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Abstract

The purpose of this thesis was to investigate the vascular function of malignant tumours using
histological and immunohistochemical (IHC) sections and look for associations with magnetic
resonance imaging (MRI) and clinicopathological parameters. The vascular function of malig-
nant tumours is known to have a strong influence on the tumours response to chemoradiotherapy
(CRT) and much of this is attributed to tumour hypoxia and its reduction of radiation effective-
ness through the oxygen effect. There is currently no methods applicable in the clinical setting
to assess tumour hypoxia. MRI has been proposed as a potential non-invasive imaging modality
that could assess tumour hypoxia and MRI machines are already in widespread clinical use.
To study the validity of the data from an MRI the study of IHC images could be used. Images
from histological and IHC sections have been used to study tumour vasculature for some time,
but the varying methods used by different research groups make the results hard to compare.
As a result of these problems automated computer programs have been developed.

103 patients with rectal cancer underwent static T ∗2 -weighted MRI and dynamic susceptibility
contrast (DSC) MRI before CRT and surgery. The static R∗2 (the reciprocal of T ∗2 ) was calcu-
lated from the T ∗2 -weighted images. Dynamic R∗2 time curves were derived from the DSC data,
before the peak value (R∗2-peakenh) and the area under the curve (R∗2-AUC) were calculated.
The MRI data was then correlated with clinicopathological parameters. The study for the
IHC parameters focused on digitized images of histological and IHC samples. The investigated
parameters are obtained through an automated computer program developed in Matlab. The
IHC analysis was performed on a substudy of 39 of the patients in the total cohort, the images
were analysed and parameters were generated. The results from the IHC images were correlated
with the MRI data and clinicopathological parameters.

In the analysis of the MRI data, significant results were found for R∗2-peakenh and R∗2-AUC.
Four significant results were found for the parameter R∗2-AUC (p = 0.008 − 0.047). High time
intervals had higher amounts of significant results than the lower ones. R∗2-peakenh was found
to correlate with nodal metastasis (p = 0.024). From the correlation between IHC data and
MRI data, the parameters microvessel density (MVD) (p = 0.037), inter capillary distance
(ICD)(p = 0.004) and vessel size (p = 0.008) were found to be significantly correlated with R∗2.
Vessel size was also correlated with R∗2-peakenh (p = 0.034) and several strong trends for other
parameters were also found. Many of the parameters that have been suggested as prognostic fac-
tors in the literature showed good trends towards significance in the analysis or were significant.

In conclusion this thesis found a handful of significant results and most seem to be in line with
what is indicated in the literature. However the small number of patients makes it difficult to
draw any clear conclusions based on the results. Studies with larger patient groups should be
done to verify that the results are indeed correct and a larger quantity of significant results, is
then likely to be found. Finally, this thesis has demonstrated the use of an automated com-
puter program in the analysis of IHC images. This should be the main method for studying
IHC images for the future to ensure that similar methods were used when researchers want
to compare results. Additionally the automated system removes any subjective bias from the
process and enables larger amounts of data to be analysed.
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Sammendrag

Formålet med denne avhandlingen var å undersøke den vaskulære funksjonen i ondartede svul-
ster ved hjelp av histologiske og immunohistokjemiske (IHC) snitt og se etter assosiasjoner med
magnetresonanstomografi (MR) og klinisk-patologiske parametere. Den vaskulære funksjonen
av ondartede svulster er kjent for å ha en sterk innflytelse over kreft sin respons p̊a kjemora-
dioterapi (CRT), og mye av dette tilskrives tumorhypoksi og reduksjon av str̊alingseffektivitet
gjennom oksygeneffekten. Det finnes for øyeblikket ingen metoder som er anvendelige i klinisk
praksis for å vurdere tumorhypoksi. MR har blitt foresl̊att som en potensiell ikke-invasiv av-
bildningsmodalitet som kan vurdere tumorhypoksi og MR-maskiner er allerede i omfattende
klinisk bruk. For å studere validiteten av dataene fra en MR kan man bruke IHC-bilder. Bilder
fra histologiske- og IHC-snitt har vært brukt til å studere svulster i en hvis tid, men de ulike
metodene som brukes av ulike forskningsgrupper gjør at resultatene er vanskelige å sammen-
ligne. Som et resultat av disse problemene har det blitt utviklet automatiserte dataprogrammer.

103 pasienter med endetarmskreft gjennomgikk statisk T ∗2 -vektede MR og dynamisk sensi-
tivitetskontrast (DSC) MR før de fikk CRT og kirurgi. Statisk R∗2 (den resiproke av T ∗2 ) ble
kalkulert fra de T ∗2 -vektede bildene. Tidskurver for dynamisk R∗2 ble funnet fra DSC-dataene,
før toppverdi (R∗2-peakenh) og arealet under kurven (R∗2-AUC) ble kalkulert. MR-dataene ble
deretter korrelert med klinisk-patologiske parametere. Studien av IHC parameterne fokuserte
p̊a digitaliserte bilder av histologiske og IHC prøver. De undersøkte parameterne ble generert
gjennom et automatisert dataprogram utviklet i Matlab. Bildene fra 39 pasienter ble analysert
and parametere ble generert. Resultatet fra IHC bildene ble korrelert med MR-dataene og de
klinisk-patologiske parametere.

I analysen av MR-dataene ble det funnet signifikante resultater for R∗2-peakenh og R∗2-AUC.
Fire signifikante resultater ble funnet for parameteren R∗2-AUC (0.008−0.047). Intervaller med
høyere tider hadde flere signifikante resultater enn de lavere tidsintervallene. R∗2-peakenh ble
funnet til å korrelere med pN (p = 0.024). Fra korrelasjonen mellom IHC data og MR data, ble
det funnet at micro̊are tettheten (MVD)(p = 0.037), interkapilær distanse (ICD)(p = 0.004)
og årestørrelse (p = 0.008) hadde signifikante korrelasjoner med R∗2. Årestørrelsen ble ogs̊a
korrelert med R∗2-peakenh (p = 0.034) og mange sterke trender ble funnet for andre parametere.
Mange av parameterne som har blitt foresl̊att som prognostiske faktorer i litteraturen viste
gode trender mot signifikans eller var signifikante.

For å konkludere, s̊a fant denne avhandlingen en h̊andfull med signifikante resultater og de
fleste synes å være i tr̊ad med hva som har blitt indikert i litteraturen. Allikevel, det lave
antallet av pasienter gjør det vanskelig å trekke noen klare konklusjoner basert p̊a resultatene.
Studier med større pasientgrupper burde gjennomføres for å verifisere at resultatene i denne
avhandlingen er korrekte og en større mengde signifikante resultater burde bli funnet da. Til
slutt, denne avhandlingen har demonstrert bruken av automatiserte dataprogrammer i analy-
sen av IHC bilde. Dette burde være hoved metoden for å studere IHC bilder i framtiden for å
forsikre at like metoder blir brukt n̊ar forskere vil sammenligne resultater. I tillegg, fjerner det
automatiserte systemet subjektiv subjektiv vurdering fra prosessen og gjør at større mengder
data kan bli analysert.
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1 Introduction

GLOBOCAN, Global Cancer observatory, a project of the International Agency for Research
on Cancer (IARC), estimates that in 2018: ”There will be an estimated 18.1 million new can-
cer cases (17.0 million excluding non-melanoma skin cancer) and 9.6 million cancer deaths (9.5
million excluding nonmelanoma skin cancer) in 2018” [13]. Specifically it estimates that 1.8
million new colorectal cancer cases and 881,000 deaths form colorectal cancer in 2018. This ac-
counts for 10% of cancer cases and deaths. Colorectal cancer is the third most common cancer,
but has the second most mortalities. Norway has the 4th highest rate of colorectal cancer rates
per 100,000. When adjusted for sexes, Norwegian men had the 10th highest rate with 46.9 per
100,000, while Norwegian women had the highest rate of all women with 39.3 per 100,000 [13].
This puts the estimate number of new cases of colorectal cancer for males at around 1600 and
1500 for females, in 2018.

Rectal cancer is a subgroup of colorectal cancer and is cancer of the lower part of the large
intestine. In an adult human the rectum is approximate 12 cm. In 2017 there were 1325 cases
of rectal cancer in Norway. The mortality rate was in 2016 6.1 for women and 9.9 for men
per 100,000 persons per year and the survival in the period 2013-2017 was 69.4% for women
and 68.9% for men [19]. The frequency of local recurrence has been greatly reduced after the
introduction of total mesorectal excision (TME) surgery for rectal cancer patients. However,
still about 10% of the patients experience a local recurrence [47].

The main treatment of rectal cancer is surgery, but neoadjuvant chemoradiotherapy (CRT) is
added for patients with locally advanced disease [39] [46]. There is however large individual
variation in the response to treatment. Today treatment is individually adapted, but further
adaptation would be hugely beneficial. One of the major obstacles in successfully treatment
is the development of metastasis. A well known contributor to metastasis is the presence of
hypoxia (oxygen deficiency) [44]. However, a remaining challenge is that there exist no clini-
cally useful tools for reliable cancer-hypoxia detection at the time of diagnosis. If the presence
and extent of hypoxia could be measured before treatment, different actions could be taken
to combat hypoxia, reduce the probability of metastatic development and thereby improve the
treatment outcome and increase survival. Currently there are no proven and reliable methods
of doing this in clinical practice, but there is a lot of research being done within this field.

One method being researched for hypoxia assessment is functional magnetic resonance imaging
(fMRI) [20]. The field of MRI has made large technological advances in the last decades and
imaging the functions of tissue environments is now a possibility. Blood with low oxygen con-
centration is more sensitive to magnetism than blood with higher oxygen concentration. Due
to this effect it is possible to visualize the distribution of blood with different oxygen concentra-
tions, this is known as BOLD (blood oxygenation level dependent) signal. In hypoxic regions
this should generate signal differences when imaging normally oxygenated and hypoxic tissue
and enable fMRI to visualize the hypoxia. This has been shown in some cancer types, mainly
brain cancer, but not in rectal cancer [40] [21].

Tumour hypoxia is a consequence of the underlying vascular system and its shortcomings. By
studying the vascular system and its properties more information about the tumour can be
gained and further help investigate the conditions and triggers for tumour hypoxia. This is
often done through histology, where the tumour is studied in a microscope after it has been
surgically removed, sectioned into slices and prepared for imaging in the microscope. In what
is called immunohistochemistry (IHC), the tissue can be stained with dyes attached to proteins
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and antibodies to visualize the presence and locations of different proteins, cells and enzymes
within the tissue. This can be done to study the vascular system of the tumour as well as hy-
poxia. This provides a way to compare the physical tumour with the images created in the MRI.

In this thesis IHC-analysis of tumour tissue sections was compared with functional MR images
from the same tumours, in order to investigate whether MRI non-invasively and quantitatively
could assess the vascular function of the tumours. The study was conducted in 113 rectal cancer
patients; where 52 where referred to surgery alone whereas 61 patients underwent neoadjuvant
CRT. The objectives were:

• To calculate MRI parameters from hypoxia-related dynamic contrast-based MRI.

• To look for association between the MRI parameters and clinicopathological parameters.

• To identify and extract tumour regions from histological images.

• To estimate vascular parameters of the tumour regions based on IHC.

• To look for associations between vascular parameters from IHC and clinicopathological
parameters.

• To look for associations between vascular parameters from IHC and MRI.

The thesis will continue with relevant theory, this includes MRI and histology theory as well as
cancer biology. Thereafter an overview of the methods and materials are given before the re-
sults are presented along with a discussion of the strengths and weaknesses as well as relevance
to other research. There will also be suggestions on how this research can be continued and ex-
panded upon and in the appendix the Matlab scripts used and the full result tables are attached.
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2 Theory

2.1 Cancer

Cancer is a group of related diseases with the common property that cells of some part of
the body divide without stopping and spreads to surrounding parts of the body. Under nor-
mal circumstances cells grow and divide to generate new cells when the body needs them,
for instance when cells grow old or when they are damaged, they die and new cells can take
their place. Cancer disrupts some of these processes and therefore affected cells do not die
when they are supposed to, and create new cells although they are not needed. The creation of
new cells can cause uncontrolled growth and may form solid tumours which are masses of tissue.

Tumours are classified into two groups: Malignant and benign. Malignant tumours can
spread into surrounding tissue thereby increasing the area affected. They can also spread to
other parts of the body, this is known as metastasis and happens if a part of the tumour breaks
of and is caught up in the blood or lymph system and is transported to a different part of the
body. Benign tumours do not spread; this makes them somewhat less dangerous as long as
they are not located near a vital organ, for instance a brain tumour is life threatening, but a
tumour in foot is not directly life-threatening. When a benign tumour is removed it will usually
not return, as long as the entire tumour is removed.

Cancer is caused by changes in the genetic information that controls the cells function. This can
arise for example through a fault in DNA replication during the cell cycle or by environmental
exposure such as ionizing radiation or chemicals.

2.2 The Hallmarks Of Cancer

In 2000, Douglas Hanahan and Robert A. Weinberg 2.2. released a review article explaining
what they thought to be the six hallmarks of cancer. In the discussion it is implied that as
normal cells evolve progressively towards a neoplastic state they acquire these hallmarks in
one order or another. In 2011, they published an expanded version of their framework for
understanding neoplastic disease where new hallmarks are included as well as their enabling
characteristics. They also suggest that the biology of tumours can only be understood by
studying and understanding the specialized cell types within tumours as well as the tumour
micro-environment.

The hallmarks of cancer are:

Sustaining Proliferative Signalling. One of the fundamental properties of cancer is the abil-
ity to sustain chronic proliferation. In normal tissue the release of growth signals determines the
proliferation of cells and is very carefully controlled. When growth signals are exposed to a cell
culture, proliferation is observed. In contrast, tumour cells in culture show a largely decreased
dependence on this external growth stimulation for proliferation. This indicates that tumour
cells may generate their own growth signals. Although relatively little is known about how
proliferative signals operate in healthy tissue, we do know quite a bit about how they operate
in cancer cells. Cancer cells can acquire proliferative signalling in a few alternative ways: They
can produce growth signalling molecules themselves, which reacts with their related receptors.
They can send signals to normal cells to stimulate them to supply growth signals. Or by increas-
ing receptor proteins at the cancer cell surface, this has the effect of increasing the sensitivity of
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of the cell to growth signals, and therefore very small amounts would be needed for proliferation.

Evading Growth Suppressors. In healthy tissue there are also systems that help control
proliferation by inhibiting growth. These systems are often controlled by tumour suppressor
genes, which encode special proteins (TP53- and Retinoblastoma-related (RB)-protein). These
proteins control cells progression to growth and division phases, as well as checking the cells
micro-environment and genome damage. If the micro-environment is suboptimal or there is
genome damage the proteins halt the cell-cycle progression until the conditions improve. If
there is extensive damage to the the genome, programmed cell-death, called apoptosis, is trig-
gered by the proteins. If there are defects in the functions of these proteins or they are circum-
vented cancer cells will not be stopped from proliferating. It is not stated how or why cancer
cells evade these systems. However the signalling molecule tumour growth factor beta, (TGF-
β), which is known for its anti-proliferative effects, has been seen to be redirected away from
suppressing cell proliferation to activate a cellular program termed epithelial-to-mesenchymal-
transition (EMT), in late stage tumours. In this program epithelial cells lose their cell polarity
and cell-cell-adhesion to gain mobility.

Resisting Cell Death. Cell population is determined not only by cell proliferation but also
cell attrition. One major source of cell attrition comes from apoptosis, programmed cell death.
Apoptosis is a latent program that is present in virtually all cell types of the body. Once trig-
gered a series of steps takes place, the cell membrane is disrupted, the cytoplasm and nuclear
skeleton is broken down, the intracellular fluid is fragmented and in the end the cell remnants
are consumed by nearby cells. too. Tumour cells have many different strategies to circumvent
apoptosis. Most common is the loss of protein tumour suppressing functions that monitor
critical damage in the cell. Other means are to increase the expression of anti-apoptotic reg-
ulators or of survival signals, by down regulating pro-apoptotic factors, or by short-circuiting
the signalling-molecule-induced death pathway.

Necrosis is a another form of cell death and in contrast to apoptosis, were the cell dissolves
and disappears calmly, necrotic cells become bloated and explode spreading their contents
into the local micro-environment. Necrosis releases pro-inflammatory signals into the micro-
environment, and as such can recruit inflammatory cells of the immune system. The function
of these immune cells is to survey the tissue damage and clear necrotic debris. However in
cancer cells, immune inflammatory cells can be actively tumour promoting as they encourage
angiogenesis and cell proliferation.

Enabling Replicative Immortality. In most normal tissue, cells are only capable of passing
through a limited number of successive cell cycles. Once beyond this number the cells end up
in one of two states, senescence, a non-proliferative state and crisis which ends in cell death.
Sometimes cells can pass through the state of crisis without dying, this has been termed im-
mortalization, it is indicated that the protection of the chromosome ends, the telomeres, is
involved in this process. The length of the telomeric DNA in a cell dictates how many succes-
sive cell generations it can have. Telomerase, a specialized DNA polymerase, can add segments
to telomeric DNA. It is almost absent in non-immortalized cells but expressed in high levels in
spontaneously immortalized cells as well as human cancer cells. This indicates that tumours
have the ability to maintain telomeric DNA at lengths that allow them to avoid crisis and
apoptosis by up-regulating telomerase.

Inducing Angiogenesis. Tumours just as normal tissue requires nutrients and oxygen, as
well as removal of wastes and carbon dioxide. These needs are addressed by the vasculature
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generated through angiogenesis. The ability for neoplastic cells to initiate and sustain angio-
genesis is purposed to be gained in one or more discrete steps. This is termed the ”angiogenic
switch”. This switch seems to be activated in early to mid-stage lesions. Evidence also indi-
cates that this switch is controlled by factors that offset each other to either induce or oppose
angiogenesis. Vascular endothelial growth factor-A (VEGF-A) is a gene that encodes signalling
molecules involved in generating new blood vessels, and is one known angiogenesis inducer,
another inducer is fibroblast growth factors 1 and 2 (FGF 1/2). Thrombospondin-1 (TSP-1)
is known as a angiogenesis inhibitor. Some tumours activate the angiogenic switch by increas-
ing expression of VEGF and or FGFs, while in others expression of inhibitors like TSP-1 are
down-regulated.

There are indications that neo-vascularization is a necessity for rapid clonal expansion leading
to macroscopic tumours, as anti-VEGF antibodies has been shown to impair neo-vascularization
and subcutaneous tumour growth in mice.

With this chronically activated angiogenesis and an unbalanced mix of angiogenic signals the
vasculature generated in tumours is convoluted, with distorted and enlarged vessels, erratic
blood flow, leakiness and with abnormal levels of endothelial cell proliferation and apoptosis.

Activating Invasion and Metastasis. As cancers develop towards higher pathological grades
of malignancy the cancer cells usually develop changes in their shape, attachment to other cells
and the extracellular matrix (ECM). The frequently observed down-regulation or mutational
inactivation of E-cadherin, a key cell-to-cell adhesion molecule, in human carcinomas provides
compelling evidence toward its role as a key suppressor of metastasis and invasion. Genes en-
coding adhesion molecules have also been seen to be altered in highly aggressive carcinomas.

The process of invasion and metastasis has been depicted as a multi-step process termed the
invasion-metastasis cascade. The succession of cell-biologic changes in this process are local in-
vasion, then the invasion of cancer cells through the basal membrane into a blood or lymphatic
vessel, passing cancer cells through the lymphatic and hematogenous systems, the cells then
escape out of this system to distant tissues, formation of small nodules of cancer cells, finally
growth into macroscopic tumours. A program referred to as Epithelial-mesenchymal transition
(EMT) has been suggested as a means for epithelial cells can gain the ability to resist apoptosis,
invade and spread. It appears that factors that induce EMT can arrange for most of the steps
in invasion-metastasis cascade, except for colonization.

Reprogramming Energy Metabolism. In order to fuel the uncontrolled cell proliferation
adjustments to energy metabolism are required. Under aerobic conditions normal cells process
glucose and under anaerobic conditions glycolysis is favoured. Cancer cells can reprogram their
glucose metabolism and use mostly glycolysis, even in the presence of oxygen. This state is
therefore called the ”aerobic glycolysis”. This method of metabolism is however much less
efficient. To compensate cancer cells up-regulate glucose transporters, increasing the glucose
import into the cytoplasm. The use glycolysis can be amplified under hypoxic conditions, which
is present in many tumours, thus tumour hypoxia can increase the levels of hypoxia inducible
factor one alpha, HIF1 α, and HIF2 α which increases glycolysis. The reason for this switch
in energy production is still not fully known, one hypothesis is that glycolysis allows the dis-
tribution of glycolytic intermediates into different pathways like ones that produce blocks for
new cells.

Evading Immune Destruction. The immune system monitors cells and tissues, and is re-
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sponsible for finding and removing most developing cancer cells. Solid tumours have managed
to avoid detection or have been able to limit the immunological eradication. This is seen from
the fact that in mice, with genetically induced deficiencies of the immune system, tumours
emerged and grew faster relative to mice with normal immune systems. In addition when
cancer cells grown in immunodeficient mice is transplanted into mice with normal immune
systems the cancer cells are inefficient at creating secondary tumours relative to cancer cells
grown in immuno-competent mice. This has been interpreted as cancer cells in normal hosts
are frequently eliminated leaving only behind the strains that can grow in immuno-competent
environments. This is known as ”immunoediting”. Anti-tumour immune responses can also be
seen in some forms of human cancer. Patients with colon and ovarian tumours that have high
levels of immuno-killer cells have better prognosis than those who lack this abundance.

Enabling Characteristics. The hallmarks mentioned are gained through two enabling char-
acteristics. The most notable being genomic instability which creates mutations in the DNA.
The second characteristic is the inflammatory state which serves to promote tumour progression.

Genome Instability and Mutation. For neoplastic cells to gain the hallmarks previously
discussed there needs to be changes to their genomes. Therefore the multi-step process which
is tumour progression can be viewed as a series of chance acquisitions of an enabling mutant
genotype. Some steps may also be triggered by non-mutational changes affecting the regulation
of gene expression. In order to achieve the number of mutational changes needed for tumouri-
genesis cancer cell increase rates of mutation by breaking down one or several components of
the genomic maintenance system or the systems that survey the genomic integrity of cells.

Tumour-Promoting Inflammation. It is clear that virtually all neoplastic lesions contains
immune cells from subtle infiltration to large inflammations apparent even by histochemical
staining techniques. Inflammation can add to several hallmarks by providing active molecules
to the tumour-environment, like growth factors, survival factors, pro-angiogenic factors, sig-
nals that lead to activation of EMT and enzymes that facilitate angiogenesis, invasion and
metastasis. Inflammation is in some cases noticeable at the early stages of tumour progres-
sion and able to foster the development into fully developed cancers. In addition inflammation
releases reactive oxygen that is mutationally accelerating the genetic progression to malignancy.

The Tumour Microenvironment. The understanding of tumour biology has shifted from
the simple view of tumours, as a collection of homogeneous cancer cells whose biology could be
fully understood by explaining the properties of these cells, to being recognized as organs whose
complexity is close to or may exceed normal healthy tissue. Therefore the interplay between
different biological systems and agents must be understood to create a holistic picture of cancer
cells.

2.2.1 Tumour Node Metastasis System

The tumour-node-metastasis (TNM) classification of malignant tumours is a recognised stan-
dard for classifying the extent and spread of cancer. T describes the size of the original tumour
and also describes if it has invaded nearby tissue. Accordingly, T0 means no evidence of tumour,
whereas T1, T2, T3, T4, are increasing size or extension of the primary tumour. Sometimes
extra identifiers are added to describe differences. For colon cancer, T4a means that the tumour
perforates the colon lining and T4b means that the tumour directly invades other organs or
structures. N describes nearby lymph nodes that are involved. N0 means no regional lymph
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nodes metastasis, whereas N1 means regional lymph node metastasis present at some sites,
tumour spread to closest or small number of regional lymph nodes. N2, tumour has spread to a
large extent. M describes distant metastasis, M0, no distant metastasis, M1, metastasis found
in distant organs. In rectal cancer metastasis is most frequently found in the liver and the lungs.

TNM stage determined by MRI is denoted mrT mrN. TNM stage determined by pathology of
the specimen after oncologic treatment, is denoted ypT ypN. For patients without treatment
the pathological TNM stage is pT and pN.

Tumour regression grade (TRG) is a measure of the response to noeadjuvant CRT in locally
advanced rectal cancer The TRG is determined by a pathologist after the tumour has been
surgically removed. The TRG used in this study has been scored using the grading defined by
American Joint Committee on Cancer (AJCC) AJCC/CAP (The College of American Pathol-
ogists) [2].

Tumour Regression Grade (TRG)
0 No viable cancer cells (total regression, strong response)
1 Small group/groups of cancer cells (nearly total regression, moderate response)
2 Residual cancer with fibrous growth (moderate regression, low response)
3 Little to no tumour cells killed (minuscule regression, poor/no response)

Table 1: Table explaining the different stages of tumour regression grading

2.3 Vascularization

The vascular system transports oxygen and nutrients around the body as well as removing
waste products created by the cells. The essential parts of the vascular system are: the heart,
the blood and the blood vessels. The latter are divided into arteries, veins and capillaries.
The arteries transport oxygenated blood from the heart out to the body and veins transport
de-oxygenated blood back to the heart. The arteries branch out into smaller vessels called
arterioles, which then branch out into capillaries again. The capillaries deliver blood to the
cells. The capillaries branch back together in venules, which branches back to the veins, after
passage through body tissues. Vascular endothelial cells are found lining the entire circulatory
system, from the heart to the capillaries. Endothelial cells are cells that line the inside surface
of blood vessels and lymphatic vessels, they form a barrier between the blood or lymph in the
vessel and the vessel wall.

To develop the vascular system the body employs different processes. There are three different
processes of angiogenesis, which is the formation of new blood vessels, in normal tissue: Vascu-
logenesis is the process were blood vessels are created where no pre-existing ones exist, this is
what creates the beginning of the vascular system in embryos. Next, sprouting angiogenesis is
the formation of new blood vessels from pre-existing vessels. Finally there is intussusception,
or splitting angiogenesis, were pre-existing vessels split to create new vessels. The two later
process will be of the most interest.

Sprouting angiogenesis is the typical form of angiogenesis and accounts for most of the the new
vessels in adults [49]. In sprouting angiogenesis endothelial cells from existing blood vessels
travel to the surrounding tissue and forms solid sprouts that connects back to the existing ves-
sels to supply avascular areas 1. With the exception of vascular remodelling during ovulation,
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wound healing and weight gain (muscle, fat or other), no changes in the vascular system of
healthy tissue is generally needed.

Figure 1: Illustration of sprouting angiogenesis in the vecinity of toumour cells. Recreated with
permission from [7].

In tumours more blood vessels are needed to supply the generation and maintenance of new
cells. As a consequence, most of the insight into angiogenesis has been gained because of an-
giogenesis’ large role in tumour development and tumour vascularization.

2.4 Tumour Vascularization

For the tumour to generate new blood vessels the angiogenic switch must be turned on, as dis-
cussed earlier in 2.2. When activated and other supporting factors are achieved the formation of
blood vessels takes place through the two aforementioned modes of vessel generation. However
tumours also have two additional modes of vessel acquisition, these are non-angiogenic modes
of vessel acquisition that exploit pre-existing vessels. Non-angiogenic tumour growth was over-
looked for a long time, but is now suggested as one of the reasons why anti-angiogenic drugs
have been somewhat infective in countering tumour growth and progression [9]. Non-angiogenic
tumours are most often found in the lung, liver and brain, but a mixture of non-angiogenic
and angiogenic areas is most likely to be found in almost all tumours. It should also be noted
that in most tumours both angiogenic and non-angiogenic areas are present within the same
tumour, and that angiogenic and non-angiogenic lesions can appear at different times during
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Figure 2: Illustration showing (a) Vasculogenesis (b) Angiogenic remodelling (c) Maturation
(d) Destabilization (e) Regression and (f) sprouting angiogenesis. The roles different signalling
molecules and proteins is shown for each process. Recreated with permission from [49].

the progression of cancer or in response to treatment [33] [9]. Also non-angiogenic neoplastic
cells are highly metastatic and are associated with increased motility and the ability to invade
surrounding tissues.

