
BACHELOROPPGAVE - RAPPORT

Postadresse Besøksadresse Telefon Telefax Bankkonto
NRNU i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636
N-6025 Ålesund Internett Epostadresse Foretaksregisteret
Norway www.hials.no postmottak@hials.no NO 971 572 140

TITLE:

Create a chatbot – Using Python, Recurrent Neural Networks and TensorFlow

CANDIDATE NUMBER(S):

10007

DATE: SUBJECT CODE: SUBJECT: DOCUMENT ACCESS:

30/11-18 IE303612 Bachelor thesis, Data

STUDY: NO.
PAGES/ATTACHMENTS:

BIBL. NR:

Computer Engineering 48 / 1

SUPERVISOR(S):

Ibrahim A. Hameed

SUMMARY:

The purpose of this thesis is to explain how to create a general-purpose chatbot using Python,
TensorFlow and Recurrent Neural Networks.

This thesis also discusses the advantages and disadvantages of different algorithms, use of
different amount of layers, parameters etc. for creating a chatbot.

NTNU IN ÅLESUND PAGE 2
BACHELOR THESIS

This thesis was written by one student at NTNU in Ålesund

NTNU IN ÅLESUND PAGE 3
BACHELOR THESIS

PREFACE

At the time when I read the problem description of the thesis, I did not have any knowledge of
Neural networks and recurrent neural networks. Neither any knowledge of TensorFlow or
Python. But I thought that the creation of a chatbot sounded like a very fascinating topic. And
the creation of chatbots was something I would have liked to be working on after the time of
studying.

My goal of the thesis was to find advantages and disadvantages of different types of training
data, number of layers used in the NMT-chatbot (NMT - Neural machine translation). One more
thing I wanted to look for was the advantages and disadvantages of different types of
algorithms used in a chatbot.

My advisor was for this project: Ibrahim A. Hameed. I would like to thank him for providing me
with material for writing this thesis and for telling me how I could create a chatbot. Also, I
would like to thank two master students, Waleed Elzoghby and Saumitra Dwivedi, for very
useful discussions about the thesis. They also provided me with useful materials about theory
that is related to creating a chatbot.

NTNU IN ÅLESUND PAGE 4
BACHELOR THESIS

ABSTRACT
A lot of people are hired in today’s society to work as customer support to help out with
software issues that the customers might have at a given time. Companies need to pay a lot of
money to these employees in terms of wages for this type of job. All companies globally have
the desire to save money spent for wages, to spend this money for other purposes which
benefits the company. This money could for example be used for safe guards to protect
against cyber-attacks which may happen from time to time.

This is where a chatbot comes in. A chatbot can be trained with different datasets depending
on the given job it is supposed to do. When the chatbot has been trained with a dataset once,
it doesn’t have to be trained once again with the exact same dataset. It does actually recall the
questions and answers provided earlier. So the chatbot can be given questions and answers
found in for example a file with the extension “.yaml” or “.json”, where each file represents
questions and answers within a separate topic.

A few widely popular applications already use this type of service along with a chat interface to
make it easy for potential customers to ask about a specific product or when the shop opens or
closes. The two most popular applications where a chatbot service is being used are Facebook
Messenger and text messages.

The result of the thesis is talk about the basic things that a chatbot is built upon, like recurrent
neural networks, bidirectional neural networks, etc. My own chatbot did not end up working
like it should have been doing, but the thesis will provide some sources of errors that may
exist for my creation of chatbot. Some suggestions for better datasets are included in this
thesis.

NTNU IN ÅLESUND PAGE 5
BACHELOR THESIS

TERMINOLOGY
Abbreviations
JSON <JSON info>
SQL <SQL info>
NMT Neural Machine Translation
RNN Recurrent Neural Networks
BRNN Bidirectional Recurrent Neural Networks
SWOT Analysis of a system’s Strengths, Weaknesses, Opportunities and

Threats

NTNU IN ÅLESUND PAGE 6
BACHELOR THESIS

CONTENTS

SUMMARY/ABSTRACT 4
TERMINOLOGY 5

CONCEPTS FEIL! BOKMERKE ER IKKE DEFINERT.
NOTATION FEIL! BOKMERKE ER IKKE DEFINERT.
SYMBOLS FEIL! BOKMERKE ER IKKE DEFINERT.
ABBREVIATIONS 5

1 INTRODUCTION 8
2 THEORETICAL BASIS 9

2.1 BACKGROUND & HISTORY 9
2.1.1 What is a chatbot? 9
2.1.2 Chatbot history 9

2.2 NEURAL NETWORKS 10
2.3 RECURRENT NEURAL NETWORKS 10

2.3.1 How to implement a Recurral Neural Network Feil! Bokmerke er ikke definert.
2.4 BIDIRECTIONAL RECURRENT NEURAL NETWORKS 11
2.5 SEQUENCE TO SEQUENCE MODELS FOR CHATBOTS 11
2.6 ATTENTION MECHANISMS 12
2.7 USEFUL THINGS TO KNOW ABOUT NMT-CHATBOT 12

2.7.1 Introduction to the NMT-chatbot project 12
2.7.2 Standard vs BPE/WPM-like (subword) tokenization, embedded detokenizer 12
2.7.3 More detailed information about training a model 13
2.7.4 Utils 14
2.7.5 Inference 14
2.7.6 How to import nmt-chatbot 15
2.7.7 How to deploy chatbot/model 16
2.7.8 Demo chatbot 16

3 MATERIALS AND METHOD 17
3.1 METHOD 17

3.1.1 Acquiring training data for the chatbot 17
3.1.2 Chat Data Structure 18
3.1.3 Buffering through the data 20
3.1.4 Insert Logic 22
3.1.5 Building database 25
3.1.6 Training Dataset 30
3.1.7 Training a model 32
3.1.8 Interacting with the chatbot 35

3.2 MATERIALS 39
3.2.1 Python 39
3.2.2 PyCharm 39

3.3 LIBRARIES AND FRAMEWORKS 39
3.3.1 TensorFlow 39
3.3.2 tqdm 39
3.3.3 colorama 40
3.3.4 Regex 40
3.3.5 Python-levenhstein 40
3.3.6 NumPy 41
3.3.7 Requests 41

4 RESULTS 42
5 DISCUSSION 44

5.1 REVIEW OF THE PRACTICAL WORK OF THE PROJECT 46
5.2 REVIEW OF THE PROJECT AS A WHOLE FEIL! BOKMERKE ER IKKE DEFINERT.

6 REFERENCES 47
ATTACHMENTS 48

NTNU IN ÅLESUND PAGE 7
BACHELOR THESIS

NTNU IN ÅLESUND PAGE 8
BACHELOR THESIS

1 INTRODUCTION

This bachelor thesis was written at NTNU in Ålesund by one student. From discussions
with my advisor Ibrahim along with two master students who worked on a similar project
before, I got ideas of which topics I could be writing about in this thesis. These people
inspired me to write this bachelor thesis.

