa)q
2
bit − (ρd − ρa)ghbit

pa − pc = Faq
2
bit + ρaghbitHere we have two equations with four unknowns. The number of equationsmay be expanded by measuring the pressures for di�erent bit-�ows qbit, andsolving for fri
tion and density. A least square algorithm may be utilized toensure a more a

urate result.A method for estimating �uid 
ompressibility in the drill-string and an-nulus; βd and βa is suggested in [11℄. The identi�
ation methods allow forestimation of parameters without the unknown bit-�ow qbit. In this report;o�-line estimation of these parameter is not 
onsidered and the results from[11℄ is utilized in the simulations against Wemod and data from Grane. Theparameters Ma and Md are approximated by 
onsidering the average densi-ties and applying equation (3.18).4.2 Augmented modelFor online estimation of a set of unknown time varying parameters; the model(3.20) is augmented as des
ribed in se
tion 2.5. The augmented state ve
toris de�ned as

x =
(
pp pc qbit θ

)T (4.1)where x ∈ R
n and the ve
tor θ 
ontains the parameters to be estimated;here 
alled parameter ve
tor. The belonging state equations are

f(x) =








βd

Vd

(qpump − qbit)
βa

Va

(

−V̇a + qbit + qres + qback − qchoke

)

1
Ma+Md

(
pp − pc − Fdq

2
bit − Fa(qbit − qres)

2 + (ρd − ρa)ghbit

)

0










4.2. AUGMENTED MODEL 23The augmented system 
an now be represented in the 
ompa
t form
ẋ = f(x) + w (4.2)where w is a 
olumn ve
tor of white noise pro
esses with zero mean, 
ovari-an
e E[wwt] = Q and dimension w ∈ R

nThe measurement equation for the two measurements pp and pc is linearand given by
yk =

(
pp

pc

)

+ v (4.3)where the ve
tor v is measurement noise and is normally distributed with
ovarian
e E[vvT ] = R. For the bottom-hole pressure; the measurementequation is given by
pa = pc + Maq̇bit + Faq

2
bit + ρa0ghIn this report; estimation of qres is not 
onsidered and so qres is set to zero.Inserting q̇bit and qres = 0 into the above equation results in

pa = pc + Faq
2
bit + ρa0ghbit+

Ma

Ma + Md

(
pp − pc − Fdq

2
bit − Faq

2
bit + (ρd0 − ρa0)ghbit

) (4.4)If we de�ne M and M̄ as
M ,

Ma

Ma + Md

, M̄ = 1 − M =
Md

Ma + Mdthe measurement equation 
an be simpli�ed to
pa = pc (1 − M) + Faq

2
bit (1 − M) + ρaghbit (1 − M)

+ M(pp − Fdq
2
bit + ρdghbit)

= M̄(pc + Faq
2
bit + ρaghbit) + M(pp − Fdq

2
bit + ρdghbit)Combining the measurement equation with measurements for pp and pc gives

h(x) =





pp

pc

M̄(pc + Faq
2
bit + ρaghbit) + M(pp − Fdq

2
bit + ρdghbit)



 (4.5)The total system with state equations and measurement equations 
an nowbe des
ribed in the 
ompa
t form
ẋ = f(x) + w

y =

{
Cx ,with pp and pc measurement
h(x) ,with pp, pc and pa measurement (4.6)



24 CHAPTER 4. MODEL CONSIDERATIONS AND ANALYSIS4.3 ObservabilityTo obtain the 
orre
t parameter values when estimating the annulus parame-ters online; the augmented model needs to be observable. A

ording to linearsystem theory (see for instan
e [9℄) this 
an be determined by 
al
ulating theobservability matrix; O and examine if the rank of O equals the dimensionof the linearized state spa
e model f(x,u). The state spa
e equations
ẋ = Ax + Bu

y = Cxfor the augmented �uid model (4.6) is found by linearizing around the 
urrentoperating point
A =

∂f

∂x

∣
∣
∣
∣
x=x∗,u=u∗

B =
∂f

∂u

∣
∣
∣
∣
x=x∗,u=u∗

C =
∂h

∂x

∣
∣
∣
∣
x=x∗

(4.7)where A is the state matrix, C is the measurement matrix, u is the 
ontrolsignal and B is the input matrix. The input matrix 
onsists of mud-pump,ba
k-pressure pump and 
hoke valve, but it is not relevant for system observ-ability. With a state matrix dimension of A ∈ R
n; the observability matrixis given by

O =








C
CA...

CAn−1






An algebrai
 expression for the observability matrix is to intri
ate to displayand to analyse. Instead; the observability matrix was 
al
ulated numeri
allyby linearizing the model around some sele
ted operating points. Observabil-ity was tested for both measurement equations; with and without pa mea-surement. For the 
ase with two measurements; pp and pc; the measurementequation is linear and given by

C =

(
1 0 0 . . . 0
0 1 0 . . . 0

) ,where C ∈ R
2×n (4.8)If pa is available as a measurement or estimate the linearized measurementequation depends on the augmented state ve
tor

C =





1 0 0 0 . . . 0
0 1 0 0 . . . 0

M M̄ 2qbit(FaM̄ − FdM) ∂h3

∂θ1
. . . ∂h3

∂θn





x=x∗

(4.9)When the state ve
tor is augmented with the parameter ve
tor θ as
θ =

(
ρa Fa βa

) , or
θ =

(
Cv Fa βa

)



4.4. PRAGMATIC APPROACH TO PARAMETER ESTIMATION 25the observability matrix has rank(O) < dim(A) for both measurement equa-tions; (4.8) and (4.9). This indi
ates that an EKF where all these parametersare estimated 
annot be designed for this 
ase. However; the model is ob-servable when redu
ing the number of estimated parameters. For example;any augmented pairing of ρa, Fa, Cv and βa is possible. An analysis forparameter 
onvergen
e in the UKF has not been analyzed this report. Su�-
ient 
onditions for a bounded estimation error in the UKF 
an been foundin [3℄.4.4 Pragmati
 approa
h to parameter estimationIn normal operation little ex
itation of the manipulated variables qpump, qbackand z 
an be expe
ted[11℄. This implies that there will be long periods wherethe model and �lter is stationary and the β parameters in equation (3.20)are 
an
elled. It is then possible estimate two stationary parameters1; orthree if pa is available. These estimated are independent of the value of βaand βd. Normally the observability problem would 
ause the Kalman �lterto estimate a linear 
ombination of the parameters and not the a
tual values,but due to the 
an
ellation of βa it should be possible to obtain the 
orre
tvalues.When the system is stationary it is possible to identify the state qbitand at most three more parameters. Equations (4.10) - (4.13) display thestationary 
ase of the �uid model (3.20) and the bottom-hole measurementequation (3.21).
qpump = qbit (4.10)

qchoke − qres = qbit + qback (4.11)
pp − pc = Fdq

2
bit + Fa(qbit + qres)

