
Sindre F ossen
Visualization of Ships in a M

ixed-R
eality Environm

ent and A
utom

ated Situational A
w

areness using Live A
IS D

ata

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

C
T

an
d

N
at

ur
al

 S
ci

en
ce

s

M
as

t e
r’

s
th

es
is

Sindre Fossen

Visualization of Ships in a Mixed-
Reality Environment and Automated
Situational Awareness using
Live AIS Data

Master’s thesis in Simulation and Visualization

Supervisor: Robin T. Bye and Ottar L. Osen
December 2018

Visualization of Ships in a Mixed-Reality
Environment and Automated Situational
Awareness using Live AIS Data

Sindre Fossen

Master of Science in Simulation and Visualization

12 December 2018

Supervisor: Associate Professor Robin T. Bye
Co-supervisor: Associate Professor Ottar Osen
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Summary
The aimof this graduation thesis entitled “Visualizationof Ships in aMixed-Reality
Environment and Automated Situational Awareness using Live AIS Data” is to
develop a framework for an automated situational awareness system for human
operators using live AIS measurements. In this context, situational awareness
means having an accurate understanding of what is happening around you and
what is likely to happen. Themain tool for this is 3-D visualization of AIS detected
ships and a remotely operated unmanned surface vehicle (USV) in a mixed-reality
environment. The chosen environment is the fjord outside the city of Trondheim
in Norway, which is implemented in Unity as a virtual world. The 3-D model is
based on geographical information system (GIS) data and the AIS detected ships
are overlaid the virtual world using their real geographical positions, which are
live decoded AIS messages.

The main result of the thesis is an automated situational awareness system,
which consists of subsystems for decoding of the AIS messages, state estimation
and motion prediction, risk assessment, 3-D visualization and a graphical user
interface (GUI).

Several case studies for motion prediction and computation of online risk col-
lision risk indexes are presented to demonstrate the concept of automated situa-
tional awareness. The results have been published in two conference papers and
one journal paper.

Finally, the author recommends that an automated situational awareness sys-
tem onboard a commercial ship or an USV combines navigation and sensory data
from other sources than AIS. Redundancy is important from a safety point of
view. AIS is not considered to be a reliable system due to loss of signals, lim-
ited range, slow update rates and the problem that the system can be turned off
during operation. Consequently, an industrial system for automated situational
awareness should be based on sensor fusion where information from radars, li-
dars, infrared thermal cameras, optical cameras, satellites etc. are combined in an
optimal manner.

In addition to this, it is recommended to develop a 3-D visualization system,
which makes it possible for a human operator to analyze a large amount of data
in real time without saturating the human cognitive system.

i

Sammendrag
(Norwegian translation of the summary)

Målet med masteroppgaven som har tittel “Visualization of Ships in a
Mixed-Reality Environment and Automated Situational Awareness using
Live AIS Data” er å utvikle et rammeverk og et system for automatisk
situasjonsforståelse for menneskelige operatører basert på AIS-målinger. I
denne sammenhengen betyr automatisk situasjonsforståelse å forstå hva
som skjer rundt deg og hva som kommer til å skje. Hovedverktøyet er 3-D
visualisering av AIS-detekterte skip og et fjernstyrt ubemannet overflate-
fartøy (USV) i et miljø basert på blandet virkelighet. Det valgtemiljøet er en
fjord utenfor Trondheim som er implementert i Unity som en virtuell ver-
den. 3-D modellen er basert på data fra geografiske informasjonssystemer
(GIS) ogAIS-detekterte skip er lagt oppåden virtuelle verdenen ved å bruke
deres virkelige geografiske posisjoner som dekodes fra AIS-meldingene i
sann tid.

Hovedresultatet i masteroppgaven er et system for automatisk situ-
asjonsforståelse som består av delsystemer for dekoding av AIS-meldinger,
tilstandsestimering, prediksjon av fartøybevegelse, risikovurdering, 3-D vi-
sualisering samt grafisk brukergrensesnitt (GUI).

Flere eksempelstudier for prediksjon av fartøybevegelse og beregning
av kollisjonsindekser i sann tid er inkludert for å demonstrere konseptet
for automatisk situasjonsforståelse. Disse resultatene er også publisert
internasjonalt som to konferanseartikler og en tidsskriftartikkel.

Til slutt anbefaler forfatteren at et system for automatisk situasjons-
forståelse ombord i et kommersielt skip eller enUSVkombinerernavigasjon-
og sensordata fra andre kilder enn AIS. Redundans er viktig fra et sikker-
hetsperspektiv. AIS blir ikke sett på som et pålitelig system pga. signaltap,
begrenset rekkevidde, liten oppdateringsrate ogproblemetmedat systemet
kan slåes av under en operasjon. På grunn av dette bør et industrielt sys-
tem for automatisk situasjonsforståelse baseres på sensorfusjon hvor man
kombinerer informasjon fra radar, lidar, infrarøde termiske kamera, optiske
kamera, satellitter m.m. på en optimal måte.

I tillegg til dette anbefales det å utvikle et 3-D visualiseringssystem som
gjør detmulige for denmenneskelige operatøren å analysere storemengder
med data i sann tid uten å mette det menneskelige kognitive systemet.

iii

Preface
This monograph is submitted in partial fulfillment of the requirements
for the degree of Master of Science in Simulation and Visualization at the
Norwegian University of Science and Technology (NTNU).

Thework presented herein has been completed at theDepartment of ICT
and Natural Sciences, NTNU, in close cooperation with Maritime Robotics
AS.My supervisor has beenAssociate Professor Robin T. Bye andAssociate
Professor Ottar L. Osen has been co-supervising the project.

Acknowledgments

The completion of this thesis and the work it represents have been one of
the most challenging things I have ever done. Yet, it has been an incredible
rewarding journey. I have had the fortunate opportunity to work with the
engineers in Maritime Robotics AS. They have all been a great inspiration
and invaluable when discussing visualization, situational awareness and
operation of autonomous vehicles in general. I am particular grateful to
Vegard Evjen Hovstein, Arild Hepsø and Kenan Trnka who believed in
me and gave me the opportunity to work as summer intern in the period
June to August 2018. Working in a company like Maritime Robotics AS is a
dream for all engineering students who have studied cybernetics, robotics
and computer science. I am also grateful to Rambøll AS and Trondheim
municipality for permission to use their 3-D models.

To my supervisors, Associate Professors Robin T. Bye and Ottar L. Osen,
thanks for all the discussions, ideas and late night email responses. You
have been a great motivators and invaluable as co-authors on one of my
papers.

I am grateful to my family; my parents Heidi and Thor Inge, and my
sister Lone Moa, who always have supported me during my studies. I
am particular grateful to my father, Thor Inge, who besides co-authoring
two of my papers has been invaluable when discussing feedback control,
programming, situational awareness and cybernetics in general.

Sindre Fossen
12 December 2018

v

Contents
Summary i

Preface v

Contents vii

List of Figures x

List of Tables xiv

Acronyms xv

1 Introduction 1
1.1 Background . 1

1.1.1 Virtual reality, augmented reality and mixed reality . . 2
1.1.2 Automated situational awareness 4

1.2 System Overview . 5
1.3 Objectives . 7
1.4 Main Contributions and Publications 8
1.5 Organization of the Thesis . 9

2 Software Description 11
2.1 Code Structure, Requirement Specifications and Design . . . 11

2.1.1 Software requirement specifications 11
2.1.2 Software development model 13
2.1.3 Visualization of the agile model by UML 14

2.2 Agile Phases . 18
2.2.1 Phase 1: Interfacing and parsing of AIS messages . . . 18
2.2.2 Phase 2: Mixed-reality visualization of ships 22
2.2.3 Phase 3: Algorithms for automated situational awareness 24
2.2.4 Phase 4: GUI and visualization of data 25

2.3 3-D Modeling . 28
2.3.1 Terrain and environmental modeling 28
2.3.2 Ship and USV modeling 31

2.4 Concluding Remarks . 33

vii

viii CONTENTS

3 Ship Motion Estimation using Live Automatic Identification
System Data 35
3.1 Ship Dynamics and Measurements 36

3.1.1 Ship model . 36
3.1.2 AIS measurements . 37
3.1.3 North-East positions from longitude and latitude . . . 37
3.1.4 Course angle from North-East positions 37

3.2 Extended Kalman filter for AIS Data 38
3.2.1 Extended Kalman filter 38
3.2.2 Ship motion predictor 39
3.2.3 Experimental validation 40

3.3 eXogenous Kalman filter for AIS Data 43
3.3.1 Stage 1: Kinematic observer 44
3.3.2 Stage 2: Linearized Kalman filter 44
3.3.3 Ship motion predictor 45
3.3.4 Implementation aspects for asynchronous AIS data . . 46
3.3.5 Experimental validation 47

3.4 Concluding Remarks . 51

4 Automated Situational Awareness 53
4.1 International Regulations for Preventing Collisions at Sea . . 53

4.1.1 COLREGS . 54
4.2 Minimum Separation Algorithm 54

4.2.1 Time to closest point of approach (TCPA) 56
4.2.2 Distance at closest point of approach (DCPA) 56

4.3 Ship Collision Risk Index . 56
4.4 Experimental Validation . 58

4.4.1 Case 1: EKF motion data for visualization of AIS ships 58
4.4.2 Case 2: Online risk assessment and visualization . . . 59
4.4.3 Case 3: Collision detection by motion prediction for

varying evasive maneuvers 59
4.5 Concluding Remarks . 62

5 Conclusions and Challenges for Future Research 63
5.1 Conclusions . 63

5.1.1 Automated situational awareness systems 63
5.1.2 Main contributions . 63

5.2 Future Work . 64

CONTENTS ix

A Algorithms 65
A.1 Backward Difference Approximation of the First Derivative . 65

A.1.1 Asynchronous Data . 65
A.1.2 Synchronous Data . 65

B Matlab Scripts 67
B.1 Extended Kalman Filter for AIS Data 67
B.2 eXogenous Kalman Filter for AIS Data 71
B.3 USV Simulator . 76
B.4 Visualization of Wave-Induced Ship Motions 78

C Software Versions 81

D Video Links 83

References 85

List of Figures
1.1 The Maritime Robotics MARINER USV operating in the Trond-

heim fjord (https://maritimerobotics.com). Reproduced with
kind permission of Maritime Robotics AS. 1

1.2 The Yara Birkeland, length 79.5 m, width 14.8 m and draught
6 m (https://www.km.kongsberg.com). Reproduced with kind
permission of Kongsberg. 2

1.3 The Maritime Robotics AS vehicle control station (VCS) for 3-D
visualization of ships in a mixed-reality environment. 3

1.4 System block diagram showing decoding of AIS messages and
visualization of the USV and AIS ships using the Unity Game
Engine. The XKF interpolates the asynchronous AIS data for
smooth visualization at 30-60 FPS. Future motions (T seconds)
including evasive maneuvers are computed using a motion pre-
diction algorithm to enhance automated situational awareness.
This is further improved by adding algorithms for detection of
ship collisions and risk assessment. 6

2.1 Agilemodel showing the four phases in the project. The software
is delivered in increments and requirements can be updated at
each step. 12

2.2 UML diagram showing the software system. The color codes
corresponds to the four phases in the agile model (see Fig. 2.1). . 17

2.3 AIS receiver and software components for motion prediction. . . 18
2.4 AisShip class life cycle. The function Start is a constructor for

object initialization, Update runs as fast as possible, FixedUpdate
updates at each time sample, while OnGUI runs every frame. . . 25

2.5 3-D visualization of AIS ships and their respective risk collision
indexes (colored circles). 26

2.6 3-D visualization of an AIS ships and a straight line indicating
the predicted motion of the ship. The color represent the risk
collision index in which green means no risk for collision. . . . 27

2.7 3-D visualization of an AIS ship inscribed a rectangular prism.
The color represent the risk collision index. 27

2.8 Oceanwaves generated using theHydroformOcean System plugin
from the Unity Asset Store. 29

x

List of Figures xi

2.10 The Trondheim 3-D city model. Reproduced with kind permis-
sion of Rambøll AS and the Trondheim municipality. 29

2.9 A region of the Trondheim fjord generated using the TerraLand
plugin from the Terraunity. 30

2.11 The flat ocean is removed from the GIS model by using theMesh
Cutter plugin from the Unity Asset Store. The polygons in red
represent the deleted mesh. 31

2.12 Unity Asset Store ship models. 32
2.13 The blender model to the left is developed by using the USV

picture shown to the right. Reproduced with kind permission of
Maritime Robotics AS. 32

2.14 The Maritime Robotics OTTER USV. Reproduced with kind per-
mission of Maritime Robotics AS. 33

3.1 The green arrow shows the predicted path of a catamaran pas-
senger boat operating in the Trondheim fjord using the Unity
game engine (Unity, 2018), and the Hydroform Ocean System
and Terraland plugins from the Unity Asset Store. 35

3.2 TheMSTrondheimsjord II is high-speed catamaran forpassenger
transport. Length 24.5 m, beam 8.0 m and maximum speed 16.5
m/s (32 knots). Reproduced with kind permission of Fosen
Namsos Sjø (http://www.fosennamsos.no). 40

3.3 The upper plot shows the path of MS Trondheimfjord II when
crossing the fjord. The lower zoomed plot shows the predicted
ship motions at two different locations (black ships) for a future
horizon of 30 seconds (green arrows). 41

3.4 Estimated states (red) and AIS measurements (blue circles) as a
function of time when crossing the fjord back and forth. 42

3.5 3D-Visualization of a catamaran passenger boat in the Trond-
heim fjord using the Unity game engine Unity (2018), and the
HydroformOcean System and Terraland plugins from the Unity
Asset Store. The green arrow shows the predicted path of the
vessel. 43

3.6 The eXogenous Kalman filter as a two-stage estimator. The kine-
matic observer produces an estimate x̄ used in a linearized KF,
which returns the improved estimate x̂. 43

3.7 Signal flow of the eXogenous Kalman filter. 45

xii List of Figures

3.8 3-D visualization of two AIS detected ships moving down the
Nidelven river in Trondheim using Unity (2018). 47

3.9 MS LADEJARL - Passenger ship (gross tonnage 490 t, length
overall 38 m and breadth 10 m). Reproduced with kind permis-
sion of Fosen Namsos Sjø (http://www.fosennamsos.no). 48

3.10 North-East positions of MS LADEJARL in km when moving
from Trondheim to Lensvik on its way out of the fjord. The
return bypasses Lensvik harbor. The red arrows indicate the
chosen locations for motion prediction. 49

3.11 The 30 seconds predicted motion of MS LADEJARL just before
the ship arrives Lensvik harbor. The red and cyan lines are the
kinematic observer and XKF, respectively 50

3.12 The 60 seconds predicted motion of MS LADEJARL when on
route to Trondheim harbor. The red and cyan lines are the kine-
matic observer and XKF, respectively 50

3.13 3-D visualization of a catamaran passenger boat in the Trond-
heim fjord usingUnity (2018), and theHydroformOcean System
and Terraland plugins from the Unity Asset Store. The green ar-
row shows the predicted path of the vessel. 51

3.14 Course angle χ [deg], speedU [m/s], x-position [km], y-position
[km], acceleration a [m/s2] and yaw rate r [deg/s] versus time
s. The circle denotes the live AIS measurements, while the red
and cyan lines are the kinematic observer and XKF estimates,
respectively. The period of inactivity corresponds to the stop in
Lensvik harbor. 52

4.1 Distance and safety distance (red circle) between USV and AIS
ships. 55

4.2 Thevehicle control station for operationof apilot-controlledUSV
in a mixed-reality environment. Unity is used to visualize the
Trondheim fjord. The grey circle represents the safety region of
the USV, while AIS detected ships are plotted with green, yellow
or red circles to indicate if the they present a collision risk or
not for the USV. Reproduced with kind permission of Maritime
Robotics AS. 57

List of Figures xiii

4.3 3-D visualization of a pilot-controlled USV, which is moving up
the Nidelven river in Trondheim. One live AIS ship is detected
on the other side of the bridge. 57

4.4 3-D visualization of the pilot-controlledUSV,which is approach-
ing several live AIS ships outside the Trondheim harbor. The
colored lines show the EKF predicted path of the approaching
ships using AIS data. The collision risk index is computed on-
line and a green line indicates small risk for collision, yellow is
moderate risk, while a red line indicates high risk for collision. . 58

4.5 The “green-yellow-red” color map (4.19) for visualization of col-
lision risk. 59

4.6 An USV approaches MS Trondheimsfjord II from the East. The
ship and USV motions are predicted in 60 s to show the effect of
an evasive maneuver. 60

4.7 Minimum separation between an USV approaching MS Trond-
heimfjord II from theEast (blue) andwhenperforminganevasive
maneuver (red). The minimum distance increases from 126.6 m
to 201.0 m. 61

List of Tables
2.1 Pros and Cons of different SDLC methods (Balaji and Muru-

gaiyan, 2012). 13
2.2 Description of C# classes. 16
2.3 Decoded AIS message. 19
2.4 AIS position reports. 19
2.5 Description of Google Protocol Buffer messages. 21

3.1 Four-states extended Kalman filter for AIS data. 39
3.2 Four-states eXogenous Kalman filter for AIS data. 46

C.1 Software versions and description. 81

xiv

Acronyms
2-D 2-dimensional

3-D 3-dimensional

AIS Automatic identification system

API Application programming interface

AR Augmented reality

ARPA Automatic radar plotting aid

ASCII American standard code for information interchange

ASV Autonomous surface vehicle

COG Course over ground

COLREGS International regulations for preventing collisions at sea

DCPA Distance to closest point of approach

EKF Extended Kalman filter

FPS Frames per second

GES Global exponential stability

GIS Geographic information system

GNSS Global navigation satellite systems

GUI Graphical user interface

IDL Interface description language

IMO International maritime organization

KF Kalman filter

LTV Linear time-varying model

NMEA National marine electronics association

SAR Search and rescue

xv

xvi ACRONYMS

SDLC Software development life cycle

SOG Speed over ground

TCP Internet transmission control protocol

TCPA Time to closest point of approach

UDP Internet user datagram protocol

UML Unified modeling language

USV Unmanned surface vehicle

VHF Very-high frequency

VR Virtual reality

WGS World geodetic system

XKF eXogenous Kalman filter

1Introduction
This chapter describes the background, systemoverviewand researchques-
tions of the thesis. The objectives and main contributions are stated at the
end of the chapter.

1.1 Background

Unmanned surface vehicles (USV) and autonomous surface vehicles (ASV)
are vehicles that operate on the surface of the water (watercraft) without
a crew, see Fig. 1.1. Such vehicles are useful for mapping and monitoring,
oceanography, survey, search and rescue (SAR) operations tomention some.

An USV can be remotely piloted as opposed to an ASV, which is au-
tonomous. In order to operate an USV remotely, the pilot must be highly
skilled and have good situational awareness.

Autonomous ships will also enter the market in a couple of years. Full
autonomy is the “holy grail” in shipping since it can reduce costs and
eliminate maritime accidents, which mainly are caused by human errors.
The vessel “MS YARA Birkeland” (see Fig. 1.2) will be the world’s first fully
electric and autonomous container ship (Kongsberg, 2018). It is developed
by Kongsberg and in 2020 the ship will sail within 12 nautical miles from
the coast, between 3 ports in southern Norway.

