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Problem Description

Estimation of the annular pressure at critical locations in the well is
crucial for high-precision

pressure control. Certain parameters which are important in order to
determine the pressure

profile of the well (in particular the friction factor, bulk modulus and
density in the annulus), are

encumbered with high uncertainty and are besides, continuously, but
slowly changing. The

objective of the thesis is to employ various Kalman filter designs
estimation of the bottomhole pressure

and certain important parameters/slowly varying variables, during
drilling.

Topics that should be addressed are:
1) Literature review of the theory of Kalman filters design

2) Design and implement an Extended Kalman filter (EKF) and possibly the
Unscented Kalman filter
(UKF) for

a) Estimation of the annulus bottom-hole pressure

b) Esimation of the friction coefficient, bulk modulus and
density in the annulus

3) Analyse the performance/robustness of the observer in important
cases, in particular:

a) Pipe connection

b) Pump ramp up/down
4) Examine observer performance to unmodeled dynamics by testing the Kalman filter against
data sets from Wemod

5) Evaluate performance of the observer against experimental data from
Grane.






Summary

During drilling a drill-fluid is pumped through the drill-string and drill-
bit. The drill-mud flows back in the well bore and trough a choke-valve at
top-side. To avoid uncontrolled influx from the reservoir or lost circulation
to the formation; the annulus pressure must be kept within the pressure win-
dow between pore pressure and fracture pressure. The bottom-hole pressure
measurement is often transfered as pressure pulses through the drill-mud.
This gives a slow update rate. Also, during low flows the bottom-hole as-
sembly tool turns itself off, and the measurement is lost. When pressure
margins are small; proper control of the annulus pressure is crucial. This
requires a good estimate or measurement of the pressure.

To estimate the bottom-hole pressure the Extended Kalman filter and
Unscented Kalman filter where evaluated. The filters are based on a pro-
cess model with the states; stand-pipe pressure, choke differential pressure
and bit-flow. The bottom-hole measurement equation consists the unknown
parameters; bit-flow, annulus density, well-bore friction and bulk-modulus.
These parameters are uncertain and varying and must therefore be estimated
to obtain a correct estimate of the annulus pressure. To estimate the param-
eters the joint-EKF and joint-UKF where designed.

The observability analysis of the linearized state equations showed that
the process model is not observable when augmenting the state equations
with the parameters; annulus density, well-bore friction and fluid bulk-
modulus. To handle this the annulus density was calculated off-line and
not included in the augmented model.

During drilling there may be long periods with little excitation from the
inputs. The filters where therefore designed to switch between estimated
parameters. In the Unscented Kalman filter it is possible to implemented
this in one filter, whereas in the Extended Kalman filter; one filter for each
parameter vector had to be designed. The Extended Kalman filter and Un-
scented Kalman filter where compared with data obtained from simulations
on the design model. When augmenting the state equations with annulus
friction and fluid bulk-modulus; both filters estimated the correct value of the
unknown parameters, the bit-flow and bottom-hole pressure. The Unscented
Kalman filter showed a faster convergence rate and estimated parameter val-
ues closer to the correct value than the Extended Kalman filter.

Based on performance and implementation purposes w.r.t switching be-
tween parameters; it was chosen to examine the Unscented Kalman filter
further. The tests performed on the Unscented Kalman filter where state
and parameter estimation on data sets from the Grane field and simulations
against Wemod. A pipe-connection scenario was simulated with Wemod.
Annulus friction was estimated during stationary conditions and fluid bulk-
modulus was estimated during transients. The filter estimated the correct



bottom-hole pressure for stationary conditions and had some deviations dur-
ing transients. In the simulation against data sets from Grane; the annulus
friction and choke valve constant where estimated during stationary condi-
tions. The filter followed the bottom-hole pressure measurement within an
error of one bar.



Preface

This master thesis has been written as part of the Master of Technology pro-
gram at the Norwegian University of Science and Technology, department of
Engineering Cybernetics. My special thanks goes to Professor Ole Morten
Ammo at NTNU and Dr. Glenn-Ole Kaasa at StatoilHydro for their guid-
ance during the project and for making this study possible. To @Qyvind N.
Stamnes for his great willing to help and solve my many questions. Lars
Imsland for his help and guidance about Kalman filters. And finaly, to my
fellow students and friends; Martin Kivle, Henrik Helgesen, Kjetil Hodne
and Helle Lorentzen for great advice and a memorable year.

Thomas Rognmo
Trondheim, June 2008

iii






Contents

1 Introduction
1.1 Background . . . .

1.2 Description of the drilling process . . . . . . . ... ... ...

1.3 Measurements . . .
1.4 Pressure control . .
1.5 Pressure estimation
1.6 Scope and emphasis

2 Kalman filter theory

2.1 Discretization of state equations . . . . . . . . ... ... ...

2.2 Mean square estimation . . . . . ... ...
2.2.1 Discrete Kalman filter . . . . . .. .. ... ... ...
2.3 The extended Kalman filter . . . . . . . . . . ... ... ...
2.3.1 Time and measurement update equations . . . . . . .
2.4 The unscented Kalman filter . . . . . . . . . . ... ... ...
2.4.1 Unscented transform . . . . .. ... .. ... .....

2.4.2 Unscented transform and the unscented Kalman filter

2.5 Augmentation of the state-space model . . . . . . . .. .. ..

3 Dynamic fluid model

3.1 Deduction of three state fluid model . . . . . . . . . .. ...
3.1.1 Equation of state . . . . . . . ... ... .. ... ...

3.1.2 Control volume . . . . . . . . . ... ...

3.1.3 The momentum equation . ... ... ... ... ...

3.14 Flow dynamics . . . . . .. ... ... ... ... ...

3.1.5  Drill-string dynamics . . . . . .. ... ...

3.1.6  Annulus dynamics . . . ... ... L.

3.1.7 Annulus flow

3.1.8 Three state fluid model . . . . . . . .. .. ... ...

4 Model considerations and analysis

4.1 Parameter identification . . . . . . .. ... L.

4.2 Augmented model

Ot i W W N — =

© 00

15
15
15
17
17
18
18
19
19
19



4.3 Observability . . . . .. ... ...
4.4 Pragmatic approach to parameter estimation . . .. ... ..

4.4.1 Parameter estimation conclusions . . . . . .. . .. ..
4.5 Discretization of augmented model . . . . . . . ... ... ..

Kalman filter design

5.1 Extended Kalman filter design . . . . . ... ... ... ...
5.1.1 EKF with parameter vector 6 = (p, Fy Ba) - - - . . .
5.1.2 Changing between estimated parameters . . . . . . . .

5.2 Unscented Kalman filter design . . . . . ... ... ... ...
5.2.1 UKF with parameter vector 0 = (p, F, B4) . . . . . .
5.2.2 Changing estimated parameters . . . . . . .. ... ..

5.3 Constraint handling in the EKF and UKF . . . . . ... ...

5.4 Covariance tuning . . . . . . ..o

Observer performance and robustness

6.1 Input excitation and parameter estimation . . . . . . . . . ..
6.1.1 Estimation of pg, Fyand B, . . . . . . . . ...
6.1.2 Estimation of Fy and B, . . . . . . . ... ... . ...

6.2 Pipe-connection and filter switching . . . .. .. .. .. ...

Wemod simulation

Simulation with data from Grane
8.1 Parameter identification . . . . . . . .. . ...
8.2 Grane pipe-connection simulation . . . . . . ... ... .. ..

Conclusions
9.1 Comments . . . . . . . . .
9.2 Future work . . . . . ..

Kalman filter algorithms
A1 EKF algorithm . . . .. ... .. .. ... ... ... .. ...
A2 UKF algorithm . . . .. .. .. ... ... ... ... ...,

Jacobian for parameter vector 0 = (p, F, [3,)

37
38
38
42
46

51

57
o7
99

65
66
67

69
69
70

73



Chapter 1

Introduction

1.1 Background

In a drilling operation a drilling fluid is circulated thorough the drill-string
and drill-bit. The mud flows outside the drill-string in the annulus trans-
porting cuttings form the well-bore. An important objective during drilling
is to ensure that the annulus pressure gradient is constrained within the
well fracture pressure and the reservoir pore pressure. Conventional drilling
techniques such as over balance drilling involves retaining the bottom-hole
pressure well above the reservoir pore pressure; this is done to avoid reservoir
influx. OBD helps prevent uncontrolled influx, but decreases production rate
due to skin damage on the reservoir rock. It’s therefore preferred to keep the
annulus pressure as close to the reservoir pore pressure as possible. The an-
nulus pressure gradient must also stay below the formation fracture pressure
to avoid damage to the bore hole and lost circulation. Today the annulus
pressure gradient is usually controlled by manually by adjusting the top-side
choke and also by changing the mud density in the drill string. Changing
the pressure by adding heavier or lighter fluids to the well slowly changes the
pressure gradient. It must therefore be planned ahead. If the choke valve is
controlled manually; it is nearly impossible to react to fast pressure changes.
This makes drilling difficult when the drilling window is small. When drilling
into deeper and more complex formations; maintaining a constant bottom-
hole pressure is essential to avoid severe problems. Many reservoirs are
therefore undrillable and new solutions must be implemented to ensure a
stable bore-hole pressure. A good measurement or estimate of the annular
pressure is crucial for controlling the bottom-hole pressure. The measure-
ment available has a slow and irregular update rate and is not suited for
feedback control. To estimate the bottom-hole pressure; unknown variables
such as annulus density and annulus friction must also be estimated.
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1.2 Description of the drilling process

Figure 1.1 display a schematic of the drilling process. Drill-mud is circulated
through the drill-pipe and drill-bit utilizing a mud-pump. The mud flows
back through the annulus transporting cuttings from the formation. At top-
side a rotating control device closes the well, and the mud flows through a
choke-valve.

