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Abstract. This paper investigates the effect of speaking rate variation
on the task of frame classification. This task is indicative of the per-
formance on phoneme and word recognition and is a first step towards
designing voice-controlled interfaces. Different speaking rates cause dif-
ferent dynamics. For example, speaking rate variations will cause changes
both in formant frequencies and in their transition tracks. A word spo-
ken at normal speed gets recognized more often than the same word
spoken by the same speaker at a much faster or slower pace, or vice-
versa. It is thus imperative to design interfaces which take into account
different speaking variabilities. To better incorporate speaker variability
into digital devices, we study the effect of a) feature selection and b)
the choice of network architecture on variable speaking rates. Four dif-
ferent features are evaluated on multiple configurations of Deep Neural
Network (DNN) architectures. The findings show that log Filter-Bank
Energies (FBE) outperformed the other acoustic features not only on
normal speaking rate but for slow and fast speaking rates as well.

Keywords: intrinsic variations, speaking rate, acoustic features, FBE,
MFCC, DNN

1 Introduction

Speech is an integral component of how humans interact with digital devices
these days - be it text to speech [1], keyword spotting [2], voice-controlled de-
vices such as Apple's Siri!, Microsoft's Cortana?, and Google's Google Home?,
or smart gadgets. Speech, in contrast to gesture or touch-based systems, is a nat-
ural way of communicating with these devices. The accuracy of voice-controlled
devices is highly dependent upon speech variability including speaking rate and
speaking style. Speaking very fast or slow for instance, can easily lower the
recognition accuracy in devices if they are not tuned for it.

! https://www.apple.com/ios /siri/
2 https:/ /www.microsoft.com/en-us/windows/cortana
3 https://store.google.com/us/product/google_home?hl=en-US
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2 Acoustic Feature Comparison for Different Speaking Rates

Late 90s saw a lot of research on the topic of the speaking rate effects on
speech recognition performance e.g. [3-5]. The studies at that time verified that
the speech recognition performance, e.g. Word Error Rate (WER) degrades sig-
nificantly at a fast speaking rate [6,7]. Later, the performance degradation as
a result of variations in speaking rate was also confirmed for speaker recogni-
tion in studies carried out in [8,9]. Attempts were made to figure out precisely
how speaking rate effects Automatic Speech Recognition (ASR) performance
by showing a direct correlation between local average Hidden Markov Model
(HMM) score and local speech rate [10].

After almost twenty years, however, the research is still in a preliminary
stage for most speech-based applications such as in the case of speaker authenti-
cation [11], where it is argued that an important reason for performance degra-
dation is due to a distorted spectrum caused by variations in speaking rate [12],
particularly for slow speaking rates. The rate at which people speak depends on
many characteristics related to the speaker such as gender, age, and the psy-
chological state they are in. For instance, a study presented in [13] showed that
on average older people speak slowly compared to young ones and females talk
slower than the males. Additionally, deviating speaking rate is often observed
in our daily life. People usually speak fast when in hurry or angry or they may
speak slow if they are tired, sad, or sick [14]. Speaking rate patterns also differs
between the native speakers and non-native speakers. Research has shown that
non-native speakers talk much slower compared to native speakers [15]. More
recent studies also revealed that non-native speakers exhibit more variation in
speaking rate [16]. On the other hand, this suprasegmental characteristic between
native and non-native speakers in spontaneous speech suggests that non-native
speakers are less variable than native speakers [17].

Speaking rate variability affects the mapping between the acoustic properties
of speech and the linguistic interpretation of the utterances [18]. ASR systems
employing supervised machine learning techniques and deep learning methods
can efficiently learn the phonetic patterns. However, speaking rate variability can
drastically decrease the performance of the ASR systems if they are not tuned
for it. While listeners can naturally adapt to the changes in speaking rate and
can maintain phonetic constancy, applying rate normalization in ASR systems
for understanding phonetic patterns can be a challenging task.

This paper, therefore, investigates speaking rate variability from two per-
spectives: (a) which speech features perform best under variable speaking rate
conditions? and (b) which DNN architecture obtains the highest accuracy on a
frame classification task for speech recognition?