Figure 1.1: The Maritime Robotics MARINER USV operating in the Trondheim fjord
(https://maritimerobotics.com). Reproduced with kind permission of Maritime Robotics
AS.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.2: The Yara Birkeland, length 79.5 m, width 14.8 m and draught 6 m
(https://www.km.kongsberg.com). Reproduced with kind permission of Kongsberg.

1.1.1 Virtual reality, augmented reality and mixed reality

The difference between virtual reality (VR), augmented reality (AR) and
mixed reality is often unclear. According to Quora (2018), VR, AR and
mixed reality can be classified as:

Virtual Reality immerses users in a fully artificial digital environment.
Everything you see is artificial. Hence, the user experience takes place
within a simulated environment.

Augmented Reality overlaysdigital information (objects) on the real-world
environment. Moreover, objects that reside in the real-world are “aug-
mented” by computer-generated information.

Mixed Reality not just overlays but anchors virtual objects to the real
world. This can be done in two ways:

i) Mixed reality that starts with the real world. Virtual objects are not
just overlaid on the real world but they can interact with it. In
this case, a user remains in the real-world environment, while
digital content is added to it. This form of mixed reality can be
considered as an advanced form of AR.

ii) Mixed reality that starts with the virtual world. The digital envi-
ronment is anchored to and replaces the real world. The digital
objects overlap the real ones whereas in conventional VR the vir-
tual environment is not connected to the real world around a
user.

1.1. BACKGROUND 3

Figure 1.3: The Maritime Robotics AS vehicle control station (VCS) for 3-D visualization of
ships in a mixed-reality environment.

Mixed reality is therefore a blending of the physical world with the
digital world. The term first appeared in Milgram and Kishino (1994)
where it was stated: “The conventionally held view of a VR environment is one
in which the participant-observer is totally immersed in, and able to interact with,
a completely synthetic world. Such a world may mimic the properties of some
real-world environments, either existing or fictional; however, it can also exceed the
bounds of physical reality by creating a world in which the physical laws ordinarily
governing space, time, mechanics, material properties, etc. no longer hold”.

Mixed reality is defined in Wikipedia as:

Definition 1.1 (Mixed Reality). Mixed reality, sometimes referred to as hybrid
reality, is the merging of real and virtual worlds to produce new environments and
visualizations where physical and digital objects co-exist and interact in real time.
Mixed reality takes place not only in the physical world or the virtual world, but
is a mix of reality and VR, encompassing both AR and augmented virtuality via
immersive technology.

Visualization of ships in a mixed-reality environment

The thesis addresses the problem of visualization of real ships using sen-
sory information by augmenting the ships to a simulated world, which is
generated using GIS data. More specific, real ships detected by AIS are

4 CHAPTER 1. INTRODUCTION

overlaid a simulated environment of the Trondheim fjord and visualized in
real time.

In addition to the real ships, a remotely-piloted USV is visualized while
operating close to the ships. The USV can be real (using GNSS position
measurements) or the position, speed and course can be simulated using
a mathematical model. In both cases, the operator can steer the USV by
using a joystick or a keyboard, see Fig. 1.3.

1.1.2 Automated situational awareness

By visualizing real ships in a mixed-reality environment human operators
can perform more complex operations. Situational awareness means hav-
ing an accurate understanding of what is happening around you and what
is likely to happen. 3-D visualization of ship operations in real time will
improve situational awareness and help the human operator to do the right
decisions.

Definition1.2 (SituationalAwareness). According toMSQ(2018), situational
awareness can be defined as:

i) Having a good perception of your surroundings at all times.

ii) Comprehending what’s happening around you.

iii) Predicting how this will affect your ship.

For good situational awareness, it is necessary to be aware of your environ-
ment, including:

• Other ships in the area.

• Communications between vessel traffic services and other ships.

• Weather, sea state and depth of water.

• Tide and current.

In addition to this, good situational awareness means:

Havingmodeawareness—knowyour ship’s configuration, equipment and
systems. These systems include autopilot, radar, GNSS, AIS, compass,
propulsion and their engaged modes.

1.2. SYSTEM OVERVIEW 5

Keep spatial orientation—know the geographical position of the ship
within the operational location.

Keep a time horizon—manage time for things such as fuel status and
always allow time for unplanned events or emergencies.

Definition 1.3 (Automated Situational Awareness). The human cognitive
process of situation awareness is limited to the amount of data and the level of
complexity between the data elements (Holsopple et al., 2010). Situation assess-
ment, encompassing automated threat and impact assessment, should assist human
analysts by estimating the motion of ships when operating unmanned vehicles in
restricted waters such as a fjord.

The following definition is used for an “AIS ship" in the remaining of
the thesis.

Definition 1.4 (AIS ship). An AIS ship is a full-scale ship, which is visualized
in a virtual world using live AIS data.

Research questions

From Definition 1.3, the following research questions have been proposed:

Q1 How can a human operator be assisted by estimating and predicting
future ship positions?

Q2 How can the human operator’s cognitive process of situational aware-
ness be improved by 3-D visualization and simulation of shipmotions
in a mixed-reality environment?

Q3 Is it possible to compute an online index for ship collision using esti-
mated data to encompass automated threat and impact assessments?

1.2 System Overview

The topic of the thesis is “visualization of ships in a mixed-reality environ-
ment and automated situational awareness using live AIS data”. Motivated
by the technology changes in maritime transport and the increased use of
autonomy and unmanned vehicles in advancedmarine operations, the the-
sis focuses on visualization and automated situational awareness to assist
the human operator.

6 CHAPTER 1. INTRODUCTION

Figure 1.4: System block diagram showing decoding of AIS messages and visualization
of the USV and AIS ships using the Unity Game Engine. The XKF interpolates the asyn-
chronous AIS data for smooth visualization at 30-60 FPS. Future motions (T seconds)
including evasive maneuvers are computed using a motion prediction algorithm to en-
hance automated situational awareness. This is further improved by adding algorithms for
detection of ship collisions and risk assessment.

The automated situational awareness system in the thesis includes the
following features (see Fig. 1.4):

AIS decoder: Parser for decoding of live AIS messages as specified by the
National Marine Electronics Association (NMEA, 2018).

State estimator: Two nonlinear Kalman filter algorithms (EKF and XKF)
are designed for interpolation of asynchronous AIS measurements at
30-60 Hz. This makes smooth visualization possible. The Kalman
filter algorithms also handle TCP and UDP packet losses.

Motion prediction: Prediction of ships and USV motions for a user speci-
fied future horizon. USV evasive maneuvers are also included in the
motion predictor by using feedback control theory.

Risk assessment by minimum separation between ships: Computationof
online minimum separation parametrized in terms of time and dis-

1.3. OBJECTIVES 7

tance to the closest point of approach (TCPA and DCPA). These are
the main metrics for computation of the risk index.

Unity Game Engine: Unity is used for 3-D visualization of full-scale ships
moving in the Trondheim fjord, Norway. This includes realistic waves
and their effect on the ship motions as well as buildings in the Trond-
heim harbor and the surroundings.

3-D Visualization: Automated situational awareness is visualizedby show-
ing the USV and AIS ships in real time using a mixed-reality environ-
ment when operating in the Trondheim fjord and harbor. Predicted
USV and ship motions, evasive maneuvers and risk index (shown as
a predicted colored path) are used to assist the human operator.

1.3 Objectives

The objectives of the work are summarized below:

• 3-D visualization of the Trondheim fjord showing live ship and boat
motions using Unity (2018). Wave-induced ship motions should be
generated using physical models.

• A remotely-piloted USV should be visualized in real time using a full-
scale USV or simulated while operating in the Trondheim fjord. The
simulator should use operator inputs and simulate the motions of the
USV using a realistic model. This includes interfacing of a joy-stick to
the simulator such that the operator can steer the USV manually.

• Live AIS data should be decoded using a parser in C#, which must
be interfaced to the Unity. The TCP, alternatively UDP, data stream
should be buffered and time stamped such that it presents current
positions and speeds of all ships in the vicinity of the USV in real
time.

• Future motions of the “AIS ships" should be predicted and visualized
using a state estimator. In addition, asynchronous AIS data should be
interpolated at 30-60 FPS for smooth visualization results.

• Automated situational awareness and simple concepts for collision de-
tection/warning should be demonstrated using themotion prediction
algorithms in a simulated environment.

8 CHAPTER 1. INTRODUCTION

1.4 Main Contributions and Publications

The following constitutes the main contributions of the thesis:

• A novel automated situational awareness systems for a pilot-operated
USV in a mixed-reality environment with live visualization of AIS
detected ships to improve the human operators cognitive processes.

• Decoding of live AIS data from a VHF antenna using a parser, which
is scripted in C# and implemented in Unity.

• An extended Kalman filter and a globally exponentially stable non-
linear observer (eXogenous Kalman filter) for ship tracking, motion
prediction and 3-D visualization at 30-60 FPS. Both state estimators
handle asynchronous data and TCP/UDP packet losses.

• On-line ship collision risk assessment and visualization of risk for
enhanced automated situational awareness using Kalman filters for
motion prediction.

The thesis work has resulted in three international publications:

Journal paper

S. Fossen and T. I. Fossen (2018a). eXogenous Kalman Filter (XKF) for
Visualization and Motion Prediction of Ships using Live Automatic
Identification System (AIS) Data. Modeling, Identification and Control,
MIC-39(4):233–244, October 2018.

“The first author has written the paper, contributed with the implementation
and testing of the XKF in Matlab and developed a parser in C# for live
processing of AIS data. The second author has contributed with valuable
discussions, proofreading, stability analysis and the XKF algorithm.”

Conference papers

S. Fossen, R. T. Bye and O. Osen (2018). Visualization and Collision Risk
Assessment of Real Ships in a Mixed Reality Environment using Live
Automatic Identification System (AIS) Data. Proc. of the 2nd European
Conference on Electrical Engineering and Computer Science (EECS’18),
Bern, 20–22 December 2018.

1.5. ORGANIZATION OF THE THESIS 9

“The first author has written the paper, contributed with the algorithms
for risk assessment as well as developed the 3-D visualization software and
algorithms. The second and third authors have contributed with valuable
discussions, proofreading and discussion regarding the case studies”

S. Fossen and T. I Fossen (2018b). Extended Kalman Filter Design and
MotionPredictionof ShipsusingLiveAutomatic Identification System
(AIS) Data. Proc. of the 2nd European Conference on Electrical Engineering
and Computer Science (EECS’18), Bern, 20–22 December 2018.

“The first author has written the paper, contributed with the implementation
and testing of the EKF in Matlab and developed a parser in C# for live
processing of AIS data. The second author has contributed with valuable
discussions, proofreading and algorithms for effective implementation of the
EKF in order to handle asynchronous AIS data.”

1.5 Organization of the Thesis

The thesis is organized as follows:

Chapter 1 Introduction including systemoverview, research questions, ob-
jectives, main contributions and publications.

Chapter 2 The chapter describes the software requirement specifications,
the agile development model and implementation aspects. This in-
cludes the Unity game engine, interfacing and parsing of AIS data,
GUI, the object manager and 3-D models used for visualization.

Chapter 3 The chapter describes how the future position and course of a
ship can be estimated in real time fromAIS data using state estimators.
The algorithms are experimentally validated by using AIS data from
the Trondheim harbor in Norway.

Chapter 4 The chapter demonstrates howautomated situational awareness
canbevisualized. This includesmotionprediction, collisiondetection,
evasive maneuvers and online risk assessment.

Chapter 5 concludes the thesis and adds some final remarks on future
work.

2Software Description
This chapter describes the software used for simulation and 3-D visual-
ization of live ships in a mixed-reality environment using the Unity Game
Engine (Unity, 2018). This includes:

• Structure of the code, specifications and design

• Agile phases for software development

• Interfacing and parsing of AIS data

• 3-D modeling

• Graphical user interface

An overview of the software used in this project is found in Appendix C.

2.1 Code Structure, Requirement Specifications and Design

In this section, the software requirements and development model are
presented together with a Unified Modeling Language (UML) diagram for
visualization and documentation of the software system.

2.1.1 Software requirement specifications

The software requirement specifications describe how the software sys-
tem must be developed to comply with the objectives of the project (see
Section 1.3):

R1 It must be possible to visualize 100 “AIS ships” (see Definition 1.4)
simultaneously in real time using the Unity Game Engine.

R2 It must be possible to compute the position, velocity and course angle
by running a Kalman filter for each ship in real time using live AIS
data. Future motions of the “AIS ships” should also be predicted by
the Kalman filter algorithm.

R3 The AIS ships should be visualized in a mixed-reality environment (see
Definition 1.1) using 3-D models of the Trondheim fjord, ships and
buildings onshore.

11

12 CHAPTER 2. SOFTWARE DESCRIPTION

R4 A remotely-piloted USV must be visualized and simulated in real time
while operating in the Trondheim fjord. The USV simulator must
accept operator inputs such that it can be steered manually and its
motion must be computed by using physical models.

R5 Live AIS data must be decoded using a parser and interfaced to the
Unity Game Engine by standard Internet protocols.

R6 Asynchronous AIS data must be interpolated up to 60 FPS for satisfac-
tory visualization results.

R7 It must be possible to perform online risk assessment by using motion
prediction algorithms.

R8 Automated situational awareness capabilities (see Definitions 1.2 and
1.3) for collision detection/warning must be implemented using mo-
tion prediction algorithms in a simulated environment.

Figure 2.1: Agile model showing the four phases in the project. The software is delivered
in increments and requirements can be updated at each step.

2.1. CODE STRUCTURE, REQUIREMENT SPECIFICATIONS AND DESIGN 13

Table 2.1: Pros and Cons of different SDLC methods (Balaji and Murugaiyan, 2012).
.

Method Pros Cons
Waterfall • Requirement is clear before

development starts
• Each phase is completed in a

specified period of time after
that itmoves to the next phase

• Easy to implement
• For each phase proper docu-

mentation is developed to en-
sure the quality of the SDLC

• The problems are never
solved completely in each
phase and in fact many prob-
lems arise after the phase is
finished. This can result in a
badly structured system

• If the user wants the require-
ment to be changed, it cannot
be changed at each stage

V-model • Same as waterfall model
• A new advantage is that the

Tester role will be a part of
the requirement phase

• Requirement changes are
possible in any phase

• Very rigid and little flexible
• If changes happen midway,

not only the requirement doc-
uments but also the test doc-
umentation must be updated

• It is not suited for short time
projects since reviews are re-
quired at each stage

Agile • An agile model responds to
changing requirements of the
project

• Tailor-made for small projects
(adaptive)

• There is no guesswork be-
tween the developer and the
enduser since there is face-to-
face communication and con-
tinuous inputs from the en-
duser

• For large project it is difficult
to judge the efforts and the
time required for the project
in the SDLC

• Require senior developers to
take the decisions necessary
for agile type of develop-
ments. This limits theuse and
integration of newbie pro-
grammers in the project.

2.1.2 Software development model

When developing the software, a method for planning, analysis, design,
and implementation must be chosen. There exists a large number of soft-
ware development life cycle (SDLC) models such as waterfall, spiral, V-
model, rapid prototyping and incremental (Sommerville, 2016). The soft-
ware project in the thesis is based on the Unity Game Engine and own
developed code. The time for development of the code was quite limited.

14 CHAPTER 2. SOFTWARE DESCRIPTION

Commonly used SDLC methods are (Balaji and Murugaiyan, 2012):

Waterfall model Sequential development model where the requirements
must be clear before going to the next phase. Testing and documenta-
tion are carried out once the code has been fully developed.

V-model The validation and verification model is a modified version of
the waterfall model. As opposed to the waterfall model, this model is
not sequential. Instead the stages turn back upwards after the coding
phase is done. The developmental process relies on the verification
from the previous steps before proceeding forward to the next step.

Agile model Agile methods are incremental and they move quickly. An
agile method is able to respond to changing requirements (adaptive)
even late in the development. Hence, working software is delivered
in increments, often in weeks instead of months. The most impor-
tant feature is customer satisfaction by giving rapid and continuous
delivery of useful code.

The Pros and Cons for these methods are summarized in Table 2.1.
Since the software project had to be finished in a few months, extensive

models such as the waterfall model and the V-model were less suited.
The agile model, however, was optimal since it allowed for iterations and
incremental updates of the software. Hence, the agile method was chosen
for the development of the software and it was decided to use four phases
as shown in Fig. 2.1.

2.1.3 Visualization of the agile model by UML

UML is unified modeling language diagram for visualization and doc-
umentation of software systems. As discussed in Section 2.1.2 an agile
model was chosen for development of the project. A list of the different
classes and there functionality is found in Table 2.2. The color codes for the
agile phases in Fig. 2.1 are also used in the UML diagram (see Fig. 2.2). The
different phases are chosen as:

2.1. CODE STRUCTURE, REQUIREMENT SPECIFICATIONS AND DESIGN 15

Phase 1: The TCP communication protocol was implemented to read the
AIS packages from the Norwegian Costal Administration. Subse-
quently, a parser was implemented to decode the ASCII messages. A
UDP communication protocolwas also implemented to readmessages
from the Maritime Robotics AS proprietary Protocol Buffer, witch is
used to communicate with the USV at a 6 Hz data rate. The messages
contain live AIS data from local ships as well as the USV position,
speed and course. The Communication class initializes the transmis-
sion protocols and forwards the data to the ObjectManager class as
shown in Fig. 2.2.

Phase 2: The classesAISVessels,RemotelyPilotedUsv andSimulatedVesselwere
created to visualize the AIS ships, USV and a simulated USV. The sim-
ulated vehicle is based on a physical model (see Appendix B.3) and
wave-induced heave-roll-pitch responses (see Appendix B.4). The
above mentioned classes can access methods in the classes RollPitch,
VesselsStaticFucntions and CammraController. The latter classes have
methods for latitude and longitude conversion to Cartesian coordi-
nates x and y, heave-roll-pitch wave responses as well as setting the
camera to track a manually-controlled USV.

Phase 3: The classes ShipModels, MotionPrediction and ShipRiskIndex are
used by the class AISVessels for visualization of the AIS ships, motion
prediction based on the EKF algorithm (see Appendix B.1) and online
computation and visualization of the collision risk index algorithm
(see Section 4.3).

Phase 4: Finally, tools for automated situational awarenesswere developed
by using graphical overlay such as plotting the predicted path of the
ships and USV as 2-D colored lines. In addition, optionally circles
and boxes around the AIS ships were used to increase visibility, while
colors (green-yellow-green) were used to warn for collision using a
collision risk index formulae to compute the color scheme.

16 CHAPTER 2. SOFTWARE DESCRIPTION

Table 2.2: Description of C# classes.
.

Class name Description
Communication Initialize the UDP and TCP threads.
UdpThread Read UDP messages from the Maritime Robotics USV

on a separate thread.
ProtoMsg Deserialize the Protocol Buffer messages in

UdpThread.
TcpThread Read AIS messages from the VHF antenna.
AisParser Parse the AIS messages in TcpThread.
ObjectManager Store the vessel objects in the system RAM. Initialize

and add new vessel objects. Transmit parsed and de-
serialized data from TCP/UDP to vessel object.