The goal of the thesis is to describe the core building components of the chatbot, about
RNNs, the programming language used etc.

I expect the reader to have some type of knowledge about chatbots or about
programming in general before reading this text.

1.1 Limitations

This thesis only talks about the basics of a chatbot, what a chatbot is, about the
components and algorithms with the bot etc. It does not go into great detail.

NTNU IN ÅLESUND PAGE 9
BACHELOR THESIS

2 THEORETICAL BASIS
2.1 Background & History

This section will tell some information about chatbots and the history of some popular
chatbots that already exist on the market.

2.1.1 What is a chatbot?

A chatbot is a service, built on rules and at times built with artificial intelligence in place,
that a human-being can interact with by using a chat interface. This service can be used
for several different applications, either for serious applications or for fun. Facebook
Messenger, Slack, Telegram, Text Messages are some examples of some applications
where chatbots are already being used today. [1]

A general example of where a chatbot can be used is at a fast-food shop. It is possible to
visit this shop’s Facebook page, and use Messenger to message them. But instead of
chatting to a real human working at that shop, there would be communication with a
chatbot. This chatbot would suggest some things to ask, like for instance ‘can I see the
menu?’ or ‘can I order food?’. Question in this type of form the chatbot would be able to
answer accurately. The work done by the chatbot would save the employees of the fast
food shop a lot of time and energy. Each employee can now focus more on cooking food
or receiving orders from their customers. The responses from the chatbot would give
each customer the impression that they are actually talking to an actual employee.

2.1.2 Chatbot history
ELIZA was just the start of a lot more chatbots to come afterwards, like for instance
ALICE, Mitsuku, Albert One, as well as the one which was probably the most popular,
SmarterChild. SmarterChild was developed in 2000 and took advantage of the popularity
of text messaging services in addition to adding the nice ability to process natural
language – or in another way, it did understand the language which we humans speak.
The chatbot would also respond to our questions. [2]

Some of the voice chat assistants that are popular today have adopted the technologies
of the early-day chatbots, like SmarterChild. This chatbot could be able to answer
questions about general topics in real life, like news and sport related questions. Siri is
an example of a voice assistant that have adopted features from these early chatbots.

For humans today, it is difficult to imagine a world where we don’t have Siri or any other
type of voice-based assistants, but only a few years back, the thought of talking to the
phone to ask about questions or tell it specific instructions seemed like a strange and
very futuristic thing.

The thought of asking an application on your phone for questions about general things,
like for instance a weather forecast, seemed very strange and almost impossible for only
a few years back, but now this has become the reality of our lives. Today we are using

NTNU IN ÅLESUND PAGE 10
BACHELOR THESIS

Siri or Google’s Android Voice assistant to ask about things that interest us, like the
results from the football match last night, about any upcoming events that have been
added to the calendar etc.

Some companies today have discovered that an increasing number of owners of a
smartphone don’t want any more apps to be downloaded to their phones. For this
reason, these companies are developing chatbots to make it more convenient for the
phone users to find answers to the questions they are looking for. By the use of chatbots
with a user interface, people don’t have to download applications to their phone
anymore, but now have the possibility of heading to a specific web site to ask questions
and receive answers that are satisfactory.

2.2 Neural Networks

A simple neural network takes input as a vector X(t) and generates output Y(t) based on
this input. These things are done within a time frame (t). With enough input and output
examples the model will be able to learn the parameters of the network in TensorFlow.

After fine-tuning the model for a long time, you would probably want to test the model in
a real-life scenario. Often at times this would be done by calling the model multiple
times, maybe repeatedly one after the other.

The neural network consists of input weights (win), output weights (wout) and one hidden
layer Z(t). The first half of the model would have the formula: Z(t) = X(t) * Win, while
the second half of the model would be: Y(t) = Z(t) * Wout. [3]

Figure 1: Architecture of a regular neural network made in Adobe XD

2.3 Recurrent Neural Networks

The previous section (2.3) described briefly what pieces a neural network consists of. A
recurrent neural network is very similar but is smarter in a sense.

Recurrent Neural Networks (RNN) introduce transition weights to transfer information
between time.

The introduction of transition weights means that the next state is dependent on the
previous model, as well as the previous state. This means that the model has memory of
what has happened earlier. [4]

NTNU IN ÅLESUND PAGE 11
BACHELOR THESIS

Figure 2: Recurrent Neural Network diagram made in Adobe XD

2.4 Bidirectional recurrent neural networks

Bidirectional recurrent neural networks are similar to recurrent neural networks, but in a
BRNN the hidden layer contains nodes moving in opposite directions to each other. So,
this means that in a bidirectional recurrent neural network there will also be input and
output layers, as well as hidden layers. In BRNNs the hidden layer inside passes data up
and down (or forward and backward). Because the hidden layer has this job of passing
data in two directions, the network understands what has happened before and what the
sequence of words the sequence will contain in the future.

2.5 Sequence to sequence models for chatbots

There exist real people in this world that earn their money from responding to customers
about all sorts of questions they may have. Questions can be about a wide variety of
topics, but what they have in common is that they are issued either by the use of phone
calls, text chat on the internet or e-mails. The job of responding to these questions can
be assigned to a programmable chatbot instead, which can be trained to answering
questions in most languages of the world. [5]

Chatbots are getting increasingly popular because new research has made it possible to
develop these kinds of bots using natural language processing and deep learning
technologies.

A chatbot could possibly be able to respond accurately to customers or other people’s
questions if it is trained with sufficient and suitable data for the given purpose.