The remainder of the paper is structured as follows. Section 2 presents related
work, followed by Section 3 where we describe DNN. Section 4 gives an overview
of the experimental setup. Results and their analysis are presented in section 5,
while section 6 concludes the paper with insight into the future work.
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2 Related work

Meyer et al. reported one of the earliest works that exploited the logatome speech
database discussed in section 4.1. They conducted a study on the performance of
ASR to Human Speech Recognition (HSR) for several intrinsic variabilities such
as speaking rate, speaking effort and dialect [19]. Their ASR model based on
HMM uses a three-state-model for each phoneme. Describing each phoneme by
a binary voicing and ternary features defining manner and place of articulation,
they observed that misclassification of voicing and manner of articulation were
the major causes for recognition errors. In a similar work [20], authors address
reducing the ASR and human listeners gap while having a particular emphasis
on intrinsic variations of speech. The work was further extended to use DNN as
the ASR backend where phoneme confusion matrices obtained by ASR models
for Mel Frequency Cepstral Coefficients (MFCC), FBE, and Perceptual Linear
Prediction (PLP) features were compared against those obtained by human sub-
jects [21]. FBE and PLP showed the highest correlation coefficient score between
ASR and human subjects for various Signal to Noise Ratio (SNR) values.

Varghese and Mathew in [22] used a reservoir computing technique in their
two-layered Recurrent Neural Network (RNN) for classifying 39 phoneme classes
on the TIMIT database. They used the Relative spectral transformation Per-
ceptual Linear Prediction (Rasta-PLP) and MFCC as features for frame level
classification where MFCC performed marginally better than Rasta-PLP. A com-
parison of MFCC and supervised Isomap on the task of phoneme recognition is
carried out in [23]. The authors also proposed a supervised manifold learning
algorithm that outperforms the baseline MFCC and the supervised Isomap. Au-
thors in [24] compared the performance of MFCC, PLP, and Rasta-PLP using
fuzzy logic and Deep Belief Networks (DBN) on the African language phoneme
classification. MFCC and Rasta-PLP results were far better than PLP while
fuzzy logic classified consonants better than vowels with respect to DBN. A sim-
ilar study related to phonetic analysis on Arabic speech is presented in [25] which
compares six acoustic features that include Linear Predictive Coding (LPC),
MFCC, PLP, FBE, Mel-filter bank coefficients (MELSPEC), and Linear Predic-
tion Reflection Coefficients (LREFC). A five-state HMM is used to model each
phoneme with a mixture of sixty-four Gaussian distributions. FBE achieved the
highest accuracy while MELSPEC results were marginally behind followed by
PLP and MFCC.

Comparison between different acoustic features have been addressed on dif-
ferent datasets and for various speech related activities, e.g. on digits [26], for
event detection [27], and on emotional speech classification [28] among others.
Not much can be found in the literature on how they perform under variable
speaking rates. This paper, therefore, addresses the question of how these acous-
tic features compare to each other on different architecture combination, context
size, and for different speaking rates.
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3 DNN

A deep neural network is a term used for artificial neural network with several
hidden layers. A Multi Layer Perceptron (MLP) consisting of at least two or
more hidden layers is often used as a baseline DNN, unlike a vanilla network
that consists of a single hidden layer. An MLP is a feedforward neural network
in which all the neurons in one layer typically are fully connected to the neurons
in the adjacent layer. The model uses two phases for estimating the weights, first
in an unsupervised method the initial values for the weights are found and then in
the second phase, the initialized weights are updated by a supervised technique
called “backpropagation”. The first phase is called pre-training, and the latter
one is called fine-tuning. The training procedure of the DNN is described in the
following subsections.