The two modes of non-angiogenic vessel acquisition are:

Vessel co-option, here the tumour cells infiltrate the pre-existing blood vessels by fusing with
existing vessel cells. The term vessel co-option was first used by Holash and colleges in 1999
[18] to describe how tumour cells were observed to exploit pre-existing vessels rather than in-
ducing angiogenesis. Much of the knowledge about how vessels are co-opted comes from brain
tumours. In the process of co-option tumour cells need to travel towards vessels. In slices of
rat brain it was shown that an activator of matrix metalloproteinases (MMPs) is expressed
from brain-cancer cells and act as a chemo-attractant to guide the cell towards blood vessels
[26]. The mechanisms by which the tumour cells interact with pre-existing vessels has also been
investigated, but not yet fully understood. Caspani and colleges seeded glioblastoma cells (ag-
gressive brain cancer cells), on mouse brain samples and showed vascular co-option within 15
hours [4]. The tumour cells developed contacts with vessel cells through special protein-based
extensions, the results also indicated that cell division control protein 42 (CDC42) and CD44, a
cell-surface glycoprotein involved in cell–cell interactions, cell adhesion and migration, support
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vessel co-option by enabling fusion with the vessel cells.

Vasculogenic mimicry. In 1999 Maniotis and colleges found vessel-like structures, in highly
aggressive and metastatic melanomas, which were highly patterned. In these structures blood
cells were detected, but endothelial cells were not. They also found that this structure, un-
like those from angiogenesis, was lined by tumour cells. The vessel like structures were called
’VM’, vasgulogenic mimicry, [1]. Since then it has been found that many molecule mechanisms,
especially vascular endothelial cadherin (VE-cadherin), ephrin type-A receptor 2 (EphA2),
phosphatidylinositide 3-kinases (PI3K), MMPs, vascular endothelial growth factor receptor 1
(VEGFR1) and HIF-1α , are involved in VM formation [34].

The channels formed through VM are not vessels but are made up of tumour cells mimicking
normal endothelium. VM plays an important role in tumour growth by providing a perfusion
pathway for blood and nutrition to the tumour as tumour cells lining these channels are directly
exposed to blood. These systems facilitate a pathway for tumour growth without invoking the
angiogenic switch, and may therefore be a way for tumours to continue their growth without the
regular angiogenic pathways. VM’s characteristics are as follows: Positive Periodic acid-shiff
(PAS) staining and negative CD31 staining (endothelial cell adhesion molecule), the channel is
lined by tumour cells, the expression of a stem cell-like phenotype, ECM remodelling and VM
connects to the tumour circulation system, providing blood for tumour growth. VM has been
linked with poor prognosis and shorter 5-year survival, in addition cancer patients with VM
tend toward tumour metastasis.

2.4.1 General Tumour Vasculature Characteristics

Although vasculature can be generated through the same processes as in normal tissue, the bal-
ance of pro-angiogenic and anti-angiogenic factors as well as other vascular forming molecules
and signalling factors are not controlled as they would be in normal tissue. This comes from
the alterations neoplastic cells have made to their genomes. As a result tumour vasculature
has different characteristics form normal vasculature. One consequence is that tumour vascula-
ture has no clear classification into arterioles, venules or capillaries [3] [23]. Further the vessels
have different characteristics that separate them from normal vessels, these are described below.

Tumour vessel permeability: It is well known that tumour vessels have high permeability
[15]. This causes blood from the vessels to leak into the extracellular space. The reason for this
permeability is that the diameter of the vessels are irregular and the walls are thin, in addition
the walls are poorly developed and often have a discontinuous endothelial lining leading to
holes in the vessel.

Defective Endothelial layer: Tumour endothelial cells have irregular shapes and sizes as
well as poor organization, which can cause the cells to penetrate the vessel walls creating small
finger-like holes. This in turn may lead to blood pooling up in the form of blood lakes.

Blood Lakes: Because of the permeability of the tumour vessels larger bodies of blood may be
created, known as blood lakes. These blood lakes seem to not be in contact with the vascular
system.

Tumour vasculature morphology: The formation of blood vessels in tumours is fast, un-
regulated and non-systematic therefore it becomes very chaotic and inconsistent. The tumour
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Figure 3: Illustration of normal (left) and cancerous (right) vasculature. In normal tissues,
red vessels indicate oxygen-rich feeding arteries and arterioles, blue vessels are veins carrying
deoxygenated blood and the connecting regions are the capillary stage with mixed colour. In
cancerous tissues, slow blood flow is indicated by reduced colour intensity. Recreated with
permission from [12].

Figure 4: Illustration showing the blood vessels from normal (left) and tumour (right) vascu-
lature. It also shows defects in the endothelial layer of tumour vessels. In a normal vessels
endothelial cells for a tight grid. In tumour vessels the endothelial cells sprout and branch
uncontrolled leading to a defective endothelial layer. The poor structure leads to gaps that can
cause leakage. Recreated with permission from [10].

endothelial cells often present excessive branching and. This can cause areas of the tumour to
become chronically-hypoxic this is explained in section 2.5.

Irregular blood flow: Because of the changes to vessel stability relative to normal vessels, tu-
mour vessels have chaotic blood flow that changes in magnitude and may even reverse direction.
Some vessels are not even perfused with blood at all. This is caused by the fact that the density
of vessels may rise in bursts during the early stages of tumour development while decreasing in
larger tumours when tumour growth is larger than the rate of blood vessel formation [10].
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2.5 Hypoxia

Hypoxia refers to the oxygen deficiency that arises when a cell or part of the body is receiving
less oxygen than it is consuming. The types of hypoxia are usually divided into two groups:

Acute hypoxia can occur when blood flow is restricted or absent in an area of the body, this
can take place for many different reasons, but in tumours it is usually caused by the irregular
blood flow. The malformed vasculature of the tumour also causes temporary closing of blood
vessels from time to time and this can lead to acute hypoxia. Other reasons could be collapsed
vessels or vessels that are to small being blockaded by tumour cells or red blood cells. An
illustration is shown in figure 5. Dewhirst and colleges studied acute hypoxia [30] and found
vessels that experienced unstable flow magnitude and direction, in these the vessels would be
empty for only a few seconds at a time. Other vessels experienced cyclic patterns of acute
hypoxia in intervals of 20-60 minutes. Finally 9% of vessels had very low or absent red blood
flow over longer periods.

Chronic hypoxia is when a part of the body is not getting enough oxygen on a consistent
basis, this can occur if the vascular system is not well constructed in some part of the body.
An illustration is shown in figure 5. If there is a poorly organized capillary system, like in most
tumours, some cells are too far from the vessel for the oxygen to reach it. This typically occurs
at around 100-190 microns from the blood vessel [32]. Many factors influence the distance
which oxygen can diffuse, like the ability of haemoglobin to release oxygen, the intra-vascular
pressure gradient, the use of oxygen by cells close to the blood vessel as well as the amount of
oxygen in the blood in the vessel. If cells are completely deprived of oxygen for a long period,
they will become necrotic and die. Necrosis indicates a more severe diagnosis, because of the
complicating role of hypoxia as well as its role in malignant tumour progression.

For human tumours its likely that there exists regions with both acute and chronic hypoxia
and both have been described in pre-clinical models [28] [29]. One of the primary consequences
of acute hypoxia in tumours is the increase in HIF-1 activity [50] [14].

2.5.1 Consequences of Tumour Hypoxia

Hypoxia is very important to consider when treating a tumour with radiotherapy, this is because
the amount of oxygen in the tissue will greatly affect the effectiveness of radiation as well as
affecting cells metabolism and cell cycle progression. The change in radiotherapy effectiveness
as a consequence of oxygen is known as the oxygen effect. It is caused by the fact that radio-
therapy with photons heavily relies on oxygen to create damage in the DNA via the creation of
free radicals. The creation of free radicals is indirect damage to the DNA and is caused by the
incoming photon interacting with an electron. The electron then interacts with other molecules
like water to create free radicals. The free radicals can then diffuse far enough to damage the
DNA, if there is oxygen available this damage will be fixated. This can be seen in figure 3. This
fixation is the reason oxygen increases the effectiveness of indirect action, as repair is no longer
possible. In direct action the photon interacts with an electron which then creates the damage
in the DNA directly. About two thirds of the damage caused by photons is caused through in-
direct damage [51]. Without oxygen or with low amounts of oxygen the damage to the tumour
cells will be lower and the treatment less effective as some of the damage caused can be repaired.

Because of the radioresistance in hypoxic tumours, a poorer prognosis is generally seen for
patients with hypoxic tumours. This was first shown by Hockel and colleges [22]. In addition
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Figure 5: Illustration of chronic and acute tumour hypoxia. In the figure on the left we can see
how chronic tumour hypoxia is limited by the diffusion distance of the blood. As a consequence
the oxygen concentration decreases with distance from the vessel. On the right we can see all
tumour cells surrounding the vessel are in a temporary state of hypoxia. The graph illustrates
how the blood flow, or blood perfusion, can vary over time and therefore leave the cells without
oxygen for short periods. Recreated with permittion from [17].

to this it is suspected that hypoxia may produce a more aggressive phenotype as an association
has been seen between distant metastases and hypoxic tumours as shown by Brizel and colleges
[8].

Tumour vascularization and hypoxia are important factors in radiotherapy, since the the tumour
vascular function determines the effectiveness of the treatment. Therefore having good tools
and techniques to study tumour vascularization is of high value. Two promising techniques to
gather vascular information of tumours non-invasively are: dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) and dynamic susceptibility contrast MRI (DSC-MRI).
However these methods are not yet in clinical routine and therefore it is needed to determine
whether they reliably reflect the tumour vascular function. One way to to asses this is to cor-
relate the MRI findings to quantitative analysis of IHC using vascular markers. Now follows a
section on MRI, before the theory behind IHC is presented 2.7.
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Figure 6: Illustration of the indirect and direct effects of readiation on DNA. In the direct effect
the radiation interacts with an electron which damages the DNA. In the indirect effect the
radiation strikes an electron which creates a free radical by interacting with a water molecule.
The free radical goes on to fixate the damage of the DNA. Recreated with permission from [36].

2.6 Magnetic Resonance Imaging

MRI is a medical imaging modality based on the concepts of nuclear magnetic resonance (NMR).
MRI gives anatomical and physiological images of bodies by using strong magnetic fields, radio-
frequency waves and electrical gradients.

MRI is widely used in hospitals and its popularity and uses are increasing.

2.6.1 History

The concept of nuclear magnetic resonance was first described by Isidor I. Rabi in 1938. While
the principles used for imaging originate with two other physicists, Felix Bloch and Edward
Purcell. They received the Nobel prize in physics for their work in 1952, 5 years after they first
submitted their discoveries. It was not until the late 1970s before the techniques were used to
create images. In 1971 Raymond Damadian discovered that the hydrogen signal from cancerous
cells was stronger than that of normal tissue since it contains more water and in the following
year applied for a patent for the concept of NMR being used for cancer detection. By 1973
Peter Mansfield and Paul C. Lauterbur had made discoveries concerning magnetic resonance
imaging. Lauterbur realized that magnetic field gradients could be used to determine spatial
location, which lead to the possibility of rapid acquisition of two dimensional images. Mansfield
had developed the mathematical formalism for MRI and developed techniques for efficient gra-
dient utilization as well as fast imaging. In 1977 Damadian built the first MRI scanner along
with two of his post-doctoral students and acquired the first MRI scan.

Since then the development has moved forward very quickly. Today we can get anatomical
images with high resolution and very good soft tissue contrast accompanied by a large array
of imaging techniques including different magnetic pulse sequences and contrast agents. MRI
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can even be combined with other imaging methods such as computed tomography (CT) or
positron emission tomography (PET) to give overlapping imaging information or combined
with treatment hardware like a linear accelerator (MR-linac) for radiation treatment or with
Electroencephalography (EEG) to monitor brain activity.

2.6.2 Working Principle

The working principle for MRI is the use of powerful magnets and radio-wave pulses to create
a varying magnetic field in matter, which then induces electric signals in a receiver coil. This
electric signal can give spatial information, by the help of magnetic gradients, to create an im-
age of the matter within the magnetic field. This chapter will explore how this is accomplished,
but will not go into the specifics of the components of the machine itself, but focus manly on
the mathematical and physical ideas behind the concept.

The proton is a subatomic particle that is present in every single atom. It posses a positive
electric charge and spin, a quantum mechanical property. Spin is a form of angular momen-
tum. Spin is often represented as a spinning object, and spin follows the same mathematical
laws, however this is not an accurate representation of what spin actually is and spin has some
properties which distinguishes it form orbital angular momenta. The spin cannot change its
rotation speed and the spin of a charged particle is associated with a magnetic dipole moment.
Its this magnetic dipole moment that creates the phenomenon of magnetic resonance.

Spin has two available eigenstates α and β. The energy of α and β for any nucleus have the
same energy in their natural state, but if a magnetic field is applied in some direction, then
the spin α state will be aligned with the field and the β state against the field. The β state
has higher energy since it is aligned against the field and the difference between the two states
is ∆E = λhB0. Here λ is the gyromagnetic ratio, a constant that is specific to every nucleus,
and B0 is the strength of the applied magnetic field.

For a large collection of spins the distribution of α and β states will be equal, but with an
applied magnetic field there is a slight preference towards the α state, this difference scales
with the strength of the applied field. This difference gives a small net magnetization in the α-
direction, this net magnetization is usually called M or M0 and is the main focus of all work on
MR. At equilibrium the magnetization (M0) is aligned with the magnetic field (B0). However
any magnetic vector not aligned with B0 will precess around the B0-direction, this is known
as Larmor precession, as the external magnetic field exerts a torque on the magnetic moment.
This can be expressed as:

~τ = ~µ× ~B = λ~J × ~B (1)

where ~τ is the torque, ~µ is the magnetic dipole moment, ~B is the external magnetic field and ~J
is the angular momentum. The magnetic vector will precess about the external magnetic field
with an angular frequency ω of

ω = −λB (2)

This frequency is known as the Larmor frequency.
The behaviour of the magnetization can be described by the Bloch equations, here given in a
reference system that rotates around the z-axis:
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dMz

dt
=
Mz −M0

T1
(3)

dMx′

dt
= −(ω0 − ω)My′ −

Mx′

T2
(4)

dMy′

dt
= (ω0 − ω)Mx′ −

My′

T2
(5)

Where ω minus ω0 is the difference in the angular frequencies for the rotating frames of refer-
ence and the precession angular frequency. Mz describes the magnetization along the external
field (longitudinal component), M ′

x and M ′
y describe the magnetization perpendicular to the

field (transverse component). The fractions on the right side in the three equations describe
the relaxation from an excited state of the system back to equilibrium where T1 and T2 are the
relaxation times, these depend on the magnetic landscape within the material being used.

The fraction on the right side of equation 3 describes longitudinal relaxation back to the orig-
inal, low energy, state of the system with Mz equal M0 and aligned with B0. This is caused
by thermal relaxation, as energy is transferred into nearby atoms, and molecules through col-
lisions, rotations, or electromagnetic interactions. The fractions on the right side of equations
4 and 5, describe the transverse relaxation or de-phasing of the transverse signal. This usually
occurs if a spin is located in an environment where it experiences a local magnetic field, Bloc, in
addition to the main magnetic field, Bo. If Bloc is in the same direction as Bo, the two fields add
together and a spin in that changed magnetic field will now precess at frequency λ(Bo +Bloc),
according to 2. The other spins, which did not have this local field, will be precessing at the
original Larmor frequency fo = λBo. Over time a time t the phase difference of φ = λBloct
would develop between the altered spin and the rest, the net transverse magnetization Mxy
would be reduced as a result. The observed T2 is shorter than what we would expect, this is
because in the real world we will never be able to create perfect B0 fields, there will always be
some small inaccuracies in the field, this leads to an additional affect to the intrinsic T2 and a
shorter relaxation time. This relaxation time is called T2-star written T ∗2 and is the combination
of the intrinsic relaxation and the contributions from the field inhomogeneities. In addition to
this we also have the same thermal relaxation in the transverse plane.

1

T ∗2
=

1

T2
+

1

T ′2
(6)

The relaxation time T2 is often replaced by the rate of relaxation. The rate is called R2 and is
the reciprocal of T2, R2 = 1

T2
. So equation 2.6.2 becomes:

R∗2 = R2 +R′2 (7)

To reach an excited state the system, there is a need to convert M0 into transverse magnetiza-
tion. This i done using a magnetic field perpendicular to B0, called B1. For the field to have
the wanted effect it needs to applied near the Larmor Frequency (equation: 2). When this field
is applied the direction of the net magnetization M is rotated according to:

θ = λB1t (8)



2 THEORY 26

Where t is the time the field is applied and θ is the angle of rotation. This field is used in short
pulses to make the necessary rotation and is refereed to as an RF-pulse (radio-frequency) as
the frequency is close to that of regular radio waves. The most common pulses are the 90 and
180 degree pulses, which rotate the magnetization 90 or 180 degrees respectively.

Through the use of these pulses and changing of the timing between pulses different experiments
or pulse sequences can be created. The most common ones will be discussed in the following
parts.

2.6.3 Pulse Sequences

The simplest one would be just a single 90 degree pulse. This will tip the initial magnetization
from the B0-direction into the transverse plane where it will decay and de-phase until we have
returned to the initial set-up with all magnetization in the B0-direction again. This is known
as Free Induction Decay (FID). The signal we receive is a sine-wave dampened by the T ∗2 effects.

One of the most used pulse sequences is the spin echo (SE). It consists of one 90 degree pulse
and a 180 degree pulse separated by a time TE, the echo time. The first pulse flips the mag-
netization into the transverse plane where it begins to de-phase. The second pulse flips the
spin-system around so that the spins start to re-phase. After a another interval of TE all spins
are in phase and we get a strong signal, this is called a spin-echo. This re-phasing is equivalent
to having to cars racing away from a point with different speeds and then after a certain time
return back the same way they came with their respective speeds. They will reach the starting
point at the same time. In the same way all the spins reach the starting phase after the same
time, TE. However some de-phasing will still remain the 180 degree flip can only recover the
de-phasing caused by the T ′2 effects, the intrinsic T2 de-phasing will still remain. Therefore this
sequence is often used if we want an image which can show the materials T2 effects, called a
T2-weighted image. The longer the TE the stronger the weighting.

When a sequence is performed multiple times in a row the period of time between the beginning
of a pulse sequence and the beginning of the succeeding pulse sequence is called repetition time
and is commonly used as TR.

SE sequences can be very slow to use because higher T2-weighting requires longer TE and TR
is very long. A way to speed up image acquisition is to re-use the excitation created for the
first echo by applying another 180 degree pulse after the first echo. In this way there is no need
to reset and do a new excitation with the 90 degree pulse and a second echo can be achieved.
This is what is called a fast spin echo (FSE) sequence. The signal for each echo after the
excitation decreases according to the T2 de-phasing, therefore after a certain number of echoes
a new excitation must be performed. The number of echoes acquired in one TR is called the
echo train length (ETL) or turbo factor. The ETL typically ranges from 4 to 32 for routine
imaging, but can be over 200 for rapid imaging and echo planar techniques. To increase signal
to noise ratio the signal may be sampled multiple times times and averaged. This is called the
number of excitations or averages.

If a T1-weighted image is desirable one would use a sequence called inversion recovery (IR).
This sequence is started with a 180 deg pulse followed by a 90 degree pulse and then another
180 degree pulse. The first pulse turns the magnetization in the opposite direction of B0 and
the T1 relaxation begins. The time between the 180 degree pulse and the 90 degree pulse is
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called the inversion time TI and is the determining factor for the amount of T1 -weighting.

S(t, TEn) = SPD(t)e
−TEn
T2∗(t) (9)

In order to get an image which could be T ∗2 -weighted one would apply magnetic gradients.
The underlying pulses is just a FID, but after the 90 degree pulse a gradient is applied which
scrambles the signal to accelerate the de-phasing, it is known as a de-phasing gradient. Shortly
after a re-phasing gradient is applied, with the opposite direction and the same strength and
with this an echo is generated and a T ∗2 -weighted image is created. Note that the gradients do
not undo the de-phasing caused by the inhomogeneities in the field.

2.6.4 Dynamic Susceptibility Contrast MRI

In addition to using different sequences, a contrast can be created by injecting a contrast agent
(CA). This is done in dynamic susceptibility contrast MRI (DSC-MRI) and dynamic contrast
enhanced MRI (DCE-MRI).

In DSC-MRI a gadolinium-based CA is administered. This CA decreases the local T ∗2 since
the agent has positive magnetic susceptibility, which means its paramagnetic properties en-
hances nuclear relaxation rates. The CA will follow the blood stream and affect the relaxation
of the tissue compared to the relaxation times without the CA, giving rise to a difference in
signal. For the gadolinium-based CA, the signal intensity will transiently decrease because of
shortened T ∗2 . T1 is also affected but has a shorter range and if the CA remains within the
vessels, it can be neglected. We can assume a linear relationship between CA concentration
and and change in T ∗2 . The signal will increase again as the CA diffuses out of the image volume.

Images are taken before, during and after the injection of the CA, and a signal intensity dif-
ference can be seen across the images as the CA enters and dissipates in the image volume.
To observe the influence of CA over time an imaging sequence with high temporal resolution
needs to be used. Echo-planar-imaging (EPI) is a commonly used sequence and fits this role
well. Echo-planar-imaging creates multiple gradient echoes from an initial excitation by using a
frequency-encoding gradient that switches directions multiple times, as well as a low-magnitude
phase-encoding gradient that is transiently applied when the frequency gradient changes direc-
tion. This speeds up acquisition as it gathers several lines of k-space in one excitation. The
number of lines acquired per excitation is known as the EPI factor. The data from DSC-MRI
can be acquired with a T1-weighted multi-echo EPI. By using multiple echoes both T ∗2 and T1
weighted data can be acquired by the same sequence. This is the same idea as in FSE to create
more than one echo from a single excitation.

Merged fast field echo (mFFE) is a sequence to create static T ∗2 -weighted images. By rapidly
reversing the direction of the frequency-encoding gradient, many gradient echoes can be cre-
ated at different echo times. This process is limited in that the number of echoes is limited by
T ∗2 -decay, so a couple of echoes are normally used.

As discussed earlier tumours have high permeability, this means that when the CA enters the
tumour volume it will leak out of the vessels. Therefore the linear relationship assumed earlier
will no longer be accurate. T ∗2 can be calculated from equation 9, as long as a multi-echo
sequence was used.
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2.7 Histology and Immunohistochemistry

Histology concerns the study of biological material, in the form of intact tissue, using micro-
scopes. To use microscopes the specimens are usually sectioned and mounted on microscope
slides. In order to visualize different biological processes and structures the sections can be
stained with appropriate dyes.

In this project we have looked at both histology and IHC, but there is a lot that applies to
other areas of histology.

The process for creating histological sections will be given a short overview and some details
about certain markers will given. Unless otherwise stated the following section will be based
on lectures and lecture notes from the course Biophysical Micromethods at NTNU from 2017
and the book Histology: A Text and Atlas by M.H.Ross and W.Pawlina. [37]

2.7.1 Fixation, Embedding, Sectioning, Staining and Mounting

The initial step of sample preparation is fixation. The sample must be fixated, so that it
is stored in the same state as when it is removed from the body, otherwise the biological
material might break down or be altered by enzymes or microorganisms. Fixation also ter-
minates cell metabolism and hardens the specimen without significantly altering its molecular
structure. The most popular fixation agent is formalin (formaldehyde), which can be applied
either through vascular perfusion of the specimen, or by immersion of the specimen. Because
formaldehyde does not alter the three-dimensional structure of the sample the proteins maintain
their ability to react with antibodies which allows for the later staining. The sooner fixation is
initiated after the specimen is detachment from its blood supply, the better.

The second step in sample preparation is embedding. In paraffin-embedding the specimen is
surrounded by a paraffin wax-based agent. The agent solidifies and thereby provides the me-
chanical support to section the sample. After being embedded the specimen can be stored for
several years. After fixation the sample is washed and dehydrated with a series of increasing
alcohol concentration solutions. Thereafter the alcohol removed using organic solvents like xy-
lol or toluol. Now the sample is ready for paraffin-embedding.

In order to create the very thin slices needed for histological study a microtome is used. The
microtome is a precision machine that sections biological tissue, it employs sharp steel, glass
or diamond-edged knives to section tissue into thin slices in the micron-size range.

For the staining, the paraffin must be removed and the specimen rehydrated with decreasing
alcohol concentration solutions. The sample can then be stained with the appropriate dye. The
most common stain is hematoxylin and eosin (H&E-stain), it displays the general structural
features of the sample an example of an H&E image is shown in figure 7.

2.7.2 Immunohistochemistry

Antibodies are glycoproteins that are made by specific cells of the immune system as a reaction
to a foreign protein, or antigen. Antibodies can be extracted and attached to fluorescent dyes.
Antibodies with attached dyes can be used to localize an antigen in cells and tissue. Two types
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Figure 7: Image of an H&E image. The structure of the tissue is well resolved thanks to the
H&E stain.

of antibodies are used in IHC:

Polyclonal antibodies are produced by immunized animals. In the process of creating an an-
tibody, a specific protein is isolated from a cell of one species and injected into another species.
In the injected, immunized, subject the foreign protein is recognized by the immune system and
triggers specific immunologic reactions involving many clones immune cells called B lympho-
cytes. The cloning of B lymphocytes eventually creates the antibodies for the injected protein.
These polyclonal antibodies represent mixtures of different antibodies made by multiple clones
of B lymphocytes that each react to different parts of the protein molecule. The antibodies are
then removed from the blood, purified and modified with fluorescent dye. Now these antibodies
can be used to locate the original protein in the species the protein was originally taken from.
As the antibody binds to it and this connection can be visualized by florescence microscopy.

Monoclonal antibodies are produced by immortalized antibody-producing cell lines. The
origin of this cell line comes form an individual with multiple myeloma, a tumour originating
from a antibody-producing plasma cell. These antibodies consist of a single group of identical
B lymphocytes. To create monoclonal antibodies for a specific antigen, a species is immunized
with that antigen and the B lymphocytes isolated and fused with the myeloma cell line. This
combination creates hybridoma, an immortalized individual antibody-secreting cell line.

When one is trying to locate a specific antigen in a sample both indirect and direct methods
are used, but indirect methods are replacing direct methods because of suboptimal sensitiv-
ity. In the direct method of immuno-fluorescence a flurochrome-labelled antibody (poly- of
mono-clonal) that reacts with the antigen in the sample is used. While in indirect immuno-
fluorescence the flurochrome is attached to a secondary antibody witch reacts to the antibody
of the antigen in the sample. This method enhances the fluorescence signal from the tissue as
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multiple of the secondary antibodies can attach to a single primary antibody. In addition a
single secondary antibody can localize the binding of several different primary antibodies and
the secondary antibody can be attached to different dyes so that multiple labels can be shown
in the same tissue section. The drawbacks of the indirect method is that it is expensive, labour
intensive and not easily adapted to automated procedures.

When applying antibodies to a prepared sample, the sections are heated in order to unmask
the connecting point of the antigen, and treated with hydrogen peroxide to block the enzyme
that catalyses the oxidation of hydrogen peroxide. Thereafter the sections are incubated with
antibodies and later can be imaged.