Mud-purmp Choke valve

—‘ Back-pressure pump

Sea-level

Sea floor =

Drill-string
Annulus

Drill-bit

Figure 1.1: Schematic of a drilling-operation

One important objective during drilling is to control the pressure gradient
in the well bore. When drilling into a formation; the pressure must be kept
below the formation fracture pressure and and above the collapse pressure.
In conventional over balance drilling (OBD) the well pressure is kept well
above the reservoir pore pressure as the drill-bit enters the reservoir zone.
This is to prevent uncontrolled influx from the reservoir and avoid kicks or a
blow-out situation. The mud that penetrate the well in the reservoir is called
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mud-cake and degrades production. It is therefore desirable to maintain a
well pressure as close to the reservoir pressure as possible.

Managed pressure drilling(MPD) is defined as ' "an adaptive drilling
process used to more precisely control the annular pressure profile throughout
the well bore." In MPD an objective is to obtain a bottom-hole pressure that
do not invite reservoir inflow.

pcoll(x’t) < pres(x’t) < pa($at) < pfrac($at) (11)

As seen from equation (1.1); where ¢ is time and z is the position along
the well; the pore pressure and fracture pressure gradients in the well-bore
will cause a more narrow drilling window as the well becomes deeper. These
pressure limits are not known before drilling the well. Also, the reservoir pore
pressure may change as the drill-bit enter deeper into the reservoir zone.

1.3 Measurements

The pressure measurements available are stand-pipe pressure p,, choke-
differential pressure p. and bottom-hole pressure p,. The latter measure-
ment is often transferred as pressure pulses through the mud along with
other measurements. This gives a slow update rate on the pressure mea-
surement. Another problem is that the bottom-hole assembly tool is turned
off during low bit-flows and the measurement is lost. Other measurements
assumed known are

e True vertical depth (TVD)

o Well length

Choke valve input

Mud-pump flow

e Back-pressure pump flow

Equivalent circulating density (ECD)

1.4 Pressure control

The annulus pressure gradient is mainly determined by the hydrostatic height,
friction in the well-bore and the choke valve opening. All these three variable
may be utilized for controlling the annulus pressure profile. Density has the
largest influence on annulus pressure and may be altered by changing the
composition of the drill-mud. The flow rate generated by the mud-pump

! Defined by the International Association of Drilling Contractors
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causes a pressure loss due to friction in the well bore. This pressure loss
may lead to a challenge in controlling the pressure as the pump speeds are
altered. In normal operation the pump speed is maintained constant and
pressure is controlled with the choke valve. For small choke valve openings
the valve may be clogged by cuttings from the well. In some installations
a back-pressure pump is therefore included to supply additional pressure
when needed. Typical pressure disturbances are variations in reservoir pore
pressure, drill-string movements and stopping and starting mud-pump cir-
culation. The latter situation is performed during pipe-connections; i.e the
mud-pump is ramped down, a new drill string is connected, the mud-pump is
ramped up again and drilling is resumed. In this situation the pressure vari-
ations may be large and the back-pressure pump can by utilized to supply
additional pressure.

To ensure satisfactory pressure management in the well bore; a controller
based on feedback from the bottom-hole pressure should be utilized. For
papers related to annulus pressure control see for instance [17] and [16]. In
[17] a linear MPC and a PID is utilized for controlling the pressure and in
[16]; an Hoo-controller and a PID is compared for controlling the pressure
based on a top-side pressure measurement. When the controller is based on
feedback from the top-side measurement; the annulus friction and density
is not taken into consideration in the controller. However; the controller
dampen the effect of pressure disturbances to some degree.

1.5 Pressure estimation

To properly control the bottom-hole pressure; a measurement or estimate
of the bottom-hole pressure is needed. Such a measurement exists, but the
signal has a very slow bit-rate and is lost during low flows; for instance during
a pipe-connection. This makes the measurement a poor choice for control. In
order to estimate the bottom-hole pressure there are a number of unknown
variables that must be determined. As mentioned; the main contribution to
the bottom-hole pressure is annulus density and annulus friction. To obtain
the dynamics of the system; the pressure pulses and flow dynamics must also
be taken into consideration. The drill-string density can be measured, but
due to cuttings and possible influx from the reservoir; the annulus density is
unknown. The well-bore friction is also combined with great uncertainty.

For other sources on bottom-hole pressure estimation; see for instance
[18]. Here an adaptive observer is designed for estimating unknown well
parameters and the bottom-hole pressure.
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1.6 Scope and emphasis

In this report the possibility of estimating the bottom-hole pressure utilizing
a Kalman filter is examined. The Kalman filter is based on the fluid model
derived in the internal document [12]. The filters evaluated are the Extended
Kalman filter (EKF) and the Unscented Kalman filter (UKF). First an anal-
ysis based on which parameters to estimate is performed. Different EKF
and UKF filters are designed based on the observability and limitations of
the filter and input excitation. The primary objective is to estimate the
bottom-hole pressure based on the stand-pipe pressure and choke differen-
tial pressure measurements. The UKF is then tested against simulations in
Wemod and data sets from the Grane field.
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Chapter 2

Kalman filter theory

This sections describes the discrete Kalman filter and how it can be utilized
for estimating states, disturbances and parameters of a set of non-linear
difference equations.

2.1 Discretization of state equations

In this report the discrete Kalman filter is considered. This requires a discrete
representation of the continuous differential equations. Let the nonlinear
differential equations be described as

z(t) = f(z,u) + w(t)

(2.1)
z(t) = h(x) +v(t)

where © € R™ represents the unobserved states, z € R™ denote the observed
variables and v € R! is the controlled variable. w and v are white noise
processes with covariance

Elw(t + m)w(r)] = Q(¢t)d(7)
Efv(t+ 1)v(r)] = R(t)d(7) (2.2)
Evt)w(t+71)=0 Vr

Calculation of the Kalman filter can be performed by considering a discrete
form of equation (2.1), or by utilizing the continuous state equations with
discrete measurements.

The nonlinear differential equations (2.1) can be represented in a discrete
form by applying explicit Euler

g1 = Xk + hf (2, ur) + hwy

ZE = h(lﬁ) + h’l)k (2.3)

with covariance matrix

Qr=Q/h

7



8 CHAPTER 2. KALMAN FILTER THEORY

where h is the step For numeric stability the method requires
h S _2/)\min

where A, 18 the smallest eigenvalue in the state equations. If the continuous
differential equations are stiff there may be problems with stability, since this
require a very small step size.

2.2 Mean square estimation

I Consider the estimation of a random vector X given the measurement Z.
The objective is to estimate X (Z) so that the error

X=X-X

is minimized. We define the cost function as the mean square error

J:E&X—XNX—XF} (2.4)

and restrict the estimate X (Z) to be a linear combination of the measure-
ments?.

X(Z)=AZ +b (2.5)

Substituting this into the cost function results in

J = E{(X ~ X)X —X)T} — trace [E{(X ~ X)X —X)T}]
=trace [E{(X — AZ —b)(X — AZ —b)"}]
=trace {[(X - X)—(AZ+b—-X)] [(X - X) - (AZ+b— X)]}
= trace [Pyy + A(Pox + ZZ)AT + (b— X)(b— X)" +24Z(b— X)T — 2AP,, ]

where P, is the cross covariance between Z and X. To find the optimal
values this equation is differentiated with respect to A and b

oJ . -
a5 = 26— X)+24Z=0
g%:LM&+ZZﬁ—2ﬂw+%ba@ZT:O

solving for A and b

b=X - AZ
A=P,. P}

'Theory from the following sections is captured from [10], [6] and [13]
2No assumptions are made on the relation between Z and X. The results are valid for
any possible nonlinear relation between measurement and unknown [13, chapter 1]



2.2. MEAN SQUARE ESTIMATION 9

Inserting into equation (2.5) results in the linear mean square estimate
Xpms =X + PPN (Z - 2) (2.6)

Obtaining P,,, P, and Z is not a trivial task. It requires knowing the
conditional probability density function of X given Z as it is transformed
through a function; possibly nonlinear. If the relationship between X and Z
is a linear state space system; equation (2.6) simplifies to the Kalman filter
equations.

2.2.1 Discrete Kalman filter

In the general form the discrete Kalman filter is utilized for estimation of
the states in the linear stochastic difference equations

Thtl1 = Apxr + Brug + wy, (2 7)
yr = Crrp + vy '

where © € R™ represents the unobserved states, y € R™ denote the observed
variables and u € R! is the controlled variable. wy and vy are white noise
processes with covariance

Elwpw;] = Qroyi
Elvyvi] = Rpop; (2.8)
E[wkwi] =0
7, is defined as the a priori state estimate calculated at the previous step

k — 1, and 2 is the posteriori state estimate at step k. The a priori and
posteriori error estimate is defined as

—_ A A —
A A~
ex = T — T
and the a priori and posteriori error covariance can then be defined as
P =Ele, e, ]
T
Pk = E[ekek]

Filtering of the states and covariance is based on a trade-off between the a
priori estimate and the current measurement

Ty = &, + Ki(yr — Cry)

P, = (I — KxCy) (29)

where the Kalman gain K}, is determined by

K, = Pk_CkT(CkPk_CkT + Rk)_l
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Based on the new estimate given in equation (2.9); the predicted states and
covariance can be calculated as

Tp1 = Ardy + Brug,
Ppy1 = AP AL + Ry,

2.3 The extended Kalman filter

For systems where the difference equations are nonlinear; the filter in section

2.2.1 might not be adequate. The extended Kalman filter solves this by ap-

proximating the time and measurement update around the current estimate.
A set of nonlinear difference equations can be described as

Tpg1 = fog, ug) + wy

2.10
2e = hi(z) + v (2.10)

where w; and v are white noise processes with expectation and covariance
as described in (2.8).