RemotelyPilotedUsv Responsible for the Maritime Robotics 3-D USVmodel
and vessel specific functions such as converting lati-
tude/longitude to x y coordinates, risk index compu-
tations, motion prediction, etc.

SimulatedVessel Simulated USV in Unity. Can be controlled by a pilot
using joystick and keyboard.

AisShip Responsible for theAIS ship 3-Dmodels andvessel spe-
cific functions such as converting latitude/longitude to
x y coordinates, risk index computations, motion pre-
diction, etc.

RollPitch Computes AIS shipwave-induced heave, roll and pitch
motions for 3-D visualization.

CameraController Change camera perspective.
VesselsStaticFunction Common functions for RemotelyPilotedUsv, Simulat-

edVessel and AisShip.
ShipModels Load the 3-D model for a given AIS ship.
MotionPrediction EKF interpolation and motion prediction algorithm.
CollisionRiskIndex Calculates the risk index, separation between ships and

DCPA/TCPA values.
ObjectList ObjectManager list.
SaveLoadVesselData Save/load the static AIS messages.
Labels Shows the highest risk indexes and corresponding DC-

PA/TCPA values, MMSI numbers, ship types, etc. for
ships in the vicinity of the USV to the operator graphi-
cally.

Plot2dLine Plots the colored lines for motion prediction/risk
warning on the ocean surface (optionally).

Plot3dBox Plot a box around the AIS ship to increase visibility
(optionally).

Plot2dCircle Plot a circle around the AIS ship on the ocean surface
to indicate the risk safety margin (optionally).

2.1. CODE STRUCTURE, REQUIREMENT SPECIFICATIONS AND DESIGN 17

Figure 2.2: UML diagram showing the software system. The color codes corresponds to
the four phases in the agile model (see Fig. 2.1).

18 CHAPTER 2. SOFTWARE DESCRIPTION

Figure 2.3: AIS receiver and software components for motion prediction.

2.2 Agile Phases

The four agile phases are described in detail below.

2.2.1 Phase 1: Interfacing and parsing of AIS messages

AIS data are transmitted from ships globally and a very-high frequency
(VHF) AIS receiver picks up the signals as coded ASCII characters in a
format specified by the National Marine Electronics Association (NMEA,
2018). TheAIS sentencesmust be decodedusing a parser to obtain real-time
ship position, course and speed measurements, see Fig. 2.3.

AIS is a global system, which allows ships to view marine traffic in
their area and to be seen by other ships (Automatic Identification System,
2018). Vessels are equipped with a dedicated VHF AIS transceiver, which
allows local traffic to be viewed on a chartplotter or computer monitor
while transmitting information about the ship itself to other AIS receivers,
see Fig. 2.3. Ships can be tracked by AIS base stations located along coast
lines or satellites when far away from the base stations. The International
MaritimeOrganization (IMO) requires AIS to be fitted aboard international
voyaging ships with 300 or more gross tonnage.

There are 27AISmessageswith different priority that are transmittedus-
ing class A and B transceivers (US Coast Guard, 2018). Class B transceivers
are smaller, simpler and lower cost than Class A transceivers. For ship
tracking and motion prediction the position reports of messages 1, 2, 3 and
18 are particularly useful (see Table 2.4).

2.2. AGILE PHASES 19

Table 2.3: Decoded AIS message.

Table 2.4: AIS position reports.
AIS Message Usage Comments
Message 1, 2, 3: Reports navigational Longitude and latitude, time,
Position Report information heading, speed, ships navigation
Class A status (under power, at anchor...)
Message 18: A less detailed report than Does not include navigation
Position Report types 1-3 for vessels using status nor rate of turn
Class B Class B transmitters

AIS message format
The coded AIS sentences are ASCII characters as defined by the NMEA
(2018) format. A typical VHF AIS message looks like:

!AIVDM,1,1,,B,13m=18003v0gPJVTC?6503wd00S4,0*7C

where

!AIVDM NMEA message type is "received data from other vessels"

1 Number of Sentences (some messages need more then one)

1 Sentence Number (1 unless it is a multi-sentence message)

Blank is the Sequential Message ID (for multi-sentences)

B AIS Channel (A or B)

13m=... Encoded AIS data

0* End of Data

7C NMEA Checksum

20 CHAPTER 2. SOFTWARE DESCRIPTION

Each ASCII character in the encoded data corresponds to 6 binary bits. Notice that
standard ASCII uses 8 bits. The procedure to get 6-bits binary data is to subtract 48 from the
ASCII value. If the result is a decimal number larger than 40, subtract 8 and convert to binary.
Thismust bedone for eachASCII value in the codeddata “13m=18003v0gPJVTC?6503wd00S4”.
The first characters in the string become:

Char ASCII Subtract 48 Subtract 8 6-bit binary

1 49 1 - 000001

3 51 3 - 000011

m 101 53 45 101101

= 61 13 - 001101

...

The bits can then be converted to ship motion measurements by using the US Coast
Guard (2018) specifications. From this it follows that the first 6-bit binary is the AISmessage
number in the range 1-27. The ship Position Reports are transmitted as Message Numbers
1, 2, 3 and 18. For our example, we recognize the number 1 as Position Report 1.

The remaining bits in the Position Reports, which are needed to decode the motion
measurements are:

Position in bit vector Description

1-6 Message Type

7-8 Repeat Indicator

9-38 userID (MMSI)

39-42 Navigation Satus

43-50 Rate of Turn (ROT)

51-60 Speed Over Ground (SOG)

61-61 Position Accuracy

62-89 Longitude

90-116 Latitude

117-128 Course Over Ground (COG)

129-137 True Heading (HDG)

The MMSI number or Maritime Mobile Service Identity is a 9 digits number, which
uniquely identify all ships. The first 3 digits is the country code. There are several on-line
services such that the Marine Vessel Traffic webpage: http://www.marinevesseltraffic.
com/2013/06/mmsi-number-search.html, which can be used to deduce the ship name and
other data from the MMSI number.

AIS message parser
It is necessary to program a NMEA parser in order to decode the AIS messages in real time.
Several open source codes are available at GitHub (http://www.github.com. To check
if the decoding is successful an on-line decoder such as: http://www.maritec.co.za/
tools/aisvdmvdodecoding/ can be used. The result for “!AIVDM,1,1„B,13m=18003v0gPJ
VTC?6503wd00S4,0*7C” is shown in Table 2.3.

http://www.marinevesseltraffic.com/2013/06/mmsi-number-search.html
http://www.marinevesseltraffic.com/2013/06/mmsi-number-search.html
http://www.github.com
http://www.maritec.co.za/tools/aisvdmvdodecoding/
http://www.maritec.co.za/tools/aisvdmvdodecoding/

2.2. AGILE PHASES 21

Table 2.5: Description of Google Protocol Buffer messages.

Message name Data field Description
MsgRapid Latitude, longitude, COG,

SOG, etc.
Telemetron position and
speed information

MsgObject MMSI, latitude, longitude,
COG, SOG, etc.

AIS object from the USV
Telemetron parser

MsgObjectStatic Name, MMSI, length, beam,
etc.

Ship characteristics

Interfacing the USV by Google Protocol Buffers
Protocol Buffers are Google’s language-neutral and cross-platform methods of serializing
structured data. Serializing is the process of translating data structures or object states into
a format that can be stored or transmitted and reconstructed later. The Protocol Buffers are
well suited for cross-software communication.

The method involves an interface description language (IDL), which is a specifica-
tion language used to describe software components application programming interfaces
(APIs). IDLs describe an interface in a language-independent way, enabling communica-
tion between software components that do not share one language, for instance programs
written in C++ andC#. The proprietary software ofMaritime Robotics AS is written in C++,
while Unity uses C# or Javascript. Maritime Robotics AS also interface their USVs by using
Protocol Buffers in order to communicate with the vehicle control station. Consequently,
it was decided to implement the Protocol Buffers in Unity to receive data directly from the
vehicles.

For the USV Telemetron, three Protocol Buffer messages were extracted from the UDP
stream (see Table 2.5). A C# code snippet for deserializing the Protocol Buffer message is
shown in Listing 2.1 below.

Listing 2.1: C# pseudocode for deserializing the Protocol Buffer message.
1 public class UdpThread

2 {

3 Create UDP socket

4 Start Thread

5 Send Message To server (im alive)

6 Receive receiveBytes From Server

7

8 deserializeMsgObject(receiveBytes);

9

10 public void deserializeMsgObject(byte[] data)

11 {

12 using (var stream = new MemoryStream(data))

13 {

14 m_MsgObject = Serializer.Deserialize <MsgObject >(stream);

15 }

16 }

17 }

22 CHAPTER 2. SOFTWARE DESCRIPTION

The ProtoContract is defined above the class and indicates that the class will serialize or
deserialize. This is a sealed class, which inherits from the attribute class. The C# code
snippet for ProtContract is shown in Listing 2.2 below.

Listing 2.2: C# ProtoContract snippet for MsgObject.
1 [ProtoContract]

2 public class MsgObject

3 {

4 [ProtoMember(1)] // Source of object

5 public UInt32 object { get; set; }

6 [ProtoMember(2)] // MMSI number

7 public UInt32 uid { get; set; }

8 [ProtoMember(3)] // Latitude (rad)

9 public float latitude { get; set; }

10 [ProtoMember(4)] // Longitude (rad)

11 public float longitude { get; set; }

12 [ProtoMember(5)] // Course over ground (rad)

13 public float cog { get; set; }

14 [ProtoMember(6)] // Speed over ground (m/s)

15 public float sog { get; set; }

16 ... etc.

2.2.2 Phase 2: Mixed-reality visualization of ships
Section 2.2.1 explained how to parse live AIS messages using a UDP stream. This is
necessary in order to generate real-time position, speed and course angle data for Unity. In
this section, the Unity base classes “GameObjects” and “MonoBehaviour” are described.
These classes include important features and methods that will be used to visualize the
ships in a mixed-reality environment.

Base Class “GameObjects”

“GameObjects” are the fundamental objects in
Unity and they represent characters, props and
scenery. The “GameObjects” act as containers for
“Components”, which implement the real func-
tionality. For instance, anAIS ship object is created
by attaching a script and a 3-Dmodel to “GameOb-
jects”.

Unity allows searching for “GameObjects” by
their respective names such as the USVs named
Otter, Telemetron, etc. Hence, each time you find
“GameObjects” objects you can access the objects
variables and classmember functions. The discov-
ered vehicles are shown in the list to the right to-
gether with the “ObjectManager” numbers, which
are MMSI numbers for AIS ships detected in the
vicinity of the USV.

2.2. AGILE PHASES 23

A C# code snippet for initializing and updating AIS ships is illustrated in Listing 2.3.

Listing 2.3: C# snippet showing the ObjectManager.
1 public void findVessel(Protobuffers.MsgObject m_MsgObject)

2 {

3 if (GameObject.name.Find(m_MsgObject.MMSI) == null)

4 {

5 instantiateVessel(m_MsgObject);

6 }

7 else

8 {

9 updateVessel(m_MsgObject);

10 }

11 }

12

13 private void initsiateVessel(Protobuffers.MsgObject m_MsgObject)

14 {

15 m_vessel = new GameObject();

16 m_vessel.name = m_MsgObject.MMSI;

17 // Add AisShip class properties to the Game object

18 m_vessels = m_vessel.AddComponent <AisShip >();

19 m_vessels.initsiateShip(m_MsgObject);

20 }

21

22 private void updateVessel(Protobuffers.MsgObject m_MsgObject)

23 {

24 m_vessel = GameObject.Find(m_MsgObject.MMSI);

25 AisShipComponent = m_vessel.GetComponent <AisShip >();

26 AisShipComponent.updateVesselData(m_MsgObject);

27 }

Base Class “MonoBehaviour”

“MonoBehaviour” is the base class from which every Unity script derives. “MonoBe-
haviour” also offers life cycle functions that simplify development of object-oriented pro-
grams, see Fig. 2.4. Therefore when doing scripting in Unity, the base class helps you
systematical controlling your game objects and their behavior.

The C# pseudocode for the AIS ship class is presented in Listing 2.4. On initialization,
all selected properties such as motion prediction (see Chapter 3), risk calculation (see
Chapter 4), etc. are initialized. In addition, a 3-D model is assigned to the actual AIS ship.

FixedUpdate updates the ship states such as position, velocity and course angle as well
as the risk index parameters, while the call OnRenderObject, which is responsible for the
graphical overlay, runs every frame.

24 CHAPTER 2. SOFTWARE DESCRIPTION

Listing 2.4: C# pseudocode for the AIS ship class.
1 public void Start(Protobuffers.MsgObject m_MsgObject)

2 {

3 m_Vessel.AddComponent <ShipModels >();

4

5 m_Vessel.GetComponent <ShipModels >();

6

7 // loads the 3-D model to the AIS object

8 m_ShipModels.loadShipModel(MMSI);

9

10 // add class properties to the AIS ship GameObjects

11 m_Vessel.AddComponent <MotionPrediction >();

12 m_Vessel.AddComponent <CollisionRiskIndex >();

13 m_Vessel.AddComponent <PlotPredictedPath >();

14 m_Vessel.AddComponent <RiskCircle >();

15

16 // loads the cube for the inscribed AIS ship

17 GameObject.Instantiate(RiskCube);

18 }

19

20 void FixedUpdate ()

21 {

22 MotionPrediction;

23 PathPrediction;

24 RiskIndex;

25 TransformPosition;

26 }

27

28 void OnRenderObject()

29 {

30 DrawLine;

31 DrawCube;

32 DrawCircle;

33 }

2.2.3 Phase 3: Algorithms for automated situational awareness
The algorithms for automated situational awareness are based on:

• Ship motion estimation and prediction using Kalman filter algorithms.

• A collision risk index algorithm using time and distance to the closest point of ap-
proach.

The Kalman filter algorithms are designed for interpolation of asynchronous AIS measure-
ments at 30-60 FPS. This makes smooth visualization possible. In addition, the Kalman
filters are the main algorithms for ship and USV motion prediction. USV evasive maneu-
vers are programmed as closed-loop feedback control systems, which are represented as
state-space models with pilot inputs from a joystick. The state-space models and Kalman
filter algorithms are derived in Sections 3.2 and 3.3 and case studies using experimental data
documents the performance of the algorithms. Matlab test scripts are found in Appendix B.

2.2. AGILE PHASES 25

Figure 2.4: AisShip class life cycle. The function Start is a constructor for object initialization,
Update runs as fast as possible, FixedUpdate updates at each time sample, whileOnGUI runs
every frame.

The collision risk index algorithm makes use of the TCPA and DCPA values for all AIS
ships as outlined in Section 4.3. These are the main metrics for computation of the risk
index. The case studies in Section 4.3 use experimental data to demonstrate how online risk
assessment can be visualized in a mixed-reality environment.

The open source library Math.NET Numerics (https://numerics.mathdotnet.com/
#Math-NET-Numerics) was used for numerical implementation of the mathematical for-
mulas in C#.

2.2.4 Phase 4: GUI and visualization of data
When going from a 2-D to a 3-D world, waves and terrain can make ships difficult to
spot. Therefore different options for graphical overlaying to increase visibility have been
explored. For instance, Unity supports OpenGL, which allows for drawing polygons.

Consequently, the following classes have been developed to enhance 3-D visualization
of the AIS ships as well as properties for situational awareness:

https://numerics.mathdotnet.com/#Math-NET-Numerics
https://numerics.mathdotnet.com/#Math-NET-Numerics

26 CHAPTER 2. SOFTWARE DESCRIPTION

Plot2dCircle has been constructed to draw a circle around the AIS ships, see Fig. 2.5. The
circle is overlaid the ocean surface and the color indicates the risk index. The RGBA
values are chosen according to Formula 4.19. The circle coordinates are specified in
terms of polar coordinates and the mesh is represented as triangles. Each meshed
triangle has its origin in the center of the ship.

Figure 2.5: 3-D visualization of AIS ships and their respective risk collision indexes (colored
circles).

Plot2dLine plots a colored line showing the predicted motion of an AIS ship for a given
time in seconds using the Kalman filter algorithms in Chapter 3, see Fig. 2.6. The risk
collision index is used to compute the color code as specified by Formula 4.19 and this
illustrates the risk for collision in an intuitive way (green-yellow-red). The straight
linewas constructed using two triangles, while curved paths can be constructed using
a large number of boxes where the position is slightly shifted for each box.

Figure 2.6: 3-D visualization of an AIS ships and a straight line indicating the predicted
motion of the ship. The color represent the risk collision index in which green means no
risk for collision.

2.3. 3-D MODELING 27

Plot3dBox plots a rectangular prism around the AIS ship to increase visibility. The rect-
angular prism is constructed by applying texture to a cube such that the AIS ship
is inscribed in the prism. The texture is given a color according to the risk collision
index as specified by Formula 4.19. When doing this, it was necessary to reduce the
alpha value by 30-50 % to increase visibility of the ship inside the rectangular prism,
see Fig. 2.7.

Figure 2.7: 3-D visualization of an AIS ship inscribed a rectangular prism. The color
represent the risk collision index.

The GUI for the human operator is designed
to allow users to interact with the situational
awareness system. For this purpose a visual
indicator was constructed to show the numer-
ical values for the collision risk index cor-
responding to the DCPA and TCPA values,
MMSI number, etc. for each AIS ship.

The ship name and type are deuced from
the AIS messages. This information can be
used to visualize a lookalike ship from a
database containing 3-D ship models.

The AIS ship risk indexes are sorted and numbered as 0, 1, 2, · · · . The ship with the smallest
number represents the highest collision risk to the USV, that is ANNE MARGRETHE.

2.3 3-D Modeling

In 3-D computer graphics, 3-D modeling is the process of developing a mathematical
representation of any surface of an object in three dimensions. The product is called a 3-D
model. Unity can import a large number of different 3-D models such as the FPX, OBJ and
BLEND file formats.

This section presents the terrain, environment and ship models used for mixed-reality
visualization.

28 CHAPTER 2. SOFTWARE DESCRIPTION

2.3.1 Terrain and environmental modeling
For mixed-reality applications it is important that the terrain is as realistic as possible. The
digital environment should be anchored to and replace the real world. In this project two
different sources for GIS data have been used. Google Earth has been used for terrestrial
models, while high-resolution data from Rambøll AS and Trondheim municipality have
been used to model Trondheim city including the buildings, the river Nidelven as well as
the Trondheim fjord.

Ocean wave generation
To enhance the graphical user experience, realistic waves were implemented in the virtual
world. For this purpose the Hydroform Ocean System plugin from the Unity Asset Store was
used for generation of ocean waves, see Fig. 2.8. The plugin allows the user to specify wave
amplitude, frequency, speed, wave pattern, etc. The wave parameters can be modified
during simulation.

Figure 2.8: Oceanwaves generated using theHydroform Ocean System plugin from theUnity
Asset Store.

Terrain generation
The TerraLand plugin from Terraunity contains multiple components for GIS data to load
and create photo-realistic terrain from any part of the Earth. A realistic terrain is created in
two steps. First, elevation data are used to generate a 3-D model based on the heightmap
data of the terrain. Second, images from the Google satellite are used as textures to make
the terrain as realistic as possible. An example showing a region of the Trondheim fjord is
shown in Fig. 2.9.