2.7.3 Histological and Immunohistological Markers Used in This Study

H&E: DNA in the nucleus, RNA in ribosomes and in the rough endoplasmic reticulum are
all acidic, and so haemotoxylin binds to them and stains them purple. Most proteins in the
cytoplasm are basic, and eosin binds to these proteins and stains them pink. This includes
cytoplasmic filaments in muscle cells, intracellular membranes, and extracellular fibres. [37].

CD34: is widely regarded as a marker of vascular endothelial progenitor cells and is a trans-
membrane protein. Cells expressing CD34 are normally found in mesenchymal stem cells,
endothelial progenitor cells, endothelial cells of blood vessels. [27].

Carbonic anhydrase IX (CAIX): The expression of CAIX is upregulated during hypoxic
conditions [5] and CAIX is a cellular biomarker of hypoxia. It is over-expressed in hypoxic solid
tumors, but is not expressed in most other normal tissues.

HIF-1α: Monoclonal anti-HIF-1α antibody can be used in immuno-staining to detect HIF-1α
localization [43]. HIF-1α is a regulator of of cellular and developmental responses to hypoxia.
HIF-1α is over-expressed in many human cancers and HIF-1α over-expression is heavily impli-
cated in promoting tumour growth and metastasis through its role in initiating angiogenesis
and regulating cellular metabolism to overcome hypoxia.

2.7.4 Automated Image Analysis

Tumour angiogenesis is a prognostic factor in many tumour types and has been well studied.
The usual way to quantify it is to manually count the number of vessels in a specific region and
thereby estimate the the microvessel density (MVD). An automatic analysis would be beneficial
to make this process less time-consuming and also more quantitative. One example of such a
method was the computer program developed by [24] and [25]. In this program CD34 stained
IHC images where used to quantify a range of vascular parameters. The program was compared
to manual counting by an experienced pathologist. The agreement, over 50 cases, between the
two methods achieved an intraclass correlation coefficient of r2a = 0.96 and a 95% confidence
interval for the percentage difference between the counts from −26.1% to 10.8%. In addition
the automated program could provide a range of additional vascular characteristics.

A version of these programs were made available for use in this thesis.
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3 Method

In this section the materials used as well as the procedures used to gain the results in this project
will be presented. The materials and methods of the MRI investigation will be discussed first
and then the histology and IHC. The structure of the section is on the format where, acquisi-
tion, analysis and statistics are all explained fully for one modality before moving on to the next.

3.1 R∗
2 MRI Study

A project thesis was written by Ingrid Framås Syversen in 2017, where the R∗2 of 26 patients
with rectal cancer was studied [41]. The patient data was taken from prospetive study in rectal
cancer named OxyTarget, conducted at Akershus University Hospital from 2013 to 2017 [35].
Both standard and study-specific MR images were taken before and after CRT, the patients
then underwent surgery. Image analysis was performed using Matlab programs, were it was
attempted to look for markers of cancer aggressiveness. The findings were that one parameter
correlated with CRT response and was related to poor prognosis.

After this analysis was performed, more patient data has become available, and further analysis
can be performed to see if it is in agreement with what was found previously. The programs
and data from the earlier project have been made available for use in this thesis so a comparison
can be made.

3.2 Patients

The patients in this study are taken from the OxyTarget study mentioned above. Data from
a total of 113 patients were received, 102 of these patients had MR images and 39 had IHC
images. 16 patients received neoadjuvant CRT but did not get surgery, 11 of these patients
only had palliative (non-curative) treatment. 28 of the patients had both. Further information
is found in table 2.

Total number of patients Histological and IHC images MRI IHC and MRI
113 39 102 28
Treatment Only Surgery CRT + Surgery CRT + no surgery Palliative treatment + no surgery
113 52 45 5 11
Treatment for patients with MR Only Surgery CRT + Surgery No Surgery
102 43 41 17
Treatment for patients with IHC IHC + CRT IHC + No CRT
39 20 19

Table 2: Patients divided into groups according to what was collected and what treatments
they received.

3.3 MRI

In this project the initial TNM classification was performed with MRI for the TN and com-
puted tomography (CT) was used to classify the M, the CT was taken for thorax and abdomen.

The MRI was done using a Philips Achieva, 1.5 T, (Philips Healthcare, Best, The Netherlands)
with NOVA Dual HP gradients (33mT/m maximum gradient amplitude, 180T/m/s slew rate)
and a five-channel cardiac coil with parallel imaging capabilities. Before and during imaging
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glucagon (1mg/mL, 1mL intramuscularly) and Buscopan (20mg/mL, 1mL intravenously) was
given to the patients, to reduce bowel movements.

An FSE sequence was used for the T2-weighted images 8a, with TR = 2386 − 4122ms, TE
= 80ms, acquisition matrix = 224 × 220 − 256 × 254, field of view (FOV) = 180 × 180mm,
slice thickness = 2.5mm, number of excitations = 3 − 6, and ETL = 20. 21 − 37 slices were
acquired. Based on these images tumour masks were drawn for the tumours by two radiologist
with 20 years of experience. Addition, axial T ∗2 -weighted images 8d were acquired using an
mFFE sequence with five echoes, where TR = 855 − 1137ms, TE1 = 4.6ms, echo spacing
= 9.2ms, acquisition matrix = 152 × 101 − 180 × 120, FOV = 180 × 180mm, slice thickness
= 3mm, number of excitations = 1− 3, and flip angle = 45 deg. The number of slices acquired
for the mFFE sequence was 18 − 24.

For the DSC data a 3D T1-weighted EPI sequence with three echoes were used. Here TR = 38−
45ms, TE1 = 4.6ms, echo spacing = 9.2ms, acquisition matrix = 92×90, FOV = 180×180mm,
slice thickness = 10mm, flip angle = 28 deg, and EPI factor = 9. 12 − 22 slices were acquired,
2s/ imaging volume - time resolution, and in total 60 time points were recorded. The DSC
data was acquired in intervals using a split dynamic sequence, interleaved with a high spatial
resolution T1-weighted sequence. To suppress fat signals a ProSet fat suppression technique
was applied. The CA used was the gadolinium-based CA Dotarem which was given as a bolus
injection. Dynamic R∗2 values were calculated from the DSC data using equation 9. Maps of
the R∗2 values were made for the images.

DWI and DCE images where also taken, but were not used in this project.

3.3.1 Image Analysis

The images were analysed in MATLAB (R2016b, The MathWorks, Inc., Natick, Massachusetts,
United States). The scripts used for the analysis can be found in the appendix A. To begin with
all 2D-images were sorted, using the info from the DICOM-info-file, into 3D and 4D matrices.
Here the two first dimensions are the image info and the third dimension is the slice position.
For the FFE and DSC images the echo time was the fourth dimension.

In order for the program to perform its calculations in the tumour area the tumour masks were
applied. The tumour masks were drawn on the T2-weighted images and guided by the DW
images, these have a different resolution and thickness than the mFFE and DSC images, so
the tumour masks had to be adapted to fit these images. This was done by by multiplying the
number of pixels in the tumour mask by the spatial resolution and placing the tumour mask
on the nearest pixel. Tumour masks were in the NifTI-format, and was converted into binary
3D-matrices usable by MATLAB. The masks were all visually inspected for their fit with the
images.

The static R∗2 values were calculated from the static mFFE images, using equation 9. For each
tumour, median R∗2 values, as well as minimum and maximum values were obtained. For one
patient there was no tumour mask and for some the mFFE file was missing, in addition some
images had large artefacts that made the images unusable, these were then excluded in the
analysis, see table 3.3.1.

Dynamic R∗2 maps were calculated from the DSC data. The pixel value at different time points,
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(a) MRI T2-weighted image from the
FSE sequence

(b) Binary tumour mask used to mark
the tumour area

(c) MR image from the T1-weighted EPI
sequence, used to calculate dynamic R∗2

(d) MR image from the FFE sequence,
used to calculate static R∗2

Figure 8: MRI pictures from the different sequences in the same patient.

Total number Included in all Included in static included in dynamic
102 82 90 82

Table 3: Patients included or excluded from results in the MR analysis.

for each pixel inside the tumour mask, were stored in an array. To create a baseline for the
image intensity an average was calculated from the first few images, these are the images before
CA injection. The number of baseline images varied between patients (from 5 to 23) and the
number had to be found manually for each patient, this was done by plotting the pixel arrays
against time and counting how many time points were acquired before the signal started to
rise towards the peak. A higher count of baseline images gives a more robust baseline so as
many as possible were used. The pixel arrays were then normalised according to the baseline,
so the mean values of the baseline images were set to zero. The values of the array are now
the change in dynamic R∗2 from baseline, ∆R2∗. From this, the maximum enhancement of R∗2
(R2∗-peakenh) was found. By plotting the pixel array against time and integrating the curve,
the area beneath the curve (R2∗-AUC) was found. Illustrations of R2∗-peakenh and R2∗-AUC
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are shown in figure 9.

Figure 9: Curve of the signal averaged over all pixels in the mask. The gray area is a the area
under the curve (AUC) and the top of the initial curve is the peak. The baseline in this image
was set according to the process explained in section 3.3.1.

To see if the correlation changed with different endpoints, multiple different time intervals were
chosen. The time intervals were 0 to 49±1s, 0 to 135±10s, 0 to 222±15s, and 0 to 525±25s.
The interval lengths have some variation because the images were acquired at slightly different
time points for different patients. Median R∗2 − peakenh and R∗2-AUC values, as well as mini-
mum and maximum values, were obtained for each patient.

3.3.2 Statistics

The Mann-Whitney U-test was used to check the calculated values for correlation with pa-
tient clinicopathologic information and therapy response. The U-test was used as there is a
relatively small number of patients and it is unreasonable to assume that they are normally
distributed. The test uses median instead of mean values, which limits the error caused by
the low number of patients. The endpoints analysed with the U-test were mrTN, ypTN and
TRG. Based on these endpoints the patients were divided into groups and can be seen in table 4.

The null hypothesis is that all patients come from a continuous distribution with one median
value. This hypothesis is rejected if the p-value, the probability that the null-hypothesis is true,
is below 0.05. So if the probability that the two groups have the same distribution is below
5% it is rejected. The alternative hypothesis is that the distributions of the two groups are not
equal. If the null-hypothesis is rejected the alternative hypothesis must be accepted, meaning
that it is highly likely that there is some intrinsic difference between the groups, as they have
different distributions.

The different patients groups are shown in table 4. ∆T0-1 and ∆T2-4 are patients who had
a difference in T-stage of 1, 0, 2, 3 or 4 compared between the initial TNM classification and
the one given after surgery. ∆N0 and ∆N1-2 are the same, but for the N-stage. Downstag-
ing and no-downstaging are groups defined by whether there was a lower T-stage or not after
CRT as compared to pre-CRT. Patients with TRG0-2 were defined as good patients with good
histopathologic response to CRT and TRG3 as poor tumour response.
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Nstatic Ndynamic

Endpoint Group 1 Group 2 Group 1 Group 2
TRG0-2 vs. TRG3 28 10 29 10
ypT0-2 vs. ypT3-4 13 22 12 24
ypN0 vs. ypN1-2 31 29 43 27
∆ T0-1 vs. ∆ T2-4 28 7 30 6
∆ T0-2 vs. ∆ T3-4 30 5 31 5
∆ N0 vs. ∆ N1-2 21 15 20 17
Downstaging vs. no-downstaging 25 11 25 12
No CRT
pT0-2 vs. pt2-4 13 20 13 20
pN0 vs. pN1-2 23 15 24 13

Table 4: Grouping info showing number of patients in each group.

Endpoint Number of patients
mrT2 19
mrT3 47
mrT4 35
mrN0 42
mrN1 36
mrN2 22
pT1 4
pT2 16
pT3 21
pT4 2
pN0 24
pN1 14
pN2 4
TRG0 4
TRG1 13
TRG2 15
TRG3 11
ypT0 5
ypT1 4
ypT2 4
ypT3 25
ypT4 3
ypN0 23
ypN1 11
ypN2 7

Table 5: Parameters used for staging and evaluation of response.

3.4 Histology and Immunohistochemistry

Histology and IHC sections for 39 patients were examined. Only 33 of them were used in the
actual data, the reasons are noted in introduction to the results 4.2. The following four stains
were used for each patient: H&E, CD34, CAIX and HIF-1α. The files were in the Aperio SVS
TIFF format. The program PMA.start (Pathomation BVBA, Berchem, Belgium) was used to
view the images.

TRG was determined after surgery and pathology.
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3.4.1 Staining

The tumour sections were staining was performed at AHUS (Akershus university hospital) by an
technician. CD34 staining was done with CD34 klon QBEND10, from Nordic BioSite (Nordic
BioSite AB, Sweden). CAIX staining was performed with CAIX, from Bionordica (Bionordica
AS, Norway). HIF-1α staining was performed with HIF1-alpha klon 54, from BD Biosciences
(BD Biosciences, USA). A routine H&E stain was also made. Stains for CD3 and CD8 were
made, but since they are not used in this project they are not discussed further.

3.4.2 Scanning of Images

After the sections were stained they were imaged under a microscope and converted to digital
images. The sections were imaged at × 20 and × 40 magnification. The digital files were later
stored on a portable hard drive which was made available to the project.

3.4.3 Tumour Mask creation

The images of the sections contained a mixture of normal tissue and tumour tissue, therefore
tumour mask masks were made to separate tumour tissue from the normal tissue. The masks
were made by the author of this thesis together with a PhD student in the department.

The tumour mask were drawn in GNU Image Manipulation Program (GIMP) on the H&E
images. A threshold was applied afterwards to remove any non binary values. 19 of the images
were sent to an experienced pathologist for inspection, to verify the tumour masks drawn and
to clarify in the more uncertain areas whether or not they contained tumour cells. The tumour
masks were then corrected and refined. An example of a mask is shown in figure 10a, an ex-
ample of the applied mask is also shown in figure 10b.

(a) Binary tumour mask used to mark the tumour
area, created for on an H&E image.

(b) Binary tumour mask applied to the corre-
sponding H&E image.

Figure 10: Tumour mask and H&E image.

In drawing the tumour masks, the masks were drawn over the areas that contained the tumour
and not specifically on only tumour cells, this was done as the masks would later be used for all
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stains and some error was to be expected in the process so having some room for error was nec-
essary to contain the tumours within the tumour masks. In addition it is not always possible to
say where the tumour ends and normal tissue begins as tumours will recruit surrounding tissue
like connective tissue and vessels as it grows. Further the extent of the tumour masks should
be somewhat determined by the endpoint for the study as the different biological processes to
be studied have different ranges impact. For example, for studying a feature with a low number
of coloured pixels drawing a very tight mask could exclude stained pixels and greatly decrease
the the number of data points since there are so few in total. For a feature with a high fraction
of stained pixels a tight mask only excludes a small percentage of the data.

Artefacts were present in some of the images, but did not seem to affect results in any of the
cases. Therefore no actions were taken, but if a consequence was found the area of the artefact
would have been excluded from the masked area.

3.4.4 Image Analysis

A Matlab program developed for this project was used in the analysis of the stained images.
The program is based on previous projects [24] [25] , a summary of the actions will be given as
well as a brief explanation for the implementation.

Summary:

• The program loads in the files for a given patient.

• The tumour mask is applied to the H&E stain.

• The masks are applied to all other stains (registration based on the full image at a low
resolution).

• The images are cropped to the area of the mask.

• To improve the mask-fit, the initial registration is re-done for the cropped images.

• The images are segmented and minuscule stains are removed.

• The features from the segmented and processed images are extracted.

• The features are saved to a file in the patients folder.

The registration in the application of the mask to the different stains is performed the first time
with the thumbnail of the full image. The stains the mask will not fit perfectly since the images
have slightly different sizes (in the range 10 − 500 pixels) and there are quite a few possible
ways for the slice to be altered, examples are: stretching, ripping and folding. Because of these
differences a more detailed registration between the H&E and the other stains is performed to
improve the fit. The initial registration places the mask in the right vicinity, but rarely in the
exact spot it needs to be. This is caused by the fact that the registration affects the entire
image so it registers parts of the image we are not interested in with the same weight as the
masked area. The second registration is only done in the area (bounding box) directly affected
by the mask. This way the registration ignores values outside the area to be analysed. An
example of the registration is shown in figure 3.4.4.

For the images where the image registration still did not fit well, the masks were scaled down
(eroded) to keep them within the tumour region. An example of the scaling is seen in figure
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(a) H&E image with applied mask. (b) CAIX image overlaid with mask from the
H&E image.

(c) Registered CAIX image. Registered by the
tilled-registration program.

(d) Registered CAIX image overlaid with the
mask from the H&E image.

Figure 11: Images from different parts if the image registration. The first figure (a) shows
how the mask should fit on the image based on how it was drawn on the H&E image. The
second figure (b) shows how the initial registration fails to align the mask and image correctly
compared to the first figure. In this example it is caused by a mixture of rotation, contraction.
In the third figure (c) we see that the image from the second figure (b) is now aligned with the
H&E image. When the mask is applied in the last figure (d) it now fits a lot better.

12. The images that still did not match up with the tumour region were excluded.

In the segmentation the HSV transform(hue, saturation, value) and the B value of the RBG are
combined. The B layer has the highest contrast of the three RBG layers and provides better
contrast than the RBG to gray function.

The post processing removes stains that are too small. The stains on the HIF-1α images were
weak, to compensate, these images were post-processed with slightly different parameters. This
was done to make sure that most of the stains were conserved.

Examples of the images after segmentation and post-processing can be seen in figure 3.4.4.

The following features were extracted:

• Total Stained area, given as a fraction of total masked area. Generated for all stains.
Abbreviated as SF (stained fraction), CAsf (CAIX stained fration) and HIFsf (HIF-1α
stained fraction) in the for respectively CD34, CAIX and HIF-1α.

• Average stain size. Generated for all stains (In the CD34 stain this is defined as average
vessel size). Abbreviated as vessel size (VS), CAss (CAIX stain size) and HIFss (HIF-1α
stain size).
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Figure 12: Image of an tumour mask that has been scaled/eroded. The coloured part has been
removed from the mask to make sure the mask stays within the tumour area.

• Average Inter capillary distance (ICD), which is the distance to the closest vessel from a
given vessel.(for CD34)

• Average Solidity (a measure of convex-ness) (for CD34)

• Micro Vessel density (MVD) (for CD34)

• Number of Vessels (for CD34)

• Average vessel radius (for CD34)
The features were calculated in the following way:

• Stained fraction: The number of pixels in the masked area divided by the number of
pixels that had a value above the threshold value.

• Number of vessels: Each region of connected pixels with values over the threshold are
grouped together and considered as one vessel.

• Average stain size: The average number of pixels for each vessel (group of connected
pixels).

• Vessel radius: For each group the major and minor axis lengths were found and the
average of these gives the diameter.
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Figure 13: CD34 image after segmentation and post-processing. The green pixels are stains of
CD34, vessels.

Figure 14: CAIX image after segmentation and post-processing



3 METHOD 41

Figure 15: HIF1-α image after segmentation and post-processing

• Intra Capillary Distance (ICD): For each group the centroid of the region was found and
the position of the centroid was stored. From this the shortest distance to any other
centroid was calculated.

• Solidity: The convex hull of each group was found. The solidity was then calculated as
the proportion of pixels in the convex hull that were also in the region of the group.

• Micro Vessel density (MVD): Found by taking number of vessels divided by the total
masked area.

3.4.5 Statistics

The Spearman rank correlation coefficient was calculated for the pathological results to look for
correlation with clinicopathologic information and CRT response, as well as correlation within
the pathological results, and the p-values for these correlations were also calculated.
Survival statistics were calculated in IBM SPSS (IBM, New York, USA) ref. In SPSS Kaplan-
Meier plots were made to see if survival differed for patients with different feature values. These
are shown in appendix A.
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No TRG 16
Endpoint Group 1 Group 2
TRG0-1 vs. TRG2-3 6 15
TRG0-2 vs. TRG3 12 3
ypT0-2 vs. ypT3-4 13 20
ypN0 vs. ypN1-2 14 19
∆ T0-1 vs. ∆ T2-4 32 0
∆ T0-2 vs. ∆ T3-4 32 0
∆ N0 vs. ∆ N1-2 26 7
Downstaging vs. no-downstaging 13 20

Table 6: Grouping info for the pathological data. Notice that there are no patients in ∆ T2-4
or ∆ T3-4

4 Results

4.1 MRI Results

The analysis of the MRI data yielded the results given below. Of the 103 patients with MRI
data 79 were included in all results, 20 were only included in either static or dynamic R∗2 results
and four were not used in either. The four patients not included in either were as a consequence
of having images with artefacts or faulty tumour masks.

The results for static R∗2, dynamic R∗2-peakenh and dynamic R∗2-AUC are given below.

4.1.1 Results for Static R∗2

Calculated from the mFFE images the static R∗2 values were not statistically significant for any
of the different endpoints, although there were differences in median values. This can be seen
in table 7.

For patients with CRT Median static R∗2 (s−1)
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 32.2 (12.7-482) 18.9 (13.1-353) 0.135
ypT0-2 vs. ypT3-4 39.6 (13.6-482) 22.6 (12.7-463) 0.621
ypN0 vs. ypN1-2 24.2 (13.1-463) 23.1 (12.7-482) 0.608
∆ T0-1 vs. ∆ T2-4 22.6 (13.1-482) 42.4 (13.6-452) 0.578
∆ T0-2 vs. ∆ T3-4 23.6 (13.1-482) 39.6 (13.6-452) 0.869
∆ N0 vs. ∆ N1-2 39.6 (12.7-452) 21.0 (15.3-482) 0.608
Downstaging vs. No-downstaging 33.3 (13.1-482) 18.8 (12.7-463.2) 0.229
For patients without CRT Median static R∗2 (s−1)
Endpoint Group 1 Group 2 p-value
pT0-2 vs. pt2-4 24.2 (13.8-459) 20.6 (13.1-437) 0.453
pN0 vs. pN1-2 22.6 (13.8-459) 20.8 (14.2-437) 0.929

Table 7: Results from the statistical analysis of the static R∗2-values of different endpoints. The
Results are given as median values and the range given in parenthesis. The full dataset can be
found in the appendix 192021
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4.1.2 Results for Dynamic R∗2-peakenh

Calculated from the dynamic images the R2∗-peakenh values were not statistically significant
for any of the different endpoints, although there were some differences between the median
values. The group ypN0 vs. ypN1-2 showed a strong trend (p = 0.065). All these results can
be seen in table 8.

Median R∗2-peakenh (s−1)
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 29.3 (0.0-75.2) 36.5 (14.9-51.3) 0.257
ypT0-2 vs. ypT3-4 29.6 (0.0-75.2) 31.8 (24.7-51.3) 0.987
ypN0 vs. ypN1-2 37.1 (0.0-75.2) 31.6 (14.9-60.9) 0.065
∆ T0-1 vs. ∆ T2-4 32.0 (14.9-53.3) 29.1 (0.0-75.2) 0.823
∆ T0-2 vs. ∆ T3-4 32.0 (0.0-53.3) 29.1 (13.0-75.2) 1.000
∆ N0 vs. ∆ N1-2 32.3 (0.0-75.2) 31.2 (13.0-51.3) 0.498
Downstaging vs. No-downstaging 31.8 (0.0-75.2) 29.1 (14.9-47.9) 0.695
For patients without CRT Median R∗2-peakenh (s−1)
Endpoint Group 1 Group 2 p-value
pT0-2 vs. pt2-4 36.9 (0.0-56.0) 37.8 (0.0-62.7) 0.921
pN0 vs. pN1-2 39.2 (0.0-62.7) 31.0 (0.0-60.9) 0.024

Table 8: Results from the statistical analysis of the dynamic R∗2 − peakenh-values of different
endpoints. The Results are given as median values and the range given in parenthesis. The full
dataset can be found in the appendix 192021.

4.1.3 Results for Dynamic R∗2-AUC

The dynamic R∗2-AUC values were calculated from the DSC data, for different endpoints and
for different ranges of time points. The time points chosen were the same as in [41] so a com-
parison of the results can be made. The following time points (in seconds) were used: 525±25,
222 ± 15, 135 ± 10, 49 ± 1.

For the time point 525 ± 25 the statistical analysis found two significant results, TRG0-2 vs
TRG3 (p = 0.008) and ∆T0-1 vs. ∆T2-4 (p = 0.014). This can be seen in table 12. For
the time point 222 ± 15, TRG0-2 vs TRG3 showed a strong trend (p = 0.074) and ∆T0-1 vs.
∆T2-4 (p = 0.029) was significant. For the time point 135 ± 10 TRG0-2 vs TRG3 was once
again significant (p = 0.047) and for ypN0 vs. ypN1-2 (p = 0.075) as well as ∆T0-1 vs. ∆T2-4
there was a strong trend (p = 0.083). The timepoint 49 ± 1 showed a strong trend (p = 0.055)
for the ∆T0-1 vs. ∆T2-4 group as well as the ∆T0-2 vs. ∆T3-4 (p = 0.084).

4.2 Results from the immunohistochemical analysis

4.2.1 CD34 Results

Of the 39 patients with IHC images, 20 received CRT, features were calculated for 33 of them.
Of the six patients that features were not calculated for, three of them had no more tumour in
the image slices as a result of successfully CRT. Two of the other three had very poor image
registration leading to the tumour mask landing largely outside the tumour region. This was a
result of the tumour areas being very spread out and very small. The last patient had a very
small tumour area which contained no to little staining, therefore after thresholding no features
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Median R∗2-AUC, 49 ± 1
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 214 (0-546) 248 (83-431) 0.385
ypT0-2 vs. ypT3-4 229 (0-546) 228 (42-474) 0.535
ypN0 vs. ypN1-2 241 (0-617) 223 (0-546) 0.573
∆ T0-1 vs. ∆ T2-4 268 (34-593) 132 (0-331) 0.055
∆ T0-2 vs. ∆ T3-4 268 (0-593) 132 (105-323) 0.084
∆ N0 vs. ∆ N1-2 226 (0-474) 281 (34-546) 0.291
Downstaging vs. No-downstaging 238 (0-546) 227 (134-404) 0.863
For patients without CRT Median R∗2-AUC, 49 ± 1
Endpoint Group 1 Group 2 p-value
pT0-2 vs. pt2-4 202 (0-473) 306 (0-617) 0.343
pN0 vs. pN1-2 261 (0-617) 206 (0-522) 0.192

Table 9: Results from the statistical analysis of the dynamic R∗2 − AUC-values of different
endpoints. The Results are given as median values and the range given in parenthesis. The full
dataset can be found in the appendix 192021.

Median R∗2-AUC, 135 ± 10
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 528 (0-1270) 787 (264-1140) 0,047
ypT0-2 vs. ypT3-4 430 (0-1073) 586 (231-1270) 0.578
ypN0 vs. ypN1-2 678 (0-1337) 434 (0-1735) 0,075
∆ T0-1 vs. ∆ T2-4 678 (256-1292) 423 (0-918) 0,083
∆ T0-2 vs. ∆ T3-4 622 (0-1292) 430 (84-918) 0,412
∆ N0 vs. ∆ N1-2 575 (0-1073) 734 (320-1270) 0.378
Downstaging vs. No-downstaging 598 (0-1073) 589 (256-1270) 0.307
For patients without CRT Median R∗2-AUC, 135 ± 10
Endpoint Group 1 Group 2 p-value
pT0-2 vs. pT3-4 654 (0-498) 601 (0-1735) 0.064
pN0 vs. pN1-2 656 (0-1334) 274 (0-1735) 0.681

Table 10: Results from the statistical analysis of the dynamic R∗2 − AUC-values of different
endpoints. The Results are given as median values and the range given in parenthesis. The full
dataset can be found in the appendix 192021.

could be extracted.