2 − (ρd − ρa)ghbit (4.12)
pa − pc = Fa(qbit − qres)

2 + ρaghbit (4.13)From these equations we see that qbit is given by the mud-pump. The un-known parameters in equation (4.11) are qres, ρa and the valve 
onstant Cv; ifvalve equation (3.15) is utilized. Annulus density and fri
tion from equations(4.12) and (4.13) are asso
iated with large un
ertainty. These parametersenter in both equations, but it is still only possible to identify one of thesein the stationary 
ase. This is seen when writing out the bit-pressure pa asseen from the drill-string
pa = pp + ρdghbit − Fdq

2
bitInserting for pa in equation (4.13) gives equation (4.12); i.e, the two equa-tions are linearly dependent, and we gain no new information useful for1In this 
ontext; stationary parameters are the ones not 
an
elled when the given stateequations are stationary



26 CHAPTER 4. MODEL CONSIDERATIONS AND ANALYSISestimating Fa and ρa stationary. So, to be able to estimate Fa and ρa onlinewe need ex
itation; whi
h again requires the 
orre
t values for βa and βd.The parameters βd, βa, Md and Ma 
an only be estimated during tran-sients.4.4.1 Parameter estimation 
on
lusionsConsidering the points mentioned in this se
tion; some estimation frame-works are suggested. As noted in the observability analysis; it is not feasibleto estimate ρa, Fa and βa at the same time in the Kalman �lter. A possi-bility here is to determine ρa based on stationary o�-line observations. Forexample; by measuring stationary pressures and �ows and applying a least-squares algorithm to equations (4.10)-(4.13). The least-square result 
an beused to 
orre
t parameters not estimated online in the Kalman �lter; su
has annulus density ρa. Also; it should be tested whether it is possible toestimate ρa and Fa during ex
itation; and how this estimation is a�e
ted byerror in the �uid bulk-modulus.Sin
e annulus density and the 
hoke valve 
hara
teristi
 is not know;there are un
ertainties asso
iated with the 
hoke-�ow qchoke. If a measure-ment of this �ow is not available; Cv 
an be estimated together with theannulus fri
tion and bulk-modulus. The parameter ve
tor for the stationary�lter 
an then be represented as
θs =

(
Cv Fa

)whereas the transient parameter ve
tor is
θd =

(
βa

)When the bit-�ow is zero; it is not possible to estimate either fri
tion or �uidbulk-modulus. In this situation the parameter ve
tor is empty and only thebit-�ow is estimated. Also, sin
e there might arise problems as qbit → 0; theparameter estimation should be turned o� in advan
e.The parameter ve
tors suggested require that transients and stationary
onditions are know. Sin
e ex
itations from the 
hoke-valve and mud-pumpis known beforehand; it should be possible to shift between the stationaryand transient Kalman �lters and obtain a 
orre
t estimate. To ensure a
orre
t estimate when swit
hing between �lters; the stationary parametersmust 
onverge before 
hanging �lter.4.5 Dis
retization of augmented modelFor implementation purposes; the augmented state equations are 
onvertedto di�eren
e equations. This was a

omplished by applying Euler's method
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al integration on equation (4.2). The dis
rete model is given by
f1 = ppk+1

= ppk
+ h

βd

Vd
(qpumpk

− qbitk) + hwk1

f2 = pck+1
= pck

+ h
βa

Va

(

−V̇a + qbitk + qresk
+ qbackk

− zAcKc

√
2

ρa0
(pck

− p0)

)

+ hwk2

f3 = qbitk+1
= qbitk +

h

Ma + Md

(
pp − pc − Fdq

2
bit − Fa(qbit − qres)

2 + (ρd0 − ρa0)ghbit

)
+ hwk3

fθ1
= θ1,k+1 = θ1,k...

fθn
= θn,k+1 = θn,k (4.14)where h is the dis
rete time shift. A

ording to [4℄; Euler's method fornumeri
al integration is stable for

h ≤ − 2

λ
(4.15)where λ is the smallest eigenvalue of the 
ontinuous state equations. The
hoke pressure equation from the pro
ess model (3.20) is given by

Va

βa
ṗc = −V̇a + qbit + qres + qback − zAcKc

√
2

ρa0
∆pc (4.16)When all inputs are zero the linearized pressure equation 
an be written as

ṗc = − C

2
√

∆pc

, where C =
βa

Va
zAcKc

√
2

ρa
(4.17)The eigenvalues for the linearized system is

λ = − C√
∆pc

(4.18)As we 
an see from the equation above; the eigenvalue λ → −∞ as ∆pc → 0.A

ording to the stability requirement (4.15); the dis
rete system is lo
allyunstable. This will 
ause os
illations around qbit = 0, and might lead toproblems in the Kalman �lters. Espe
ially in the UKF, where a negativede�nite 
ovarian
e matrix 
auses imaginary values when 
al
ulating the ma-trix square root. One solution is utilizing another valve equation. In [4,
hapter 4 ℄ a valve equation with smooth transition between laminar �ow;
q = Cl∆p; and turbulent �ow is suggested. The problem may also be solvedby in
reasing the bit-�ow pro
ess noise 
ovarian
e during low bit-�ows. An-other way of solving the problem is to utilize an impli
it integration solverthat is stable for the hole left half plane.
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Chapter 5Kalman �lter designThis 
hapter presents an overview of the implemented EKF and UKF. Basedon the 
on
lusions from the former 
hapter; the Kalman �lter must be ableto swit
h between estimated parameters. In the EKF this involve designinga di�erent �lter for ea
h set of parameters and 
hanging between �lters. Forthe UKF this 
an be a

omplished by utilizing the same �lter. It is assumedthat the pro
ess noise and measurement noise is diagonal and not 
orrelatedwith ea
h other.5.1 Extended Kalman �lter designParameter ve
tors 
onsidered in the EKF are
θ =