NTNU IN ÅLESUND PAGE 12
BACHELOR THESIS

2.6 Attention Mechanisms

With only the use of Bidirectional recurrent neural networks, the model would still not
remember sentences containing more than 3-10 words/tokens at a time maximum.

BLEU means bilingual evaluation understudy, which is the best possible way to decide the
overall effectiveness of a translation algorithm. BLEU will only be relative to the
sequences that are translated. [6]

From a chatbot’s point of view one sentence is translated to another sentence and these
sentences are both written in English. Because of this fact, one should not expect a high
value for the BLEU, but the value should slowly increase as the time goes. If sentences
were to be translated from one language to another, for example from English to
German, the BLEU would have a much higher value over time compared to chatbots.

2.7 Useful things to know about NMT-Chatbot

This section will include information which could be nice to know about the NMT-Chatbot
before reading the rest of this thesis.

2.7.1 Introduction to the NMT-chatbot project

Nmt-chatbot is the creation of a chatbot by using NMT - neural machine translation
(seq2seq models). This model includes WPM/BPE-tokenizator. The main idea of the
project is to create a NMT chatbot, but it is still possible to use NMT with this chatbot and
the model can be used to translate words and expressions between languages.

The code in this project makes use of code from NMT, but because no interfaces are
available, some things are improvised, and some segments of code needed to be copied
into this project.

2.7.2 Standard vs BPE/WPM-like (subword) tokenization, embedded
detokenizer

The standard tokenizer makes use of moses-smt one module. Things have been modified
a lot in this file to fit the chatbot application. A positive of a tokenizer like this is a
smaller number of duplicates in the vocab file. The downside with a tokenizer like this is
that it needs a lot of rules based on regex for the job of detokenization. And it is of high
difficulty to write a detokenizer which covers all cases.

The functionality of the standard tokenizer is that in-between each sentence there will be
either whitespace, a period sign (and other grammar characters), digits, etc.

BPE/WPM-like (subword) tokenizer is built on the project subword-nmt one, but it has
been edited to suit the needs and speeds that are available. The biggest positive about
this tokenizer is that it has the ability to fit any number of words or tokens in much
smaller vocabulary with the use of subwords.

NTNU IN ÅLESUND PAGE 13
BACHELOR THESIS

BPE/WPM-like (subword) tokenizer splits sentences similar to the way the standard
tokenizer splits sentences. But it also splits every sentence by character, includes a
counter of how many pairs of characters have been found (characters next to other
characters in the same sentence), and join these pairs to each other to create a
vocabulary of the desired number of tokens. This means that the words with the highest
count will be joined back to how they were initially, while the words with a low count will
be kept split into several parts (subwords) shared with other words. In this manner,
almost any kind of number of tokens from the vocabulary can be lowered to the size of
just the number 2000 (or even lower, but this is dependent on the training set available).

Standard vs. BPE/WPM-like (subword) tokenization examples:

Figure 3: Standard detokenization vs. BPE/WPM- like (subword) tokenization comparison example.

Embedded detokenizer (possibility for standard tokenizer, forced to ‘on’ for BPE/WPM-like
one – explanation above) makes it possible to do a smooth detokenization instead of
lower number of special symbols in vocabulary – duplicate-like symbols in vocabulary
(mixes of with and without meta symbol ‘__’, where that meta symbol is the only thing
which is needed for detokenization). The number one positive thing about the
detokenizer is that no rules exist for this type of detokenization. Detokenization works in
the way that two replacements are made in the same sentence. First thing to be done is
to remove all whitespace which exist, then replace the so-called meta symbol ‘__’ with a
space character instead.

Here are a couple of examples of how this works:

Figure 4: Embedded tokenizer example.

2.7.3 More detailed information about training a model

setup/settings.py consist of multiple files to change the settings of the model:

- Unchanged file or folder paths should be working most of the time

NTNU IN ÅLESUND PAGE 14
BACHELOR THESIS

- “preprocessing” file should be easily-understandable for most people

- “hparams” file will be handed to NMT with the use of command line options with
standard way of use

- “score” file with settings for changing the score of the answers

prepare_data.py:

- Works by iterating through the files placed in the folder “new_data” which are:
train.from, train.to, tst2012.from, tst2012.to, tst2013.from, tst2013.to

- Tokenizes every sentence found in these files (dependent on the setting and each
internal rule which is found)

- For every “train” file – automatically builds vocabulary files, makes them in a way
stand out from the others and save up to the number of sentences set in the file
setup/settings.py, vocab entities which do not end up being used (if there exist
any at all – depends on settings) will all be saved to individual files

train.py – starts the whole training process of the chatbot

2.7.4 Utils

Utils/run_tensorboard.py – file which is simple to use as a wrapper, makes it possible to
start Tensorboard with the folder ‘model’

Utils/pairing_testing_outputs.py – file which joins the two files model/output_dev and
data/tst2012.from together and prints the result to a console allowing to easily have a
look if things look ok. The console will show information about the input phrase,
inference output frame, as well as a separator.

utils/prepare_for_deployment – file which makes copies of files needed for inference.

2.7.5 Inference

Every time a model is training, running the file inference.py allows to communicate with
AI in interactive mode. This file will take care of the start and setup needed to use the
already trained model (by the use of the saved hparams file inside the model folder and
setup/settings.py for all remaining settings or a missing hparams file).