Results of the image analysis for 33 patients is given in the rest of this section. First are the
feature values given in the same grouping as in the MRI results. This is followed by correla-
tion between different IHC features and the correlation between the MRI results and the IHC
features.

The correlation plots are shown in figure 16 and the p-values in the table 17. For some features
correlation with the MRI results were also calculated and are shown in figure 17. All values
were calculated in Matlab.
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Median R∗2-AUC, 222 ± 15
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 859 (-22-1872) 1291 (382-2992) 0.058
ypT0-2 vs. ypT3-4 864 (-22-2287) 1095 (0-2992) 0.332
ypN0 vs. ypN1-2 936 (-22-2304) 732 (-3383-2222) 0.466
∆ T0-1 vs. ∆ T2-4 1099 (0-2992) 597 (-22-1322) 0.029
∆ T0-2 vs. ∆ T3-4 1091 (0-2992) 864 (-22-1322) 0.244
∆ N0 vs. ∆ N1-2 1016 (-22-2992) 921 (162-1872) 0.883
Downstaging vs. No-downstaging 903 (-22-2992) 1106 (0-1872) 0.718
For patients without CRT Median R∗2-AUC, 222 ± 15
Endpoint Group 1 Group 2 p-value
pT0-2 vs. pt2-4 997 (0-2287) 827 (0-2222) 0.810
pN0 vs. pN1-2 967 (0-2287) 649 (0-2222) 0.114

Table 11: Results from the statistical analysis of the dynamic R∗2 − AUC-values of different
endpoints. The results are given as median values and the range given in parenthesis. The full
dataset can be found in the appendix 192021.

Median R∗2-AUC, 525 ± 25
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 1590 (-216-3749) 2901 (867-6015) 0.008
ypT0-2 vs. ypT3-4 1266 (0-2417) 1844 (-216-6015) 0.063
ypN0 vs. ypN1-2 1616 (-545-6175) 1825 (-219-6015) 0.745
∆ T0-1 vs. ∆ T2-4 1869 (-216-6015) 730 (0-2320) 0.014
∆ T0-2 vs. ∆ T3-4 1820 (-216-6015) 949 (247-2320) 0.167
∆ N0 vs. ∆ N1-2 1869 (-216-6175) 1633 (520-3750) 0.977
Downstaging vs. No-downstaging 1604 (-216-6015) 2042 (881-4750) 0.388
For patients without CRT Median R∗2-AUC, 525 ± 25
Endpoint Group 1 Group 2 p-value
pT0-2 vs. pt2-4 1708 (-171-6175) 1527 (-545-3924) 0.542
pN0 vs. pN1-2 1607 (-545-6175) 1040 (-219-3924) 0.944

Table 12: Results from the statistical analysis of the dynamic R∗2 − AUC-values of different
endpoints. The Results are given as median values and the range given in parenthesis. The full
dataset can be found in the appendix 192021.

4.2.2 CAIX Results

The results for the CAIX-stain are shown below in table 15 and the full data for all patients
are show in the appendix 26, some groups with no data as there were a number of images with
no staining.

4.2.3 HIF1-α results

The results for the analysis of the IHC stained HIF1-α images are shown in table 26. For some
groups there was no data as there were a number of images with no staining.
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Number of Vessels.
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 109 (8-954) 714 (333-1742) 0.101
ypT0-2 vs. ypT3-4 908 (29-2749) 919 (8-4048) 0.927
ypN0 vs. ypN1-2 931 (8-2749) 781 (16-4048) 0.785
∆ N0 vs. ∆ N1-2 931 (8-4048) 897 (83-1742) 0.775
Downstaging vs. No-downstaging 781 (8-2749) 1182 (16-4048) 0.367

Vessel Size, in µm
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 408 (272-772) 412 (330-516) 0.734
ypT0-2 vs. ypT3-4 512 (330-828) 454 (330-976) 0.367
ypN0 vs. ypN1-2 528 (330-828) 446 (298-976) 0.222
∆ N0 vs. ∆ N1-2 462 (330-976) 516 (330-690) 1.000
Downstaging vs. No-downstaging 516 (330-828) 454 (272-976) 0.428

Vessel Radius, in µm
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 15 (12.8-20.8) 15.8 (14.0-17) 0.945
ypT0-2 vs. ypT3-4 17.2 (13.2-20.8) 16.4 (12.8-22.0) 0.672
ypN0 vs. ypN1-2 17.6 (13.0-20.8) 16.4 (12.8-22.0) 0.251
∆ N0 vs. ∆ N1-2 16.8 (12.8-22.0) 16.8 (14.0-19.6) 0.809
Downstaging vs. No-downstaging 17 (14.4-20.8) 16.2 (12.8-22.0) 0.387

MVD, in X1/m · 10−5

Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 3.0 (1.1-14) 5.0 (1.4-7) 0.448
ypT0-2 vs. ypT3-4 3.9 (1.2-14) 3.6 (1.1-8) 0.868
ypN0 vs. ypN1-2 4.1 (1.2-8) 3.9 (1.1-14) 0.702
∆ N0 vs. ∆ N1-2 3.9 (1.1-14) 3.9 (1.4-6) 0.582
Downstaging vs. No-downstaging 3.9 (1.2-14) 3.9 (1.1-8) 0.782

Table 13: Results from the quantitative IHC analysis of the features: vessels, vessel size, vessel
radius and MVD from pathological CD34-images. The Results are given as median values and
the range (min-max) given in parenthesis. The full dataset can be found in the appendix 24
and 25

4.2.4 Results for the Correlation Between MRI Parameters and IHC Features

The correlation matrix showing the scatter plots and correlation values are shown in figure 17
and the p-values are shown in table 18.
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ICD, in µm
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 161.4 (70-304) 94.2 (92-172) 0.734
ypT0-2 vs. ypT3-4 104.8 (70-192) 116.0 (78-304) 0.868
ypN0 vs. ypN1-2 102.4 (70-304) 105.8 (78-236) 0.500
∆ N0 vs. ∆ N1-2 106.4 (70-304) 104.8 (90-172) 0.613
Downstaging vs. No-downstaging 52.5 (70-304) 105.2 (78-236) 0.839

Solidity, in X · 10−3

Endpoint Group 1 Group 2 Dif p-value
TRG0-2 vs. TRG3 930.8 (889-945) 923.4 (922-940) 7.4 0.734
ypT0-2 vs. ypT3-4 929.5 (889-945) 923.3 (884-945) 6.2 0.277
ypN0 vs. ypN1-2 925.5 (889-945) 923.6 (884-945) 1.9 0.956
∆ N0 vs. ∆ N1-2 923.6 (884-945) 929.5 (906-940) -5.9 0.613
Downstaging vs. No-downstaging 923.8 (884-945) 925.3 (897-945) -1.5 0.519

Stained Fraction, in percentages
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 1.06 (0.4-10.3) 2.55 (0.5-2.7) 0.536
ypT0-2 vs. ypT3-4 2.01 (0.5-10.3) 1.71 (0.4-7.9) 0.568
ypN0 vs. ypN1-2 2.13 (0.5-10.3) 1.78 (0.4-7.9) 0.500
∆ N0 vs. ∆ N1-2 1.79 (0.4-10.3) 2.01 (0.5-4.2) 0.676
Downstaging vs. No-downstaging 2.01 (0.5-10.3) 1.79 (0.4-7.9) 0.897

Table 14: Results from the quantitative IHC analysis of the features: ICD, solidity and stained
fraction from the CD34-images. The Results are given as median values and the range (min-
max) given in parenthesis. The full dataset can be found in the appendix 24 and 24

CAIX Stained Fraction, in percentages
Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 2.58 (0.01-9.2) 0.84 (0.01-1.2) 0.183
ypT0-2 vs. ypT3-4 2.58 (0.00-15.1) 0.84 (0.00-5.7) 0.500
ypN0 vs. ypN1-2 0.31 (0.00-12.6) 1.08 (0.00-15.1) 0.554
∆ N0 vs. ∆ N1-2 0.86 (0.00-15.1) 0.84 (0.14-9.2) 0.686
Downstaging vs. No-downstaging 0.69 (0.00-12.6) 0.89 (0.00-15.1) 0.979
CAIX Stain Size, in µm
TRG0-2 vs. TRG3 1452 (196-5404) 1452 (196-1752) 0.833
ypT0-2 vs. ypT3-4 1342 (30-6284) 1056 (72-3928) 0.468
ypN0 vs. ypN1-2 1200 (30-6284) 1072 (72-4828) 0.817
∆ N0 vs. ∆ N1-2 1056 (30-6248) 1342 (428-5404) 0.729
Downstaging vs. No-downstaging 573 (30-5404) 536 (74-6284) 0.854

Table 15: Results from the quantitative IHC analysis of the CAIX-images. Stain fraction is
the fraction of coloured pixels versus number of pixels in the tumour mask. Median number
of pixels for each vessel in the tumour mask. The Results are given as median values and the
range (min-max) given in parenthesis. The full dataset can be found in the appendix 26

Kaplan-Meier plots were made to assess differences in long-term survival based on seperating
the CD34 IHC parameters in groups above and below their median values. This was not done
for the CAIX and HIF-1α parameters as there were so few patients with data in these groups.
The results did not reveal any significant differences in survival. The plots can be found in the
appendix A.
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Figure 16: Correlation matrix for IHC features and TRG. Entries above and below the diag-
onal are identical. The number in each window represents the correlation between the two
parameters and the scatter-plot is shown in the same window. Values in red reflects Spearman
correlations were the correlation value is > 0.50 or < 0.50.

5 Discussion

In this chapter the methods results are discussed in separate sections. The first part is on
the MRI alone and then the IHC alone, before the associations between MRI and IHC are
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HIF-1α Stained Fraction, in X · 10−5

Endpoint Group 1 Group 2 p-value
TRG0-2 vs. TRG3 0.60 (0.60-400) 0.65 (0.61-12.5) 0.800
ypT0-2 vs. ypT3-4 0.69 (0.60-400) 0.73 (0.47-37.7) 0.717
ypN0 vs. ypN1-2 1.78 (0.60-36.7) 11.6 (0.47-400) 0.129
∆ N0 vs. ∆ N1-2 0.75 (0.47-37.7) 0.42 (0.60-400) 0.967
Downstaging vs. No-downstaging 0.69 (0.60-400) 0.72 (0.47-37.7) 0.966
HIF-1α Stain Size, in µm
TRG0-2 vs. TRG3 77.0 (30-296) 98.8 (54-144) 1.000
ypT0-2 vs. ypT3-4 163.2 (30-296) 173.2 (54-302) 0.500
ypN0 vs. ypN1-2 115.6 (30-274) 200.8 (78-302) 0.091
∆ N0 vs. ∆ N1-2 190.6 (44-302) 139.8 (30-296) 0.416
Downstaging vs. No-downstaging 163.2 (30-296) 173.2 (44-302) 0.898

Table 16: Results from the quantitative IHC analysis of the HIF-1α-images. Stain fraction is
the fraction of coloured pixels versus number of pixels in the tumour mask. Median number
of pixels for each vessel in the tumour mask. The Results are given as median values and the
range (min-max) given in parenthesis. The full dataset can be found in the appendix 26

TRG SF MVD VS Sol R nr V ICD CAsf CAss HIFsf HIFss
TRG 1.000 0.791 0.710 0.423 0.694 0.647 0.393 0.494 0.448 0.179 0.112 0.149
SF 0.791 1.000 0.000 0.001 0.070 0.022 0.044 0.004 0.202 0.243 0.990 0.875
MVD 0.710 0.000 1.000 0.037 0.284 0.128 0.017 0.001 0.218 0.192 0.990 0.885
VS 0.423 0.001 0.037 1.000 0.013 0.000 0.254 0.092 0.185 0.364 0.722 0.772
Sol 0.694 0.070 0.284 0.013 1.000 0.002 0.499 0.259 0.987 0.925 0.203 0.156
R 0.647 0.022 0.128 0.000 0.002 1.000 0.322 0.052 0.569 0.730 0.875 0.948
nr V 0.393 0.044 0.017 0.254 0.499 0.322 1.000 0.002 0.048 0.034 0.012 0.016
ICD 0.494 0.004 0.001 0.092 0.259 0.052 0.002 1.000 0.086 0.066 0.386 0.457
CAsf 0.448 0.202 0.218 0.185 0.987 0.569 0.048 0.086 1.000 0.000 0.028 0.026
CAss 0.179 0.243 0.192 0.364 0.925 0.730 0.034 0.066 0.000 1.000 0.040 0.045
HIFsf 0.112 0.990 0.990 0.722 0.203 0.875 0.012 0.386 0.028 0.040 1.000 0.000
HIFss 0.149 0.875 0.885 0.772 0.156 0.948 0.016 0.457 0.026 0.045 0.000 1.000

Table 17: P-value for the pathological data. The p-value for the correlation of each feature
with all other features as well as TRG. Each side of the diagonal, represented by the ones, are
identical. Values in bold are significant values, as long as they do not represent the same thing
(like CAIX and HIF-1α).

discussed. The last part is topics for further work.

5.1 Discussion of MRI

5.1.1 Discussion of Materials

The MRI images from the T2-weighted sequence had good resolution, contrast and no artefacts.

The images for the DSC data are hard to interpret visually as they are not purely anatomical,
but are used for the quantitative analysis and estimation of dynamic parameters.
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Figure 17: Correlation matrix for MR and IHC data. Entries above and below the diagonal are
identical. R2 is the paramter R∗2, R2pk is R∗2-peakenh and R2AUC is R∗2-AUC for the time point
525second. The number in each window represents the correlation between the two parameters
and the scatter-plot is shown in the same window. Values in red reflects Spearman correlations
were the correlation value is > 0.50 or < 0.50.

The images from the static R∗2 sequence had a relatively high rate of artefacts. This can be
attributed to movements of the bowel. Although measures were taken to reduce bowel move-
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TRG R2 R2-peak R2-AUC Nr V MVD ICD VS CAsf CAss HIFsf HIFss
TRG 1.000 0.040 0.024 0.135 0.778 0.302 0.206 0.135 0.841 0.532 0.603 0.778
R2 0.040 1.000 0.004 0.012 0.176 0.037 0.004 0.008 0.676 0.415 0.415 0.402
R2-peak 0.024 0.004 1.000 0.000 0.564 0.379 0.054 0.034 0.202 0.474 0.495 0.584
R2-AUC 0.135 0.012 0.000 1.000 0.321 0.355 0.091 0.082 0.121 0.424 0.672 0.885
Nr V 0.778 0.176 0.564 0.321 1.000 0.463 0.200 0.527 0.965 0.268 0.006 0.007
MVD 0.302 0.037 0.379 0.355 0.463 1.000 0.000 0.001 0.441 0.365 0.807 0.824
ICD 0.206 0.004 0.054 0.091 0.200 0.000 1.000 0.000 0.356 0.200 0.890 0.855
VS 0.135 0.008 0.034 0.082 0.527 0.001 0.000 1.000 0.564 0.451 0.718 0.785
CAsf 0.841 0.676 0.202 0.121 0.965 0.441 0.356 0.564 1.000 0.000 0.117 0.191
CAss 0.532 0.415 0.474 0.424 0.268 0.365 0.200 0.451 0.000 1.000 0.035 0.066
HIFsf 0.603 0.415 0.495 0.672 0.006 0.807 0.890 0.718 0.117 0.035 1.000 0.000
HIFss 0.778 0.402 0.584 0.885 0.007 0.824 0.855 0.785 0.191 0.066 0.000 1.000

Table 18: P-value matrix for MR and Histological data. The p-value for the correlation of each
feature with all other features as well as TRG. Each side of the diagonal, represented by the
ones, are identical. R2 is the paramter R∗2, R2pk is R∗2-peakenh and R2AUC is R∗2-AUC for the
time point 525second. Values in bold are significant values, as long as they do not represent
the same thing (like CAIX and HIF-1α).

ments, they are difficult to remove entirely. MRI acquisition of the rectum is difficult because
the presence of air cavities often induces susceptibility effects, this gives signal loss because of
increased R∗2. These artefacts are difficult to remove entirely and therefore CA is often avoided
for MRI of the rectum. In this project glucagon and Buscopan injection was able to remove a
high amount of the bowel movements. Some cases were not used due to these problems in total
13 patients were excluded form the static results.

5.1.2 Discussion of Methods

In DSC-MRI the first pass of the contrast agent is what is usually imaged. In cancer, especially
rectal cancer, the vessel walls are especially permeable leading to contrast agent leaking out.
This means that the signal measured will be different from that of normal DSC-MRI and must
be corrected. Since kinetic parameters were not calculated the correction was not necessary.
In this project R∗2 was found using a multi-echo sequence and calculated from 9, which should
remove most R1 effects from R∗2 values. Since the relaxation of the CA is weaker when it
is not in contact with blood, R∗2 will scale down with the amount of CA leakage. As a con-
sequence R∗2 may be lower in more aggressive tumours as they generally have more leaky vessels.

The time of arrival of CA into the tumour volume is important in the calculation of R∗2-peakenh
as the value depends on the baseline of R∗2 before the CA injection. The number of baseline
images varied between patients because the timing of CA injection was done manually and
timed by simple counting. Counting is very subjective and can vary a lot for each instance. An
automated system would have been preferable to achieve the same timing for all patients. As
a consequence of this variation the number of baseline images had to be found, in this project
it was done manually by looking at the curve of the signal and finding the point were the curve
starts to rise towards the peak. This was not trivial to find as it varies to some extent from
pixel to pixel and the exact start of the rise is not always straight forward to determine.

Most patients did not have image acquisition at the same time points for the R∗2-AUC, be-
cause of this the time interval for the R∗2-AUC had slight variations. The interval for R∗2-AUC
could not stop in-between images, it had to end on an acquired image. This gives rise to small
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differences in the R∗2-AUC values. This could have been corrected by performing a regression
between the two last data points to have all patients end at the same time or using a conven-
tional sequence. The images were acquired before this thesis started, so this would not have
been possible. The regression was not done for two reasons, the time frame did not allow it
and the error is likely to not have a large impact on results.

For some patients a rise in the R∗2-AUC curve could be seen towards the end of the longer time
intervals. This is probably caused by the accumulation of CA in the bladder which increases
R∗2 of nearby tissue [16]. Patients with a very large rise (Rise ≈ Peak) in the R∗2-AUC at late
times were excluded from the results. This exclusion was only based on a visual inspection
of the curve and not any specific cut-off value. This might provide some uncertainty into the
results. For shorter time intervals this effect should be greatly diminished.

Some patients also had very unnatural curves before the initial rise to the peak. These include
values deviating from the apparent baseline by rising before the observed peak or dipping far
below the baseline. This might be due to the contrast agent reaching some pixels much earlier
than others or artefacts in the image. Patients with large deviations were also excluded.

In total 14 patients were excluded from the dynamic results.

5.1.3 Additional Methodological Factors

The patients included in this project were also included in another project, therefore patients
had many sequences taken and stayed in the MRI scanner for a long time. MRI acquisition for
rectal cancer is a long process (≈ 45 minutes) and the additional sequences added ≈ 15 − 20
minutes to the acquisition. It is therefore quite likely that patients had some movement and
created motion artefacts.

The delineation of the tumour mask is also exposed to human errors and intra-observer variabil-
ity [31]. As well when the tumour mask is adapted to the image some small error is introduced
because of the different resolution of the images.

The number of patients with MRI data that where also treated with CRT is low so some end-
points have few patients, in addition some patients were not included in either the static or
dynamic results, giving a lower number for each modality than the number of patients with
CRT. As a consequence of the low number of patients the Mann-Whitney U test was used
for the statistical analysis. The exact treatment of the CRT varies between patients and it is
uncertain what effect this had on the result.

5.1.4 Discussion of Results

The static R∗2 had no significant results for the different endpoints, the endpoint group that
had the lowest p-value was TRG0-2 vs. TRG3 (p = 0.135). This might be connected to the
large semi-overlapping range of values for the different groups and to some extent the amount of
artefacts and movement errors. The were some differences in the median values between some
endpoints. Especially for the change in T stage (∆T0-1 vs. ∆T2-4, and ∆T0-2 vs.∆ T3-4), but
high p-value (p = 0.578 and p = 0.869). In general we see higher R∗2-values for patients in the
groups with favourable responses. It was assumed that patients with more aggressive tumours
and most likely more hypoxia and therefore poorer treatment response should show higher R∗2
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values. It is not possible to give any conclusive result on this theory from these results, the
p-value for the TRG groups looks promising but is not significant. Studies with larger patient
groups should be performed.

Other studies have found results that were more promising. For instance Sun and colleges in-
vestigated the role of static R∗2 in differentiating malignant from benign lesions in the liver [40].
In the study it was found that malignant lesions had R∗2 values that were higher than benign
lesions with a p-value of < 0.001. In another study by Li and colleges, R∗2 was investigated
in cervical cancer [21] patients who received CRT. After treatment the follow-up examinations
were done and it was found that patients with poor response had significantly higher R∗2 than
patients with better response and had a p-value of 0.02. In both studies the explanation for
the differences in response was the presence of hypoxia.

The R∗2 value is not only affected by oxygen in the blood, the amount of haemoglobin in the
blood as well as the amount of red blood cells are factors and both vary individually. In the
rectum the it is of high importance to consider the interface between air and tissue. They
can increase the R∗2 value in an interface region and should not be included. The artefacts in
some images can have affected this and lead to some air-cavities being included in the tumour
mask. The most sever cases were removed, but some milder cases of artefacts were included to
not further lower the amount of patients in the study, however this probably introduced more
variance in the values.

It might be that the expected correlation with tumour hypoxia is not manifested as the CA is
not able to reach chronically hypoxic cells, since the supply of blood to these cells is, by virtue
of being chronically hypoxic, very low.

The dynamic R∗2-peakenh had one significant result. This result was found in the patients
wihtout CRT in the group pN0 vs. pN1-2 (p = 0.024). The endpoint ypN0 vs. ypN1-2 had a
p-value of 0.065 represents a strong trend. It showed a difference in median values that suggests
a lower values for patients without malignant lymph nodes. This has been seen in other studies
were a significant association was found between both Ktrans and R∗2-peakenh in the primary
tumour and histological nodal status of the surgical specimen [11]. It was suggested that both
R∗2-peakenh and nodal status were connected to tumour aggressiveness that was caused by hy-
poxia, and that a low R∗2-peakenh may be an indicator of poor blood flow. A similar result
was found in this study between R∗2-peakenh and the pN stage. This supports the case that
R∗2-peakenh may be associated with poorer blood flow and as a consequence a more aggressive
phenotype. In general the patients with better outcomes have slightly lower values.

R∗2-peakenh is affected by many factors. Blood flow should affect the rate at which CA is trans-
ported through the tumour and thereby affect the maximum R∗2. More blood flow would give
faster enhancement of R∗2 and therefore a higher peak value. In contrast hypoxic areas should
have higher R∗2 because of de-oxygenated haemoglobin, but it might be that CA agent does not
reach these areas because of the poor blood flow or diffusion that is associated with hypoxia.
It is likely that in reality the truth lies somewhere in the middle and they both contribute.

The dynamic R∗2-AUC did have some significant results, but only for the longer time inter-
vals, this might mean that there is some accumulation or temporal aspect to these results. For
the 525± 25s both TRG0-2 vs. TRG3 and ∆T0-1 vs. ∆T2-4 were found to be significant with
p-values of 0.008 and 0.014. It can be seen that in both groupings the patients with poorer
response had higher values, indicating higher values for more aggressive tumours, except for
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the TRG group where the patients with a better response had a lower value. Grøvik and col-
leges also looked at R∗2-AUC and found that patients with nodal metastasis as well as patients
with T3-4 tumours had lower values for the R∗2-AUC, these results were not significant though
(p = 0.07 − 0.20). This might further indicate that this result has to be seen in contrast to
the time interval used, which again might be associated with the CA having more time to leak
into the tissue. In addition the TN stage of a tumour is not necessarily connected with tumour
aggressiveness, whereas the tumour response to treatment is usually considered to be fairly well
correlated with aggressiveness.

In DSC-MRI one usually looks at the first-pass of CA, therefore looking at R∗2-AUC for the
whole acquisition time is an uncommon approach. As a consequence there had not been found
any literature on how to analyse these findings. R∗2-AUC generally reflects the amount of CA
transitioning the vasculature and is proportional to the blood volume as long as the first-pass
is the only part being considered and one assumes no leakage [38]. The high vascular perme-
ability of rectal cancer changes this and the general principles cannot be followed. A possible
explanation of the differences in first-pass results is that all the CA does not leave the tumour
volume after the first-pass of aggressive tumours. It is this effect that can observed with the
full time interval approach.

There are several reasons why the CA might linger longer in more aggressive tumours. The
first being that aggressive tumours have more leaky vessels leading to more CA leaking into the
tissue, the enhancement of the signal when CA leaks into tissue is small, but with increasing
concentrations the effect should increase. Second the abnormal and torturous vasculature of
more aggressive tumours could be less effective at clearing the CA from the tissue. Third the
irregular blood flow of aggressive tumours could cause CA that leaks into tissue to remain much
longer than in less aggressive cases. Fourth the vasculature could have dead-ends and sections
where blood pools up without being drained and causing blood lakes. It is also not known how
VM plays into the specific dynamics of CA transportation.

5.2 Discussion of Quantitative Immunohistochemistry

5.2.1 Discussion of Materials

The staining for the H&E, CD34, CAIX all had good staining with sufficient contrast. The
HIF-1α stain had poor staining, why this was the case in unsure, but it might have been a
result of issues in the thinning process of the staining procedure or the time from operation to
being paraffin embedded. Other reasons could be that primary antibodies generally lose affinity
for the target antigen over time, either due to protein degradation or denaturation caused by
long-term storage, microbial contamination, changes in pH or harsh treatments. The CAIX did
not have this issue which shows that the issue was not a lack of hypoxia within the sections.

Some slides had tearing, this could have happened when the slides were mounted on the micro-
scope or when the slice was mounted on the slide. The latter is the most probable. Since the
slices are very thin it takes very little for them to tear. This was a minor issue and generally
the tears were small. There were however three cases with large tears, in these cases the results
were checked to see that no data was gathered in these regions. Only one of the three tears
had enough staining to be visible after thresholding. An example of tearing is shown in figure
18a. In this case the tearing is outside the data-area as seen in figure 18c, therefore there are
no consequences.
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(a) Example of tearing form a CAIX image

(b) The H&E image in the same area as the tear on the CAIX image

(c) Image showing the included pixels (green) in the teared image

The images used in the pathological results were digitized at × 20 and × 40 magnification.
The first downscaled layer (1:4) of the × 20 images were used to run the analysis, this yielded
good results and all features were sufficiently resolved. The × 40 images and the full resolution
× 20 images were not used as the first downscaled layer of the × 20 images provided enough
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detail to find the outline of vessels, in addition higher resolutions would require substantially
more computing power or time for computation. However for the feature ’Solidity’ it might
have been beneficial to use higher resolution to accurately determine the vessel branches.

5.2.2 Discussion of Methods

Many steps in the processing was evaluated by visual inspection, this naturally has a inherent
flaws. There is however no clear and easy alternative in assessing image quality in the different
steps that do not also require a lot more time investment, complexity and restriction of flexi-
bility. With this in mind most parts of the processing seem to have generated good results.

Image registration was vital to the processing of the images since only one mask was drawn for
each case, on the H&E stain. The registration had to correctly align tumour areas in the other
stains with the original mask. Failure to do so would either introduce undesired data from
outside the tumour region or lose tissue data from areas not covered. The image registration
was largely successful, the most troublesome cases were the ones that had many small tumour
areas. For these cases tilled image-registration could have helped, but with the current program
this was not possible. The other option for the bad cases would have been to draw masks for
all stains.

