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Summary

With the internet reaching faster and faster speeds, low latency is key for app user satis-
faction. When a response-time is too high, users will become tired of waiting and stop
using the service. The self-management-app selfBACK’s backend faces the challenge of
scaling ElasticSearch, while maintaining a good performance on response-time to appease
its users. To identify and test the best solution for horizontal scaling with ElasticSearch
as a data store for selfBACK, we delved deep into ElasticSearch’s own configuration and
tweaks. Alternative ways of scaling, and another data store was also tested. In the core
of this thesis we develop realistic test-scenarios for the selfBACK system and evaluated
them through parallel requests with java to slow down the response times and describe
the limitations of the system. All scenarios have been automatized and tested on different
machines.

The best response-time improvement reached with the setup on a local computer was
around 1000 ms for some of the configurations, with alternate solutions reaching 50%
decrease in response-time. Since a local setup cannot simulate how the response-time will
be in the real world, the results do only paint a picture of how the different configurations
perform in a closed environment.
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Sammendrag

Internett vokser og rekker lenger og lenger, med bedre hastighet enn noen sinne. Apper
med lav responstid er derfor viktig for brukeropplevelsen. Hvis denne responstiden øker
nok, vil brukere gå lei, og ende opp med å slutte å bruke tjenesten. Selvstyrings-appen
selfBACK’s backend har utfordringen med å skalere ElasticSearch, samtidig som å op-
prettholde responstiden. For å finne den beste løsningen for horisontal skalering med Elast-
icSearch som datalager for selfBACK, gjorde vi et dypdykk i ElasticSearch sine konfigur-
asjoner og innstillinger. Alternative måter for skalering og datalager ble og testet. I hoved-
sak i denne avhandlingen utvikler vi realistiske test-scenarioer for selfBACK systemet, og
evaluerte disse med parallelle-forespørsler med Java, for å prøve å sakke ned all respons-
tid og for å fastsette begrensninger ved systemet. Alle scenarioene er blitt automatisert og
testet på forskjellige maskiner.

Den beste responstiden nådd ved lokal testing var rundt 1000 ms i senking av responstid,
med alternative løsninger som minket responstiden med 50% av det opprinnelige utgang-
spunktet. Selv om dette er bra, ble alt gjort på et lokalt nettverk, hvor resultatet bare er en
demonstrasjon for hvor forskjellig innstillingene og konfigurasjonene operere i et lukket
miljø.
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Chapter 1
Introduction

In this chapter we introduce the problem and scope of this thesis by presenting the back-
ground and motivation, followed by the problem description and an overall outline of the
thesis.

1.1 Background and Motivation
With the internet reaching further around the globe, with more and more users per solu-
tion, maintaining performance while scaling are issues that appear more and more often.
Scalability is important, but can be quite tedious. There are many pitfalls of scaling a
solution, and just adding more computing power without a plan in a cluster is one of
these. ElasticSearch has named this problem the “the kagillion shard problem” [6]. Larger
clusters has the drawback of localization of data, with the need for merging and fetch-
ing results from different sources, increasing number of operations per request. Without
configuring settings and tailoring the solution for working in a cluster, this could kill the
product. User satisfaction increases with a high availability of the service and fast response
times of an app.

Jakob Nielsen [8] has defined three important limits for response-times. 0.1 second delay
for an action is the limit for a user to feel the system react instantaneously. If the delay
surpasses 1 second, the user will lose the feeling of operating directly with the data. With
10 seconds delay, the user will start to loose focus and feedback on operations are crucial.

Hoxmeier [9] builds upon Nielsens research, and add satisfaction, whether the user would
use the product again, and a perceived power of the system. His findings is that response-
time perceived as the best and produces the best satisfaction is between 1-2 seconds. 12
seconds was the slowest response time tested, and this was the only time-frame where
users said they would not use the system again. They found that increasing response-time
from 0 seconds, also increased the “ease of reading characters on the screen”, meaning a
fast system can be perceived as too fast. The perceived power of the system did not see
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Chapter 1. Introduction

a drop in perception until the 9 second mark, but here the users felt that their own client
system was at fault or under-powered.

Without any thorough evaluation on how scaling a solution is done, this problem proves to
be a case-based way of scaling, and needs to be addressed. There are many blog-posts on
how large conglomerates have reached their peak performance when scaling their solution,
but since the problem almost always depends on how the problem is solved, one can only
take inspiration for different ways of solving the scalability problem (e.g. [10]).

There are two ways of scaling; horizontal and vertical. With more and more services
like DigitalOcean1, Google2, and Amazon3 that provides easy setup of clusters, with good
support for adding more nodes and servers to the cluster, horizontal scaling proves to be
the most cost-effective and easiest approach. While vertical scaling can seem clever, it
demands more work, due to the fact that some systems demand more configurations on
hardware-change, opposed to adding more servers in the cluster.

The motivation for this thesis lies with us developing a range of different solutions, trying
to meet the expectations of users, continuously encountering the scalability issue. Even
though scaling a system is solved on a case by case basis, doing research on the field would
give us more insight on how to best address the issue at hand, and give a pointer on the
methodologies involved. One more motivation for this thesis is increasing reliability and
redundancy for selfBACK when testing horizontal scaling with ElasticSearch.

1.2 Task Description
This thesis experiments in order to find a good scaling solution for selfBACK with Elast-
icSearch as its data store. The thesis will also discuss some future and possible alternative
solutions. Due to the scalability problem being very individual for each and every product,
this solution will be solely focused on increasing selfBACK’s client → server → client
response-time.

Given the task of testing out new solutions for ElasticSearch configurations to improve the
scalability of the selfBACK back-end implementation, this thesis will include methods and
configurations used to analyze, measure and improve scalability, while maintaining stable
performance. It will focus on testing different configurations in ElasticSearch, measuring
response-times when scaling horizontally, and testing two alternative ways such as switch-
ing to MongoDB, and scaling vertically.

ElasticSearch’s default configurations will be analyzed alongside custom configurations to
measure the difference in performance on dynamic-scaling of nodes, without sacrificing
replication. Test-results are in milliseconds, measured from start of request to a response
is received, for the most realistically measured performance of the solution.

1https://www.digitalocean.com/
2https://cloud.google.com/
3https://aws.amazon.com/
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1.3 Participants

1.2.1 Research questions

The research in this thesis aims to configure ElasticSearch to scale with selfBACK, while
not sacrificing performance. This leaves us with the research question:

RQ1 Which ElasticSearch configurations best increases selfBACK’s performance?

RQ2 How do the configurations perform when combined?

RQ3 How does alternative solutions perform compared to ElasticSearch?

RQ4 How much are response-times impacted when scaling the number of users using
selfBACK?

RQ5 How much does hardware affect performance, and how does vertical scaling per-
form compared to horizontal scaling?

These questions serves as guidance for the thesis and showcase how selfBACK performs
alongside ElasticSearch when scaled, and how it performs when receiving a high amount
of concurrent, parallel requests. The question on whether ElasticSearch is the best choice
for data storage for selfBACK will also be tested and analyzed, with MongoDB as an
alternative solution.

1.2.2 Goals

To easier answer the proposed research questions, specific goals have been created.

RG1 Scale ElasticSearch horizontally while reducing response-time by 50 ms, addresses
RQ1 and RQ2. 50 ms was chosen to create realistic achievable goals, due to only
configurations being changed.

RG2 Reduce response times by 50% with selfBACK by scaling the data store. Achieving
this goal will address RQ3, RQ5. Halved response times was chosen to allow for
big improvements, without regards to the current measured response-time, but rather
in percentages.

RG3 Determine upper threshold of ElasticSearch and selfBACK in terms of number of
parallel/concurrent users. This will address RQ4.

1.3 Participants

selfBACK is the main participant and benefactor for this thesis, and the work done sur-
rounding the scaling and testing of their solution. Ilya Ashikhmin from the selfBACK team
was the main overseer of the work done and the process on how to address the problem at
hand.
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1.4 Research Methodology
The results in this thesis was achieved through quantitative research. “Quantitative meth-
ods emphasize objective measurements and the statistical, mathematical, or numerical ana-
lysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-
existing statistical data using computational techniques. Quantitative research focuses on
gathering numerical data and generalizing it across groups of people or to explain a par-
ticular phenomenon”[11].

In our research, we collect the data of trial-runs and simulations for different configur-
ations of ElasticSearch clusters as data storage with selfBACK, and alternative ways of
data storage The data is compared and analyzed to try and find the best possible setup for
scaling selfBACK’s data store.

1.5 Thesis structure
The following list is a summation of the chapters in the thesis, and a short description of
its content.

• Chapter 1 - Introduction, background and motivation, research questions and re-
search methodology is presented.

• Chapter 2 - Background & Related Work delves into the background of self-
BACK, and some alternate works/solutions with different databases. Some related
work in the mHealth field is also presented.

• Chapter 3 - ElasticSearch goes in-depth of ElasticSearch, its architecture, and dif-
ferent configuration that can be done to try and increase performance.

• Chapter 4 - Design is about design and implementation. It goes in depth of self-
BACK, its architecture, components and overview of the project itself. It also in-
cludes more in depth of how ElasticSearch and selfBACK functions together. Fur-
ther in chapter 4, the implementation is presented, and how this was tested using a
custom test-application. The section explains the different approaches to compon-
ents and architectures that were tested in an attempt to increase the performance of
ElasticSearch and selfBACK.

• Chapter 5 - Evaluation discusses the results that were achieved with the various
attempts at increasing the performance while scaling ElasticSearch, and alternative
solutions. The results are then discussed in light of the proposed research questions
and goals.

• Chapter 6 - Conclusion & Future Work summarizes the thesis and elaborates on
how to possibly conduct further work on what to do with selfBACK and how to
possibly achieve better performance outside of configuring ElasticSearch.
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Chapter 2
Background & Related Work

In this chapter, we give more insight in selfBACK [2.1], their vision and problem, four
different mHealth applications, and different solutions compared to ElasticSearch for data
storage [2.2], along with alternative solutions.

2.1 selfBACK

Lower back pain (LBP) is a leading cause of disability worldwide ([12], [13]). Most pa-
tients seen in primary care with LBP have non-specific LBP, that is, pain with an unknown
pathoanatomical cause [14]. Self-management in the form of physical activity/strength
exercises along with patient education, constitute the core components in the management
of non-specific LBP. This is the problem selfBACK tries to solve. With selfBACK creating
a Case-Based Reasoning (CBR), Decision Support System (DSS), the responsibility of a
patients improvement is moved to their mobile devices.

