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Problem Description
Surface electromyograms (sEMG) contain artifacts induced by e.g. sweat, motion and external
forces. These artifacts are undesirable because they impair the performance of myoelectric
prosthesis control systems.
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sensing resistor (FSR) outputs and muscle contraction force using a load cell has been
constructed, together with an experiment protocol for data acquisition. In this assessment the
setup will be completed, improved and assessed through physical experiments.
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2. Improve and characterize a prototype sEMG sensor with built-in FSRs that was developed in a
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3. Perform data acquisition according to the predefined protocol.

4. Assess at least two methods for “artifact-free force estimation” based on mathematical models
and/or existing “black box” pattern recognition techniques.
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Abstract

Prostheses are artificial body parts that can be used by amputees. Myoelectric
prostheses are controlled by so-called surface electromyograms (sEMG) that
are acquired on the skin surface of the residual limb. A well-known problem in
myoelectric prostheses is motion artifacts, these artifacts cause unwanted be-
haviour of the prosthesis.

The purpose of this study is to try to cancel the effect motion artifacts have
on myoelectric prosthesis control, in order to avoid unsolicited prosthesis be-
haviour.

The subject of myoelectric prostheses and motion artifacts are outlined in
this study, together with the development and characterization of a sensor that
can do simultaneous measurements of sEMG and contact forces between a sur-
face electrode and the skin. A protocol has been developed for recording of the
different signals in a laboratory. Suitable data sets have been acquired from
a test subject, and signal processing and pattern recognition methods have
been applied on these data sets to generate muscle force estimates. The pat-
tern recognition methods were linear and quadratic mapping functions, and
multi-layer perceptron network.

To achieve better force estimates when motion artifacts are presence, signals
from FSRs are taken into consideration together with sEMG signals. A qualita-
tive comparison reveals obvious improvements for the sEMG sensor when FSR
measurement is included. The system presently undergoes quantitative assess-
ment of static and dynamic performance.
The final step will hopefully be to integrate FSRs in a real prosthesis socket.
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1 Introduction

Development of prosthetic devices has been an issue for a long time, dating
all back to wooden legs. The mechanical approach to prosthesis control was
initiated in the U.S. Prostheses can be controlled in several ways, myoelectric
control is one approach. The concept of myoelectric control was introduced in
the 1940s. With the development of semiconductors device technology and the
associated decrease in device size and power requirements, this clinical appli-
cation saw promise, and research and development have since then increased
dramatically. (Parker et al., 2004).
Myoelectrical prostheses control the limbs by converting muscle movements

from the residual limb to electrical signals. This muscle movements are de-
tected by surface electrodes, so-called myoelectrodes. Figure 1 presents the re-
lationship between normal and myoelectric control systems (the yellow area
represents the part of the system that is removed after an amputation).

Figure 1: Block diagram illustrating relationship between normal and myoelectric con-
trol systems

Electrically powered prostheses with myoelectric control have several ad-
vantages over other types of prostheses, but the effect that motion artifacts
have on this control strategy is unwanted. Motion artifacts are signal distur-
bances that arise from movements and varying contact forces at the surface
electrode-skin junction (this subject is closer described in Section 2). These
artifacts are undesirable because they impair the performance of myoelectric
prosthesis control, and are known to cause unsolicited prosthesis behaviour.
Despite these problems, artifact cancellation techniques in myoelectric pros-

thesis control are extremely limited described in the research literature. Hope-
fully, the sensor developed in this study can be a contribution in the right direc-
tion.
A great effort has been made to record suitable data sets in the laboratory, and
the developed signal processing and pattern recognition methods from Fougner
(2007) have been applied on these data sets. Their performance has been eval-
uated, compared and visualized.



2 1 Introduction

The report is outlined as follows:

Section 2: Background theory

Section 3: The aim of the study is presented

Section 4: Presentation of the equipment at the EMG/FES laboratory

Section 5: Discussion of the specific problem and modelling of the surface
electrode-skin junction

Section 6: Describes the construction of a device for collecting simultaneous
measurements of the myoelectric signal, contact forces and other rele-
vant figures (Sæther (2007)). Improvements and characterization of this
sensor will be presented

Section 7: Method description

Section 8: Findings/Results

Section 9: Discussion

Section 10: Conclusion

Section 11: Suggestions for future work
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2 Theory

2.1 The human nervous system

This section is cited from Sæther (2007).

Skeletal muscles are controlled by the voluntary nervous system. The central
nervous system (CNS) sends short electric pulses, these are called action poten-
tials, via motor neurons (or motoneurons) to the motor end-plates of the mus-
cle fibers. A motor neuron and all muscle fibers it innervates form a separately
controllable unit of the muscle. This is called the motor unit. Muscle force is
decided by the stimulation rates of the motor units (a muscle consists of several
motor units) and the recruitment of motor units.
The CNS manages coordinated limb motion by controlling in a hierarchical

manner. Premotor cortex is responsible for high-level planning of coordinated
tasks and instructs the motor cortex to issue the necessary stimuli to the appro-
priate motor nerves. The motor nerves innervate muscles in an intricate pattern
of recruitment so as to produce smooth and dexterous motion. Feedback paths
of tactile force, muscle tension, and muscle length allow precise regulation of
force output and limb position. See Seeley et al. (2007) for details.

2.2 Electromyography

The study of muscle function through the inquiry of the electrical signal the muscles
emanate (Basmajian and DeLuca, 1985).

When a muscle contracts, electrical activity is generated. Electromyography
(EMG) is a medical technique for recording and evaluating this extracellular
electrical potential.

EMG is performed using an instrument called an electromyograph, to pro-
duce a record called an electromyogram. An electromyograph detects the elec-
trical potential generated by muscle cells when these cells contract. Electrodes
used in EMG are of a wide variety of type and construction, and their use de-
pends on the principles that they must be relatively harmless for the user/pa-
tient, and must be brought close enough to the muscle under study.

There are two main types of electrodes used for the study of muscle be-
haviour, inserted electrodes and surface electrodes. To perform intramuscular
EMG, a needle electrode is inserted through the skin into the muscle tissue.
When EMG is used for prosthesis control, the needle electrodes are too painful,
and thus surface electrodes are used. The surface electrodes are not as accu-
rate as needle electrodes but are still considered as a good measure of muscle
activity or muscle force. These surface electrodes is called myoelectrodes, and
the resulting signal is called a surface electromyogram (sEMG). (Muzumdar,
2004a), (Fougner, 2007), (Basmajian and DeLuca, 1985).
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2.2.1 Surface electrodes

Surface electrodes can be constructed with an active or passive configuration.
In the passive configuration the electrode consists of a detection surface that
senses the current on the skin through its skin-electrode interface. In the ac-
tive configuration, the input impedance of the electrodes is greatly increased,
rendering it less sensitive to the impedance of the electrode-skin interface.
The active surface electrodes have been developed to eliminate the need for

skin preparation and conducting medium. These are often referred to as dry or
pasteless electrodes. These electrodes can be either resistively coupled or ca-
pacitively coupled to the skin. In the case of the capacitively coupled electrode,
the detection surface is coated with a thin layer of dielectric (nonconducting)
substance, and the skin electrode junction behaves as a capacitor. Although the
capacitively coupled electrodes have the advantage of not requiring a conduc-
tive medium, they have a higher inherent noise level.
The active surface electrodes are preferable not only because they provide an

sEMG signal of greater fidelity, but also because they are convenient to use. The
simplicity and speed with which they may be applied to the skin is rapidly mak-
ing them the electrode of choice for pragmatic applications as in myoelectric
prosthesis control. The main disadvantages of surface electrodes are that they
may be used effectively only with superficial muscles and that they cannot be
used to detect signals selectively from small muscles. The detection of cross-talk
signals from other adjacent muscles becomes a concern.

2.2.2 Bipolar detection configuration

In the bipolar detection configuration two detection surfaces are used to detect
two potentials in the muscle tissue of interest, each with respect to the reference
electrode. The two signals are fed to a differential amplifier for elimination of
common mode components in the two signals (Figure 2, (Kampas, 2001)).

Figure 2: Differential amplifier

The measure of the ability of the differential amplifier to eliminate the com-
mon mode signal is called the common mode rejection ratio (CMRR). For an
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ideal differential amplifier CMRR = ∞. This idealized behaviour cannot be
achieved with present day electronics.

Signals emitting from the muscle tissue of interest near the detection surface
will be dissimilar at each detection surface due to the localized electrochemi-
cal events occurring in contracting muscle fibers. Whereas AC noise signals
originating from a more distant source (such as 50 Hz electromagnetic signals
radiating from power cords, outlets and electrical devices) as well as DC noise
signals (such as polarization potentials in the metal-electrolyte junction) will be
detected with an essentially similar amplitude at both detection surfaces and,
therefore, will be subtracted prior to being amplified. The spacing between the
signal electrodes also affects the appearance of the sEMG. Wide electrode spac-
ing results in a longer time for the depolarization wave to pass between the two
active electrodes, and more smearing of the signal will occur. This again leads to
loss of high frequency information in the signal. The smaller the electrode used
in prosthesis, the higher frequencies can be detected. A larger interdetection
surface spacing will render a lower bandwidth.

2.3 The concept of myoelectric controlled prostheses

This section is cited from Sæther (2007) (some modifications).

2.3.1 The myoelectric signal

The roots of "Myoelectric" involve two words. "Myo", from Greek mys, meaning
muscle and electric referring to electricity. From this, a myoelectric signal (MES)
is defined as the electrical activity produced by a contracting muscle.

2.3.2 Myoelectric control

The MES (the sEMG after being amplified, rectified and filtered) is an effec-
tive and important signal for the control of powered prostheses. Myoelectric
control is a broad subject, ranging from the practical aim of providing an am-
putee with a functional prosthesis to the pursuits of modelling and extracting
more and more information from the MES. Conceptually a myoelectric control
system can be thought of as a switch that controls the power to an electric ter-
minal device. Surface electrodes on remnant muscles within the residual limb
gives a signal that activates the switch. Power comes from a battery that can
be recharged. The sEMG in a residual limb is amplified, processed and used
to control the flow of electricity from a battery to a motor, which operates an
artificial limb (Figure 3).