An alternative to image registration would have been to draw masks for all stains. This would
have been a time consuming endeavour and was not guaranteed to give better results, because
it is not always possible to identify the correct tumour regions on the non-H&E stains.

The standard procedure for determining vessel parameters in IHC stained tumours use manual
determination of which cells are stained sufficiently and correspond to vessels. The general
method uses a ”hot spot” approach were a few regions with high vessel density are studied.
A certain number of regions are selected and the number cells or vessels marked with a given
marker are counted. In this project a more straight forward and ”honest” approach was used,
were the whole tumour area was analysed. In addition this project employs an automated
approach to vessel identification by using color thresholds, thus removing the subjective per-
spective from this process.

The thresholding was not highly investigated. It was based on visual inspection and no in-
spection of the false negative rates or false positive rates with respect to the threshold values
were performed. Threshold values were selected with the idea in mind that false positives were
considered worse than false negatives. As a consequence some weaker stains were most likely
lost. However false positives could give wrong results whereas false negatives would only give
no conclusive results.

The post-processing kept the smallest stains out of the feature extraction. Minuscule stains in
the features could cloud the data and might give some false positives. To counteract the weak
staining in the HIF1-α a weaker erosion was used for these slides. No further inspection was
performed into the effects of the threshold process.

5.2.3 Discussion of Histology Results

The data for each feature will be discussed, followed by an overall look at how the data can be
interpreted and finally how they relate to the MRI data.
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Number of vessels. The only feature that showed some tendency toward significance for any
endpoint was the number of vessels for TRG0-2 vs TRG3 where the p-value was p = 0.101. The
values show that for patients with better response had tumours with fewer vessels. This seems
to be contradicted by the fact that it is the other way around in the TRG0-1 vs. TRG2-3 group,
but there was only one patient in the TRG0-1 group so this data should not be considered.
This is a result of many of the patients in the TRG0-1 group having no cancer left in the image
slice and therefore were not included. The TRG2-3 group however had more patients (15) and
had a higher value than the TRG0-2 group, but a lot lower than the TRG3 group which had
three patients. The endpoint ypN0 vs ypN1-2 had quite a difference in the values for the two
groups, but very high p-value (p = 0.785), this could be due to overlapping groups. Downstaing
vs no-downstaging also had some difference in the median values but a p-value of 0.367.

In VM the vessel-like channels do not contain endothelial cells, therefore they would not be
stained by CD34 and would not show up on the results. The amount of VM in the sections is
therefore unknown and the impact they have on the tumour environment is unclear, it might
be that areas of low vessel density rely more on VM to supply blood.

Median average vessel size is closely related to average vessel radius. Looking at the values
from these two features, the values for the groups align to some extent. Meaning that when
the values for one group are higher than the other for one feature this is also true of the other
feature. This makes sense as both features measure the magnitude of a vessel. The p-values
also match up to some extent. For both features the ypN0 vs. ypN1-2 endpoint gave the best
p-value around 0.23.

MVD also gave a lower value for patients with better response to the treatment (TRG0-
2) compared to patients with poor response (TRG3), but showed no statistical significance
(p = 0.448). It would be very beneficial to compare with the TRG0-1 vs TRG2-3 group data.
We can not use TRG0-1 as discussed earlier, but we can use the TRG2-3 value. This group
gives a higher median value than the TRG3 group, showing that there might be some connec-
tion between number of vessels in an area and its response to treatment. This is what has been
found in many other studies. MVD has been linked with treatment response and metastasis
[45], but the varying methods used to evaluate MVD has complicated comparisons and a lack
satisfactory methods in a clinical environment has limited its use [Myiata] [6]. MVD was a
significant although weak prognostic factor in women with breast cancer. Standardization of
MVD assessment is needed. This project used a method not widely used in other studies. The
method uses the entire tumour volume, within the central slice instead of using specific hot
spots. The method in this project provides a larger perspective of the tumour and considers
all parts of the tumour, instead of only investigating the most dense vessel areas. It also avoids
subjective biases and should be easily reproducible.

Although different results has been found for some types of cancer, colorectal cancer seems to
show good correlation between MVD and prognosis. 2014 meta-analysis by Wang and colleges
found that patients with colorectal cancer showed an increase in MVD-levels and this correlated
with tumour aggressiveness, poor differentiation and higher frequencies of vascular-lymphatic
invasion, lymph node invasion, and distant metastases [45]. Another study stated that angio-
genesis, as assessed by MVD, in colorectal cancer is an important prognostic factor for tumour
growth at the primary site [48]. A study from 2017 indicated that MVD, regional lymph node
metastasis and tumour size were independent risk factors for distant metastases in colorectal
cancer [42].
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None of the other groups for MVD showed any statistical significance. In addition the ∆N0
vs. ∆N1-2 as well as the downstaging vs no-downstaging had only a very small difference in
median values.

ICD had very small differences between most endpoints except the TRG grouping were there
was a lower value for TRG0-1 than for TRG2-3, but also a lower value for TRG3 than for
TRG0-2. We might see a trend toward lower values for poorer treatment outcomes, but a low
patient number in the TRG0-1 group most likely prohibits this trend becoming significant. This
would make intuitive sense as we saw a tendency for higher vessel numbers in higher regression
grades, which should decrease vessel distance. Once again there are no significant results.

Solidity. From the solidity data there seems to be a decline in solidity for increasing tumour
grade, meaning that for tumours with poorer response the vessels are more branched and ir-
regular in shape. This is seen in the difference between TRG0-1 and TRG2-3 as well as in the
difference between TRG0-2 and TRG3. This is in line with the general tendency for tumour
vasculature to be poorly regulated and forming tortuous networks. The downstaging vs. no-
downstaging group did not show this tendency. Wether the post-possessing affected this value
is uncertain.

The stained fraction is a combination of vessel number and vessel size, and the stained frac-
tion increases from TRG0-2 to TRG3 as expected, but in the TRG0-1 vs. TRG2-3 case we
once again see exceptions presumably due to the low patient number. In ypT0-2 vs. ypT3-4
we see higher values for the ypT0-2 group than for the ypT3-4 group. In ypN0 vs. ypN1-2 we
also see higher values for ypN0 than for ypN1-2. For the difference in downstaging we see that
patients with downstaging had higher fractions.

Correlation data: The first thing to note is that stained fraction correlates quite strongly
with vessel size and MVD. This makes sense as the larger the vessels the more staining would
be observed and if they were tightly packed we would also likely have a higher stain fraction.
In the same way MVD and ICD are highly inversely correlated with each other. Continuing
with this idea vessel size and vessel radius are very strongly correlated as well for obvious rea-
sons. Stained fraction correlates, although not as much as vessel size and MVD, with number
of vessels, vessel radius and ICD. The p-value for all these features is below 0.05. Number of
vessels, vessel radius and ICD will be discussed in there own sections.

The correlation p-value for the TRG was > 0.110 for all variables. The two HIF1-α variables
and CAIX stain size were the closest to being significant (CAss = 0.179, HIFsf = 0.112,
HIFss = 0.149) all other variables had p-values > 420.

ICD had p-values for both CAIX features of p = 0.086and0.066. The correlation coefficients
were ρ = −0.44 and ρ = −0.47 showing a decrease in CAIX staining fraction and stain size for
increasing ICD.

Number of vessels is correlated with seven parameters. The most strongly correlated pa-
rameter is ICD with an inverse relationship. Increasing the number of vessels decreases their
spacing, but the number of vessels is also correlated with stained fraction and MVD so the area
of the tumour does not seem to increase at the same rate as the number of vessels. If that was
the case, the stained fraction would remain the same for increasing vessel number, however this
might be because the sections only represent a two-dimensional image of the three-dimensional
tumour. Number of vessels was the only feature to have a correlation with CAIX and HIF1-α
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features and had a p-value > 0.05 for all pairs. As the grouping data showed, the number of
vessels seemed to have a connection with treatment-response and hypoxia is known to limit
treatment effectiveness. It is therefore interesting to see that the number of vessels has some
correlation with the hypoxia markers in this project. The correlation is moderate with values
between 0.50 − 0.61.

5.2.4 Discussion of Correlation between MRI and Quantitative Immunohisto-
chemistry

The correlation matrix for the MRI and IHC data can be seen in figure 17. The corresponding
p-values can be seen in figure 18.

Looking at the correlation matrix one can see that MVD is quite strongly correlated with R∗2
with an inverse relationship. A lower correlation with R∗2-peakenh and R∗2-AUC is seen and
not with the inverse relationship. P-values are 0.037, 0.379 and 0.355 for R∗2, R

∗
2-peakenh and

R∗2-AUC respectively. Meaning that R∗2 is the only one that is considered significant

Looking at the MRI parameters of the static R∗2, dynamic R∗2-peakenh and dynamic R∗2-AUC
we see that they have very low p-values for both ICD and vessel size (p = 0.004 − 0.091). For
R∗2-peakenh and R∗2-AUC the correlation values with ICD and vessel size are in the range −45
to −0.54. For R∗2 the correlation values are 0.65 and 0.69. This shows that there is a difference
in how the tumour vasculature is represented by R∗2-peakenh and R∗2-AUC compared to R∗2. The
correlation of R∗2-peakenh and R∗2-AUC with ICD distance might be because when the distance
between the vessels increase there is more tissue that is unaffected by the contrast agent. The
correlation with vessel size might be explained by the increased blood flow, so that the CA
washes out of the volume faster. The difference in the sign of the correlation of R∗2-peakenh
and R∗2-AUC versus R∗2 is hard to explain and more research might be needed to fully explain it.

Interestingly R∗2 is strongly correlated with ICD and as seen earlier ICD had a low correlation
but also a very low p-value for CAIX. We also see that the p-value for R∗2 and CAIX features
are 0, 676 0, 415 and a low correlation −0.11 and −0.22.

The feature with the lowest p-value for the MRI parameter R∗2-AUC other than ICD and vessel
size was CA stain fraction with a value of 0.121. The correlation value is −0.44. This is also the
MRI parameter with the lowest p-value for both CAIX features and HIF1-α features. There-
after the second lowest p-value for CAIX features and HIF1-α features when compared to the
MRI parameters is 0.202 for R∗2-peakenh and CAIX stain fraction. For these there is a corre-
lation value of −0.34. All other p-values for MRI parameters with CAIX or HIF1-α are > 0.400.

If we look at the overall correlation of MRI parameters with CAIX and HIF1-α features, we have
in general a low correlation. Except for the CAIX stain fraction correlation with R∗2-peakenh
and R∗2-AUC, all correlation values for CAIX and HIF1-α features are in the range from −0.04
to −0.22. This generally low correlation value probably a reflects the multiple interactions and
variables that affect of both tumour hypoxia and MRI parameter values. In addition the low
amount of patients in this analysis (n = 20) makes it difficult to make any clear conclusions
about the relationship between these parameters.

It should be noted that the MRI data is based on a large volume, while the IHC parameters
are only based on a single slice of the tumour.
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5.3 Suggestions for Further Work

• The process of segmentation in the IHC images could be investigated to see how the choice
of erosion and dilation thresholds affects the rate of false-positives and false-negatives.

• A study into different features should be done as there is a large array of features to look
at.

• A study with a larger number of patients.

• Studying a larger portion of the tumour were more than a single slice is made for each
stain would be very interesting. in that way close to the entire tumour volume could be
analysed.

• The mask creation has a large affect on what features can and should be extracted as well
as having a role in feature results, how these masks are drawn and the margins applied
was not investigated in this project. It would be enlightening to see how it affects the
outcome of the study.
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6 Conclusion

This thesis used MRI as well as histological and IHC images from a total of 113 patients to
quantitatively investigate the vascular function of malignant tumours.

The parameter R∗2 was calculated from static T ∗2 -weighted images and from dynamic R∗2 time
curves derived from DSC data, R∗2-peakenh and R∗2-AUC were calculated. Correlation between
the MRI parameters and various endpoints representing tumour response to CRT was inves-
tigated. Four significant results were found for the the parameter R∗2-AUC. Two significant
results were found for the longest time points one for the second longest and one for the second
shortest, while the shortest had one group verging on significance.

Using an automated computer program a wide array of features were calculated from IHC
images stained with CD34, CAIX and HIF-1α. These features were correlated with various
endpoints representing tumour response to CRT and further correlated to the previously found
MRI parameters.

The IHC data gave many features which differed between long-term endpoints, but no signifi-
cant results were found. Further, drawing any clear conclusions from these data are difficult as
there are not enough patients in most groups to consider the values as well distributed. The
correlation results for IHC and MRI data had a couple of significant results. Vessel size was
significant for correlation with static R∗2 and dynamic R∗2-peakenh. R∗2 was also significantly
correlated with MVD and ICD. There seemed to be indicators in the results that the IHC
features studied were relevant for the purpose of studying tumour vascularization and their
connections to MRI. Additionally, features that have been purposed in the literature to be of
prognostic value did have strong trends in this study, but were not found to be significant. As
such, the connection between the number of vessels, MVD and hypoxia, as indirectly assessed
by MRI, is interesting and overlaps to some extent with what is theorised as the reason for
poor treatment response.

The main weakness of the thesis is the small number of patients in total and especially patients
with CRT, MRI and IHC. In spite of these problems this thesis gives a good example of how
the analysis of vascular function in IHC images can be automatised and streamlined. A stan-
dardization of the methods in vascular IHC analysis is much needed to make comparisons of
results across studies possible.

In conclusion the analysis provided good reasons for being optimistic about the possible use of
these parameters. Based on these results of this thesis, it is recommended that a larger study
is performed as this is the only way the real usefulness of the parameters can be identified and
expanded upon.
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A Appendix

Figure 19: Kaplan-Meier plot for stained fraction of CD34

Figure 20: Kaplan-Meier plot for the vessel size

B Matlab Code

B.1 Code for MRI Analysis



%This program uploads dicomfiles and sorts them. This is for images in
 the
%T2 folder (anatomical images), and the images are sorted by slice
%position.

clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';

%patientNR =  [1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48 49
patientList = [24 25 27 29 30 31 32 34 39 40 41 43 44 45 46 47 48 49
 50 51 52 54 55 56 57 58 60 64 65 67 68 69 72 73 74 75 76 77 78 79 80
 83 85 87 88 89 90 92 94 ...
            ...50 51  52  53  54  55  56  57  58  59  60  61  62  63 
 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 81  82  83  84
               95 96 102 103 106 107 108 110 111 112 113 114 115 116
 118 119 120 121 123 125 126 127 128 131 133 134 138 142 143 144 146
 147 148 149 150 ...
            ... 85  86  87  88  89  90  91  92  93  94  95  96  97  98
  99 100 101 102 103]
               151 152 153 154 155 156 157 158 159 160 161 162 163 164
 165 166 169 170 171];

n = length(patientList);

%Loop that goes over all patients that are going to be analysed
for patient = 1:n

    clear imInfo

    patientNr = patientList(patient); %Draw out the number of the
 patient

    %Make a list over all the image files and count how many there are
    imList = dir([filePath2 'Oxytarget_' int2str(patientNr) ' PRE/T2/
*#*']);
    nImT2 = length(imList);

    %Acquire z value from the info file
    zValueT2 = ones(nImT2,1);

    %Create a matrix with room for all the images (resolution 512x512)
    if (patientNr==68) || (patientNr==126)
        imT2 = zeros(528,528,nImT2);
    elseif(patientNr==75)
        imT2 = zeros(560,560,nImT2);
    else
        imT2 = zeros(512,512,nImT2);
    end

1



    %This loop goes over all the images in the folder and reads them
 in
    for imageNr = 1:nImT2

        %Reads all the images into a matrix, plus the associated info
 file
        info = dicominfo([filePath2 'Oxytarget_' int2str(patientNr) '
 PRE/T2/' imList(imageNr).name]);
        imT2(:,:,imageNr) = dicomread([filePath2 'Oxytarget_'
 int2str(patientNr) ' PRE/T2/' imList(imageNr).name]);

        %Puts slice position into a long vector
        zValueT2(imageNr) = info.ImagePositionPatient(3);

    end %All images are read

    %%Sorts the slices into order
    [zValueT2, indzSort] = sort(zValueT2);
    imT2 = imT2(:,:,indzSort);

    nSlicesT2 = nImT2;

    %Saving variables to a .mat-file in the patient's T2 folder
    save([filePath 'Oxytarget_' int2str(patientNr) '
 PRE/3Dmatrix.mat'],'imT2','zValueT2','nSlicesT2','nImT2')
end

Published with MATLAB® R2016b
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%This program uploads dicomfiles and sorts them. This is for images in
 the
%FFE folder (static sequence), and the images are sorted by slice
 position
%and echo time.

clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';

%patientNR =  [1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48 49
patientList = [24 25 27 29 30 32 31 34 39 40 41 43 44 45 46 47 48 49
 50 51 52 54 55 56 57 58 60 64 65 67 68 69 72 73 74 75 76 77 78 79 80
 83 85 87 88 89 90 92 94 ...
            ...50 51  52  53  54  55  56  57  58  59  60  61  62  63 
 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 81  82  83 84
               95 96 102 103 106 107 108 110 111 112 113 114 115 116
 118 119 120 121 123 125 126 127 128 131 133 134 138 142 143 144 146
 147 148 149 150 ...
            ... 85  86  87  88  89  90  91  92  93  94  95  96  97  98
  99 100 101 102 103]
               151 152 153 154 155 156 157 158 159 160 161 162 163 164
 165 166 169 170 171];

n = length(patientList);

%Loop that goes over all patients that are going to be analysed
for patient = 1:n

    clear imInfo

    patientNr = patientList(patient); %Draw out the number of the
 patient

    %Make a list over all the image files and count how many there are
    if(patientNr==97) || (patientNr==102) ||(patientNr==128)
 || (patientNr==130) || (patientNr==131) || (patientNr==132) ||
 (patientNr==133) || (patientNr==134) || (patientNr==142)
        imList = dir([filePath2 'Oxytarget_' int2str(patientNr) ' PRE/
FFE/*Im*']);
    else
        imList = dir([filePath2 'Oxytarget_' int2str(patientNr) ' PRE/
FFE/*Image*']);
    end
    nIm = length(imList);

    %Acquire echo time value and z value from the info file
    echoTimeValue = zeros(nIm,1);
    zValue = ones(nIm,1);

1



    %Create a matrix with room for all the images (resolution 256x256)
    im = zeros(256,256,nIm);

    %This loop goes over all the images in the folder and reads them
 in
    for imageNr = 1:nIm

        %Reads all the images into a matrix, plus the associated info
 file
        info = dicominfo([filePath2 'Oxytarget_' int2str(patientNr) '
 PRE/FFE/' imList(imageNr).name]);
        im(:,:,imageNr) = dicomread([filePath2 'Oxytarget_'
 int2str(patientNr) ' PRE/FFE/' imList(imageNr).name]);

        %Puts echo time value and slice position into a long vector
        echoTimeValue(imageNr) = info.EchoTime;
        zValue(imageNr) = info.ImagePositionPatient(3);

    end %All images are read

    %Sorts the slices into order
    [zValue, indzSort] = sort(zValue);
    im = im(:,:,indzSort);
    echoTimeValue = echoTimeValue(indzSort);

    %Sorts the echo time values into order
    [echoTimeValue, indEtSort] = sort(echoTimeValue);
    im = im(:,:,indEtSort);

    nEt = length(unique(echoTimeValue)); %Counts number of echo time
 values
    nSlices = nIm/nEt; %Number of slices is (number of images)/(number
 of echo time values)

    %Here the matrix is reshaped into 4D where the first two
 dimensions are
    %x and y directions, dimension three is z direction and dimension
 four
    %is the echo time values.
    im = reshape(im, [256, 256, nSlices, nEt]);
    echoTimeValue = reshape(echoTimeValue, [nSlices, nEt]);
    zValue = reshape(zValue, [nEt, nSlices]);

    %Saving variables to a .mat-file in the patient's FFE folder
    save([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
FFE/4Dmatrix.mat'],'im','echoTimeValue','zValue','nEt','nSlices', 'nIm')
end

Published with MATLAB® R2016b
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%This program uploads dicomfiles and sorts them. This is for images in
 the
%R2Star folder (dynamic sequence), and the images are sorted by slice
 position
%and acquisition time.

clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';

%patientNR =  [1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48 49
patientList = [24 25 27 29 30 32 31 34 39 40 41 43 44 45 46 47 48 49
 50 51 52 54 55 56 57 58 60 64 65 67 68 69 72 73 74 75 76 77 78 79 80
 83 85 87 88 89 90 92 94 ...
            ...50 51  52  53  54  55  56  57  58  59  60  61  62  63 
 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 81  82  83 84
               95 96 102 103 106 107 108 110 111 112 113 114 115 116
 118 119 120 121 123 125 126 127 128 131 133 134 138 142 143 144 146
 147 148 149 150 ...
            ... 85  86  87  88  89  90  91  92  93  94  95  96  97  98
  99 100 101 102 103]
               151 152 153 154 155 156 157 158 159 160 161 162 163 164
 165 166 169 170 171];

n = length(patientList);

%Loop that goes over all patients that are going to be analysed
for patient = 1:n
    clear imInfo

    patientNr = patientList(patient); %Draw out the number of the
 patient

    %Make a list over all the image files and count how many there are
    imList = dir([filePath2 'Oxytarget_' int2str(patientNr) ' PRE/
R2Star/*#*']);

    nIm = length(imList);

    %Acquire echo time value and z value from the info file
    acqTimeValue = zeros(nIm,1);
    zValue = ones(nIm,1);

    %Create a matrix with room for all the images (resolution 256x256)
    im = zeros(256,256,nIm);

    %This loop goes over all the images in the folder and reads them
 in
    for imageNr = 1:nIm

1



        %Reads all the images into a matrix, plus the associated info
 file
        info = dicominfo([filePath2 'Oxytarget_' int2str(patientNr) '
 PRE/R2Star/' imList(imageNr).name],'UseDictionaryVR',true);
        im(:,:,imageNr) = dicomread([filePath2 'Oxytarget_'
 int2str(patientNr) ' PRE/R2Star/' imList(imageNr).name]);

        %Puts echo time value and slice position into a long vector
        acqTimeValue(imageNr) = str2double(info.AcquisitionTime);
        zValue(imageNr) = info.ImagePositionPatient(3);

        %Image needs to be multiplied with a scaling factor to get the
        %correct R2* value
        scalingFactor = info.Private_0077_1001;
        im(:,:,imageNr) = scalingFactor.*im(:,:,imageNr);

    end %All images are read

    %Sorts the slices into order
    [zValue, indzSort] = sort(zValue);
    im = im(:,:,indzSort);
    acqTimeValue = acqTimeValue(indzSort);

    %Sorts the echo time values into order
    [acqTimeValue, indAtSort] = sort(acqTimeValue);
    im = im(:,:,indAtSort);

    nAt = length(unique(acqTimeValue)); %Counts number of echo time
 values
    nSlices = nIm/nAt; %Number of slices is (number of images)/(number
 of echo time values)

    %Here the matrix is reshaped into 4D where the first two
 dimensions are
    %x and y directions, dimension three is z direction and dimension
 four
    %is the echo time values.
    im = reshape(im, [256, 256, nSlices, nAt]);
    acqTimeValue = reshape(acqTimeValue, [nSlices, nAt]);
    zValue = reshape(zValue, [nAt, nSlices]);

    %Saving variables to a .mat-file in the patient's R2Star folder
    save([filePath 'Oxytarget_' int2str(patientNr) '
 PRE/4Dmatrix.mat'],'im','acqTimeValue','zValue','nAt','nSlices','nIm')
end

Published with MATLAB® R2016b
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%This program imports and adapts the ROIs to fit the FFE images.

clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';
addpath('C:\Users\Vidar\Downloads\Master\Matlab prosjektoppgave
\ekstra');
addpath('C:\Users\Vidar\Downloads\Master\Matlab prosjektoppgave\ekstra
\imshow3D')

%patientNR =  [1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48
patientList = [24 25 27 29 30 32 31 34 39 40 41 43 44 45 46 47 48 49
 50 51 52 54 55 56 57 58 60 64 65 67 68 69 72 73 74 75 76 77 78 79 80
 83 85 87 88 89 90 92 ...
            ...49 50 51 52  53  54  55  56  57  58  59  60  61  62  63
  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 81  82  83
               94 95 96 102 103 106 107 108 110 111 112 113 114 115
 116 118 119 120 121 123 125 126 127 128 131 133 134 138 142 143 144
 146 147 148 149 ...
            ... 84  85  86  87  88  89  90  91  92  93  94  95  96  97
  98  99 100 101 102 103]
               150 151 152 153 154 155 156 157 158 159 160 161 162 163
 164 165 166 169 170 171];

n = length(patientList);

%Loop that goes over all patients that are going to be analysed
for patient = 1:n

    patientNr = patientList(patient);

    %Loading the sorted FFE and T2 images
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
FFE/4Dmatrix.mat']);
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
T2/3Dmatrix.mat']);

    %Loading the ROI from the NIfTI file
    if patientNr == 28 || patientNr==118 || patientNr == 75 ||
 patientNr == 102 || patientNr==156 || patientNr == 172
        nii = load_untouch_nii([filePath 'Oxytarget_'
 int2str(patientNr) ' PRE/binary/shh/tumour.nii']);
    else
        nii = load_untouch_nii([filePath 'Oxytarget_'
 int2str(patientNr) ' PRE/binary/an/tumour.nii']);
    end

    %Getting the right dimensions and scaling
    unscaledROI = nii.img;
    unscaledROI = permute(unscaledROI, [2 1 3]);

1



    unscaledROI = unscaledROI./(nii.hdr.dime.glmax);

    [xPixels,yPixels,zSlices] = size(unscaledROI);

    if (patientNr == 32) || (patientNr == 74) || (patientNr == 79)
 || (patientNr == 96) || (patientNr == 40) || (patientNr == 46) ||
 (patientNr == 65) ...
            || (patientNr == 69) || (patientNr == 77) || (patientNr ==
 85) || (patientNr == 103) || (patientNr == 106) || (patientNr == 113)
 || (patientNr == 134) ...
            || (patientNr == 133) || (patientNr == 141) || (patientNr
 == 151) || (patientNr == 152) || (patientNr == 155) || (patientNr ==
 160) ...
            || (patientNr == 163) || (patientNr == 169) %for these
 patients, the ROI slices are in the opposite order!
        copy = unscaledROI;
        index = 1;
        for s = zSlices:(-1):1
            unscaledROI(:,:,index) = copy(:,:,s);
            index = index + 1;
        end
    end

    staticROI = zeros(256,256,nSlices);

    %Adapting the ROI to fit the FFE image
    for z = 1:nSlices
        slice = 1;
        min = 10;
        if zSlices > size(zValueT2,1)
            zSlices=size(zValueT2,1);
        end
        for i = 1:zSlices
            if abs(zValue(1,z) - zValueT2(i,1)) < min
                min = abs(zValue(1,z) - zValueT2(i,1));
                slice = i;
            end
        end
        if min < 4 %if the T2 and FFE sequences have very different z
 range
            if (patientNr == 28) %if the image has different
 dimensions
                for x = 1:64
                    for y = 1:64
                        if ( (unscaledROI(2*x,2*y,slice) == 1) ||
 (unscaledROI(2*x-1,2*y,slice) == 1) || (unscaledROI(2*x,2*y-1,slice)
 == 1) || (unscaledROI(2*x-1,2*y-1,slice) == 1) )
                            staticROI(x,y,z) = 1;
                        end
                    end
                end
            else
                for x = 1:256
                    for y = 1:256
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                        if ( (unscaledROI(2*x,2*y,slice) == 1) ||
 (unscaledROI(2*x-1,2*y,slice) == 1) || (unscaledROI(2*x,2*y-1,slice)
 == 1) || (unscaledROI(2*x-1,2*y-1,slice) == 1) )
                            staticROI(x,y,z) = 1;
                        end
                    end
                end
            end
        end
    end