Figure 2.1 gives an in depth architectural overview on how the flow of selfBACK is.
selfBACK employs a CBR-system, on how to best solve each case of LBP. A CBR is
a reasoner that remembers previous situations similar to the current situation, and employs
these to try and solve the current situation [15]. The CBR is here represented by the circ-
ling of revisions. The flow of selfBACK begins by a first-time questionnaire, and then
weekly follow-ups with education about LBP, different exercises the user should perform,
and user feedback on how the exercises and pain have been experienced during the week.
The mobile device is paired with a proprietary step-monitor, which periodically sends step-
counts to the selfBACK server to log their progress. The CBR works with finding the best
suited, similar case that it has stored, and sends this plan to the requesting patient. CBR is
functional with one-case to compare with, but as the corpus of cases grows, the better the
reasoning-system becomes.
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Figure 2.1: The overall selfBACK architecture [1]

2.1.1 Problem

The focus of this thesis is to analyze, measure and improve the response-time to clients.
One way of improving this, could be to increase the performance of ElasticSearch, which
selfBACK uses as data storage. Since ElasticSearch is running a single-node cluster, even
one large request can bottleneck the system. With a number of different calls, each one
based on different structure, joins and aggregations, this affects the overall performance of
the system.

On top of the pure data storage, selfBACK employs a reasoner that requires data for de-
cision making. This can be seen as an encapsulated instance that queries the data storage,
and will not be a focus in this thesis. Other approaches for increased performance, along-
side easier horizontal scalability are noticeably more worth looking into.

In this thesis, the methods investigated and tested are configuring ElasticSearch for in-
creased scalability while maintaining somewhat similar performance, and alternative ways
of data storage. Load balancers will be presented in the future work section. The main fo-
cus lies on splitting the ElasticSearch instance into more nodes, tweaking shard-settings
and force refreshing indices.

2.2 Related Work

With selfBACK using ElasticSearch as a data store, NoSQL data stores are an import part
of the thesis. Alternative NoSQL data stores and how they handle scaling, sharding and
redundancy will be investigated. This is to get a better perspective on how the different
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solutions solve issues, and whether ElasticSearch is the best approach to data storage. This
Section and Section 2.3 will focus on related work, and alternative ways of data storage
with MongoDB and couchDB, and different approaches to scaling.

2.2.1 Step-counters and mHealth
The framework of this thesis is given by the selfBACK application. Therefore we will
now present an overview of how other mHealth application implement their data storage.
Four related products will be discussed, Fitbit1, GoogleFit2 , a study to build a mHealth
framework by O. Banos et al. (2014) [2], and a study conducted by Krein et al. (2010)
[16]. As for these related research-papers and products, none of them focus on more than
general mHealth, step-count and things like heart rate monitoring except for Krein et al.
(2010) study. Both selfBACK and Krein et al. (2010) tries to cure and help patients with
treatment through a self-management plan for lower back pain.

Fitbit has created a range of products to better monitor step-count, workouts and most
of them have a heart-rate monitor. The form of data they collect can be seen quite similar
to what selfBACK collects, but a much smaller spectrum. For this thesis, and in com-
parison to selfBACK, how they keep track of activity-data is a key relation between the
two. Fitbit started as a form for step counting only, but evolved to mHealth and heart-rate
monitor. Their standalone app has options for creating workouts, keep track of dietary,
and even achievements and social networking [17]. The technology stack consists of mi-
croservices, building on java 8. Prometheus3 is used as TSDB, and the technology stack
consists of Rest API endpoints for moving data between users and data-centers [17].

GoogleFit is an app created by Google to collect and aggregated data across different
apps to one single dashboard, all for free. With GoogleFit being run by Google, it is heav-
ily integrated in the Google ecosystem, where Bigtable is used for data storage. Bigtable
is a distributed storage system for managing structured data that is designed to scale to
a very large size of petabytes [18]. It does not have full support for relational data, in-
stead it provides clients with a simple data model that supports dynamic control of layout
and format, and allows clients to decide on locality of data represented in the underly-
ing storage [18]. GoogleFit is built with a single device in mind, and is more developer
driven helping developers with hardware store aggregated data, allowing users to get a
detailed dashboard. This dashboard is capable of merging data from multiple applications
and devices, and combine data for use with weight reduction and dietary. GoogleFit has
a wide support for integrations, with a custom Android Framework for use with Android
devices, and RESTful support from all sources [19]. Google Fit has support for both in-
app dashboards, and dashboards online4.

O. Banos et al. (2014) [2] proposes a framework under the GNU General Public License
version 3, on how to build general mHealth applications and provides an implementation

1https://www.fitbit.com/
2https://developers.google.com/fit/
3https://prometheus.io/
4https://fit.google.com/
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of said framework as seen by Figure 2.2. The Communication Manager provides abstrac-
tion levels required for communication across application and the underlying mHealth
technologies. The Storage Manager is responsible for storing data both locally and re-
motely, for intermediary storage safety. It is also responsible for secure transmission of
the data. The Data Processing Manager is responsible for processing the gathered health
data by either machine-learning, data mining or signal processing techniques. The Data
Processing Manager has four stages: preprocessing, segmentation, feature extraction, and
classification.

Figure 2.2: mHealth Framework Architecture [2]

During preprocessing, unexpected spikes, background noise, abnormalities and inconsist-
encies are removed from the raw data. For segmentation, data is split into smaller chunks
of easier processable data. During feature extraction, the nature and domain-specifically
of the data-segments are extracted, for example mean or median of ranges, time/frequency
transformations. The final step, classification and artificial intelligence are used to gain
more knowledge of the data gathered. The Visualization Manager represents the most
fundamental of any mHealth-app, and provides a range of different graphs and represent-
ation of data to fit the need of every user. The System Manager provides developers with
capabilities of handling system components as WiFi, 3G-connection, GPS, and Bluetooth.
Service Enables provide users with notifications and alerts on their achievements/progress
in the form of alerts, notifications, guidelines and medical reports.

mHealthDroid [2] is the Android implementation of the framework. The implementa-
tion uses SQLite5 for local storage storage of data. Data is sent to the server with HTTP
POST requests, where they are stored in a MySQL database for persistence.

5https://www.sqlite.org/index.html
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Krein et al. (2010) [16] conducted a 12 month study on lower back pain patients, with
a main focus on a walking program, as this is an activity most adults can perform re-
gardless of their health. The participants were given access to a website with content on
self-management exercises and a professional community forum to help strengthen adher-
ence [16]. As opposed to both Fitbit and selfBACK, this study required the patients to
upload their own data to the website at the end of each 7 week cycle. But similarly to both
Fitbit and selfBACK, the system automatically created a step-goal for each patient.

2.2.2 Gorilla
Gorilla is Facebooks in-memory Time Series Database (TSDB). They have outlined some
key points that is crucial for a TSDB, very similar to what selfBACK needs. As said in
Gorillas research paper [20], writes dominate. In a TSDB, one should always be able to do
writes. State transitions, meaning fine-grained, fast, aggregations of timeframes of data.
High availability, the need for always online functionality, where if one data center goes
down, data is still sent and processed across the data centers not affected by network delays
or troubles. And last, fault tolerance. Writes needs to be replicated, and be able to survive
crashes in across data centers, without losing access to the data.

85% of all queries at Facebook were made for data collected in the last 26 hours. This
guided them to have a more in depth look at having that data in-memory, with the security
of persistence on disk. With only the previous 26 hours stored, the queried corpus would
be noticeably smaller and increasing performance by this change alone. The data is stored
in a simple 3-tuple of a string key, a 64-bit time stamp and a double precision floating point
value, and it employs a custom compression algorithm that shrinks the data-cost from 16
bytes to 1.37 bytes per entry, a 12x reduction in size [20]. Another of the requirements
they created for Gorilla, was that all data should be stored on two separate hosts in separate
geographic regions. This mitigates issues like node failures, network cuts and entire data
centers going down, due to data being stored in duplicate locations.

2.3 NoSQL
NoSQL stands for “non-sql”, “non-relational” database or “not only SQL”, and are made
with BigData in mind. With Relational Database Systems (RDBMS) being built for more
static data, being able to aggregate across tables, and having a more defined, similar data
structure across tables, they simply can not keep up with the “three V’s” that BigData
brings along; volume, velocity and variety [21].

The need for less connected data, faster reads and writes across multiple tables of varying
structure, introduced the need for non-relational database systems, or “NoSQL” for short.
NoSQL databases cover all databases that are not RDBMS. This could mean all from key-
value stores, to graph-databases or TSDBs. Hadjigeorgiou [22] ran extensive performance
testing between two large RDBMS and NoSQL systems; MySQL and MongoDB. His
findings were that MongoDB could handle much more complex queries faster due to its
simpler schema at the sacrifice of data duplicates. MongoDB also showed an advantage
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with its use of subdocuments in queries containing two JOINs and a subquery. But this
advantage again comes with the cost of data duplication, which in turn makes the data-
base larger. MySQL performed better than MongoDB on deletion, due to the elements to
be deleted had to be found first. MongoDB performed better than MySQL for insertions,
which again probably comes with the cost of possible duplicates. With this thesis building
around ElasticSearch, and it being a NoSQL system, we found that including the term, and
some alternative ways of storage with NoSQL was beneficial.

2.3.1 CAP-theorem
In 2000, Professor Eric Brewer put forward the famous CAP theorem (Consistency, Avail-
ability and Partition Tolerance) as shown in Figure 2.3. The CAP theorem is an idea that a
distributed system can only meet two of the three needs simultaneously [23]. Consistency
stands for a client always has the same view of the data, availability means that all clients
can always read and write, while partition tolerance means that a system works well across
different network partitions [3]. As for ElasticSearch, it causes quite the controversy on
what part of the theorem it sacrifices, but according to ElasticSearch’s own team, it sacri-
fices partition tolerance [24]. As many might think, ElasticSearch sacrifices consistency,
but due to ElasticSearch being a search-engine, their near-real time consistency can be
considered as full consistency. With shards and partitions, a sharded network may go fully
down, thus ElasticSearch sacrifices partition tolerance, making it a CA system.

Figure 2.3: CAP-theorem triangle with different NoSQL databases, derived from [3]

Two of the NoSQL-databases in the CAP-theorem will be discussed more in the following
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sections. With MongoDB being a CP, sacrificing Availability and couchDB sacrificing
consistency, we will have covered the three different combinations of the CAP-theorem.

2.3.2 MongoDB
MongoDB is an open-source document oriented database, with high performance, avail-
ability and automatic scaling. Just like ElasticSearch, MongoDB uses JSON-structured
documents for its data. This allows for easy interpretation in almost every programming
language, i.e. the document corresponds to a native object. Documents can be embedded
in other documents or arrays, which takes out the need for expensive joins as with SQL-
systems. MongoDB also allows for dynamic schemas that supports fluent polymorphism
[25] .

Since MongoDB allows for dynamic schemas, it is more prone to erroneous inserted data
in documents. The type-security is only client-side, and always has to be implemented by
the people working on the program. This means that if someone forgets what type a field
is, it can cause major issues further down the pipeline.

Redundancy is solved with replica-sets, which is essentially other instances running Mon-
goDB, with a replicated set of the main data [26]. Redundancy is therefore solved with
having other machines running the replica-set, ensuring that if a crash is to happen, the
replica-set is still live. With MongoDB not being a search-engine, there is no “near real-
time” queries, everything is real-time. This feature paired with the automatic sharding, and
easy horizontal sharding makes MongoDB a strong alternative candidate for selfBACK.
A disadvantage with MongoDB is that it does not have any Rest API without the use of
external drivers [27].

