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Abstract

The responses of a monopile offshore wind turbine subjected to irregular wave loads are investigated numerically and

experimentally, considering a range of sea states. An extensive experimental campaign was carried out on a fully

flexible model, representative of a 5 MW offshore wind turbine, at 1:40 scale. An assessment of the experimental

results for the response amplitude operator for regular waves and the 90th percentile seabed bending moment in

long-crested irregular waves is carried out using two models (analytical and numerical) for uncertainty propagation,

suggesting that bias errors in the model properties and in the wave elevation contribute the most to the total

uncertainty. The experimental results are also compared to a numerical model using beam elements and Morison

type of wave load with second order wave kinematics. The numerical model does not capture all of the responses

within the level of uncertainty of the experiments, and possible reasons for the discrepancies are discussed.

Keywords: ringing; higher order wave loads, hydrodynamic model testing; monopile; offshore wind turbine;

uncertainty

1. Introduction

The offshore wind industry is moving towards larger turbines in order to save costs on installation and main-

tenance. The increase in rotor size and aerodynamic loads requires increasingly large support structures. For

monopile wind turbine foundations (which support roughly 80 % of the offshore wind turbines in Europe [1]), this

corresponds to an increase in diameter, and more significant wave loads. Furthermore, to maintain a soft-stiff design

with respect to 1p (rotor frequency) and 3p (blade sweeping) excitation, the decrease in rotor speed associated with

upscaling also leads to a reduction in the first global bending natural frequency of large monopile wind turbines.

As a result, the ocean waves whose second, third or fourth harmonic are capable of exciting the structure at its

natural frequency, are waves with lower periods - and (for typical severe sea states) larger energy. In severe weather

conditions, when the turbine is typically parked with the blades feathered, monopile wind turbines are very lightly

damped and therefore particularly sensitive to wave loads which excite resonant responses.

In order to ensure safe yet economical design of large monopile wind turbines, the hydrodynamic loads and the

ringing-type responses need to be accurately predicted. Here, we apply Faltinsen’s definition of ringing: “transient

structural deflections at frequencies substantially higher than the incident wave frequencies” [2]. Ringing-type
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responses were extensively studied experimentally and theoretically in the 1990s in support of the development

of tension leg platforms and gravity-based structures for the oil and gas industry [2–8]. For shallower water and

irregular waves, state-of-the-art methods include using (modified) Morison’s equation with 2nd order irregular wave

kinematics [9], Morison’s equation or Rainey’s equation combined with wave kinematics from nonlinear potential

theory or from CFD [10–12], or wave kinematics from embedded stream function or higher order Stokes waves [13].

Recently, Kristiansen and Faltinsen introduced a new load model for intermediate water depth which can be applied

to monopile wind turbines [14]. Compared to experiments with a rigid monopile and regular waves, the new load

model shows good agreement in the third order load for small to medium wave steepness. Loads from breaking

waves require the inclusion of additional load models [15]. In the present work, a Morison-type load model - typical

for engineering calculations - is selected for simplicity and in order to establish a baseline comparison for further

work.

Model scale experiments are used to provide validation data for different numerical approaches; several recent

relevant model tests are summarized in [9]. Previous tests include rigid [9, 11, 14–17], single-mode [9, 18], and

fully flexible models [11, 19, 20]. While rigid models can provide important information about the wave loads, the

response of structure is what really drives design. A single-mode (pitching) model is simple to build, but doesn’t

completely match the deformations of the structure in the model compared to full scale. As a result, radiation

loads may be too large at model scale compared to full scale, and the response to wave excitation may not correctly

represent the full scale responses. Furthermore, the second mode may be of importance, especially for breaking

waves [20]. Here, we present a new set of experiments, which were carried out with a highly instrumented model at

1:40 scale in the Ocean Basin at SINTEF Ocean in August 2017. The model consisted of a fully flexible monopile

with a mass representing the rotor-nacelle assembly. The first two modes of a prototype design were represented

with reasonable accuracy and the model was subjected to a range of regular (long-crested) and irregular (long- and

short-crested) waves.

In order to use experimental data for validation of numerical tools, there is a need for thorough uncertainty

analysis regarding the hydrodynamic experiments as well as the numerical models themselves [21]. The present

test program included repetition tests as well as multiple realizations of the same wave conditions, such that the

statistical variations can be investigated. This paper presents an estimation of the uncertainty in the experiments,

focusing on the long-crested wave conditions, as well as a comparison of the results with state-of-the-art engineering

models. Repeatability is assessed directly from the experimental results, and possible bias errors are estimated and

propagated to the responses of interest using a simple semi-analytical model and using a state-of-the-art engineering

model.

The main focus of the present paper is to identify the level of uncertainty in the experimental results, in order to

understand whether or not the discrepancy between the numerical models and the experimental results is within the

experimental uncertainty. Many experimental results have been presented in this area - with very little discussion of

the level of certainty in the results. This work attempts to shed light on the level of uncertainty in the estimation of

extrema, and to show the extent to which engineering methods can reproduce the 90th percentile responses within

the experimental uncertainty.