    %Plotting to check that the ROIs look alright

    %     figure;
    %     imshow3D(im(:,:,:,2)+250.*staticROI)
    %     figure;
    %     imshow3D(imT2+250.*double(unscaledROI))
    %     figure;
    %     imshow3D(staticROI)

    %Saving variables to a .mat-file in the patient's folder
    save([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
staticROI.mat'],'staticROI','xPixels','yPixels','zSlices')

end
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%This program imports and adapts the ROIs to fit the DSC data.
clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';
addpath('C:\Users\Vidar\Downloads\Master\Matlab prosjektoppgave
\ekstra');
addpath('C:\Users\Vidar\Downloads\Master\Matlab prosjektoppgave\ekstra
\imshow3d');

%patientNR =  [1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48 49
patientList = [24 25 27 29 30 32 31 34 39 40 41 43 44 45 46 47 48 49
 50 51 52 54 55 56 57 58 60 64 65 67 68 69 72 73 74 75 76 77 78 79 80
 83 85 87 88 89 90 92 94 ...
            ...50 51  52  53  54  55  56  57  58  59  60  61  62  63 
 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 81  82  83 84
               95 96 102 103 106 107 108 110 111 112 113 114 115 116
 118 119 120 121 123 125 126 127 128 131 133 134 138 142 143 144 146
 147 148 149 150 ...
            ... 85  86  87  88  89  90  91  92  93  94  95  96  97  98
  99 100 101 102 103]
               151 152 153 154 155 156 157 158 159 160 161 162 163 164
 165 166 169 170 171];

n = length(patientList);

%Loop that goes over all patients that are going to be analysed
for patient = 1:n
    patientNr = patientList(patient);

    %Loading the sorted DSC and T2 images
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
R2Star/4Dmatrix.mat']);
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
T2/3Dmatrix.mat']);

    %Loading the ROI from the NIfTI file
    if patientNr==28 || patientNr==156 || (patientNr == 102)
         nii = load_untouch_nii([filePath 'Oxytarget_'
 int2str(patientNr) ' PRE/binary/shh/tumour.nii']);
    else
         nii = load_untouch_nii([filePath 'Oxytarget_'
 int2str(patientNr) ' PRE/binary/an/tumour.nii']);
    end

    %Getting the right dimensions and scaling
    unscaledROI = nii.img;
    unscaledROI = permute(unscaledROI, [2 1 3]);
    unscaledROI = unscaledROI./1000;

    [xPixels,yPixels,zSlices] = size(unscaledROI);
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     if (patientNr == 32) || (patientNr == 74) || (patientNr == 79)
 || (patientNr == 96) || (patientNr == 40) || (patientNr == 46) ||
 (patientNr == 65)  || (patientNr == 69) ...
     || (patientNr == 77) || (patientNr == 85) || (patientNr == 103)
 || (patientNr == 106) || (patientNr == 113) || (patientNr == 132) ||
 (patientNr == 133)|| (patientNr == 134) ...
     || (patientNr == 151) || (patientNr == 152) || (patientNr == 155)
 || (patientNr == 160) || (patientNr == 163) %for these patients, the
 ROI slices are in the opposite order!
        copy = unscaledROI;
        index = 1;
        for snitt = zSlices:(-1):1
            unscaledROI(:,:,index) = copy(:,:,snitt);
            index = index + 1;
        end
    end

    dynamicROI = zeros(256,256,nSlices);

    %Adapting the ROI to fit the DSC data
    for z = 1:nSlices
        slice = 1;
        min = 10;
        for i = 1:zSlices
            if abs(zValue(1,z) - zValueT2(i,1)) < min
                min = abs(zValue(1,z) - zValueT2(i,1));
                slice = i;
            end
        end
        if min < 4 %if the T2 and FFE sequences have very different z
 range
            for x = 1:256
                for y = 1:256
                    if ( (unscaledROI(2*x,2*y,slice) == 1) ||
 (unscaledROI(2*x-1,2*y,slice) == 1) || (unscaledROI(2*x,2*y-1,slice)
 == 1) || (unscaledROI(2*x-1,2*y-1,slice) == 1) )
                        dynamicROI(x,y,z) = 1;
                    end
                end
            end
        end
    end

    %Plotting to check that the ROIs look alright
    %figure, imshow3D(im(:,:,:,1)+200.*dynamicROI)
    %figure, imshow3D(imT2+250.*double(unscaledROI))
    %figure, imshow3D(dynamicROI*1000)

    %Saving variables to a .mat-file in the patient's folder
    save([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
dynamicROI.mat'],'dynamicROI','xPixels','yPixels','zSlices')

end
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%staticR2Star Vidar
%This program calculates the static R2* for the images in the FFE
 folder
%(based on the 4D image matrices made in sortStatic).

clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';
addpath('C:\Users\Vidar\Downloads\Master\Matlab prosjektoppgave\ekstra
\imshow3d');

%patientNR =  [1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48
patientList = [24 25 27 29 30 32 31 34 39 40 41 43 44 45 46 47 48 49
 50 51 52 54 55 56 57 58 60 64 65 67 68 69 72 73 74 75 76 77 78 79 80
 83 85 87 88 89 90 92 ...
            ...49 50 51 52  53  54  55  56  57  58  59  60  61  62  63
  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 81  82  83
               94 95 96 102 103 106 107 108 110 111 112 113 114 115
 116 118 119 120 121 123 125 126 127 128 131 133 134 138 142 143 144
 146 147 148 149 ...
            ... 84  85  86  87  88  89  90  91  92  93  94  95  96  97
  98  99 100 101 102 103]
               150 151 152 153 154 155 156 157 158 159 160 161 162 163
 164 165 166 169 170 171];

n = length(patientList);

%Loop that goes over all patients that are going to be analysed
for patient = 1:n

    patientNr = patientList(patient); %Draw out the number of the
 patient

    %Load the 4D image matrix and other variables, and the ROI
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
FFE/4Dmatrix.mat']);
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
staticROI.mat']);

    staticR2StarMap = zeros(256,256,nSlices);

    staticR2StarValues = zeros(1,1);

    index = 1;
    negativeValuesStatic = 0;

    lnIm = log(im);

    for sliceNumber = 1:nSlices
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        t = 1E-3.*(echoTimeValue(sliceNumber,:))'; %scale from
 milliseconds to seconds

        imMatrix = permute(squeeze(im(:,:,sliceNumber,:)),[3 1
 2]); %to get convenient matrix dimensions for exponential fit

        for x = 1:256
            for y = 1:256
                  if staticROI(x,y,sliceNumber) == 1 %only looking at
 pixels inside ROI
                    f = fit(t,imMatrix(:,x,y),'exp1'); %exponential
 fit to find R2*
                    if -f.b > 0 %negative values are considered
 "unphysical" and are therefore excluded
                        staticR2StarMap(x,y,sliceNumber) = -f.b;
                        staticR2StarValues(index) = -f.b;
                        index = index + 1;
                    elseif -f.b < 0 %negative R2* are considered
 "unphysical" and are excluded
                        negativeValuesStatic = negativeValuesStatic +
 1;
                    end
                  end
            end
        end

        %Plotting to check the R2* maps
        % figure, imagesc(staticR2StarMap(:,:,sliceNumber)),
 colormap('gray')

    end
    figure, imshow3D(staticR2StarMap)
    staticR2StarValues = sort(staticR2StarValues);

    staticMedian = median(staticR2StarValues);
    staticMean = mean(staticR2StarValues);
    staticStd = std(staticR2StarValues);
    staticIqr = iqr(staticR2StarValues);
    staticMax = max(staticR2StarValues);
    staticMin = min(staticR2StarValues);
    staticRange = range(staticR2StarValues);

    %Saving variables to a .mat-file in the patient's FFE folder
    save([filePath 'Oxytarget_' int2str(patientNr) ' PRE/FFE/
staticR2StarMap.mat'],'staticR2StarMap','staticR2StarValues','staticMedian','staticMean','staticStd','staticIqr','staticMax','staticMin','staticRange','negativeValuesStatic')
end

Published with MATLAB® R2016b

2



%This program calculates the dynamic R2* for the images in the R2Star
%folder (based on the 4D image matrices made in sortDynamic).

clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';
addpath('C:\Users\Vidar\Downloads\Master\Matlab prosjektoppgave\ekstra
\imshow3d');

%patientNR =  [1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42 43 44 45 46 47 48
patientList = [24 25 27 29 30 32 31 34 39 40 41 43 44 45 46 47 48 49
 50 51 52 54 55 56 57 58 60 64 65 67 68 69 72 73 74 75 76 77 78 79 80
 83 85 87 88 89 90 92 ...
            ...49 50 51 52  53  54  55  56  57  58  59  60  61  62  63
  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80 
 81  82  83
               94 95 96 102 103 106 107 108 110 111 112 113 114 115
 116 118 119 120 121 123 125 126 127 128 131 133 134 138 142 143 144
 146 147 148 149 ...
            ... 84  85  86  87  88  89  90  91  92  93  94  95  96  97
  98  99 100 101 102 103]
               150 151 152 153 154 155 156 157 158 159 160 161 162 163
 164 165 166 169 170 171];

n = length(patientList);
%patientNR   =     [1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 41 42]
nBaselineImages = [11 15 12 14 08 11 10 12 05 12 11 10 17 12 14 10 13
 09 06 07 11 15 11 15 14 14 14 14 17 14 18 18 14 18 16 17 15 19 18 16
 17 18 ...
...[43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
 88 89]
    15 14 18 16 15 14 16 16 14 15 12 15 15 13 19 15 13 16 16 18 14 14
 21 19 14 23 15 22 13 16 13 14 14 20 13 19 12 16 20 13 13 20 19 14 14
 20 17 ...
...[90 91 92 93 94 95 96 97 98 99 00 01 02 03]
    14 16 20 14 16 16 18 16 16 16 23 15 21 17];

%Loop that goes over all patients that are going to be analysed
for patient = 1:n

for x = 1:10
    disp(x)
end

    patientNr = patientList(patient); %Draw out the number of the
 patient
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    %Load the 4D image matrix and other variables, and the ROI
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
R2Star/4Dmatrix.mat']);
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
dynamicROI.mat']);

    R2StarPeakEnhancedMap = zeros(256,256,nSlices);
    AUCmap = zeros(256,256,nSlices);

    R2StarPeakEnhancedValues = zeros(1,1);
    AUCvalues = zeros(1,1);

    if patientNr == 159 || patientNr == 160 || patientNr == 162 ||
 patientNr == 163 || patientNr == 164 || patientNr == 166 || patientNr
 == 169 || patientNr == 171
        curveAverage = zeros(1,70);
    else
        curveAverage = zeros(1,60);
    end

    index = 1;
    negativeValuesDynamic = 0;

    for sliceNumber = 1:nSlices
        t = acqTimeValue(sliceNumber,:);

        for it = 1:length(t) %change from acquisition time to seconds
            h = floor(t(it)*1E-4);
            m = floor((t(it)-h*1E4)*1E-2);
            s = floor(t(it)-h*1E4-m*1E2);
            t(it) = h*60*60 + m*60 + s + (t(it)-floor(t(it)));
        end

        t = t-t(1);

        tAUC = zeros(1,1);
        tVal = t(1);
        indexT = 1;

        AUCinterval = 525; %only finding AUC in this interval

        if max(t) < AUCinterval
            tAUC = t;
        else
            while tVal < AUCinterval
                tAUC(indexT) = t(indexT);
                indexT = indexT + 1;
                tVal = t(indexT);
            end
        end

        for x = 1:256
            for y = 1:256
                if dynamicROI(x,y,sliceNumber) == 1
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                    sum = 0;
                    for i = 1:nBaselineImages(patient)
                        sum = sum + im(x,y,sliceNumber,i);
                    end
                    baseline = sum/nBaselineImages(patient);
                    pixelArray = squeeze(im(x,y,sliceNumber,:))-
baseline; %setting baseline to 0
                    maximum = max(pixelArray); %finding the maximum
 value of delta-R2* (R2*-peak_enh)

                    if maximum > 0 %only interested in positive R2*-
peak_enh
                        R2StarPeakEnhancedMap(x,y,sliceNumber) =
 maximum;
                        R2StarPeakEnhancedValues(index) = maximum;
                        pixelArrayAUC = zeros(1,length(tAUC));
                        for it = 1:length(pixelArrayAUC)
                            pixelArrayAUC(it) = pixelArray(it);
                        end
                        AUCvalues(index) =
 trapz(tAUC,pixelArrayAUC); %finding R2*-AUC
                        AUCmap(x,y,sliceNumber) = AUCvalues(index);
                        curveAverage(index,:) = pixelArray;
                        index = index + 1;
                    elseif maximum < 0
                        negativeValuesDynamic = negativeValuesDynamic
 + 1;
                    end
                end
            end
        end

        %Plotting to check the R2*-peak-enh and R2*-AUC maps
         %figure, imagesc(R2StarPeakEnhancedMap(:,:,sliceNumber)),
 colormap('gray')
         %figure, imagesc(AUCmap(:,:,sliceNumber)), colormap('gray')
    end

    %figure, plot(t,curveAverage)
    %figure, imshow3D(AUCmap)
    %figure, imshow3D(R2StarPeakEnhancedMap)

    %Plotting the average of all delta-R2* curves to see how it looks
     for j = 1:60
        sum = 0;
        for k = 1:length(R2StarPeakEnhancedValues)
            sum = sum + curveAverage(k,j);
            %disp(curveAverage(k,j))
        end
        curveAverage((length(R2StarPeakEnhancedValues)+1),j) = sum/
(length(R2StarPeakEnhancedValues));
     end
     figure,
 plot(t,curveAverage((length(R2StarPeakEnhancedValues)+1),:))
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    R2StarPeakEnhancedValues = sort(R2StarPeakEnhancedValues);
    AUCvalues = sort(AUCvalues);

    dynamicMedian = median(R2StarPeakEnhancedValues);
    dynamicMean = mean(R2StarPeakEnhancedValues);
    dynamicStd = std(R2StarPeakEnhancedValues);
    dynamicIqr = iqr(R2StarPeakEnhancedValues);
    dynamicMax = max(R2StarPeakEnhancedValues);
    dynamicMin = min(R2StarPeakEnhancedValues);
    dynamicRange = range(R2StarPeakEnhancedValues);

    AUCmedian = median(AUCvalues);
    AUCmean = mean(AUCvalues);
    AUCstd = std(AUCvalues);
    AUCiqr = iqr(AUCvalues);
    AUCmax = max(AUCvalues);
    AUCmin = min(AUCvalues);
    AUCrange = range(AUCvalues);

    %Saving variables to a .mat-file in the patient's FFE folder
    save([filePath 'Oxytarget_' int2str(patientNr) ' PRE/R2Star/
R2StarPeakEnhancedMap.mat'],'R2StarPeakEnhancedMap','R2StarPeakEnhancedValues','dynamicMedian','dynamicMean','dynamicStd','dynamicIqr','dynamicMax','dynamicMin','dynamicRange','AUCvalues','AUCmap','AUCmedian','AUCmean','AUCstd','AUCiqr','AUCmax','AUCmin','AUCrange','negativeValuesDynamic','t','tAUC')

end
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%This program does a statistical analysis (with the Mann-Whitney U
 test) on
%the correlation between the parameters and the endpoints.

clear all
filePath = 'C:\Users\Vidar\Downloads\Master\Patients\';

resultsMatrixStatic = zeros(8,4);
resultsMatrixDynamic = zeros(8,4);
resultsMatrixAUC = zeros(8,4);

%Making vectors with the patients within each endpoint, then doing the
%Mann-Whitney U test (ranksum function)

%Endpoint: Tumour regression grade (TRG), TRG0-1 vs. TRG2-3

TRG01patients = [41 43 50 51 55 56 67 87 107 119 120 121 131 150 156
 169];
index = 0;

for patient = 1:length(TRG01patients)

    patientNr = TRG01patients(patient);

    %Loading the calculated values for the patients in the group
    if (patientNr ~= 156) && (patientNr ~= 169) %these patients had no
 FFE sequence
        load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
staticR2StarMap.mat']);
        index = index + 1;
        TRG01staticValues(index) = staticMedian;
    end
    if (patientNr ~= 119) %these patients had no R2Star sequence or
 couldn't run some part of the program
        load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
R2StarPeakEnhancedMap_135.mat']);

        TRG01dynamicValues(patient) = dynamicMedian;
        TRG01AUCValues(patient) = AUCmedian;
    end
end

TRG01staticMean = mean(TRG01staticValues);
TRG01staticMedian = median(TRG01staticValues);
TRG01staticStd = std(TRG01staticValues);
TRG01staticIqr = iqr(TRG01staticValues);
TRG01staticMax = max(TRG01staticValues);
TRG01staticMin = min(TRG01staticValues);
TRG01dynamicMean = mean(TRG01dynamicValues);
TRG01dynamicMedian = median(TRG01dynamicValues);
TRG01dynamicStd = std(TRG01dynamicValues);
TRG01dynamicIqr = iqr(TRG01dynamicValues);
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TRG01dynamicMax = max(TRG01dynamicValues);
TRG01dynamicMin = min(TRG01dynamicValues);
TRG01AUCMean = mean(TRG01AUCValues);
TRG01AUCMedian = median(TRG01AUCValues);
TRG01AUCStd = std(TRG01AUCValues);
TRG01AUCIqr = iqr(TRG01AUCValues);
TRG01AUCMax = max(TRG01AUCValues);
TRG01AUCMin = min(TRG01AUCValues);

TRG23patients = [24 27 32 44 47 49 52 74 79 80 89 90 96 113 116 125
 126 128 138 146 153 162 166 170];
index = 0;

for patient = 1:length(TRG23patients)

    patientNr = TRG23patients(patient);

    %Loading the calculated values for the patients in the group
    if (patientNr ~= 58) %these patients had no FFE sequence
        load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
staticR2StarMap.mat']);
        index = index + 1;
        TRG23staticValues(index) = staticMedian;
    end
    load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
R2StarPeakEnhancedMap_135.mat']);

    if (patientNr ~= 97) && (patientNr ~= 28) %these patients had no
 R2Star sequence or couldn't run some part of the program
        load([filePath 'Oxytarget_' int2str(patientNr) ' PRE/
R2StarPeakEnhancedMap_135.mat']);

        TRG23dynamicValues(patient) = dynamicMedian;
        TRG23AUCValues(patient) = AUCmedian;
    end
end

TRG23staticMean = mean(TRG23staticValues);
TRG23staticMedian = median(TRG23staticValues);
TRG23staticStd = std(TRG23staticValues);
TRG23staticIqr = iqr(TRG23staticValues);
TRG23staticMax = max(TRG23staticValues);
TRG23staticMin = min(TRG23staticValues);
TRG23dynamicMean = mean(TRG23dynamicValues);
TRG23dynamicMedian = median(TRG23dynamicValues);
TRG23dynamicStd = std(TRG23dynamicValues);
TRG23dynamicIqr = iqr(TRG23dynamicValues);
TRG23dynamicMax = max(TRG23dynamicValues);
TRG23dynamicMin = min(TRG23dynamicValues);
TRG23AUCMean = mean(TRG23AUCValues);
TRG23AUCMedian = median(TRG23AUCValues);
TRG23AUCStd = std(TRG23AUCValues);
TRG23AUCIqr = iqr(TRG23AUCValues);
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TRG23AUCMax = max(TRG23AUCValues);
TRG23AUCMin = min(TRG23AUCValues);

%Mann-Whitney U test
[p_TRG01vsTRG23static,h_TRG01vsTRG23static] =
 ranksum(TRG01staticValues,TRG23staticValues)
[p_TRG01vsTRG23dynamic,h_TRG01vsTRG23dynamic] =
 ranksum(TRG01dynamicValues,TRG23dynamicValues)
[p_TRG01vsTRG23AUC,h_TRG01vsTRG23AUC] =
 ranksum(TRG01AUCValues,TRG23AUCValues)

%Saving the results in matrices
resultsMatrixStatic(1,:) = [TRG01staticMedian, TRG23staticMedian,
 p_TRG01vsTRG23static, h_TRG01vsTRG23static];
resultsMatrixDynamic(1,:) = [TRG01dynamicMedian, TRG23dynamicMedian,
 p_TRG01vsTRG23dynamic, h_TRG01vsTRG23dynamic];
resultsMatrixAUC(1,:) = [TRG01AUCMedian, TRG23AUCMedian,
 p_TRG01vsTRG23AUC, h_TRG01vsTRG23AUC];
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Main
clear,
format compact

%Load excel sheet med all the filename and storage positions and
 stores
%them in an array
filename='C:\Users\Vidar\Downloads\Master\Pathology\patients.xlsx';
[num,txt,raw] = xlsread(filename);

%Number of patients to run the program for
nrPatients=length(raw)-1;

for patient = 1:nrPatients

data_path = {['D:\Oxytarget Pathology\' char(txt(patient+1,23)) '\'
 char(txt(patient+1,2)) ' ' num2str(num(patient,1))]};

p = {};
for dp = data_path(:)'
    fn =  dir([dp{1},filesep,'*.svs']);
    fn = fullfile(dp, {fn.name});
    p(end+(1:length(fn))) = fn;
end

%Check how many slides there are
nr_slides=[0 0 0 0 0 0];
for i=1:numel(nr_slides)
    if ~isnan(num(patient,i+12))
        nr_slides(i)=1;
    end
end

FN = (1:sum(nr_slides(:) == 1)); % full set for case patient

key = {'HPS','CD3','CD8','CD34','CA9','HIF-1@'};

Extract masks
for i = 1:numel(FN)
    cp = p(FN(i));
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    [currentpath,casename] = fileparts(cp{:});
    pattern = sprintf('%s%s%s-*mask*',currentpath,filesep,casename);
    mask_fn = dir(pattern);
    if ~isempty(mask_fn)
        MaskFN{i} = strcat(currentpath, filesep, {mask_fn.name});
        mask = [];
    end
end

[currentpath,casename] = fileparts(p{FN(1)});

hasMask = ~cellfun(@isempty,MaskFN);
MaskS =
 struct('referenceSlide',key(hasMask), 'propagateMask',true,'BW',mask);

maskPreProcess = @(mask)imfill(~mask(:,:,1),'holes'); % invert and
 fill holes.
maskBehaviour =
 struct('propagateMask',true,'invertMask',false,'mergeFunction',@and, 'processFunction',
 maskPreProcess);

CC = PICase(casename,key, p(FN)); % CC = current case
CC.addMasks(key(hasMask), MaskFN(hasMask), maskBehaviour); %Add masks
 to image
CC.initialRegistration(); % register all to first slide using full
 image.

Check mask in original image
illustrateMaskByEdge = @(im, mask)im.*cast((repmat(imerode(~bwper-
im(mask),strel('disk',7)),1,1,3)),class(im)); [im0, ref0, mask0] = CC.extractMaskedSlide('HPS'); % load
same image size as mask matrix by default figure(1), clf, imshow(illustrateMaskByEdge(im0, mask0),
ref0)

Analyse higher resolution IHC -- CD34 example
% PE = [8, 8]; % Second downscaled image.
% PE = [16,16]; % Third downscaled image. Good size for initial tests

PE = [4 4]; %

[imcropHPS, imrefHPS, mask] = CC.extractMaskedSlide('HPS',PE);
[imcropCD, imrefCD, maskCD] = CC.extractMaskedSlide('CD34',PE);
[imcropCA, imrefCA, maskCA] = CC.extractMaskedSlide('CA9',PE);
[imcropHIF, imrefHIF, maskHIF] = CC.extractMaskedSlide('HIF_1A',PE);

% figure('Name','imcropHPS, mask'), imshowpair(mask, imcropHPS)
% figure('Name','imcropCD, original mask'), imshowpair(maskCD,
 imcropCD)
% figure('Name','imcropCA, original mask'), imshowpair(maskCA,
 imcropCA)
% figure('Name','imcropHIF, original mask'), imshowpair(maskHIF,
 imcropHIF)
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% imwrite(imcropCD,[char(data_path),'\','imcropCD.png'])
% imwrite(imcropCA,[char(data_path),'\','imcropCA.png'])
% imwrite(imcropHIF,[char(data_path),'\','imcropHIF.png'])
%
% imwrite(imrefCD,[char(data_path),'\','imrefCD.png'])
% imwrite(imrefCA,[char(data_path),'\','imrefCA.png'])
% imwrite(imrefHIF,[char(data_path),'\','imrefHIF.png'])

% CC.maskedRegistration(); % register all to first slide using only
 data
% in the mask of the reference slide (full bounding box or mask out
% non-true pixels).

if exist([currentpath,'\','registeredCA.png'], 'file') &&
 exist([currentpath,'\','registeredCD.png'], 'file') &&
 exist([currentpath,'\','registeredHIF.png'], 'file')
    registeredCD=imread([char(data_path),'\','registeredCD.png']);
    registeredCA=imread([char(data_path),'\','registeredCA.png']);
    registeredHIF=imread([char(data_path),'\','registeredHIF.png']);
else
   
 registeredCD=CC.maskedRegistration(imcropHPS,imcropCD,'CD34',data_path);
   
 registeredCA=CC.maskedRegistration(imcropHPS,imcropCA,'CA9',data_path);
   
 registeredHIF=CC.maskedRegistration(imcropHPS,imcropHIF,'HIF-1A',data_path);

    imwrite(registeredCD,[char(data_path),'\','registeredCDe.png'])
    imwrite(registeredCA,[char(data_path),'\','registeredCA.png'])
    imwrite(registeredHIF,[char(data_path),'\','registeredHIF.png'])

%     figure('Name','HPS, mask'), imshowpair(mask, imcropHPS),
 title('Mask, imcropHPS')
%
%     figure('Name','Original CD, original mask'), subplot(1,2,1),
 imshowpair(maskCD, imcropCD), title('MaskCD, imcropCD')
%     subplot(1,2,2), imshowpair(mask, registeredCD), title('mask,
 registeredCD')
%
%     figure('Name','Original CA, original mask'), subplot(1,2,1),
 imshowpair(maskCA, imcropCA), title('MaskCA, imcropCA')
%     subplot(1,2,2), imshowpair(mask, registeredCA), title('mask,
 registeredCA')
%
%     figure('Name','Original HIF, original mask'), subplot(1,2,1),
 imshowpair(maskHIF, imcropHIF), title('MaskHIF, imcropHIF')
%     subplot(1,2,2), imshowpair(mask, registeredHIF), title('mask,
 registeredHIF')

end

T=load([char(data_path) '\tformCD34'], 'tform');
tform_cd=T.('tform');
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T=load([char(data_path) '\tformCA9'], 'tform');
tform_ca=T.('tform');

T=load([char(data_path) '\tformHIF-1A'], 'tform');
tform_hif=T.('tform');

registeredCD_large=imwarp(imcropCD,tform_cd);
registeredCA_large=imwarp(imcropCD,tform_ca);
registeredHIF_large=imwarp(imcropCD,tform_hif);

imwrite(registeredCD_large,
[char(data_path),'\','registeredCD_large.png'])
imwrite(registeredCA_large,
[char(data_path),'\','registeredCA_large.png'])
imwrite(registeredHIF_large,
[char(data_path),'\','registeredHIF_large.png'])

SEGMENT IHC
registeredCD=imread([char(data_path),'\','registeredCD.png']);
registeredCA=imread([char(data_path),'\','registeredCA.png']);
registeredHIF=imread([char(data_path),'\','registeredHIF.png']);

imref_reg_CD=imrefHPS;
imref_reg_CA=imrefHPS;
imref_reg_HIF=imrefHPS;

%Segment IHC (CD34)

ihc_mask = segmentIHC(registeredCD, imref_reg_CD, mask);

hlink = comparisonPlot(registeredCD, imref_reg_CD, ihc_mask,'col',
[1,0,1]);