In 2014, the Trondheim municipality developed a digital 3-D urban model for an area
of approximately 36 km2 in and around the city center. The Trondheim 3-D city model is a
digital reproduction of the Trondheimmunicipality in the form of a larger 3-Dmodel based
on information from map data, laser data and orthophotos from 2014 as well as oblique
images from 2013 and street images from 2014.

The Trondheim model consists of terrain data based on laser and map data, buildings
(textured from images) and other historic objects, see Fig. 2.10.

2.3. 3-D MODELING 29

Figure 2.9: A region of the Trondheim fjord generated using the TerraLand plugin from the
Terraunity.

Figure 2.10: The Trondheim 3-D city model. Reproduced with kind permission of Rambøll
AS and the Trondheim municipality.

30 CHAPTER 2. SOFTWARE DESCRIPTION

Mesh cutting
When producingmodels fromGIS data it is necessary to cut away the ocean surface because
it needs to be replaced by a dynamic 3-D model of the ocean, see Fig. 2.11. With the Mesh
Cutter from Unity Asset Store you can select different parts of the mesh and cut, copy, paste
or remove them. The mesh cutter preserves the materials and submeshes of the large mesh
and create a new mesh and prefab whenever you cut or copy a part. This transfers the
materials and submeshes to the new object.

Figure 2.11: The flat ocean is removed from the GIS model by using theMesh Cutter plugin
from the Unity Asset Store. The polygons in red represent the deleted mesh.

2.3.2 Ship and USV modeling
To make the mixed-reality experience as realistic as possible for a human operator, it is
important to have good 3-D models of the AIS ships and USVs. The AIS messages contain
information about ship type and size. The ship MMSI number can also be used to find
detailed information about the ship. Moreover, the MMSI number can be used to choose a
lookalike ship. For instance, a ship with the AIS information, length 80 m, beam 15 m and
name tag ferry can be mapped to a scaled ferry in the 3-D world. This of course requires a
database of 3-D models, which can be sorted using ship types and main dimensions.

3-D models of AIS ships and USVs can, however, be obtained from several commercial
companies or even developed in-house. In this project the following models have been
used:

2.3. 3-D MODELING 31

Unity Asset Store models: Library of free and commercial assets, which includes 3-D ship
models (see Fig. 2.12).

Figure 2.12: Unity Asset Store ship models.

Blender models: Open-source 3-D computer graphics software toolset, which allows the
user to create 3-D models for use in Unity (see Fig. 2.13).

Figure 2.13: The blender model to the left is developed by using the USV picture shown to
the right. Reproduced with kind permission of Maritime Robotics AS.

Sketchup models: 3-DWarehouse is an open library in which SketchUp users may upload
and download 3-D models to share.

32 CHAPTER 2. SOFTWARE DESCRIPTION

Proprietary models: ProprietaryUSVmodels as theMaritimeRoboticsASmodel inFig. 2.14,
which is is small USV for surveillance and data acquisition.

Figure 2.14: The Maritime Robotics OTTER USV. Reproduced with kind permission of
Maritime Robotics AS.

2.4 Concluding Remarks

This chapter has given an overview of the software and 3-D models used in the project. An
agile model approach has been used for SDLC. Since the software project had to be finished
in a fewmonths, the agile model was found to be optimal since it allowed for iterations and
incremental updates of the software.

In addition to this, the structure of the code, specifications and design have been pre-
sented. This includes interfacing and parsing of AIS data using standard Internet protocols,
description of the Unity visualization software, graphical user interface and 3-Dmodels for
AIS ships and USVs.

3Ship Motion Estimation using Live
Automatic Identification System Data
This chapter addresses the problem of shipmotion estimation using live data fromAIS. The
main results have been published in the following papers:

S. Fossen and T. I. Fossen (2018a). eXogenous Kalman Filter (XKF) for Visualization and
Motion Prediction of Ships using Live Automatic Identification System (AIS) Data. Model-
ing, Identification and Control (MIC). MIC-39(4):233–244, October 2018.

S. Fossen and T. I Fossen (2018b). Extended Kalman Filter Design and Motion Prediction
of Ships using Live Automatic Identification System (AIS) Data. Proc. of the 2nd European
Conference on Electrical Engineering and Computer Science (EECS’18), Bern, 20–22 December
2018.

Figure 3.1: The green arrow shows the predicted path of a catamaran passenger boat
operating in the Trondheim fjord using the Unity game engine (Unity, 2018), and the
Hydroform Ocean System and Terraland plugins from the Unity Asset Store.

This chapter shows how the EKF and XKF algorithms can be used in ship motion
estimation and prediction (see Fig. 3.1). Some benefits are:

• Since the AIS data are transmitted using the TCP and UDP Internet protocols, the
state estimator can be designed to handle delayed measurements, asynchronous
communication as well as loss of packets. Both the EKF and XKF run at a fixed time
step and the estimates will be evenly-spaced data.

• The human eye requires 30-60 FPS to make pictures appear as a smooth film. Hence,
for a pilot operating aUSVusing game technology and 3-D visualization, the position
and course of the AIS ships should be estimated at 30-60 Hz to satisfy the human
constraints.

• A state estimatormakes it possible to predict future shipmotions, at least for a limited
time horizon. This is very useful in a simulation and visualization environment

33

34
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

where the operator would like to observe actual and future movements of ships in
his operational space.

• Astate estimatorwill improve the accuracy of theAIS data by removingmeasurement
noise, wildpoints and corrupted data.

3.1 Ship Dynamics and Measurements

This section presents the equations of motion needed for ship motion estimation. The
proposed model is intended for short-time prediction (typically less than 1 minute) as
opposed to long-time motion prediction, which makes use of statistical data.

3.1.1 Ship model
Let the North-East positions and course angle be denoted (x , y) and χ, respectively. Con-
sequently, a ship moving at forward speed U and course χ is given by (Fossen, 2011):

ẋ � U cos(χ) (3.1)
ẏ � U sin(χ) (3.2)

U̇ � a (3.3)
χ̇ � r (3.4)

The linear acceleration a and course rate r are ship dependent and unknown.
For slowAISmeasurements, i.e. update frequencies less than 0.5Hz, it is recommended

to choose the inputs as a � r � 0. AIS measurements faster than 0.5 Hz can be used to
compute estimates rc and ac of a and r, respectively by numerical differentiation. The
numerically differentiated data are filtered in order to avoid rapid changes. Moreover,

ȧ �
1

Ta
(sat(ac) − a) (3.5)

ṙ �
1

Tr
(sat(rc) − r) (3.6)

where Ta and Tr are user defined time constants. The saturation function sat(x) ensures
that |x | ≤ xmax, which adds robustness to AIS wildpoints.

Let the last three AIS speed and course measurements at times (tm , tm−1 , tm−2) be
denoted (UAIS

m , UAIS
m−1 ,U

AIS
m−2) and (χAIS

m , χAIS
m−1 , χ

AIS
m−2), respectively. Furthermore, let h1 �

tm − tm−1 and h2 � tm−1 − tm−2. Unfortunately, the data is not evenly spaced, that is
h1 , h2. To deal with this problem, a backward difference approximation of the first derivative
for asynchronous data is derived (see Appendix A.1 for details):

ac �
(1 − α)UAIS

m + αUAIS
m−1 −UAIS

m−2
(1 − α)h1 + h2

(3.7)

rc �
(1 − α)χAIS

m + αχAIS
m−1 − χ

AIS
m−2

(1 − α)h1 + h2
(3.8)

where

α �
(h1 + h2)2

h2
1

(3.9)

3.1. SHIP DYNAMICS AND MEASUREMENTS 35

3.1.2 AIS measurements
The AIS data are transmitted from ships globally and a VHF receiver is used to pick up
the signals, which appears as coded ASCII characters in a format specified by the National
Marine Electronics Association (NMEA, 2018). The AIS sentences are decoded using a
parser (see Section 2.2.1) to obtain real-time ship position, course and speedmeasurements.

The following AIS measurements are used by the state estimator:

• SOG and COG corresponding to the states U and χ.

• Longitude l and latitude µ.

Longitude and latitude can be mapped to Cartesian coordinates using the World Geodetic
System (WGS-84), which is the standard coordinate system for the Earth.

For local navigation and visualization it is convenient to use a flat Earth approximation
based on WGS-84. The procedure is outlined below (Farrell, 2008).

3.1.3 North-East positions from longitude and latitude
Assume that the flat Earth coordinate origin is located at longitude and latitude (l0 , µ0)
and define:

∆l :� l − l0 (3.10)
∆µ :� µ − µ0 (3.11)

The Earth radius of curvature RN in the prime vertical and the radius of curvature RM in
the meridian are (Farrell, 2008):

RN �
a√

1 − e2 sin2(µ0)
(3.12)

RM � RN
1 − e2√

1 − e2 sin2(µ0)
(3.13)

where a � 6 378 137 m is the semi-minor axis (equatorial radius) and e � 0.0818 is the Earth
eccentricity (WGS-84). Small changes in the North and East positions (x , y) are computed
as:

x �
∆µ

atan2(1, RM)
(3.14)

y �
∆l

atan2(1, RN cos(µ0))
(3.15)

where atan2(y,x) is the 4-quadrant inverse tangent confining the result to (−π, π].

3.1.4 Course angle from North-East positions
The AIS course angle measurement is often unreliable. In these cases, it is recommended to
compute the course angle from theNorth-East positions (x(k−1), y(k−1)) and (x(k), y(k))
at times tk−1 and tk , respectively, using the path-tangential angle:

χ(k) ≈ atan2
(
y(k) − y(k − 1), x(k) − x(k − 1)

)
(3.16)

36
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

3.2 Extended Kalman filter for AIS Data

Live AIS data has been used for state estimation by Jaskolski (2017) who applied a linear
discrete-time Kalman filter. Our approach differs from this work in that a nonlinear kine-
matic model is used to describe the ship motions. Another difference is how the ship’s
acceleration and yaw rate are estimated. Since the system model is nonlinear, an EKF is
used for state estimation and prediction (Gelb, 1974).

Ship motion prediction has been addressed by numerous authors. The most popular
approaches are time-series prediction using the Support Vector Machine (Sapankevych and
Sankar, 2009) (Fu et al., 2010) (Jiang et al., 2013), Kalman filtering (Triantafyllou and Bodson,
1982) (Perera and Soares, 2010), on-line neural networks (Yin andZou, 2011) (Yin et al., 2013)
and autoregressive models (Yumori, 1981) (Lin et al., 2011).

Statistical methods have been applied to AIS data for maritime traffic probabilistic
forecasting (Xiao et al., 2017), analysis of motion patterns (Ristic et al., 2008), and position
prediction using historical AIS data (Mazzarella et al., 2015).

3.2.1 Extended Kalman filter
The nonlinear system model (3.1)–(3.6) can be expressed as:

ẋ � f(x) + Bu + w (3.17)
y � Cx + e (3.18)

where x � [x , y ,U, χ]>, u � [a , r]>, w ∈ R4 and e ∈ R4 are Gaussian process and measure-
ment noise, respectively,

f(x) �



x3 cos(x4)
x3 sin(x4)

0
0



, B �



0 0
0 0
1 0
0 1



(3.19)

and C � I4. The EKF makes use of the linearized expression:

A �
∂f(x)
∂x

�



0 0 cos(x4) −x3 sin(x4)
0 0 sin(x4) x3 cos(x4)
0 0 0 0
0 0 0 0



(3.20)

TheAIS data are transmitted using the TCPorUDP Internet protocols. Hence, the EKFmust
handle delayedmeasurements, asynchronous communication aswell as loss of packets. The
EKF runs at a fixed time step and the estimates are evenly-spaced data. Since, the AIS data
are transmitted at asynchronous time samples, the EKF is implemented in discrete time
using the predictor-corrector representation shown in Table 3.1 (Gelb, 1974).

The EKF is initialized with x̂−(0) � x(0) and P̂−(0) � P(0), while Q � Q> > 0 and
R � R> > 0 are the process covariance and measurement matrices, respectively. The state
transition matrix is computed as:

Φ(k) � I4 + hA +
1
2

h2A2
+, ...,+

1
n!

hnAn (3.25)

3.2. EXTENDED KALMAN FILTER FOR AIS DATA 37

Table 3.1: Four-states extended Kalman filter for AIS data.

Kalman gain:

K(k) � P̂−(k)C>
(
CP̂−(k)C> + R

)−1

Corrector:
x̂+(k) � x̂−(k) + K(k)

(
y(k) − Cx̂−(k)

)
P̂+(k) � (I4 −K(k)C)P̂−(k) (I4 −K(k)C)> + K(k)RK>(k)

Predictor:
x̂−(k + 1) � x̂+(k) + hf(x̂+(k)) + hBu(k)

P̂−(k + 1) � Φ(k)P̂+(k)Φ>(k) + Q

(3.21)

(3.22)

(3.23)
(3.24)

where h is the sampling time.
Let ε(k) � y(k) −Cx̂−(k) denote the estimation error in (3.22). When implementing the

corrector, it is necessary to map the course angle estimation error:

ε4(k) � χ(k) − χ̂−(k) (3.26)

to the interval [−π, π). This is referred to as the smallest signed angle, which can be computed
using the function ssa(ε4), which is defined as (MSS, 2004):

ssa(x) :� mod(x + π, 2π) − π (3.27)

3.2.2 Ship motion predictor
The ship model (3.1)–(3.6) and the EKF can be used to predict the ship motions from the
last AIS measurement at time t0 to t � t0 + T where T is the final time, see Fig. 1.4. Let h
be the sampling time. Hence, the discrete-time predictor for the interceptor (USV) using
Euler’s method becomes:

USV:
x(k + 1) � x(k) + hU (k) cos (χ(k))

y(k + 1) � y(k) + hU (k) sin (χ(k))

U (k + 1) � U (k) + ha(k)

χ(k + 1) � χ(k) + hr(k)

a(k + 1) � a(k) +
h

Ta
(sat(ac) − a(k))

r(k + 1) � r(k) +
h

Tr
(sat(rc) − r(k))

(3.28)
(3.29)
(3.30)
(3.31)

(3.32)

(3.33)

where x(0) � x(t0), y(0) � y(t0),U (0) � U (t0), χ(0) � χ(t0), a(0) � a(t0) and r(0) � r(t0).

38
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

TheAIS shipmotion predictors for N ships are obtained in a similar manner (i � 1, 2, ...,N):

AIS ship #i:
xi (k + 1) � xi (k) + hUi (k) cos (χi (k))

yi (k + 1) � yi (k) + hUi (k) sin (χi (k))

Ui (k + 1) � Ui (k) + hai (k)

χi (k + 1) � χi (k) + hri (k)

ai (k + 1) � ai (k) +
h

Ta

(
sat(aci) − ai (k)

)
ri (k + 1) � ri (k) +

h
Tr

(
sat(rci) − ri (k)

)

(3.34)
(3.35)
(3.36)
(3.37)

(3.38)

(3.39)

where xi (0) � xi (t0), yi (0) � yi (t0),Ui (0) � Ui (t0), χi (0) � χi (t0), ai (0) � ai (t0) and
ri (0) � ri (t0).

3.2.3 Experimental validation
AIS data for MS Trondheimsfjord II (see Fig. 3.2) are used to demonstrate ship motion
prediction. The asynchronous AIS data are processed by the EKF to obtain equally-spaced
data at 50 Hz. Fig. 3.3 shows the pathwhen crossing the Trondheim fjord and Fig. 3.4 shows
the corresponding state estimates.

Figure 3.2: The MS Trondheimsjord II is high-speed catamaran for passenger transport.
Length 24.5 m, beam 8.0 m and maximum speed 16.5 m/s (32 knots). Reproduced with
kind permission of Fosen Namsos Sjø (http://www.fosennamsos.no).

3.2. EXTENDED KALMAN FILTER FOR AIS DATA 39

Figure 3.3: The upper plot shows the path ofMS Trondheimfjord II when crossing the fjord.
The lower zoomed plot shows the predicted ship motions at two different locations (black
ships) for a future horizon of 30 seconds (green arrows).

40
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

Figure 3.4: Estimated states (red) and AIS measurements (blue circles) as a function of time
when crossing the fjord back and forth.

The EKF was implemented and tested inMatlab (see Appendix B.1) before it was coded
in C# for Unity integration. The Kalman filter was initialized using:

P̂−(0) � 0.1 · I4 (3.40)
Q � diag (0.01, 0.01, 0.1, 0.1) (3.41)
R � diag (0.001, 0.001, 0.001, 0.01) (3.42)

The initial states were chosen as:

x̂−(0) � [x(0), y(0),U (0), χ(0)]> (3.43)

Motion prediction

The ship motions are predicted at two different locations with a 30 seconds horizon using
(3.28)–(3.33). Fig. 3.5 shows how the predicted path can be visualized in a situational
awareness system using the Unity game engine.

3.3. EXOGENOUS KALMAN FILTER FOR AIS DATA 41

Figure 3.5: 3D-Visualization of a catamaran passenger boat in the Trondheim fjord using the
Unity game engine Unity (2018), and the Hydroform Ocean System and Terraland plugins
from the Unity Asset Store. The green arrow shows the predicted path of the vessel.

.

3.3 eXogenous Kalman filter for AIS Data

The main contribution of this section is the design of a globally exponentially stable (GES)
observer for live AIS data as illustrated in Fig. 2.3 using the XKF (Johansen and Fossen,
2017). GES is an important property since it guarantees exponential convergence to zero of
the estimation errors. Moreover, the estimation error equilibrium point x̃ � x − x̂ is GES, if
there exist positive constants K and α such that (Khalil, 2014):

‖x̃(t)‖ ≤ K exp(−αt) ‖x̃(0)‖ , ∀t ≥ 0 (3.44)

The GES property guarantees that the observer is robust to large uniformly bounded
disturbances.

It is well known that the linear KF is GES and optimal in the sense of minimum variance
under some conditions. However, its nonlinear extension, known as the EKF, linearizes
the system about the estimated state trajectories. Unfortunately, this can lead to stability
problems. Johansen and Fossen (2017) propose to use a cascade of two observers where the
first observer generates a globally convergent state estimate, which can be used to design a
linearized KF. This approach is referred to as the XKF and it is illustrated in Fig. 3.6.

Figure 3.6: The eXogenous Kalman filter as a two-stage estimator. The kinematic observer
produces an estimate x̄ used in a linearized KF, which returns the improved estimate x̂.

The first stage is to construct a deterministic observer with global stability properties.
This is done without optimality considerations and by neglecting the stochastic noise on

42
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

the signals. The estimate, x̄, from the kinematic observer is an exogenous signal used in a
linearized KF:

˙̂x � f(x̄, t) + F(x̄, t)(x̂ − x̄) + K
(
y − h(x̄, t) −H(x̄, t)(x̂ − x̄)

)
(3.45)

where
F(x̄, t) �

∂f
∂x

(x̄, t), H(x̄, t) �
∂h
∂x

(x̄, t) (3.46)

As shown by Johansen and Fossen (2017), the cascade of the kinematic observer and KF
will inherit the global stability property of the kinematic observer and also benefit from the
local optimality properties of the linearized KF.