Voluntarily controlled parameters of MES from a muscle or muscle group
are used to select and modulate a function of a multifunction prosthesis. There
is also demand for simultaneous movements, that is, the prosthesis should per-
form more than one function at a time. It is not reasonable to expect that the
exquisite control of the CNS should be extracted from the MES, but -hopefully-
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Figure 3: Basic concept of myoelectric control (from Muzumdar (2004a))

with an intelligent control system the prosthesis might be controlled in an ac-
ceptable way.

Since myoelectric prostheses control the limbs by converting muscle move-
ments to electrical signals, the amputees are allowed to control the artificial
limb more directly. The concept is quite simple, but the design of a clinically
useful myoelectric prosthesis is extremely difficult. Challenge of getting a pros-
thesis that is comfortable to wear increases when the weight of the prosthesis
increases.
One of the primary design concerns when using myoelectric control is the

power consumption. The system must be battery operated, so the power con-
sumption must be kept to a minimum. All powered prostheses currently on
the market employ small rotary DC motors to perform the required movement
function.
All myoelectric prostheses need to be adjusted to suit the individual user,

both design/interface and control algorithms. An important point in prosthesis
control is that the adjustments also go the other way around, the user need to
adjust to the prosthesis as well.

2.3.3 Advantages and limitations

Electrically powered prostheses with myoelectric control have several advan-
tages over other types of prostheses:

• The user does not need straps and other harnesses required of body-
powered and mechanical switch control prostheses (the prosthesis still
has to be fastened to the residual limb, but the prosthesis socket is fitted
to the stump)

• The MES is non-invasively detected on the surface of the skin
• The electric battery is possibly the most convenient form of power supply
that can be incorporated into a prosthesis
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• The controller can be adapted to proportional control with relative ease
• The electronic circuits are continuously improved and miniaturized
• The muscle activity required to provide control signals are relatively small
and can resemble the effort required of an intact limb

There are also control limitations in myoelectric control:

• Lack of robustness in the processing of the input (MES) to specify the
output (joint-space kinematics) and the disparity of the means of manip-
ulation from natural motor control and learning

• The random nature of the MES and limits on prosthesis activation delay
make fine control difficult

(Parker et al. (2004))

For unilateral amputees, the prosthesis is often used mostly as an assistant
device. Single-hand movements will usually be done with the healthy hand,
not the prosthesis. In this case the prosthesis do not need to perform every
possible activity of daily living, it should rather be designed as a supportive
device (holding the bread while the healthy hand slices it).

2.3.4 Current research

One thing that is important for prostheses is that they should be a remedy
for the amputee, not a burden. The objective in the design of any prosthetic
control system must be to allow the amputee to concentrate on things other
than the contraction of specific muscles. Control is then done on a subconscious
level, this increases the degree of acceptance and efficiency. The goals of current
research in myoelectric control is to provide better accuracy in state selection
and to present a more natural means of effecting control.

2.4 Artifacts

A structure or feature, visible only as a result of external action or experimental
error (Ödman and Öberg (1982)).
Artifacts consists of all types of disturbances in biopotential signals. The mo-

tion artifacts in electrode recording are composed of a number of different sub-
components originating from various electrochemical and electrophysiological
sequences.

2.4.1 Motion Artifacts

This section is cited from Sæther (2007) with a few modifications.
Surface electromyograms (sEMG) contain artifacts induced by e.g. sweat,

motion and external forces. These artifacts are undesirable because they impair
the performance of prosthetic control systems.
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A well-known problem in myoelectric prostheses is motion artifacts. This is
a kind of signal disturbance that arise from movements and varying contact
forces between the surface electrode and the skin. The frequency content of
motion artifact is typically below 10-20 Hz. The general approach to motion
artifact cancellation is to high-pass filter the sEMG with a cutoff frequency of
approximately 20 Hz. Little "true" signal power is lost, however some motion
artifacts is rejected. But not always all of the artifacts. These artifacts can cause
unwanted behaviour of the prosthesis.

There are at least two sources of motion artifact in surface electrodes: me-
chanical disturbance of the electrode charge layer and deformation of the skin
under the electrodes.

The first type occurs when there is relative movement between the elec-
trode and the underlying skin. If this happens a noise signal is produced. This
signal is similar to the sEMG and can be confused with the true sEMG. In severe
cases this motion artifact looks like a contraction to the control system. Figure 4

Figure 4: Motion artifact & electrode lift (from Muzumdar (2004a))

shows the phenomenon where a surface electrode has been moved sideways.
A surface electrode converts the ionic activity of a contracting muscle into an
electric current, just like a transducer. This process sets up a charge double
layer at the electrode-skin interface, which can be mechanically disturbed. This
situation is analogous to that of a parallel plate capacitor in which the separa-
tion of the plates and the area are variable. When using this simple model and
the charge at the interface is assumed constant, then the artifact developed is
dependent on the relative movement of the electrode with respect to the elec-
trolyte/skin. The magnitude of this artifact component is highly dependent on
the nature of the electrode material.

Skin stretch reflex is a second phenomena leading to motion artifacts. These
motion artifacts arise because a potential difference, the skin potential, exists
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across the layers of the epidermis (upper layers of the skin), and the value
of this potential changes when the skin is stretched or deformed. This com-
ponent of motion artifacts is independent of electrode material. In short-term
laboratory studies, this type of artifacts can be minimised by reducing the skin
impedance by removing the upper layers of the skin by abrasion (Tam and Web-
ster, 1977), and the use of electrode gels that are rich in ions. In myoelectric
control when the prosthesis is used on a long-term basis, this is not favourable,
and is of limited use.

An approach in this situation, is to avoid relative movement between the
myoelectrode and the skin surface. This demands a very good fitting between
the socket and the residual limb. When the prosthesis is exposed to an exter-
nal load, this fitting should be such that there should be no relative movement
between the myoelectrodes in the prosthesis and the residual limb. An extreme
case is if the myoelectrode completely loses contact with the skin. This is called
electrode lift, and an example is showed in Figure 4. When an electrode lift oc-
curs, the result is often uncontrolled and unsolicited prosthesis behaviour. This
is because the common-mode voltage of the body is present on one electrode
and not the other. The differential amplifier fails to remove the domestic sup-
ply voltage interference and the prosthesis is effectively driven by the 50 Hz
interference rather than the MES. (Muzumdar, 2004b).

Another approach is considered in this thesis, namely using force sensing
sensors to cancel motion artifacts.

Motion artifact can be reduced in sEMG recordings through signal condition-
ing. Conforto et al. have compared four techniques for motion artifact removal
from sEMG:
• Filtering with an eight order Chebyshev high pass filter with corner fre-
quency at 20 Hz,
• Filtering with a moving average filter to estimate the motion artifact and
subtracting the estimated artifact from the signal record,
• Filtering with a moving median filter to estimate the motion artifact and
subtracting the estimated artifact from the signal record,
• Filtering using an adaptive filter based on orthogonal Meyer Wavelets (See
Clancy, Morin, and Merletti (2002) for more).

Luca et al. (2006) have tested the electro-mechanical performance of dif-
ferent active sEMG sensors. Their findings shows that contouring the electrode
surface using a more aggressive double-sided tape increases the adhesive per-
formance of sensors compared to more standard configurations. Application of
a hydro gel to the sensor contacts should be used with caution to avoid mo-
tion artifacts resulting from mechanical perturbations. Their work showed that
the use of a surfactant did not provide obvious advantages over through skin
preparation when assessing perturbations.
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2.4.2 Other types of artifacts

Electrical artifacts produced by the heart may contaminate EMG signals when
recording surface EMG from torso muscles. This source of noise is a problem
for myoelectric prosthesis control in a patient with bilateral amputations at
shoulder disarticulation level, where the control signals are taken from the rein-
nervated pectoralis muscles of the patient. Zhou, Lowery, ff Weir, and Kuiken
(2005) have looked on removal of ECG (electrocardiogram) artifacts frommyoelectric
prosthesis control signals developed by targeted muscle reinnervation. See also
(Zhou et al., 2007).

Risdal (2006) have considered the possibility of adaptive filtering for com-
pression artifact removal. He takes use of the MultiChannel Recursive Adaptive
Matching Pursuit (MC-RAMP). See Appendix A in his PhD Thesis.

To obtain readable recordings of electrophysiological events through surface
electrodes, the skin impedance between recording electrodes must be kept low.
Various methods have been tried for reducing skin impedance enough to obtain
recordings with little noise but without unduly hurting the subject. Okamoto
et al. (1987) introduced a method of lightly scratching the skin with a needle.
This dramatically lowers the skin impedance and is relatively painless. This
method is not practical in prosthetic issues.

2.4.3 Motion artifact removal methods used in ECG (electrocardiogram)

The reason for including this section is that possibly, some of these methods can
be used in artifact removal in myoelectric prosthesis control as well as in ECG.
Motion artifact can produce large amplitude signals in the ECG that may be

misinterpreted by clinicians and automated systems resulting in misdiagnosis,
prolonged procedure duration and delayed/inappropriate treatment decisions.

Hamilton and Curley (1997) have demonstrated that adaptive filtering sig-
nificantly can reduce motion artifact in ECG recordings, using a signal that is re-
lated to skin stretch. Skin potentials from the forearm were measured with three
Ag-AgCl electrodes and a standard ECG amplifier. At the same time the skin
stretch was measured with a miniature displacement sensor. The skin stretch
signal from the sensor on the electrode was filtered with a digital filter whose
coefficients were calculated adaptively using an LMS (least mean square) al-
gorithm with signal statistics calculated from the entire data set. The filtered
signal from the sensor was then subtracted from the skin potential signal. The
motion artifacts were manually generated by pulling on the skin on either side
of the electrode and by pushing directly on the center of the electrode. In a
practical system, two sensors should be required for each electrode. The sen-
sors used in this test were very expensive. The ideal system would require a
sensor sufficiently inexpensive that it could be incorporated into a disposable
electrode.
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Like Hamilton and Curley (1997), Tong et al. (2002) have investigated the
possibility of adaptive reduction of motion artifact in the ECG. Their hypothe-
sis: motion artifact can be reduced using electrode motion as a reference signal
to an adaptive filter. Their conclusion were that using electrode motion as mea-
sured by either an anisotropic magnetoresistive sensor or accelerometers as the
input to an adaptive filter reduces the amount of motion artifact present in the
ECG.