(
ρa Fa βa

) (5.1)
θ =

(
Fa β

) (5.2)
θs =

(
Fa

)
θd =

(
βa

) (5.3)The observability analysis indi
ated an observability problem when estimat-ing annulus density, fri
tion and bulk-modulus at the same time. The �rstparameter ve
tor in the list above is in
luded only to verify this and to
ompare it to the UKF.As mentioned in se
tion 2.3; the EKF approximates the propagated meanas
E [f(x)] ≈ f(x̄)The apriori error 
ovarian
e matrix is approximated by 
onsidering a lin-earization around the 
urrent estimate, and 
al
ulating the propagationthrough the linear system. To design the �lter we must therefore augmentthe state equations and determine the state matrix A.29



30 CHAPTER 5. KALMAN FILTER DESIGN5.1.1 EKF with parameter ve
tor θ = (ρa Fa βa)As an example the augmentation of the �rst parameter ve
tor in (5.1) isshown. The state equations are
ppk+1

= ppk
+ h

βd

Vd

(qpumpk
− qbitk) + hw1

pck+1
= pck

+ h
βa

Va

(

−V̇a + qbitk + qresk
+ qbackk

− qchoke

)

qbitk+1
= qbitk +

h

Ma + Md

(
pp − pc − Fdq

2
bit − Fa(qbit − qres)

2 + (ρd0 − ρa0)ghbit

)
+ hw3

ρa,k+1 = ρa,k + hw4

Fa,k+1 = Fa,k + hw5

βa,k+1 = βa,k + hw6 (5.4)and the belonging Ja
obian matrix with state ve
tor x =
(
pP pc qbit ρa Fa βa

)is
Ak =

∂f

∂x
=












1 0 −βd

Vd
0 0 0

0 ∂f2

∂pc

βa

Va

∂f2

∂ρa
0 ∂f2

∂βa

1
Ma+Md

−1
Ma+Md

∂f3

∂qbit

−ghbit

Ma+Md

−(qbit−qres)2

Ma+Md
0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1












(5.5)
where the unspe
i�ed terms; ∂f/∂x are shown in appendix B. The mea-surement equation for �ltrating the estimated state and 
ovarian
e dependson the measurements available. When pp and pc are measured the mea-surement equation is given by (4.8), and when pa is in
luded; the linearizedmeasurement equation (4.9) is utilized. Initial 
onditions for the state ve
torare

xa =
(
pp,0 pc,0 qbit,0 ρa,0 Fa,0 βa,0

)T (5.6)with the 
orresponding initial error 
ovarian
e matrix
Pk,0 =












∆p2
p,0 0 0 0 0 0

0 ∆p2
c,0 0 0 0 0

0 0 ∆q2
bit,0 0 0 0

0 0 0 ∆ρ2
a,0 0 0

0 0 0 0 ∆F 2
a,0 0

0 0 0 0 0 ∆β2
a,0












(5.7)The initial error 
ovarian
e matrix is a measure of the un
ertainty in theinitial values of the state ve
tor (5.6). The EKF with parameter ve
tors



5.2. UNSCENTED KALMAN FILTER DESIGN 31(5.2) and (5.3) is simply obtained from (4.14) and 
omputing the belongingJa
obin a

ording to (2.11). An overview of the EKF algorithm is displayedin appendix A.1.5.1.2 Changing between estimated parametersTo be able to swith between estimated parameters online in the EKF; one�lter was designed for ea
h parameter ve
tor. The �lters designed where; onefor stationary 
onditions, one for transients and one when qpump is under a
ertain value. The transient mode was set based on pump or valve movementof a given size; plus a time period to let the system obtain its stationary state.For the �lters to maintain its previous state after a swith, the value of thebelonging state and 
ovarian
e where saved in ea
h iteration. The savedstates and parameters where set to 
onstants when utilized in another �lter.5.2 Uns
ented Kalman �lter designAs mentioned in se
tion 2.4; the UKF utilizes the uns
ented transform for
al
ulating the mean and 
ovarian
e propagated through the state and mea-surement equations. Pro
ess and measurement noise is in
orporated in thepropagation of sigma-points by expanding the state ve
tor and error 
ovari-an
e matrix as
xa =





xn

vk

wk



 Paxx
=





Pxx 0 0
0 Q 0
0 0 R



where
E[wkwT

k ] = 0 E[vkvk] = 0The new state ve
tor has dimension xa ∈ R
2n+m, where n is the dimensionof the augmented state ve
tor and m is the number of measurements. Thismeans that the number of 
al
ulated sigma-points are 2(2n + m) + 1. Thesigma-points are pla
ed in the matrix

X a
k−1 =

(

x̂a
k−1 x̂a

k−1 +
√

(N + λ)Pa
k−1

x̂a
k−1 −

√

(N + λ)Pa
k−1

)with dimension X a
k−1 ∈ R(2n+m)×(2(2n+m)+1) . The �rst 2n rows of the matrix

X x
k−1 and Xw

k−1; asso
iated with the error 
ovarian
e Pk and pro
ess noise Qare propagated through the state equations
X x

k|k−1 = f(X x
k−1,Xw

k−1),whereas the �rst n rows X x
k−1 and last m rows X v

k−1 are propagated throughthe measurement equation
Yk|k−1 = h(X x

k−1,X v
k−1) (5.8)



32 CHAPTER 5. KALMAN FILTER DESIGNIf the measurement equation is linear; as in the situation when measuring ppand pc; the measurement update may be 
omputed a

ording to the 
lassi
alKalman �lter equations
ŷk = Cx̂−

k

Pyy = CP−
k CT + R

Pxy = P−
k CT

x̂k = x̂−
k + PxyP

−1
yy (yk − ŷk)

Pk = P−
k − PxyP

−1
yy P T

xy

(5.9)and the measurement propagation in equation (5.8) is omitted.5.2.1 UKF with parameter ve
tor θ = (ρa Fa βa)Here the same example shown for the EKF is presented. The state equationsare given by the augmented model (5.4). The initial state ve
tor is
xa =

(
xk,0 0 0 0 0 0 0 0 0

)Twith the 
orresponding initial error 
ovarian
e matrix
Pa,0 =





Pk,0 0 0
0 Q 0
0 0 R



where xk,0 and Pk,0 is given by (5.6) and (5.7). From these initial 
onditionsthe UKF algorithm in appendix A.2 is applied.5.2.2 Changing estimated parametersChanging between estimated parameter-sets in the UKF 
an be performedsimply by freezing and unfreezing the 
orresponding sigma-points before theyare propagated through the pro
ess model. To explain this further; an ex-ample where estimation of one parameter in a nonlinear fun
tion is turnedon and o�. Let the augmented pro
ess model be
xk+1 = xk + f(xk, θk) + hw1

θk+1 = θk + hw2
(5.10)with an error 
ovarian
e matrix and pro
ess noise 
ovarian
e matrix