3.3.1 Stage 1: Kinematic observer
The first step is to design a fixed-gain kinematic observer for the XKF in Fig. 3.6 based on
the ship model in Section 3.1.1. The purpose of the kinematic observer is to generate a
smooth globally convergent signal x̄ � [x̄ , ȳ , Ū , χ̄]> for the linearized KF. This can be done
by using four fixed-gain observers copying the dynamics (3.1)–(3.4):

˙̄x � U cos(χ) + K1(x − x̄) (3.47)
˙̄y � U sin(χ) + K2(y − ȳ) (3.48)
˙̄U � a + K3(U − Ū) (3.49)
˙̄χ � r + K4(χ − χ̄) (3.50)

where Ki > 0 (i � 1, 2, 3, 4). It is straightforward to verify that the equilibrium point of the
error dynamics [x − x̄ , y − ȳ ,U − Ū , χ − χ̄]> � 0 is GES.

3.3.2 Stage 2: Linearized Kalman filter
The next step is to express the nonlinear system model (3.1)–(3.6) as:

ẋ � f(x) + Bu + w (3.51)
y � Hx + e (3.52)

where w ∈ R4 and e ∈ R4 are Gaussian process and measurement noise, and the only
nonlinearity is the vector field f(x).

The XKF design process involves constructing a linearized KF about x � x̄ using a
Taylor-series expansion:

˙̂x � f(x̄) + F(x̄)(x̂ − x̄) + Bu + K(y −Hx̂) (3.53)
Ṗ � F(x̄)P + PF(x̄)> + Q −KRK> (3.54)

where x̄ � [x̄ , ȳ , Ū , χ̄]>, u � [a , r]>,

f(x̄) �



x̄3 cos(x̄4)
x̄3 sin(x̄4)

0
0



, B �



0 0
0 0
1 0
0 1



, H �



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(3.55)

3.3. EXOGENOUS KALMAN FILTER FOR AIS DATA 43

Figure 3.7: Signal flow of the eXogenous Kalman filter.

F(x̄) �
∂f
∂x

(x̄)

�



0 0 cos(x̄4) −x̄3 sin(x̄4)
0 0 sin(x̄4) x̄3 cos(x̄4)
0 0 0 0
0 0 0 0



(3.56)

The Kalman gain is computed as:
K � PH>R−1 (3.57)

Theorem 3.1 (XKF). The fixed-gain kinematic observer (3.47)–(3.50) in cascade with the linearized
KF (3.53)–(3.54) as shown in Fig. 3.7 renders the equilibrium point of the two-stage observer error
dynamics GES1.

Sketch of proof: A detailed version of the proof is found in Johansen and Fossen (2017, Theorem
2.1), which makes use of three Assumptions A1-A3. The kinematic observer and linearized KF
is a cascaded system. The equilibrium point of the error dynamics of the kinematic observer in
Section 3.3.1 is GES. Hence, Assumption A3 clearly holds. This also implies boundedness of
F(x̄) due to the smoothness of the vector field f(x̄). Hence, Assumption A1 holds since the LTV
system (F(x̄),B,H) is uniformly completely observable and controllable. Finally, Assumption A2 is
satisfied by choosing the KF tuning matrices P(0),Q and R symmetric and positive definite. Since
Assumptions A1-A3 are satisfied, Johansen and Fossen (2017, Theorem 2.1) guarantees that the
equilibrium point of the cascaded system inherits the GES property of the kinematic observer.

3.3.3 Ship motion predictor
The ship motion predictor is designed by using a discrete-time version of the systemmodel
(3.1)–(3.6). Consequently, an N-step predictor with k � 1, ...,N using Euler’s integration

1As shown by Bhat and Bernstein (2000), systems with rotational degrees of motion cannot be
globally stabilized by continuous feedback due to the topological obstruction imposed by SO(3). Hence,
the GES property is based on the assumption that χ ∈ R and not [−π, π). However, if χ is mapped to
[−π, π) when implementing the XKF, Theorem 3.1 still guarantees local exponential stability.

44
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

method with sampling time h becomes:

x̂(k + 1) � x̂(k) + hÛ (k) cos(χ̂(k)) (3.58)
ŷ(k + 1) � ŷ(k) + hÛ (k) sin(χ̂(k)) (3.59)

Û (k + 1) � Û (k) + ha(k) (3.60)
χ̂(k + 1) � χ̂(k) + hr(k) (3.61)

a(k + 1) � a(k) +
h

Ta
(sat(ac) − a(k)) (3.62)

r(k + 1) � r(k) +
h

Tr
(sat(rc) − r(k)) (3.63)

3.3.4 Implementation aspects for asynchronous AIS data
The AIS data are transmitted using the TCP and UDP Internet protocols. Hence, the XKF
must handle delayed measurements, asynchronous communication as well as loss of pack-
ets. The XKF (3.47)–(3.50) and (3.53)–(3.54) will run at a fixed time step, typically 30-60 Hz
for 3-D visualization applications. Since, the AIS data are transmitted at asynchronous time
samples the XKF is implemented in discrete time using the predictor-corrector representation
(Gelb, 1974). Moreover,

• The discrete-time system model of the XKF is propagated at 30-60 Hz to predict
positions, velocity and course angle.

• The state vector is updatedand correctedat each timeanAISmeasurement is received.
This happens at much lower frequency (typically 1-2 Hz). Hence, the update times
of the corrector must be chosen in multiples of the sampling frequency.

The discrete-time XKF makes use of the superscripts + and −, which denote the states
after and before the measurements are applied. Table 3.2 summarizes the predictor-corrector
representation for (3.53)–(3.54) and (3.57):

Table 3.2: Four-states eXogenous Kalman filter for AIS data.

Kalman gain:

K(k) � P̂−(k)H>
(
HP̂−(k)H> + R

)−1

Corrector (AIS measurements at 1-2 Hz):
x̂+(k) � x̂−(k) + K(k)

(
y(k) −Hx̂−(k)

)
P̂+(k) � (I4 −K(k)H)P̂−(k) (I4 −K(k)H)> + K(k)RK>(k)

Kinematic observer:
x̄(k) is computed by (3.47)–(3.50)

Predictor (30-60 Hz for visualization):
x−(k + 1) � x+(k) + h

(
f(x+(k)) + F(x̄+(k))(x̂+(k) − x̄(k)) + Bu(k)

)
P̂−(k + 1) :�

(
I4 + hF(x̄+(k))

)
P̂+(k)

(
I4 + hF(x̄+(k))

)>
+ Q

(3.64)

(3.65)
(3.66)

(3.67)

(3.68)

3.3. EXOGENOUS KALMAN FILTER FOR AIS DATA 45

Figure 3.8: 3-D visualization of two AIS detected ships moving down the Nidelven river in
Trondheim using Unity (2018).

3.3.5 Experimental validation
The XKF and its prediction capabilities were validated using live AIS data from the Trond-
heim harbor in Norway. Live AIS data were obtained using a VHF antenna. Approximately
30 ships were close to the harbor when logging the data. The North-East coordinate origin
was chosen at Munkholmen island, approximately 2 km west of Trondheim harbor.

The longitude and latitude measurements were transformed to x y-positions using the
WGS-84 reference systems as outlined in Section 3.1.3. Fig. 3.8 shows the live positions of
two ships when moving down the Nidelven river in Trondheim.

The high-speedpassenger ferryMSLADEJARLwas chosen in the case study, see Fig. 3.9.
The shiphasMMSInumber 257 082 200. Detailed informationabout the ship canbeobtained
by using the Marine Vessel Traffic webpage2 where the MMSI number uniquely identifies
the ship.

The top speed of the ship is 37 knots (19.0 m/s). Data was logged for approximately
two hours such that the ship had time to move out the fjord via Lensvik towards the North
Atlantic and return to Trondheim harbor, see Fig. 3.10.

Motion prediction

The linearized KF was implemented in discrete time at 50 Hz using the predictor-corrector
representation (Gelb, 1974) and Euler’s method for numerical integration.

The fixed-gain kinematic observer was implemented with K1 � K2 � 10, K3 � 30 and
K4 � 50 (see the Matlab code in Appendix B.2). The KF covariance matrices were chosen as:

P̂−(0) � I4 (3.69)
Q � diag(1.0, 1.0, 10.0, 10.0) (3.70)
R � I4 (3.71)

2http://www.marinevesseltraffic.com/2013/06/mmsi-number-search.html

http://www.marinevesseltraffic.com/2013/06/mmsi-number-search.html

46
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

Figure 3.9: MS LADEJARL - Passenger ship (gross tonnage 490 t, length overall
38 m and breadth 10 m). Reproduced with kind permission of Fosen Namsos Sjø
(http://www.fosennamsos.no).

Sensitivity to wildpoints and corrupted measurements is handled by using a relative
large value for the yaw rate time constant Tr in the estimator. This explains why the yaw
rate time constant Tr � 50 s is chosen 5 times larger than the surge acceleration time constant
Ta � 10 s.

Two cases as shown in Fig. 3.10 were considered:

• Case 1: 30 s motion prediction just before the ship arrives Lensvik harbor.

• Case 2: 60 s motion prediction on the route to Trondheim harbor.

As seen from Figs. 3.11–3.12 the ship positions are predicted quite well both for the 30 s
and 60 s cases. The first ship indicates where motion prediction is started and the second
ship shows the pose of the ship after 30 and 60 s, respectively. The position accuracy will
of course be best for ships on a straight course. However, the motion predictor is restarted
each time a new measurement is received such that it automatically adjusts to turning
maneuvers.

3.3. EXOGENOUS KALMAN FILTER FOR AIS DATA 47

Figure 3.10: North-East positions of MS LADEJARL in km when moving from Trondheim
to Lensvik on its way out of the fjord. The return bypasses Lensvik harbor. The red arrows
indicate the chosen locations for motion prediction.

Figs. 3.11–3.12 also show the difference of the kinematic observer (red) and the XKF
(cyan). The red curve is used for linearization of the Kalman filter. As expected the
accuracy of the kinematic observer is not so good as the XKF since this is a simplified
decoupled fixed-gain observer. However, the red trajectory is accurate enough to provide
the XKF with a trajectory for linearization.

An obvious advantage of the XKF to the fixed-gain kinematic observer is that the covari-
ance of the estimation errors are computed. Hence, it is possible to include outlier detection
based on growth in the covariance estimates. Fig. 3.11 also indicates that the performance
of the XKF is better than the fixed-gain kinematic observer. Similar observations weremade
in the case studies presented by Johansen and Fossen (2017). Fig. 3.13 is a 3-D visualization
of catamaran vessel in the Trondheim fjord. The green arrow shows the predicted path of
the vessel.

The computational requirements typically increase with 25 % when using the XKF
instead of the fixed-gain kinematic observers. This is not a problem when using state-of-
the-art computers.

48
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

-27.4 -27.3 -27.2 -27.1 -27 -26.9 -26.8 -26.7 -26.6

y [km]

6.1

6.15

6.2

6.25

6.3

6.35

6.4

6.45

6.5

6.55

6.6

x
 [

k
m

]

xy-plot: Kinematic observer (red) and XKF (cyan)

Figure 3.11: The 30 seconds predicted motion of MS LADEJARL just before the ship arrives
Lensvik harbor. The red and cyan lines are the kinematic observer and XKF, respectively

-17 -16.8 -16.6 -16.4 -16.2 -16 -15.8 -15.6 -15.4 -15.2 -15

y [km]

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

x
 [

k
m

]

xy-plot: Kinematic observer (red) and XKF (cyan)

Figure 3.12: The 60 seconds predicted motion of MS LADEJARL when on route to Trond-
heim harbor. The red and cyan lines are the kinematic observer and XKF, respectively

3.4. CONCLUDING REMARKS 49

Figure 3.13: 3-D visualization of a catamaran passenger boat in the Trondheim fjord using
Unity (2018), and theHydroformOcean System and Terraland plugins from theUnity Asset
Store. The green arrow shows the predicted path of the vessel.

Fig. 3.14 shows the measured signals (circles) and the estimates in red and cyan. As
before, red denotes the kinematic observer and cyan is the XKF. The smoothing effect
and increased accuracy of the XKF is more visible in Fig. 3.11 where a clear performance
improvement is observed.

3.4 Concluding Remarks

The problem of estimating the motion of ships from live AIS data has been addressed. To
the author’s knowledge, this problem has not been addressed previously using nonlinear
observer theory. For this purpose both an EKF and a XKF for visualization and motion
prediction of ships have been constructed. Both estimators show similar performancewhen
using experimental data. It is well-known that the EKF only guarantees local stability, while
the XKF renders the equilibrium point of the estimation error GES.

AIS data are transmitted from ships globally and a VHF AIS receiver was used to pick
up the coded signals, which are in ASCII character format as specified by NMEA. The AIS
sentences were successfully decoded using a parser to obtain real-time ship position, course
and speed measurements.

50
CHAPTER 3. SHIP MOTION ESTIMATION USING LIVE AUTOMATIC

IDENTIFICATION SYSTEM DATA

0 100 200 300 400 500 600 700 800 900
-200

0

200
 [deg]

0 100 200 300 400 500 600 700 800 900
0

10

20
U [m/s]

0 100 200 300 400 500 600 700 800 900

6

8

x [km]

0 100 200 300 400 500 600 700 800 900

-25

-20
y [km]

0 100 200 300 400 500 600 700 800 900

-0.2

0

0.2

a [m/s
2
]

0 100 200 300 400 500 600 700 800 900

0

1

2

r [deg/s]

Figure 3.14: Course angle χ [deg], speed U [m/s], x-position [km], y-position [km], ac-
celeration a [m/s2] and yaw rate r [deg/s] versus time s. The circle denotes the live AIS
measurements, while the red and cyan lines are the kinematic observer and XKF estimates,
respectively. The period of inactivity corresponds to the stop in Lensvik harbor.

Both the EKF andXKFwere validatedusing asynchronousAIS data from theTrondheim
harbor inNorway and it was demonstrated that both state estimators estimate ship position,
velocity and course in real time with good accuracy at 50 Hz, which is a good frame rate for
3-D visualization. It was also demonstrated that the estimators could predict future ship
positions and thus be used in decision-support systems.

Typical applications of AIS data are motion prediction and automated situation aware-
ness of autonomous ship operations as well as operation of manned and unmanned ships
together in restricted areas.

4Automated Situational Awareness
Situational awareness as defined by Definition 1.3 in Section 1.1.2 is of major importance for
a pilot operating an USV in the vicinity of larger ships. This chapter describes some novel
concepts for situational awareness and how they can be implemented in a mixed-reality
environment to assist the pilot when operating an USV in confined waters with a large
number of ships close to the vehicle.

Situational awareness can be quite complex and extensive if a large number of sensory
and navigation systems are made available. As pointed out in Section 1.1.2, automated sit-
uational awareness can be understood as usingmathematical algorithms to issue warnings,
estimate future ship positions and compute intercepting paths as well as computing the
risk for collision. A human will not be able to process all this information if a large number
of moving objects have to be analyzed in real time. Hence, it is necessary to simplify the
information flow and illustrate this graphically for the pilot.

This chapter describes the algorithms for situational awareness and how they can be
visualized in a mixed-reality environment. The main results have been published in the
following paper:

S. Fossen, R. T. Bye and O. L. Osen (2018). Visualization and Collision Risk Assessment
of Real Ships in a Mixed Reality Environment using Live Automatic Identification System
(AIS) Data. Proc. of the 2nd European Conference on Electrical Engineering and Computer Science
(EECS’18), Bern, 20–22 December 2018.

Some benefits of the automated situational awareness system presented in this chapter are:

• 3-D visualization of a simulated remotely-piloted USV operating in common waters
with real ships in a virtual world chosen as the Trondheim fjord in Norway.

• On-line situation assessment, encompassing automated threat and impact assess-
ment, to assist the human operator by estimating the motion of ships when operating
in restricted waters such as a fjord.

• Issue warnings by computing the minimum separation between the USV and AIS
ships online and graphical presentation of the AIS ships collision risk indexes.

• When theminimum separation is to small, the situational awareness system can assist
the USV operator by analyzing different evasive maneuvers to increase the distance
between the USV and the AIS ships.

4.1 International Regulations for Preventing Collisions at Sea

The increased use of USV andASV in commonwaterswith ships introduce new operational
aspects, which again introduces a need for new regulations. A USV is usually remotely
controlled by a pilot who must analyze the ship traffic and other operational aspects in
order to prevent a collision. The operator information is critical for safe operation and it is
important to be aware of the limitations of the human cognitive processes.

Sensor fusion can be used to present the pilot with organized and coherent information
to make timely and informed decisions. As the amount of sensor data increase, it becomes

51

52 CHAPTER 4. AUTOMATED SITUATIONAL AWARENESS

more and more difficult for human operators to achieve situational awareness (Holsopple
et al., 2010). Consequently, an automated process, which estimate and project situations
using algorithms is needed. This is refereed to as automated situational awareness.

4.1.1 COLREGS
An automated situational awareness system for collision detection and ship collision risk
assessment should comply with the International Regulations for Preventing Collisions at Sea,
in which Rule 7 states (COLREGS, 1972):

1. “Everyvessel shall use all availablemeans appropriate to theprevailing circumstances
and conditions to determine if risk of collision exists. If there is any doubt such risk
shall be deemed to exist.”

2. “Proper use shall be made of radar equipment if fitted and operational, including
long-range scanning to obtain early warning of risk of collision and radar plotting or
equivalent systematic observation of detected objects.”

3. “Assumptions shall not be made on the basis of scanty information, especially scanty
radar information.”

4. “In determining if risk of collision exists the following considerations shall be among
those taken into account: (a) such risk shall be deemed to exist if the compass
bearing of an approaching vessel does not appreciably change; (b) such risk may
sometimes exist even when an appreciable bearing change is evident, particularly
when approaching a very large vessel or a tow or when approaching a vessel at close
range.”

4.2 Minimum Separation Algorithm

Collision avoidance for multiple ships can be stated as a problem of maintaining safe
distance between ships in conflict. This can be solved as an optimal collision avoidance
problem minimizing a given cost function, while simultaneously satisfying the constraints
specified by COLREGS, see Johansen et al. (2016) and references therein.

The spatial and temporal closeness between two vessels (USV and an AIS ship) at any
instant of time are categorized by the following two metrics (Xu et al., 2016):

• Time to Closest Point of Approach (TCPA)

• Distance at Closest Point of Approach (DCPA)

By computing the TCPA and DCPA values online for all AIS ships, it is possible to visu-
alize this information and thus improve situational awareness. These are also the main
parameters for risk assessment (Xu et al., 2016).

A marine radar with automatic radar plotting aid (ARPA) can also be used as source for
TCPA and DCPA. However, this is an expensive solution compared to an AIS receiver and
smaller vehicles such as a remotely-operated USV does not necessarily have a radar system
onboard.

The coordinate origin of the ships are chosen midships on the centerline. Hence, in
order to avoid a collision it is convenient to specify a safety distance to each AIS ship by

4.2. MINIMUM SEPARATION ALGORITHM 53

Figure 4.1: Distance and safety distance (red circle) between USV and AIS ships.

defining a circle with radius Ri > 0 as shown in Fig. 4.1. Furthermore, let (x , y) denote the
interceptor (USV) position and let (xi , yi) where i � 1, 2, · · · ,N be the AIS ship positions.