3.1 Pre-training

As we know initializing the weights when the network has multiple hidden lay-
ers is a bit challenging and will affect the convergence of the network weights.
The main idea behind the pre-training is to find the initial weights which are
estimated by fitting a generative DBN to the input data [29]. The DBN can
be trained in a greedy layer by layer approach in which each pair of layers are
considered as a Restricted Boltzmann Machine (RBM). An RBM has two layers,
one of them contains visible nodes (v = [v1,v2, ...,vx]7) and the other one are
hidden nodes (h = [hi, ha, ..., hr]T). There are different variations of RBM ac-
cording to the data type available. When the input values are real-valued data,
the Gaussian-Bernoulli RBMs are used, and when the input values are binary,
the Bernoulli-Bernoulli RBMs are used. The difference between these two RBM
is in the energy function definition. For the Bernoulli-Bernoulli RBMs, the en-
ergy function is defined as:

K L K L
E(v,h) ==Y wehiwg — Y vpar — Y lubi (1)
k=1 =1

k=11=1

where the wg; are the weights between the visible unit v; and the hidden unit
h;, ap is the bias for the visible unit v and b; is the bias for the hidden unit
h;. The weights and biases are real-valued data, and the hidden and visible are
binary-valued data. For the Gaussian-Bernoulli RBMs, the energy function is
defined as:

K L K (0 — ak)Q L
E(v,h) ==Y —hwy—Y_ B > hiby (2)
k =1

h=1i=1_F k=1

where the oy, is the standard deviation of the Gaussian noise for visible unit vy,
which is a real-valued unit. The joint probability of the the visible and hidden
units is defined as follows:

(v, ) = L) 0
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Where Z is the partition function which is sum over all values of v, h.

7 = Z e—E(v,h) (4)
v,h

The weights, biases and the standard deviations are estimated during the train-
ing by maximizing the expected log probability, given in (5), of the visible units
with the contrastive divergence (CD) algorithm [29].

6= argmax E[log p(v)] = argmax Ellog Zp(v, h)] (5)
h

where 8 contains the weights, biases and standard deviations, 0 is the estimated
values for the parameters and E[.] is the expectation of the containing arguments.
After training the first RBM on the input data which are visible units (v1), the
hidden units (hl) are inferred. The inferred units are used as the visible units
for the next RBM (v2=h1) to estimate the hidden units (h2). For the number
of hidden layers in DBN, RBMs are trained and stacked after each other. The
Fig. 1 shows the stacked RBMs and the resulted DBN.

V) h@)=v(©) h(n-D=v(n)  h(n)
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Fig. 1: Graphic model of DBN by stacking the RBMs.

3.2 Fine-tuning

After unsupervised learning and estimating the initial values for the network
parameters, supervised learning is performed by adding the labels as the output
units on top of the DBN. The output weights are randomly initialized, and the
cross-entropy cost function is considered to update the weights by minimizing the
cross entropy between the estimated outputs and the labels by using the back-
propagation algorithm. Because of the multiclass problem, a softmax function
is considered at the output layer to estimate the probabilities of input samples
classified to each class.

3.3 Architecture configurations

Fig. 2 shows the model architecture of a three-hidden layer DNN with 1024 neu-
rons in each layer. For the experimentation, the following parameters of the DNN
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are used: loss function: categorical cross entropy, learning rate: 0.01, optimizer:
Stochastic Gradient Descent (SGD), activation function: sigmoid, batch size for
training and prediction: 1024. A softmax function is used at the output layer.
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Fig. 2: Graphic model of DBN by stacking the RBMs.
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4 Experimental Setup

4.1 Dataset

The Oldenburg Logatome (OLLO) corpus is used for the experiments. It is a
speech database that contains simple non-sense combinations of consonants (C)
and vowels (V), which are referred to as logatomes. 150 different CVCs and
VCVs combination were spoken by 40 German and 10 French speakers. The
VCVs are the combination of fourteen central consonants and five outer vowels.
Also, eight consonants and ten vowels are combined to make the CVCs. In both
combinations the outer phonemes are the same.

Four different dialects are covered by the German speakers: no dialect; Bavar-
ian; East Frisian and East Phalian. The database contains logatome spoken at
a normal pace, followed by variabilities such as, ‘fast’, ‘slow’, ‘loud’, ‘soft’ and
‘questioning’. These variabilities can be grouped into three categories: i) speak-
ing rate (fast, slow and normal), ii) speaking style (question and statement),
and iii) speaking effort (loud, soft and normal). Each of 150 logatomes has been
repeated three times by each speaker. The same number of male and female
speakers is used to record the database to cover the gender variabilities. The
sampling frequency of the utterances is 16 kHz. OLLO has mostly been used
for comparison between HSR and ASR [19,30]. We primarily chose to use this
dataset for following reasons:

(a) Evaluating different variabilities and their effects on the ASR systems is
possible by using this database.
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(b) Also, OLLO may be useful in identifying how dialect and accent influence
the speech recognition performance.