Pk =

(
p11 p12

p21 p22

)

Q =

(
q11 0
0 q22

)The augmented state ve
tor and 
ovarian
e matrix are
xa

k =
(
xk θk 0 0

)T
P a

k =

(
Pk 0
0 Q

) (5.11)
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ulating the matrix square root and the sigma-points results in the ma-tri
es
S =

√

(λ + n)P a
k =







s11 s12 0 0
s21 s22 0 0
0 0 s33 0
0 0 0 s44







X a
k−1 =

(
x̂a

k−1 x̂a
k−1 ± Si

)

=







xk xk + s11 xk + s12 xk xk xk − s11 xk − s12 xk xk

θk θk + s21 θk + s22 θk θk θk − s21 θk − s22 θk θk

0 0 0 q11 0 0 0 −q11 0
0 0 0 0 q22 0 0 0 −q22





Ea
h 
olumn ve
tor in the matrix above represents one sigma-point for theaugmented state ve
tor xa

k, and one by one the 
olumn ve
tors are propagatedthrough the augmented pro
ess model (5.10). Halting the θ parameter is nowa
hieved by assigning all entries in the se
ond row equal to the �rst elementin the row, and all elements in the last row to zero
X a

k−1 =







xk xk + s11 xk + s12 xk xk xk − s11 xk − s12 xk xk

θk θk θk θk θk θk θk θk θk

0 0 0 q11 0 0 0 −q11 0
0 0 0 0 0 0 0 0 0





This will allow the θ parameter to be un
hanged after propagation. Thesum of the weights utilized for determining the �nal value of θk equals one,and thus; the parameter remains equal to the last time step. To be able tounfreeze the parameter; the belonging error 
ovarian
e elements of Pk mustbe saved before estimation of the parameter is halted. When estimation isresumed; the error 
ovarian
e elements 
orresponding to the parameter arerestored.



34 CHAPTER 5. KALMAN FILTER DESIGN5.3 Constraint handling in the EKF and UKFAnother important part of state and parameter estimation is 
onstraint han-dling. Figure 5.1 display a s
hemati
 in two dimensions of how 
onstraints
an be performed in the EKF and UKF. In the EKF; this is simply performedby moving the predi
ted states and parameters to the violated 
onstraint.For the states; this involve keeping the absolute pressure and bit-�ow non-negative. As seen from the �gure; the error 
ovarian
e is not a�e
ted bymoving the state or parameters. In the UKF; 
onstraint handling is per-

Figure 5.1: Constraint handling in the EKF and UKFformed be moving all propagated sigma-points ba
k to the violated 
on-straint. This ensures that the 
omputed mean is within the 
onstraints. Theerror 
ovarian
e matrix is also a�e
ted by the 
onstraint handling, and thus
ontains information about the nearby 
onstraint as the 
omputed 
ovarian
eis smaller [1℄.



5.4. COVARIANCE TUNING 355.4 Covarian
e tuningSeveral methods for online tuning of the 
ovarian
e matri
es Q and R whereattempted, see for instan
e [14℄, [15℄, [8℄ or [2℄. All these methods rely on alinear observable state spa
e model. The idea was to implement a linearizedmodel during stationary 
onditions and apply the method proposed in [14℄ tothe original pro
ess model. The method was implemented for the linearizedversions of the state equations (3.20).Sin
e the model is also utilized for parameter estimation; online tuning ofthe 
ovarian
e matri
es might not be the best solution. Instead the 
ovari-an
es where determined by 
al
ulating an initial value a

ording to Bryson'sinverse quadrati
 method. The 
ovarian
es where then tuned to obtain asatisfa
tory result.Assuming the pro
ess noise and measurement noise 
ovarian
e matri
esis not 
orrelated mutually or between ea
h other
Q0 = diag(q1, q2, . . . qn) R = diag(r1, r2 . . . rm)an initial value for the pro
ess noise and measurement noise 
ovarian
es 
anbe determined with Bryson's inverse quadrati
 method.1. Assign the maximum allowed estimation deviation as δxi = max(|xi −

x̂i|) and 
al
ulate
{

qi =
1

(δxi)2

}n2. Choose the measurement matrix elements as
{

rj =
1

(δyj)2

}nwhere δyj = |yi − ȳj|, and ȳj is the mean of stationary measurement, and
yj is the maximum observed measurement deviation from this mean. Whenthe elements in the 
ovarian
e matri
es have been determined; the �lter istuned a

ording to

Qk = σQ0where σ is a s
alar value that determines the s
aling between Rk and Qk.To get an a

eptable estimation of the bottom-hole pressure; it is impor-tant to not add to mu
h un
ertainty in the pro
ess model. The un
ertaintywas therefore added to the estimated parameters. For example; if to mu
hun
ertainty is 
ombined with qbit; it is impossible to obtain a 
orre
t fri
tionestimate.
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Chapter 6Observer performan
e androbustnessTo verify that the estimated states and parameters 
onverge to the 
orre
tvalues; the EKF and UKF algorithms where tested against data obtainedfrom simulations on the design model (3.20). To be able to 
ompare the UKFand EKF; the same noise set was utilized in simulations of both �lters. The
ovarian
e matri
es where also equal in the EKF and UKF. All parametersin the design model and Kalman �lters are identi
al; ex
ept for the onesestimated. The parameters utilized in the simulations are displayed in table6.1. Parameter Value Des
ription
p0 1 bar Atmospheri
 pressure
ρ̄a 1250 kg/m3 · 10−5 Average annulus density
ρ̄a 1250 kg/m3 · 10−5 Average drill-string density
Fa 20800 Annulus fri
tion fa
tor
Fd 165000 Drill-string fri
tion fa
tor
Ma 5730 Annulus mass 
oe�
ient
Md 5730 Drill-string mass 
oe�
ient
βa 14000 Annulus bulk-modulus
βa 14000 Drill-string bulk-modulus
Va 28.27 m3 Annulus volume
Vd 96.13 m3 Drill-string volume
hbit 2000 m Well depth
lbit 3600 m Well length
LdN 3600 m Drill-string length
Kc 0.0046 Choke valve 
onstant
Ac 0.04 m2 Choke valve openingTable 6.1: Design model parameters37



38 CHAPTER 6. OBSERVER PERFORMANCE AND ROBUSTNESS6.1 Input ex
itation and parameter estimationFirst the Kalman �lters where simulated with ex
itations from the mud-pump to determine how a

urate they 
an estimate the unknown parameters.The ba
k-pressure pump and 
hoke valve where maintained 
onstant duringthe simulation.6.1.1 Estimation of ρa, Fa and βaIdeally the parameters ρa, Fa and βa should be estimated at the same time.A

ording to the observability analysis in se
tion 4.3 this is not possible. Toverify this the UKF and EKF where augmented with the parameter ve
tor
θ =