Section 2 presents the experimental setup and test campaign, while Section 3 explains the numerical model.
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An assessment of the uncertainty in the experimental campaign is given in Section 4. Results of the experimental

campaign and numerical analyses are presented together in Section 5, focusing on the ability of the numerical

model to capture selected response metrics within the estimated experimental uncertainty. Differences between the

numerical model and experimental results are also examined.

2. Experimental setup

2.1. Model and instrumentation

The experimental model represents a prototype 5 MW offshore wind turbine with a monopile support structure

in 30 m water depth. The model tests were carried out at scale 1:40 in the Ocean Basin at SINTEF Ocean. Unless

otherwise noted, physical quantities are reported at full scale. Froude scaling (including the difference between the

fresh water density in the model tests and sea water density at full scale) is applied in order to scale the model test

results. Since the monopile wave loads are dominated by inertia-type loads, the error induced by the difference in

Reynolds number at model scale compared to full scale is assumed to be small.

The prototype design corresponds to the NREL 5 MW reference wind turbine [22] supported by the offshore tower

developed in OC3 Phase III [23] and a 7 m diameter monopile, with the OC3 Phase II soil stiffness parameters [24].

For the prototype design, the monopile thickness is 60 mm and the transition from monopile to tower occurs at 10 m

above the waterline. For the model scale design, as shown in Fig. 1, a flexible backbone from the top of the tower

to the seabed provides the correct distribution of bending stiffness, while outer shells placed around the backbone

provide the correct outer diameter in the wetted section of the monopile. The outer shells, in 5 m sections, are

connected to the backbone at the vertical center of each section. The space between the inner backbone and the

outer shells is filled with divinycell in order to avoid sloshing water in the monopile. At the seabed, the monopile

is connected to a 50 m long “soil spring”: a pipe section which extends down to the foundation and which was

designed to give a representative bending stiffness for the monopile and soil.

The mass distribution of the model, including the instrumentation, does not precisely follow the mass distribution

of the prototype 5 MW design, but provides a reasonable approximation. At the top of the model, as shown in

Fig. 2, two aerodynamic drag disks were installed. These disks, which were installed in an attempt to increase the

aerodynamic damping of the system, match the mass of the rotor-nacelle assembly (RNA). The inertia provided by

these disks is, however, larger than that of the prototype RNA, and there is no equivalent flexibility representing

the wind turbine blades, both of which can influence the second and third eigenmodes. A detailed comparison of

the natural frequencies is given in Section 5.2.

The model is instrumented with strain gauges at 20 elevations (ranging from z = −46.00 m to z = 16.90 m).

At each instrumented elevation, there are 4 strain gauges in order to measure bending moments about the x- and

y- axes. Since the wave loads are transferred to the center core of the model only at horizontal connection plates,

the shear forces (derived from the bending moments) are nearly constant from the middle of one section to the

middle of the next. In addition to the strain gauges, 10 accelerometers were installed on the model. These are

used for extracting the mode shapes and can also be used for estimating the wave loads via i.e. force identification

techniques [25].
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Figure 1: Sketch of the monopile model, without (left) and with (right) outer shells.

Table 1: Key model particulars, compared to the design prototype and to the OC3 Phase II monopile [24]. All values in full scale. Note

that the OC3 Phase II monopile is in 20 m water depth, compared to the present model in 30 m water depth.

Model Tests Prototype OC3 Phase II Monopile [24]

Diameter (wetted section of monopile) [m] 7.0 7.0 6.0

Tower base diameter (10 m above waterline) [m] 6.5 6.5 6.0

Tower top diameter [m] 3.87 3.87 3.87

RNA mass [tonnes] 335.9 350.0 350.0

RNA Ixx about RNA CoG [tonnes-m2] 7.136x104 4.00x104 4.00x104

RNA Iyy about RNA CoG [tonnes-m2] 7.136x104 3.07x104 3.07x104

RNA Izz about RNA CoG [tonnes-m2] 9.513x104 2.44x104 2.44x104

Monopile penetration depth (below seabed) - 46 m 30 m
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Figure 2: Left: photograph of the model installed in the wave basin, highlighting the drag disk. Right: numerical model in SIMA, where

the four upper lines represent the drag disk. Transition from red to black checkerboard indicates the calm water free surface elevation.
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Figure 3: Wave probe layout during calibration of long-crested waves. Left: full basin extents, dashed lines show zoom area. Right:

zoom near the model, showing the tightly-spaced wave probes in the harp.

Figure 4: Wave harp as installed during wave calibration.

Wave gauges were installed in the basin during both calibration and testing with the model. Fig. 3 shows the

wave gauge positions during calibration of long-crested waves. There were 13 standing probes (present during both

calibration and tests with the model) and 23 probes along a wave harp (a set of tightly-spaced wave probes aligned

with the wave propagation direction, with a distance of 6 m between each probe and connected to a single support)

which was only present during wave calibration. The wave harp is shown in Fig. 4.