2.3.1 Time and measurement update equations

The exact time updates for the first two moments of z; and z; are

T, = E[f(xr, ur) + wy]
Ki, = PP}
G, = Elh(zy) + vkl

These equations are in general not possible to obtain, since it requires know-
ing the first two moments of zy and z; after they have undergone a nonlinear
transformation. Instead; the discrete measurement update and time update
are approximated by a first order Taylor expansion around the a priori esti-
mate. We denote the Jacobian’s as

P, - Of (x,uy) Hy, — Oh(x)

Ox o ox .

T=3%, T=2Tp

(2.11)

The Kalman filter measurement updates are then given by
Ty = ‘%I; + Kk[zk — h(x,;)]
Ky=P;H! [H, P;HE +R]™! (2.12)
P, =[I- Kkak]Pk_

and the predicted time update is calculated as

T1 = f(&k, ug)

. (2.13)
Pyp1 = Fp P Fy, + Qg
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2.4 The unscented Kalman filter

3 When the Kalman filter estimates the measurement and time update it
utilizes the mean and covariance of zj and zp. When these variables are
transformed through a nonlinear function

y=f(z)
the precise statistics of y can only be calculated if the conditional probability
density function fz|z is known. A Taylor expansion around Z is given by

f(z) = f(Z+dx) = f(Z)+Vfox+ %V2f5x2 + %fv?’f&n?’ + %V‘*f&n‘l +...

where §z is Gaussian white noise with zero mean. It can be shown that the
mean and covariance of this Taylor expansion are

1 1
7= f(@)+ §V2me + ZE[(s.ZA] + ...
1
2 x 4!

%fE[ch‘l] (VA" +...

Py = VP (VHT + V2f (E[62Y] — E[62°Py,) — E[Py,62%] + P2) (V2f)"

(2.14)
An approximation to the mean and covariance is found by linearizing around
T

y=r@)
Py =V Py (V)

and utilizing this mean and covariance for filtering and prediction. As seen
from the above equations; this will only give a satisfactory result if the higher
order terms are neglectable.

2.4.1 Unscented transform

The UKF utilizes the unscented transform (UT) for calculating the mean and
covariance of a random variable propagated through a nonlinear function. To
determine the first two moments of y; a set of 2n+1 sigma-points with sample
mean T and sample covariance P,, are transformed through the nonlinear
function. The points and are selected according to

Xo=7
Xi:i‘—l-(\/m)i iZl,...’l’L (2.15)
Xi:i—< (n—i—)\)PM)i t=n-+1,...2n

*The theory in this section is collected from [1], [5] and[7]
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where n is the dimension of the state vector x, (\/n+)\PM)i is the ith
column or row of the matrix square root, and A is a scaling parameter

A=a*(n+r)+n

where o determines the spread of the sigma-points around Z; set to a small
value (1073), 3 include information about the distribution of x; 3 = 2 for

a Gaussian distribution, and & is a tuning parameter; usually set to zero|7|.
The weights associated with each sigma point is calculated as

Wino = A (n + A);

Wey = A (n+ ) +1—0a?+ 6
Wi, = 1/(2(A +n));

We, =W, Yi>1

Each sigma-point is transformed through the nonlinear function
Vi = f(X)

and the transformed points are utilized for determining the new mean and
covariance according to

2n
y= Wi
=0
2n
Pyy _ZWi(yz y) (yz_y)
=0

Because the mean and covariance of x is calculated to the second order;
the transformed mean and covariance are at least accurate to the second
order. It is possible to tune the filter so that a higher order is obtained. In
comparison; the EKF calculates the covariance to the same second order and
the mean to the first order.

2.4.2 Unscented transform and the unscented Kalman filter

The UT can easily be incorporated into the Kalman filter. Considering the
state and measurement equations (2.10); the UT can be employed in the
Kalman filter as

1. Predict states ;; and covariance P, by transforming sigma-points &;
through state equations f(zg,u) + hwy

2. Predict expected measurements ¢, and covariance Py by transforming
the sigma-points &; through the measurement equation h(z) + hvy
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3. Calculate cross-covariance P,
2n -
Poy =) Wi (Xi—z) (Vi—5")
i=0

4. Determine Kalman gain and filtrate estimated state and covariance
_ -1
Ky = Py Py,
zy =&y + Ki(ye — 9 )
Py = P, — K.Py KL

2.5 Augmentation of the state-space model

To be able to estimate parameters and disturbances utilizing the Kalman
filter; the unknown variables are modeled as additional states in the pro-
cess model. If we consider parameter estimation in the linear state space
equations
ZTp+1 = Az + Bu+ Bgdy, + Bypby, + wy,
2z = Hay + vf,

where dj, and by is unknown disturbances and bias. To estimate the param-
eters and unknown parameters this model can be augmented as

Tp+1 = A(0)z + B(0)ug, + B(@)dk + B(0)by, + wy,

dk+1 = dk + w,‘f
byt1 = by, + wj (2.16)

0k+1 = ek + wz
2k = H(H)a:k + vk

where w{, wg, wz and wz are white noise processes with covariances
Elwiw"] = Qidx
Bluwfuf'] = Qo
Bfwhuw!'] = Qdw
Bluwfu!'] = Qo

Tp wy, U

| dk - w,‘f 10
Xk = bk Wg = w]l; U = 0
0 w,‘z 0
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with state matrices

A(0) Bal0) By(6) 0 B, (6)
Foy= o 4 ool co=| .
0 0 0 It 0

If an EKF is used for estimation; the new state equations may be linearized
w.r.t F(f) and G(0) to get the full augmented state space model

(X, ur) = F(0)xx + G(0)uy
h(xk) = H(x)xx

_ Af(xk, Fip(0) 2. [F(6 G(6

P — f((;(;Tuk) :< ké ) BT | (}ﬁsj_rt ( )m])mzmﬂk:ék (2.17)
=~ Oh(x;) 0.
i, — X;{k _ <H(6) oT [H(ek)x,g])m:wk:a; (2.18)

The discrete state augmentation can be applied to both extended and un-
scented Kalman filters, the latter does not require the state equation Jaco-
bian’s derived above; instead the filter is applied to the augmented nonlinear
System.



Chapter 3

Dynamic fluid model

In this chapter the process model utilized for Kalman filter design is derived.
The equations where originally deduced in the internal document [12]. It is
assumed that the fluid mud can be considered as a one phase hydraulic fluid.
The the momentum equation and equation of continuity was applied to the
schematic in figure 3.1. Temperatures are assumed to be slowly varying and
are treated as constant. The energy equation is therefore not considered. As
we can see from the figure; the drill-string and annulus is divided into two
separate control volumes connected through the drill-bit. The mud pump
is connected to the drill-string at top-side, and a choke valve and a back-
pressure pump is connected at top-side on the annulus side.

3.1 Deduction of three state fluid model

The assumptions made when deriving the model are as follows
e Turbulent flow; i.e Re > 2300

One dimensional flow along the flow path.

e Homogeneous cross section area conditions.

Constant density in the momentum equation.

Temperature changes are negligible and are treated as constant.

3.1.1 Equation of state

Viscosity p as a function of temperature T" and pressure p is treated as a
constant. This is based on the assumption of a slowly varying temperature,
and the fact that p only changes slightly with p.

15
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h(ly,)

h(l,)

Drill Bit

Figure 3.1: Schematic of drilling-configuration

Mud density p is given by p = p(p,T'). Since the temperature and pres-
sure changes in a liquid have a small effect on the density, it may be approx-
imated

(T - T) (3.1)

Ppo

0
(p —po) + L

dp
p(p,T) ~ po+ - . 5T
0

Op

According to the assumptions above; temperature changes have negligible
effects on the fluid and are therefore omitted. The bulk modulus; which can
be viewed as a measure of liquid compressibility; is defined as

_ e
ars YoV

To

Inserting this into equation (3.1) gives

10:,004-%(29—1?0) (3.2)

P



3.1. DEDUCTION OF THREE STATE FLUID MODEL 17

3.1.2 Control volume

According to the principle of mass conservation the mass of a material volume

V. is constant
/77) dvz>l)/]/ av =0 (3.3)
m = — = .

If we assume that p is the same all over the control volume and consider
Reynolds’ transport theorem [4, chapter 10]

d D
il - £ - A 4
dt///vc'”dv Dt///vcpdv //avf’ rid (3:4)
—_—
3.3)

equals zero, see (3.

Equation (3.4) states that the change in mass equals the net flow into the
control volume. Denoting w = pq and differentiating the left side of equation
(3.4) results in

dp  dv.
Voo 05 =D plini = ) Plout (3.5)

J

Inserting the bulk modulus

dp dp . p.
— == p=3D
g g
into equation (3.5) gives the mass balance for the control volume V,
Ve, o
ﬁp + ‘/c = Z Qin,i — Z Qout,j (36)
i J

3.1.3 The momentum equation
Navier-Stokes for one dimensional flow is given by

dv Oop 10F Oh

PH T or Adr TMar (8.7)

where A is the cross section of the pipe, F' accounts for friction losses, x is
the position along the fluid path and v is the velocity in the x direction.

Friction losses

The friction term in equation (3.7) accounts for all frictional losses and is
modeled as

- :STw, Tw :fzg'l)

ox
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where S is the pipe perimeter, 7, is the wall shear stress, and f is the friction
factor. For minor losses such as restrictions and pipe bends the friction is
given by
p
b1 —p2= K§U2

If the velocity v is replaced by v = ¢/A(x) the total friction gradient is
oF 1 p q 2 9K p q 2
— == | —= —A(x)= .
o~ 1753 (A@)) 3 405 (38)

where 0K /0z is the minor loss gradient along the flow path.