2.3.2.1 Scaling MongoDB

There are different approaches to scaling MongoDB; replica sets and sharded clusters.
Replica sets are in many ways similar to how replica shards work in ElasticSearch. With
replica sets, you have one Master (also called "Primary") and one or more slaves. With rep-
lica sets, read-performance can be improved, since each slave can serve read-operations,
while write-operations are always performed on the master, and then propagated to the
slaves. Replica sets introduce more fault-tolerance. In the case of one of the slaves goes
down, the other takes over. If a master goes down, the slaves will chose a master from one
of their own. This means that in any case of a slave or master crashing, data will still be
served by the rest of the living slaves and a newly elected master. [28]

Sharded clusters is MongoDB’s way of horizontally scaling its data [4]. Sharding is the
action of splitting and spreading data over multiple locations, and each shard contains a
subset of the sharded data. A sharded cluster has 3 components; a router, config server
and shards as shown in Figure 2.4. The router acts as an internal router and intermediary
between the apps and MongoDB, to route reads and writes to the correct shards. The
config-server is set up as a replica-set, and contains metadata and configurations for the
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Figure 2.4: Architecture of a sharded cluster [4]

cluster. The shards contains the actual data. As of MongoDB 3.6, replica-sets in sharded
clusters are mandatory, to fix issues of fault-tolerance and redundancy [4]. With shards
being a replica-set instead of a standalone server, the data can more easily be spread over
multiple servers, and still keep the replication in the case of servers going down.

Figure 2.5: Sharded cluster with both sharded and unsharded collections. [4]

With sharded clusters, collections can be both sharded, and unsharded as shown in Figure
2.5. A collection is sharded with shard-keys at the time of shard cluster creation. When
creating a sharded cluster, this is the only time you can set a shard-key. For shard-keys it is
important to chose a field or concatination of fields in the documents which enables for the
data to be evenly split along the shards in the cluster, to ensure more spread load. In the
case of a poorly chosen shard-key, the sharded cluster may contain only elements similar
to Collection 2 in Figure 2.5, where all documents in a collection resides on the same
shard. With sharded clusters, a number of lower-performing servers, can perform better
than a single high-performing server [29], due to the splitting in load. It is also possible
to add another server to the cluster at any given time. When sharding, you can create
zone-keys [30]. These enables for customization in shard-setup, and define where shards
with specific data should be stored instead of having MongoDB automatically spread the
shards.
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2.3.3 couchDB

couchDB is in many ways similar to MongoDB and ElasticSearch. All of them uses JSON-
structured documents for data storage ([31], [6], [32]), opening for easy usage and migra-
tion of data, without having to employ a data-interpretor. And as with ElasticSearch,
CouchDB has eventual consistency [31].

As opposed to MongoDB, but equal to ElasticSearch, CouchDB has support for HTTP
Rest API [31]. This opens for easier access to data across different applications without
any need for a driver to fetch and write data. This also opens for a stronger need for se-
curity, due to one more way of accessing data. In cases of spikes in requests, couchDB
will absorb concurrent requests, and answer them in time instead of stalling. Each request
might take a little more time, but the server will not fall over in these cases [31].

Figure 2.6: couchDB replication databases [5]

CouchDB has a way of support local storage, as opposed to ElasticSearchs’ and Mon-
goDBs’ need for a live network-connection to be functional. With couchDB being written
in Erlang, it is designed to function on embedded devices magnitudes smaller and less
powerful than phones today [31]. With this, a program running couchDB, native phone-
apps can utilize this function on a loss of network, having temporary data storage or often
used static data, stored locally, making users experience less down-time.

As for replication, this can be triggered with a simple Rest API-call to the endpoint
_replicate, with a target and source parameter. If the replication would need to be
changed from source to target, one may easily switch the two parameters when request-
ing the endpoint. With couchDB keeping track of different versions of documents, the
replication-process works fast, and easily finds the newest version of a document to be
replicated. This process can be set up to be automatic, enabling read-queries to be routed
to any of the available replica databases as shown in Figure 2.6
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2.4 Scaling
As mentioned in Section 1.1, there are two ways of scaling: horizontal and vertical. Hori-
zontal scaling means adding more nodes to a cluster, adding more instances computation
can be performed on. With horizontal scaling, nodes need a way of communicating, and
reaching consensus on what data is stored, where is should be stored, and how to retrieve
data. With this way of scaling, there are more factors to keep in mind when expanding a
cluster, but the cost is significantly lower with the possibility of adding any type of com-
puter to the clusters. Small and somewhat slow computer can even be used, and benefit
the cluster [33]. With horizontal scaling, the data can be more easily scattered geograph-
ically in use-cases where this is needed [34]. Fault tolerance increases significantly with a
horizontally scaled system, due to more nodes capable of storing the same data [35].

Vertical scaling is the act of adding more processing power to an existing node, e.g.
adding more memory or switching out the CPU with a CPU capable of more operations
per second. With vertical scaling building vertically on already existing nodes, cost is
higher than with horizontal scaling, and at one point there will not be possible to scale
a node higher [33]. Another disadvantage that comes with vertical scaling is that nodes
often has to be set to a complete stop when adding more hardware, with software having
to be configured to access/recognize the new hardware. For this to be avoided, one can
do something called “rolling upgrade”, which requires more nodes in the cluster present.
With a rolling upgrade, one node is shut-down and upgraded at the time, preventing any
downtime for whole cluster if done correctly and the database/cluster has support for it.
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ElasticSearch

This chapter will go more in depth of ElasticSearch, its architecture, and data model, as
well as the different methods and configurations that this thesis will focus on.

3.1 Introduction

ElasticSearch is a powerful, open-source search engine, built on Lucene1, which is a very
advanced full-text search library. According to the authors of ElasticSearch: The Defin-
ite Guide, Lucene is arguably the most advanced, high-performance, and fully featured
search engine library in existence today - both open-source and proprietary [6]. Elastic-
Search tries to simplify how to utilize and harness all this power that comes with Lucene.
As with Lucene, ElasticSearch is built with Java, and uses Lucene internally to handle
all search and data storage, while hiding all the absurdities of Lucene. To accomplish
this, ElasticSearch is based on a simple RESTful API, and can be accessed easily with a
browser, command-line or almost any programming language.

Even though ElasticSearch builds on Lucene, it is more than just text-search. It strives
to make all fields indexed and fully searchable [36], it can contain both structured and un-
structured data and it has real-time analytics. When creating ElasticSearch, they also made
it highly horizontal scalable, with easily added nodes and machines running ElasticSearch.

With ElasticSearch being open-source, it allows for anyone to contribute to it, and sug-
gest new features that they would like to see in their favourite search-engine. With using
the Apache 2 license2, it can be downloaded and run anywhere. ElasticSearch tries to be
as easy to set-up as possible, and will work right out the box when set up.

ElasticSearch came to be when a developer Shay Banon was working with Lucene, but

1http://lucene.apache.org/
2https://www.apache.org/licenses/LICENSE-2.0
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found it difficult to learn [6]. He then proceeded to create a wrapper of sorts for Lucene,
which became the preliminary version of ElasticSearch.

3.2 Architecture
ElasticSearch consists at the top level of clusters. Clusters can contain several nodes,
which can be spread across geological borders if one wants to. They rely on multicasting
to discover each other, but are also able to connect to offshore nodes for better locality of
data [6]. Each node consists of several indexes. Each of these index is a logical namespace
that points to one or more physical shards.

A shard is a low-level worker unit that holds just a slice of all the data in the index.
Each shard is a single, fully searchable instance of Lucene [37]. The index is split into
a number of primary and replica shards. The number of primary shards can only be set on
instantiation/creation of the index. The primary shards are the only shards that are able to
do both reads and writes of data.

Replica-shards are used to provide redundant copies of your data to protect against hard-
ware failure, but also to serve as fully functional read-shards. This means, for each read-
request sent to a node, the read request can be forwarded to either of the primary or replica
shards [6]. This enables more parallelity, and utilization of hardware. If, (and when) a
primary shard crashes, a replica-shard is promoted to a primary shard, to avoid any write
downtime.

Each shard contains several “segments”, where each segment is an inverted index3. These
are what a Lucene index (shard) is built on [6]. They are searched within Lucene, some-
what similar to how ElasticSearch searches shards, and combines the results from the
different segments.

Figure 3.1: Create, index or delete cycle in an ElasticSearch cluster [6].

On each read request to a cluster, the node that receives the request, delegates it to another
node. Since all nodes are supposed to contain the exact same data, this is done to ensure

3https://www.wikiwand.com/en/Inverted_index
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that the preliminary request does not bottleneck the pipeline. The node that the request
is forwarded to, performs a full search of all its shards, merges the responses, aggregates
the responses to fit the request, and sends the request back to the original node. That node
then forwards the response to the client.

Whenever a create, index or delete request is sent to the cluster, the action is done on
the forwarded node, which then forwards the request to all other nodes to ensure redund-
ancy between data as demonstrated in Figure 3.1. It is first when those requests are done,
that the original request is responded to with a completed flag. This is to ensure that the
data is the same across all shards. With ElasticSearch, all changes are saved as versions of
the original document. With this function, previous versions are stored, which can be used
to enable data validation.

3.3 Data model
ElasticSearch employs the JSON data model with Lucene. Whenever a new document
is inserted, it also automatically (unless you tell ElasticSearch not to) sets the field-type
of every field in the document for that index. This opens for a type-checking whenever
adding anything in an index, and ensuring data-similarity throughout a whole index.

3.4 Configuration
ElasticSearch opens for much configuration and tweaking of settings to your needs, but
it can also lead to a great decrease in performance. In this section, we will discuss the
configurations that the thesis will be focusing on.

3.4.1 Shards
Since ElasticSearch only opens for setting the number of primary shards on index-creation,
it is important to chose the right amount of primary shards. It is still possible to change
this number, but this involves a more deliberate way of moving data between indexes, and
setting up intermediate indices for the move. One big challenge with sharding so early in
the process is the “kagillion” shard-problem. This means oversharding in the beginning,
resulting in poor performance. This is due to every write having to be completed on all
nodes and shards to ensure redundancy. This will be explained further in Chapter 4.

As specified by ElasticSearch: The Definitive Guide [6], the best way of finding out how
many shards should be used, one should start with as few shards as possible, and gradually
increment the shard-number until one reaches a acceptable response-time.
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PUT /my_temp_index
{

"settings": {
"number_of_shards" : 1,
"number_of_replicas" : 2,
"auto_expand_replicas" : "1-all"

}
}

Listing 3.1: Example shard-settings

As seen by Listing 3.1, one can configure the number of primary and replica-shards at
index-creation. In the example, the number of replicas are set to be two for each node ex-
isting in the cluster. The auto expand option, enables for automatically add replica-shards
to newly added nodes, for increased horizontal scaling and better redundancy.

With more replica-shards scattered around on nodes, this can ensure fault tolerance and
redundancy if any failure should occur (which almost always happens, it is just a question
of when), as well as increasing throughput [7]. As explained earlier in the chapter, replica-
shards can be promoted to a fully functional primary-shard in the case of a primary shard
going down, to ensure no downtime of write-operations.