2.2. Test matrix

As shown in Table 2, 19 regular waves were tested, with periods (T ) ranging from 6 to 15 seconds. Two steepness

values were considered (approximately 1/30 and approximately 1/40). These different steepnesses can be useful for

identifying nonlinear loads and behaviors. In Table 2, the Keulegan-Carpenter (KC) number for regular waves is

calculated based on the maximum velocity according to linear theory, that is:

KC =
πH1

tanh (kh)D
, (1)

where k is the wave number, h is the water depth, and D is the diameter. The Ursell (Ur) number in Table 2 is
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Table 2: Regular wave tests.

H (m) T (s) KC Ur Repetitions

1.9 6.0 0.85 0.22 0

2.6 7.0 1.18 0.55 0

3.3 8.0 1.54 1.13 0

4.2 9.0 2.04 2.12 0

5.2 10.0 2.65 3.63 0

6.3 11.0 3.39 5.78 0

7.5 12.0 4.27 8.71 1

8.8 13.0 5.31 12.57 0

10.2 14.0 6.50 17.53 1

1.4 6.0 0.63 0.16 0

1.9 7.0 0.86 0.40 0

2.5 8.0 1.17 0.85 0

3.2 9.0 1.55 1.62 0

3.9 10.0 1.99 2.72 0

4.7 11.0 2.53 4.31 0

5.6 12.0 3.19 6.50 0

6.6 13.0 3.98 9.43 0

7.7 14.0 4.91 13.23 1

8.8 15.0 5.92 17.88 0

calculated using the linear wave height (H1) and the wavelength λ according to the linear dispersion relationship:

Ur =
H1λ

2

h3
. (2)

As shown in Table 2, the KC number for all of the considered tests is quite low. For the smallest waves (KC < 1.25),

no flow separation is expected [26], and for KC up to 5.0, the added mass coefficient is not expected to vary

significantly [27].

In addition to the regular wave tests, 56 three-hour duration (28 long-crested and 28 short-crested) irregular sea

states were tested. The short-crested wave conditions are not studied in the present work, while the long-crested

wave conditions are shown in Table 3. The wave conditions in Table 3 are also characterized by a representative KC

number using the formulation given in DNV-OS-J101 [28] and irregular Ursell number (Ur) [29]. The representative

KC number is calculated as:

KC =
πHs

D
, (3)

where D is the diameter and Hs the characteristic wave amplitude. The irregular Ursell number is computed as [29]:

Ur =
kpHs

2(kph)2
, (4)
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Table 3: Long-crested irregular wave tests.

Hs (m) Tp (s) γ KC Ur Additional seeds Repetitions (seed 1)

1.9 6 5 0.85 0.01 3 0

3.4 8 2.1 1.53 0.03 0 0

4.6 9 2.5 2.06 0.05 3 0

6.5 9 5 2.92 0.07 0 0

8 9 5 3.59 0.08 0 0

8.1 10 5 3.64 0.10 0 0

8.5 11 4.1 3.81 0.12 0 0

9 12.3 2.8 4.04 0.15 3 8

8.5 13 1.9 3.81 0.15 0 0

where kp is the wave number at the peak frequency and h the water depth. The maximum Ursell value computed is

0.15, below the validity limit for second order waves (Ur = 0.33) where one begins to observe artificial bumps [30].

Similar to the regular waves, the KC number is low for all of the irregular wave tests.

3. Numerical modelling

A numerical model of the test set-up is developed at full scale in the SIMA software, using the RIFLEX finite

element program from SINTEF Ocean. The numerical model consists of beam elements, following the discretization

in Table 4, which are subjected to hydrodynamic loads. The bottom of the soil spring is modelled as fully fixed,

while the top of the structure is free.

Table 4: Structural modelling. *The mass of the drag disk is modelled through rigid elements connected to these beam elements.

Line type length (m) number of elements cross-section properties

Soil spring 20 20 D = 7 m, E = 3312 GPa

Wetted part of monopile 30 70 D = 7 m, E = 3312 GPa

Tower 87 20 D = 7 m to D = 4.3 m, E = 3312 GPa

Drag disk 7 5 D = 4.3 m, rigid, no mass*

The hydrodynamic loading in the numerical model is based on a modified Morison model, applied to each strip

of the monopile. For a circular cylinder in long-crested waves, the distributed component of the force proposed by

Kristiansen and Faltinsen (KF) [14] or the distributed force from Manners and Rainey [31] can be expressed as:

dFh = ρπ
D2

4
dzah1 + ρπ

D2

4
dzCa(ah2 − ẍ), (5)

with:

ah1 =
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
(6)

ah2 =
∂u

∂t
+ w

∂u

∂z
(7)
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(the transverse velocity v is zero for long-crested waves, while the horizontal, u, and vertical, w, components are

nonzero). Furthermore, in Eq. 5, ρ is the density of water, D is the diameter of a vertical strip of the monopile,

and Ca (taken here to be 1.0) is the so-called mass coefficient. The structural acceleration is ẍ. The two terms on

the right hand side are usually referred to as the inertia terms. For practical reasons, the existing formulation in

the RIFLEX software requires using the same wave particle acceleration in both terms. Three formulations of the

load are included here:

1. approach a1, the total acceleration including all advective terms. This model corresponds to the R2 model in

[9], except that viscous drag forces are neglected in the present work.

ah1 = ah2 =
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
. (8)

2. approach a2, a formulation without the u∂u∂x term:

ah1 = ah2 =
∂u

∂t
+ w

∂u

∂z
. (9)

3. approach a3, no advective terms.

ah1 = ah2 =
∂u

∂t
. (10)

Note that only the local acceleration is included in the standard Morison’s equation (a3). Models a1 and a2 can

be regarded as modified Morison models. We have not included the surface intersection force from [31], or the Fψ

term from [14]. Additionally, viscous drag terms have been found to be negligible and are therefore not included.