3.1.4 Flow dynamics

To simplify the flow dynamics the flow rate § = Av and density p = pg is
assumed constant along the flow path

po ,dg 9 1 OF oh

A ™ dt T ar A ox T 95, (39)
Integrating along x gives
l = l l l
o[y, [ or,
/0 A(x)dxdt I &tdx o A(z) Ox do 0 pgaxda:
) (3.10)
ldg
= = p(0) = p() = (Bo(D) = FB1(D) 227 + pog(h(1) — h(0)),
where By(l) and Bj(l) are defined as
l l
s [[OK_1 A/ 1 5(z)
Bo(l) = o o A(x)2daj Bl = ) 4A(a;)3dx (3.11)
and A is
1
A= 7/ A(z)dx (3.12)
0

3.1.5 Drill-string dynamics

The only actuator in the drill-string is as mentioned the mud pump. Dy-
namics in the pump is not considered and the flow is described by gpump-

Drill-string pressure

From the control volume equation (3.6) the pressure dynamics can be de-
scribed as

Vi .
= Pp = Qpump — 4bit (3'13)
Ba

where p,, is the stand-pipe pressure and Vy = 0 since the drill string volume
is constant between pipe connections.
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Drill-string flow
The drill-string flow dynamics can be derived from equation (3.10)

doLan . do
i A, 94~ Pr— Poit — (Bao + dedl)%qu + paoghuit (3.14)

where Lgy is the total length of the drill-string, pp;; is the pressure at the
drill-bit and hg; is the hydrostatic height of the fluid; i.e well depth.

3.1.6 Annulus dynamics

From figure 3.1 we see that actuators on the annulus side include a choke
valve and a back-pressure pump. The choke valve is modeled as

/2
qchoke = AKCZ p_Apc (315)

Applying equation (3.6) to the annulus control volume results in

Annulus pressure

V. . .
5—(1])(: + Va = Qvit T Qres T Qres + Qback — dchoke (316)
a

where @qs is reservoir inflow and gpgex 1S the back-pressure flow.

3.1.7 Annulus flow

We define g, = Gres + qpit and apply equation (3.10)

olbit . 0
pA % o = Poit — Pe — (Bao + faBal)%qﬁ + pdoghuit (3.17)
a

3.1.8 Three state fluid model

From figure 3.1 we see that g4 = qu¢ and we have that; ¢, = Quit + Qres,
where qp;¢ is the flow through the drill-bit. If we combine the drill-string
flow dynamics (3.14) and annulus flow dynamics (3.17) the state equations
can be derived. For simplification the following definitions are included:

L Paolit
My & PdOZdN gy a P 3.18
1A Aq(lbit) (3.18)

Fy 2 (Bao + f4Ba) % F, 2 (Bao(lit) + faBa1(lpit)) % (3.19)
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The final process model is shown in equation (3.20).

| Z
- Pp = Qpump — 4bit
Ba

V. . . [ 2
_apc - _Va + Qvit + Qres + Qpack — 2AcKc _(pc - pO)
5{1 Pa0

(Mg + Mg) duit = Pp — Pe — Fadpss — Fa(qit — Gres)* + (pdo — Pa0)ghwit
(3.20)

The annulus pressure can now be described as

pa(l) =pc+ Ma(l)Qbit + Fa(l)qgit + Paogh(l) (3-21)



Chapter 4

Model considerations and
analysis

4.1 Parameter identification

In the model described in section 3.1.8 there are several parameters that
needs to be determined. These parameters can be divided into time-varying,
constant and unknown. It is also distinguished between parameters that can
be estimated during stationary conditions and parameters that only can be
estimated during transients.

In addition to the pressure measurements p, and p.; it is assumed that
Qpump> Qbacks %> hwie and lp;; are known. The drill-string and annulus volumes
may be determined from the well length [3;;. Based on off-line measurements
of the mud density it is possible to calculate the drill-string density pg. The
pump flows can be determined by

dpump = NpVp2mwy
Tpwp = —Wwp + Kpumplp

where wy, rad/s is the pump rotational speed, N, is the number of pistons and
V), is the volume per strokes per piston [12]|. The choke flow is determined
from the valve equation

qchoke = Cvz V Apc

Te?Z = —2 + Ue

where z € (0, 1) is the valve opening and 0 is fully closed and 1 is fully open.
C, is the valve constant and wu, is the manipulated variable. Note that when
the valve characteristic and annulus density is known; it is also possible to
utilize the valve equation (3.15).

The remaining parameters that needs to be identified are 3., 84, pa, Fu,
F,, M, and M,. The following identification method for off-line estimation
are suggested in the internal document [11].

21
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Utilizing stationary measurements of choke pressure p. and bottom-hole
pressure pg; the annulus and drill-string density and friction may be deter-
mined from the stationary equations for bit-flow and bit pressure

dbit = Qpump
Pp — Pc = (Fd + Fa)qgit - (pd - pa)ghbit
Pa — Pe = Fulpy + paghit

Here we have two equations with four unknowns. The number of equations
may be expanded by measuring the pressures for different bit-flows ¢+, and
solving for friction and density. A least square algorithm may be utilized to
ensure a more accurate result.

A method for estimating fluid compressibility in the drill-string and an-
nulus; [y and [, is suggested in [11]. The identification methods allow for
estimation of parameters without the unknown bit-flow ¢;;. In this report;
off-line estimation of these parameter is not considered and the results from
[11] is utilized in the simulations against Wemod and data from Grane. The
parameters M, and M, are approximated by considering the average densi-
ties and applying equation (3.18).

4.2 Augmented model

For online estimation of a set of unknown time varying parameters; the model
(3.20) is augmented as described in section 2.5. The augmented state vector
is defined as

x=(pp pe e 0) (4.1)

where x € R™ and the vector 6 contains the parameters to be estimated;
here called parameter vector. The belonging state equations are

6_2 (qump - Qbit)

f(X) — 6_3 <_Va + Qbit + Gres + Qback — QChoke)

m (pp — Pc — qul?it - Fa(qm’t - (]res)2 + (pd - pa)ghbit)

0
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The augmented system can now be represented in the compact form
x=f(x)+w (4.2)

where w is a column vector of white noise processes with zero mean, covari-
ance E[lww'] = @ and dimension w € R"
The measurement equation for the two measurements p, and p, is linear

and given by
_ (P
= +v 4.3

C

where the vector v is measurement noise and is normally distributed with
covariance E[vv’] = R. For the bottom-hole pressure; the measurement
equation is given by

Pa = De + Madpit + Fagliy + paogh

In this report; estimation of g .s is not considered and so g¢s 18 set to zero.
Inserting ¢p;+ and gres = 0 into the above equation results in

Pa = Pc+ Faqgit + paoghwit+
M,
M, + My

5 9 (4.4)
(pp — Pe — Fadpy — Fadpi + (pao — paO)ghbit)
If we define M and M as

A Ma v Md
s __Ma oo M=—d
Ma—l-Md’ M, + M,

the measurement equation can be simplified to
Pa = pe (1= M) + Fadyy (1 = M) + paghyie (1 — M)
+ M(pp — Fadpsy + paghuit)
= M(pc + Fagiir + paghsit) + M (pp — Faqpis + paghyit)

Combining the measurement equation with measurements for p, and p. gives

Pp
h(z) = ) De (4.5)
M (pe + Fugly + paghuit) + M (pp — Faq?, + pagheit)

The total system with state equations and measurement equations can now
be described in the compact form

X

x = f( w
y = { Cx ,with p, and p. measurement (4.6)

)+
h(x) ,with p,, p. and p, measurement
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4.3 Observability

To obtain the correct parameter values when estimating the annulus parame-
ters online; the augmented model needs to be observable. According to linear
system theory (see for instance [9]) this can be determined by calculating the
observability matrix; O and examine if the rank of O equals the dimension
of the linearized state space model f(x,u). The state space equations

T = Az + Bu
y=Cx

for the augmented fluid model (4.6) is found by linearizing around the current
operating point

AV g ol

- Oz - Ou ~ Oz, (47)

r=x* u=u* r=r* u=u* T*

where A is the state matrix, C is the measurement matrix, u is the control
signal and B is the input matrix. The input matrix consists of mud-pump,
back-pressure pump and choke valve, but it is not relevant for system observ-
ability. With a state matrix dimension of A € R™; the observability matrix
is given by

C

CA
0=

CA'n—l
An algebraic expression for the observability matrix is to intricate to display
and to analyse. Instead; the observability matrix was calculated numerically
by linearizing the model around some selected operating points. Observabil-
ity was tested for both measurement equations; with and without p, mea-
surement. For the case with two measurements; p, and p.; the measurement
equation is linear and given by

(100 ... 0 oem
C_<0 Lo 0) ;where CeR (4.8)

If p, is available as a measurement or estimate the linearized measurement
equation depends on the augmented state vector

1 0 0 0 0
c=[o0 1 0 0 ... 0 (4.9)
M N 2qu(F M~ FyM) P2 %)

When the state vector is augmented with the parameter vector 4 as

0= (pa F, ﬁa) , O
0= (Cv F, ﬁa)
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the observability matrix has rank(O) < dim(A) for both measurement equa-
tions; (4.8) and (4.9). This indicates that an EKF where all these parameters
are estimated cannot be designed for this case. However; the model is ob-
servable when reducing the number of estimated parameters. For example;
any augmented pairing of p,, F,, Cp, and (3, is possible. An analysis for
parameter convergence in the UKF has not been analyzed this report. Suffi-
cient conditions for a bounded estimation error in the UKF can been found

in [3].