Liu and Pecht (2006) have developed a method/hardware to directly mea-
sure skin stretch simultaneously with the ECG. An optical sensor is used to
capture the skin strain, this sensor is integrated in an ECG electrode. Using this
skin stretch data, skin stretch induced noise will be reduced in the measured
ECG with adaptive filtering technique.
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3 Aim of the study

Surface electromyograms (sEMG) contain artifacts induced by e.g. sweat, mo-
tion and external forces. A well-known problem in myoelectric prosthesis con-
trol is the presence of motion artifacts. These are signal variations caused by
relative motion and varying contact forces at the surface electrode-skin inter-
face (electrode-electrolyte junction). These artifacts are undesirable because
they impair the performance of the prosthesis control systems, and are known
to cause unsolicited prosthesis behaviour. Despite these problems, comparative
studies of artifact cancellation techniques in myoelectric prosthesis control are
extremely limited in the research literature.

The main purpose of this study is to consider the effect motion artifacts have
on myoelectric prosthesis control (the problem with sweat is disregarded). To
control myoelectric prostheses in a proper manner, it is significant to minimise
the effect of these motion artifacts.
A prototype sEMG sensor with built-in force sensing resistors (FSRs) (devel-

oped in Sæther (2007)), will be improved, characterized and used to measure
external forces the sensor is exposed for. Potentially the artifacts caused by
these forces can be cancelled by taking the signals from the FSRs into consid-
eration when estimating muscle force. The long term goals are to contribute to
advanced sEMG sensor design and set guidelines for their use.

Hypothesis: Cancel the effect motion artifacts have on sEMG-based contraction
estimate.
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4 Laboratory Equipment

In this section the equipment at the EMG/FES laboratory of the Department
of Engineering Cybernetics will be presented. This section is cited from Sæther
(2007) with a few modifications.

4.1 Equipment on the laboratory

• Digitimer Ltd NL844 Pre-Amplifier
• NeuroLog by Digitimer, model NL900D
• BNC-2090, National Instruments
• PCI6251, DAQ-card

4.1.1 sEMG sampling equipment

The NL844 is a four channel pre-amplifier with input impedance 100MΩ. Its
low noise and high impedance differential inputs make it particularly suit-
able for use as a headstage pre-amplifier. It is ideal for isolated EMG, elec-
troencephalography (EEG) or electrocardiogram (ECG) applications. This pre-
amplifier has a fast recovery time from stimulus artifact pulses.
The pre-amplifier is connected to an isolator (NL820) (inside the NL900D).

This isolator is internally coupled to a filter, NL135. The output from the filter is
coupled to a BNC input on an adapter, BNC-2090. The adapter is again coupled
to a DAQ-card from National Instruments, PCI6251. See Figure 5.

The DAQ-card processes the sEMG, and imports it to Matlab (and Simulink).
An S-function is responsible for this transmission. The S-function is the driver
of the DAQ-card, and it is implemented in C. The source code is available for
use at the EMG/FES laboratory (and also in Appendix E). Matlab has a limited
sampling frequency, maximum 100 Hz. This is too slow for the MES, which
lies in the area 0-500 Hz. The DAQ-card resolves this problem by sampling the
signals into a buffer, Matlab empties this buffer for each sample. (Midtgaard,
2006).
(Information in this section is fetched from NationalInstruments (2008) and
Digitimer (2008))
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Figure 5: Signal processing equipment. Myoelectrode - NL844 - NL900D - BNC-2090 -
PCI6251 (from top to bottom)
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4.1.2 Force- and sEMG sampling equipment

A sensor for collection of sEMG and external forces (causing motion artifacts)
has been constructed, see section 6. An analogue load cell (Waegezelle Z6FC3
from Hottinger Baldwin Messtechnik) for recording muscle force contraction
from a test subject is also used (Figure 6).

Figure 6: Load cell (from HBM (2008))

4.1.3 Connections and earthings

Figure 7 shows a circuit diagram of all the connections and earthings on the
laboratory.

Figure 7: Laboratory connections
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5 Model of the surface electrode - skin junction

When modelling the surface electrode-skin junction, several factors have to be
considered. In this section some of these factors are discussed.

5.1 Impedance

All forms of matter (also tissue and skin) present an impedance to the transmis-
sion of an electric current. The impedance function is a vector quantity, hence it
is expressed in terms of complex numbers. The real part denotes the resistance
and the imaginary part denotes the susceptance.

Tissue resistance depends on tissue type and tissue orientation. Body resis-
tance is not a fixed quantity, it varies from person to person from time to time
(www.allaboutcircuits.com (2008)). The farther the EMG signal needs to travel
through body tissue before reaching the surface electrodes, the more resistance
it encounters. Energy is absorbed by the resistance, and the result is that less of
the original energy reaches the surface electrode. Body tissues tend to absorb
higher-frequency components of the signal, allowing lower frequencies to pass
through more readily (body tissue works as a low pass filter).
If there is adipose tissue between the muscle and the surface electrodes,

more of the signal gets absorbed. A fatty layer acts like an imperfect electrical
insulator between the muscle and the electrodes. The fatty layer plays a larger
role in the interpretation of resting sEMG values (isometric contractions) than
in dynamic sEMG recordings.

The latter part of the impedance function (susceptance) exists due to the
presence of capacitance and/or inductance, two basic electrical properties of
matter. In media such as muscle tissue, fatty tissue, and skin, the inductance is
essentially immeasurable. However, the capacitance is present in a significant
amount and cannot be ignored. The impedance between the surface electrode
and the skin is a delicate matter, and it is important to keep the impedance of
the skin at the electrode site as low as possible.

5.2 The surface electrode-skin junction

The sEMG sensor is an electrochemical transducer that detects biopotentials us-
ing metallic contacts placed on the skin tissue. One of the simplest expressions
of an impedance function, which is useful for conceptualising the electrical
characteristics of electrodes and tissue, is the impedance of a resistance in se-
ries with a capacitor, see Figure 8. Here, only one of the surface electrodes is
modelled (in bipolar detection two surface electrodes are used), but the same
situation are applicable for the other electrode as well. A surface electrode
works as a power converter. It converts ionic activity from a contracting mus-
cle to an electric current. This process allows accumulation of electric energy
between the surface electrode and the skin. This can be disturbed mechanical,
as described in section 2, and appears as motion artifacts. A similar situation
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occurs in a plate capacitor. Separation of the plates and the area varies. In this

Figure 8: Model of the surface electrode - skin junction

configuration the impedance function is expressed as a vector Z(ω):

Z(ω) = R +
1

jωC
(1)

R - Resistance (Ω - Ohm), C - Capacitance (F - Farad)

The capacitance increases when pushing the electrode closer to the skin
(common area of the conductors (A) increases - distance (d) decreases)⇒ the
voltage decreases and the amplitude is affected. From this it follows that the
equation of the capacitance should be a function of area and distance, as in
equation 2.

C = f(A, d) = ε0 · ε · A
d

(2)

• ε0 - Permittivity, vacuum = 8.8542 * 10e-12 F/m

• ε - Relative permittivity of the matter

• A - Conductor area

• d - Distance between the conductors

Equation 3 is a suggestion of a linear model of how the area changes. Taking
the last part into consideration makes it a Taylor model. The reason for includ-
ing a non-linear part in the equation can be to keep the effect when a lopsided
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pressure is applied. A0 is the initial area, and F is the external force applied
(causing motion artifacts).

A = A0 + A1F (+A2F
2 + · · · ) (3)

Equation 4 is a model of how the distance between the conductors changes.
d0 is the initial distance, and F is the external force applied.

d = d0 − d1F (4)

The resulting sEMG signal becomes

sEMG = f(es) + g(F ) (5)

F in equation 5 should be derived from equations 3 and 4.

5.2.1 Input impedance and Input bias current

The importance of the CMRR (see section 2) becomes apparent when dealing
with the effects of external fields such as power-line induced interference radi-
ating from the environment.

The effect of an external signal field acting on the tissue media can be mod-
elled as in Figure 9. Two current sources (in) in parallel with their respective
tissue impedances (ztn). If the tissue media impedance (zn) is isotropic, and the
external field gradient across the tissue media is constant, the fields induced
currents (in) at each input are equal and will cancel. The higher the CMRR of
the amplifier, the better cancellation of these undesirable currents.
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Figure 9: Upper part of figure: Diagram representation of impedances and currents in
the tissues, electrode and amplifier, lower part: Circuit diagram, representing
the electrical interaction of the EMG signal, external noise, electrode and
amplifier (From Basmajian and DeLuca (1985))

is - source current from EMG signal

zts - tissue impedance seen by source current

ztn - tissue impedance seen by noise current

in - common current for noise

zte - tissue electrode impedance of the metal electrolyte interface

ib - input bias current from amplifier

za - input impedance of amplifier (100 MΩ)

zte and currents are varying with pressure.

In order to measure the sEMG signal in an accurate way, it is necessary to
understand how the input impedance and input bias current of the differential
amplifier can influence the amplitude and shape of the sEMG.

Input bias current can be thought of as the minimal constant current re-
quired keeping the differential amplifier active. The differential amplifier has a
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finite impedance at each input, and nonzero input bias current. The bias current
flows out of the amplifier (demonstrated in Figure 9), this leads to no amplifi-
cation of any signal which has a current less than the bias current. This is not a
problem when using surface electrodes.

The distributed impedance of the sEMG signal source is determined by the
impedance characteristics of the tissue (zts) and the tissue-electrode interface
(zte). These impedances have resistive and reactive components due to the
capacitive effects of tissue media and electrode interface. Distributed source
impedance can vary greatly, depending on the impedance of the surface elec-
trode interface configuration (zte) and amount of intervening tissue (zts) (Bas-
majian and DeLuca, 1985).