All of the simulations in the present work consider 2nd order wave kinematics and the loads are integrated up to

the undisturbed 2nd order wave elevation.

In order to obtain the second order wave kinematics, the measured wave elevation signal is first linearized through

a bandpass filter. The high-frequency cut-off of this filter is selected through an iterative procedure in order to

best match the measured wave elevation spectrum. This iterative procedure is carried out for each calibrated wave

signal. An example of the wave spectrum reconstruction is given in Fig. 5. As shown, we do not attempt to

reconstruct the low-frequency components of the measured spectrum. The measured low-frequency components

include both difference-frequency components, parasitic waves generated in the basin, and some resonant modes of

the basin, while the reconstruction does not include the difference-frequency terms. A reasonable match for the

high-frequency tail is obtained.

There are important limitations regarding the selected wave kinematic model and wave load model applied in

the present work. For very steep regular waves, second order wave kinematics have been found to overestimate the

measured velocity field [32]. Compared to the wave conditions in [32], the irregular waves studied here correspond

to lower wave height to water depth ratio (H/h ≈ 0.3) and shorter non-dimensional period (T
√
gh ≈ 7.4). Still,

some overestimation of wave kinematics may be expected.

4. Uncertainty assessment

4.1. Response metrics

In order to be able to assess the experimental uncertainty, well-defined response metrics, or quantities of interest,

are needed. These response metrics have to be quantities which can be measured or computed directly from
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Figure 5: Second order reconstruction of the measured wave elevation, Hs =9 m and Tp =12.3 s.

the measurements, and which can also be predicted numerically. For simplicity, scalar (rather than time series)

quantities are desirable. For the present work, we define the following response metrics:

1. Bending moment transfer function, denoted response amplitude operators (bending moment RAOs) at z=-

28.5 m for the first, second, and third harmonic of the primary wave frequency for wave periods 6-15 s.

2. 90th percentile 30-minute bending moment response at z=-28.5 m for long-crested waves with Hs =9 m and

Tp =12.3 s (TMA spectrum [33]).

The first response metric can be computed from the long-crested regular waves, while the second is obtained from

the realizations of irregular waves.

The bending moment RAO for the first harmonic component is defined as the amplitude of the bending moment

at the primary wave frequency divided by the amplitude of the wave elevation at the primary wave frequency. Here,

the amplitude is determined by first bandpass filtering the time signal of interest, then taking the average amplitude

over a time range after the ramp in the wave amplitude, but before the return of reflected waves from the beach.

The second and third harmonic response components are divided by the first order wave amplitude raised to the

power of 2 or 3, respectively, in the chosen definition of the RAO for the second and third harmonic responses. The

amplitude of the higher harmonic components is determined using bandpass-filtered time signals before reflections,

in a similar manner to the first order RAO.

Although the 90th percentile 30-minute maximum bending moment is not typically a design parameter of interest

(one might instead be interested in the 3-hour maximum bending moment), it is selected as a response metric for

practical reasons. Each 3-hour realization can be divided into 6 30-minute periods. The 90th percentile 30-minute

maximum is estimated by fitting a Gumbel distribution to the maxima from each of the 30-minute periods. The

method-of-moments is used for the fitting process. The uncertainties induced by the fitting process are not examined

here.

For the experiments, the uncertainty in these response metrics will depend on the uncertainty in the incoming

waves, the model itself (i.e. geometry, stiffness, mass distribution), and the measured response (bending moment).

The numerical simulations include uncertainty in the discretization, the wave input (in this case, in the filtering of

the measured wave), and in the load model (in this case, the coefficients in the Morison model). Oberkampf et al.

[34] present a framework for error and uncertainty analysis in modeling partial differential equations, considering
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epistemic and aleatory uncertainty, acknowledged errors, and unacknowledged errors in six phases of modeling and

simulation. The present work does not attempt to quantify the uncertainty in the numerical analysis, but focuses

on the experimental uncertainty.

4.2. Experimental uncertainty

Experimental uncertainty is typically expressed in terms of random (aleatory or statistical) uncertainty and

systematic (bias, systemic) uncertainty [35, 36]. Random uncertainties are related to inherent random variations

in a physical process. The level of random uncertainty can be assessed through repeated tests. Systematic uncer-

tainties may create an unknown bias in the tests. Without additional information, there is no way to reduce these

uncertainties, and their magnitude is typically estimated through expert opinion.