When a question is asked several responses will be printed depending on the file
setup/settings.py. All responses will have one of the following three colors explained:

- Green – the first reply of this color is the top reply for being printed. Replies of
this color passed the blacklist test as described in the following file:
setup/response_blacklist.txt”

- Orange – replies of this color are good replies, but with a lower rating compared
with the ones marked in green

NTNU IN ÅLESUND PAGE 15
BACHELOR THESIS

- Red – not a good reply, below the score limit

All the steps which are gone through in the process of question to the answers:

1. Insert the comment/question to be answered by the keyboard

2. Compute fixed number of replies configured in setup/settings.py

3. Perform detokenization on replies based on the embedded detokenizer or the
rules which are located in the file setup/answers (depends on the settings which
have been configured)

4. Replace whole or only parts of responses by the use of additional rules

5. Set a specific score on every single reply

6. Return the chosen responses (the command ‘show’ in interactive mode)

There is also an option to have multiple questions asked at the same time by the use of
command redirection:

or:

There is also a possibility of passing a specified checkpoint as a parameter to use
inference at this given checkpoint, for example:

2.7.6 Importing the nmt-chatbot
The project is available for import for the needs of inference. This is done by embedding
the folder within the project directory and by the use of import (one thing to notice here
is that the folder name needs to be modified to not have the dash (-) character -a
module is not possible to be imported if it has a dash in its name). Then the following can
be done:

nmt_chatbot is the directory name of the chatbot module

NTNU IN ÅLESUND PAGE 16
BACHELOR THESIS

inference() takes one parameter as input which is required from the user:

- Question

For every question asked, the function will return a dictionary containing the following:

- answers – contains a list of all relevant answers

- scores – shows a list of scores for all the answers

- best_index – keeps track of the index for the best answer

- best_score – keeps track of the score of the best answer found

Score:

Every reply initially has a starting score (score[‘starting_score’]) which is a value taken
from the file setup/settings.py. This value is by default set to the integer ‘10’. This value
is changed by checks which happen later on. The score which each reply has at the end
of the process, is what will determine what is the “best” response.

When a lot of questions are issued at the same time, then the function will return several
lists of dictionaries.

The function will return ‘None’ for every empty question it manages to find, instead of an
actual dictionary.

2.7.7 How to deploy chatbot/model
At the moment when the model has been successfully trained, there might be the
necessity for exporting the files only which are needed for the function of inference (for
instance to be embedded and imported for use in another project).

This can be achieved automatically with the use of prepare_for_deployment utility:

This script will create a folder called _deployment inside project’s root directory and copy
over all the files which are needed depending on the current settings.

2.7.8 Demo chatbot

The demo model has already been successfully trained. It is in a deployment-ready
package. Because it is a demo model, it was not trained on a large data-set. A data-set
consisting of one million pairs of rows was used on this model. The neural network used
on this model was fairly small as well. The model has only been made to see how it
works in practice. The demo model can be found here:
https://www.dropbox.com/s/2w4i77fancf4voc/nmt_chatbot.zip?dl=0

The project includes every file needed for the possibility to run the inference file. All the
settings which have been configured in the file setup/settings.py file.

NTNU IN ÅLESUND PAGE 17
BACHELOR THESIS

3 MATERIALS AND METHOD
3.1 Method

This method part is part of the Chatbot tutorial found at the website
www.pythonprogramming.net. Chatbot tutorial consists of 8 different steps of how to
create a chatbot using Python, TensorFlow and Recurrent Neural Networks.

3.1.1 Acquiring training data for the chatbot

There exists a wide variety of datasets which can be used for training a chatbot on the
internet, most popular is the Cornell movie dialogue corpus. But I am choosing to use a
dataset which consists of a large number of comments and replies taken from Reddit.

Reddit is not like a forum where every single comment posted in that forum is structured
linearly, instead the comments are put in a tree-form. Each parent comment is
structured linearly, while the replies to the parent comment is indented and every reply
to the replies are indented one step further. The diagram below shows how each type of
comment is organized.

Figure 5: Shows how Reddit comments and replies are structured on the website.

Deep learning is all about input and output pairs of data, so what needs to be done is to
transform these comments into comment-reply pairs. From the diagram shown above,
the following can be used as pairs of comments and replies:

NTNU IN ÅLESUND PAGE 18
BACHELOR THESIS

Figure 6: Diagram shows how the different comments/replies can be paired to create a training
data set for the chatbot

I took the data set and began to receive input-output pairs based on all this data. The
dataset I ended up using consisted of comments all written in the month of January
2015.

3.1.2 Chat Data Structure

When the download of the training data set has been completed, like in general with
machine learning the data has to be taken care of and then produce input and output
data of this data set. From neural networks point of view, this means that input and
output layer have to be decided for the neural network. When implementing the concepts
of neural networks and deep learning for the chatbot, data needs to be structured into
comments as well as replies. Each comment represents the input, while all the replies
represent the output. On the Reddit website some comments will not have any replies to
them, but on the other hand many comments could also have a lot of replies. But only
one reply is picked for each comment with this chatbot model.

These data dumps of Reddit comments are possibly larger than 32 GB, which is way too
large to be put into memory all at the same time, therefore the data needs to be iterated
through in relatively small batches. The Reddit comment files will be buffered through
and the data which I found interesting was be stored into an SQLite database. The
comment data is stored into this database. Every single comment is ordered in a
chronologic way, which means each comment is a “parent” at the start and they will have
no parents themselves. After a while I got some replies, and every “reply” was stored,
and each reply has a parent in the database that we can be found by searching for its
respective ID number. In this way, there are rows which consist of parent comments as
well as each comment’s related reply.

Every time there exists a parent comment with a higher rating compared to the one
currently stored, the row is possibly updated with information included in the reply with
the higher score. Ultimately, only the rows with the highest score will be left in the
database.

I made the following imports to the project:

NTNU IN ÅLESUND PAGE 19
BACHELOR THESIS

SQLite3 is used for the purpose of the database, JSON to load in all the comments from
the dataset, while datetime is used to output some useful logging information.

A large dataset was downloaded by the use uTorrent. Every folder was ordered by the
year of creation, and every single file contained JSON dataset labeled by year and month
of creation (‘YYYY-MM’). Every dataset downloaded from uTorrent originally had the .bz2
file extension.

This is how the code is written to handle this process:

The timeframe value represents the year and month of data we are using for the
database. Now there is something called ‘sql_translation’ in the code which essentially
builds up all the rows in a dataset into one single transaction, executes all of the rows
and then finally put all of these rows into bulk groups. After this is done the table is
created. SQLite provides the function connect, which includes an if statement that makes
sure that a new database will be created one is not created already.

NTNU IN ÅLESUND PAGE 20
BACHELOR THESIS

From the above code, parent_id, comment_id, the parent comment, the reply
(comment), subreddit, the time and then the rating for the comment are being prepared
for storage.

The code looks like this up until this point:

3.1.3 Buffering through the data

After all this work was finished, all the data was buffered through as well as a few
counters were initialized to keep track of progress over a given time period.