In the following experiments, the ten speakers with no dialect have been
chosen. The variabilities fast, slow and normal are used.

4.2 Speech Features

This study uses the most popular acoustic features which include FBE, MFCC,
LPC, and Line Spectral Frequencies (LSF). Features from multiple resolutions
concerning both time and frequency domain are extracted, resulting in different
frame shifts and different feature dimension respectively.

FBE FBE features are extracted by a filter bank of 40 filters with uniform
bandwidth on the mel frequency scale. The mel frequency scale closely resem-
ble the frequency sensitivity of the human auditory system. FBE features are
computed by taking a logarithm of the filterbank energies. MFCCs are then ob-
tained by applying the DCT transformation on the FBE features. As a result
of this transformation, the features become nearly uncorrelated. To preserve the
information in both FBE and MFCC after using the DCT transform, all of the
features are used and there is no dimensionality reduction.

MFCC MFCCs are obtained by applying the DCT transformation on the FBE
features. As a result of this transformation, the features become nearly uncorre-
lated. To preserve the information in both FBE and MFCC after using the DCT
transform, all of the features are used and there is no dimensionality reduction.

LPC According to the source-filter model of speech, the vocal tract acts as a
filter on the excitation signal produced by lungs and vocal cords [31]. An all-
pole filter is considered to model the vocal tract frequency response and the
obtained coefficients as a result are the LPC features. These coefficients are
extracted from a short time windowed signal to satisfy the quasi-stationarity of
the modeled signal. The filter order is chosen as 40 to match the dimensionality
of the FBE and MFCC input features, higher than for typical LP analysis of
speech.

LSF Line spectral frequencies or line spectral pairs (LSP) is another variant of
LPC features which is less sensitive to quantization noise compared to the LPC
features. LSF order is kept as same as the LPC order which is 40.

4.3 Context Dependent Feature Representation

The input to the DNN is a context-dependent feature vector x.(n) which is
computed by considering the frames on the left and right side of the current frame
x(n). M is the number of preceding and following frames that are concatenated
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with the current frame z(n) to constitute the DNN input vector. The left and
right context size can vary, but for these experiments, both are kept same. The
concatenated input vector shown in (6) is of size D x (2M + 1), where D is the
feature vector dimension and M is the context size. In the experiments, four
different context sizes (M = 3,5,7 and 10) are considered to assess the effect of
context on the frame classification accuracy.

z.(n)=[x(n—M)T, .. xz@)?’, . .  xn+MTT, (6)

where the T is transpose operator.

5 Results and Discussion

To evaluate the effect of different speaking rate on the frame classification per-
formance, several experiments are conducted. Four different feature types are
extracted from slow, normal and fast speaking rate by using 25ms frame length
and 10ms frame shift. The frame classification task is performed by sequentially
selecting one speaker for testing and the remaining speakers for training the clas-
sifier which implies a speaker independent frame classification task. The number
of phone classes is 24. DNN is chosen as the classifier for this task. The training
procedure of DNN is according to section 3. Several experiments were conducted
by varying the number of neurons (128, 256, 512, 1024) and size of the hidden
layers (2, 3, 4, 5) for all feature sets.

Our findings revealed that 512 and 1024 neurons in each layer have the
highest accuracy rate for 3 and 4 hidden layers network. This paper, therefore,
presents the results for 3 and 4 layers architecture only having 512, and 1024
neurons. The tables 1 to 4 show the frame accuracy rate for the training and
test data with normal speaking style. The performance of FBE is higher than
the other feature types whereas LPC has the worst performance. By looking at
the effect of context size, we see that by moving from context size M = 3 to the
higher values, the performance increases significantly. From context size M =5
to M = 10 there is not that much increase in the performance for LSF and
MFCC, somehow the performance is saturated, but for the FBE it has almost
one percent better accuracy rate.