4.4 Pragmatic approach to parameter estimation

In normal operation little excitation of the manipulated variables ¢pump, Qback
and z can be expected|11]|. This implies that there will be long periods where
the model and filter is stationary and the [ parameters in equation (3.20)
are cancelled. It is then possible estimate two stationary parameters'; or
three if p, is available. These estimated are independent of the value of 3,
and (3. Normally the observability problem would cause the Kalman filter
to estimate a linear combination of the parameters and not the actual values,
but due to the cancellation of 3, it should be possible to obtain the correct
values.

When the system is stationary it is possible to identify the state qps
and at most three more parameters. Equations (4.10) - (4.13) display the
stationary case of the fluid model (3.20) and the bottom-hole measurement
equation (3.21).

Jpump = qbit ( )

Qehoke — Qres = Qvit + Qback (4.11)
Py — Pe = Fudiyy + Fa(@uit + Gres)® — (Pa — pa)ghvit (4.12)

Pa — Pe = FulQuit — Gres)* + paghuit (4.13)

From these equations we see that ¢p;; is given by the mud-pump. The un-
known parameters in equation (4.11) are gy .s, pq and the valve constant C; if
valve equation (3.15) is utilized. Annulus density and friction from equations
(4.12) and (4.13) are associated with large uncertainty. These parameters
enter in both equations, but it is still only possible to identify one of these
in the stationary case. This is seen when writing out the bit-pressure p, as
seen from the drill-string

Pa = Pp + paghvit — Faqdy

Inserting for p, in equation (4.13) gives equation (4.12); i.e, the two equa-
tions are linearly dependent, and we gain no new information useful for

'In this context; stationary parameters are the ones not cancelled when the given state
equations are stationary
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estimating F,, and p, stationary. So, to be able to estimate F, and p, online
we need excitation; which again requires the correct values for 3, and Gy.

The parameters Gy, B4, Mg and M, can only be estimated during tran-
sients.

4.4.1 Parameter estimation conclusions

Considering the points mentioned in this section; some estimation frame-
works are suggested. As noted in the observability analysis; it is not feasible
to estimate p,, F, and (B, at the same time in the Kalman filter. A possi-
bility here is to determine p, based on stationary off-line observations. For
example; by measuring stationary pressures and flows and applying a least-
squares algorithm to equations (4.10)-(4.13). The least-square result can be
used to correct parameters not estimated online in the Kalman filter; such
as annulus density p,. Also; it should be tested whether it is possible to
estimate p, and Fj during excitation; and how this estimation is affected by
error in the fluid bulk-modulus.

Since annulus density and the choke valve characteristic is not know;
there are uncertainties associated with the choke-flow g.pope. If a measure-
ment of this flow is not available; C, can be estimated together with the
annulus friction and bulk-modulus. The parameter vector for the stationary
filter can then be represented as

s = (CU Fa)
whereas the transient parameter vector is

ba = (5a)

When the bit-flow is zero; it is not possible to estimate either friction or fluid
bulk-modulus. In this situation the parameter vector is empty and only the
bit-flow is estimated. Also, since there might arise problems as gp;; — 0; the
parameter estimation should be turned off in advance.

The parameter vectors suggested require that transients and stationary
conditions are know. Since excitations from the choke-valve and mud-pump
is known beforehand; it should be possible to shift between the stationary
and transient Kalman filters and obtain a correct estimate. To ensure a
correct estimate when switching between filters; the stationary parameters
must converge before changing filter.

4.5 Discretization of augmented model

For implementation purposes; the augmented state equations are converted
to difference equations. This was accomplished by applying Euler’s method
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for numerical integration on equation (4.2). The discrete model is given by

Ba

% (qumpk - Qbitk) + hwkl
d

fi = Ppry1 = Ppy +h

B - 2
f2 = Pcgy1 = Pey + hva _Va + qbity, + Qresy, + Qvack;, — ZAcKc 0 (pck - pO) + hwkz
a a

f3 = Qbity,, = bity, (pp — DPc — qugit - Fa(Qbit - QTes)z + (de - paO)ghbit) + hwkg

+ R
Ma+Md

fo, = 01 k41 =01

fo, = On i1 =On i
(4.14)

where h is the discrete time shift. According to [4]; Euler’s method for
numerical integration is stable for
2
h<-—— 4.15
<2 (415)
where A is the smallest eigenvalue of the continuous state equations. The
choke pressure equation from the process model (3.20) is given by

Va . . 2
_apc = _Va + quit + Gres + Qback — ZACKC _Apc (416)
Ba Pa0

When all inputs are zero the linearized pressure equation can be written as

C a 2
Pe = VAT where C = ‘ﬁ/_azACKCV o (4.17)

The eigenvalues for the linearized system is

R (4.18)

VAP

As we can see from the equation above; the eigenvalue A — —oo as Ap. — 0.
According to the stability requirement (4.15); the discrete system is locally
unstable. This will cause oscillations around ¢;; = 0, and might lead to
problems in the Kalman filters. Especially in the UKF, where a negative
definite covariance matrix causes imaginary values when calculating the ma-
trix square root. One solution is utilizing another valve equation. In [4,
chapter 4 | a valve equation with smooth transition between laminar flow;
q = C;Ap; and turbulent flow is suggested. The problem may also be solved
by increasing the bit-flow process noise covariance during low bit-flows. An-
other way of solving the problem is to utilize an implicit integration solver
that is stable for the hole left half plane.
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Chapter 5

Kalman filter design

This chapter presents an overview of the implemented EKF and UKF. Based
on the conclusions from the former chapter; the Kalman filter must be able
to switch between estimated parameters. In the EKF this involve designing
a different filter for each set of parameters and changing between filters. For
the UKF this can be accomplished by utilizing the same filter. It is assumed
that the process noise and measurement noise is diagonal and not correlated
with each other.

5.1 Extended Kalman filter design

Parameter vectors considered in the EKF are

0= (pa F ﬁa) (51)
0=(F ) (52)
s = (Fa) 0a = (Ba) (53)

The observability analysis indicated an observability problem when estimat-
ing annulus density, friction and bulk-modulus at the same time. The first
parameter vector in the list above is included only to verify this and to
compare it to the UKF.

As mentioned in section 2.3; the EKF approximates the propagated mean
as

The apriori error covariance matrix is approximated by considering a lin-
earization around the current estimate, and calculating the propagation
through the linear system. To design the filter we must therefore augment
the state equations and determine the state matrix A.

29
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5.1.1 EKF with parameter vector 0 = (p, F, [.)

As an example the augmentation of the first parameter vector in (5.1) is
shown. The state equations are

Ba
Va
Ba
Va

Ppry1 = Ppy, +h (qump;c - Qbitk) + hw;

<_Va + Qbit,, + Qresy, + Gback;, — QChoke>

h 2 2
it = Dot + (Pp — Pe — Fadyy — Falait — Gres)” + (a0 — pao)gheit) + hws

pck+1 = pck + h

Pak+1 = Pak + hwy
Fa,k—l—l = Fa,k + hws
ﬂa,k—i—l = Ba,k + hU)G
(5.4)
and the belonging Jacobian matrix with state vector x = (pp Pe Quit Pa Fa ﬂa)
is

1 0 -9 0 0 0
d
0 Of2 Ba of 0 Of2
af ) 8plc 8‘?(‘1 8Za ( )2 85(1
— - i —\qbit —Qres
Ap=—=| MotM; M, tM, Do Mf—i—l])\/}d J\Z;Jer 0 (5.5)
ox 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

where the unspecified terms; df/0x are shown in appendix B. The mea-
surement equation for filtrating the estimated state and covariance depends
on the measurements available. When p, and p. are measured the mea-
surement equation is given by (4.8), and when p, is included; the linearized
measurement equation (4.9) is utilized. Initial conditions for the state vector
are

T
Tgq = (pp,O DPc,0  4bit,0 Pa,0 Fa,O Ba,O) (56)
with the corresponding initial error covariance matrix
Apzy 0 0 0 0 0
0 ApZy, 0 0 0 0
0 0 A¢? 0 0 0
P, — bit,0 ]
w0 0 0 0 Apy 0 0 (5.7
0 0 0 0 AFZ, 0
0 0 0 0 0 A%,

The initial error covariance matrix is a measure of the uncertainty in the
initial values of the state vector (5.6). The EKF with parameter vectors
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(5.2) and (5.3) is simply obtained from (4.14) and computing the belonging
Jacobin according to (2.11). An overview of the EKF algorithm is displayed
in appendix A.1.

5.1.2 Changing between estimated parameters

To be able to swith between estimated parameters online in the EKF'; one
filter was designed for each parameter vector. The filters designed where; one
for stationary conditions, one for transients and one when guyum,p is under a
certain value. The transient mode was set based on pump or valve movement
of a given size; plus a time period to let the system obtain its stationary state.
For the filters to maintain its previous state after a swith, the value of the
belonging state and covariance where saved in each iteration. The saved
states and parameters where set to constants when utilized in another filter.