3.4.2 Routing
ElasticSearch employs a specific routing-algorithm on how and where to store data, demon-
strated in Listing 3.2. In some cases, this algorithm could hurt performance, due to requests
having to check in which shards data is stored.

shard_num = hash(_routing) % num_primary_shards

Listing 3.2: Stock ElasticSearch routing algorithm

In projects with definite candidates for routing, e.g. unique client-id, or any unique field
id’s, this could be a good approach to try and increase performance. If the data con-
sists of many user-ids, which then “routes” to other data, the user-id can be used as
routing-algorithm, instead of the built in algorithm in ElasticSearch. This can be done
with .setRouting(ROUTING_ID) in the java-library. This means that all data for a
single user, will always be stored in the same shard, enabling faster fetching of the data
when requested.

3.4.3 Clusters
Adding more nodes to a cluster, can be described as adding more processing-power to a
setup. A drawback with clusters is that there are more nodes that needs to perform each
write, before the client receives a signal that the request has gone through. But, having
more nodes enables for better load balancing and utilizing the hardware better. Nodes
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allows for better sharing of load amongst each other, and ElasticSearch will not route a
request to an already overloaded node.

ElasticSearch allows for dedicated master and data nodes. With having a dedicated master
node, you define a point of entry for requests, similarly to a router. This also allows for
adding nodes with almost no storage-capacity to a cluster, for navigating requests between
the participants in the cluster [38]. In the case of a master-node crashing, ElasticSearch
will automatically promote another eligible node to a master-node to avoid any downtime.

As seen in Figure 3.2, when having more nodes, data can be split over more nodes. As one
index contains more shards, splitting shards over more nodes, allows for better utilization
of the hardware, and sharing load of search over three nodes, instead of only one.

Figure 3.2: Sharding of the document index and assignment to nodes: 5 shards. Source: [7]

With having more nodes in a cluster, this also opens for better redundancy on the data in
question. Combining this with shard allocation awareness, ElasticSearch can guarantee
that no similar data is stored on the same node, as long as there are enough nodes to spread
the data across. In the case of a single node crashing, the cluster is still able to serve any
requested data. Shard allocation awareness will be discussed in the future work of this
thesis.

3.4.4 Segment Merge
When dealing with more static data, the need for more spread among resources are not as
much needed as with dynamic data. ElasticSearch has an endpoint available for this exact
case. Since we have no need for spreading load among more segments, as demonstrated
in Figure 3.3, we can do a “Force Merge”, using their /_forcemerge endpoint [37]
[6]. This endpoints should only be used on read-only indices, to avoid too large segments
being generated. This request takes in three parameters:
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{
max_num_segments: ?,
only_expunge_deletes: false,
flush: true,

}

Listing 3.3: Default settings for merging segments

Figure 3.3: Segments being committed to one larger segments [6].

To do a full merge of the resources, max_num_segments can be set to 1. The
only_expunge_deletes opens for only merging elements that contains a delete-
history. As mentioned, ElasticSearch is built on Lucene, in which deleted elements “never
delete fully”, but are sent to a delete history of the element [6]. The flush parameter spe-
cifies whether the operation should be committed at the time of request, or wait.

As explained earlier, whenever data is fetched in ElasticSearch, all segments are quer-
ied, and the results are merged to one final result. As demonstrated in Figure 3.4, with a
lower segment count, the need for the merging of results decreases.

Figure 3.4: Commits merged to larger segments [6].

3.4.5 Force-refresh
ElasticSearch has an API-endpoint for force-refreshing one or more indices. This can
be used to circumvent the “near real-time search” by forcing ElasticSearch to reindex
the affected or all indices after write, making all completed operations since last refresh
searchable [39]. The API is exposed by the /_refresh endpoint, and can be used to
refresh multiple indices at the same time in a comma separated string, or with the _all
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alias. This was hypothesized to be the best time-saver in terms of ElasticSearch usage, due
to completely circumventing any artificial wait-times for data to be searchable.
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Chapter 4
Design

This chapter will go in depth of the selfBACK components, its architecture, how Elastic-
Search is used, and the current baseline performance [4.1]. The chapter will also explain
how the testing was performed, and implementation of the different configurations pro-
posed in chapter 3 [4.2].

4.1 selfBACK
selfBACK is a Case-Based Reasoning system (CBR), trying to solve LBP-problems for
patients. Daily, patients update their data, and send progress/step-counts to selfBACKs
server automatically via a React-Native1 cross-platform mobile app. The data is stored
with ElasticSearch. At the end of each week, the client requests a new exercise-plan, and
selfBACK starts case-based reasoning, based on earlier cases. These cases are saved as a
file, on the selfBACK server.

4.1.1 Components
The core of selfBACK is a Decision Support System (DSS) that helps patients follow a
plan for exercise, activity, education, according to personal goals, characteristics, progress
and functional ability. This is achieved by utilizing already existing knowledge from med-
ical ontologies and previously working cases, and information provided by the patient.
The DSS is conveyed to the patient via a React Native smartphone app. The patient also
has a proprietary device to measure steps and activity during the day. The DSS is a Java-
based springboot2 application with a weekly cycle for each patient.

selfBACK runs on a week-by-week cycle, having users perform exercises, educational
tests and activities in a 7 day timeframe. This weekly cycle is demonstrated in Figure 4.1.

1https://facebook.github.io/react-native/
2http://spring.io/projects/spring-boot
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Every user is responsible for their own workout, and each has their own self-management
plan. Each day consists of the user sending activity-updates periodically to the selfBACK
backend every hour. For each of these requests, the achievement-progression is calculated
by aggregating each users daily/weekly/monthly step count. The users are expected to
submit confirmation that the suggested exercises has been completed, if they completed
all of the exercises, including the progress they have made. For each week an educational-
questionnaire has to be answered. These are usually sent during the first day of the week.

At the end of each week, the user sends a request for tailoring-questions on how the exer-
cises were and what pain-levels currently reside on. When these questions are answered,
a request for a new plan is requested alongside the newly answered tailoring-questions as
an additional parameter. The CBR-system then analyzes the feedback and generates a new
plan based on previous plans. Posting activities is an automated task, while posting educa-
tion, exercises, get tailoring questions and requesting a new plan is manual work, involving
questionnaires and user-input. Fetching user-totals and achievements are not pictured in
the model, due to these being fully user-dependent interactions, not a requirement in the
weekly cycle.

Figure 4.1: selfBACK self-management cycle

With fetching a new plan being a weekly task and being a slow task, this is not the most
crucial part of performance. This action is not a interaction heavy task from the users side.
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With posting of activities, the load needs to not exceed the threshold of the server to not
be a bottleneck for other users interactions. The most important endpoints to not exceed
the mentioned user-interaction times by Nielsen, is fetching total-steps and achievements.
This is due to these two operations being the most user-dependent, where the users are the
ones starting the interaction of fetching the data. Posting activity data is also one of the
most important endpoints, since this is done the most during a day.

4.1.2 Architecture

Figure 4.2: selfBACK architectural overview

selfBACK employs a flat architecture. There are three Virtual Machines (VM) running at
NTNU-IDI that houses both the backend server, and the ElasticSearch instance. Each VM
is running its own encapsulated version of selfBACK and a local instance of ElasticSearch,
where only the current version of selfBACK is receiving user-requests as seen in Figure
4.2. Since the three VMs are running separate instances of selfBACK, the ElasticSearch
instances are running in single-node-clusters, as demonstrated in Figure 4.3. SelfBACK is
running a springboot java application at selfback.idi.ntnu.no, which accept re-
quests from all the mobile-clients running the feasibility-tests.
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Figure 4.3: Default selfBACK with SpringBoot architecture

4.1.3 ElasticSearch usage
With ElasticSearch being “near real-time search” [6], there is a required refresh-time on
each write. This is due to ElasticSearch being built on Lucene, and needing reindexing of
documents to make them searchable. This proves to be the main culprit of slow response-
times, making it impossible to decrease response-times below 1000 ms for any operations
involving writes. Due to the nature of ElasticSearch, this delay is taken into account for
all writes to the server.

Because ElasticSearch is built on Lucene, text-search could easily be added if needed
in the future. Without utilizing any of this functionality, alternative solutions might be a
better way of addressing the scaling of data-storage issue at hand.

4.1.3.1 Data structure

An example of how activity-data is stored in ElasticSearch can be seen in Listing 4.1.
ElasticSearch distinguishes each document by a concatenation of all the data fields for
each document.
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{
"_index": "activity",
"_type": "test-user-0",
"_id": "1507986000106",
"_source": {

"start": 1507986000106,
"end": 1507989599106,
"type": "walking",
"steps": 198

}
}

Listing 4.1: "Data-structure of a users activity selfBACK"

4.1.4 Current performance
The three main endpoints in this thesis are posting patient activity, fetching patient achieve-
ments, and fetching patient totals. When a request to post activity data, the selfBACK
backend aggregates achievement data and the patient’s total step count, updating progress
for each achievement. These requests are often bundled with or followed by fetching
achievements and patient totals. If any of these performs poorly, the user satisfaction
might decline. To set a baseline of the selfBACK performance, an initial run was done
before analyzing the issue at hand. All the endpoints tested are described by Table 4.1.

Endpoint Title Color Description

/patient/achievements achievements
Rest API for fetching user
achievements, based on user-id

/patient/activity activity
Rest API for sending new
activity (walking or sleeping)
for a user

/patient/totals totals
Rest API for fetching user-totals
(number of steps) for a user

/patient/plan/next newplan
Rest API for fetching new plan
for a user

/patient/plan/tailoring tailoring
Rest API for fetching tailoring-
questions for a user

/patient/plan/updateuser/exercise upd/exercise
Rest API for updating exercises
for a user

/patient/plan/updateuser/education upd/education
Rest API for updating education
for a user

Table 4.1: Different endpoints tested

Jakob Nielsen [8] defines three important limits for response-times. 0.1 second is about
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the limit for a user to feel that the system reacts instantaneously. 1.0 second is is about the
limit for when the user lose the feeling of operating directly with the data. 10 seconds is
about the limit for keeping the user’s attention, and feedback on the data is crucial.

As demonstrated in Figure 4.4, the baseline for sending activity is just under 1200 ms
on average for 8 parallel users. This just exceeds Nielsen’s second limit, where the user
loses feeling he is working directly with the data. This response-time is quite high, mostly
due to the forced artificial wait-times for each request of 1000 ms to wait for ElasticSearch
to automatically reindex the data.

Figure 4.4: Baseline performance

The generation of the first plan peaks at the beginning around 6200 ms, and is closer to
Nielsen’s third response-time limit than the second limit. This is most likely due to the
java virtual machines requiring warm-up times at start. With these as our baseline for the
thesis, the expected outcome is that with a more scaled solution, these response-times will
vary depending on the current configuration.
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4.2 Implementation of Test Scenarios
This section goes into depth on methods done to improve the performance of the system
while scaling the solution. The section contains the computer specifications that were
used, how the different implementations were tested and measured, how the different im-
plementations were done, and hypothesis on what the expected outcome of the different
configurations are.