% POSTPROCESS IHC (CD34)

ihc_mask_post = postprocessIHC(ihc_mask, imref_reg_CD, 'CD34');

hlink = comparisonPlot(registeredCD, imref_reg_CD,
 ihc_mask_post,'col',[1,0,1]);

save([char(data_path) '\ihc_mask_post_CD'], 'ihc_mask_post')

% SEGMENT IHC (CA9)

ihc_mask = segmentIHC(registeredCA, imref_reg_CA, mask);

hlink = comparisonPlot(registeredCA, imref_reg_CA, ihc_mask,'col',
[1,0,1]);

% POSTPROCESS IHC (CA9)
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ihc_mask_post = postprocessIHC(ihc_mask, imrefCA, 'CA9');

hlink = comparisonPlot(registeredCA, imref_reg_CA,
 ihc_mask_post,'col',[1,0,1]);

save([char(data_path) '\ihc_mask_post_CA'], 'ihc_mask_post')

% SEGMENT IHC (HIF-1A)

ihc_mask = segmentIHC(registeredHIF, imref_reg_HIF, mask);

hlink = comparisonPlot(registeredHIF, imref_reg_HIF, ihc_mask,'col',
[1,0,1]);

% POSTPROCESS IHC (HIF-1A)

ihc_mask_post = postprocessIHC(ihc_mask, imref_reg_HIF, 'CD34');

hlink = comparisonPlot(registeredHIF, imref_reg_HIF,
 ihc_mask_post,'col',[1,0,1]);

save([char(data_path) '\ihc_mask_post_HIF'], 'ihc_mask_post')

end

Published with MATLAB® R2016b
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classdef PICase < handle % handle class -> copy by reference

    properties

        name;
        slideNames = {};
        Slides = struct();
        Masks = struct();

        % Registration properties
        Registration = struct('name',[],'type',[],'T',[],'outputRef',
[]); % T = affine3d or displacement field; outputRef = imref2d to
 crop.
        Settings = struct('Registration',struct('optimizer',
[],'metric',[]));
    end
    properties (Hidden, SetAccess = private)
        % ReferenceSystem: Use ReferenceSystemName when accessing this
        % property externally.
        ReferenceSystem = 1; % first provided by default. Hidden
 because it does not provide information that is useful externally.
    end

Dependents
    properties (Dependent)
        ReferenceSystemName % loaded using ReferenceSystem property
 from get.ReferenceSystemName()
    end
    methods % get/set methods
        function name = get.ReferenceSystemName(obj)
            name = obj.slideNames{obj.ReferenceSystem};
        end
        function obj = set.ReferenceSystemName(obj,s)
            obj.ReferenceSystem = find(strcmp(s, obj.slideNames));
        end
    end
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Main method block
    methods

        function [obj, slideNameList] = PICase(caseName,
 slideNameList, fileList, varargin)
%             ip = inputParser();
%             ip.addParameter('Mask',[]);
%             ip.Parse(varargin{:});

            % Constructor
            obj.name = caseName;
            % Load slides
            for i=1:numel(slideNameList)
                sn = slideNameList{i};
                sn = obj.fieldnameCleaner(sn);
                fn = fileList{i};
                slide = PISlide(sn,fn);
                obj.Slides.(sn) = slide;
                obj.slideNames = [obj.slideNames, sn];
            end
            % Default settings
            [optimizer, metric] = imregconfig('multimodal');
            obj.Settings.Registration =
 struct('optimizer',optimizer,'metric',metric);

            % Override default properties
            for i=1:2:length(varargin)
                obj.(varargin{i}) = obj.(varargin{i+1});
            end
        end

        function slide = Slide(obj, ind)
            % index Slides using numeric or non-clean field name (e.g.
            % "HIF-1@".
            if isnumeric(ind)
                slide = obj.Slides.(obj.slideNames{ind});
            elseif ischar(ind)
                slide = obj.Slides.(obj.fieldnameCleaner(ind));
            else
                error('Invalid class ("%s") for first
 input',class(ind))
            end
        end

        function ind = ind(obj, name)
            ind = find(strcmp(obj.slideNames, name));
        end

Mask methods
        function [imcrop, imref, mask] = extractMaskedSlide(obj,
 slide, outref)
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           %  Warps alle propagating masks to the selected slide,
 combines
           %  them according to the obj.Masks.(slide).combineFunction
 of
           %  each Mask, extracts the bounding box of the warped,
 combined
           %  masks and the resulting mask in the slides own reference
           %  system.

Parse input
           if isnumeric(slide) && isscalar(slide)
               slide = slideNames{slide};
           elseif ischar(slide)
               %pass
           else
               error('Expected input to be a scalar integer or a
 character array. Instead %s was passed.',mat2str(slide));
           end

           Slide = obj.Slides.(slide);

           for fn = fieldnames(obj.Masks)
              % Extract each mask in native reference system
              Mask = obj.Masks.(fn{1});
              combinedRef = [];
              combinedBW = [];
              if strcmp(fn, obj.ReferenceSystemName) ||
 Mask.propagateMask % same system or propagate
                  imref = Mask.imref;

                  bw = Mask.BW;
                  % Obtain natives mask's registration to reference
 system
                  if ~strcmp(fn, obj.ReferenceSystemName)
                      % propagate from different registration
                      T0 = obj.Registration(obj.ind(fn)); %maskref ->
 referenceSystem
                  else
                      T0 = affine2d(); % identity transform
                  end

                  % Obtain slides registration compared to reference
                  % system.
                  if ~strcmp(slide, obj.ReferenceSystemName)
                      % Convert to the reference system of the
 specified slide.
                      T1 = obj.Registration(obj.ind(slide)).T;
                  else
                      T1 = affine2d(); % identity transform
                  end

                  % Combined transform: Mask->Reference->Slide
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                  T = affine2d(T0.T * T1.invert.T); % reverse
 transform (ref -> slide).
                  [bw2, regref] = imwarp(bw, imref, T, 'nearest');
                  if(regref.YWorldLimits(2)>Slide.WorldLimits{1,2}(2))
                    regref.YWorldLimits(2)=Slide.WorldLimits{1,2}
(2)-1;
                  end
                  if(regref.XWorldLimits(2)>Slide.WorldLimits{1,1}(2))
                    regref.XWorldLimits(2)=Slide.WorldLimits{1,1}
(2)-1;
                  end

                  if~(mod(regref.YWorldLimits(1),1)==0 ||
 mod(regref.XWorldLimits(1),1)==0 || (mod(regref.YWorldLimits(2),1)==0
 || mod(regref.XWorldLimits(2),1)==0))
                    regref.YWorldLimits=fix(regref.YWorldLimits);
                    regref.XWorldLimits=fix(regref.XWorldLimits);
                    warning('Round off occured in extractMaskedSlide,
 regref.')
                  end

                  if isempty(combinedBW)
                      % first mask.
                      combinedRef = regref;
                      combinedBW = bw2;
                  else
                      % Combined imrefs:
                      combinedRef = imrefUnion(combinedRef,regref);
                      % Use imwarp with affine2d() to change imrefs.
 (TODO: Cheaper
                      % to do in dedicated function, the matrix needs
 to be
                      % copy pasted into a larger/different matrix at
 correct
                      % indices.)
                      bw3 = imwarp(bw2, regref,
 affine2d(), 'nearest', 'OutputView', combinedRef);
                      combinedBW = imwarp(combinedBW, regref,
 affine2d(), 'nearest', 'OutputView', combinedRef);
                      combinedBW = Mask.mergeFunction(combinedBW,
 bw3);
                  end
              else
                  % pass, mask not to be used on specified slide.
              end

              % output data

              % Extract crop of image according to mask bounding box.
              if nargin<3 % outref not specified
                  imcrop = Slide.data(combinedRef);
                  imref = combinedRef;
                  mask = combinedBW;
              else
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                  % alter crop to specified outref.
                  if isnumeric(outref)&&numel(outref)==2
                      % Interpret outref as pixel extent. Use
 specified PE
                      % along with combinedRef.WorldLimits.
                      PE = outref;
                      WL = {combinedRef.XWorldLimits,
 combinedRef.YWorldLimits};
                      if(~(mod(WL{1,1}(1),1)==0) || ~(mod(WL{1,1}
(2),1)==0) || ~((mod(WL{1,2}(1),1)==0) || ~(mod(WL{1,2}(2),1)==0)))
                        WL{1,1}=round(WL{1,1});
                        WL{1,2}=round(WL{1,2});
                        warning('Round off occured in
 extractMaskedSlide, WL.')
                      end
                      siz =
 [diff(combinedRef.YWorldLimits),diff(combinedRef.XWorldLimits)] ./
 PE;
                      if ~all(siz==fix(siz)) % noninteger
                          warning('TODO: round off matrix size and
 adapt world limits to fit the specified pixel element size');
                      end

                      imref = imref2d(fix(siz), WL{:});
                  elseif isa(outref,'imref2d')
                      imref = outref;
                  else
                      error('Unrecognized image reference
 specification format. Use imref2d object or [pixelExtentInWorldX,
 pixelExtentInWorldY]-format.');
                  end
                  imcrop = Slide.data(imref);

                  imcrop = imwarp(imcrop, imref,
 affine2d(), 'nearest');
                  mask = imwarp(combinedBW, combinedRef,
 affine2d(), 'nearest', 'OutputView', imref);
              end

           end

            function imref = imrefUnion(ref1, ref2)
                % merge world views of ref1 and ref2.
                % Keep pixel size of ref1.
                if isempty(ref1)
                    imref=ref2;
                elseif isempty(ref2)
                    imref=ref1;
                else
                    WL1 = [ref1.XWorldLimits, ref1.YWorldLimits];
                    WL2 = [ref2.XWorldLimits, ref2.YWorldLimits];
                    WLu = [min(WL1(1),WL2(1)), max(WL1(2),WL2(2)),
 min(WL1(3),WL2(3)), max(WL1(4),WL2(4))];
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                    imsiz = [WLu(4)-WLu(3), WLu(2)-WLu(1)];
                    imref = imref2d(imsiz, WLu(1:2), WLu(3:4));
                end
            end

        end
        function addMasks(obj, varargin)

            % Add one or more mask files to one or more slides.

Parse input
            default_settings =
 struct('propagateMask',true,'invertMask',false,'mergeFunction',@and, 'processFunction',
[]);
            ip = inputParser();
            ip.addRequired('referenceSlide', @(s)(iscell(s)) &&
 isvector(s));
            ip.addRequired('mask', @(s)(iscell(s)) && isvector(s)); %
 filenames or array, wrapped in cell if mutliple.
            ip.addOptional('settings', default_settings);
            ip.addOptional('tag',[]); % may be used to locate
 appropriate mask for a given operation later.
            ip.StructExpand = false;
            ip.parse(varargin{:});
            input = ip.Results;
            % add default values for partially specified settings.
            for fn = fieldnames(default_settings)'
                if ~isfield(input.settings, fn{1}), input.settings.
(fn{1}) = default_settings.(fn{1}); end
            end

Loop input masks
            for sname = input.referenceSlide
                %                 imref = obj.Slides.(sname{:}).imref
                slide = obj.Slides.(sname{1});
                WorldLimits = slide.WorldLimits;

                for fn = input.mask

                    fn = fn{1}; % fn is scalar cell with this for
 syntax.
                    if iscell(fn)
                        % multiple input masks for this entry
                        for n = 1:numel(fn)
                            if n==1
                                mask = loadMask(fn{n});
                            else
                                % Combine with previous masks as
 specified.
                                % All masks should be same size.
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                                mask =
 input.settings.mergeFunction(mask, loadMask(fn{n}));
                            end
                        end
                    else
                        mask = loadMask(fn);
                    end
                    mask = processMask(mask,
 input.settings.processFunction);
                    % search for image layer matching mask matrix
 slice.
                    s = slide.find('image');
                    matrices = [[slide.info(s).Height]',
[slide.info(s).Width]'];
                    ind =
 find(all(repmat(size(mask),size(matrices,1),1)==matrices,2));
                    if ~isempty(ind)
                        imref = slide.imref(s(ind));
                    else
                        % otherwise, assume same field of view, but
 different
                        % scale.
                        imref = imref2d(size(mask), WorldLimits{:});
                    end

                  
  if(imref.YWorldLimits(2)>obj.Slides.HPS.info(1).Height)
                       imref.YWorldLimits(2)=imref.YWorldLimits(2)-
(imref.YWorldLimits(2)-obj.Slides.HPS.info(1).Height);
                    end
                    [m,n] = ind2sub(size(mask), find(mask));
                    mnr = [min(m) max(m) min(n) max(n)]; %mn range
                    if~(mnr(1)-100<=0 || mnr(2)+100>=size(mask,1) ||
 mnr(3)-100<=0 || mnr(4)+100>=size(mask,2))
                        mnr = round(mnr+[-100 100 -100 100]); % adding
 some frames outside the mask for registration as long as it is
 smaller than image size
                    end
                    mask = mask(mnr(1):mnr(2), mnr(3):mnr(4));
                    [WL{1},WL{2}] =
 imref.intrinsicToWorld(mnr(3:4)+[-1,1]./2,mnr(1:2)+[-1,1]./2); % +/-
 1/2 to move coordinate from pixel center to outer corner.
                    imref = imref2d(size(mask),WL{:});

                    obj.Masks.(sname{1}) = struct('BW',mask, 'imref',
 imref,'tag', input.tag,...
                        'propagateMask',
 input.settings.propagateMask,...
                        'mergeFunction',
 input.settings.mergeFunction);

                end
            end
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            function mask = loadMask(fn)
                % returns numeric matrix if a preloaded mask was
 passed,
                % and reads the input matrix if a filename was
 provided.
                if isnumeric(fn)
                    mask = fn;
                else
                    mask = imread(fn);
                    if size(mask,3)>1 % color image
                        if ~isequal(mask(:,:,1), mask(:,:,2),
 mask(:,:,3))
                            warning('mask files with different
 information stored in each layer, currently not supported');
                        end
                        mask = mask(:,:,1);
                        max_val = max(mask(:));
                        if ~isequal(mask>0 , ~(mask<max_val))
                            warning('mask with multiple non-zero
 values encountered. All non-zero values will be merged.');
                        end
                    end
                end
            end

            function mask = processMask(mask, processing)

Mask postprocessing may be added here.
                if ~isempty(processing)
                   switch class(processing)
                       case 'function_handle'
                           mask = processing(mask);
                       otherwise
                           processFunction
                   end
%                        case 'filter1'
%                            % do filter 1
%                        case 'filter2'
%                            % do filter 2

                end

            end

        end

Coregistration methods
        function initialRegistration(obj, Ind)
            % Perform initial coregistration for all slices against
            % reference system. Initial registration is used done
 using
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            % thumbnail images for improved performance.

            % Reference system : fixed
            flatOutput = true;
            [fix,fixref] = obj.Slides.
(obj.ReferenceSystemName).layer('thumbnail',flatOutput);

            if ~exist('Ind','var')
                SlideNames = setdiff(obj.slideNames,
 obj.ReferenceSystemName);
            end
            % Perform registration
            for slidename = SlideNames
                if iscell(slidename) && isscalar(slidename), slidename
 = slidename{1}; end
                if isequal(slidename, obj.ReferenceSystemName)
                    obj.Registration(obj.ind(slidename)) =
 struct('name', slidename,...
                      
  'type','reference','T',affine3d,'outputRef',fixref);
                else
                    [mov,movref] =
 obj.Slide(slidename).layer('thumbnail',flatOutput);

                     tform = imregtform(mov, movref, fix,
 fixref, 'similarity',...
                         obj.Settings.Registration.optimizer,
 obj.Settings.Registration.metric);
%                      [movreg] = imwarp(moving, moving_ref, tform);
                end
                obj.Registration(obj.ind(slidename)) = struct('name',
 slidename,...
                    'type','initial','T',tform,'outputRef',fixref);
            end
        end

        function registered = maskedRegistration(obj, IM1, IM2, key,
 path)
            % redo initial registration with only the masked part of
 the
            % image active. This is done to ignore non-affine morphing
            % outside of the region to be analysed.

            fixed=rgb2gray(IM1);
            moving=rgb2gray(IM2);

            [optimizer, metric] = imregconfig('multimodal');

            optimizer.InitialRadius = 1.5e-3;
            optimizer.Epsilon = 1.5e-1;
            optimizer.GrowthFactor = 1.05;
            optimizer.MaximumIterations = 300;

            metric.NumberOfSpatialSamples = 500;
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            metric.NumberOfHistogramBins = 50;
            metric.UseAllPixels = 1;

            tform = imregtform(moving,fixed, 'affine', optimizer,
 metric);

            save([char(path) '\tform' key], 'tform')

            registered=imwarp(IM2, tform,'OutputView',
 imref2d(size(fixed)));

        end

    end

    methods (Hidden)
        function s = fieldnameCleaner(obj, s)
            s = regexprep(s,{'-','\','/'},'_');
            s = regexprep(s,{'@'},'A');
        end

    end

end

Published with MATLAB® R2016b

10



classdef PISlide < handle
    % PISlide is a wrapper class for handling Pathology Images in the
    % Aperio format (.svs).

    % Matrix sizes and aperios 1:1, 1:4, 1:16, 1:32 etc. format does
 not
    % match exactly between layers. Assume integer pixels sizes with
 round
    % off affecting matrix size (slight cropping).
    properties
        name
        info

        WorldLimits;

        Flatten = @rgb2gray; % use standard grayscale transform when
 converting layer to grayscale
        Resolution = [1,1]; % pixel size in layer 1
    end

    methods
        function obj = PISlide(name, info, varargin)
            % Constructor
            obj.name = name;
            if isstruct(info)
                % info struct
                obj.info = info;
            elseif ischar(info)
                % path
                obj.info = imfinfo(info);
            end
            % dependent defaults
            obj.WorldLimits = {[1, obj.info(1).Width]+[-1,1]./2, [1,
 obj.info(1).Height]+[-1,1]./2}; % +/- 1/2 to move coordinate from
 pixel center to outer corner.
            % use override of defaults
            for i=1:2:length(varargin)
                obj.(varargin{i}) = obj.(varargin{i+1});
            end

        end
        function ind = find(obj, s)
            % return ind of info for specified layer
            if ~isnumeric(s)
                switch s
                    case 'thumbnail'
                        ind = 2;
                    case {'1','main','full','fullsize'}
                        ind = 1;
                    case 'identifier'
                        ind = length(obj.info)-1;
                    case 'slideregion'
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                        ind = length(obj.info);
                    case 'image'
                        ind = [1,3:(length(obj.info)-2)];
                    case '1:4'
                        if length(obj.info)>4, ind = 3; else ind =
 []; end
                    case {'2','1:16'}
                        if length(obj.info)>5, ind = 4; else ind =
 []; end
                    case {'3','1:32'}
                        if length(obj.info)>6, ind = 5; else ind =
 []; end
                    case {'4','1:64'}
                        if length(obj.info)>7, ind = 6; else ind =
 []; end
                    case {'5','1:128'} % likely larger than relevant.
                        if length(obj.info)>8, ind = 7; else ind =
 []; end
                end
            else
                error('numeric specification recieved in
 PISlide.find(). Input should be a character array');
            end
        end

        function [PE,s] = PixelExtent(obj, s)
            % Report PixelExtent for all image layers, or for
 requested
            % layer if 's' is specified.
            if nargin==1
                % Default: all image layers
                s = obj.find('image');
            end
            iPEall = 2.^([0:2,4:numel(obj.info)]');
            PE = iPEall(s) .* obj.Resolution;
        end

        function [im, imref] = data(obj, outref, doRescale)
            % Read data in region imref in the first layer with equal
 or
            % resolution for the image region specified.
            if nargin<3, doRescale = true; end
            WL = [outref.XWorldLimits, outref.YWorldLimits];
            PE = [outref.PixelExtentInWorldX,
 outref.PixelExtentInWorldY];
            % Determine which slide layer to read. Use smallest layer
 with
            % pixel sizes smaller or equal to the mask.
            [PEi,s] = obj.PixelExtent();
            use_layer = s(find(all(PEi <= PE, 2),1,'last'));

            [im, imref] = obj.layerRegion(use_layer, outref);
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            if doRescale && ~all([imref.PixelExtentInWorldX ==
 outref.PixelExtentInWorldX, ...
                    imref.PixelExtentInWorldY ==
 outref.PixelExtentInWorldY])
                [im,imref] = imwarp(im, imref,
 affine2d(), 'linear', 'OutputView', outref);
            end
        end

        function [im, imref] = layer(obj, s, doFlatten)
            % read and return specified layer (specify using numeric
 indice
            % or character name
            if ischar(s)
                ind = obj.find(s);
            elseif isnumeric(s)
                ind = s;
            end
            if length(ind)>1
                error('non-specific layer requested');
            end
            im = imread(obj.info(ind).Filename, 'Index', ind,  'Info',
 obj.info);
            imref = imref2d([size(im,1),size(im,2)],
 obj.WorldLimits{:});
            if exist('doFlatten','var') && doFlatten
                im = obj.Flatten(im);
            end
        end

        function [im, imref] = layerRegion(obj, s, outref, doFlatten)
            % read and return specified layer (specify using numeric
 indice
            % or character name
            if ischar(s)
                ind = obj.find(s);
            elseif isnumeric(s)
                ind = s;
            end
            if length(ind)>1
                error('non-specific layer requested');
            end

            imref = obj.imref(ind);

            [pixelRegion{1},pixelRegion{2}] =
 imref.worldToSubscript(outref.XWorldLimits, outref.YWorldLimits);

            pixelRegion = {pixelRegion{1}-[0,1], pixelRegion{2}-
[0,1]};

            if ~mod(outref.PixelExtentInWorldX,
 imref.PixelExtentInWorldX) &&...
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                    ~mod(outref.PixelExtentInWorldY,
 imref.PixelExtentInWorldY)
                step = [outref.PixelExtentInWorldX,
 outref.PixelExtentInWorldY]./[imref.PixelExtentInWorldX,
 imref.PixelExtentInWorldY];
                if any(step~=1)
                    % Extract only every other pixel from image file
                    % instead of reading full matrix and interpolating
 to
                    % reduce matrix.
                    pixelRegion = {[pixelRegion{1}
(1),step(1),pixelRegion{1}(2)],...
                        [pixelRegion{2}(1),step(2),pixelRegion{2}
(2)]};
                end
            end
            im = imread(obj.info(ind).Filename, 'Index', ind, 'Info',
 obj.info, 'PixelRegion', pixelRegion);
            imref = imref2d(size(im), outref.XWorldLimits,
 outref.YWorldLimits);
            if exist('doFlatten','var') && doFlatten
                im = obj.Flatten(im);
            end
        end

        function ref = imref(obj,s)
            if ischar(s)
                ind = obj.find(s);
            elseif isnumeric(s)
                ind = s;
            end
            if length(ind)>1
                error('non-specific layer requested');
            end
            info = obj.info(s);
            %             ref = imref2d([info.Height, info.Width],
 obj.WorldLimits{:});
            PE = obj.PixelExtent(s);
            ref = imref2d([info.Height, info.Width], PE(1), PE(2));
        end
    end
end
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function BW = segmentIHC(RGB, imref, varargin)

Segmentation tool for peroxidase mediated IHC
stains.

Peroxidase mediateded stains are dark, saturated and red. The function combines segmentation of each of
these features using HSV transform and the B layer of RGB. The B layer is used because it has the greatest
contrast of the three RGB layers for the red/brown color of the stain, and any mix of them (such as the
perceptual transform made by rgb2gray()) will only serve the reduce the contrast.

There are two proposed algorithms that work OK. Either use mode=='B&S&H' to segment B, S and H
independently an return their intersection, or use mode == 'BS&H', to combine Blue color channel (for
intensity) and color saturation (according to HSV transform) prior to segmenting them, and then returning
the intersect of the BS and H masks.

B is segmented using S is segmented using BS is segmented using H is segmented using fixed tresholds
of (H < 0.1) (H > 0.9), which is equivalent to -36 degrees < H < 36 degrees.

 ip = inputParser;
 ip.addOptional('mask',true); % only pixels in mask will be considered
 when segmentign
 ip.addParameter('verbose',false); % plot figures of partial masks and
 colorspaces
 ip.addParameter('mode','B&S&H'); % Specifies segmentation algorithm
 % Morphological (or other) processing between segmentation and merger
 ip.addParameter('morphB',@(B)B); % Default value: no morphological
 post processing (identity function).
 ip.addParameter('morphS',@(S)S); % Default value: no morphological
 post processing (identity function).
 ip.addParameter('morphBS',@(BS)BS); % Default value: no morphological
 post processing of BS (identity function).
 ip.addParameter('morphH',@(H)H); % Default value: no morphological
 post processing of H (identity function).
 % Postprocessing of final mask
 ip.addParameter('morphBW',@(BW)BW); % Default value: no morphological
 post processing of final result (identity function).
  ip.parse(varargin{:});
 options = ip.Results;

 options.mode = validatestring(options.mode,{'BS&H','B&S&H'});
 mask = ip.Results.mask;
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2) Analyse color
siz = size(RGB(:,:,1));

  HSV = single(rgb2hsv(RGB));
  H = HSV(:,:,1);
  S = HSV(:,:,2);
  B = RGB(:,:,3);
  if strfind(options.mode,'BS')
      if isa(RGB,'uint8')
          BS = S - single(B)./255;
      elseif isfloat(RGB)
          BS = S - B;
      else % other numeric class
          error('TODO');
      end
  end

Threshold
  Hseg = @(H) H<0.1 | H>0.9; % fixed treshold

  switch options.mode
      case 'B&S&H'

          % S
          if false
              S = HSV(:,:,2);
              [ind, N,X, order] =
 thresholdKI(S(mask), 'mode','recursive');
              th = X( ind(find(order==2, 1, 'last')) ); % threshold
 twice for higher values
              if false
                  Smask = S > max(th,0.5); % threshold is at least 0.5
              else
                  Smask = S > th;
              end
          else % fixed threshold
             Smask = S > 0.5;
          end
          % B
%           intensity = RGB(:,:,3); % use blue layer to identify dark
 stains (red stain);
          [ind, N,X,order] = thresholdKI(B(mask), 'mode','recursive');
          cN = cumsum(N);
          th = X(ind(find(cN(ind) >= sum(Smask(:))/100,
 1, 'first'))); % first threshold with at least 1 % of the pixels of
 the saturation mask.
          th = 127; % looser fixed threshold.
          Bmask = B < th;
          % H
          BW = options.morphB(Bmask) & options.morphS(Smask) &
 options.morphH(Hseg(H));
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          if options.verbose

              figure(11),
              h = subplot(1,2,1), imshow(RGB)
              h(2) = subplot(1,2,2), imshow(1.5*single(Bmask) +
 2*single(Smask) + single(Hseg(H)), []), colorbar; colormap('flag');
 title('Masks: H+1.5*B+2*S');
              hlink = linkprop(h, {'XLim','YLim'}); % NB! Gjør det mye
 letter å sammenligne maske og RGB

          end

      case 'BS&H'

Combine intensity and saturation for segmen-
tation, then mask with hue.

Currently gives a looser result than current B&S&H.

          if true
              [ind, N,X, order] =
 thresholdKI(BS(mask), 'mode','recursive');
              th=X(ind(find(order==2,1,'last'))); % threshold twice
%               th=X(ind(find(X(ind)>0,1,'first')));
          else
              th = 0; % i.e. S > B;
          end
          BSmask = BS >= th;
          BW = options.morphBS(BSmask) & options.morphH(Hseg(H));

          if options.verbose, figure(11), imshow(BS, []), colorbar;
 title('BS'); end
          % figure(12), imshowpair(CombMetric, BW, 'falsecolor');

      otherwise
          error('Unknown segmentation mode')
  end
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function [th, N, X, order] = thresholdKI(varargin)

Threshold function by Kittler and Illingworths
minimum error threshold algorithm.