5.2 Unscented Kalman filter design

As mentioned in section 2.4; the UKF utilizes the unscented transform for
calculating the mean and covariance propagated through the state and mea-
surement equations. Process and measurement noise is incorporated in the
propagation of sigma-points by expanding the state vector and error covari-
ance matrix as

Tn P, 0 0
Lo = (% Pa:vz = 0 Q 0
Wi 0 0 R

where
Elwpwl] =0 Elvgvg] =0

The new state vector has dimension z, € R?"*™_ where n is the dimension
of the augmented state vector and m is the number of measurements. This
means that the number of calculated sigma-points are 2(2n +m) + 1. The
sigma-points are placed in the matrix

Xy = (ii—l Xg_1+ \/ (N+MNPE , X, — /(N + )‘)Pﬁ—l)

with dimension X | € R/(2ntm)x(2@2n+m)+1)  The first 2n rows of the matrix
AP | and &Y ;; associated with the error covariance Py and process noise @
are propagated through the state equations

Xlﬁk—l = (X, Al)

Y

whereas the first n rows A}’ | and last m rows X}’_, are propagated through
the measurement equation

V-1 = h(X7_q, X_y) (5.8)
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If the measurement equation is linear; as in the situation when measuring p,
and p.; the measurement update may be computed according to the classical
Kalman filter equations

ok = Czy,
P, =CP; CT+R
P, =P C" (5.9)

Tk = &}, + Poy Py (yr — k)
P, =P, — Py, P,'Pl,

and the measurement propagation in equation (5.8) is omitted.

5.2.1 UKF with parameter vector 0 = (p, F, [3,)

Here the same example shown for the EKF is presented. The state equations
are given by the augmented model (5.4). The initial state vector is

Za=(z0 00 0 000 0 0)F

with the corresponding initial error covariance matrix

Po 0 0
Poo=|0 @ o
0 0 R

where xj o and Py, o is given by (5.6) and (5.7). From these initial conditions
the UKF algorithm in appendix A.2 is applied.

5.2.2 Changing estimated parameters

Changing between estimated parameter-sets in the UKF can be performed
simply by freezing and unfreezing the corresponding sigma-points before they
are propagated through the process model. To explain this further; an ex-
ample where estimation of one parameter in a nonlinear function is turned
on and off. Let the augmented process model be

Tp1 = T + f(@k, O) + huwy

(5.10)
Ok+1 = O + hwe

with an error covariance matrix and process noise covariance matrix
P11 P12 qu O
p21 P22 q22

The augmented state vector and covariance matrix are

o= (zp 6, 0 0)F Pﬁ:(lzk 2)) (5.11)
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Calculating the matrix square root and the sigma-points results in the ma-

trices
s11 812 0 0
o . | s21 s2 0 O
S=1/(A+n)Pt = 0 0 s 0
0 0 0 S44

Xy = (33‘2_1 rp o+ Si)
Ty Tp+S11 Tp+S12 T Xk Tk —S11 Tk —S12 Tk T
Op Op+s01 Op+s2 0 0p 0p—s21 0Op—s22 0O 0
0 0 0 qgqun O 0 0 —q11 0
0 0 0 0 g2 0 0 0 —q22

Each column vector in the matrix above represents one sigma-point for the
augmented state vector z¢, and one by one the column vectors are propagated
through the augmented process model (5.10). Halting the 6 parameter is now
achieved by assigning all entries in the second row equal to the first element
in the row, and all elements in the last row to zero

T T+ S11 Tk +S12 Tk Tk Tk —S11 Tk —S12 Tk o Tk

yo . _ O O O Or O O O O O
k=1 0 0 0 a1 0 0 0 —qu1 O
0 0 0 0 0 0 0 0 0

This will allow the 6 parameter to be unchanged after propagation. The
sum of the weights utilized for determining the final value of 8 equals one,
and thus; the parameter remains equal to the last time step. To be able to
unfreeze the parameter; the belonging error covariance elements of P, must
be saved before estimation of the parameter is halted. When estimation is
resumed; the error covariance elements corresponding to the parameter are
restored.
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5.3 Constraint handling in the EKF and UKF

Another important part of state and parameter estimation is constraint han-
dling. Figure 5.1 display a schematic in two dimensions of how constraints
can be performed in the EKF and UKF'. In the EKF; this is simply performed
by moving the predicted states and parameters to the violated constraint.
For the states; this involve keeping the absolute pressure and bit-flow non-
negative. As seen from the figure; the error covariance is not affected by
moving the state or parameters. In the UKF; constraint handling is per-

Initial set up, t=k-1

covariance
h
o
K-t

(N

EKF, t=k UKF, =k

Transformed sigma points

covariance

- T ", covariance
-\ T - UKF i

| | X ®

Figure 5.1: Constraint handling in the EKF and UKF

formed be moving all propagated sigma-points back to the violated con-
straint. This ensures that the computed mean is within the constraints. The
error covariance matrix is also affected by the constraint handling, and thus
contains information about the nearby constraint as the computed covariance
is smaller [1].
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5.4 Covariance tuning

Several methods for online tuning of the covariance matrices () and R where
attempted, see for instance [14], [15], [8] or [2]. All these methods rely on a
linear observable state space model. The idea was to implement a linearized
model during stationary conditions and apply the method proposed in [14] to
the original process model. The method was implemented for the linearized
versions of the state equations (3.20).

Since the model is also utilized for parameter estimation; online tuning of
the covariance matrices might not be the best solution. Instead the covari-
ances where determined by calculating an initial value according to Bryson’s
inverse quadratic method. The covariances where then tuned to obtain a
satisfactory result.

Assuming the process noise and measurement noise covariance matrices
is not correlated mutually or between each other

Qo = diag(q1,q2,-.-qn) R =diag(ri,ra...7n)

an initial value for the process noise and measurement noise covariances can
be determined with Bryson’s inverse quadratic method.

1. Assign the maximum allowed estimation deviation as dz; = max(|z; —

to-mr )

2. Choose the measurement matrix elements as

U )

where 6y; = |y; — g;|, and g; is the mean of stationary measurement, and
y; is the maximum observed measurement deviation from this mean. When
the elements in the covariance matrices have been determined; the filter is
tuned according to

Z;|) and calculate

Qr = Qo

where ¢ is a scalar value that determines the scaling between Ry and Q.

To get an acceptable estimation of the bottom-hole pressure; it is impor-
tant to not add to much uncertainty in the process model. The uncertainty
was therefore added to the estimated parameters. For example; if to much
uncertainty is combined with gp;; it is impossible to obtain a correct friction
estimate.
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Chapter 6

Observer performance and
robustness

To verify that the estimated states and parameters converge to the correct
values; the EKF and UKF algorithms where tested against data obtained
from simulations on the design model (3.20). To be able to compare the UKF
and EKF; the same noise set was utilized in simulations of both filters. The
covariance matrices where also equal in the EKF and UKF. All parameters
in the design model and Kalman filters are identical; except for the ones
estimated. The parameters utilized in the simulations are displayed in table

6.1.
Parameter Value Description
Do 1 bar Atmospheric pressure
Pa 1250 kg/m3-1075 |  Average annulus density
Pa 1250 kg/m?- 1075 | Average drill-string density
F, 20800 Annulus friction factor
Fy 165000 Drill-string friction factor
M, 5730 Annulus mass coefficient
My 5730 Drill-string mass coefficient
Ba 14000 Annulus bulk-modulus
Ba 14000 Drill-string bulk-modulus
Va 28.27 m® Annulus volume
Vy 96.13 m3 Drill-string volume
Pt 2000 m Well depth
bt 3600 m Well length
Lgn 3600 m Drill-string length
K. 0.0046 Choke valve constant
A, 0.04 m?2 Choke valve opening

Table 6.1: Design model parameters
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6.1 Input excitation and parameter estimation

First the Kalman filters where simulated with excitations from the mud-
pump to determine how accurate they can estimate the unknown parameters.
The back-pressure pump and choke valve where maintained constant during
the simulation.

6.1.1 Estimation of p,, F, and (3,

Ideally the parameters p,, Fy and 3, should be estimated at the same time.
According to the observability analysis in section 4.3 this is not possible. To
verify this the UKF and EKF where augmented with the parameter vector

0= (pa F Ba)

All parameter and the state; qp;; where here estimated at the same time.
The initial values for the parameters where set to

Parameter Value
qbit,0 1000 l/min
Dp,0 74 bar
Pe,0 125 bar
Pa,0 1150 kg/m?
Fuo 15800
Ba0 9000

Table 6.2: Initial state and parameter values

The measured and estimated parameters; along with mud-pump excita-
tions are displayed in figure 6.1. Figure 6.2 and 6.3 present the deviation
from the desired states and parameters. The left column of the figures show
the initial estimation transient, and the right column display the response for
the remaining simulation period. It is not possible to see the error between
the measured states p, and p. and the states filtrated by the UKF since the
scaling is to large. Figure As can be seen from figures 6.1 and 6.2; both the
EKF and UKF computes an accurate estimate of the bottom-hole pressure
and bit-flow, even though the augmented model is not observable. However;
in the parameter deviation plot 6.3; we see that the EKF does not converge
to the correct parameter values. The UKF approximates the nonlinearities
better and the parameter error converges to zero.
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6.1.2 Estimation of F, and (3,

When augmenting the process model with F, and (3, the system is observable
and it should be possible to estimate correct values for these parameters.
Initial values for gy, F, and [, where set as in table 6.2. In this simulation
annulus friction was estimated during stationary conditions, and fluid bulk
modulus was estimated during transients. Simulation scenarios where both
parameters where estimated at the same time has also been conducted, but
this did not give as good results.

In this simulation; the data from the design model where obtained with
Euler’s method; described in section 2.1. Since the method has a fixed step
size; the process noise added to p, and p. is known, and the Kalman filter
covariance matrices could be determined directly.