4.2.1 Overview
Testing the different parameters for ElasticSearch was done in single-, double-, triple-
combinations, in both a clustered and non-clustered instances of ElasticSearch. Clustered
meaning two nodes running in synchronization, in a ElasticSearch cluster, while non-
clustered meaning a single ElasticSearch node running by itself. By running tests in both
clustered and non-clustered runs, we establish a baseline on performance, and a better
comparison on what clusters do to performance. Vertical scaling with ElasticSearch was
also tested and measured. Results were measured by timing requests, from the request
being sent to a response was received by the client. All requests were done in parallel, for
more realistic results and to get a feeling of how users perceive wait-times on requests to
the server. Testing was done by a Java-application we developed, storing results in a sep-
arate .csv file. Graphs were later generated with another IPython Notebook-application,
reading the aforementioned files.

All testing was done on three computers, a Macbook Pro early 2015 retina - for run-
ning the test-application, a desktop computer borrowed from IDI - running ElasticSearch,
selfBACK (and MongoDB), and a high performance machine called samuel01 at IDI.
Hardware specifications are listed in Table 4.2.

Machine CPU RAM
Macbook Pro
early 2015 retina

Intel(R) Core(TM)
i5-5257U CPU @ 2.70GHz 8 GB 1867 MHz DDR3

IDI loaned DELL
Computer

Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz (8GB, DDR3, 1600MHz) * 2

samuel01
(Intel(R) Core(TM)
i7-5930K CPU @ 3.50GHz) * 12 62GB

Table 4.2: Hardware specifications for the different computers.

4.2.2 Testing
When running the test-scenarios, a standalone Java application3 was created to handle
multiple, parallel requests, hereby referenced as “tester”. The computer-specifications
also limited the number of ways that the setup could be tested, since both ElasticSearch

3https://github.com/kasperrt/testing-master/
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and selfBACK were running alongside each other. This has to be taken into account with
the response-time generated by the tests.

As seen in Figure A1, prior to all requests, the tester first sets the app-clock and then
forks into 8-threads. This is done to handle selfBACK’s own timekeeper to ensure all
recorded times of activity or plans requested are correct. This also helps with simulating
more traffic in parallel on the back-end without needing to wait one hour between requests.
We chose to run the test scenarios with 8-parallel users, sending requests in parallel with
small to no-delay between requests. 8-users in parallel was chosen to illustrate a more
real-life scenario of how many requests are made during the current feasibility tests, and
trying to reach the upper threshold of the local machine running selfBACK.

4.2.2.1 Initial round

The initial start up of the tester can be seen in Figure 4.5, illustrating program-start, to
creation of the 8 users. This first round of operations ensures that ElasticSearch is properly
reset, and no data is left from previous testing, and creates the 8-“patients” that will be used
when testing. To ensure we do not move past the current date, the testers clock is set back
one year.

Figure 4.5: Initial round

4.2.2.2 Round 2

Round 2 is defined from week < 3 (week = 0, 1 or 2) to the beginning of a new week in
Figure 4.6. The tester fetches new plans for the 8-patients, iterates over the data, answers
and completes education and exercises, and sets the selfBACK clock to the slowest of the
8-threads. When starting a new week, the tester sends the different education-questions
and exercises performed when requesting a plan. This is only done when week > 0.

4.2.2.3 Round 3 (subround 2)

Round 3 is a subround in round 2, and is repeated 24 * 6 times for each round 2. This round
is the condition that is true when day < week-length in Figure 4.7. This round simulates
the passing of days and weeks for selfBACK and all the patients.
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Figure 4.6: Round 2

4.2.2.4 Round 4

Round 4 is potentially the last round of the tester. This round is defined from when day
> week-length to the stop of the program in Figure 4.8. In this round, the tester fetches
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Figure 4.7: Round 3 (subround 2)

tailoring questions for all patients, and checks what week it is. If week !< 3, it saves all
the data to a file, and stops the test-cycle. If week < 3, we return to round 2.

4.2.2.5 End

After the end of the tester, the results and logs are saved to an .csv file, as demonstrated by
the two last boxes in 4.6.

4.2.3 Architecture

The architectural schema is dependent on what ElasticSearch setting was tested for per-
formance, but the overall setup is Figure 4.9. All ElasticSearch nodes are running locally
on the loaned computer, alongside selfBACK. With ElasticSearch’s java-package, self-
BACK was able to connect to all the nodes in the cluster. Data has a two-way flow between
ElasticSearch and selfBACK. The test-application was also run on the Macbook Pro, send-
ing requests over the local network. Data-flow goes two ways between selfBACK and the
test-application.
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Figure 4.8: Round 4

4.2.4 Clusters

Since all testing was done on a local network, real-world delays was not as prominent
as expected with a live system. The test-cluster was deployed with Docker4. Both nodes
where set to be master-node eligible, and data-node eligible. With selfBACK connecting to
only one by default, selfBACK had to be configured to automatically discover more nodes
in the ElasticSearch cluster. This was done with sniffing as seen in Listing 4.2. Sniffing
is a term in ElasticSearch which means automatically discovering different ElasticSearch
nodes in the cluster the application is connected to.

.put("client.transport.sniff", true)

Listing 4.2: "Java code for automatic discovery of nodes in a cluster"

This enables nodes being added or removed from the cluster more dynamically, without
having to configure the client for each addition or deletion. This is also less prone to error,
due to the client not being strictly forced to connect to specific nodes. The sniffing also
allows for a client to talk directly to the needed data-node, in the case of a master-node
going down.

4.2.5 Routing

Routing with focus on User-id was used to try and improve performance. This was done
by adding .setRouting(sDocumentType) to all ElasticSearch requests made from the self-
BACK server. This overrides the default routing-algorithm in ElasticSearch, and posts
entries to user-id defined shards. As seen in Figure 4.11, the only difference from the de-

4https://www.docker.com/

33

https://www.docker.com/


Chapter 4. Design

Figure 4.9: Default architecture when testing

fault setup or any other setup is the change in ElasticSearch’s own internal routing. Here
displayed as a turquoise box with bold font.
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Figure 4.10: Two-noded cluster

4.2.6 Fewer shards

Even though having fewer shards decreases redundancy, running test scenarios with fewer
shards could better illustrate the potential performance of a small system. With having a
fewer number of shards, ElasticSearch has fewer points in which the system has to com-
bine and merge results from the queried shards. Configuring ElasticSearch to have fewer
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Figure 4.11: 1-node cluster, but with routing on document-/client-id

shards for each indice was done by changing the point of creation of all indices in self-
BACK, when the reset-endpoint was called. The default of five primary shards per node,
were changed to one primary shard per node, and replica-shards per primary shard were
changed to one per primary shard as seen by Listing 4.3.
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client.admin().indices().prepareCreate(s)
.setSettings(Settings.builder()

.put("index.number_of_shards", 2)

.put("index.number_of_replicas", 1)
)
.get();

Listing 4.3: "Java code for automatically setting number of shards on indices on creation"

Based on Villamils’ [38] sharding recommendation, the shard-number was chosen to be 2,
due to expected numbers of documents to be at least 3 million or more. This was calculated
with an estimation of around 4.000 users or more, with activities being posted every hour
of every day of every week. This model goes as following:

• less than 3 million documents: 1 shard

• between 3 million and 5 million documents with an expected growth over 5 million:
2 shards.

• More than 5 million: int (1 + number of expected documents / 5 million)

As hypothesized but disproved by Ian Bisset [10] at BigEng5, fewer shards will increase
the response times. Our hypothesis on using fewer shards is that the response time will go
down, which is due to less data-concatenation needed when fetching from different places.

4.2.7 Segment Merging
As mentioned in section 3.4.4, merging indices into smaller segments, avoiding cost- and
time-ineffective merges on queries is a potential way of increasing performance of Elast-
icSearch. This should only be done on static (read-only) indices to avoid very large seg-
ments, which is not recommended by ElasticSearch [6]. With data_description
being the only static/read-only indice, the force-merge was done prior to all testing, but
after the ElasticSearch was reset. This was done with a POST-request in Java as seen in
Listing 4.4.

URL url = new URL("http://localhost:9200/
data_description/_forcemerge?only_expunge_deletes=
false&max_num_segments=1&flush=true");

String auth = Base64.getEncoder().encodeToString(("
elastic:changeme").getBytes());

HttpURLConnection connection = (HttpURLConnection) url.
openConnection();

connection.setRequestMethod("POST");
connection.setDoOutput(true);
connection.setRequestProperty("Authorization", "Basic "

+ auth);

5https://www.bigeng.io
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InputStream content = (InputStream)connection.
getInputStream();

Listing 4.4: "Java code for automatically setting number of shards on indices on creation"

4.2.8 Force refresh
To test force-refreshing indices in ElasticSearch for each write, selfBACK backend’s source
code had to be edited, due to all requests expecting the client to wait the artificial 1000 ms
between requests. Instead of having each post immediately responding with an 200-OK,
there was included a request to ElasticSearch for refreshing all indices. Due to much of
the different indices being updated across each other, the easiest approach to refreshing in-
dices was taken, where all indices are refreshed, not only the affected ones. This was done
by adding ESConnection.refresh(); call after all posts in the backend. With this
new feature added, the tester also had to be edited. The simulated wait-time was removed
for these scenarios, and enabled the tester to run at full speed.

4.3 Alternative approach
As mentioned earlier, ElasticSearch is not a database, but a search engine. To compare the
performance between a NoSQL database and ElasticSearch, and to see if switching to a
database would be beneficial, we chose MongoDB.

4.3.1 MongoDB
MongoDB was used for three of the endpoints at selfBACK, fetching achievements, post-
ing new activity and fetching total step counts. Due to only three endpoints being switched
from ElasticSearch to MongoDB, out of the 10 endpoints we queried, no feasible CPU-
measurement could be done. This is also because the testing still using force-refresh at the
remaining ElasticSearch endpoints.

With MongoDB being a real-time database, it does not require any re-index/refreshing
at the time of writes as opposed to ElasticSearch. This means the artificial 1000 ms wait-
time when not using the force-refresh API is mitigated.

When making the switch from ElasticSearch to MongoDB, the data is stored in an encap-
sulated environment, as demonstrated in Figure 4.12, with one users’ activity being kept
in their own separate collection. At first, the setup with everything in the same collec-
tions were tested, and proved to be a linearly rising slow-down of response-times, where
the last request had doubled in response-time compared to the first request. By giving
each user its own collection, this enables for faster aggregations, as well as removing
the possibility of a patient receiving another patients data if something were to go wrong
during the aggregation. To get this setup working, all collections were a combination of
user-id and the type of data stored. In the case of activity for the user “test-user-0”, the
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Figure 4.12: Setup for using MongoDB for storing activity and achievements.

data was stored in collection activity_test-user-0. The same was done with the
achievement, leaving us with two new collections per user, stored separately in MongoDB:
activity_test-user-0 and achievement_test-user-0. This way of stor-
ing activities and achievement was also tested with ElasticSearch, to get a fair comparison
between the two.