Figure 7: Screenshot of main block of code from PyCharm IDE.

The parameter ‘row_counter’ is used for the purpose of finding out how many rows of
data have been iterated through so far, while ‘paired_rows’ tells how many pairs of
comments and replies that have been found. These pairs of comments and replies make
the content of the training data.

From figure 7 one can see that there is a ‘buffering’ parameter. This parameter is there
in case the size of the dataset is too large to be able to deal with in memory. The

NTNU IN ÅLESUND PAGE 21
BACHELOR THESIS

buffering parameter makes it possible to read the file we have on our hands for some
lines at a time. This is okay to do because only one line at a time will be taken care of.

The row needs to be read which is of the JSON format:

Figure 8: Diagram which shows how to read each row of the file

There also needs to be a format_data function call, which was created like so:

Figure 9: Screenshot of the code of the format_data function.

The format_data function was created to to make comments look more normal and
convert newline characters to words instead of just being characters.

The function json.loads() was created to read data into a python object, which requires a
string formatted like a JSON object. To repeat what was mentioned earlier: Not every
single comment will have a parent at the start. There can be two reasons why a parent
does not exist:

1. Because the comment is the highest rated one available
2. Because the parent is not included in the document

As the document is iterated through though, there will be found some comments which
have parents that already exist in the database. Each time this happens the comment
needs to be connected to the already existing parent. After a successful iteration of a file,
or a series of files, the parent and comment pairs will be output from the database.
These pairs will be used for training data which can be used to train the chatbot model.
After having trained the model it will be possible to communicate with the Chatbot. There
is a statement in the file which checks if a parent already exists in the database for the
comment that has been found:

After this was created, the find_parent function also needs to be implemented:

NTNU IN ÅLESUND PAGE 22
BACHELOR THESIS

If the database already contains a comment_id that has a matching parent_id of another
comment, then the new comment should be connected to the parent that already is
found inside the database.

3.1.4 Insert Logic
There is a rule implemented in the code to restrict the number of comments that are
dealt with, regardless if any other comments exist as well. The rule is that only
comments of a rating of two or higher will be added to the database. The code so far
looked like this (shown in 3 parts):

Figure 10: Part 1 of how the code looks like at this point.

NTNU IN ÅLESUND PAGE 23
BACHELOR THESIS

Figure 11: Part 2 of what the code looks like at this point.

Figure 12: Part 3 of how the code should like up until this point.

Now the requirement of the rating restriction to be two or higher is added to the code.
The code also checks to see if there is an existing reply to the parent comment in the
database, as well as attempts to see what the score of the comment is:

NTNU IN ÅLESUND PAGE 24
BACHELOR THESIS

The next thing done was the creation of the find_existing_score function:

If the database already contains a comment with a rating lower than the comment that
was found recently, then the comment already in the database will be replaced:

On Reddit several comments are not there anymore, either because they have been
deleted or removed. But some comments on this forum also contain a lot of characters,
or the opposite: very few characters. In the program there is be a statement which
makes sure that comments contain a sufficient amount of characters for training, as well
as that the comment was not removed or deleted.

NTNU IN ÅLESUND PAGE 25
BACHELOR THESIS

Now the insertion of the data into the database starts, which will be discussed in the next
section.

3.1.5 Building database

If an existing comment score is possible to find in the database, this means also that a
comment exists, which in this case means there will have to be an update statement.

The following was how the code looked like up until this point:

The next thing which was done was to build the ‘sql_insert_replace_comment’ function:

The code above takes care of some situations where a comment has already been
connected to a parent comment.

In the next image there will be code showing how I decided to handle situations where
comments do not have parents and these parents do not already have a reply to them.

NTNU IN ÅLESUND PAGE 26
BACHELOR THESIS

Figure 13: Code for dealing with certain situations of missing parent comments and missing replies
to the parents.

Up next is the sql_insert_has_parent and sql_insert_no_parent functions that was built:

To see how many steps the iteration process has been going on for, there is some output
which shows some useful information every 100 000 step:

The last lines of code that are needed for now will be used for building the
transaction_bldr function. The purpose of this function is to create a set of insertion
statements and commit them in groups, instead of dealing with one statement at a time.
This will speed up the process a lot:

NTNU IN ÅLESUND PAGE 27
BACHELOR THESIS

How the code looks like up until this point:

NTNU IN ÅLESUND PAGE 28
BACHELOR THESIS

NTNU IN ÅLESUND PAGE 29
BACHELOR THESIS

After I got all this code, I started running the code. As the time went on the output
started looking like the following (see below):

NTNU IN ÅLESUND PAGE 30
BACHELOR THESIS

Total Rows Read: 100000, Paired Rows: 3221, Time: 2017-11-14
15:14:33.748595
Total Rows Read: 200000, Paired Rows: 8071, Time: 2017-11-14
15:14:55.342929
Total Rows Read: 300000, Paired Rows: 13697, Time: 2017-11-14
15:15:18.035447
Total Rows Read: 400000, Paired Rows: 19723, Time: 2017-11-14
15:15:40.311376
Total Rows Read: 500000, Paired Rows: 25643, Time: 2017-11-14
15:16:02.045075

When the iteration over the files was finished, I then made sure the files were of a
suitable form before training of the chatbot could take place. The training of the dataset
will be explained next.

3.1.6 Training Dataset

This section will include how to work on creating the training data for the chatbot model.
“Parent” and “reply” text files need to be created, where each line was used for training
data. This means that line 15 of the file which contains parent comments will correspond
to line 15 in the file which contains all the rows of replies.

To make sure all these files are created, pairs comment-reply pairs were picked from the
database and then these pairs were added to the training files.

The following code shows how some of this is performed:

Here only a single month of data will be run through, because only one database will be
dealt with. But there are other options available.

Next, the loop is built:

NTNU IN ÅLESUND PAGE 31
BACHELOR THESIS

The first line makes the connection to the sqlite database established, then the second
line defines the cursor, while in the third line the limit is assigned a value of 5000. This is
the number of rows that are pulled from the database simultaneously. As told earlier, the
data which is worked with is a lot larger than the actual RAM which is available to us. The
limit variable has a value of 5000 to make some testing data available. This value could
be increased later on if desired. Last_unix variable makes it much easier to pull rows
from the database. cur_length gives information when the pulling of data from the
database is completed. counter variable allows to give some information in case there
needs to be debugging. The purpose of test_done is to tell when the test data has been
successfully built.