(
ρa Fa βa

)All parameter and the state; qbit where here estimated at the same time.The initial values for the parameters where set toParameter Value
qbit,0 1000 l/min
pp,0 74 bar
pc,0 125 bar
ρa,0 1150 kg/m3

Fa,0 15800
βa,0 9000Table 6.2: Initial state and parameter valuesThe measured and estimated parameters; along with mud-pump ex
ita-tions are displayed in �gure 6.1. Figure 6.2 and 6.3 present the deviationfrom the desired states and parameters. The left 
olumn of the �gures showthe initial estimation transient, and the right 
olumn display the response forthe remaining simulation period. It is not possible to see the error betweenthe measured states pp and pc and the states �ltrated by the UKF sin
e thes
aling is to large. Figure As 
an be seen from �gures 6.1 and 6.2; both theEKF and UKF 
omputes an a

urate estimate of the bottom-hole pressureand bit-�ow, even though the augmented model is not observable. However;in the parameter deviation plot 6.3; we see that the EKF does not 
onvergeto the 
orre
t parameter values. The UKF approximates the nonlinearitiesbetter and the parameter error 
onverges to zero.
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Figure 6.1: Pressure estimation when estimating ρa, Fa and βa with UKFand EKF
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Figure 6.2: Pressures estimation error when estimating ρa, Fa and βa withUKF and EKF
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42 CHAPTER 6. OBSERVER PERFORMANCE AND ROBUSTNESS6.1.2 Estimation of Fa and βaWhen augmenting the pro
ess model with Fa and βa the system is observableand it should be possible to estimate 
orre
t values for these parameters.Initial values for qbit, Fa and βa where set as in table 6.2. In this simulationannulus fri
tion was estimated during stationary 
onditions, and �uid bulkmodulus was estimated during transients. Simulation s
enarios where bothparameters where estimated at the same time has also been 
ondu
ted, butthis did not give as good results.In this simulation; the data from the design model where obtained withEuler's method; des
ribed in se
tion 2.1. Sin
e the method has a �xed stepsize; the pro
ess noise added to pp and pc is known, and the Kalman �lter
ovarian
e matri
es 
ould be determined dire
tly.To measure the di�eren
e between the EKF and UKF the Integral SquareError (ISE) was 
omputed on the bottom-hole pressure di�eren
e a

ordingto
ISE =

n∑

i=0

|pa − p̂a|2∆tThe results of the ISE where
ISEUKF = 2.4 ISEEKF = 18.4This shows that the UKF performs better than the EKF; with an ISE ofover 7 times larger in the EKF. Figure 6.4 display the pressure progress; andboth �lters estimate a 
orre
t bit-�ow and bottom-hole pressure. The errorsfrom the real values are displayed in �gure 6.2, and we see that the UKF
onverges a little bit faster than the EKF. In �gure 6.1.2 we also see that theparameters 
onverge 
onverges faster in the UKF and that the �nal valuesin the UKF lie 
loser to the 
orre
t value.
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46 CHAPTER 6. OBSERVER PERFORMANCE AND ROBUSTNESS6.2 Pipe-
onne
tion and �lter swit
hingIn the pipe-
onne
tion s
enario; Fa was estimated during stationary 
ondi-tions and βa was estimated during transients. Sin
e there are some problemswith numeri
ally stability when qbit → 0; the data from the design modelhad to be 
omputed by a solver with variable step size. The added pro
essnoise was therefore not known and the 
ovarian
e matri
es had to be tuned.Figures 6.7 - 6.9 display the estimated states and parameters during apipe-
onne
tion. The initial values where set as in table 6.2; When themud-pump is ramped down from qpump = 1000 l/min to 0; the ba
k-pressurepump was ramped up from 200 l/min to 400 l/min. At the same time thefri
tion estimation is turned o� and the �lters starts to estimate βa. Whenthe bit-�ow approa
h 100 L/s; the parameter estimation is turned o� andonly qbit is estimated. Figure 6.7 display both estimated and real pressures.It is not possible to see any di�eren
e between estimated and real pressures;the plots are merely shown to see the pressure and bit-�ow progress. Insteadthe state errors 
an be seen in �gure 6.8. Both �lters estimates the 
orre
tvalues, but the UKF 
onverges faster. The ISE values for the UKF and EKFare
ISEUKF = 645 ISEEKF = 893The large ISE-values are the result of larger pro
ess noise varian
es than inthe previous s
enario, and that the �lters deviates somewhat from the truebottom-hole pressure when qbit = 0. As seen from the parameter estimation6.9; it is theoreti
ally possible to exploit the dynami
s during pump-shutdown to estimate βa. The �gure also show that the UKF 
onverges fasterand 
loser to the 
orre
t value than the EKF.
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Fa and βaThe deviation in �gure 6.8
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Chapter 7Wemod simulationTo see how the UKF handles unmodelled dynami
s the �lter was testedagainst simulation sets from Wemod. Wemod is a rigid, high-order simula-tor developed for simulating the �ow dynami
s in a well. In the simulations
enario; step-responses from mud-pump and a pipe-
onne
tion where per-formed. The in�ux from the reservoir was set to zero during the simulation.First the unknown parameters in the pro
ess model had to be adaptedto Wemod. The parameters ρd, ρa,Fd and Fa where identi�ed by applyingsteps in the mud-pump and re
ording stationary 
onditions in the pressures
pp, pc and pa. These pressures where then utilized to �t the parameters witha least square algorithm a

ording to the stationary equations

qbit = qpump

pp − pc = (Fd + Fa)q
2
bit − (ρd − ρa)ghbit

pa − pc = Faq
2
bit + ρaghbitFor the dynami
 parameters; βd, βa, Md and Ma; the results given in [11℄where utilized. The 
hoke valve was modeled as

qchoke = Cv

√

2∆pc

ρawhere the 
hoke valve 
onstant Cv was 
al
ulated a

ording to the stationaryequation
Cv =

qpump + qback
√

2∆pc/ρaThe identi�ed parameters are shown in table 8.1. The pressures are shownin bar and other units follow after this1. Figure 7.1 display the pressure andbit-�ow progress. The mud-pump is ramped down from 1000 L/min to zero,and at the same time the ba
k-pressure pump is ramped up from 200 L/min1Ex
ept for qbit; that for 
onvenien
e is shown in liter per minute51