Table 1: Frame accuracy rate for different features and different structures for
normal speaking style and context size M = 3

Features

DNN LPC LSF MFCC FBE
Structure train test |train test |train test |train test
3layers-512nodes ||86.75 60.14(86.50 66.56 {91.22 68.39 [89.45 76.31
3layers-1024nodes ||86.50 60.03(86.16 66.35 [91.23 69.86 [89.47 76.48
4layers-512nodes ||85.27 59.06|85.93 66.52 {91.46 68.95 [89.36 75.91
4layers-1024nodes |[84.56 59.11|84.73 65.96 |86.16 69.59 [88.55 76.02
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Table 2: Frame accuracy rate for different features and different structures for
normal speaking style and context size M =5

Features

DNN LPC LSF MFCC FBE
Structure train test |train test |train test |train test
3layers-512nodes ||87.60 62.04(89.14 72.82 {94.53 72.99 [93.53 82.70
3layers-1024nodes {|90.62 64.30(91.52 73.73 (94.99 74.29 93.74 82.95
4layers-512nodes  ||87.55 61.55|89.88 72.56 [93.52 72.39 |93.34 82.56
4layers-1024nodes ||87.87 63.24|90.43 73.14 {93.86 74.35 [93.54 82.73

Table 3: Frame accuracy rate for different features and different structures for
normal speaking style and context size M =7

Features

DNN LPC LSF MFCC FBE
Structure train test |train test [train test [train test
3layers-512nodes ||91.24 62.09(93.00 72.16 |97.55 74.17 (94.12 82.31
3layers-1024nodes {|92.13 63.19(92.80 72.72 196.83 73.66 |94.24 82.13
4layers-512nodes |[89.98 60.81(93.03 71.92 196.10 72.82 193.99 82.36
4layers-1024nodes |[89.56 61.34(92.86 72.02 195.92 73.12 [94.17 82.08

Table 4: Frame accuracy rate for different features and different structures for
normal speaking style and context size M = 10

Features

DNN LPC LSF MFCC FBE
Structure train test [train test [train test [train test
3layers-512nodes {|92.99 62.51(95.08 73.53 [97.28 73.81 [95.68 83.58
3layers-1024nodes (|93.57 64.13(94.31 73.75 |97.38 74.88 195.59 83.44
4layers-512nodes ||86.54 60.29(93.44 72.76 [95.43 72.68 [94.64 83.05
4layers-1024nodes |[90.79 62.37|93.58 73.46 (97.01 74.75 (94.81 83.22

In order to examine whether speaking rate would have different impact on
consonant and vowel recognition, we have looked at the average accuracy of the
frame classification for vowels and consonants, respectively. In addition, the mis-
classifications were broken down into two separate categories for both vowels and
consonants: confusions within the broad class (e.g. a consonant misclassified as
another consonant) and confusions between the classes (e.g. a vowel misclassi-
fied as a consonant). Fig. 3 shows these performance measures for test data with
different speaking rates using FBE features as the input vector with context size
M = 10 to a DNN with 1024 hidden nodes in each of the three hidden layers.
By considering the normal speaking rate as the reference point, we can see that
the true classification rate of the consonants in fast speaking rate is the lowest
one, and it is confused more with vowels. Also the true classification rate of the
vowels in slow speaking rate is the lowest one and the vowels confusion increased.
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Table 5: Frame accuracy rate for fast (V1) and slow (V2) speaking styles on the
networks trained on normal speaking style, context size M = 3

Features

DNN LPC LSF MFCC FBE
Structure V1 V2 |V1 V2 V1 V2 |V1 V2
3layers-512nodes ||57.83 58.02|63.22 63.34 [64.77 64.57 (72.71 70.47
3layers-1024nodes ||57.61 57.91|63.12 63.31 |66.34 65.06 [72.92 71.07
4layers-512nodes ||56.87 56.82(62.13 63.48 [65.06 64.58 (72.32 69.68
4layers-1024nodes |[56.60 57.19|62.56 62.99 |65.50 64.84 (72.51 70.58

Table 6: Frame accuracy rate for fast (V1) and slow (V2) speaking styles on the
networks trained on normal speaking style, context size M = 5