The random standard uncertainty of a response which is measured repeatedly is found from:

sR =
sx√
N − 1

(11)

where sx is the standard deviation of the measured quantity over N repeated tests. Repeated tests capture the

random uncertainty in measurement and in the physical process simultaneously - the variation between different

repeat tests does not give us information about the source of the variation.

The effect of a systematic uncertainty on the uncertainty of the response variable of interest must be obtained

through uncertainty propagation. Where multivariable dependencies are involved, the uncertainty propagation

may be carried out based on known relationships between the dependent variables and measured variables [37].

A linearization of a known functional relationship can be used to find a sensitivity index. Considering a result R

which depends on L independent variables xi, the sensitivity index θi is given by

θi =
∂R

∂xi
, i = 1, 2, ...L, (12)

and evaluated at either mean or nominal values of the result. A similar sensitivity index can be obtained by

sequential perturbation [37]. The uncertainty in the result due to the systematic uncertainties is obtained by the

square root of the sum of squares (RSS) of the contributions from all of the independent variables:

uR = ±

√√√√ L∑
i=1

(θiux̄i)
2 (13)

where ux̄i is the best estimate of the uncertainty in the independent variable.

In order to combine the random and systematic uncertainties, the RSS is again used:

uc =
√

(uR)2 + (sR)2. (14)

The total uncertainty from Eq. 14 is shown in the results in the present work. It should be noted that one could

also present the expanded uncertainty (equal to twice the total uncertainty for a 95 % confidence interval) [36]. In

the following subsections, we first present an assessment of the level of repeatability in the tests. Next, the estimated

bias errors in the measurements of the model, waves, and responses are described. Then, a simplified model which

enables the propagation of bias errors is presented. Finally, the total experimental uncertainty in selected response
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metrics is estimated using both the simplified model and through numerical simulations with model a3 described

in Section 3, and the contributions of different factors are compared.

4.2.1. Repeatability

Repetition tests - where an identical signal was sent to the wavemaker - are useful for assessing the repeatability

of the results. Due to the time-consuming nature of such tests, there are few published examples of extensive

repetition tests with a flexible model in a wave basin. Fig. 6 shows one of the largest response events for one

realization of the sea state with Hs = 9 m, and Tp = 12.3 s, which was run in total 9 times with the model and

3 times without the model. The repeatability of this particular event is, however, not particularly impressive: the

coefficient of variation (ratio of standard deviation to the mean) of the maximum bending moment is 0.18. The

calibrated wave (measured at the model, shown in red) and the wave measured far from the model (but at the same

x-location) have coefficients of variation of 0.07 and 0.08, respectively.

Figure 6: Repeatability of a severe wave event, Hs = 9 m and Tp = 12.3 s. The wave with the model is measured 200 m from the model

in the y-direction.

Despite the automation in the test procedures, the repeatability of the tests observed here is lower than typically

seen in tests in the Ocean Basin. There are several factors which contribute to this relatively low repeatability.

First, wave generation at relatively small depths (as in the present work) is very sensitive to the local water depth.

The basin floor is moveable, and though it was fastened carefully at 16 locations, there are still local variations in

the bottom and there is some possible deformation of the bottom. Second, there are non-deterministic processes

associated with breaking waves. Although breaking waves were not the main focus of the present work, there were

breaking waves present in most of the studied sea states. Finally, the level of damping in the system was extremely

low. There are important memory effects in the response of a lightly damped flexible monopile (see [9]), and the

system may continue to respond to events (including breaking wave events) long after the wave has passed, thus

changing the system’s interaction with subsequent waves.

Assessing the repeatability of the RAO is challenging for several reasons. First, the generation of regular waves

in relatively shallow water can be challenging due to the previously mentioned depth variations and reflections,

standing waves, and parasitic waves in the basin. The variation of the wave amplitude along the harp during
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calibration, shown in Fig. 7, exemplifies these challenges. There are notable differences in the amplitude of the

first harmonic of the wave, especially for the longest waves. The wave amplitude at a given location along the

harp deviates up to 18 % compared to the mean amplitude, and the coefficient of variation ranges from 3 to 9 %

depending on the wave period. The second reason that it is difficult to assess the repeatability of the RAO is that

few repetition tests were carried out.

Figure 7: Variations in regular wave amplitude along the wave harp. Left: amplitude of the first harmonic of the wave along the harp,

where WAVE2 shows the value at the model location. Note that the indicated steepnesses 1/30 and 1/40 are approximate. Middle:

time series of wave elevation along the harp (T = 6 s, lower steepness). Right: time series of wave elevation along the harp (T = 13 s,

lower steepness).

Fig. 8 shows the computed RAO for all of the regular waves. For a linear system under linear wave loads, the

RAO for different wave steepnesses would be equal. There is good agreement in the first harmonic RAO for longer

waves, while for the shorter waves and the higher harmonics there are some nonlinear effects, leading to different

RAO values for different wave steepnesses. These nonlinear effects may be related to the load mechanisms at the

first order frequency, or to interactions between first and higher order wave load components. For example, the 2ω

wave loads when T =8 or 9 s, resulting in resonant responses, may change the first harmonic loads and responses

due to hydroelasticity or other interactions. The repeated tests also showed good agreement (within 2 %) for the

first harmonic.