To minimise wave shape distortion and attenuation of the signal source
(muscle) due to the shunting by the amplifier, the input impedance (za) should
be much larger than the distributed source impedance. The input impedance
of the amplifier used in this experiment is 100 MΩ. The input impedance of
the sEMG preamplifier should be 10 to 100 times greater than the impedance
at the electrode-skin interface. High input impedance of the sEMG preamplifier
makes the sEMG more robust to poor electrode-skin connections.
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6 The prototype sEMG sensor

6.1 Construction of the sensor

It has been developed a prototype sEMG sensor with three built-in force sensing
resistors (FSRs). This sensor is used for recording sEMG and contact forces
between surface electrode and skin (applied to the sensor as external forces).
The sensor consists of two parts, a surface electrode and an FSR array.

6.1.1 Construction of the surface electrode

The surface electrode unit was built from the metal parts of an Otto Bock
13E125 electrode, mounted with the original spacing (on a plastic plate) and
then wired to an external preamplifier.

The reference electrode is positioned in between the two signal electrodes,
and has a larger surface area than the signal electrodes. This large surface area
will lower the impedance of the reference electrode and helps to reduce the
line-bourne interference due to a reduction of the common mode voltage on the
body (Muzumdar (2004a)). The surface electrode unit is showed in Figure 10.

Figure 10: Surface electrode

6.1.2 Construction of equipment for recording force/pressure changes

To measure the contact forces between the surface electrode and the skin, a
proper sensor type had to be chosen. The final choice landed on force sensing
resistors (FSRs). FSRs were chosen as force sensors due to their flatness and
simplicity of use. A model that was readily available was used (Quadratic FSRs
(2.7cm · 2.8cm) made by the company Interlink Electronics). With a more ap-
propriate size and shape, the entire device easily fits into a prosthesis socket.

An FSR use the electrical property of resistance to measure the force (or
pressure) applied to a sensor. An FSR is made up of two parts (three with the
plastic spacer). The first is a resistive material applied to a film. The second
part is a set of digitating contacts applied to another film (the active area). The



22 6 The prototype sEMG sensor

different parts of an FSR are showed in Figure 11.

Figure 11: Force sensing resistor (SensorWiki (2008))

When an external force is applied to the sensor, the resistive element is de-
formed against the substrate. Air from the spacer opening is pushed through
the air vent in the tail, and the conductive material on the substrate comes into
contact with parts of the active area. The more of the active area that touches
the conductive element, the lower the resistance. The resistance of an FSR is
inversely proportional to the force applied.

General FSR characteristics:

• The appearance of an FSR is a great advantage. With an appropriate size
and shape, the sensor fits into a prosthesis socket. Size range: 0.5 cm×0.5
cm to 51 cm×61 cm. Thickness range: 0.20 mm to 1.25 mm.

• The signal from an FSR does not need pre-amplifying

• Insensitive to noise and electromagnetic fields
• Chemical, moisture and temperature resistant (temperature range: -30◦C
to 70◦C)

• Force Sensitivity Range: < 100 g to > 10 kg

• Contain no moving parts and are robust under repetitive use (lifetime >
10 million actuations)

• Responsive to variations in applied pressure
• Operates at much lower currents and cost in comparison to similar sens-
ing devices

(Information from InterlinkElectronics (2008))
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An important property with FSRs is that they are notoriously non-linear
in response to pressure. Signals from the FSRs are easily processed in Mat-
lab/Simulink together with the sEMG.

Figure 12: FSR array

The sensors were sandwiched between two layers of plexiglass using double
sided tape (Figure 12). The electrodes were attached to this structure with the
reference electrode at the center of the FSR array.
With particular designs of FSRs it is possible not only to measure the force but
also the position of that force (good spatial resolution). The reason for using
three FSRs, and this placement of the FSRs, is to try to capture the x-position,
y-position and the size of the pressure forces.

13a: Top side, external forces applied to this
side

13b: Underside

The prototype sensor is showed in Figures 13a and 13b. Figure 13c shows
the sensor structure schematic, and the actual sensor structure in Figure 13d.
From top to bottom: Plexiglas - FSRs - mounting tape - plexiglas - mounting
tape - plastic plate - surface electrodes.
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13c: Sensor structure (schematic) 13d: Sensor structure

Three similar circuits (voltage dividers) are used for collection of force or
pressure changes on the FSRs. The circuit diagram is showed in Figure 14.
RFSR is the resistance of the FSR, RPot is the resistance of a potentiometer
(potmeter). The potmeter needs to have a high resistance to minimise the cur-
rent through the FSR to prevent damage to the sensor.

Figure 14: Circuit diagram

The equation of the voltage divider is computed in Sæther (2007), and given
in Equation 6.

RFSR = RPot(
Vcc

u0
− 1) (6)

u0 is the measured voltage, everything else is known.
Choice of potmeter values is also described in Sæther (2007). The potmeters
used in the circuit can be varied between 0 and 500kΩ. Used resistance: 368kΩ.

The circuits are connected by BNC-connectors to the BNC-adapter, in this
way the signals (u0) are imported to Simulink together with the sEMG. The
Simulink diagram used is showed in Appendix B.
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Figure 15: Placement of the three FSRs

6.2 Improvements of the sensor

Because the FSR’s operation is dependent on its deformation, it works best
when affixed to a support that is firm, flat, and smooth. An FSR have a raised
part around the outer edge, in Sæther (2007) the applied pressure had to be
heavy to get an excursion at all. The three FSRs were sandwiched between to
layers of plexiglass, and the reason for this non-sensitiveness is this raised part.
To get in touch with the sensing area, the plexiglass practically had to be bent.
This problem was solved by mounting the sensors to the plexiglass with a strong
double-sided mounting tape from Scotch, thickness 2 mm. This mounting tape
was placed on the active area, avoiding the raised part of the sensors.

A problem that emerged under data acquisition, was that the signals from
the FSRs and the load cell brought into the rack were influencing each other.
After testing all the equipment, wires and earthing connections, the problem
occurred to be in the rack with the BNC-plugs. To cancel this effect, termina-
tors were attached to each BNC-plug. A terminator is a component that closes a
circuit and allows the current to pass through this circuit. The resulting signals
got weaker, but are still in due proportion to each other (no need for amplifica-
tion).
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7 Method description

7.1 Characterization of the prototype sEMG sensor

The purpose with this characterization is to see the effect of pressure applied on
various locations on the sensor to get a compounded sensor that can "feel"/measure
applied pressure on a larger surface.

7.1.1 Characterization set-up

The FSR signals and the load cell are all imported into Matlab (and Simulink),
therefore the load cell was used in the characterization. The load cell gives
a more accurate measure of the applied force, instead of using a hand-held
dynamometer. An aluminium plate (thickness 3mm) was affixed to the load
cell as an extension, see Figure 16. The sensor was placed at the end of the
extension, mounted with Scotch tape. This is showed in Figure 17.

Figure 16: Load cell extension

Figure 17: Sensor and load cell
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7.1.2 Characterization points

Nine points were selected for characterization. The center of each FSR and
some points (two or three) the FSRs had in common should be tested. The
sensor was placed in a coordinate system, and points chosen are showed in Ta-
ble 1. Instead of using the coordinates of the points, the grid in the right part
of Figure 18 is used for characterization (for simplicity).

X Y Category Point in grid
1.4 1.35 + 11
4.2 1.35 + 13
2.8 4.05 + 32
1.4 2.7 ◦ 21
2.8 2.7 ◦ 22
4.2 2.7 ◦ 23
2.8 1.35 ◦ 12
1.4 4.05 x 31
4.2 4.05 x 33

Table 1: Points for characterization

Figure 18: Grid for characterization. Left: category, right: point in grid (see Table 1)
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7.2 Experiment protocol

This section is further developed from the experiment protocol in Sæther (2007).

The test subject is a male, 26 years old, athletic, regularly exercising.
The sensor should be tested by simultaneously measuring sEMG (FsEMG) on
m. biceps brachii (right arm), FSR outputs (FFSR) and muscle contraction force
(Fmuscle) using an analogue load cell. External forces (Fexternal) are deliber-
ately applied to the sensor to affect the sEMG measurements.

The arm can be divided into anterior and posterior compartments. Biceps
brachii and brachialis occupies mostly of the anterior compartment. These mus-
cles are the primary flexors of the elbow. The brachioradialis (actually a poste-
rior forearm muscle) helps flex the elbow. See Figure 19. The upper arm’s two

Figure 19: Arm muscles (from Seeley et al. (2007))

headed flexor, biceps brachii, is chosen as measuring point for convenience.
The contribution from the brachioradialis muscle to the flexion force has been
shown to be small when the hand is situated in fully supinated position. It is
assumed that the contribution from all muscles including the antagonist triceps
brachii, aside from the biceps brachii could be neglected.

The test subject is seated upright in a chair and positioned in a standarised
fashion. The upper arm of the test subject should be hold vertical, the elbow
firmly supported on a wooden board with the affixed load cell (a piece of foam
rubber between the elbow and the wooden board). The forearm should be hor-
izontal, such that the elbow is sustained in a 90 degree angle. The hand is fully
supinated but relaxed. This posture is reported to minimize the contributions
of synergetic muscles to the elbow flexion torque. The load cell is applied by
means of a strap enclosing the wrist of the test subject. This strap is placed just
above the tendon of flexor carpi radialis and flexor carpi ulnaris. See Figure 20.
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Figure 20: Experimental setup

The detection electrodes (for sEMG recordings) are applied (by adhesive
tape) proximal to the innervation zone of the medial head of the biceps brachii
muscle. The most distal electrode is applied at ∼45% of the total length of the
muscle from the proximal end of the muscle. The sensor is attached to the arm
by adhesive tape. It is important to attach the sensor in such a way that the sur-
face electrode is above the muscle when contracting (the muscle moves under
contraction).

The external force, Fexternal, is applied at the center of the sensor by means
of the blunt end of a pen. The range of this force should be from zero external
force applied to a maximum Fexternal, this maximum external force depends
on the saturation of the FSRs and how much force the test subject can stand
without feeling pain.