When computing the TCPA and DCPA metrics it will be assumed that U � U (t0) �

constant and χ � χ(t0) � constant to find an explicit solution for each AIS measurement.
This assumption can be relaxed by integrating the nonlinear system (3.1)–(3.4) numerically
with a and r as optionally inputs.

Hence, the interceptor position at time t is obtained by integrating (3.1)–(3.2) from time
t0 to t with constant speed and course angle, which gives:

x(t) � x(t0) + U (t0) cos (χ(t0)) (t − t0) (4.1)
y(t) � y(t0) + U (t0) sin (χ(t0)) (t − t0) (4.2)

where (x(t0), y(t0), χ(t0)) is the initial pose of the ship. The AIS ship positions at time t
are found in a similar manner:

xi (t) � xi (t0) + Ui (t0) cos (χi (t0)) (t − t0) (4.3)
yi (t) � yi (t0) + Ui (t0) sin (χi (t0)) (t − t0) (4.4)

The relative position errors between the USV and AIS ship #i then become:

exi (t) � x(t) − xi (t) :� x0i + Vxi t (4.5)
eyi (t) � y(t) − yi (t) :� y0i + Vyi t (4.6)

54 CHAPTER 4. AUTOMATED SITUATIONAL AWARENESS

where the four constants are recognized as:

x0i � x(t0) −U (t0) cos (χ(t0)) t0 − xi (t0) + Ui (t0) cos (χi (t0)) t0 (4.7)
y0i � y(t0) −U (t0) sin (χ(t0)) t0 − yi (t0) + Ui (t0) sin (χi (t0)) t0 (4.8)
Vxi � U (t0) cos (χ(t0)) −Ui (t0) cos (χi (t0)) (4.9)
Vyi � U (t0) sin (χ(t0)) −Ui (t0) sin (χi (t0)) (4.10)

The instantaneous separation Si between the USV and AIS ship #i satisfies:

S2
i � e2

xi + e2
yi � (x0i + Vxi t)2

+ (y0i + Vyi t)2 (4.11)

or
S2

i � x2
0i
+ y2

0i
+ 2t(x0i Vxi + y0i Vyi) + (V2

xi + V2
yi)t2 (4.12)

4.2.1 Time to closest point of approach (TCPA)
The closest point of approach is obtained from (4.12) by solving Ṡi � 0 for t, which gives:

TCPAi �
−(x0i Vxi + y0i Vyi)

V2
xi
+ V2

yi

(4.13)

A negative TCPAi means that the distance to the closest point of approach has already
happened.

4.2.2 Distance at closest point of approach (DCPA)
The minimum distance between the USV and AIS ship #i should never be less than the
specified radius Ri . Hence, it is required that DCPAi > Ri in order to avoid collision.
Insertion of t � TCPAi in (4.12) gives the implicit formula for the DCPAi value:

DCPA2
i � x2

0i
+ y2

0i
+ 2 TCPAi

(
x0i Vxi + y0i Vyi

)
+

(
V2

xi + V2
yi

)
TCPA2

i (4.14)

4.3 Ship Collision Risk Index

The ship collision risk index of Xu et al. (2016) is used for collision risk assessment. The
USV maneuvering performance is specified in terms of three ship-dependent parameters
V0, TCPAs and DCPAs such that the USV speed satisfies:

V0 �
DCPAs
TCPAs

(4.15)

The risk index for an approachingAIS shipwith TCPAi andDCPAi values (computed using
(4.13) and (4.14)) is:

RIi �

√
DCPA2

s +
(
ηi V0 TCPAs

)2√
DCPA2

i +
(
ηi V0 TCPAi

)2
(4.16)

where the weighting factor ηi depends on from which side the approaching ship is coming
from:

ηi �



0.5TCPAi−TCPAs
TCPAs

coming from starboard side
0.55TCPAi−TCPAs

TCPAs
coming from port side

(4.17)

4.3. SHIP COLLISION RISK INDEX 55

Figure 4.2: The vehicle control station for operation of a pilot-controlled USV in a mixed-
reality environment. Unity is used to visualize the Trondheim fjord. The grey circle
represents the safety region of the USV, while AIS detected ships are plotted with green,
yellow or red circles to indicate if the they present a collision risk or not for the USV.
Reproduced with kind permission of Maritime Robotics AS.

Figure 4.3: 3-D visualization of a pilot-controlled USV, which is moving up the Nidelven
river in Trondheim. One live AIS ship is detected on the other side of the bridge.

56 CHAPTER 4. AUTOMATED SITUATIONAL AWARENESS

4.4 Experimental Validation

A vehicle control station is used to operate the USV in a mixed-reality environment, see
Fig. 4.2. The graphics is implemented using Unity. Three 3-D visualization scenarios are
presented below:

Case 1 (EKFmotiondata for visualizationofAISships): Visualizationof apilot-controlled
USV, which is moving up the Nidleven river in Trondheim.

Case 2 (Online risk assessment): Visualization of a pilot-controlled USV and online colli-
sion risk indexes for the approaching AIS ships.

Case 3 (Collision detection by motion prediction for varying evasive maneuvers): Mo-
tion prediction is used to identify possible collisions by computing the instantaneous
separation between the ships for different evasive maneuvers.

The case studies show how the minimum separation and risk index algorithms can be
visualized to enhance situational awareness. The main tool for this is interactive visual-
ization in a mixed-reality environment using a vehicle control station. The vehicle control
station is shown in Fig. 1.3.

Figure 4.4: 3-D visualization of the pilot-controlled USV, which is approaching several live
AIS ships outside the Trondheim harbor. The colored lines show the EKF predicted path
of the approaching ships using AIS data. The collision risk index is computed online and a
green line indicates small risk for collision, yellow ismoderate risk, while a red line indicates
high risk for collision.

4.4.1 Case 1: EKF motion data for visualization of AIS ships
The first case study visualizes a pilot-controlledUSV,which ismoving up theNidelven river
in Trondheim. The EKF in Section 3.2 is implemented at 50 Hz in order to generate data

4.4. EXPERIMENTAL VALIDATION 57

Figure 4.5: The “green-yellow-red” color map (4.19) for visualization of collision risk.

that can be used to visualize the AIS ships at 50 FPS. The scenario is the Trondheim fjord
and the Nidelven river located on the west coast of Norway. Live AIS data were obtained
using a VHF antenna and by decoding the NMEAmessages. Approximately 20 ships were
operating outside the Trondheim harbor when receiving the AIS data. Fig. 4.3 shows the
virtual world used to illustrate the river in Unity.

4.4.2 Case 2: Online risk assessment and visualization
The second case study visualizes a USV and the online collision risk indexes for the ap-
proaching AIS ships, see Fig. 4.4. The USV risk assessment parameters are chosen as V0 �

5 m/s and TCPAs � 30 s. This gives.

DCPAs � V0 · TCPAs � 150 m (4.18)
Hence, the risk index for each AIS ships can be computed online using (4.16).

The USV is approaching several AIS ship and risk for collision is visualized by using an
RGBA (red-green-blue-alpha) color space for varying risk indexes (RI) in order to improve
situational awareness. The additional parameter, alpha, is used to specify opaqueness of
each pixel. The following formula for the RGBA values was found to give good results:

[R,G, B,A] � [min(RI , 1), 1 −min(RI , 1), 0, 0.3] (4.19)

where min(RI , 1) ensures that the R and G values are within [0, 1]. The B value is chosen
as 0 to get a “green-yellow-red” warning for collision as shown in Fig. 4.5.

4.4.3 Case 3: Collision detection by motion prediction for varying
evasive maneuvers

The motion predictors can be used to identify possible collisions by computing the instan-
taneous separation between the ships. Let the coordinate origin of the ships be located
midships on the centerline. Furthermore, let (x , y) denote the interceptor (USV) position
and (xi , yi) where i � 1, 2, · · · ,N be the AIS ship positions. The relative position errors
between the USV and AIS ship #i then become:

exi (k) � x(k) − xi (k) (4.20)
eyi (k) � y(k) − yi (k) (4.21)

and the minimum separation S(k) between the USV and AIS ships are:

S(k) � min
i

√
e2

xi
(k) + e2

yi
(k) (4.22)

58 CHAPTER 4. AUTOMATED SITUATIONAL AWARENESS

Figure 4.6: An USV approaches MS Trondheimsfjord II from the East. The ship and USV
motions are predicted in 60 s to show the effect of an evasive maneuver.

Predictor for evasive maneuvers
If the minimum separation (4.22) is to small, the USV speed and course (3.30)–(3.31) can be
modified to include the effect of an evasive USV maneuver.

A typical collision avoidance maneuver can be specified in terms of a speed command
Uc and a course angle command χc , for instance:

• Reduce the intercepter speed U (0) by 50 %:

Uc � 0.5 U (0) (4.23)

• Align the interceptor course χ(0) to the target course:

χc � χi (0) (4.24)

4.4. EXPERIMENTAL VALIDATION 59

Figure 4.7: Minimum separation between an USV approachingMS Trondheimfjord II from
the East (blue) and when performing an evasive maneuver (red). The minimum distance
increases from 126.6 m to 201.0 m.

The next step is to replace (3.30)–(3.31)with the closed-loop speed and course dynamics,
typically first-order systems, such that:

Motionpredictor for USV evasive maneuvers:
x(k + 1) � x(k) + hU (k) cos (χ(k))

y(k + 1) � y(k) + hU (k) sin (χ(k))

U (k + 1) � U (k) +
h

Tspeed
(Uc −U (k))

χ(k + 1) � χ(k) +
h

Tcourse
ssa (χc − χ(k))

(4.25)
(4.26)

(4.27)

(4.28)

where ssa(·) is the smallest signed angle defined by (3.27), U (0) � U (t0) and χ(0) � χ(t0).
The time needed to perform themaneuver is specified by the user inputs Tspeed and Tcourse.

AIS data for MS Trondheimsfjord II (see Fig. 3.2) are used to demonstrate ship motion
prediction. The EKF parameters were chosen as in Section 3.2.3. The asynchronous AIS
data are processed by the EKF to obtain equally-spaced data at 50 Hz.

The USV is approaching the MS Trondheimsfjord II from East. The ship and USV
motions are predicted using a 60 s future horizon. The USV speed is 10 m/s and the course
is −90 deg, see Fig. 4.6. In order to increase the minimum separation of the USV and the
ship, an evasive maneuver is implemented using the motion predictor (4.25)–(4.28). Fig. 4.6
verifies that USV course aligns to the ship course as expected and that the USV speed is

60 CHAPTER 4. AUTOMATED SITUATIONAL AWARENESS

reduced from 10 m/s to 5 m/s during the turn. Fig. 4.7 shows that theminimum separation
between the approaching USV and the ship is increased from 126.6 m to 201.0 m by the
evasive maneuver.

4.5 Concluding Remarks

This chapter has presented a novel concept for automated situational awareness using 3-D
visualization. Unity was used for visualization of live ships operating in a mixed-reality
environment. A pilot-controlled USV was simulated to show how it could operate close to
real ships and visualization techniques were used for situational assessment.

The ship positions were obtained by decoding AIS data online using a VHF antenna.
After decoding, an EKF was designed to run at a fixed time step, typically 30-60 Hz, for
smooth visualization at high frame rates. Since the AIS data were transmitted at asyn-
chronous time samples, the EKF is implemented in discrete time using the predictor-corrector
representation to get evenly-spaced data and to handle loss of data packets. The EKF has
been used for motion prediction and to evaluate the minimum separation between ships
for varying evasive maneuvers.

An online algorithm for computation of the minimum distance between the USV and
the AIS ships was coded in Unity’s native C# scripting language. Finally, the concept
of automated situational awareness was demonstrated by online computation of a ship
collision risk index using live AIS data from the Trondheim harbor in Norway. An RGBA
(red-green-blue-alpha) color space for varying risk indexes (RI) was used to illustrate risk i
mixed-reality environment when approaching AIS detected ships.

5Conclusions and Challenges for Future
Research
This chapter concludes the work in the thesis and identify future topics for research related
to automated situational awareness.

5.1 Conclusions

The thesis has presented a framework for an automated situational awareness system for
human operators. In this context, situational awareness means having an accurate under-
standing of what is happening around you and what is likely to happen.

5.1.1 Automated situational awareness systems
The presented automated situational awareness system has been implemented in Unity by
using an agile software development model. The advantage of this was that the software
could be developed and tested in incremental steps, which allowed for dynamic updating
of the requirement specifications. The following subsystems have been developed during
this process:

AIS decoder: Parser for decoding of live AIS messages as specified by NMEA (2018).

State estimator: Two nonlinear Kalman filter algorithms (EKF and XKF) for interpolation
of asynchronous AIS measurements at 30-60 FPS. This made smooth visualization
possible. The Kalman filter algorithms also handle TCP and UDP packet losses.

Motion prediction: Prediction of ships and USV motions for a user specified future hori-
zon. USV evasive maneuvers are also included in the motion predictor.

Risk assessment by minimum separation: Computation of online minimum separation
parametrized in terms of time and distance to the closest point of approach (TCPA
and DCPA). These are the main metrics for computation of the risk index.

Unity Game Engine: Unitywas used to develop amixed-reality environment for visualiza-
tion of ships moving in the Trondheim fjord, Norway. This included realistic waves
and their effect on the ship motions as well as buildings in the Trondheim harbor and
the city.

3-D Visualization: Automated situational awareness was visualized by showing the USV
and AIS ships in real time using a mixed-reality environment when operating in the
Trondheim fjord and harbor. Predicted USV and ship motions, evasive maneuvers
and risk index (parametrized using colors) were shown to assist the operator.

5.1.2 Main contributions
The main contributions of the thesis have been published in one journal paper (Fossen and
Fossen, 2018a) and two conference papers (Fossen and Fossen, 2018b), (Fossen et al., 2018).
The main contributions can be summarized as:

61

62CHAPTER 5. CONCLUSIONS AND CHALLENGES FOR FUTURE RESEARCH

• A novel automated situational awareness systems for a pilot-operated USV in a
mixed-reality environment with live visualization of AIS detected ships to improve
the human operators cognitive processes.

• Decoding of live AIS data from a VHF antenna using a parser, which was scripted in
C# and implemented in Unity.

• An extended Kalman filter and a globally exponentially stable nonlinear observer
(eXogenous Kalman filter) for ship tracking, motion prediction and 3-D visualization
at 30-60 FPS. Both state estimators handle asynchronous data and TCP/UDP packet
losses.

• On-line ship collision risk assessment and visualization of risk for enhanced auto-
mated situational awareness using Kalman filters for motion prediction.

• Experimental validation of state estimators, motion prediction algorithms, collision
detection algorithms and online risk assessment by 3-D visualization of AIS detected
ships in a mixed-reality environment.

5.2 Future Work

The presented results are based on a single source of information, that is AISmeasurements.
Future research on automated situational awareness systems should look into the possibility
on combing all type of navigation systems and sensory information usingmachine learning
and state estimation methods. Sensor fusion is the combination of navigation and sensory
data in an optimal manner such that the resulting information has less uncertainty than
would be possible when these sources were used individually.

For automated situational awareness the following system should be considered for
sensor fusion, risk assessment and decision making:

• AIS for global navigation data

• Ultra-wideband (UWB) radio for local navigation and docking of ships

• Radar for collision avoidance and detection, and tracking in ships using ARPA

• Lidar for collision avoidance and detection, and local navigation

• Infrared cameras for collision avoidance and detection, and local navigation

• Optical cameras for situational assessment

• Satellite data for prediction of wind, waves and currents

In addition to this, it is important to develop 3-D visualization systems, which makes
it possible for humans to analyze large amount of information in real time without satu-
rating the human cognitive system. This can be done by identifying processes that can be
automated such that human decisions can be made by an automated situational awareness
system.

AAlgorithms
A.1 Backward Difference Approximation of the First Derivative

A.1.1 Asynchronous Data
The backward difference approximation of the first derivative for three asynchronous data
points F(k), F(k − 1) and F(k − 2) at times tk , tk−1 and tk−2, respectively can be derived
from the Taylor-series expansions:

F(k − 1) � F(k) − h1F′(k) +
1
2

h2
1F′′(k) + O(h3

1) (A.1)

F(k − 2) � F(k) − (h1 + h2)F′(k) +
1
2

(h1 + h2)2F′′(k) + O((h1 + h2)3) (A.2)

where h1 � tk − tk−1 and h2 � tk−1 − tk−2. Multiplying (A.1) with

α �
(h1 + h2)2

h2
1

(A.3)

and subtracting (A.2) from (A.1) makes F′′(k) vanish in (A.1) and (A.2). Hence, the error
will be of order O((h1 + h2)3). This gives

αF(k − 1) − F(k − 2) � (α − 1)F(k) + (−(α − 1)h1 + h2) F′(k) (A.4)

Solving for F′(k), gives the formula:

F′(k) �
(1 − α)F(k) + αF(k − 1) − F(k − 2)

(1 − α)h1 + h2
(A.5)

A.1.2 Synchronous Data
For synchronous data h � h1 � h2. Hence, (A.4) gives α � 4 and (A.5) reduces to:

F′(k) �
3F(k) − 4F(k − 1) + F(k − 2)

2h
(A.6)

This expression is recognized as the second-order backward difference operator for F′(k).

63

BMatlab Scripts
B.1 Extended Kalman Filter for AIS Data

The EKF and motion prediction algorithms in Section 3.2 were implemented and tested
in Matlab using experimental data before they were coded as a methods in Unity. The
experimental data was logged using an AIS receiver and the data format is:

1 % DATA = [time MMSI x y U chi]
2 DATA = [...
3 1.57 258177000 4459.52 -21316.17 32.900 -118.300
4 1.62 257013700 1470.57 -9483.21 12.900 149.800
5 3.25 257333000 2715.71 -15846.23 36.500 100.500
6 ...];

The EKF is implemented for the case when AIS data are received at a lowmeasurement
rate (typically 0.5 Hz or slower). For this case the code uses a � r � 0.

An extension to the case when the measurements arrive at higher measurement rates is
found in Appendix B.2 where the backward difference operator is used to compute a and r
(see Appendix A.1).