The RAO for the second harmonic of the response shows significant amplification when the wave period was 8-9 s,

which is close to twice the natural period of the monopile. The discrepancies between the results for the different

wave steepnesses were large, but the repeatability of each condition was within 5 %. For the third harmonic, the

peak occurred for periods near 3 times the structural natural period. The repeatability at 12 s is seen to be quite

poor, which may be related to the dynamic amplification near this period giving great sensitivity. It should also

be noted that the higher order responses tend to be less stable than the first order response, so the results may be

sensitive to the selected time period for analysis.

Fig. 9 illustrates the variation in the 30-minute 90th percentile bending moment near the seabed for irregular

waves with Hs = 9 m and Tp = 12.3 s. The variation among repetitions of the same seed give similar results for

the 90th percentile bending moment: the coefficient of variation for those 9 estimates is 2 %. Comparing the mean
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different wave steepness.
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of these 9 estimates with the predictions from three additional seeds gives a coefficient of variation of 4.7 %. The

statistical results for the irregular waves are seen to be more repeatable and more stable than the individual events

(such as the one shown in Fig. 6).
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Figure 9: Gumbel fitting of the 90th percentile 30-minute maximum bending moment (P = 0.9 in the figure) for Hs = 9 m and

Tp = 12.3 s, from experimental data. Dots show 6 maxima from each 3-hour experimental realization, while lines show fitted Gumbel

distributions based on those maxima. Black lines/points are repetition tests of the same seed, while colors show different seeds. The

dashed gray line shows the results considering 24 maxima (using the first of the repetition tests and three additional seeds).

4.2.2. Estimated bias errors

The bias errors in the wave elevation measurements, physical model properties, and acceleration and bending

moment measurements are summarized in Table 5.

The waves are measured using resistive-type wave gauges, which are calibrated by moving the waves gauges up

and down in still water. Bias errors in the wave measurements can arise if the gauge is not completely vertical, if

the distance over which the gauges are moved during calibration is incorrectly measured, due to temperature effects,

or changing water levels during calibration. The temperature variations during the model tests were ±0.07 deg C,

and the wave gauges have a sensitivity of 2 %/deg C. Temperature effects had a relatively small contribution to the

bias error for the wave gauges.

The total mass and the center of mass were measured prior to dry-testing the model. The local mass distribution

is, however, estimated, and a large uncertainty in the mass distribution can be seen to exist due to the extensive

instrumentation in the model.

Strain (ε) measurements are used to estimate the bending moment in the structure. The functional relationship

between the measured strain and the bending moment is based on Hooke’s law:

σ = εE = Eywzz = My/I (15)

where σ is stress, E is Young’s modulus, y is the radial location of the strain measurement, I is the area moment

of inertia of the cross-section, and wxx is the local curvature. The bending moment is then seen to be linearly

related to the measured strain. Calibration of the strain gauges is carried out by applying a known moment (via
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a hanging weight attached through a pulley at a given height), such that for our purposes, the sensitivity of the

moment measurement to error in the strain measurement is captured by the linear calibration factor. We estimated

the bias error by considering ±2 mm model scale error in height and ±5 degrees error in orientation of the load

applied for calibration. Based on the manufacturer data, the temperature error in the moment is 0.03 % per degree

C: considering temperature variations ±0.07 deg C, the temperature contribution to the bias is negligible compared

to the previously described contributions.

The bias error in the acceleration measurements is reported, but is not used in the rest of the analysis, since the

focus is on the bending moment measurements.

Table 5: Estimated bias errors. All values given in full scale.

Parameter Bias error

Measured wave elevation ±3 %

Water depth ±0.4 m

Mass distribution ±10 % locally

Inner core dimensions ±4 mm

Outer shell dimensions ±6 cm

Strain ±0.5 %

Acceleration orientation ±2.5 deg, location 0.12 m

4.2.3. Simplified semi-analytical uncertainty propagation

In order to carry out propagation of bias errors using analytically obtained sensitivities, a simplified model is

needed. Furthermore, in general, it is preferable to use different numerical models for the propagation of uncertain-

ties compared to the numerical model one wishes to investigate. Here, we first consider a simplified model for the

response of the monopile. This simplified model is used to propagate bias errors in the properties of the physical

model and in the incoming waves to the bending moment response.

For the present system, a linearized model is obtained by combining a 5-mode structural response model with

linear wave loads considering only the inertia term from Morison’s equation. The number of modes was selected

based on a convergence study using the simple model.