52 CHAPTER 7. WEMOD SIMULATIONParameter Value
ρ̄d 1250 kg/m3 · 10−5

ρ̄a 1250 kg/m3 · 10−5

Fd 1.676 · 105

Fa 1.1926 · 105

βd 13090
βa 7317
Md 6064
Ma 1622
Vd 26.71 m3

Va 99.9 m3

Cv 2.819 · 10−4 hbit 2014 mTable 7.1: Results of �uid model �t to Wemodto 400 L/min. The Kalman �lter estimates the 
orre
t stationary valuesfor the bottom-hole pressure, and deviates somewhat during transients. Abit-�ow measurement was not available in the Wemod version utilized forsimulation2, but the estimated bit-�ow 
onverges to the stationary pump-�ow. Figure 7.2 show the estimated pressure deviations, and as mentioned;the bottom-hole pressure has error peaks of up to 15 bar during transients.Other parameter ve
tors where also tested against this Wemod s
enario.When estimating the 
hoke valve 
onstant and annulus fri
tion during sta-tionary 
onditions; the valve 
onstant 
onverged to the value in table 8.1.Another parameter ve
tor with βa and βd estimated during transients; re-sulted in βa 
onverging to zero.Figure 6.3 shows the estimation of Fa during stationary 
onditions and
βa during transients. The annulus fri
tion 
onverges to a stationary valuewhereas βa does not, is but 
ontinuously 
hanged during the simulation. A
ase where βa �rst was estimated from pump ex
itations; and then haltedbefore the pipe-
onne
tion has also been 
ondu
ted. This gave a larger ISE-value; than 
ontinuous estimation of βa during the mud-pump ramp down.

2Version s01r01 of Wemod was utilized for simulation
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Chapter 8Simulation with data fromGrane8.1 Parameter identi�
ationThe observer was tested against a data-set from Grane well G2 Y1. Thesame data set has also been simulated in [18℄ against a non-linear adaptiveobserver. In the simulated data set there was not enough stationary values of
qpump to properly estimate all parameters well. Some assumptions about theparameters where therefore made. In the drill-log the mud spe
i�
 gravitywhere set to SG = 1.18. This gives a �uid density of ρ0 = 1.18 · 998 =
1177.6 kg/m3. In [18℄; the average density ρ̄ = 1200 kg/m3 is applied in thesimulation. This is based on the density in
rease

ρ = ρ0 +
ρ0

β
(p − p0)as the well be
omes deeper. If we assume that the density in annulus is thesame as in the drill-string; the fri
tion 
an be solved from equations

qbit = qpump

pp − pc = (Fd + Fa)q
2
bit − (ρd − ρa)ghbit

pa − pc = Faq
2
bit + ρaghbitThe density term 
an
els and, this gives enough equations to solve for Fdand Fa. The parameters Md and Ma where 
al
ulated a

ording to equations(3.18). All parameters utilized in the simulations are shown in table 8.1.There is a large un
ertainty 
ombined with the 
hoke �ow; qchoke. Thisis partially be
ause the 
hoke 
hara
teristi
 is not exa
tly known, and alsothere is an un
ertainty in the annulus density. To over
ome this problem thevalve 
onstant Cv is in
luded in the parameter ve
tor. As already mentionedin se
tion 4.4.1; it is possible to estimate both Fa and Cv during stationary57



58 CHAPTER 8. SIMULATION WITH DATA FROM GRANEParameter Value
ρ̄d 1200 kg/m3 · 10−5

ρ̄a 1200 kg/m3 · 10−5

Fd 1.4577 · 105

βd 14000
βa 14000
Md 5998
Ma 1764
Vd m3

Va 145.11 m3

hbit 1827 m
lbit 3926 mTable 8.1: Results of �uid model �t to Wemod
onditions. Sin
e there is some un
ertainty 
ombined with the dynami
parameters; βd, βa Md and Ma; the fri
tion and valve 
onstant where onlyestimated when the �lter was stationary. The valve equation utilized in thesimulation was derived by Lars Imsland and is displayed in �gure The valve
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8.2. GRANE PIPE-CONNECTION SIMULATION 598.2 Grane pipe-
onne
tion simulationThe data set was taken from a pipe-
onne
tion at Grane well G2 Y1. Themeasurements utilized in the simulation where
• True verti
al depth (TVD), hbit

• Well length, lbit

• Stand-pipe pressure pp

• Choke di�erential pressure pc

• Pump �ow qpump

• Choke valve opening ucTVD was 
al
ulated on-line a

ording to
hbit =

BHP · 105

ECDρwgwhere ρw is water density. The well length was utilized for 
al
ulating theannulus and drill-string volumes online. The drill-string length is pie
ewise
onstant and during pipe-
onne
tions it was extended with 27 meters. Thiswas performed after pump-shut down. Drill-string fri
tion was also re
al
u-lated and applied after a pipe-
onne
tion. Figure 8.2 display the measuredpressures; stand-pipe pressure and 
hoke di�erential pressure. It also showsthe estimated and measured bottom-hole pressure. The last entry in the �g-ure present the estimated bit-�ow along with the pump-�ow and 
hoke-valveinput. The bottom-hole pressure measurement is as mentioned lost whenthe bit-�ow approa
hes zero. This happens at t ≈ 2300 s and t ≈ 6800 s.The bottom-hole estimate stays within an error of approximately one bar.Figure 8.3 show the estimated annulus fri
tion and 
hoke-valve 
onstant.



60 CHAPTER 8. SIMULATION WITH DATA FROM GRANE

0 1000 2000 3000 4000 5000 6000 7000 8000

50

100

150

Stand-pipe pressure, pp

Time [s]

P
re

s
s
u
re

 [
b
a
r]

 

 pp

p̂p UKF

0 1000 2000 3000 4000 5000 6000 7000 8000

10

15

20

25

30

Choke differential pressure, pc

Time [s]

P
re

s
s
u
re

 [
b
a
r]

 

 pc

p̂c UKF

0 1000 2000 3000 4000 5000 6000 7000 8000
230

240

250

260
Bottom-hole pressure, pa

Time [s]

P
re

s
s
u
re

 [
b
a
r]

 

 pa

p̂a UKF

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

Mud-pump flow bit-flow, and choke-valve opening

Time [s]

F
lo

w
 [
l/
s
]