1 % 4-state discrete-time EKF with motion prediction (a = r = 0)
2 AISdata1 % load AIS data
3 A = unique(DATA(:,2)); % find unique ship indexes in data set
4 idx = 4; % Ship #4, between Vanvikan -Trondheim
5 N1 = 800; % start sample
6 N2 = 1500 % final sample
7

8 % extract all data for ship with index idx, store data in table ship1
9 j = 1;
10 for i = N1:N2
11 if (DATA(i,2) == A(idx))
12 ship1(j,:) = DATA(i,:);
13 j = j+1;
14 end
15 end
16 MMSI = ship1(1,2)
17

18 %%%
19 % Motion prediction data
20 %%%
21 k_p = 7000; % start sample
22 tfinal = 30; % duration in seconds
23

24 %%%
25 % Measurements
26 %%%
27 t = round(ship1(:,1), 2); t = t - t(1); % 2 digits time
28 x = ship1(:,3);

65

66 APPENDIX B. MATLAB SCRIPTS

29 y = ship1(:,4);
30 U = ship1(:,5) * 0.514444; % knots to m/s
31

32 chi = atan2(diff([0; y]),diff([0; x])); % path-tangential angle
33 chi = wrapToPi(chi);
34

35 t_max = t(length(t));
36 t_sampling = mean(diff(t))
37

38 h = 0.02; % 50 Hz
39 k = 1;
40 M = round(t_max)/h;
41 N = length(t);
42 t_update = t(1);
43

44 % initialization of EKF: X = [x y U chi]
45 Q = diag([0.01 0.01 0.1 0.1]);
46 R = diag([0.001 0.001 0.001 0.01]);
47 X_prd = [x(1) y(1) U(1) chi(1)]';
48 P_prd = 0.1 * eye(4);
49

50 %%%
51 % MAIN LOOP
52 %%%
53

54 simdata = zeros(M-1,7); % memory allocation
55

56 for i = 1:M-1
57 time = (i-1)*h; % time (sec)
58

59 % Corrector with K = 0 (no update)
60 X_hat = X_prd;
61 P_hat = P_prd;
62

63 % Measurements
64 if (time ≥ t_update)
65 x_k = x(k);
66 y_k = y(k);
67 U_k = U(k);
68 chi_k = chi(k);
69

70 z_k = [x_k y_k U_k chi_k]';
71 eps = z_k - X_prd;
72 eps(4) = wrapToPi(eps(4));
73

74 % Corrector
75 K = P_prd * inv(P_prd + R);
76

77 X_hat = X_prd + K * eps;
78 P_hat = (eye(4)-K) * P_prd * (eye(4)-K)' + K * R *K';
79

80 if k < N
81 k = k + 1;

B.1. EXTENDED KALMAN FILTER FOR AIS DATA 67

82 t_update = t(k);
83 end
84 end
85

86 % Store simulation data in a table
87 simdata(i,:) = [time X_prd' P_prd(1,1) P_prd(2,2)];
88

89 % Predictor (k+1)
90 f_hat = [X_hat(3) * cos(X_hat(4))
91 X_hat(3) * sin(X_hat(4))
92 0
93 0];
94

95 A = [0 0 cos(X_hat(4)) -X_hat(3) * sin(X_hat(4))
96 0 0 sin(X_hat(4)) X_hat(3) * cos(X_hat(4))
97 0 0 0 0
98 0 0 0 0];
99

100 PHI = eye(4) + A * h;
101

102 X_prd = X_hat + h * f_hat;
103 P_prd = PHI * P_hat * PHI' + Q;
104

105 end
106

107 %%%
108 % Motion prediction from time t(k_p)
109 %%%
110 k_p = round(t(k_p)/h);
111 x_p(1) = simdata(k_p,2);
112 y_p(1) = simdata(k_p,3);
113 U_p(1) = simdata(k_p,4);
114 chi_p(1) = simdata(k_p,5);
115

116 h_p = 0.1;
117 for i = 1:tfinal/h_p
118 x_p(i+1) = x_p(i) + h_p * U_p(i) * cos(chi_p(i));
119 y_p(i+1) = y_p(i) + h_p * U_p(i) * sin(chi_p(i));
120 U_p(i+1) = U_p(i) + h_p * 0;
121 chi_p(i+1) = chi_p(i) + h_p * 0;
122 end
123

124 %%%
125 % PLOT SIMULATION DATA: x = [x y U chi] AND PREDICTED SHIP
126 %%%
127 t_prd = simdata(:,1);
128 x_prd = simdata(:,2)/1000;
129 y_prd = simdata(:,3)/1000;
130 U_prd = simdata(:,4);
131 chi_prd = simdata(:,5);
132 chi_prd = wrapToPi(chi_prd);
133

134 P11 = simdata(:,6);

68 APPENDIX B. MATLAB SCRIPTS

135 P22 = simdata(:,7);
136

137 x = x/1000;
138 y = y/1000;
139 x_p = x_p/1000;
140 y_p = y_p/1000;
141

142 figure(1)
143 xship = [-1 , 1/3, 1/3, 1, 1/3, 1/3,-1]; % draw ship
144 yship = [-1/3,-1/3,-1/3, 0, 1/3, 1/3, 1/3];
145 g1 = hgtransform;
146 g2 = hgtransform;
147 patch('XData',xship,'YData',yship,'FaceColor','black','Parent',g1);
148 patch('XData',xship,'YData',yship,'FaceColor','black','Parent',g2);
149

150 hold on
151 plot(y,x,'bo',y_prd,x_prd,'r','LineWidth',1);
152 hold off; grid
153

154 set(gca,'fontsize',12)
155 xlabel('y [km]'); ylabel('x [km]')
156 title('xy-plot: EKF (red) and AIS measurements (blue)')
157

158 hold on
159 quiver(y_p(1),x_p(1),y_p(tfinal/h_p)-y_p(1),...
160 x_p(tfinal/h_p)-x_p(1),1,'g','LineWidth',5)
161 g1.Matrix = makehgtform('translate',[y_p(1),x_p(1),0],...
162 'scale',0.6,'zrotate',pi/2-chi_p(1));
163 g2.Matrix = ...

makehgtform('translate',[y_p(tfinal/h_p),x_p(tfinal/h_p),0],...
164 'scale',0.6,'zrotate',pi/2-chi_p(tfinal/h_p));
165 drawnow
166 hold off
167

168 figure(2)
169 subplot(411)
170 plot(t,(180/pi)*chi,'o', ...

t_prd ,(180/pi)*chi_prd,'r'),grid,title('\chi [deg]');
171 set(gca,'fontsize',12)
172 subplot(412)
173 plot(t,U,'o', t_prd,U_prd,'r','LineWidth',1),grid,title('U [m/s]');
174 subplot(413)
175 plot(t,x,'o',t_prd,x_prd,'r','LineWidth',1),grid,title('x [km]');
176 set(gca,'fontsize',12)
177 subplot(414)
178 plot(t,y,'o',t_prd,y_prd,'r','LineWidth',1),grid,title('y [km]');
179 set(gca,'fontsize',12)

B.2. EXOGENOUS KALMAN FILTER FOR AIS DATA 69

B.2 eXogenous Kalman Filter for AIS Data

The XKF and motion prediction algorithms in Section 3.3 were implemented and tested
in Matlab using experimental data before they were coded as a methods in Unity. The
experimental data was logged using an AIS receiver and the data format is:

1 % DATA = [time MMSI x y U chi]
2 DATA = [...
3 1.57 258177000 4459.52 -21316.17 32.900 -118.300
4 1.62 257013700 1470.57 -9483.21 12.900 149.800
5 3.25 257333000 2715.71 -15846.23 36.500 100.500
6 ...];

The XKF is implemented for the case when AIS data are received at high measurement
rate (typically 0.5 Hz or faster). For this case the code uses the backward difference operator
in Appendix A.1) to compute a and r from the AIS data.

1 % 4-state discrete-time XKF with motion prediction
2 AISdata1 % load AIS data
3 A = unique(DATA(:,2)); % find unique ship indexes in data set
4 idx = 10; % Ship #10, between Trondheim -Brekstad
5 N2MAX = length(DATA(:,1));
6 N1 = 800; % start sample
7 N2 = 1500 % final sample
8

9 CASE = 1;
10 if (CASE == 1) % Out of the fjord
11 N1 = 1;
12 N2 = 1100;
13 elseif (CASE == 2) % In the fjord
14 N1 = 3200;
15 N2 = N2MAX;
16 else % all data
17 N1 = 1;
18 N2 = N2MAX;
19 end
20

21 j = 1;
22 for i = N1:N2
23 if (DATA(i,2) == A(idx))
24 ship1(j,:) = DATA(i,:);
25 j = j+1;
26 end
27 end
28

29 %%%
30 % Motion prediction data
31 %%%
32 h_p = 0.1; % 10 Hz plots
33

34 kmax = length(ship1);

70 APPENDIX B. MATLAB SCRIPTS

35 k_p = round(kmax/2); % start sample k_p < k_max
36 tfinal = 30; % duration in seconds
37

38 %%%
39 % Measurements
40 %%%
41 t = round(ship1(:,1), 2); t = t - t(1); % 2 digits time
42 x = ship1(:,3);
43 y = ship1(:,4);
44 U = ship1(:,5) * 0.514444;
45

46 chi = atan2(diff([0; y]),diff([0; x])); % path-tangential angle
47 chi = wrapToPi(chi);
48

49 t_max = t(length(t));
50

51 h = 0.025; % 40 Hz
52 k = 1;
53 M = round(t_max)/h;
54 N = length(t);
55 t_update = t(1);
56

57 % initialization of kinematic observer: x = [x y U chi]
58 x_prd = x(1);
59 y_prd = y(1);
60 U_prd = U(1);
61 chi_prd = chi(1);
62 a = 0;
63 r = 0;
64

65 K1 = 10;
66 K2 = 10;
67 K3 = 30;
68 K4 = 50;
69

70 % initialization of LTV Kalman filter
71 Q = diag([1 1 10 10]);
72 R = eye(4);
73

74 P = eye(4);
75 x_hat = [x(1) y(1) U(1) chi(1)]';
76

77 T_a = 10; % acceleration time constant
78 T_r = 50; % yaw rate time constant
79

80 B = [0 0
81 0 0
82 1 0
83 0 1];
84

85 H = eye(4);
86

87

B.2. EXOGENOUS KALMAN FILTER FOR AIS DATA 71

88 %%%
89 % MAIN LOOP
90 %%%
91 simdata = zeros(M-1,11); % memory allocation
92

93 for i = 1:M-1
94 time = (i-1)*h; % time (sec)
95

96 % Store simulation data in a table
97 simdata(i,:) = [time x_prd y_prd U_prd chi_prd x_hat' a r];
98

99 % Measurements
100 if (time ≥ t_update)
101 x_k = x(k);
102 y_k = y(k);
103 U_k = U(k);
104 chi_k = chi(k);
105

106 % estimate of acceleration and yaw rate for sample k > 2
107 if k > 2
108

109 h1 = t(k) - t(k-1);
110 h2 = t(k-1) - t(k-2);
111 alp = ((h1+h2)/h1)^2;
112

113 if (h1+h2)/2 > 4 % do not compute a and r if mean ...
sampling time > 4 s

114 a_c = 0;
115 r_c = 0;
116 else
117 a_c = ((1-alp)*U(k) + alp*U(k-1) - U(k-2)) / ...

((1-alp)*h1+h2);
118 r_c = ((1-alp)*chi(k)+ alp*chi(k-1)- chi(k-2)) / ...

((1-alp)*h1+h2);
119 end
120

121 else % zero for first two data points
122 a_c = 0;
123 r_c = 0;
124 end
125

126 % max values (saturation) to avoid estimates using wildpoints
127 r_max = pi/180;
128 if r_c > r_max
129 r_c = r_max;
130 elseif r < -r_max
131 r_c = -r_max;
132 end
133

134 % max values
135 a_max = 1;
136 if a_c > a_max
137 a_c = a_max;

72 APPENDIX B. MATLAB SCRIPTS

138 elseif a_c < -a_max
139 a_c = -a_max;
140 end
141

142 % Corrector Kalman tilter (update states if new measurement)
143 z_k = [x_k y_k U_k chi_k]';
144 eps = z_k - H * x_hat;
145 eps(4) = wrapToPi(eps(4));
146 K = P * H' * inv(H*P*H' + R);
147 x_hat = x_hat + K * eps;
148 P = (eye(4) - K*H) * P * (eye(4) - K*H)' + K * R * K';
149

150 % Corrector kinematic observer (update states if new ...
measurement)

151 x_prd = x_prd + h * K1 * (x_k - x_prd);
152 y_prd = y_prd + h * K2 * (y_k - y_prd);
153 U_prd = U_prd + h * K3 * (U_k - U_prd);
154 chi_prd = chi_prd + h * K4 * wrapToPi(chi_k - chi_prd);
155

156 if k < N
157 k = k + 1;
158 t_update = t(k);
159 end
160 end
161

162 % Kalman filter model
163 X_prd = [x_prd y_prd U_prd chi_prd]';
164

165 f_prd = [X_prd(3) * cos(X_prd(4))
166 X_prd(3) * sin(X_prd(4))
167 0
168 0];
169

170 F = [0 0 cos(X_prd(4)) -X_prd(3) * sin(X_prd(4))
171 0 0 sin(X_prd(4)) X_prd(3) * cos(X_prd(4))
172 0 0 0 0
173 0 0 0 0];
174

175 PHI = eye(4) + h * F;
176

177 % Predictor Kalman filter (k+1)
178 x_hat = x_hat + h * (f_prd + F * (x_hat - X_prd) + B * [a r]');
179 x_hat(4) = wrapToPi(x_hat(4));
180 P = PHI * P * PHI' + Q;
181

182 % Predictor kinematic observer (k+1)
183 x_prd = x_prd + h * U_k * cos(chi_prd);
184 y_prd = y_prd + h * U_k * sin(chi_prd);
185 U_prd = U_prd + h * a;
186 chi_prd = chi_prd + h * r;
187 chi_prd = wrapToPi(chi_prd);
188 a = a + (a_c-a) / T_a;
189 r = r + (r_c-r) / T_r;

B.2. EXOGENOUS KALMAN FILTER FOR AIS DATA 73

190 end
191

192 %%%
193 % Motion prediction from time t(k_p)
194 %%%
195 x_p(1) = x(k_p);
196 y_p(1) = y(k_p);
197 U_p(1) = U(k_p);
198 chi_p(1) = chi(k_p);
199

200 dt = t(k_p) - t(k_p-1);
201 a = (U(k_p) - U(k_p-1)) / dt;
202 r = wrapToPi(chi(k_p) - chi(k_p-1)) / dt;
203

204 for i = 1:tfinal/h_p
205 x_p(i+1) = x_p(i) + h_p * U_p(i) * cos(chi_p(i));
206 y_p(i+1) = y_p(i) + h_p * U_p(i) * sin(chi_p(i));
207 U_p(i+1) = U_p(i) + h_p * a;
208 chi_p(i+1) = chi_p(i) + h_p * r;
209 end
210

211 %%%
212 % PLOT SIMULATION DATA: x = [x y U chi] AND PREDICTED SHIP
213 %%%
214 t_prd = simdata(:,1);
215 x_prd = simdata(:,2)/1000;
216 y_prd = simdata(:,3)/1000;
217 U_prd = simdata(:,4);
218 chi_prd = simdata(:,5);
219

220 x_hat = simdata(:,6)/1000;
221 y_hat = simdata(:,7)/1000;
222 U_hat = simdata(:,8);
223 chi_hat = simdata(:,9);
224

225 a_hat = simdata(:,10);
226 r_hat = simdata(:,11);
227

228 x = x/1000;
229 y = y/1000;
230 x_p = x_p/1000;
231 y_p = y_p/1000;
232

233 figure(1)
234 xship = [-1 , 1/3, 1/3, 1, 1/3, 1/3,-1]; % draw ship
235 yship = [-1/3,-1/3,-1/3, 0, 1/3, 1/3, 1/3];
236

237 g1 = hgtransform;
238 g2 = hgtransform;
239 patch('XData',xship,'YData',yship,'FaceColor','black','Parent',g1);
240 patch('XData',xship,'YData',yship,'FaceColor','black','Parent',g2);
241

242 hold on

74 APPENDIX B. MATLAB SCRIPTS

243 plot(y,x,'bo',y_prd,x_prd,'r','LineWidth',1);
244 plot(y_hat,x_hat,'c','LineWidth',1);
245 %plot(y(k_p),x(k_p),'rp','MarkerSize ',30);
246 hold off; grid
247

248 set(gca,'fontsize',12)
249 xlabel('y [km]'); ylabel('x [km]')
250 title('xy-plot: Kinematic observer (red) and XKF (cyan)')
251

252 hold on
253 quiver(y_p(1),x_p(1),y_p(tfinal/h_p)-y_p(1),x_p(tfinal/h_p)-x_p(1),...
254 1,'g','LineWidth',5)
255 g1.Matrix = makehgtform('translate',[y_p(1),x_p(1),0],...
256 'scale',0.6,'zrotate',pi/2-chi_p(1));
257 g2.Matrix = ...

makehgtform('translate',[y_p(tfinal/h_p),x_p(tfinal/h_p),0],...
258 'scale',0.6,'zrotate',pi/2-chi_p(tfinal/h_p));
259 drawnow
260 hold off
261

262 figure(2)
263 subplot(611)
264 plot(t,(180/pi)*chi,'o', t_prd ,(180/pi)*chi_prd,'r', ...

t_prd ,(180/pi)*chi_hat,'c'),grid,title('\chi [deg]');
265 set(gca,'fontsize',12)
266 subplot(612)
267 plot(t,U,'o', t_prd,U_prd,'r', t_prd,U_hat,'c'),grid,title('U [m/s]');
268 subplot(613)
269 plot(t,x,'o',t_prd,x_prd,'r',t_prd,x_hat,'c'),grid,title('x [km]');
270 set(gca,'fontsize',12)
271 subplot(614)
272 plot(t,y,'o',t_prd,y_prd,'r',t_prd,y_hat,'c'),grid,title('y [km]');
273 set(gca,'fontsize',12)
274 subplot(615)
275 plot(t_prd,a_hat,'b','LineWidth',1),grid,title('a [m/s^2]');
276 set(gca,'fontsize',12)
277 subplot(616)
278 plot(t_prd,r_hat*180/pi,'b','LineWidth',1),grid,title('r [deg/s]');
279 set(gca,'fontsize',12)

B.3 USV Simulator

The USV can be operated by a pilot and visualized in Unity by logging live AIS data.
However, in many cases it is convenient to simulate the USV under pilot control. This can
be done by assuming that the pilot and USV is a closed-loop dynamic system where two
time constants in surge and yaw specifies the responses. The closed-loop dynamics of the
USV is simulated using the following script:

B.3. USV SIMULATOR 75

1 % USV test script
2 h = 0.1; % sampling time
3

4 % initial values
5 x = 0;
6 y = 0;
7 chi = 10 * pi/180;
8 U = 10;
9 x_k = [x y chi U]';
10

11 % joystick commands
12 U_c = 8; % SOG
13 chi_c = 30 * pi/180; % COG
14

15 N = 1000;
16 for i = 1:N+1,
17 simdata(i,:) = x_k';
18 x_k = USV(x_k,U_c,chi_c,h);
19 end
20

21 t = h * (0:N);
22 x = simdata(:,1);
23 y = simdata(:,2);
24 chi = simdata(:,3);
25 U = simdata(:,4);
26

27 subplot(311)
28 plot(y,x); title('xy')
29 subplot(312)
30 plot(t,chi*180/pi); title('COG')
31 subplot(313)
32 plot(t,U); title('SOG')

1 % x_k = USV(x_k,U_k,chi_c,h)
2 function x_k = USV(x_k,U_c,chi_c,h)
3 T_chi = 10; % Time constant course angle
4 T_U = 10; % Time constant speed
5

6 % Inputs
7 x = x_k(1); y = x_k(2); chi = x_k(3); U = x_k(4);
8

9 % Numerical integration of the USV closed-loop equations
10 x = x + h * U * cos(chi);
11 y = y + h * U * sin(chi);
12 chi = chi + h/T_chi * WrapToPi(chi_c - chi);
13 U = U + h/T_U * (U_c - U);
14

15 % Outputs
16 x_k = [x, y, chi, U]';
17 end

76 APPENDIX B. MATLAB SCRIPTS

B.4 Visualization of Wave-Induced Ship Motions

In order to visualize the ship motions in waves as a function of varying sea states, a closed-
form hydrodynamic model (Jensen et al., 2004) is implemented in Unity. The model uses
the main characteristics of the ship, wave amplitude and direction to compute the heave,
roll and pitch responses due to a regular wave.