To measure the difference between the EKF and UKF the Integral Square
Error (ISE) was computed on the bottom-hole pressure difference according
to

n
ISE = " |pq — pal*At
i=0
The results of the ISE where

ISEykr =24 ISEpkxp =184

This shows that the UKF performs better than the EKF; with an ISE of
over 7 times larger in the EKF'. Figure 6.4 display the pressure progress; and
both filters estimate a correct bit-flow and bottom-hole pressure. The errors
from the real values are displayed in figure 6.2, and we see that the UKF
converges a little bit faster than the EKF. In figure 6.1.2 we also see that the
parameters converge converges faster in the UKF and that the final values
in the UKF lie closer to the correct value.
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6.2 Pipe-connection and filter switching

In the pipe-connection scenario; Fy was estimated during stationary condi-
tions and 3, was estimated during transients. Since there are some problems
with numerically stability when ¢;; — 0; the data from the design model
had to be computed by a solver with variable step size. The added process
noise was therefore not known and the covariance matrices had to be tuned.

Figures 6.7 - 6.9 display the estimated states and parameters during a
pipe-connection. The initial values where set as in table 6.2; When the
mud-pump is ramped down from gpymp = 1000 1/min to 0; the back-pressure
pump was ramped up from 200 1/min to 400 1/min. At the same time the
friction estimation is turned off and the filters starts to estimate 3,. When
the bit-flow approach 100 L/s; the parameter estimation is turned off and
only g is estimated. Figure 6.7 display both estimated and real pressures.
It is not possible to see any difference between estimated and real pressures;
the plots are merely shown to see the pressure and bit-flow progress. Instead
the state errors can be seen in figure 6.8. Both filters estimates the correct
values, but the UKF converges faster. The ISE values for the UKF and EKF
are

ISEykr =645 ISEpkr =893

The large ISE-values are the result of larger process noise variances than in
the previous scenario, and that the filters deviates somewhat from the true
bottom-hole pressure when ¢;; = 0. As seen from the parameter estimation
6.9; it is theoretically possible to exploit the dynamics during pump-shut
down to estimate (3,. The figure also show that the UKF converges faster
and closer to the correct value than the EKF.
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Chapter 7

Wemod simulation

To see how the UKF handles unmodelled dynamics the filter was tested
against simulation sets from Wemod. Wemod is a rigid, high-order simula-
tor developed for simulating the flow dynamics in a well. In the simulation
scenario; step-responses from mud-pump and a pipe-connection where per-
formed. The influx from the reservoir was set to zero during the simulation.

First the unknown parameters in the process model had to be adapted
to Wemod. The parameters pg, pq,Fy and F, where identified by applying
steps in the mud-pump and recording stationary conditions in the pressures
Dp, Pe and p,. These pressures where then utilized to fit the parameters with
a least square algorithm according to the stationary equations

gdbit = Qpump
Pp — Pec = (Fd + Fa)qa't - (pd - pa)ghbit
Pa — Pe = Futiy + paghit

For the dynamic parameters; (4, B4, My and M,; the results given in [11]
where utilized. The choke valve was modeled as

2Ap,
Pa

qchoke = Cv

where the choke valve constant C), was calculated according to the stationary

equation
__ Y9pump + Qvack

V/2Ap./pa

The identified parameters are shown in table 8.1. The pressures are shown
in bar and other units follow after this'. Figure 7.1 display the pressure and
bit-flow progress. The mud-pump is ramped down from 1000 L/min to zero,
and at the same time the back-pressure pump is ramped up from 200 L/min

Cy

!Except for gyi; that for convenience is shown in liter per minute

o1
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Parameter Value
P 1250 kg/m3 - 10~°
Pa 1250 kg/m3 - 1075
Fy 1.676 - 10°
F, 1.1926 - 10°
B 13090
Ba 7317
M, 6064
M, 1622
Va4 26.71 m?
V, 99.9 m?
Cy 2.819 -10™* hy; 2014 m

Table 7.1: Results of fluid model fit to Wemod

to 400 L/min. The Kalman filter estimates the correct stationary values
for the bottom-hole pressure, and deviates somewhat during transients. A
bit-flow measurement was not available in the Wemod version utilized for
simulation?, but the estimated bit-flow converges to the stationary pump-
flow. Figure 7.2 show the estimated pressure deviations, and as mentioned;
the bottom-hole pressure has error peaks of up to 15 bar during transients.

Other parameter vectors where also tested against this Wemod scenario.
When estimating the choke valve constant and annulus friction during sta-
tionary conditions; the valve constant converged to the value in table 8.1.
Another parameter vector with [, and Sy estimated during transients; re-
sulted in (3, converging to zero.

Figure 6.3 shows the estimation of F, during stationary conditions and
B, during transients. The annulus friction converges to a stationary value
whereas (3, does not, is but continuously changed during the simulation. A
case where (3, first was estimated from pump excitations; and then halted
before the pipe-connection has also been conducted. This gave a larger ISE-
value; than continuous estimation of G, during the mud-pump ramp down.

2Version s01701 of Wemod was utilized for simulation
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Chapter 8

Simulation with data from
Grane

8.1 Parameter identification

The observer was tested against a data-set from Grane well G2 Y1. The
same data set has also been simulated in [18| against a non-linear adaptive
observer. In the simulated data set there was not enough stationary values of
Gpump to properly estimate all parameters well. Some assumptions about the
parameters where therefore made. In the drill-log the mud specific gravity
where set to SG = 1.18. This gives a fluid density of pg = 1.18-998 =
1177.6 kg/m>. In [18]; the average density p = 1200 kg/m? is applied in the
simulation. This is based on the density increase

Po
p = po+ ﬁ(p—l?o)

as the well becomes deeper. If we assume that the density in annulus is the
same as in the drill-string; the friction can be solved from equations

dbit = Qpump
Pp — Pec = (Fd + Fa)qa't - (pd - pa)ghbit
Pa — Pe = Fulpy + paghuit

The density term cancels and, this gives enough equations to solve for Fy
and F,. The parameters My and M, where calculated according to equations
(3.18). All parameters utilized in the simulations are shown in table 8.1.
There is a large uncertainty combined with the choke flow; gepore. This
is partially because the choke characteristic is not exactly known, and also
there is an uncertainty in the annulus density. To overcome this problem the
valve constant C, is included in the parameter vector. As already mentioned
in section 4.4.1; it is possible to estimate both F, and C, during stationary

o7
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Parameter

Value

Pd
Pa
Fy
Ba
Ba

1200 kg/m? - 10=°
1200 kg/m? - 1075
1.4577 - 10°
14000
14000
5998
1764
m3
145.11 m?
1827 m
3926 m

Table 8.1: Results of fluid model fit to Wemod

conditions. Since there is some uncertainty combined with the dynamic
parameters; G4, B My and M,; the friction and valve constant where only
estimated when the filter was stationary. The valve equation utilized in the
simulation was derived by Lars Imsland and is displayed in figure The valve
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Figure 8.1: Choke-valve characteristic

equation calculates the flow in 1/s, and must be converted to m3/s.
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8.2 Grane pipe-connection simulation

The data set was taken from a pipe-connection at Grane well G2 Y1. The
measurements utilized in the simulation where

e True vertical depth (TVD), hyy

Well length, lp;

Stand-pipe pressure p,

Choke differential pressure p.
e Pump flow gpump
e Choke valve opening u,
TVD was calculated on-line according to

BHP-10°

iy =
"~ "ECDpuy

where p,, is water density. The well length was utilized for calculating the
annulus and drill-string volumes online. The drill-string length is piecewise
constant and during pipe-connections it was extended with 27 meters. This
was performed after pump-shut down. Drill-string friction was also recalcu-
lated and applied after a pipe-connection. Figure 8.2 display the measured
pressures; stand-pipe pressure and choke differential pressure. It also shows
the estimated and measured bottom-hole pressure. The last entry in the fig-
ure present the estimated bit-flow along with the pump-flow and choke-valve
input. The bottom-hole pressure measurement is as mentioned lost when
the bit-flow approaches zero. This happens at ¢ ~ 2300s and ¢ =~ 6800 s.
The bottom-hole estimate stays within an error of approximately one bar.
Figure 8.3 show the estimated annulus friction and choke-valve constant.



60

CHAPTER 8. SIMULATION WITH DATA FROM GRANE

Stand-pipe pressure, p,,

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

Figure 8.2: Estimated pressures and bit-flow

Pp
_ pp UKF
5 150
2,
o
5 100
a
o
a 50
0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]
Choke differential pressure, p.
30 ‘ ‘ : ‘ De
p. UKF
T 25F
2,
2 20
>
@
O 15
o
101
0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]
Bottom-hole pressure, p,
260 T T T Pa
po UKF
8 250} 1
)
§ v
© 240 \ 1
o
230 Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]
Mud-pump flow bit-flow, and choke-valve opening
2000 T N T ! Gpump
Grit UKF
1500 —— 30 - ug
Q3
= 1000}
o
[
500
O -




8.2. GRANE PIPE-CONNECTION SIMULATION 61

X 104 Estimated annulus friction, F,

1.73 \ \ \ T —
— I, UKF

1.72

1.71

1.7

1.69

Friction

1.68

1.67

1.66

1.65 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000

Time [s]

Estimated annulus bulk-modulus , Ba

26 \ \ \ \ —
— 3, UKF

25t -

24, . . .

Bulk-modulus

20

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [s]

Figure 8.3: Estimated annulus friction and fluid bulk-modulus



62 CHAPTER 8. SIMULATION WITH DATA FROM GRANE

Since there is some uncertainty in the parameters estimated off-line; the
effect of a larger density in annulus than drill-string was simulated. Instead
of identifying Fy off-line; the total friction Fy + Fy was estimated online and
annulus friction was set to F, = 0.11- Fy;. The same data set was utilized
here as in the simulation described above. Three cases where tested.