The limit can be changed to have a higher value. The variable limit can be changed to for
example 100k or something similar after the condition test_done = True has been
fulfilled. Now the training code was built:

The code segment could have been put into a function to make sure the action of copying
and pasting did not have to be performed, but here it will be ignored.

For every 20 steps that was taken there was some output, which means every 100k pairs
of rows if the value of the limit variable is kept at 5 000. That is what was done in this
case.

All code that has been told about so far in this section:

NTNU IN ÅLESUND PAGE 32
BACHELOR THESIS

3.1.7 Training a model

There is a wide range of models which can either be used or found on the Internet and
tweaked to fit one’s needs. What is chosen to be used here is sequence to sequence
model, because this model can mainly be used with chatbots, but also for other
applications. Information about everything can be made into sequences, which means a
lot of things can be used for training. But in this occasion, a chatbot was created with the
use of comments and replies found on Reddit.

In this bachelor project I have been working on a project which Daniel Kukiela created
and uploaded to Github. The project is set to public access, so everyone who has the link
can make use of the project. [7]

NTNU IN ÅLESUND PAGE 33
BACHELOR THESIS

Figure 14: README file at https://github.com/daniel-kukiela/nmt-chatbot/blob/master/README.md

The things shown in the figure above will be explained in the following section.
Everything was set up and prepared for running.

One thing to note about the requirements.txt file is that it is not possible to install the
package ‘tensorflow-gpu‘ if there is not a GPU on the computer which supports this.
There needs to be a NVIDIA GPU to be able to support the ‘tensorflow-gpu’ package. If
the computer does not have one of these GPUs, the line can be edited to just say
‘tensorflow’, then the standard TensorFlow package will be installed instead. [3]

Figure 15: Screenshot of how the requirements.txt file how it looks originally

The NMT package was downloaded recursively from https://github.com/tensorflow/nmt
(the official TensorFlow source).

When the package has been downloaded recursively, there is an option to edit things in
setup/settings.py which anyone can do, but this can also just be left un-edited.

NTNU IN ÅLESUND PAGE 34
BACHELOR THESIS

Figure 16: The content of the settings.py file

When the settings have been edited to as you would like them to be, inside the main
directory (where the directories utils, tests and setup are located), the train.to and
train.from files as well as the corresponding tst2012 and tst2013 files can all be placed

NTNU IN ÅLESUND PAGE 35
BACHELOR THESIS

inside the new_data directory. Now type ‘cd setup’ in the terminal window to change
directory. Then run the prepare_data.py file:

When the preparation of the data has been completed, then type ‘cd ../’ and then type
the following command:

By running this python-file, the chatbot model will start training.

3.1.8 Interacting with the chatbot
With the chatbot model training the default is that a new checkpoint file is saved for
every 1000nd step. If there is a necessity or desire to stop the training, then this is
possible to do safely and continue training at a later time from the last saved checkpoint.

Each checkpoint file contains a few different logging parameters, as well as other useful
information for the model. Because of these logging parameters, it is possible to take
these checkpoints/model files and use them to continue the training of the model or use
them in production of another model.

The location for saving every checkpoint file by default is in the model directory. Saved in
these directories the files will be called trainslate.ckpt-XXXXX, where the X’s represent
the step number. In the model directory there will also be files with the extensions .data,
.index, and a .meta file, as well as a checkpoint file. The content of the checkpoint file
will look something similar to the following:

This checkpoint file lets the model know which files to be used.

To use this model on another machine, there are 4 files in total that need to be on this
machine. As an example, step 229 000 will be used. That means that there needs to be
the following four types of files to run that model, or to load the model to continue
training:

- checkpoint

- translate.ckpt-229000.meta

- translate.ckpt-229000.index

- translate.ckpt-229000.data-00000-of-00001

NTNU IN ÅLESUND PAGE 36
BACHELOR THESIS

These are the files one will need if that person is to move from training the model on
their local machine to continue train the model in a desktop in the cloud, for instance
with a machine by using Amazon Web Services.

As well as saving checkpoints for every 1000 steps, there also needs to be some
examples of bulk (from the tst.to and tst.from files that are available). These output files
are just the top output sentence result responses to the test files which exist. Because
any examples could have been put into the testing files, this is the first moment that
interaction the chatbot will happen. There is a pairing script which will output the pairs of
comment-replies of the testing files and output files.

For instance, there can be the following content in the tst2013.from file:

And this is content from the output_dev file:

The following screenshot shows code which represents a pairing script:

NTNU IN ÅLESUND PAGE 37
BACHELOR THESIS

Figure 17: Screenshot of the code from Chatbot_questions.py

The code above takes text entered by the user and asks the bot what it thinks about the
question. A number of possible replies will be thought of, but only the response with the
highest score will be shown as the output with the run of this file.

Output should look something similar to the below:

Inference.py file is used for asking a chatbot questions and have a live preview has it is
happening. This file is run in the terminal just like all the other related files for the NMT-
chatbot. One sees that the chatbot does not always give very intellectual replies to the
issued questions, but the model can always be modified to actually answer in a more
intelligent way.

When running the inference script, one will have to choose some of the responses shown
in a list. It is possible to go for the first response shown in the list or choose all of them if
desired.

NTNU IN ÅLESUND PAGE 38
BACHELOR THESIS

Figure 18: Possible replies to the comment ‘what’s up?’ when running the script inference.py

Figure 19: Possible replies to the comment 'hi' shown when running the script inference.py

NTNU IN ÅLESUND PAGE 39
BACHELOR THESIS

3.2 Materials

This section includes some information about the programming language used for this
bachelor project along with the Python libraries.

3.2.1 Python

Python is a high-level programming language which can be used for several purposes.
The programming language stands out from other programming languages with the focus
on readability by the use of a lot of whitespace.