Muscle force/contraction force should be varied in a dynamic/gradually
manner. External forces should also be applied when the test subject is relaxing.
Target curves for the different forces are showed in Figure 21. The upper part
of the figure shows target levels for the contraction force (for the test subject),
and the lower part shows target levels for the external force (applied by the
author).
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Figure 21: Target curves

1. Test subject is contracting (and relaxing) the muscle without external
forces applied, only Fmuscle

2. Only external forces, Fexternal, are applied to the sensor when test subject
is relaxing (creating motion artifacts)

3. Both Fmuscle and Fexternal

For each test, three different data sets are recorded. Set 1 (training set) and
set 2 (validation set) are recorded with the sensor attached to the same spot
with the same adhesive tape. Set 3 (testing set) is recorded after having re-
moved and then reapplied the sensor to the test subject’s arm.

This experiment protocol is inspired by Philipson and Larsson (1987); Øyvind
Stavdahl et al. (1997)

7.3 Muscle force estimation

This section is cited from Fougner (2007), but adjusted to force estimation
(instead of angle estimates). The goal is to estimate muscle force based on the
MES and FSR signals, using pattern recognition methods.

7.3.1 Problem description

The load cell is essential when calculating input data for the pattern recogni-
tion methods. The load cell gives series of reference values Fj , representing the
contraction force from the test subjects arm on which sEMG signals are mea-
sured. Measured Fj are the ideal values, while the pattern recognition methods
calculates estimates F̂j . The final goal with these methods will be to minimise
the error ej = (Fj − F̂j). This process will be performed on a training data set,
and then the calculated function parameters/relations may be used to find es-
timated muscle force F̂j . Minimising of the error can be done in several ways,
but the conventional method is used in this study: least-squares estimation.
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7.3.2 Linear mapping function

fj(X) = W T
j X + ω0j (7)

The linear mapping function is given in equation 7 (Midtgaard (2006)).

fj(X) = X → F̂j | min
F̂j

(Fj − F̂j)2 (8)

F̂j = g(fj(X)) (9)

Least-squares estimation (equation 8) is used to find the best values of Wj and
ω0j . This is done with the Matlab function FirstOrderEstimation.m in Ap-
pendix A.2 (Fougner (2007)). FirstOrderEstimation.m returns the values F̂j .

7.3.3 Quadratic mapping function

An alternative is the quadratic mapping function.

fj(X) = XT W1jX + W T
2jX + ω0j (10)

Since X consists of measured sEMG signal and FSR signals, the rest of the min-
imizing to find the best values of W1j , W2j and ω0j is analog to the linear case.
This is done with the Matlab function SecondOrderEstimation.m in Appendix
A.3 (Fougner (2007)). SecondOrderEstimation.m returnes the values F̂j .

7.3.4 Multi-layer perceptron network

This section is based on Enderle et al. (2006).
A Multi-layer perceptron (MLP) network is a special version of an Artificial

Neural Network (ANN) and is a pattern recognition method commonly used
on bioelectric signals. It can be constructed by built-in functions of the Neu-
ral Network Toolbox in Matlab. A simple MLP network consists of three layers
of nodes (also called neurons) and is a simplified model of how the network
in a human brain works. The first layer is called input layer and has as many
nodes as input signals. The middle layer is called hidden layer and most of the
processing occurs in this layer. The size of this layer is important for the re-
sult of the estimation. The third layer, output layer, defines the output signals.
Each node in the MLP network does a summation of all the inputs and a bias
value, and a transfer function to generate the output. In the Neural Network
Toolbox, a useful transfer function is tansig (Hyperbolic tangent sigmoid trans-
fer function, equation 11). It is mathematically equivalent to tanh, with some
numerical differences, but it is faster to calculate.

tansig(x) =
2

(1 + e−2x)− 1
(11)

The MLP network in this project is trained using least-squares estimation and
back-propagation. In this process, the derivative of the transfer function is used,
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and that is the reason why a smooth transfer function is chosen. The derivative
of the tansig function is a very simple calculation and makes the training pro-
cess fast. When the MLP network is made with tansig transfer functions in every
node, and the number of nodes is equal to the number of parameters in one of
the mapping functions, the MLP network and the mapping function actually
gives the same result.

The MLP network may be a good alternative to the mapping functions. Of
the three methods mentioned, the MLP network can be implemented faster
and is also easier to improve or extend, by adjusting a few parameters, but it is
trained slower than the mapping functions. Since the training is done offline,
not in real time inside a prosthesis, the training time is not that important and
the MLP network may be useful.
The MLP network is implemented in the Matlab function neuralNetwork.m

in Appendix A.4 (Fougner (2007)).

7.4 sEMG filtering procedure

To make a smooth representation of the sEMG’s amplitude, a filtering procedure
are carried through. This is described in section 5.3.1 in Fougner (2007).
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8 Findings/Results

In this section, plots1 and observations are presented. General discussion of the
results in section 9.

8.1 Characterization of the prototype sEMG sensor

8.1.1 Characterization plots

External forces were applied to the sensor when attached to the load cell. A
hand-held dynamometer was used, and force was applied in a dynamic manner
from zero to one kg, and then back again to zero external force. This was done
for each of the nine characterization points.
Figure 22 shows the relationship between FSRs and pressure applied to the

sensors (recordings from May 19, 2008). FSR values are plotted as functions of
the output from the load cell. (See Figure 15 in section 6 for placement of the
three sensors.)

Figure 22: Relationship FSRs and applied pressure

1Denomination of the y-axis on all figures in this section: V*. As described in section 6.2,
the signals from the FSRs and the load cell gets weaker (still in proportion to each other) as a
consequence of the terminators attached to the BNC-plugs. Hence, V* is the resulting voltage
[V].
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8.1.2 Polynomial curve fitting, second degree

Polynomials can be fitted to the characterization plots in the previous section
(FSR-curves). This is done for each one of the characterization points.

The Matlab file curvefit.m in Appendix A.1 makes use of the functions
polyfit and polyval. polyfit(x,y,n) finds the coefficients of a polynomial
p(x) of a given degree n that fits a data set (p(x(i)) to y(i)) in a least squares
sense. The result is a row vector of length (n+1) containing the polynomial
coefficients in descending powers. polyval returns the value of a polynomial
of degree n evaluated at x, in this case polyval returns the polynomial of the
FSR outputs, as function of the load cell (x).

The second degree polynomials are plotted in Figure 23 (close-up of the
curves in Appendix C.1).

pn(x) = a1x
2 + a2x + a3 (12)

In Appendix C.1 (equations 18 to 26) are the values of the second degree
polynomial pn(x) (equation 12) for each characterization point given (first row
in matrix: FSR1, second row: FSR2, third row: FSR3).
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Figure 23: Polynomial curve fitting, second degree
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8.1.3 Polynomial curve fitting, third degree

The last argument in the function polyfit(x,y,n) is changed from two to
three. The third degree polynomials are showed in Figure 24 (close-up of the
curves in Appendix C.2).

p(x) = b1x
3 + b2x

2 + b3x + b4 (13)

�p = Bpoint

⎡
⎢⎢⎣

x3

x2

x
1

⎤
⎥⎥⎦ (14)

In Appendix C.2 (equations 27 to 35) are the values of the B matrix in
equation 14 given (for each point).
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Figure 24: Polynomial curve fitting, third degree
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8.2 Muscle force estimation

For each test procedure (presented in section 7), three different data sets were
recorded.
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Figure 25: Test set containing measurements from EMG, 3 FSRs and the load cell.

Figure 25 shows the output from the surface electrode, the FSRs and the load
cell in the test set (similar curves for the training and validation set). Compare
with Figure 21 in section 7. Between ∼17.5 seconds and ∼32.5 seconds (in
the processed EMG plot), motion artifacts can clearly be seen. It looks like four
action potentials, but in reality, this is just the surface electrode being forced
against the skin by external forces (the test subject relaxing).
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8.2.1 Linear mapping function (LF)
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Figure 26: Force estimation with 1st order discriminant function

Estimation with the 1st order discriminant function is plotted in Figure 262.
The figure compares the estimation results for the training set, validation set
and the test set.
The LF are not a learning method, the estimation procedure is identical

repeatedly. This meaning the data sets do not depend on each other, one data
set is required for estimation, and there is no need for validation.

2Three different data sets are plotted, this is why the limits on the x-axis are varying in the
three plots.
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8.2.2 Quadratic mapping function (QF)
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Figure 27: Force estimation with 2nd order discriminant function

Force estimates from the quadratic mapping function are plotted in Fig-
ure 27. The figure compares the estimation results for the training set, vali-
dation set and the test set. The QF produces good estimates for the training set,
but on the other two sets (especially the test set), the QF gives poor estimates.
The part where the motion artifacts occur (see Figure 25), the QF actually over-
compensates, resulting in negative force estimates (test set in Figure 27).
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8.2.3 Multi-layer perceptron network
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Figure 28: MLP network with 4 hidden nodes

Estimation has been done with 2, 3, 4, 5, 8, 10, 12, 15, 20 and 25 hidden
nodes. Estimation of muscle force with MLP networks (3, 8, 15 and 25 hid-
den nodes) can be seen in Appendix D. Plots of all estimations are put on the
CD in Appendix E (E.3, in the folder 2008-05-29-Recordings). Figure 28 shows
estimation with four hidden nodes (least RMS error when MLP networks are
used for estimation, see 8.2.5). The figure compares the estimation results for
the training set, validation set and the test set.

The red line shows the estimated force with both FSR signals and sEMG
signals as input signals to the MLP network. Compared to only using sEMG
as input, the cancellation of motion artifacts are better, but the general force
estimation is not good enough.
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8.2.4 Force vs. estimated force

Measured force (from the load cell) plotted vs. estimated force are presented
in Figures 29, 30 and 31 (all data sets).
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Figure 29: Force vs. estimated force, LF

Figure 30 clearly shows that the QF has been overtrained (special adjusted
to the training set). The plot in the upper left corner of the figure indicates an
almost linear relationship between estimated force (with FSR and EMG) and
real muscle force. This is exactly what is wanted, but the plot in the upper right
corner in the same figure shows large scattering of the estimates, this indicates
poor linear relation between estimated- and real force for the testing set.