Features

DNN LPC LSF MFCC FBE
Structure V1 V2 |V1 V2 V1 V2 |V1 V2
3layers-512nodes ||57.48 58.53|65.06 65.88 |67.08 67.77 |75.48 73.63
3layers-1024nodes ||58.11 58.93|65.76 66.19 [67.37 67.48 [75.65 73.39
4layers-512nodes |[56.91 58.32(64.73 65.27 |66.44 67.06 [74.89 73.12
4layers-1024nodes ||56.87 57.69(65.25 65.64 |66.14 65.65 [74.88 72.73

Table 7: Frame accuracy rate for fast (V1) and slow (V2) speaking styles on the
networks trained on normal speaking style, context size M =7

Features

DNN LPC LSF MFCC FBE
Structure V1 V2 |V1 V2 V1 V2 |V1 V2
3layers-512nodes ||57.86 58.76(66.01 67.21 |67.87 68.85 |75.81 74.42
3layers-1024nodes ||56.71 57.92|66.33 67.34 |68.09 68.13 [75.82 74.67
4layers-512nodes ||58.24 59.61(65.56 67.66 [66.86 67.42 |{75.93 74.69
4layers-1024nodes |[56.92 58.19(66.09 66.81 |67.82 67.81 (75.81 74.37

Table 8: Frame accuracy rate for fast (V1) and slow (V2) speaking styles on the
networks trained on normal speaking style, context size M = 10

Features

DNN LPC LSF MFCC FBE
Structure Vi1 V2 |V1 V2 V1 V2 |V1 V2
3layers-512nodes ||56.98 59.20(67.73 68.37 |67.17 68.03 [75.52 74.92
3layers-1024nodes ||58.55 60.23|66.61 68.85 |68.19 69.16 |75.79 74.91
4layers-512nodes |[54.92 57.16|65.23 67.88 [66.05 67.75 |75.24 74.29
4layers-1024nodes |[57.08 58.99(66.47 68.43 |67.90 68.97 [75.59 74.85

For justification of these claims, we look at the confusion matrices for slow
and normal speaking rates. In Fig. 4 it can be easily found that the slow speaking
rate causes the confusion between long and short vowels more than the normal
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speaking rate. It is worth mentioning here that the summation of the rows of
confusion matrices in Fig. 4 are not equal to one, because the confusion with the
consonants are not shown here.

The results in the tables 5 to 8 are from the same networks as in the previous
experiments. The only difference here is that the networks are trained on the
‘normal’ speaking rates while the performance is evaluated on the slow and fast
speaking test data sets. In these experiments, the FBE results are superior among
the other feature types. The context size does not have any effect on the LPC
results, but for the other features the performance increases moderately. FBE
has the higher performance even with the smaller context size. For the FBE the
accuracy rate for fast speaking style is always better than slow speaking rate,
but for the other feature types, the slow speaking rate has better performance
than the fast speaking rate within the longer context size.
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Fig. 3: Rates for correct and incorrect classification of consonants and vowels.
The green bar shows the correct classification rate for consonants, blue bar
shows the misclassification of a consonant as another consonant, red bar shows
the confusion of the consonants with vowels. The yellow bar shows the correct
classification rate of vowels, cyan bar shows the misclassification of a vowel as
a consonant and the purple bar shows the confusion of the vowels with another
vowel.
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(a) Slow speaking rate (b) Normal speaking rate

Fig. 4: Vowel part of the confusion matrix for different speaking rate

6 Conclusion

The paper provides a comparative analysis of acoustic features for LPC, LSF,
MFCC, and FBE trained using DNN on slow, fast, and normal speaking utter-
ances. Different combinations of DNN architectures by varying the number of
layers and the number of nodes in each layer are tested. Three layers architec-
ture with 512 and 1024 nodes in each layer performed well. Further experiments
by varying the context window size for each feature are performed. Our initial
findings revealed that on different context sizes, FBE achieved the highest frame
classification accuracy for the normal speaking style. A similar trend was ob-
served when the classifier was trained on the normal speaking rate and tested
on slow and fast speaking rate. It was also observed that the bigger the context
window, the better the classification accuracy.

Future work should focus on evaluating different deep learning classifiers such
as those suited for predicting time series data, e.g., long short-term memory to
see the effect of phoneme recognition on variable speaking rates.
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