{
"_id": "1507986000106-test-user-0",
"start": 1507986000106,
"end": 1507989599106,
"type": "walking",
"steps": 198
"userid": "test-user-0",
"date": ISODate("2017-10-14T00:00:00.000Z")

}

Listing 4.5: "Data-strucutre activtiy in MongoDB"

For the data-schema used for activity, we tried to make it as similar to how it was stored
in ElasticSearch (Listing 4.1). As seen in Listing 4.5, to avoid duplicates, we set the _id
to a combination of the timestamp + user-id. To avoid duplicates all inserts were written
as replaces, with an additional parameter: upsert. When upsert set to true, MongoDB
creates the queried document if no document is found with the specified parameters, in-
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stead of being replaced. The field _id are the same for both general collection-names and
user-defined collection-names.

4.3.2 Vertical Scaling
When testing the solution on a vertically scaled system, we moved ElasticSearch and self-
BACK to separate Docker containers, making them easy to start and keeping their data
and processes in enclosed environments. Then the containers where started at a much
more powerful computer; samuel01 at IDI, with the following hardware specifications:

• CPU (Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz) * 12.

• RAM 62GB

The CPU-info was found using the command cat /proc/cpuinfo | grep "model
name", and the RAM was listed with lshw -short -C memory. The number of
CPU’s is significantly higher than with the local computer, leaving us with a hypothesis
of this outperforming all the test scenarios on horizontal scaling. The test-application was
still run from the aforementioned Macbook Pro Retina, sending requests to samuel01 on
the local network at NTNU.
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This chapter contains the results achieved by running the proposed configurations with
ElasticSearch and selfBACK. Section 5.1 lists the research questions and goals, Section 5.2
presents the results achieved with the different configurations, and alternative approaches.
Section 5.3 discusses these results more in depth, and tries to answer the proposed research
questions.

5.1 Expectations and goals
The goal of the evaluation is to measure and analyze the different results produced from
the tests, and try to find the most viable way of scaling selfBACK’s usage of ElasticSearch
while maintaining performance. The alternative approach with MongoDB will also be ana-
lyzed and compared with the baseline performance of ElasticSearch, as will the vertically
scaled test scenarios. The results will be analyzed and provide answers to the proposed
research questions and research goals presented in Chapter 1.

The proposed Research Questions are:

RQ1 Which ElasticSearch configurations best increases selfBACK’s performance?

RQ2 How do the configurations perform when combined?

RQ3 How does alternative solutions perform compared to ElasticSearch?

RQ4 How much are response-times impacted when scaling the number of users using
selfBACK?

RQ5 How much does hardware affect performance, and how does vertical scaling per-
form compared to horizontal scaling?
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The proposed Research Goals are:

RG1 Scale ElasticSearch horizontally while reducing response-time by 50 ms, addresses
RQ1 and RQ2.

RG2 Achieve halved response times with selfBACK by scaling the data store. Achieving
this goal will address RQ3, RQ5.

RG3 Determine upper threshold of ElasticSearch and selfBACK in terms of number of
parallel/concurrent users. This will address RQ4.

Forcing a reindexing of ElasticSearch (hereby called “force-refresh” run) was assumed to
outperform all other configurations, due to this approach circumventing all of the artifi-
cially needed wait-times introduced by ElasticSearch (3.4.5, and [40]). This is potentially
also the most cost-ineffective approach, due to forcing a refresh and reindexing of all the
documents for every write. For the force-reindexing runs, CPU-load will be recorded
and compared with default CPU-load for a run without forcing reindexing. This will al-
low us to compare how the baseline performs on a hardware-load level, compared to the
force-refresh runs. Because the force-refresh endpoint might be a potential time-saver, the
results of force-refresh runs will be evaluated and compared only with other force-refresh
runs. With the artificial wait-times being possible to take into account, each following
section will include the best configuration of both non force-refresh and force-refresh test-
scenarios.

We also hypothesized that switching from ElasticSearch to MongoDB potentially is a good
time-saver, due to MongoDB being a real-time database as opposed to ElasticSearch’s
“near-real time” nature. When testing this approach, the focus is on testing an alternative
approach and compare this with the baseline performance with ElasticSearch, not scalab-
ility.

5.2 Results
Results have been gathered while running different test-scenarios, combining the pro-
posed ElasticSearch configurations by computing the round-trip time of each request. The
response-time is computed by recording the start time of a request, and ending the record-
ing when a response has been received. All these recordings are measured in milliseconds,
and stored alongside the endpoint and user that performed the request in a separate .csv
file. All the parallel users/threads write to the same file by appending to the end of the file.

All the graphs are created with a IPython Notebook1 script, supplied by Kerstin Bach from
selfBACK. All the tests except the comparison between MongoDB and ElasticSearch, and
the vertically scaled scenarios are run with 8-users in parallel, while the comparison is run
with both 20-users and 60-users. As said in the previous section (5.1), system-load was
recorded for the baseline and the force-refresh run to record and demonstrate the potential
trade-offs that forcing ElasticSearch to refresh for every write.

1https://ipython.org/notebook.html
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The following sections will include the best performing runs for single configuration-, two
configuration- and three configuration-runs, discuss why these configurations performed
better, what configurations performed the worst and why these performed worse than the
rest. Following the results for the different configurations, the alternative approach’s res-
ults will be presented and discussed.

When discussing results, only 2 node-cluster scenarios will be shown due to a constant
rise in response-times. Figure 5.1 demonstrates two runs with the same configurations,
where one is in a 1 node-cluster (5.1a) and one is in a 2 node-cluster (5.1b). As seen by
the the two figures, the difference is the same among all other configurations, where run-
ning the tests in a 2 node-cluster adds approximately 150-200 ms, and a wider spread of
consistent response-times. Because of this, we decided to only include 2 noded-clustered
runs for the rest of the results, since this difference is minimal and easily accounted for,
and adds another layer of reliability.

(a) 1 node (b) 2 nodes

Figure 5.1: 1 node vs 2 node-cluster

5.2.1 Single configurations
The comparison between default run with an artificial wait time and forced reindexing
demonstrates the big difference “real-time” requests introduces. As explained earlier, the
drastic change in response-times are only because of the forced reindexing, forcing the
“near-real time search” to a be real-time search. Forced reindexing of ElasticSearch can
be observed to be the best single-configuration, as demonstrated in 5.2. When forcing
reindexing at the time of every write to ElasticSearch, this could potentially affect per-
formance negatively. Because of this, we also ran a CPU-load measurement to see the
difference in load.
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(a) Default (b) Forcing reindexing

Figure 5.2: Default run versus force-refresh run

With as little as 8-parallel users, the load almost doubled when utilizing the force-refresh
endpoint for ElasticSearch. As shown in Figure 5.3, it is clear that forcing reindexing of
ElasticSearch should be avoided if possible, depending on the number of users actively
updating and doing writes. Having this much rise in load, means this endpoint has to be
used with care, therefore alternative configurations with the required 1000 ms wait-times
will also be included.

(a) Default run (b) Manual-refresh run

Figure 5.3: System and user-load for baseline runs.

As for the runs not including force refreshing, the simulations proved to be very similar
in response-times. Both the routing and fewer-shards configuration performs better than
segmenting, with almost equal performance as demonstrated in Figure 5.4. With including
fewer shards for storing data in ElasticSearch, the fewer-shards configuration performs as
expected. The fewer-shards setup has half of the number of shards as the default runs, res-
ulting in ElasticSearch having to query and merge results from fewer shards, introducing
fewer points of failure in the fetch-pipeline. A drawback with fewer shards is reducing
redundancy and failure recovery significantly.
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(a) Routing (b) Fewer shards

Figure 5.4: Single runs without forced reindexing

The routing-configuration works quite similarly in performance, but does not sacrifice
any redundancy or failure recovery. We expected routing to be as good, maybe better in
performance than creating fewer shards. This is due to the fact when defining a router
in ElasticSearch, similar data is stored much closer together. Routing also enables for
ElasticSearch to “know” pre-query where to fetch or insert the data, since we are using the
routing for both writes and reads. If selfBACK were to use more static-data for queries, the
segmenting configurations can be hypothesized to perform better than it does currently.

5.2.2 Double configurations
All tests were done in a 2 node-cluster, as with single configuration. This was done be-
cause of the small and constant increase in response-time. Again, forcing a reindex on
ElasticSearch outperforms the other runs. Here we also begin to see a pattern in perform-
ance with fewer shards, as to be expected when having less sources for merging data. The
best performing configurations is fewer shards and force refreshing the indexes as seen in
Figure 5.5b, while the worst performance involves routing as seen in Figure 5.5a.

As for double configurations without force reindexing, all runs perform quite similar. The
best performing configuration is segmenting combined with fewer shards. This is also
the most consistent in spread of response-times. This might be due having fewer shards
and smaller segments, having fewer points of merging data. As seen by Figure 5.6, the
response-time is 30-40 ms faster, with a less spread of response-times in Figure 5.6b.
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(a) Worst - routing and force reindexing (b) Best - fewer shards and force reindexing

Figure 5.5: Double configurations with force reindexing.

(a) Worst - segmenting and routing (b) Best - segmenting and fewer shards

Figure 5.6: Double configurations without force reindexing.

5.2.3 Triple configurations

With triple configuration, all runs and results are presented for a 2 node-cluster, as with
single- and double-configurations. To our surprise, routing again performed poorly, sim-
ilarly to with double configurations. Combining segmenting, routing and fewer shards,
creates a high amount of static noise, especially compared with the worst run from double
configuration as seen by Figure 5.7a. The difference is almost not noticeable when com-
paring double configuration (Figure 5.5b) to triple configuration (Figure 5.7b) for the
force-refresh runs.
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(a) Segmenting, routing and fewer shards
(b) Segmenting, fewer shards and forced reindex-
ing

Figure 5.7: Best scenarios of three configurations combined.

5.2.4 Alternative approach

With MongoDB as an alternative to ElasticSearch, being a real-time stored database, the
results are compared with the force-refresh runs of ElasticSearch. To get more varied
results, the tests were run with a higher amount of parallel users. The number of 20-users
and 60-users was proposed by a selfBACK team-member.

5.2.5 General collection-names

As mentioned in Section 4.3, the MongoDB runs were first tested as a copy to how Elast-
icSearch queried its indices, with users activities and achievements in general collections,
containing a collection of all users data. We found that this setup had an unexpected res-
ult on response-times, where the response-times increased exponentially with document
count. As seen by Figure 5.8b, response-times reached approximately 2050 ms in the end,
with a document-count of 34.800 for the activity-collection.

Since this simply is not sufficient in response-time, we switched to a more user-oriented
collection way of storing the data. As mentioned in 4.3, we ended up with a combination
of collection-name + user-id for the collection names. With MongoDB’s good support of
dynamically created collection, this proved the way to go.