The pattern when FSR signals are used as input shows exactly the same
shape of the curves in the characterization, the hysteresis loop. This is a classic
feature with the FSRs. This shape tells us that the FSRs only, will not give accu-
rate enough estimates.

Close to the origin in these plots (FSR as input), a peak can clearly be seen.
This is force estimates caused by motion artifacts.
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Figure 30: Force vs. estimated force, QF
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Figure 31: Force vs. estimated force, 4 hidden nodes
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8.2.5 Root mean square (RMS) error

The RMS error values on the test set are presented in Figure 32.
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Figure 32: RMSE test set

The RMS error should be expressed as the percentage of the maximum vol-
untary contraction (MVC). This is achieved by having the test subject attempt-
ing to lift the hand upwards with as much force as possible, this value is read
off Figure 25. MVC = ∼ 0.24 V*.

The red line presents the RMS error for the linear mapping function, the
blue dotted line presents RMS error for the quadratic mapping function. The
values of the RMS error when using LF and QF for the test set are presented
in table 2. The RMS errors when including FSR measurements are 30% (FSR
and EMG) and 15% (FSRs only) compared to 55% of the MVC when only using
EMG signals in the estimation.
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Input LF [V*] LF [% of MVC] QF [V*] QF [% of MVC]
FSR & EMG 0.072299 ∼30 0.26939 ∼112

FSR 0.035019 ∼15 0.16352 ∼68
EMG 0.13091 ∼55 0.15216 ∼63

Table 2: RMS error, Linear- and quadratic mapping functions (test set)

For each number of hidden nodes (2, 3, 4, 5, 8, 10, 12, 15, 20 and 25), the
training process is accomplished ten times. The five MLP networks that perform
best on the validation set are selected and plotted (the networks that give zero
output or only square pulses are rejected).

In table 3, the best mean values of the RMS errors for the different inputs are
presented. The optimal number of hidden nodes is also given. See Figure 32.
The lowest RMS error (11% of MVC) appears when estimation is done by a MLP
network with FSRs in the input layer, and three hidden nodes. When both EMG
and FSR signals are used as input to the MLP network (four hidden nodes), the
RMS error is 17% of MVC. Both these numbers are improved compared to only
using EMG as input (29% of MVC, four hidden nodes).

Input RMSE [V*] RMSE [% of MVC] # hidden nodes
FSR & EMG 0.040124 ∼17 4

FSR 0.0262217 ∼11 3
EMG 0.070383 ∼29 4

Table 3: RMS error, best mean value MLP network
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Figure 33: RMS error, EMG and FSR

Figure 33 give an explanation on why the RMS error on the quadratic map-
ping function (QF) plotted in Figure 32 gets such a high value. The QF gets
the lowest RMS error on the first data set (training set) in all the estimation
methods. Comparing the plots for the different sets in Figure 33 indicates over-
training of the QF.
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9 Discussion

9.1 Characterization of the sEMG sensor

When plotting the FSR outputs as functions of the output from the load cell
(Figure 22), the FSR curves get the shape of hysteresis loops. To find curves/-
functions that fit the FSR curves (both on the way up and down), polynomial
curve fitting has been performed. By comparing e.g. the polynomials for point
22 (the point where all sensors respond to pressure), we can clearly see that the
polynomial of third degree makes a better fit than a second order polynomial
(close-up of the curves in Appendix C).
A problem occurs at the start of the curve, because the FSRs do not react at

once the pressure is applied, they have a threshold. This leading to poor fitting
of the polynomials at the start of the curves.

9.1.1 The bias-variance trade off

This is an important issue in data modelling. A model always consists of an
architecture and parameters. In polynomial regression (as done in the charac-
terization), the architecture is a polynomial (uniquely identified by its degree)
and the parameters are the coefficients of the polynomial. Once the degree of
the polynomial is decided, fitting the model consists in finding the appropri-
ate values of the parameters. In this study, the least-squares approach has been
used. In polynomial regression, a polynomial with too few parameters (too low
a degree) will make large errors because of a large bias, a polynomial with too
many parameters (too high a degree) will make large errors because of a large
variance. An "overfitted" model may appear to be performing well, in reality it
follows the data too closely and will perform poorly on new data.
Identifying the best model requires identifying the proper number of param-

eters, not too few nor too many. A third degree polynomial seems to be a good
enough choice in the characterization case. (The Matlab program curvefit.m
is put on the CD in Appendix E. The last argument in the function polyfit is
the degree of the polynomial, to see how higher degree polynomials fit- change
this.)

9.2 The mapping functions

The linear mapping function seems to give good estimates of muscle force,
and there is more cancellation of the motion artifacts when including the FSR
signals in the estimation.
Comparing the training sets in Figures 26 and 27, QF performs better than

LF, however LF performs best on the validation- and test sets. This indicates
overtraining of the QF (special adjusted to the training set, or overfitted as
described in previous subsection).
This indicates that these tests do not reveal if QF is suited for force esti-

mation. Several test procedures have to be accomplished. In theory, QF should
perform better than LF.
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9.3 MLP network

A multilayer perceptron (MLP) network was employed to estimate the muscle
force based on sEMG and FSR signals. Estimation has been done with 2, 3, 4,
5, 8, 10, 12, 15, 20 and 25 hidden nodes. Following MLP training and valida-
tion, the system was tested with a third data set acquired after having removed
and then reapplied the device to the test subject’s arm. The estimated force
was then compared to the "true" force measured with the load cell. A qualita-
tive comparison reveals obvious improvements for the sEMG sensor when FSR
measurements are included.

When applying external forces to the sensor while the test subject relaxes,
the control of the prosthesis should not be influenced. This is the main focus
in this study; cancellation of the effect motion artifact have on the control sig-
nal. In Figure 34 a segment of estimation with five hidden nodes (test set) is
showed. These peaks are force estimates resulting from motion artifacts caused

Figure 34: Motion artifacts

by the force applied to the sensor, and the goal is to cancel these signals. None
of the methods cancel the artifacts entirely, but the output signal/estimated
force signal (control signal for the prosthesis) when using both sEMG and FSR
signals as input (red line) reveals obvious improvements compared to using
only sEMG as input (blue dotted line). The green line shows muscle force es-
timated with only FSR signals as input. This estimation gives the best output,
however in practice, it can be difficult to carry this through. The main reason
for this is the hysteresis behaviour of the FSRs.

It is a goal to keep the number of nodes low in the hidden layer. The ad-
vantage of this is that the disturbance/noise gets less and the result is more
general, not an overtrained network. In Appendix D, estimations done with 3,
8, 15 and 25 hidden nodes are showed. The estimated force gets more noisy
the more nodes in the hidden layer.

The training method of Matlab’s Neural Network Toolbox stops training
when the error for the validation set starts to increase (divergence of the re-
sult). If the validation set is too different from the training set, the training
procedure terminates already after the initialization, and the resulting force es-
timates will only be the initial values (some of the estimated outputs/curves
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becomes flat).

For each number of hidden nodes (2, 3, 4, 5, 8, 10, 12, 15, 20 and 25),
the training process have been accomplished ten times. The five MLP networks
that perform best on the validation set are selected for further examination. In
reality, training should be performed in a more extreme manner, e.g 1500 times,
and the for instance 10 networks that perform best are chosen for testing. Then
a prosthesis user may test the different networks, and the one that best adapts
to the user/the user adapts best to, is implemented in the prosthesis control.
And finally, more testing of the prosthesis is required in the daily life.
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Figure 35: Comparison between MLP and LF

If estimation method should be chosen based directly from the estimates
done in this study, LF would most likely be chosen ahead of MLP network (ac-
cording to Figure 35). In reality, the negative force estimated by the LF, is hard
to understand how can be accomplished. A lot more testing (both on the labo-
ratory and in a real prosthesis socket on the residual limb of an amputee) are
required before selecting estimation method.

9.3.1 F vs. Fe

Measured force (from the load cell) plotted vs. estimated force (four hidden
nodes) are presented in Figure 31 in section 8. The pattern when FSR signals
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are used as input shows exactly the same shape of the curves in the characteri-
zation, the hysteresis loop.
Ideally the relationship between measured muscle force and estimated mus-

cle force should be linear (then the error ej = (Fj − F̂j) will be minimized).
This is not accomplished, but comparing the plots when using only EMG and
using both EMG and FSRs, reveals an improvement in the latter case. Figure 36
shows muscle force plotted vs. estimated force for all test sets.

Figure 36: Force vs. estimated force

When EMG is used as input, upper thresholds can be seen in the figure (See
also the figures in section 8.2.4). These thresholds indicate that in practice, the
prosthesis will function well up to a certain point and when this threshold is
reached, unsolicited behaviour will occur. The reason for this threshold may be
the shape of the real force curve (See Figure 25). The muscle force from the
user are performed in a dynamic manner, first easy contraction, then relaxing
(this looks like a square pulse). The sEMG varies a lot more than this, and the
difference between the sEMG and the wanted estimated force gets large. The
training algorithm then gets something to struggle with when training the MLP
network. This upper threshold that can be seen is the value when the estimates
gets least error. A solution to this problem can be harder filtering of the EMG
signal, or varying the muscle force from the test subject even more.

9.4 RMS error

Estimation with MLP network gives the least RMS error (Figure 32). This is not
surprising, as the MLP network can act as both LF and QF if that is the optimal
estimation method. In that case, the bias-variance trade off is an important is-
sue, it is important to find the optimal number of hidden nodes. This has been
done thorough with 2-3-4-5-8-10-12-15-20-25 nodes, and the training proce-
dure is accomplished ten times for each number of nodes. The possibility to get
a good MLP network should therefore be high.
MLP network with two, three and four hidden nodes performs well. This

have a clear connection to why LF performs better than QF.
When estimation is done by the MLP network, the RMS error gets lower

when taking the FSR signals into consideration. For force estimation on the test
set with sEMG and FSR signals as input, the RMS error gets least when the
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number of hidden nodes are four. With FSR signals as input, lowest RMS error
when using three hidden nodes, and when using sEMG as input, the optimal
number of nodes is four (See table 3 in section 8).