1. F, =0.11F; and p, = pgq
2. F, =0.11F; and p, = 1.05- pg
3. F, =0.11F; and p, = 1.1 pq4

In the first case annulus density is equal to drill-string density, and in the
second and third case the annulus density is set 5% and 10% larger than the
drill-string density. Figure 8.4 shows the bottom-hole pressure measurement
and estimate for the three cases. When the annulus density increases the
peaks during mud-pump shut down is much larger than when annulus and
drill-string density is equal. Figure 8.5 display the friction and choke valve
estimates.
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Figure 8.4: Bottom-hole pressure estimate, Grane G2 Y1
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Chapter 9

Conclusions

In the observability analysis it was found that the process model is not ob-
servable when augmenting the parameter vector with p,, F, and 3,. To
verify this; estimation of the unobservable state vector was simulated. Both
filters converged to the correct bottom-hole pressure. The UKF converged
to the correct parameter values; whereas the EKF converged to the wrong
values. The correct bottom-hole estimate was probably obtained since the
bit-flow equation and bottom-hole measurement equation both contains the
sum of the estimated parameters; p, and F,. However; if estimation of these
parameters are halted before pump-shut down; the total sum would give
the wrong bottom-hole pressure estimate. The process model was also not
observable for the parameter vector; p,, F, and (,; when the bottom-hole
pressure measurement was included. This was also verified in simulations.
Since the measurement equation contains all the unknown values for esti-
mating the pressure, the measurement will estimate biased values before
the parameters converges. On the other hand; a bottom-hole measurement
would add robustness to obtaining the correct parameter values. Based on
the observability analysis; the filters where designed to estimate well-bore
friction and annulus fluid bulk-modulus. The choke valve constant was also
included in the parameter vector for some simulations. Since no more in-
formation was gained from the bottom-hole pressure measurement; only the
stand-pipe pressure and choke differential pressure where utilized as mea-
surements in the filters.

In the simulations with data generated from the design model; the UKF
and EKF where compared. When friction and fluid bulk-modulus in the
annulus where estimated; both filters converged to the correct parameter
values. The annulus friction was estimated during stationary conditions
and fluid bulk-modulus was estimated during transients. Simulations where
both parameters where estimated at the same time where also conducted,
but they did not give as good results. In the pipe-connection scenario; the
filters managed to estimate fluid bulk-modulus during mud-pump shut down.
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However; other sources of excitation; such as step-responses from the mud-
pump; would be more useful for estimating .

The UKF had the lowest ISE-value in all simulation scenarios and con-
verged faster to the correct states. It also converged closer to the correct
parameter values than the EKF. Based on better performance and easier
implementation purposes; w.r.t changing parameters; the UKF was selected
for further testing against Wemod and data sets from Grane.

When testing the UKF against data sets from Wemod; different param-
eter vectors where investigated. Estimation of annulus and drill-string fluid
bulk-modulus resulted in (3, converging to zero. This parameter vector was
therefore discarded. Estimation of annulus friction during stationary con-
ditions and annulus bulk-modulus during transients gave the lowest ISE-
values. The B, parameter did not converge, but was continuously altered
by the filter during simulation. The reason for this could be the effects of
model-errors and that the assumed constant parameters where slightly off.
The filter estimated the correct stationary values, and had some deviations
during transients.

It was also tried to halt the parameter estimation of 3, after a period of
excitation from mud-pump. This gave higher ISE-value than when estimat-
ing the parameter during all transients. Simulations where the choke valve
constant was estimated along with friction was also conducted. In this case
the valve constant converged to its correct value.

The UKF was also tested against a data set from the Grane field. The
data set consisted of a pipe-connection scenario. Annulus friction and the
choke valve constant where estimated during stationary conditions. The
filter estimated the bottom-hole pressure within an error difference of 1 bar.
The effect of a larger density in annulus than the drill-string was also tested.
As expected; this gave much larger peaks during mud-pump shut down than
during simulation with equal densities. This shows that it is crucial to have
a correct estimate of the annulus density.

Overall the UKF gave promising results in estimating the bottom-hole
pressure. The largest concern is the observability problem in estimating
annulus density, friction and bulk-modulus. A solution to this problem could
be to estimate the densities and friction based on stationary conditions and
updating the Kalman filter with these.

9.1 Comments

In the UKF there where some problems where the covariance matrix was not
positive definite. In this situation; there may be problems with computing
the matrix square root for determining the sigma-points. This was solved by
examining the covariance matrix, and if it had negative eigenvalues the co-
variance matrix from last iteration was utilized instead. Another possibility
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is to evaluate the covariance matrix about X} 1. The UKF did not handle
the situation where gp;; — 0 to well. Since the UKF calculates sigma-points
based on the covariance and process noise covariance matrix; this was actu-
ally solved by decreasing the process noise covariance during low bit-flows.
Also, careful tuning of the covariance matrices is important in obtaining the
correct estimates. If the covariance matrix is not properly tuned; the filter
may estimate wrong parameter values.

9.2 Future work

The annulus density and bore-hole friction are two very important parame-
ters when estimating the bottom-hole pressure. The possibility of designing
an observer for both of these parameters should therefore be investigated.
One possibility is to see if the Kalman filter is able to estimate the correct
values during excitation. Here; the effect of an error in the fluid compress-
ibility should also be tested. Another way is to implement a recursive least
square algorithm based on stationary pressures and pump-flows. This also
requires knowing exactly when the process is stationary and a method for
transient detection should be implemented.

There are some problems with numerically stability during low bit-flows.
A solution for this problem might be to utilize a different solver. An implicit
solver with fixed step size that is stable for the hole left half-plane can be
implemented. The problem could also be solved by modifying the choke
valve equation during low flows.

There are also more simulations that must be conducted. Simulation
against real data sets with bottom-hole measurements must be examined
to see if the observer estimates the correct values during pipe-connection.
Transients may also be utilized for bulk-modulus estimation and this must
be tested against real data. An important variable not considered here is
influx from the reservoir. The UKF should be implemented and tested with
influx as an estimated parameter.

Other versions of the UKF might be advantageous and should be consid-
ered. The square root unscented Kalman filter (SRUKF) ensures numerical
stability and guarantee a positive definite covariance matrix. The SRUKF
can also be implemented to run at a computational complexity of O(n?)
when utilized for parameter estimation. This could be accomplished by im-
plementing a dual-UKF'; where the states are estimated in one filter and the
parameters in another filter. In comparison; the EKF has a computational
complexity of O(n?) for parameter estimation; whereas the UKF has O(n?3)
for the same problem.
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Appendix A

Kalman filter algorithms

Let the nonlinear state and measurement equations be given by

Tht1 = f(xk,uk) + hwk
Yk = h(zk, u) + hog

where xj represents the states, uy are inputs, wy, is process noise and vy, is
measurement noise.

A.1 EKF algorithm

Initialization
i’o = E[x()]
Py = El(z0 — &0)(z0 — £0)]
Q = E[(wo — to)(wo — 10)" ]
R = E[(’UQ — ’UQ)(?}O — @0) ]

For k € {1,2,...,00} repeat steps 1 to 5

1. Determine measurement model Jacobian’s

H,, =V h(z,ug, wg)|

rx=3%,
2. Compute Kalman gain and filtrate states and covariance

Ky, =P, H (H,, Py HY + Q)

Ty = & + Ki(yw — h(2)))
P,, = (I — KxH,,)P, (I — KxH,,)" + KyRK]
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3. Compute process model Jacobian’s

ka — Vx f(x)uk7wk)|xk:§3;

4. Calculate time update for process states and covariance

T, = f(@k, uk)
P, =F, P, F] +R

5. Check constraints

A.2 UKEF algorithm

Initialization:

Po 0 0
Pj = E[(xg —%3)(x§ —%§)"]=1 0 Q 0
0 0 R

For k € {1,2,...,00} repeat steps 1 to 9
1. Calculate sigma-points

Xy = <§<ﬁ—1 Rp =V +)‘)Pﬁ—1)

2. Time update for state equations

Xl?\k—l = £(X7 1, )
3. Check state constraints
= (% T3
klk—1 Z
4. Determine state output mean and state output covariance

2N
$— (m) yx
Xy = ZWz Xi,k|k—1
i=0

N
P =2 Wi(C)(Xz‘g,ﬂklk—l — ) (X — 3)"
=0
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. Time update for measurement equations

V-1 = (X1, A_q)

. Check constraints

y _ S Yk 1 Vg1 < c
Hk b it Vepor > ¢

Measurement output mean and covariance
2N
A— (m) x€
Y = E :Wi yz‘,k|k—1
=0

2N
Posi = > WO — 00) Ve — 95)7
1=0

. Compute measurement and state cross covariance

2N
- o N\T
Pyyi = Z Wz'(c)(ka\kq - Ty )(yfk\kq — g )
i=0

. Calculate Kalman gain and filtrate filtrate

Ky = PXkYku}_’_l
*i =% + Ki(yk — 9i)
Py = P + Ky Pyy K}
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Appendix B

Jacobian for parameter vector
0 = (pa Fu Ba)

0 0o &9 0 0
d
0 of2 Ba Of 0 9f
of ) Ok e, g
_ _ 7 —\49bit —Qres
F=_—=|M+M; MA+M, 8%1 M5+EJ7V}(1 J\l;[;-i-Md 0 (B-l)
Ox 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
an _ _1 6aZAcKc\/§
apc 2 pcp;;)n 0 Pa0 Va
% o lﬁaZKc\/i(pc - pO)
8p - 2 Dc—pPo 2
‘ V5 PaVa (B.2)
0 1 De — P
f2 = 315 _Va + @it + Qres + Qpack — ZKC\/§ (070)
Ba Va Pa
af3 _ _2Fdeit - 2Fa(Qbit - %"es)
Oqpit Mg + M,
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