A dynamic system and automatic memory management are among the features that
Python offers, but there are several other features which Python supports. Features like
imperative, functional, procedural and objective-oriented programming are also
supported. Python also offers a library with many packages for use by anyone. [8]

3.2.2 PyCharm

PyCharm is an integrated development environment optimized for the use of code from
the Python programming language. Some the features of PyCharm are as follows: Data
analysis, a graphical debugger, an integrated unit tester, integration with version control
systems and also supports Web development with Django. [9]

3.3 Libraries and frameworks

This section gives a little bit of detailed information about the Python libraries and
Frameworks which have been used in this project.

3.3.1 TensorFlow

TensorFlow is an open-source software library for dataflow programming meant for
different tasks. It is a symbolic math library, which is also commonly used in machine
learning applications, such as neural networks. TensorFlow is used in production and
research at Google. [10]

The early versions of TensorFlow did not support more than one device, while later
versions actually provided support for several GPUs and CPUs with optional extensions
for basic computing on devices which use graphical processing units.

3.3.2 tqdm
tqdm is ‘progress’ in Arabic and in Spain this is used as an abbreviation for “I love you so
much” (te quiero demasiado).

This package is an extra styling to the loops to make them show a smart progress meter.
One can wrap any iterable with tqdm(iterable), and that’s it!

NTNU IN ÅLESUND PAGE 40
BACHELOR THESIS

Figure 20: Screenshot from page https://tqdm.github.io/, showing an example how to use the
tqdm package in the code

The tqdm package works across every single platform, which means Linux, Windows,
Mac, FreeBSD, NetBSD, as well as Solaris/SunOS, in any console or in a GUI. tqdm also
provides support for IPython/Jupyter notebooks.

3.3.3 colorama
Colorama – cross-platform colored text in the terminal window

Colorama makes ANSI abandon sequences of characters for the purpose of producing
colored text in the terminal and positioning of the cursor. This package works for MS
Windows. [6]

The function ANSI escape character sequences have been used for a long duration of
time to produce colored text in the terminal window and positioning of the cursos on Unix
and Mac systems. Colorama enables this function on Windows as well, by the wrapping of
stdout, stripping every ANSI sequence on its path and converting them into win32 calls
to change the terminal’s state. On other platforms than Windows, Coloroma does not
make any changes.

3.3.4 Regex
Regex is a short name which means regular expression, a string of text which allows a
programmer to create patterns that help match, locate and manage text. Perl is a prime
example of a programming language that makes good use of regular expressions. But
this is just one of the many places where one can find the use of regular expressions.
Regular expressions can also be used to find text inside a file via the command line
interface or in text editors. [14]

3.3.5 Python-levenhstein
The Levenhstein Python C extension module includes for quick computation of

- Levenshtein (edit) distance, and edit operations

- String similarity

- Approximation of median strings, and generally find out the average of strings

- String sequence and set similarity

The extension supports normal and Unicode strings.

NTNU IN ÅLESUND PAGE 41
BACHELOR THESIS

The Python version has to be of version 2.2 or later.

StringMatcher.py is an example SequenceMatcher-like class which has been built on top
of Levenhstein. It lacks some of SequenceMatcher’s functionality, and has some more
OTOH. [9]

3.3.6 NumPy

NumPy is a fundamental package for scientific computing specifically made for Python.
What NumPy contains:

- A powerful N-dimensional array object

- Some sophisticated (broadcasting functions)

- Tools which are used for integrating code of C/C++ and Fortran

- The capabilities of useful linear algebra, Fourier transform, and random numbers

NumPy is not only for scientific uses but can be used as an efficient multi-dimensional
container of generic data. Data-types which are arbitrary can be defined. Because of this,
NumPy can integrate in a quick and good way with several different databases.

The Python library NumPy enables use of mathematical manipulation in the Python
programming language.

Without using the Python libraries TensorFlow and NumPy there would be a lot more time-
consuming work in coding to be done, like capturing a photo without using auto focus. [15]

3.3.7 Requests

Requests is an HTTP library licensed under Apache2, which has been written in Python.
The library has been designed for humans to be able to interact with the language. This
makes it a little bit easier for humans, in the way that they do not have to add query
strings to URLs, and they don’t have to form-encode their POST data.

What can Requests do?

The Requests library will allow someone to send HTTP/1.1 requests by the use of Python
code. It can be used for adding content like for instance headers, form data, multipart
files, as well as parameters via easy-to-use Python libraries. The library allows a person
to access the response data of Python in the same manner. [13]

How to install Requests

There are quite a few different ways of installing the Requests library.

One can choose to use pip, easy_install, as well as tarball.

How to install using pip: Type ‘pip install requests’ in the terminal to install. [13]

NTNU IN ÅLESUND PAGE 42
BACHELOR THESIS

3.3.8 Adobe XD

Adobe XD is an application developed by Adobe, and the application itself makes things
easy for web designers to create good-looking thumbnails for potential web pages. The
most interesting part about this application is that it’s possible to preview how the
specific page will look on different type of screens, like for instance iPhone devices,
Android screens, PC screens etc.

3.3.9 Adobe Illustrator CC 2019

Adobe Illustrator is an application created by Adobe, which lets designers create
illustrations and figures by the use of a wide variety of default tools available in the
application. The application is part of an annual or monthly subscription of the package
Creative Cloud, which contains a set of related applications that are useful for those who
work within the design field.

4 RESULTS
A model was trained for 229 000 steps, but because I changed some code by mistake, I
was not able to test this model with questions to see what actual answers the chatbot
would give.

The demo model did not include any data for analyzing perplexity, BLEU etc. So I could
not do much with this model other than testing it with some questions.

By running the file utils/run_tensorboard.py I got the following graphs in the web
browser (localhost:22222 was the URL used):

Figure 21: Shows how the perplexity developed during training of the chatbot model over 229 000
steps

NTNU IN ÅLESUND PAGE 43
BACHELOR THESIS

The Figure 21 shows a graph of how the perplexity for the model developed during
229 000 steps. Perplexity variable seemed to increase over time, which is a bad sign.
BLEU is a measure of how effective the model is at predicting the output from the
sample. This happens with the use of language translation.

Figure 22: Shows how the loss developed during 229 000 steps of training. Loss along the y-axis,
amount of steps along the x-axis.