The structural response model takes the form of the decoupled ordinary differential equations in Eq. 16, where

m̄i is the modal mass, b̄i is the modal damping, k̄i is the modal stiffness, F̄i is the modal force, and yi is the modal

response.

m̄iÿi + b̄iẏi + k̄iyi = F̄i, i = 1, 2, 3 (16)

For a uniform beam, analytical expressions for m̄i and k̄i are easily derived. Due to the complexity of the present

system (with varying stiffness and density), it is more convenient to apply a finite element model rather than

developing the analytical expressions. In the present work, the same Euler beam model from RIFLEX is used in

order to obtain the mode shapes ϕi. Since the software does not easily output the modal mass and stiffness, we can
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apply Eqs. 17 and 18 together with the known mass distribution (including added mass) and stiffness distribution

to obtain these parameters. The undamped natural frequencies obtained from the estimated modal mass and

stiffness were found to be within 5 % of those from the eigenvalue analysis. The discrepancy is probably due to the

simplifying assumptions which lead to Eqs. 17 and 18, and the sensitivity of the derivatives of the discretized mode

shapes. In order to maintain the same natural frequencies, the modal mass was modified to give matching results.

The vertical integration in Eqs. 17 and 18 is over the full length of the monopile and tower. There are contribu-

tions to the modal mass from the distributed mass per length m(z) (including added mass) as well as point masses

(Mj) and inertias (Ij). The modal stiffness is governed by the local bending stiffness, consisting of the Young’s

modulus E and area moment of inertia I.

m̄i =

∫ ztop

zlow

m(z)(ϕi(z))
2dz +

∑
Mj(ϕi(zj))

2 +
∑

Ij(ϕi,z(zj))
2 (17)

k̄i =

∫ ztop

zlow

EI(z)(ϕi,zz(z))
2dz (18)

For simplicity, the modal damping is chosen to give the same damping ratio in all five modes. Based on the

decay tests, ζ = 0.5 % critical damping is chosen.

b̄i = 2m̄iω0,iζ = 2ζ
√(

k̄im̄i

)
ζ (19)

The structural model with n modes (n = 5 here) can be used to obtain the total deflection at any point along

the structure:

wstruct(z, t) =

n∑
i=1

yi(t)ϕi(z). (20)

The local accelerations (∂
2w
∂t2 ) and curvatures (∂

2w
∂z2 ) can then be used to evaluate the sensitivity of measured

quantities to uncertainties in the independent inputs.

The external loads in this simplified model are based on the inertia term from Morison’s equation:

dF = ρ(Ca + 1)π
D2

4
adz (21)

where ρ is the water density, Ca is an inertia coefficient, D is the wetted diameter, and a is the wave particle

acceleration. For the uncertainty propagation model, linear Airy wave theory is used to find a. The viscous drag

forces are neglected because they are small and in order to maintain a linear model. In the modal response model,

the Morison inertia load takes the form:

F̄i =

∫ 0

−h
ϕi(z)ρ(Ca + 1)π

D2

4
adz, (22)

with a for regular waves with amplitude ηa and frequency ω = 2π/T in water depth h given by:

a = ω2ηa
cosh (k(z + h))

sinh (kh)
cos(ωt). (23)
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According to this simple semi-analytical model, the first response metric, the first harmonic bending moment

RAO at zj = −28.5 m is given by Eq. 24. Eq. 24 consists of the bending moment response (from superposition

of the modal responses to the distributed load in Eq. 21) divided by the incoming wave amplitude. The wave

amplitude ηa in the denominator is cancelled by the same term which appears in the acceleration (Eq. 23). The

higher wave harmonic responses are not captured by this model due to the simplifications in the excitation force.

|H(ω)| =
|M |zj |
|ηa|

=

n∑
i=1

EI(zj)ϕi,zz(zj)

∫ 0

−h
(Ca + 1)

πD2

4
ρω2 cosh (k(z + h))

sinh (kh)
ϕi(z)dz

k̄i
√

((1− β2
i )2 + (2ζiβi)2)

(24)

In Eq. 24, βi is the frequency ratio for each mode:

βi =
ω

ωi
=
ω
√
m̄i√
k̄i

. (25)

Using the RAO in Eq. 24, the response spectrum in linear irregular waves for this simple model is given by Eq. 26,

where SM is the response and Sw is the wave spectrum (see e.g. [38]).

SM (ω) = Sw(ω)|H(ω)|2 (26)

For the present experiments, a TMA wave spectrum [33] is applied. The TMA wave spectrum modifies the

JONSWAP spectrum (SJ) for finite water depth. The JONSWAP spectrum is itself a modification of the Pierson-

Moskowitz spectrum (SPM ). Following the notation from DNV [27]:

SPM (ω) =
5

16
H2
sω

4
p exp

(
−5

4

(
ω

ωp

)−4
)
, (27)

SJ(ω) = AγSPM (ω)γ
exp

(
−0.5

(
ω−ωp
σJωp

)2
)
, (28)

where ωp = 2π/Tp is the peak spectral frequency, γ is the spectral peak shape factor, σJ is a spectral width

parameter, and Aγ is a normalizing factor. The TMA spectrum is written as

Sw(ω) = SJ(ω)φTMA(ω). (29)

For intermediate water depth, following [33], the depth function is computed in terms of the wave number k as

in Eq. 30 (note that this differs from the expression in [27]).

φTMA =
sinh2(kh)

cosh2(kh) + kh coth kh
, (30)

with ω2 = gk tanh (kh).