5.2.6 User-oriented collection-names

With MongoDBs’ slow performance with general collection-names, a different approach
was also tested. Since MongoDB supports dynamically created collection, this was a good
way of mitigating issues created by too large collections.
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(a) 20-threads (b) 60-threads

Figure 5.8: General collection-names runs, MongoDB

5.2.6.1 20-threads MongoDB

When switching to user-specific collection-names, performance improved a lot, with a
much more stable and reliant response-time. ElasticSearch has a wider spread of consistent
response-times, with some spikes occurring as seen by Figure 5.9a and a slight rise in
average response-time near the end. In comparison, MongoDB almost doubles the initial
performance as seen by Figure 5.9b. MongoDB has some problems at the beginning of
the tests, which is caused by the high number of users creating a user specific collection.
This is the only noticeable spike in MongoDB’s performance, and the average is around
300 ms throughout the rest of the requests, establishing an improvement of 120-175 ms on
average.

(a) Only using ElasticSearch (b) Using MongoDB

Figure 5.9: 20 threads runs

48



5.2 Results

5.2.6.2 60-threads MongoDB

Increasing number of parallel users with user-oriented collection-names did not show the
same exponential growth in response-time as with general collection-names. The increase
in number of users neither had that much of an impact when compared with the 20-users
test-scenarios. As seen from Figure 5.10, ElasticSearch introduces a much wider spread of
response-times at the time of write compared to MongoDB. The spike as mentioned with
20-threads still persist in MongoDB at the time of testing, but the average of MongoDB
still outperforms ElasticSearch. MongoDB averages around 650-750ms, while Elastic-
Search averages around 1800-2100 ms, with spikes as high as 3000 ms.

(a) Only using ElasticSearch (b) Using MongoDB

Figure 5.10: 60 threads runs

With more requestees, the difference is more prominent. This can be caused by MongoDB
not having to reindex all its data for each write. The changes we introduced when moving
the two endpoints to MongoDB might also be a big factor. Instead of gathering all the data
in the same collections, the data was split up, and collected in user-specified collections.
This mitigates much of the time spent searching for the documents needed, due to one
collection only containing data for that specific user. If selfBACK ever is to aggregate data
from these collections of data, across users, this solution will not be viable anymore and
all data must be collected in specified collections.

When comparing this run with the general collection-names (Figure 5.8b), it is apparent
that performance starts out similarly, but as soon as the document-count rises, the general
collection-run performs more poorly than the user-specific collection-names.

5.2.7 Scaling users - default setup

When scaling out the default ElasticSearch setup with more users, we see that the rise
in response-time is more prominent with 60 users, but the average response-time is quite
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similar between the two as demonstrated in Figure 5.11. With the artificial wait times, the
spread is lower and the real increase in response-time is much lower than the one with
forced reindexing. Since all the default writes demand an artificial wait time of 1000 ms,
the increase in response-time is more along the lines of 800 ms, as opposed to the forced
reindexing of 1000 - 1100 ms increase. With the default runs, the artificial wait-times of
1000 ms is more easily accounted for, than the big spread of response-times achieved with
forced reindexing.

(a) 20 users (b) 60 users

Figure 5.11: Scaling users in default setup with ElasticSearch
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5.2.8 Scaling users - user-oriented indices
Since we did the modification of having user-oriented collection-names for MongoDB,
which increased the performance, this approach was tested equally with ElasticSearch.
The performance-difference in a 20-thread run was minor, but introduced more static noise
for the other endpoints than activity as seen by Figure 5.12. This might be caused by hav-
ing to write to more indices at the same time, instead of one indice.

(a) User-oriented indice names (b) General indice-names

Figure 5.12: 20 threads runs, ElasticSearch user-oriented indices compared with general indice-
names

(a) User-oriented indice-names (b) General indice-names

Figure 5.13: 60 threads runs, ElasticSearch user-oriented indices compared with general indice-
names with force refreshing indices.

When scaling to 60-threads, the difference is higher and the performance is more affected
than the runs with just one indice for activity and achievement, demonstrated in Figure
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5.13. This might be due to having more indices to refresh on each write. It was tested with
running the refresh-command for only the affected indices instead of the _all endpoint,
but this resulted in worse performance, most probably due to the refresh command iterat-
ing through the different indices requested for reindexing.

(a) User-oriented indice-names (b) General indice-names

Figure 5.14: 60 threads runs, ElasticSearch user-oriented indices compared with general indice-
names with no forced reindexing.

For user-oriented testing with no-refresh, 60-threaded tests performed similarly to the
other user-oriented indices for ElasticSearch. As seen in figure 5.14. The spread and in-
crease throughout the test was also significantly higher than with the general-indice name
test-runs, which most probably is caused by having 120 more indices to write to, as op-
posed to the 2 indices with general indice names. As opposed to MongoDB, it does not
seem like ElasticSearch’s performance improves with user-oriented indices.
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5.2.9 Vertical Scaling
As mentioned in Section 2.4, vertical scaling is also a way of scaling solutions. When
switching to samuel01 for computation and housing the docker-containers for Elastic-
Search and selfBACK, we can see a drastic increase in performance. When testing the
different parameters on samuel01 with 8-threads, the performance-gain was too small to
differentiate between the local runs, with some runs adding more noise to totals-requests.
The difference in test scenarios with less than 60 parallel requests is minimal, and is not
included. The 60-users scenarios demonstrated in Figure 5.15 show a significant improve-
ment in performance.

(a) ElasticSearch (with force-refresh) (b) MongoDB

Figure 5.15: 60-thread runs on Samuel01

When making the switch to a faster computer, performance with MongoDB is doubled, the
same with ElasticSearch. The better processing power also introduces less static for test
scenarios using the force-refresh endpoints. This is due to the internal processor having
more threads available and a much higher clock-speed. Just as demonstrated in Figure
5.16a, ElasticSearch again performs poorly for user-oriented indice-names, but not with
the noticeable increase in response-times as on the local runs. Even with more processing
power, having to update n (n = number of users) more indices per new user, puts too much
strain on the system. Comparing the general collection-name run on samuel01, with the
local machine, the increase is not as prominent but still high enough for this not to be a
viable approach, as seen by Figure 5.16.
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(a) ElasticSearch user-oriented indices. (b) MongoDB general collection-names.

Figure 5.16: 60-thread runs on Samuel01

The runs involving not forcing a reindexing of ElasticSearch had increased performance
with vertical scaling. With not forcing a reindexing requiring an artificial wait-time of
1000 ms, the response-time not being able to account for is small as seen by Figure 5.15a.
Without force-refresh the spread in response-time is around 600 ms + 1000 ms artificial
wait-time, while with force-refreshing the spread is closer to 1000 ms. Since the artificial
wait-time is something that can be account for, scaling vertically without force-refreshing
ElasticSearch can be a viable way of increasing performance.

(a) With force refresh (b) Without force-refresh

Figure 5.17: 60-thread runs on Samuel01, ElasticSearch

5.3 Discussion
We have conducted 63 experiments in this thesis, and the results we achieved have both
been expected and unexpected. In this section we will discuss the different outcomes of
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our results.

5.3.1 ElasticSearch configuration performance
With this thesis focusing on scaling selfBACK, increasing reliability, redundancy and fail-
ure recovery, increasing number of nodes in a cluster adds close to a constant increase in
response-time. This is an increase in response-time that can easily taken into account, es-
pecially since this doubles the reliability with ElasticSearch when increasing node-count
from 1 to 2 nodes. As mentioned in Section 5.2, the default for this thesis is a clustered
instance, with the small increase in response-time it adds. If we are to look plainly at
performance, clustered versus non-clustered instances of ElasticSearch, non-clustered has
the best performance, at the cost of reliability. A summary of the average response-times
compared with the default run can be seen in Table 5.1.

When comparing the different configurations’ performance, forcing reindexing of Elast-
icSearch is clear to be the best performing. When comparing graphs in the previous
sections, forced reindexing alone, outperforms the three other configurations combined
without forced-reindexing. When analyzing the graphs and average response-times gener-
ated by the test-scenarios, the performance gain is 340.204613 ms for a clustered run with
forced reindexing, versus 1312.054501 ms response-time for the activity endpoint. This
is an decrease of 971.849888 ms on average, making forced-reindexing the best perform-
ing configuration. With the default response-time being 1351.563616 ms in a clustered
instance, the improvement is 1011.359003 ms which satisfies RG1. When analyzing the
results for runs not involving forced reindexing, the best run was fewer-shards with an av-
erage of 1312.054501 ms for the activity endpoint. This configuration does not complete
RG1, with the improvement only being 39.509115 ms.

Combining the different configuration does not necessarily increase performance as seen
by Table 5.1. The best combination of configurations was the combination of forced-
reindexing and fewer shards, with an average response-time for posting activity with
322.392299 ms. Compared with the single configuration of forced-reindexing, this is
only an improvement of 17.812314 ms on average, but still achieving RG1. As for the
combinations not involving forced-reindexing, none of the combinations completes RG1.
Segmenting with fewer shards comes the closest, at 1311.443080 ms on average, with an
improvement of 40.120536 ms. When analyzing Figure 5.7a, triple configuration gets a
lot of static noise to our surprise. This includes routing, which also was part of the worst
performance for double configurations as seen from Figure 5.6a. With routing allowing for
a more defined location of storing data, we hypothesized this to be the best configuration
if excluding forced reindexing. We are not sure why this happened, but this could be a
product of the different routes and user-id’s used for routing are too similar for it to allow
the data to be spread out equally among the shards.

As seen by Nielsens’ [8] three response time limits, we can see that almost all our clustered
runs came close to the top two limits when not doing a force refresh of the indices. This
reaches the defined limit for users to still feel they are working and interacting directly with
the data. If the goal of selfBACK when scaling is to let users maintain the feel of directly
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interacting with the data, the manual-refresh endpoint is crucial to achieve this perform-
ance. But as mentioned, this comes with the drawback of CPU-usage on the backend.
An alternative solution is to migrate the data from ElasticSearch and start using one of
the proposed alternative ways of storing data from Section 2.2, based on the increased
performance demonstrated in Figures 5.9 and 5.10.

5.3.2 Scaled, alternative results
As seen in Section 5.2, scaling ElasticSearch locally does not reduce response-times, mak-
ing this not a viable way of reaching RG1. When making the switch from ElasticSearch
to MongoDB, the default test scenarios of 20-parallel users saw an improvement, but not
halving the response-time. It is not until we reach the upper threshold of ElasticSearch
with 60-users, we see an significant improvement. When using user-oriented collection-
name the increase in performance is approximately 1150 ms, which is 150 ms better than
halving ElasticSearch’s response-time for the activity endpoint. When comparing this with
the default runs not involving forced-reindexing, the improvement is about the same, res-
ulting in achieving RG2.

When vertically scaling ElasticSearch on Samuel01, all runs achieve RG2. MongoDB
again performs the best, but as seen in Figure 5.15a, the upper threshold of what the CPU
can handle is not nearly reached. This can be seen by the smaller spread in results for
the activity endpoint. ElasticSearch has approximately a decrease of 1000 ms, which is
about half of the default runs locally. MongoDB saw a decrease of approximately 1500 ms.