The actual value of the RMS error is not of importance. What is significant
is to try to minimize this error as much as possible, and then test how the user
of the prosthesis experience the control of the prosthesis.



52 10 Conclusion

10 Conclusion

Artifact cancellation techniques in myoelectric prosthesis control are extremely
limited described in the research literature. Hopefully, the sensor developed in
this study can be a contribution in the right direction. A sensor that can do si-
multaneous measurements of sEMG and contact forces between a surface elec-
trode and the skin has been developed, improved and characterized. A protocol
has been developed for the recording of the different signals in a laboratory.
Suitable data sets have been recorded from one test subject, and pattern recog-
nition methods were employed to estimate the muscle force based on sEMG
and FSR signals. The estimated force was then compared to the "true" muscle
force measured with a load cell.

A qualitative comparison reveals obvious improvements for the force esti-
mation when FSR measurements are included. The effect motion artifacts have
on prosthesis control can, if not cancelled entirely, be reduced when including
FSR signals in the estimation of muscle force.

Further research is needed; the sensor should be improved, the MLP net-
works need more testing to be able to find the optimal number of hidden nodes
and the sEMG signal processing needs optimalization. Other artifact cancella-
tion techniques should be tested on the data sets as well. The final step will
hopefully be to integrate FSRs in a real prosthesis socket.



11 Suggestions for future work 53

11 Suggestions for future work

A more suitable sensor The prototype sEMG sensor made in this study would
not fit into a real prosthesis. But with a more appropriate size and shape,
the entire device easily fits into a prosthesis socket. The sensor made in
this study has proved that the idea of using FSRs to cancel motion artifacts
is achievable, and should be further developed.

Noise cancellation The different signals recorded by the sEMG sensor with
force measurements are all brought into an adapter (BNC-2090). Wires
may be infecting each other, causing noisy signals. Filtering of all signals,
or improvement of the laboratory setup should be carried out.

Characterization points Several characterization points should be exposed to
external forces to get a more complete characterization of the FSR array.

Position- and external force estimation We want to simulate one sensor with
the three FSRs. It should be possible to estimate the position and size of
the external force (with an uncertainty) that is applied, from the FSR
outputs.

In equation 15, (x, y) is a known position (here should the real coor-
dinates be used (from table 1 in section 7)), F is the external applied
known force. The signals s1, s2 and s3 are the measured FSR outputs.

⎡
⎣

x, y, F
· · ·
· · ·

⎤
⎦ =

⎡
⎣

s1, s2, s3

· · ·
· · ·

⎤
⎦ (15)
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⎣

F
x
y

⎤
⎦ = f

⎛
⎝

⎡
⎣
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⎤
⎦

⎞
⎠ (16)

A mapping should be done from e.g. equation 17.
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To check how well the estimated positions and forces fits the real values,
the estimated x-position should be plotted as a function of real x-position
(the same should be done for the y-position and force). Ideally this rela-
tionship should be linear.

Improvements of pattern recognition methods It exists several pattern recog-
nition methods than described in this thesis. Different methods may give
different results, and the search for the best suited method is a topic for
further work.
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It is important to find the optimal number of hidden nodes. MLP networks
are never identical because of varying initial values, and applying some
averaging or other statistics (more extrema than five out of ten) on several
trained MLP networks could be a solution.

Explore several muscles To get more accurate estimates of the muscle force,
more muscles than biceps brachii should be taken into account. To start
with, at least some of the muscles on the backside of the arm.

Other artifact cancellation methods A large, suitable data set from the lab-
oratory are available. The sensor is also available at the laboratory, and
more data acquisition can be performed. Other methods for "Artifact-free
force estimation" based on mathematical models describing the corre-
spondence between physical movements/forces and the resulting sEMG
artifacts should be searched for.

Realization A prosthesis socket with either FSRs or strain gauges should be
constructed, and more testing and recordings should be performed. Train-
ing should be done on a lot of data, validation on e.g. half of the data, and
finally (and hopefully), the system can be implemented in real prosthesis
control. Then testing can be done by a prosthesis user.
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All my programs are tested in MATLAB 7.4.0(R2006a). The estimation pro-
grams require the Neural Network Toolbox.

Appendix A.1 curvefit.m

1 c l c
2 c lear a l l
3 close a l l
4

5 %% Curve f i t t i ng , c h a r a c t e r i s a t i o n
6 % p = po l y f i t (x , y , n) f i nd s the c o e f f i c i e n t s of a polynomial p(x ) of degree n

tha t f i t s the data ,
7 % p(x ( i ) ) to y ( i ) , in a l e a s t squares sense . The r e s u l t p i s a row vec to r of

length n+1 conta in ing
8 % the polynomial c o e f f i c i e n t s in descending powers
9

10 % To see how good the f i t i s , eva lua te the polynomial a t the data po in t s with
f = po lyva l (p , x ) ;

11

12 n = 1;
13 f igure ( ’Name ’ , ’ Curve f i t t i n g ’ , ’ NumberTitle ’ , ’ on ’ )
14 for a = 1:3
15 for b = 1:3
16 eval ([ ’ load ’ ’ t e s t i n g ’ num2str (a ) num2str (b) ])
17

18 p2 = p o l y f i t (ans (5 , : ) ,ans (2 , : ) ,2)
19 p3 = p o l y f i t (ans (5 , : ) ,ans (3 , : ) ,2)
20 p4 = p o l y f i t (ans (5 , : ) ,ans (4 , : ) ,2)
21

22 t2 = 0:0.0001:max(ans (5 , : ) ) ;
23

24 y2 = polyval (p2 , t2 ) ;
25 y3 = polyval (p3 , t2 ) ;
26 y4 = polyval (p4 , t2 ) ;
27

28 subplot (3 ,3 ,n)
29 hold on
30 plot (ans (5 , : ) ,ans (2 , : ) , ’ Color ’ , [0 ,0 .75 ,1])
31 plot ( t2 , y2 , ’ b ’ , ’ LineWidth ’ , 1 .5 )
32 xl im ([−0.0009 max(ans (5 , : ) ) ])
33

34 plot (ans (5 , : ) ,ans (3 , : ) , ’ Color ’ , [1 ,0 .27 ,0])
35 plot ( t2 , y3 , ’ Color ’ , [0 .78 ,0 .08 ,0 .52] , ’ LineWidth ’ , 1 .5 )
36 xl im ([−0.0009 max(ans (5 , : ) ) ])
37

38 plot (ans (5 , : ) ,ans (4 , : ) , ’ g ’ )
39 plot ( t2 , y4 , ’ Color ’ , [0 ,0 .55 ,0] , ’ LineWidth ’ , 1 .5 )
40 xl im ([−0.0009 max(ans (5 , : ) ) ])
41

42 t i t l e ([ ’ Po int ’ num2str (a ) num2str (b) ] , ’ f o n t s i z e ’ ,10)
43 hold o f f
44

45 n = n + 1;
46

47 xlabel ( ’ Load c e l l ’ , ’ f o n t s i z e ’ ,10)
48 ylabel ( ’ FSR ’ , ’ f o n t s i z e ’ ,10)
49

50

51 end
52 end
53 legend ( ’ Locat ion ’ , ’ SouthOutside ’ , ’ FSR1 ’ , ’ Curve f i t FSR1 ’ , ’ FSR2 ’ , ’ Curve f i t

FSR2 ’ , ’ FSR3 ’ , ’ Curve f i t FSR3 ’ ) ;
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Appendix A.2 FirstOrderEstimation.m

1 function [F_e , Fval_e , F t e s t _ e ] = f i r s tO rde rE s t ima t i on ( Tdata , Tval , T tes t ,N, Xdata ,
Fdata , Xvaldata , Fvaldata , Xtes tdata , F t e s tda t a )

2 % FIRSTORDERESTIMATION Ca l cu l a t e s f i r s t −order parameters W to es t imate the
3 % func t ion F from s i g n a l s in Xdata using l ea s t−squares e s t imat ion .
4 % There are N s i g n a l s and T time s t ep s .
5 %
6 % For every time s tep we have
7 % F_e (X) = X ’∗W+ w0
8 %
9 % where
10 % X = (x1 , x2 , . . . , xN) , W = (w1,w2 , . . . ,wN) , w0 i s a s c a l a r t r e sho ld value
11 %
12 % We rewr i t e i t as
13 % F_e (X) = X ’∗W+ W_0
14 %
15 % where
16 % X = (1 , x1 , x2 , . . . , xN) , W = (w0,w1,w2 , . . . ,wN)
17 %
18 % W i s found such tha t we minimize V = 0.5∗sum( ( F_e (X) − F(X) ) 2̂ )
19 % where X and f (X) are known vec to r s .
20 %
21 % F_e , Fval_e and F te s t _e are then found using W.
22 %
23 % F ina l l y , the func t ion re tu rn s F_e , which i s the es t imate of F ,
24 % Fval_e , which i s the es t imate of Fval , and Ftes t_e , which i s
25 % the es t imate of F t e s t .
26

27 % Anders Fougner , anderfo@stud . ntnu . no
28 % $Revis ion : 2.0 $Date : 2007/05/20 22:13:00 $
29

30 %% Est imat ion 1 s t order
31 % Performing l ea s t−squares e s t imat ion fo r each of N s i g n a l s
32

33 % Adjus t X
34 X = [ ones (1 , Tdata ) ; Xdata ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0 parameters
35

36 %Ca l cu l a t e the opt imal W_big conta in ing W, W_0
37 W = X ’ \ Fdata ’ ;
38

39 % Ca l cu l a t e F_e (X) , the es t imate of F(x )
40 F_e = W’∗X ;
41

42 %% Simulate using va l i d a t i on data
43 % Adjus t Xval
44 Xval = [ ones (1 , Tval ) ; Xvaldata ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0 parameters
45 % Ca l cu l a t e Fval_e (X) , the es t imate of Fval ( x )
46 Fval_e = W’∗ Xval ;
47