Parse input

[N,X, settings] = parseInput(varargin{:});
if strcmp(settings.mode, 'recursive')
    [~, ThInd, order] = kittler_and_illingworth(N, X); % ,
 settings.precision
    th = ThInd;
    % Note: th is now an indice and X(th) must be used to segment the
 data.
else %scalar
    th = kittler_and_illingworth(N, X); % , settings.precision
end

    function [N,X, settings] = parseInput(varargin)
        ip = inputParser();
        ip.addRequired('data');
        ip.addOptional('histogram',[]);
        ip.addParameter('precision',12);
        ip.addParameter('mode','scalar');
        ip.parse(varargin{:});
        settings = ip.Results;
        if ~isempty(ip.Results.histogram)
            [N,X] = varargin{1:2};
        else
            A = varargin{1}(:);
            % matrix input
            if isinteger(A)
                [N,X] = hist(A,
 double(intmin(class(A)):intmax(class(A))));
                % histcounts(A, 'integer');
                X = cast(X,class(A));
            elseif isfloat(A)
%                 [N,X] = hist(A, settings.precision);
                [N,X] = histcounts(A);
            end
        end
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    end

end

Kittler an Illingworth minimum error threshold-
ing v 2018

function [th, ThInd, order] = kittler_and_illingworth(im_h,im_v)

Vectorized version of the kittler and illingworth
minimum error thresholdering algorithm.

Variables M0-M2 are statistical moments.

% Mass (left hand side)
M0a = cumsum(im_h);

% a posteriori probability
P1 = M0a ./ M0a(end);
P2 = 1-P1;
% Standard deviations
% Left hand side of histogram
im_h = double(im_h);
vals = (0:numel(im_h)-1);
M1a = cumsum( vals.*im_h );
M2a = cumsum( vals.^2.*im_h );
STDEV1 = 1./M0a.*sqrt(M0a.*M2a - M1a.^2);
% Right hand side of histogram
% vals = vals(end:-1:1);
M0b = cumsum(im_h,'reverse');
M1b = cumsum( vals.*im_h, 'reverse');
M2b = cumsum( vals.^2.*im_h, 'reverse' );
STDEV2 = 1./M0b.*sqrt(M0b.*M2b - M1b.^2);

% error function
J = 1 + 2*(P1.*log(STDEV1) + P2.*log(STDEV2)) - 2*(P1.*log(P1) +
 P2.*log(P2));
J(~isfinite(J)) = nan;
% figure(1002), plot(J);

[~, ind] = nanmin(J);
th = im_v(ind);

if nargout>1
    ThInd = ind;
    [ThInd, order, convergance] = ki_threshold_tree(M0a,M1a,M2a, M0b,
 M1b, M2b, {'<','>'}, ThInd);
end
% th = ThInd;

end
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function [ThTree, order, convergance] = ki_threshold_tree(M0a,M1a,M2a,
 M0b, M1b, M2b, operator, ThTree, order, convergance)
% Using the cumulative sum vectors of the vectorised ki_threshold
 method,
% it is possible to obtain the result of the algorithm applied again
 on
% only the pixels in a selected image rage (i.e. those left by the
 previous
% threshold) without recalculating histogram or cumulative vectors.
 Because
% this solution is cheap the function finds all thresholds in both
% direction by recursively calling itself.
if ~exist('convergance','var')
    convergance = false(1,numel(operator));
end
if ~exist('ThTree','var') || isempty(ThTree)
    ThTree = {0};
end
if ~exist('order','var')
    order = 1;
end

ThTree0 = ThTree;
if ~iscell(operator), operator = {operator}; end
for i=1:length(operator)%
    opr = operator{i};
    if convergance(i), continue, end
    if isa(opr, 'function_handle'), opr = func2str(opr); end
    switch opr
        case {'<', 'lt'} % keep values below threshold.
            % only include image data with th>Th, i.e. retreshold the
 part of the
            % image on the specified side of the threshold.
            thind = ThTree0(1);
            Ind = 1:ThTree0(1)-1;
            Pa = M0a(Ind) ./ M0a(Ind(end));
            STDEV1 = 1./M0a(Ind).*sqrt(M0a(Ind).*M2a(Ind) -
 M1a(Ind).^2);
            Pb = 1-Pa;
            M0b2 = M0b(Ind)-M0b(Ind(end)+1);
            M1b2 = M1b(Ind)-M1b(Ind(end)+1);
            M2b2 = M2b(Ind)-M2b(Ind(end)+1);
            STDEV2 = 1./M0b2.*sqrt(M0b2.*M2b2 - M1b2.^2);
        case {'>', 'gt'}
            % keep values above threshold
            thind = ThTree0(end);
            Ind = ThTree0(end)+1:numel(M0a);
            Pb = M0b(Ind) ./ M0b(Ind(1));
            STDEV2 = 1./M0b(Ind).*sqrt(M0b(Ind).*M2b(Ind) -
 M1b(Ind).^2);
            Pa = 1-Pb;
            M0a2 = M0a(Ind)-M0a(Ind(1)-1);
            M1a2 = M1a(Ind)-M1a(Ind(1)-1);
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            M2a2 = M2a(Ind)-M2a(Ind(1)-1);
            STDEV1 = 1./M0a2.*sqrt(M0a2.*M2a2 - M1a2.^2);
    end
    J = 1 + 2*(Pa.*log(STDEV1) + Pb.*log(STDEV2)) - 2*(Pa.*log(Pa) +
 Pb.*log(Pb));
    J(~isfinite(J)) = nan;
    [~, ind] = nanmin(J);
    % if ind is first or last non-nan, then the value is non-sensical.
    csJ = cumsum(isfinite(J));
    if csJ(ind)==1 || csJ(ind)==csJ(end)
        % minimum J is at edge. No true minimum found.
        convergance(i) = true;
    else
        ind = Ind(ind);
        %     th = im_v(ind);
%         figure, plot(J)

        if any(ThTree == ind) ||... % already selected ind 
 %any( cellfun(@(C)C==ind, [ThTree]) )
                ind==1 || ind == numel(M0a) ||... % first or last
 entry
                M0a(ind-1) == 0 || M0a(ind+1) == M0a(end) % all or no
 data beyond this indice.
            convergance(i) = true;
        end
        if ind < thind
            ThTree = [ind, ThTree];
            order = [order(1)+1, order];
        elseif ind > thind
            ThTree = [ThTree, ind];
            order = [order, order(end)+1];
        end
    end
end
% Recursive
if ~all(convergance)
    [ThTree, order, convergance] = ki_threshold_tree(M0a,M1a,M2a, M0b,
 M1b, M2b, operator, ThTree, order, convergance);
end
end
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function BW = postprocessIHC(BW, imref, ihc_type)
% Morphological processing of BW mask.
% See "Morphological Operations" in help documentation, and in
 particular:
% imdilate(), imerode(), imopen(), imclose(), imreconstruct() and
% bwmorph().
PE = [imref.PixelExtentInWorldX, imref.PixelExtentInWorldY];

switch ihc_type
    % make individual adaptations.
    case {'CD3','CD34','CA9',}
        rad1 = ceil(2*16./PE(1)/2);
        rad2 = ceil(4*16./PE(1)/2);

        BW = imclose(BW, strel('disk',rad2));
        BW = imopen(BW, strel('disk',rad1));

    case {'HIF-1@'}
        rad1 = ceil(1*16./PE(1)/2);
        rad2 = ceil(4*16./PE(1)/2);

        BW = imclose(BW, strel('disk',rad2));
        BW = imopen(BW, strel('disk',rad1));
end
end
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% Extract features from the registered images based on segmented and
 post
% prossessed masks.

clear,
format compact

filename='C:\Users\Vidar\Downloads\Master\Pathology\patients.xlsx';
[numb,txt,raw] = xlsread(filename);
nrPatients=length(raw)-1;

for patient = 1:nrPatients

data_path = {['D:\Oxytarget Pathology\' char(txt(patient+1,23)) '\'
 char(txt(patient+1,2)) ' ' num2str(numb(patient,1))]};
p = {};
for dp = data_path(:)'
    fn =  dir([dp{1},filesep,'*.svs']);
    fn = fullfile(dp, {fn.name});
    p(end+(1:length(fn))) = fn;
end

nr_slides=[0 0 0 0 0 0];
for i=1:numel(nr_slides)
    if ~isnan(numb(patient,i+12))
        nr_slides(i)=1;
    end
end

FN = (1:sum(nr_slides(:) == 1));

key = {'HPS','CD3','CD8','CD34','CA9','HIF-1@'};

for i = 1:numel(FN)
    cp = p(FN(i));
    [currentpath,casename] = fileparts(cp{:});
    pattern = sprintf('%s%s%s-*mask*',currentpath,filesep,casename);
    mask_fn = dir(pattern);
    if ~isempty(mask_fn)
        MaskFN{i} = strcat(currentpath, filesep, {mask_fn.name});
        mask = [];
    end
end
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[currentpath,casename] = fileparts(p{FN(1)});

CC = PICase(casename,key, p(FN)); % CC = current case
CC.addMasks(key(hasMask), MaskFN(hasMask), maskBehaviour);

PE = [4 4];
[imcropHPS, imrefHPS, mask] = CC.extractMaskedSlide('HPS',PE);

CD
T=load([char(data_path) '\ihc_mask_post_CD'], 'ihc_mask_post');
ihc_mask_post_cd=T.('ihc_mask_post');

[Lbl,num] = bwlabel(ihc_mask_post_cd.*mask);
CD_statsP =
 regionprops(Lbl,ihc_mask_post_cd,'Area','Centroid','MajorAxisLength','MinorAxisLength','ConvexArea','Solidity');
CD_stainedFraction = sum(ihc_mask_post_cd(mask))./sum(mask(:));
CD_microVesselDensity = num./(sum(mask(:)));
CD_averageStainSize  = mean([CD_statsP.Area]);
CD_averageRadius = mean([CD_statsP.MajorAxisLength
 CD_statsP.MinorAxisLength],2)/2;
CD_MeanSolidity = mean([CD_statsP.Solidity]);
CD_NrVessels=num;
CD_VesselDensity=(num/sum([CD_statsP.Area])); % invers av vessel size
 (aka average stain size)

% Calculate intercapillary distance (ICD)
distance=zeros(num,1);
index_n=zeros(num,1);
vessels=zeros(num,2);

for i =1:length(CD_statsP)
    vessels(i,:)=CD_statsP(i).Centroid;
end
for i=1:length(CD_statsP)
    if i==1
        [index_n(i),distance(i)] =
 dsearchn(vessels(2:end,:),CD_statsP(i).Centroid);
        index_n(i)=index_n(i)+1;
    elseif(i==110)
        [index_n(i),distance(i)] = dsearchn(vessels(1:
(length(CD_statsP)-1),:),CD_statsP(i).Centroid);
    else
        [index_n(i),distance(i)] = dsearchn(vessels([1:i-1,i
+1:end],:),CD_statsP(i).Centroid);
        if index_n(i)>=i
            index_n(i)=index_n(i)+1;
        end
    end
end

CD_meanICD=mean(distance);
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CA
T=load([char(data_path) '\ihc_mask_post_CA'], 'ihc_mask_post');
ihc_mask_post_ca=T.('ihc_mask_post');

[Lbl,num] = bwlabel(ihc_mask_post_ca.*mask);
CA_statsP = regionprops(Lbl,ihc_mask_post_ca,'Area');
CA_stainedFraction = sum(ihc_mask_post_ca(mask))./sum(mask(:));
CA_averageStainSize  = mean([CA_statsP.Area]);

HIF
if patient ~= 17 %no hif image
    T=load([char(data_path) '\ihc_mask_post_HIF'], 'ihc_mask_post');
    ihc_mask_post_hif=T.('ihc_mask_post');

    [Lbl,num] = bwlabel(ihc_mask_post_hif.*mask);
    HIF_statsP = regionprops(Lbl,ihc_mask_post_hif,'Area');
    HIF_stainedFraction = sum(ihc_mask_post_hif(mask))./sum(mask(:));
    HIF_averageStainSize  = mean([HIF_statsP.Area]);

    [~,HPSfname] = fileparts(p{FN(1)});

    HIF_statTable(1,:) =
 table(string(HPSfname),HIF_stainedFraction,HIF_averageStainSize, 'VariableNames',
{'HPS_filename','HIF_fraction','HIF_averageStainSize'});
end

Save
CD_statTable(1,:) =
 table(string(HPSfname),CD_stainedFraction,CD_microVesselDensity,CD_averageStainSize,CD_MeanSolidity,CD_averageRadius,CD_NrVessels,CD_VesselDensity,
 CD_meanICD, ...
    'VariableNames',
{'HPS_filename','CD_StainedFraction','CD_microVesselDensity','CD_averageStainSize','CD_MeanSolidity','CD_averageRadius','CD_NrVessels','CD_VesselDensity', 'CD_meanICD'});
CA_statTable(1,:) =
 table(string(HPSfname),CA_stainedFraction,CA_averageStainSize, 'VariableNames',
{'HPS_filename','CA_fraction','CA_averageStainSize'});
if patient==17
   
 save([char(data_path) '\Path_data.mat'], 'CD_statTable','CA_statTable');
else
   
 save([char(data_path) '\Path_data.mat'], 'CD_statTable','CA_statTable','HIF_statTable');
end

end
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Figure 21: Kaplan-Meier plot for the solidity

Figure 22: Kaplan-Meier plot vessel radius

Figure 23: Kaplan-Meier plot for the number of vessels
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Figure 24: Kaplan-Meier plot for MVD

Figure 25: Kaplan-Meier plot for ICD
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Figure 26: Kaplan-Meier plot

Figure 27: Kaplan-Meier plot for the stained fraction of HIF-1α
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Figure 28: Kaplan-Meier plot for the stain size of HIF-1α

Figure 29: Kaplan-Meier plot for the stain size of CAIX
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Figure 30: Kaplan-Meier plot for the stained fraction of CAIX
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Table 19: MR values for all patients. Part 1/5.

Patient Static Median R∗2
Dynamic Median

R∗2-peakenh

R∗2-AUC median for
time point 49s

24 439,6 21,4 229,5
25 299,2 25,7 28,9
27 352,7 37,0 369,2
29 459,4 30,2 178,7
30 435,1 24,6 278,2
32 370,0 38,2 404,7
31 319,7 35,7 205,9
34 283,5 21,6 23,1
39 383,8 49,2 694,1
40 472,0 27,2 246,1
41 429,2 21,3 228,9
43 348,5 42,4 331,3
44 432,5 23,9 42,3
45 346,7 39,1 282,5
46 436,6 15,5 118,7
47 368,0 38,0 474,2
48 452,2 56,0 414,6
49 348,2 36,5 331,7
50 455,1 23,4 314,8
51 452,3 13,0 106,5
52 463,2 14,9 140,1
54 387,8 23,1 87,3
55 481,9 46,5 546,5
56 398,1 40,9 131,6
57 17,0 25,3 231,2
58 0,0 0,0 0,0
60 0,0 0,0 0,0
64 14,3 34,3 370,3
65 32,3 62,7 367,9
67 12,7 22,8 165,6
68 15,5 32,4 234,3
69 25,3 30,1 180,2
72 17,9 47,1 472,5
73 14,2 20,9 149,1
74 18,8 36,9 225,9
75 30,4 33,1 62,1
76 16,6 26,5 251,6
77 28,7 23,8 50,9
78 20,3 23,5 172,1
79 17,0 25,2 245,6
80 18,2 32,3 166,4
83 16,2 24,1 136,2
85 24,7 20,9 58,3
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Table 20: MR values for all patients. Part 2/5.

Patient Static Median R∗2
Dynamic Median

R∗2-peakenh

R∗2-AUC median for
time point 49 s

87 39,6 75,2 105,3
88 24,2 33,0 154,7
89 24,2 39,1 248,1
90 23,1 31,2 199,6
92 56,5 49,9 213,6
94 13,8 38,0 395,3
95 16,4 42,1 459,9
96 16,1 34,7 363,1
102 16,2 37,4 310,8
103 18,5 44,8 496,4
106 26,6 25,6 76,6
107 22,1 25,0 181,2
108 25,5 32,6 179,2
110 41,4 39,3 202,0
111 20,1 29,9 171,7
112 34,8 27,2 39,0
113 20,8 29,1 128,4
114 16,8 16,1 98,8
115 33,3 43,9 226,5
116 18,8 43,0 268,3
118 0,0 0,0 0,0
119 42,4 100,3 153,4
120 17,7 30,8 192,8
121 15,3 28,9 280,5
123 19,4 31,8 65,0
125 33,3 40,6 311,3
126 20,5 21,4 125,7
127 14,1 53,3 593,5
128 18,9 37,4 329,6
131 18,2 29,1 323,8
133 19,1 38,8 343,4
134 17,1 61,4 616,9
138 13,1 24,7 83,2
142 14,5 14,3 126,4
143 32,4 47,1 162,8
144 17,5 36,9 359,6
146 31,0 32,9 291,2
147 44,6 47,3 66,8
148 16,7 36,9 121,8
149 34,3 42,4 2,7
150 13,6 25,0 170,0
151 20,4 51,9 338,7
152 19,5 56,8 103,5
153 17,4 37,1 387,1
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Table 21: MR values for all patients. Part 3/5.

Patient Static Median R∗2
Dynamic Median

R∗2-peakenh

R∗2-AUC median for
time point 49 s

154 73,3 69,6 -20,9
155 21,0 31,5 236,3
156 30,8 47,9 363,0
157 22,6 53,6 450,4
158 59,8 73,2 71,6
159 22,4 40,8 200,1
160 23,7 31,0 219,5
161 19,6 60,9 521,7
162 17,1 51,3 430,9
163 20,3 38,4 324,9
164 16,0 50,4 522,9
165 17,1 34,9 342,5
166 21,0 29,6 33,8
169 27,0 28,9 191,5
170 16,9 27,4 133,8
171 26,0 50,4 241,3
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Table 22: MR values for all patients. Part 4/5.

patient R∗2-AUC, time point 135 s R∗2-AUC, time point 222 s R∗2-AUC, time point 525 s
24 438 1279 2335
25 28 21 -15
27 934 2992 6015
29 596 1491 2202
30 533 890 1546
32 580 1395 2268
31 231 180 -155
34 26 -282 -875
39 828 1124 1298
40 334 612 628
41 382 962 1616
43 423 597 520
44 361 1244 1820
45 285 162 -294
46 222 523 591
47 767 1770 2981
48 1038 2287 6175
49 575 1399 3383
50 734 1099 1690
51 375 400 949
52 256 690 1129
54 366 1055 1891
55 779 1537 2417
56 430 864 247
57 553 696 1040
58 0 0 0
60 0 0 0
64 429 954 2384
65 623 649 194
67 423 578 966
68 884 1240 2226
69 622 792 883
72 984 1275 2022
73 654 936 1762
74 851 1277 3079
75 80 39 -171
76 726 1024 1670
77 -3 -160 -552
78 657 864 1284
79 787 1091 1869
80 505 725 2236
83 419 688 1431
85 -19 -161 -2245
87 84 -22 730
88 922 1339 2748
89 792 1290 2901
90 321 739 1444
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Table 23: MR values for all patients. Part 5/5.

patient R∗2-AUC, time point 135 s R∗2-AUC, time point 222 s R∗2-AUC, time point 525 s
92 409 236 641
94 1261 1698 2662
95 1429 1977 3586
96 868 1121 1633
102 951 1333 2426
103 1250 1668 2772
106 -19 -225 -958
107 496 662 959
108 274 649 1831
110 549 535 401
111 449 519 282
112 9 -191 -1308
113 264 382 867
114 414 603 1155
115 363 254 -545
116 598 752 2215
118 0 0 0
119 532 712 1843
120 561 750 881
121 622 854 1592
123 898 1069 1386
125 678 758 1100
126 315 285 -216
127 1292 1739 3013
128 1140 1593 3923
131 918 1322 2320
133 749 1024 1623
134 1334 1761 3028
138 686 886 1382
142 336 487 935
143 853 1083 1708
144 869 1197 2219
146 806 921 847
147 487 717 1021
148 261 915 3161
149 -77 -168 -173
150 712 1016 2045
151 745 792 1984
152 271 648 3356
153 1073 1409 2333
154 -1213 -3383 -10482
155 585 739 969
156 935 1290 2986
157 903 997 946
158 -399 -1751 -5453
159 0 0 0
160 272 269 -219
161 1735 2222 3259
162 747 1538 3553
163 451 939 1388
164 845 1656 3607
165 981 1333 2357
166 350 667 1265
169 320 567 1589
170 1270 1872 3749
171 294 387 1211
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Table 24: Results from quantitative immunohistochemisrty of CD34 stain. Part 1/2.

Patient Stain Fraction MVD 1
µm

Vessel Size (µm) Solidity

Oxytarget 1 0,00375 2,23E-05 168,25 0,927
Oxytarget 4 0,01141 6,42E-05 177,72 0,936
Oxytarget 5 0,00730 5,38E-05 135,66 0,943
Oxytarget 16 0,02301 1,03E-04 223,46 0,929
Oxytarget 17 0,01742 7,06E-05 246,75 0,924
Oxytarget 21 0 0 0 0
Oxytarget 22 0,00796 3,58E-05 222,11 0,884
Oxytarget 24 0,00422 2,41E-05 175,39 0,945
Oxytarget 32 0,00736 4,94E-05 148,76 0,939
Oxytarget 41 0,02225 8,41E-05 264,38 0,932
Oxytarget 46 0,01637 7,95E-05 205,75 0,936
Oxytarget 47 0,00945 3,51E-05 269,00 0,907
Oxytarget 48 0,00560 3,40E-05 164,69 0,945
Oxytarget 58 0,00474 2,88E-05 164,59 0,940
Oxytarget 60 0 0 0 0
Oxytarget 72 0,00750 3,94E-05 190,52 0,940
Oxytarget 73 0,00463 2,44E-05 189,71 0,935
Oxytarget 84 0,02501 9,00E-05 277,96 0,920
Oxytarget 85 0,01783 5,03E-05 354,87 0,919
Oxytarget 90 0,01122 6,64E-05 169,11 0,930
Oxytarget 103 0,02777 9,13E-05 304,14 0,920
Oxytarget 107 0 0 0 0
Oxytarget 120 0 0 0 0
Oxytarget 121 0 0 0 0
Oxytarget 124 0,07899 1,62E-04 487,93 0,897
Oxytarget 128 0,02668 1,30E-04 205,71 0,922
Oxytarget 146 0,02643 9,24E-05 286,01 0,930
Oxytarget 153 0,10268 2,66E-04 386,08 0,889
Oxytarget 154 0,00998 4,34E-05 230,10 0,923
Oxytarget 157 0,02038 7,73E-05 263,70 0,920
Oxytarget 160 0,01793 7,72E-05 232,17 0,924
Oxytarget 161 0 0 0 0
Oxytarget 162 0,02547 9,89E-05 257,60 0,923
Oxytarget 164 0,04150 1,20E-04 345,00 0,906
Oxytarget 165 0,01999 8,15E-05 245,35 0,924
Oxytarget 166 0,02011 7,80E-05 257,76 0,931
Oxytarget 171 0,03618 8,74E-05 413,98 0,914
Oxytarget 172 0,03369 9,61E-05 350,68 0,927
Oxytarget 174 0,04330 1,43E-04 302,91 0,915
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Table 25: Results from quantitative immunohistochemisrty of CD34 stain. Part 2/2.

Patient Number Vessels Vessel Radius (µm) ICD (µm)
Oxytarget 1 16 7,36 82,82
Oxytarget 4 29 6,64 96,41
Oxytarget 5 293 6,54 71,18
Oxytarget 16 1240 8,19 45,94
Oxytarget 17 1472 8,75 52,54
Oxytarget 21 0 0 0
Oxytarget 22 62 8,50 74,59
Oxytarget 24 308 7,27 84,36
Oxytarget 32 17 6,43 117,77
Oxytarget 41 954 8,96 53,46
Oxytarget 46 1305 7,97 52,87
Oxytarget 47 8 9,02 151,83
Oxytarget 48 1295 7,21 69,43
Oxytarget 58 333 7,04 85,85
Oxytarget 60 0 0 0
Oxytarget 72 1481 7,57 60,74
Oxytarget 73 201 7,55 88,91
Oxytarget 84 1123 9,06 47,11
Oxytarget 85 1745 9,34 63,06
Oxytarget 90 83 7,21 78,53
Oxytarget 103 3555 9,18 47,60
Oxytarget 107 0 0 0
Oxytarget 120 0 0 0
Oxytarget 121 0 0 0
Oxytarget 124 4048 11,03 39,25
Oxytarget 128 714 7,88 47,11
Oxytarget 146 897 8,28 48,72
Oxytarget 153 135 10,36 35,24
Oxytarget 154 68 7,67 94,49
Oxytarget 157 599 8,90 48,45
Oxytarget 160 2198 8,28 51,08
Oxytarget 161 0 0 0
Oxytarget 162 1742 8,53 45,67
Oxytarget 164 1441 9,81 44,76
Oxytarget 165 1250 8,60 52,35
Oxytarget 166 781 8,39 52,45
Oxytarget 171 2749 9,71 49,87
Oxytarget 172 908 8,85 48,08
Oxytarget 174 2853 9,32 43,15
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Table 26: Results from quantitative immunohistochemisrty of CAIX and HIF1-α stains.

CAIX: HIF1-α:
Patient Stain Fraction Stain Size (µm) Stain Fraction Stain Size (µm)
Oxytarget 1 0 0 0 0
Oxytarget 4 0 0 0 0
Oxytarget 5 0,00400 725,50 0 0
Oxytarget 16 0 36,00 4,73E-06 57,00
Oxytarget 17 0,00219 396,21 6,19E-05 67,89
Oxytarget 21 0 0 0 0
Oxytarget 22 0 0 0 0
Oxytarget 24 0,01479 518,72 6,02E-06 38,50
Oxytarget 32 0 0 0 0
Oxytarget 41 0 0 0 0
Oxytarget 46 0,00859 528,01 1,22E-04 100,40
Oxytarget 47 0 0 0 0
Oxytarget 48 0,00001 474,00 7,52E-05 136,38
Oxytarget 58 0,01243 875,65 1,25E-04 71,95
Oxytarget 60 0 0 0 0
Oxytarget 72 0 141,00 1,02E-05 47,75
Oxytarget 73 0 15,00 0 0
Oxytarget 84 0 0 7,27E-05 47,79
Oxytarget 85 0,05681 1360,44 5,12E-05 127,07
Oxytarget 90 0,00547 213,75 0 0
Oxytarget 103 0,00002 235,67 1,16E-04 125,69
Oxytarget 107 0 0 0 0
Oxytarget 120 0 0 0 0
Oxytarget 121 0 0 0 0
Oxytarget 124 0,00066 309,94 0 0
Oxytarget 128 0,00005 98,33 0 0
Oxytarget 146 0,09267 2701,83 5,97E-06 14,50
Oxytarget 153 0,03248 969,94 0 0
Oxytarget 154 0,03062 800,17 0 0
Oxytarget 157 0,00003 135,50 0 0
Oxytarget 160 0,02119 1964,26 8,52E-05 86,57
Oxytarget 161 0 0 0 0
Oxytarget 162 0,00840 725,70 6,07E-06 26,75
Oxytarget 164 0,00135 462,94 2,18E-05 87,00
Oxytarget 165 0,15088 2414,04 1,54E-04 118,00
Oxytarget 166 0,02581 671,04 4,01E-03 147,99
Oxytarget 171 0,12579 2043,78 3,61E-04 95,34
Oxytarget 172 0,11802 3142,34 1,38E-05 21,67
Oxytarget 174 0,00918 543,74 3,77E-04 150,58
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