For RG3 and RQ4, the impact of scaling number of users on performance seems to be
CPU-bound. When running the test-scenarios of 60-parallel users on the local machine,
it seemed the upper threshold of ElasticSearch was reached when forcing reindexing, due
to the extreme spread of response-times. As for the default run with artificial wait-times,
scaling the number of users has a small increase in response-times, showing that Elastic-
Search performs the best when left as a “near-real time” search engine.

56



5.3 Discussion

Run
(clustered)

Average Response-time
Activity (ms)

Difference compared
default run (ms)

Default 1351.563616 +0
Fewer shards 1312.054501 -39.509115
Manual refresh 340.204613 -1011.359003
Routing 1351.456473 -0.107143
Segmenting 1353.094866 +1.53125
Fewer shards +
manual refresh 322.392299 -1029.171317

Fewer shards +
routing 1324.471540 -27.092076

Fewer shards +
segmenting 1311.443080 -40.120536

Manual refresh +
routing 345.386719 -1006.176897

Manual refresh +
segmenting 340.457961 -1011.105655

Routing +
segmenting 1391.152158 +39.588542

Fewer shards +
manual refresh +
routing

337.971354 -1013.592262

Fewer shards +
manual refresh +
segmenting

310.841704 -1040.721912

Fewer shards +
routing +
segmenting

1401.500186 +49.93657

Manual refresh +
routing +
segmenting

375.444940 -976.118676

Table 5.1: ElasticSearch average response-times for the different runs, single-, double-, and triple-
configurations
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Chapter 6
Conclusion & Future Work

This chapter contains the conclusion for this thesis, and what proved to be the best con-
figurations based on the previous results and discussions. The chapter also includes a
section on future work, and how to possible mitigate any other configurations affecting
performance when scaling the whole system horizontally, instead of just the current focus
on ElasticSearch.

In this thesis, we have worked with ElasticSearch, attempting to scale ElasticSearch as
best as possible while maintaining performance with different methods of configuration.
We approached this by the trial and error [41] method, after reading ElasticSearch’s own
book. We chose the most promising configurations proposed in the book, and started run-
ning tests. We began with a high baseline for response-times, which made us optimistic
of our research questions. We performed a series of experiments, combining the different
configurations in both a non-clustered and clustered environment, increasing number of
users using selfBACK, and switching two endpoints from ElasticSearch to MongoDB. We
defined the following research question in the beginning of this thesis:

RQ1 Which ElasticSearch configurations best increases selfBACK’s performance?

RQ2 How do the configurations perform when combined?

RQ3 How does alternative solutions perform compared to ElasticSearch?

RQ4 How much are response-times impacted when scaling the number of users using
selfBACK?

RQ5 How much does hardware affect performance, and how does vertical scaling per-
form compared to horizontal scaling?

As seen from Sections 5.2.1, 5.2.2, and 5.2.3, the best configuration in ElasticSearch
without any doubt is forcing a reindexing of ElasticSearch for each write. With approx-
imately 1/3 response-time of the other configurations, this is clearly the most consistently

59



Chapter 6. Conclusion & Future Work

good performance wise, but also the most cost ineffective with CPU-load in mind. As
for the configurations with a lower CPU-load, routing and reducing the number of shards
per indice proved to be the best other configuration. Routing can be seen as the better
alternative, due to reducing the number of shards to half of the default number, we remove
much of the reliability introduced by having more shards. With fewer shards, data is split
amongst less nodes, and in the case of node crashes we might even lose whole shards,
making our data unreachable. Segmenting had the smallest increase of performance, but
this is probably due to selfBACK’s low usage of static data. In the case of more static data
being used, retrieved and aggregated, reducing the number of segments of these shards
would have been more beneficial.

The difference when combining the different configurations proved to have less of an im-
pact than initially hoped for. Every run combined with forced reindexing outperforms its
counterpart without forced reindexing. A smaller spread of response-times can also be
seen from the different graphs and summary Table 5.1 when combining routing, fewer
shards and forced reindexing.

As for the difference in performance comparing ElasticSearch and MongoDB, the res-
ults were mixed. The first approach to switching from ElasticSearch to MongoDB proved
to be quite bad, and had an exponential growth where the response-times near the end
was worse than ElasticSearch’s with forced reindexing. When switching to user-oriented
collection-names for MongoDB, the performance saw a great improvement with an av-
erage response-time of approximately 500 ms. The improvement with MongoDB over
ElasticSearch is potentially 1000 ms.

When testing the default setup for selfBACK, response-times increased from an average
of 1250 ms to 1600-1750 ms when moving from 20 parallel users to 60 parallel users for
the activity endpoint. For the best setup with MongoDB, the response-time increased from
an average of 200-250 ms to 500 ms. ElasticSearch with forced reindexing performed the
poorest on scaling, seeing an increase from 300 ms to 1200 ms on average.

In conclusion, when scaling a system for more users, or more nodes, it is important to keep
in mind both system-configurations, but also data-structure. As seen by the MongoDB ex-
periments, changing some of the data-structure for collections, showed a big impact on the
performance. With ElasticSearch, moving from the artificial wait-times had a great impact
on response-times, but a poor impact on CPU-load. If a system needs real-time search, a
“near-real time” search engine is not the best choice.

Our contribution to selfBACK is a self-contained docker-container, running selfBACK in
an enclosed environment. An easy way of connecting the aforementioned container with
an ElasticSearch container was also proposed and handed over to the selfBACK team.
Pairing this docker-setup with the implemented performance-tester, automated perform-
ance testing was made possible. With the test-application, reproducability and deployment
was made easier, with requests being sent automatically instead of each endpoint requiring
manual testing for changes made.
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6.1 Future work
In this section we will propose some configurations to allow selfBACK to easier scale
better across multiple nodes and networks, both backend configurations and ElasticSearch
configurations. There will also be an evaluation on larger user bases, with a proposed
alternative data storage.

6.1.1 Larger userbase
As seen in the presented results in Section 5.2, when running tests on 60-parallel users on
a vertically scaled system, the response-times were spread out, but not reaching the upper
threshold of the server. As seen by the test-scenarios and results listed in the previous
chapter, we saw almost a doubling in response time in the increase from 20-users to 60-
users. If this trend is to continue, the system could potentially stall and produce unbearable
response-times if the system were to be globalized with a much larger user-base than 60-
users. In these cases, both scaling vertical and horizontal is needed, to better spread data
and load all across the globe. With this, locality of data can play a key role in response-time
on what part of the word the user resides in when requesting the data.

6.1.2 Load balancers
A potential strategy of solving the system being bottlenecked by the CPU is load balancers.
Load balancers act as a intermediary between your servers and the requesting clients [42].
This opens for the opportunity of having several servers running selfBACK, without any
of the clients having to manually choose which of the servers to connect to. The load
balancer will act as an intermediary on routing clients to the appropriate server to share
load better across the servers. With load balancers, clients does not have to worry about
which servers are online, since load balancers will only route requests to the ones that
are online. One could compare having load balancers for selfBACK somewhat similar to
having multiple nodes in an ElasticSearch cluster, where ElasticSearch routes requests to
the correct nodes and ensuring requests be sent to online nodes. A proposed architecture
of this is demonstrated in Figure 6.1.

6.1.3 Shard allocation awareness
When running large clusters of ElasticSearch, ensuring data availability to be constant,
could be solved with shard allocation awareness. Using more than one physical node to
store and run ElasticSearch can increase performance and persistence significantly. Elast-
icSearch allows for specifying rack-ids for each rack it is running on on start up and con-
figuration file (elasticsearch.yml). This could be done with Listing 6.1.

#!/bin/bash
./bin/elasticsearch -Enode.attr.rack_id=RACK_ID_NUMBER

Listing 6.1: Start up command for ElasticSearch to define what rack a node is located on.

To set up the actual shard allocation awareness in the cluster, the attribute which to be
used needs to be specified to all master eligible nodes [39]. This can be done by adding
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Figure 6.1: Possible architecture with load balancers and more instances of selfBACK running

Listing 6.2 to elasticsearch.yml. If there are more than one rack_id present in
the cluster, ElasticSearch will ensure (if possible) that there are no two similar copies of
the same shard present on the same rack. This means that even when one rack goes down,
the cluster should still be able to retrieve the queried data.

cluster.routing.allocation.awareness.attributes: rack_id

Listing 6.2: Defining what field the allocation-awareness is to use
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When a rack goes down, ElasticSearch will still allocate the lost shards of the downed node
to the alive nodes, even if that means moving them to a node containing similar/copies of
the same shards. When using shard allocation awareness ElasticSearch will automatically
prefer local shards on GET requests to increase performance.

With ordinary shard allocation awareness the automatic allocation on downed nodes al-
lows for same shards being allocated on the same racks. This can prove straining on the
hardware when a node goes down, since reallocating uses processing power. To ensure
that two similar shards never are allocated on the same rack, this can be specified. If we
have the previously specified awareness attribute rack_id and we know that the cluster
will be running on two racks, this can be specified as shown in Listing 6.3.

cluster.routing.allocation
.awareness.force.rack_id.values: rack_one,

rack_two

Listing 6.3: Shard allocation awareness settings for rack-location

When or if rack_two goes down, the shards allocated on rack_two will not be real-
located to any node on rack_one if there are similar shards present there already.

6.1.4 Automated performance testing
As demonstrated in this thesis, performance testing is crucial to a system. One proposition
for further work with selfBACK should involve automated performance testing. This could
be achieved by running the test-application developed for this thesis, limiting the test-
runs to loop for 5-10 minutes for each major version of the system, only allowing the
version for production if the highest observed response-time does not exceed a certain
number. This means every major update will be delayed with 1-2 hours before seeing
production mitigating any potential future performance degrading code. Combine this
with more extensive logging in both the tester, and selfBACK, errors causing the anomalies
can more easily be mitigated than having to run the server with a new setup, waiting for
user-feedback. With the test-application, docker-container and start up command for the
container being something we contributed to selfBACK, this only needs to be added in the
deployment and development pipeline.

6.1.5 Alternative approach
With the results in Section 4.3 showing more than doubling performance for 60-users in
parallel on both the local test-machine and samuel01, making the switch to MongoDB
from ElasticSearch could potentially be a big performance-boost on a larger user-base for
selfBACK. This combined with ElasticSearch being made for search, and excels at full-text
search and weighting of matched documents, and selfBACK not using any of these func-
tions other than aggregation and querying of data, making the switch from ElasticSearch
to a traditional NoSQL database is therefore mentioned in the further work after this thesis.

If moving to a NoSQL database proves to be a viable solution, this can be done in batch-
jobs, migrating data from ElasticSearch to the chosen way of data storage. Since most
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NoSQL databases uses JSON-format for their storage, iterating through all the data and
inserting the data to the new database could be done with a simple application querying all
data in an iterative manner. For these operations, there are a range of different solutions
available for free1. If there are to be any changes to collections/indexes/tables similarly to
what was proposed in Section 4.3, this could be done with a intermediary data processing
script when handling the results from ElasticSearch. The biggest downside in making such
a switch, is that all current queries will be deprecated and needs to be redone for the new
database. Since the two uses different drivers and libraries, this is to be considered a large
task.

1e.g. https://github.com/ozlerhakan/mongolastic
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Figure A1: Full testflow
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