 

 qpump

q̂bit UKF
30 · uc1

Figure 8.2: Estimated pressures and bit-�ow



8.2. GRANE PIPE-CONNECTION SIMULATION 61

0 1000 2000 3000 4000 5000 6000 7000 8000
1.65

1.66

1.67

1.68

1.69

1.7

1.71

1.72

1.73
x 10

4 Estimated annulus friction, F̂a

Time [s]

F
ri
c
ti
o
n

 

 
F̂a UKF

0 1000 2000 3000 4000 5000 6000 7000 8000
20

21

22

23

24

25

26
Estimated annulus bulk-modulus , β̂a

Time [s]

B
u
lk

−
m

o
d
u
lu

s

 

 
β̂a UKF

Figure 8.3: Estimated annulus fri
tion and �uid bulk-modulus



62 CHAPTER 8. SIMULATION WITH DATA FROM GRANESin
e there is some un
ertainty in the parameters estimated o�-line; thee�e
t of a larger density in annulus than drill-string was simulated. Insteadof identifying Fd o�-line; the total fri
tion Fa + Fd was estimated online andannulus fri
tion was set to Fa = 0.11 ·Fd. The same data set was utilizedhere as in the simulation des
ribed above. Three 
ases where tested.1. Fa = 0.11Fd and ρa = ρd2. Fa = 0.11Fd and ρa = 1.05 · ρd3. Fa = 0.11Fd and ρa = 1.1 · ρdIn the �rst 
ase annulus density is equal to drill-string density, and in these
ond and third 
ase the annulus density is set 5% and 10% larger than thedrill-string density. Figure 8.4 shows the bottom-hole pressure measurementand estimate for the three 
ases. When the annulus density in
reases thepeaks during mud-pump shut down is mu
h larger than when annulus anddrill-string density is equal. Figure 8.5 display the fri
tion and 
hoke valveestimates.
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Chapter 9Con
lusionsIn the observability analysis it was found that the pro
ess model is not ob-servable when augmenting the parameter ve
tor with ρa, Fa and βa. Toverify this; estimation of the unobservable state ve
tor was simulated. Both�lters 
onverged to the 
orre
t bottom-hole pressure. The UKF 
onvergedto the 
orre
t parameter values; whereas the EKF 
onverged to the wrongvalues. The 
orre
t bottom-hole estimate was probably obtained sin
e thebit-�ow equation and bottom-hole measurement equation both 
ontains thesum of the estimated parameters; ρa and Fa. However; if estimation of theseparameters are halted before pump-shut down; the total sum would givethe wrong bottom-hole pressure estimate. The pro
ess model was also notobservable for the parameter ve
tor; ρa, Fa and βa; when the bottom-holepressure measurement was in
luded. This was also veri�ed in simulations.Sin
e the measurement equation 
ontains all the unknown values for esti-mating the pressure, the measurement will estimate biased values beforethe parameters 
onverges. On the other hand; a bottom-hole measurementwould add robustness to obtaining the 
orre
t parameter values. Based onthe observability analysis; the �lters where designed to estimate well-borefri
tion and annulus �uid bulk-modulus. The 
hoke valve 
onstant was alsoin
luded in the parameter ve
tor for some simulations. Sin
e no more in-formation was gained from the bottom-hole pressure measurement; only thestand-pipe pressure and 
hoke di�erential pressure where utilized as mea-surements in the �lters.In the simulations with data generated from the design model; the UKFand EKF where 
ompared. When fri
tion and �uid bulk-modulus in theannulus where estimated; both �lters 
onverged to the 
orre
t parametervalues. The annulus fri
tion was estimated during stationary 
onditionsand �uid bulk-modulus was estimated during transients. Simulations whereboth parameters where estimated at the same time where also 
ondu
ted,but they did not give as good results. In the pipe-
onne
tion s
enario; the�lters managed to estimate �uid bulk-modulus during mud-pump shut down.65



66 CHAPTER 9. CONCLUSIONSHowever; other sour
es of ex
itation; su
h as step-responses from the mud-pump; would be more useful for estimating β.The UKF had the lowest ISE-value in all simulation s
enarios and 
on-verged faster to the 
orre
t states. It also 
onverged 
loser to the 
orre
tparameter values than the EKF. Based on better performan
e and easierimplementation purposes; w.r.t 
hanging parameters; the UKF was sele
tedfor further testing against Wemod and data sets from Grane.When testing the UKF against data sets from Wemod; di�erent param-eter ve
tors where investigated. Estimation of annulus and drill-string �uidbulk-modulus resulted in βa 
onverging to zero. This parameter ve
tor wastherefore dis
arded. Estimation of annulus fri
tion during stationary 
on-ditions and annulus bulk-modulus during transients gave the lowest ISE-values. The βa parameter did not 
onverge, but was 
ontinuously alteredby the �lter during simulation. The reason for this 
ould be the e�e
ts ofmodel-errors and that the assumed 
onstant parameters where slightly o�.The �lter estimated the 
orre
t stationary values, and had some deviationsduring transients.It was also tried to halt the parameter estimation of βa after a period ofex
itation from mud-pump. This gave higher ISE-value than when estimat-ing the parameter during all transients. Simulations where the 
hoke valve
onstant was estimated along with fri
tion was also 
ondu
ted. In this 
asethe valve 
onstant 
onverged to its 
orre
t value.The UKF was also tested against a data set from the Grane �eld. Thedata set 
onsisted of a pipe-
onne
tion s
enario. Annulus fri
tion and the
hoke valve 
onstant where estimated during stationary 
onditions. The�lter estimated the bottom-hole pressure within an error di�eren
e of 1 bar.The e�e
t of a larger density in annulus than the drill-string was also tested.As expe
ted; this gave mu
h larger peaks during mud-pump shut down thanduring simulation with equal densities. This shows that it is 
ru
ial to havea 
orre
t estimate of the annulus density.Overall the UKF gave promising results in estimating the bottom-holepressure. The largest 
on
ern is the observability problem in estimatingannulus density, fri
tion and bulk-modulus. A solution to this problem 
ouldbe to estimate the densities and fri
tion based on stationary 
onditions andupdating the Kalman �lter with these.9.1 CommentsIn the UKF there where some problems where the 
ovarian
e matrix was notpositive de�nite. In this situation; there may be problems with 
omputingthe matrix square root for determining the sigma-points. This was solved byexamining the 
ovarian
e matrix, and if it had negative eigenvalues the 
o-varian
e matrix from last iteration was utilized instead. Another possibility
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ovarian
e matrix about Xk+1|k. The UKF did not handlethe situation where qbit → 0 to well. Sin
e the UKF 
al
ulates sigma-pointsbased on the 
ovarian
e and pro
ess noise 
ovarian
e matrix; this was a
tu-ally solved by de
reasing the pro
ess noise 
ovarian
e during low bit-�ows.Also, 
areful tuning of the 
ovarian
e matri
es is important in obtaining the
orre
t estimates. If the 
ovarian
e matrix is not properly tuned; the �ltermay estimate wrong parameter values.9.2 Future workThe annulus density and bore-hole fri
tion are two very important parame-ters when estimating the bottom-hole pressure. The possibility of designingan observer for both of these parameters should therefore be investigated.One possibility is to see if the Kalman �lter is able to estimate the 
orre
tvalues during ex
itation. Here; the e�e
t of an error in the �uid 
ompress-ibility should also be tested. Another way is to implement a re
ursive leastsquare algorithm based on stationary pressures and pump-�ows. This alsorequires knowing exa
tly when the pro
ess is stationary and a method fortransient dete
tion should be implemented.There are some problems with numeri
ally stability during low bit-�ows.A solution for this problem might be to utilize a di�erent solver. An impli
itsolver with �xed step size that is stable for the hole left half-plane 
an beimplemented. The problem 
ould also be solved by modifying the 
hokevalve equation during low �ows.There are also more simulations that must be 
ondu
ted. Simulationagainst real data sets with bottom-hole measurements must be examinedto see if the observer estimates the 
orre
t values during pipe-
onne
tion.Transients may also be utilized for bulk-modulus estimation and this mustbe tested against real data. An important variable not 
onsidered here isin�ux from the reservoir. The UKF should be implemented and tested within�ux as an estimated parameter.Other versions of the UKF might be advantageous and should be 
onsid-ered. The square root uns
ented Kalman �lter (SRUKF) ensures numeri
alstability and guarantee a positive de�nite 
ovarian
e matrix. The SRUKF
an also be implemented to run at a 
omputational 
omplexity of O(n2)when utilized for parameter estimation. This 
ould be a