1 % WAVERESPONSE estimates wave-induced ship motions using closed-form
2 % formulae for heave, roll and pitch.
3 %
4 % Ref: J. Juncher Jensen, A. E. Mansour and A. S. Olsen. Estimation of
5 % ship motions using closed-form expressions. Ocean Engineering 31,
6 % 2004, pp. 61-85
7

8 % wave data
9 a = 1.5; % wave amplitude (m)
10 beta = 230; % wave direction (deg), 180 deg is head sea
11 T_0 = 12; % Wave peak period (s), w_0 = 2*pi/T_0
12

13 % main ship data
14 V = 5; % Ship speed (m/s)
15 L = 40; % Length of ship (m)
16 B = 6; % Breadth of ship (m)
17 T = 4; % Draught of ship (m)
18

19 % additional roll data
20 zeta_roll = 0.2; % Relative damping factor in roll
21 T_roll = 6; % Natural roll period (s)
22 GM_T = 1; % Transverse metacentric height (m)
23 Cwp = 0.75; % Waterplane area coefficient
24 Cb = 0.65; % Block coefficient
25 Delta = 1/3; % 0 < Delta = bow/L < Cwp
26

27 %%%
28 % Hydrodynamic parameters
29 %%%
30 g = 9.81; % acceleration of gravity (m/s^2)
31 rho = 1025; % density of water (kg/m^3)
32 nabla = Cb * L * B * T; % volume displacement (m^3)
33 Awp = Cwp * L * B; % waterline area (m^2)
34 w_0 = 2 * pi / T_0; % Wave peak frequency (rad/s)
35 k = w_0^2/g; % wave number
36 beta = beta * (pi/180);
37 w_e = w_0 - k * V * cos(beta); % frequency of encounter
38 Fn = V / sqrt(g*L); % Froude number
39

40 % Heave and pitch
41 alpha = w_e/w_0;
42 k_e = abs(k * cos(beta));
43 KL = k_e * L/2;
44

45 kappa = exp(-k_e * T);

B.4. VISUALIZATION OF WAVE-INDUCED SHIP MOTIONS 77

46 A = 2 * sin(k*B*alpha^2/2) * exp(-k*T*alpha^2);
47 f = sqrt((1-k*T)^2 + (A^2/(k*B*alpha^3))^2) ;
48 F = kappa * f * (1/KL) * sin(KL);
49 G = kappa * f * (1/KL)^2 * (6/L) * (sin(KL) - KL*cos(KL));
50

51 % Roll
52 w_roll = 2*pi / T_roll; % natural frequency
53 C44 = rho * g * nabla * GM_T; % spring coefficient
54 M44 = C44/w_roll^2;
55 B44 = 2 * zeta_roll * w_roll * M44; % damping coefficient
56 gamma = (Cwp - Delta)/(1-Delta);
57 M = sin(beta) * sqrt(B44 * rho*g^2/w_e);
58

59 %%%
60 % Outputs
61 %%%
62 z_max = a * F % max heave amplitude (m)
63 phi_max = (180/pi) * M / C44 % max roll angle (deg)
64 theta_max = (180/pi) * a * G % max pitch angle (deg)
65

66 %%%
67 % Plots
68 %%%
69 t = 0:0.1:10;
70

71 % Oscillators (steady-state solutions) are based on the assumption ...
that the

72 % wave frequency w_0 is far away from the natural frequencies w3, ...
w4, w5

73 z = z_max * cos(w_e*t);
74 phi = phi_max * cos(w_e*t);
75 theta = theta_max * sin(w_e*t);
76

77 % The solution of the ODE is valid for all frequencies including ...
the resonance

78 % where w_0 is equal to the natural frequency.
79 % https://en.wikipedia.org/wiki/Harmonic_oscillator
80

81 % Heave: F0 = a F m w3^2
82 w3 = sqrt(g/(2*T));
83 zeta3 = (1/(2*w3)) * (A^2/(k*B*alpha^3*w_0))*(g/(2*T));
84 Z3 = sqrt((2*w3*zeta3)^2 + (1/w_e^2)*(w3^2-w_e^2)^2);
85 eps3 = atan(2*w_e*w3*zeta3/(w3^2-w_e^2));
86 z_response = (a*F*w3^2/(Z3*w_e)) * cos(w_e*t+eps3);
87

88 % Pitch: F0 = a G m w5^2
89 w5 = sqrt(g/(2*T));
90 zeta5 = (1/(2*w5)) * (A^2/(k*B*alpha^3*w_0))*(g/(2*T));
91 Z5 = sqrt((2*w5*zeta5)^2 + (1/w_e^2)*(w5^2-w_e^2)^2);
92 eps5 = atan(2*w_e*w5*zeta5/(w5^2-w_e^2));
93 theta_response = (180/pi) * (a*G*w5^2/(Z5*w_e)) * sin(w_e*t+eps5);
94

95 % Roll F0 = (M/C44) m w4^2

78 APPENDIX B. MATLAB SCRIPTS

96 w4 = 2*pi/T_roll;
97 zeta4 = zeta_roll;
98 Z4 = sqrt((2*w4*zeta4)^2 + (1/w_e^2)*(w4^2-w_e^2)^2);
99 eps4 = atan(2*w_e*w4*zeta4/(w4^2-w_e^2));

100 roll_response = (180/pi) * ((M/C44)*w4^2/(Z4*w_e)) * cos(w_e*t+eps4);
101

102 % Plots (blue is steady-state and red is ODE)
103 figure(gcf)
104 subplot(311)
105 plot(t,z,t,z_response),title('Heave (m)'),xlabel('time (s)'), grid
106 subplot(312)
107 plot(t,phi,t,roll_response),title('Roll (deg)'),xlabel('time (s)'), ...

grid
108 subplot(313)
109 plot(t,theta,t,theta_response),title('Pitch (deg)'),xlabel('time ...

(s)'),grid

CSoftware Versions
Themixed-reality 3-D visualization software has been developed using the programs listed
in Table C.1.

Table C.1: Software versions and description.
.

Software Version no. Developer Description
3D Ware-
house

NA Google Open library in which SketchUp
users may upload and download
3-D models to share.

Blender 2.79b Blender
founda-
tion

Open-source 3-D computer graph-
ics software toolset used for creat-
ing animated films, visual effects,
art, 3-D printedmodels, interactive
3-D applications and video games.

C# com-
piler

NA Mono De-
velop

Unity build-in C# compiler.

Hydroform
Ocean Sys-
tem

1.3.6 XIX Inter-
active

Plugin for generation of ocean
waves

Matlab R2018b 64 bit MathWorks Technical computing and simula-
tion.

SketchUp
Free

8 Google 3-D modeling computer program
for architectural, interior design,
landscape architecture, civil and
mechanical engineering, film and
video game design.

TerraLand 2.3 Terraunity Plugin which contains multiple
components for GIS data and co-
ordinates to load and create photo-
realistic terrain fromanypart of the
Earth.

Unity As-
set Store

NA Unity
Technolo-
gies

Onlinemarketplace for Unity users
to sell project assets (artwork, code
systems, audio, etc.) to each other.

Unity 2018.2.17f1 Unity
Technolo-
gies

Cross-platform game engine for
creation of 3-D games and simu-
lations with API scripting in C#.

Windows 10 Microsoft Operating system.

79

DVideo Links
The following Google Drive video link:

https://drive.google.com/drive/folders/1_zBol7ROfooj6nwx5ThbHuK_NP2aG5u3?usp=sharing

contains several MP4 videos, which demonstrate 3-D visualization of ships in a mixed-
reality environment. The locations are the city of Trondheim, the river Nidelven and the
fjord west of Trondheim.

Otter_mixed_reality_risk_index.mp4: Video showing the Maritime Robotics AS Otter
USV moving up the Nidelven river in Trondheim. The Otter is simulated using
a mathematical model of the vehicle (see Appendix B.3), which allows for evasive
maneuvers to avoid collision.

USV_AISship_evasive_maneuver.mp4: Video showinga simulatedUSVapproaching sev-
eral AIS ships. The lines show the predicted motion of the AIS ships using the
extended Kalman filter algorithm and the colors indicate the collision risk (green-
yellow-red). This is a mixed-reality environment where the USV is simulated using a
mathematical model of the vehicle (see Appendix B.3) and the AIS ships are overlaid
the virtual world.

USV_in_waves.mp4: Video showing thewave-inducedmotions in heave, roll and pitch for
a USV in waves using the closed-form hydrodynamic model of (Jensen et al., 2004),
see Appendix B.4.

AIS_ship_overview.mp4: Bird perspective of AIS ships outside the city of Trondheim
when changing the camera view.

Vehicle_Control_Station.mp4: Video showing the vehicle control station (see Fig. 1.3) for
mixed-reality visualization of live AIS ships.

81

https://drive.google.com/drive/folders/1_zBol7ROfooj6nwx5ThbHuK_NP2aG5u3?usp=sharing

References
Automatic Identification System (2018). Wikipedia. Accessed 2018-11-15.

URL: https://en.wikipedia.org/wiki/Automatic_identification_system

Balaji, S. and Murugaiyan, M. S. (2012). Waterfall vs. V-Model vs. Agile: A Comparative
Study on SDLC. International Journal of Information Technology and Business Management,
2(1): 26–30.

Bhat, S. P. and Bernstein, D. S. (2000). A Topological Obstruction to Continuous Global
Stabilization of Rotational Motion and the Unwinding Phenomenon. Systems and Control
Letters, 39(1): 63–70. doi: 10.1016/S0167-6911(99)00090-0.

COLREGS (1972). International Regulations for Preventing Collisions at Sea - Articles of
the Convention on the International Regulations for Preventing Collisions at Sea. Lloyd’s
Register.

Farrell, J. A. (2008). Aided Navigation: GPS with High Rate Sensors. McGraw-Hill.

Fossen, S., Bye, R. T., and Osen, O. (2018). Visualization and Collision Risk Assessment
of Real Ships in a Mixed Reality Environment using Live Automatic Identification Sys-
tem (AIS) Data. In Proc. of the 2nd IEEE European Conference on Computers & Computing
(EECS’18), 20-22 December, Bern.

Fossen, S. and Fossen, T. I. (2018a). eXogenous Kalman Filter (XKF) for Visualization
and Motion Prediction of Ships using Live Automatic Identification System (AIS) Data.
Modeling, Identification and Control, 39(4): 233–244. doi: 10.4173/mic.2018.4.1.

Fossen, S. and Fossen, T. I. (2018b). Extended Kalman Filter Design and Motion Prediction
of Ships using Live Automatic Identification System (AIS) Data. In Proc. of the 2nd IEEE
European Conference on Computers & Computing (EECS’18), 20-22 December, Bern.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley. doi:
10.1002/9781119994138.

Fu, H. F. H., Liu, S. L. S., and Sun, F. S. F. (2010). Ship Motion Prediction based on AGA-
LSSVM. In IEEE International Conference on Mechatronics and Automation (ICMA’10), pp.
202–206. doi: 10.1109/ICMA.2010.5589093.

Gelb, A. (1974). Applied Optimal Estimation. MIT Press.

Holsopple, J., Sudit, M., Nusinov,M., Liu, D. F., Du, H., and Yang, S. J. (2010). Enhancing Sit-
uation Awareness via Automated Situation Assessment. IEEE Communications Magazine,
48(3).

Jaskolski, K. (2017). Automatic Identification System (AIS) Dynamic Data Estimation Based
onDiscreteKalman Filter (KF)Algorithm. Scientific Journal of PolishNaval Academy, 211(4):
71–87. doi: 10.5604/01.3001.0010.6747.

Jensen, J. J., Mansour, A. E., and Olsen, A. S. (2004). Estimation of Ship Motions using
Closed-Form Expressions. Ocean Engineering, 31: 61–85.

83

84 REFERENCES

Jiang, S., Jin, H., and Wei, F. (2013). LS-SVM Application for Ship Course Model Predictive
Control. In IEEE International Conference on Mechatronics and Automation (ICMA’13), pp.
1615–1619. doi: 10.1109/ICMA.2013.6618156.

Johansen, T. A. and Fossen, T. I. (2017). The eXogenous Kalman Filter (XKF). International
Journal of Control, 90(2): 161–167. doi: 10.1080/00207179.2016.1172390.

Johansen, T. A., Perez, T., andCristofaro, A. (2016). Ship CollisionAvoidance andCOLREGS
Compliance using Simulation-Based Control Behavior Selection with Predictive Hazard
Assessment. IEEE Transactions on Intelligent Transportation Systems, 17(4): 3407–3422.

Khalil, H. K. (2014). Nonlinear Systems. Pearson, 3rd edition.

Kongsberg (2018). Autonomous ship project, key facts about YARA Birkeland. Accessed
2018-11-18.
URL: https://www.km.kongsberg.com

Lin, Z., Yang, Q., Guo, Z., and Li, J. (2011). An Improved Autoregressive Method with
Kalman Filtering Theory for Vessel: Motion Predication. International Journal of Intelligent
Systems, 4(4): 11–18.

Mazzarella, F., Arguedas, V. F., and M.Vespe (2015). Knowledge-based Vessel Position
Prediction usingHistorical AIS Data. In Sensor Data Fusion: Trends, Solutions, Applications,
pp. 1–5.

Milgram, P. and Kishino, F. (1994). A Taxonomy of Mixed Reality Visual Displays. IEICE
Transactions on Information Systems, E77-D(12).

MSQ (2018). Maritime Safety Queensland. Accessed 2018-11-27.
URL: https://www.msq.qld.gov.au/Safety/Situational-awareness

MSS (2004). Marine Systems Simulator. Accessed 2018-10-31.
URL: https://github.com/cybergalactic/MSS

NMEA (2018). Standard. Accessed 2018-10-10.
URL: https://www.nmea.org/content/nmeas tandards/nmea_0183_v_410.asp

Perera, L. P. and Soares, C. G. (2010). Ocean Vessel Trajectory Estimation and Prediction
Based on Extended Kalman Filter. In 2nd International Conference on Adaptive and Self-
adaptive Systems and Applications, pp. 14–20.

Quora (2018). The Difference Between Virtual Reality, Augmented Reality And Mixed
Reality. Accessed 2018-10-05.
URL: https://www.forbes.com/sites/quora/2018/02/02/the-difference-between-virtual-reality-
augmented-reality-and-mixed-reality/1aa88f932d07

Ristic, B., Scala, B. L., Morelande, M., and Gordon, N. (2008). Statistical Analysis of Mo-
tion Patterns in AIS Data: Anomaly Detection and Motion Prediction. In International
conference on Information Fusion, pp. 40–46.

REFERENCES 85

Sapankevych, N. and Sankar, R. (2009). Time Series Prediction using Support Vec-
tor Machines: A Survey. IEEE Computational Intelligence Magazine, 4(2): 24–38. doi:
10.1109/MCI.2009.932254.

Sommerville, I. (2016). Software Engineering. Pearson Education Limited, 10th edition.

Triantafyllou, M. S. and Bodson, M. (1982). Real-Time Prediction of Marine Vessel Motions
Using Kalman Filtering Techniques. In Annual Offshore Technology Conference.

Unity (2018). The Unity Game Engine. Accessed 2018-09-17.
URL: https://unity3d.com

US Coast Guard (2018). Navigation Centre. Accessed 2018-11-12. doi: 10.1016/0003-
4916(63)90068-X.
URL: https://www.navcen.uscg.gov/?pageName=AISMessages

Xiao, Z., Ponnambalam, L., Fu, X., and Zhang,W. (2017). Maritime Traffic Probabilistic Fore-
casting Based on Vessels’ Waterway Patterns and Motion Behaviors. IEEE Transportation
Intelligent Transportation Systems, 18(11): 3122–3134. doi: 10.1109/TITS.2017.2681810.

Xu, X., Geng, X., and Wen., Y. (2016). Modeling of Ship Collision Risk Index Based on
Complex Plane and Its Realization. TRANSNAV, The International Journal on Marine
Navigation and Safety of Sea Transportation, 10(2): 251–256.

Yin, J. and Zou, Z. (2011). A Combined Modular Parametric and Non-parametric Method
for Planar Ship Motion’s On-line Prediction. In Lecture Notes in Informatics in Control,
Automation and Robotics, volume 1, pp. 17–24.

Yin, J. C., Zou, Z. J., and Xu, F. (2013). On-line Prediction of Ship RollMotion duringManeu-
vering using Sequential Learning RBF Neural Networks. Ocean Engineering, 61(139–147).
doi: 10.1016/j.oceaneng.2013.01.005.

Yumori, I. (1981). Real Time Prediction of Ship Response to OceanWaves Using Time Series
Analysis. Ocean, 81(1082–1089).

	2018-12-12 MSc thesis Sindre Fossen.pdf
	Summary
	Preface
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Virtual reality, augmented reality and mixed reality
	Automated situational awareness

	System Overview
	Objectives
	Main Contributions and Publications
	Organization of the Thesis

	Software Description
	Code Structure, Requirement Specifications and Design
	Software requirement specifications
	Software development model
	Visualization of the agile model by UML

	Agile Phases
	Phase 1: Interfacing and parsing of AIS messages
	Phase 2: Mixed-reality visualization of ships
	Phase 3: Algorithms for automated situational awareness
	Phase 4: GUI and visualization of data

	3-D Modeling
	Terrain and environmental modeling
	Ship and USV modeling

	Concluding Remarks

	Ship Motion Estimation using Live Automatic Identification System Data
	Ship Dynamics and Measurements
	Ship model
	AIS measurements
	North-East positions from longitude and latitude
	Course angle from North-East positions

	Extended Kalman filter for AIS Data
	Extended Kalman filter
	Ship motion predictor
	Experimental validation

	eXogenous Kalman filter for AIS Data
	Stage 1: Kinematic observer
	Stage 2: Linearized Kalman filter
	Ship motion predictor
	Implementation aspects for asynchronous AIS data
	Experimental validation

	Concluding Remarks

	Automated Situational Awareness
	International Regulations for Preventing Collisions at Sea
	COLREGS

	Minimum Separation Algorithm
	Time to closest point of approach (TCPA)
	Distance at closest point of approach (DCPA)

	Ship Collision Risk Index
	Experimental Validation
	Case 1: EKF motion data for visualization of AIS ships
	Case 2: Online risk assessment and visualization
	Case 3: Collision detection by motion prediction for varying evasive maneuvers

	Concluding Remarks

	Conclusions and Challenges for Future Research
	Conclusions
	Automated situational awareness systems
	Main contributions

	Future Work

	Algorithms
	Backward Difference Approximation of the First Derivative
	Asynchronous Data
	Synchronous Data

	Matlab Scripts
	Extended Kalman Filter for AIS Data
	eXogenous Kalman Filter for AIS Data
	USV Simulator
	Visualization of Wave-Induced Ship Motions

	Software Versions
	Video Links
	References

	Blank Page