Figure 22 shows how the loss developed during 229 000 steps of training. Loss is how far
the ouput layer of the neural network was compared to our sample data. And the loss
here seems to be dropping as the steps go further, in general.

On my computer it took 31 days for the model to train to step number 229 000.

I was supposed to test the model with students to see what they thought of the answers
they received from the chatbot, but I did not have the time to set this up.

The output I got from the demo model when I asked it some questions was like the
following:

NTNU IN ÅLESUND PAGE 44
BACHELOR THESIS

And this result is not the best, because the model was trained with 1 million pairs of
comment-reply pairs. The model could only answer simple yes/no questions, while it
would not give any relevant answers to questions containing several words.

The following video shows example of what happens when I ask the demo chatbot some
questions:

5 DISCUSSION
5.1 Sources
One of the first things I did before or when writing this thesis was to make sure the
information gathered was trustworthy. The purpose of this was to try and understand the
theory basic theory of creating a chatbot. Important concepts about chatbots were
explained in different papers written by students at other universities, in videos found on

NTNU IN ÅLESUND PAGE 45
BACHELOR THESIS

YouTube, as well as other websites. It was a jungle of information, and difficult to decide
exactly which sources to actually trust.

Along the way, I changed my mind on which was the better way to build a chatbot. There
were some YouTube videos which briefly explained how to develop a chatbot, but really
went quickly over on how to do it. From my understanding these videos were created for
people who either already had a lot of knowledge about programming or just were very
fascinated in programming.

I came across Sentdex’ website [17], which I found very interesting and ended up
teaching me a lot about Python programming, about creation of a chatbot, as well as
about TensorFlow and other libraries that chatbots are built upon.

5.2 Technological choices

5.2.1 Programming language (Python)

I decided to use Python for developing a chatbot, because this programming language
can be used for a wide variety of purposes. Python is used for creating games, analyzing
data, controlling robots and hardware, creating GUIs as well as websites [17]. I am more
interested in the data analysis part, which can be used to see the progress of the chatbot
training live as it is happening.

5.3 The project
I did not try to use any software development methods for writing this bachelor thesis.
The reason for this is because I did not think it would be necessary, as I was working on
this project by myself only. This was not the best decision for the final outcome of the
thesis. A plan for how much time needed for development of code, as well as another
plan for time needed for writing the thesis should have been made very early on in the
semester.

I spent too much time on the coding part of things, like debugging and testing if the code
worked like it should. This decision left me with very little amount of time to write a good
thesis.

5.4 The use of corpus data
The choice of using Reddit corpus data did not lead to creation of a useful or good
chatbot that could reply to questions in a good manner. From this project I learned that
the decision of selecting a certain type of training corpus is important for how well a
chatbot will respond to questions issued by the human-user.

Reddit corpus data did not make the chatbot reply to questions issued in a good way.
The reason for this may be that a lot of strange or unusual comments are posted on this
website. Natural language is not used in the whole website, a lot of abbreviations may be
used in the comments and also curse words could be present in certain threads.

NTNU IN ÅLESUND PAGE 46
BACHELOR THESIS

I think maybe the use of dialogue corpus from a movie would be better for making a
more accurate chatbot. Because these dialogues do not include special characters or
unknown tokens, like smiley faces. The chatbot would understand these sequences more
easily.

5.5 Review of the practical work of the project

At the end of the project I got a chatbot which can reply to simple text input from the
user, but not so much more than that. The chatbot has only been trained with general
comments and replies from Reddit, which means it will not be able to give good replies
about educational questions for example about university subjects, professors or
anything like that.

NTNU IN ÅLESUND PAGE 47
BACHELOR THESIS

6 REFERENCES
[1] Schlicht, M. (2016, 20th April). The Complete Beginner’s Guide To Chatbots.

[Internet Magazine]. [Cited 30th of May 2018], Available from
https://chatbotsmagazine.com/the-complete-beginner-s-guide-to-chatbots-
8280b7b906ca

[2] («Python Programming Tutorials», cited on 29th of November 2018) Available
from: https://pythonprogramming.net/introduction-to-python-programming/

[3] Nushant, Shikla (2017). MEAP Edition Machine Learning with TensorFlow version
10, Manning Publications Co. page 134

[4] Nushant, Shikla (2017). MEAP Edition Machine Learning with TensorFlow version
10, Manning Publications Co. page 182-185

[5] Nushant, Shikla (2017). MEAP Edition Machine Learning with TensorFlow version
10, Manning Publications Co. page 194-197

[6] colorama. [Internet]. [Cited 24th of May 2018], Available from
https://pypi.org/project/colorama/

[7] Kukieła, D. (2018a). nmt-chatbot: NMT Chatbot. Python. [Internet]. [Cited 1st of
June 2018], Available from https://github.com/daniel-kukiela/nmt-chatbot
(Original work published 2017)

[8] Python (programming language). In Wikipedia. Cited 27th May 2018 from:
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&old
id=843140763

[9] («PyCharm», 2018) [Internet]. [Cited on 30th of November 2018]. Available from:
https://en.wikipedia.org/wiki/PyCharm

[10] “TensorFlow”, 2018 [Internet]. [Cited on 1st of June 2018]. Available from:
https://www.tensorflow.org/

[11] (Kukieła, 2017/2018a) [Internet] [Cited on 30th of November 2018]. Available
from: https://github.com/daniel-kukiela/nmt-chatbot/blob/master/README.md

[12] Python Programming Tutorials. [Internet]. [Ctited on 29th of November 2018].
Available from: https://pythonprogramming.net/introduction-to-python-
programming/

[13] Using the Requests Library in Python. [Internet] [Cited 1st of June 2018].
Available from http://www.pythonforbeginners.com/requests/using-requests-in-
python

[14] What is a Regex (Regular Expression)? [Internet]. [Cited 1st of June 2018].
Available from https://www.computerhope.com/jargon/r/regex.htm

[15] Godara, A. (2016, november 28). A brief history of bots. Cited 1. juni 2018, from
https://chatbotsmagazine.com/a-brief-history-of-bots-9c45fc9b8901

NTNU IN ÅLESUND PAGE 48
BACHELOR THESIS

ATTACHMENTS
Attachment 1 https://github.com/daniel-kukiela/nmt-chatbot (Kukieła,

2017/2018b)