omplished by im-plementing a dual-UKF; where the states are estimated in one �lter and theparameters in another �lter. In 
omparison; the EKF has a 
omputational
omplexity of O(n2) for parameter estimation; whereas the UKF has O(n3)for the same problem.
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Appendix AKalman �lter algorithmsLet the nonlinear state and measurement equations be given by
xk+1 = f(xk, uk) + hwk

yk = h(xk, uk) + hvkwhere xk represents the states, uk are inputs, wk is pro
ess noise and vk ismeasurement noise.A.1 EKF algorithmInitialization
x̂0 = E[x0]

Px,0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

Q = E[(w0 − ŵ0)(w0 − ŵ0)
T ]

R = E[(v0 − v̂0)(v0 − v̂0)
T ]For k ∈ {1, 2, . . . ,∞} repeat steps 1 to 51. Determine measurement model Ja
obian's

Hxk
= ∇x h(x, uk, wk)|x=x̂−

k2. Compute Kalman gain and �ltrate states and 
ovarian
e
Kk = P−

xk
HT

xk
(Hxk

Pxk
HT

xk
+ Q)

x̂k = x̂−
k + Kk(yk − h(x̂−

k ))

Pxk
= (I − KkHxk

)P−
xk

(I − KkHxk
)T + KkRKT

k69
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ess model Ja
obian's
Fxk

= ∇x f(x, uk, wk)|xk=x̂−

k4. Cal
ulate time update for pro
ess states and 
ovarian
e
x̂−

k = f(x̂k, uk)

P−
xk

= Fxk
Pxk

F T
xk

+ R5. Che
k 
onstraintsA.2 UKF algorithmInitialization:
x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]

xa
0 =

(
x̂0 0 0

)T

Pa
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)T ] =





P0 0 0

0 Q 0

0 0 R



For k ∈ {1, 2, . . . ,∞} repeat steps 1 to 91. Cal
ulate sigma-points
X a

k−1 =
(

x̂a
k−1 x̂a

k−1 ±
√

(N + λ)Pa
k−1

)2. Time update for state equations
X x

k|k−1 = f(X x
k−1,Xw

k−1)3. Che
k state 
onstraints
X x

k|k−1 =

{

X x
k|k−1 if X x

k|k−1 < b

b if X x
k|k−1 ≥ b4. Determine state output mean and state output 
ovarian
e

x̂−
k =

2N∑

i=0

W
(m)
i X x

i,k|k−1

P−
k =

2N∑

i=0

W
(c)
i (X x

i,k|k−1 − x̂−
k )(X x

i,k|k−1 − x̂−
k )T



A.2. UKF ALGORITHM 715. Time update for measurement equations
Yk|k−1 = h(X x

k−1,X v
k−1)6. Che
k 
onstraints

Yk|k−1 =

{
Yk|k−1 if Yk|k−1 < c

b if Yk|k−1 ≥ c7. Measurement output mean and 
ovarian
e
ŷ−

k
=

2N∑

i=0

W
(m)
i Yx

i,k|k−1

Pȳkȳk
=

2N∑

i=0

W
(c)
i (Yx

i,k|k−1 − ŷ−k )(Yx
i,k|k−1 − ŷ−k )T8. Compute measurement and state 
ross 
ovarian
e

Pxkyk
=

2N∑

i=0

W
(c)
i (X x

i,k|k−1 − x̂−
k )(Yx

i,k|k−1 − ŷ−k )T9. Cal
ulate Kalman gain and �ltrate �ltrate
Kk = Pxkyk

Pȳȳ
−1

x̂k = x̂−
k + Kk(yk − ŷ−

k )

Pk = P−
k + KkPȳȳKT

k
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Appendix BJa
obian for parameter ve
tor
θ = (ρa Fa βa)

F =
∂f

∂x
=












0 0 −βd

Vd
0 0 0

0 ∂f2

∂pc

βa

Va

∂f2

∂ρa
0 ∂f2

∂βa

1
Ma+Md

−1
Ma+Md

∂f3

∂qbit

−ghbit

Ma+Md

−(qbit−qres)2

Ma+Md

0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1












(B.1)
∂f2

∂pc
= −1

2

βazAcKc

√
2

√
pc−p0

ρa0
ρa0Va

∂f2

∂ρa
=

1

2

βazKc

√
2(pc − p0)

√
pc−p0

ρa
ρ2

aVa

∂f2

βa
=

1

Va

(

−Va + qbit + qres + qback − zKc

√
2

√

(pc − p0)

ρa

)

∂f3

∂qbit

=
−2Fdqbit − 2Fa(qbit − qres)

Md + Ma

(B.2)
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