48 %% Simulate using t e s t data
49 % Adjus t X t e s t
50 X t e s t = [ ones (1 , T t e s t ) ; X te s tda ta ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0

parameters
51 % Ca l cu l a t e Fval_e (X) , the es t imate of Fval ( x )
52 F t e s t _e = W’∗ X te s t ;



60 Appendix A Source code from Matlab

Appendix A.3 SecondOrderEstimation.m

1 function [F_e , Fval_e , F t e s t _ e ] = secondOrderEst imat ion ( Tdata , Tval , T tes t ,N, Xdata
, Fdata , Xvaldata , Fvaldata , Xtes tdata , F t e s tda t a )

2 % FIRSTORDERESTIMATION Ca l cu l a t e s second−order parameters W to es t imate
3 % the func t ion F from s i g n a l s in Xdata using l ea s t−squares e s t imat ion .
4 % There are N s i g n a l s and T time s t ep s .
5 %
6 %
7 % For every time s tep we have
8 %
9 % F_e (X) = X ’∗W2∗X + W1’∗X + w0
10 %
11 % where
12 % X = (x1 , x2 , . . . , xN) , W1 = (w1,w2 , . . . ,wN) , w0 i s a s c a l a r t r e sho ld value
13 % and
14 % |w11 . . . w1N|
15 % W2 = | . . . . . . . . . |
16 % |wN1 . . . wNN|
17 %
18 %
19 % We rewr i t e i t as
20 %
21 % F_e (X) = W∗X
22 %
23 % where
24 % X = ( 1; x1 :xN ; x1x1 :xNxN; x1x2 : x (N−1)xN; x1x3 : x (N−2)xN; . . . )
25 % W = (w0, w1:wN, w11:wNN, w12:w(N−1)N, w13:w(N−2)N . . . )
26 %
27 % W should be found such tha t we minimize V = 0.5∗sum( ( f_e (X) − f (X) ) 2̂ )
28 % where X and f (X) are known vec to r s .
29 %
30 % F_e , Fval_e and F t e s t _e are then found using W.
31 %
32 % F ina l l y , the func t ion re tu rn s F_e , which i s the es t imate of F ,
33 % Fval_e , which i s the es t imate of Fval , and Ftes t_e , which i s
34 % the es t imate of F t e s t .
35

36 % Anders Fougner , anderfo@stud . ntnu . no
37 % $Revis ion : 2.0 $Date : 2007/05/20 22:13:00 $
38

39 %% Est imat ion 2nd order
40 % Performing l ea s t−squares es t imat ion fo r each of N s i g n a l s
41

42 % Adjus t X
43 X = [ ones (1 , Tdata ) ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0 parameters
44 X = [X ; Xdata ] ;
45 % The for−loop goes on l i k e t h i s :
46 % X = [X ; ( Xdata (1 :N, 1 : T) .∗ Xdata (1 :N, 1 : T) ) ] ;
47 % X = [X ; ( Xdata (1 :N−1 ,1:T) .∗ Xdata (2 :N, 1 : T) ) ] ;
48 % X = [X ; ( Xdata (1 :N−2 ,1:T) .∗ Xdata (3 :N, 1 : T) ) ] ;
49 % . . .
50 % X = [X ; ( Xdata (1 :1 ,1 :T) .∗ Xdata (N:N, 1 : T) ) ] ;
51 for k=N:−1:1
52 X = [X ; ( Xdata (1 : k , 1 : Tdata ) .∗ Xdata (N−k+1:N, 1 : Tdata ) ) ] ;
53 end
54

55 %Ca l cu l a t e the opt imal W
56 W = X ’ \ Fdata ’ ;
57

58 % Ca l cu l a t e F_e (X) , the es t imate of F(x )
59 F_e = W’∗X ;
60

61 %% Simulate using va l i d a t i on data
62 % Adjus t Xval in the same way as X was ad jus ted
63 Xval = [ ones (1 , Tval ) ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0 parameters
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64 Xval = [ Xval ; Xvaldata ] ;
65 for k=N:−1:1
66 Xval = [ Xval ; ( Xvaldata (1 : k , 1 : Tval ) .∗ Xvaldata (N−k+1:N, 1 : Tval ) ) ] ;
67 end
68

69 % Ca l cu l a t e Fval_e (X) , the es t imate of Fval (X)
70 Fval_e = W’∗ Xval ;
71

72 %% Simulate using t e s t data
73 % Adjus t X t e s t in the same way as X was ad jus ted
74 X t e s t = [ ones (1 , T t e s t ) ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0 parameters
75 X t e s t = [ X te s t ; X te s tda ta ] ;
76 for k=N:−1:1
77 X t e s t = [ X te s t ; ( X te s tda ta (1 : k , 1 : T t e s t ) .∗ Xte s tda ta (N−k+1:N, 1 : T t e s t ) ) ] ;
78 end
79

80 % Ca l cu l a t e F t e s t _e (X) , the es t imate of F t e s t (X)
81 F t e s t _e = W’∗ X te s t ;
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Appendix A.4 neuralNetwork.m

1 function [F_e , Fval_e , F t e s t _ e ] = neuralNetwork ( Tdata , Tval , T tes t , Nx , Nf , Xdata ,
Fdata , Xvaldata , Fvaldata , TfChoice , HiddenNodes , Xtes tdata , F t e s tda t a )

2 % FIRSTORDERESTIMATION Uses neura l network theory to f ind a r e l a t i o n
3 % between a s i gna l matr ix X ( fo r N s i g n a l s and T time s t ep s ) and a func t ion
4 % matr ix F .
5 % Then i t generates an es t imate F_e of the func t ion matr ix F , us ing the
6 % neural net .
7 %
8 % F ina l l y , the func t ion re tu rn s F_e , which i s the es t imate of F , and
9 % according r e s u l t s f o r v a l i d a t i on and t e s t s e t s .
10

11 % Anders Fougner , anderfo@stud . ntnu . no
12 % $Revis ion : 2.0 $Date : 2007/05/20 22:13:00 $
13

14

15 % " Normal izat ion / s t anda rd i za t i on " of output data
16 [ Fdata2 , FdataS ] = mapminmax( Fdata ) ;
17 [ Fvaldata2 , FvaldataS ] = mapminmax( Fva ldata ) ;
18 [ Ftes tdata2 , F te s tda taS ] = mapminmax( F t e s tda t a ) ;
19

20 % Choice of t r a n s f e r func t ion in the nodes/ synapses of the NN
21 Tfs (1 : HiddenNodes , 1 : Nf ) = {TfChoice } ; % tan s i g i s de f au l t
22 disp ([ ’ Using ’ num2str (HiddenNodes ) ’ nodes in the hidden l aye r . ’ ] ) ;
23

24 % % Adjus t X to 2nd degree
25 % X = Xdata ;
26 % fo r k=Nx:−1:1
27 % X = [X ; ( Xdata (1 : k , 1 : Tdata ) .∗ Xdata (Nx−k+1:Nx , 1 : Tdata ) ) ] ;
28 % end
29 % % Adjus t Xval in the same way as X was ad jus ted
30 % Xval = Xvaldata ;
31 % fo r k=Nx:−1:1
32 % Xval = [ Xval ; ( Xvaldata (1 : k , 1 : Tval ) .∗ Xvaldata (Nx−k+1:Nx , 1 : Tval ) ) ] ;
33 % end
34 % % Adjus t X t e s t in the same way as X was ad jus ted
35 % Xte s t = Xte s tda ta ;
36 % fo r k=Nx:−1:1
37 % Xte s t = [ X t e s t ; ( X te s tda ta (1 : k , 1 : T t e s t ) .∗ Xte s tda ta (Nx−k+1:Nx , 1 : T t e s t ) ) ] ;
38 % end
39

40 % Generate a neura l network
41 net = newff (minmax( Xdata ) , [ HiddenNodes Nf ] , T f s ) ;
42

43 % Make va l i d a t i on and t e s t i n g s t r u c t u r e s
44 VV . P = Xvaldata ;
45 VV . T = Fvaldata2 ;
46 TV . P = Xtes tda ta ;
47 TV . T = Ftes tda ta2 ;
48

49 % Train the neural network , but do not p r i n t e r ro r messages
50 net . trainParam . show = NaN;
51 [ net , t r ]=t r a i n ( net , Xdata , Fdata2 , [ ] , [ ] , VV , TV) ;
52

53 % Simulate Xdata and Xvaldata in the NN to es t imate F and Fval
54 F_e = sim ( net , Xdata ) ;
55 Fval_e = sim ( net , Xvaldata ) ;
56 F t e s t _e = sim ( net , X t e s tda ta ) ;
57

58 % " Denormal izat ion / un i t i z a t i o n " of output data
59 F_e = mapminmax( ’ r eve r se ’ , F_e , FdataS ) ;
60 Fval_e = mapminmax( ’ r eve r se ’ , Fval_e , FvaldataS ) ;
61 F t e s t _e = mapminmax( ’ r eve r se ’ , F tes t_e , F te s tda taS ) ;
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Appendix C.1 Polynomial curve fitting, 2 degree

See legend in Figure 23 (Section 8).
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Figure 37: Point 11-12-13, (May 19, 2008)
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Figure 38: Point 21-22-23, (May 19, 2008)
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Figure 39: Point 31-32-33, (May 19, 2008)
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Appendix C.2 Polynomial curve fitting, 3 degree
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Figure 40: Point 11-12-13, (May 19, 2008)
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Figure 41: Point 21-22-23, (May 19, 2008)
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Figure 42: Point 31-32-33, (May 19, 2008)
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Appendix D Results, MLP network

Legend in section 8.2.1.
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Figure 43: MLP network with 3 hidden nodes
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Figure 44: MLP network with 8 hidden nodes
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Figure 45: MLP network with 15 hidden nodes
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Figure 46: MLP network with 25 hidden nodes
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Appendix E CD

Here is a short explanation of what is put on the CD.

E.1 Report Contains the Master’s thesis as a PDF file, and a subfolder with
LATEX source code.

E.2 References Contains some of the references as PDF files.

E.3 LaboratoryWork Contains files from the laboratory.
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