Assuming a Gaussian wave elevation, following [38], the response which with probability p will not be exceeded

over time T can be estimated as

ξp(T ) = σx

√
2 ln

(
ν+
x (0)T

ln(1/p)

)
(31)
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In Eq. 31, the standard deviation σx can be found from the zeroth spectral moment (Eq. 32), while the zero

upcrossing rate ν+
x (0) can be estimated based on the zeroth and second spectral moments. For the response metric

defined previously, T = 30 minutes.

σ2
x =

∫ ∞
0

SMdω (32)

ν+
x (0) =

1

2π

σx
σẋ

(33)

σ2
ẋ =

∫ ∞
0

ω2SMdω (34)

Table 6 summarizes the variables which can be considered as inputs to this simple model, as well as their

interpretation with respect to the measurement bias errors given in Table 5. The sensitivity to each of these inputs

can be computed by analytical derivation, combined with discrete derivation where needed. Any variables which

affect the modal parameters, for example, require re-calculation of the modal parameters in addition to analytical

derivations. For distributed parameters (mass and stiffness), a uniform relative variation is assumed for simplicity.

This may, however, give a significant overestimation of the total uncertainty.

The height (or amplitude) of regular waves does not affect the RAO in this simple linear model, so this variable

is not included in Table 6. The regular wave height is instead considered as a part of the measurement model.

Table 6: Independent input variables for semi-analytical analysis. (1) The variation in stiffness is found based on the possible error in

inner core dimensions at the most sensitive point.

Input variable Symbol Comments

mass distribution m Affects modal parameters. Uniform relative variation 10 %.

stiffness distribution EI Affects modal parameters. Uniform relative variation 4 %(1).

modal damping bi or ζ Varied for all five modes simultaneously 20 %.

outer diameter D Only affects wave loads. 6 cm.

water depth h Affects modal parameters and wave loads. 0.4 m

Regular wave period 2π/ω Affects wave loads. 0.05 s.

Irregular wave significant wave height Hs Maintain spectral shape. 3 %.

Irregular wave peak period Tp Maintain spectral shape. 0.05 s.

To compute the total bias error in the measured response, we combine the effects of the inputs in Table 6 with

the effects of the estimated bias errors in the wave elevation and bending moment measurements.

4.2.4. Total experimental uncertainty

Using the simplified model presented in Section 4.2.3, the experimental uncertainty in the RAO for the first

harmonic bending moment is shown in Fig. 10. For each wave period, the contributions to the bias error are shown

by columns, while the random error (based on the few available repetitions, taken to be constant across all periods)

is shown as a dashed line. The predicted baseline RAO for the simplified model was in good agreement with the
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experimental results, and the propagated uncertainty could be computed directly. As shown, the bias errors are

generally larger than the random error. The most important components of the bias error are the wave elevation,

mass, and diameter. The bias errors generally decrease for longer wave periods, and the importance of the mass

distribution becomes smaller for longer waves. This is as expected, since the monopile response becomes increasingly

stiffness-dominated for long wave periods.
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Figure 10: Contributions to the experimental uncertainty for the first order bending moment RAO, using the simplified model. Contri-

butions uR (i.e. terms inside the summation of Eq. 13) are shown in the columns for each wave period, while the random uncertainty

sR (Eq. 11) is shown as a dashed line (assumed to be equal for all wave periods).

The total uncertainty for the regular wave results was also assessed using the SIMA model. As far as possible,

time domain simulations were carried out considering the same variables as in Table 6. For the damping, the

stiffness-proportional structural damping was increased (or decreased) by 20 %. The wave elevation and period

were modified by directly modifying the input time series (by multiplicative factors). The uncertainty in the

mudline bending moment RAO for the first three harmonics of the response is shown in Fig. 11. As shown, the

first order results are similar to those from the simplified model (Fig. 10). For the second and third harmonics,

large uncertainties can be seen in the wave periods which produce resonant responses. This can also be seen in

the random error: the third harmonic random error is relatively large due to the fact that the repeated tests were

carried out for a period of 12 s.

The contributions to the uncertainty for the 90th percentile bending moment are shown in a similar manner in

Fig. 12 for two different cut-off values for the irregular wave spectrum which is used in the simplified uncertainty

propagation model, and for the SIMA model (only evaluated for Hs 9 m and Tp 12.3 s). The reason for using two

different values for the cut-off frequency in the simple model is that the cut-off for linear waves (ωcut =
√

2g/Hs)

suggested by Stansberg et al. [39] falls almost exactly at the first natural frequency of the structure (without

considering errors in mass or stiffness). Since the parameter variations corresponding to bias errors induce changes

in the natural frequency, it was judged to be more representative to allow the linear wave components to either

excite the first bending mode of the structure for all variations, or to cut off the spectrum well below the natural

frequency such that no linear waves could excite the natural frequency. Using the simplified model, the estimated

90th percentile bending moment was overpredicted when the cut-off was set high (ωcut = 1.8 rad/s, representing
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Figure 11: Contributions to the experimental uncertainty for the bending moment RAO, computed using SIMA. Top: first harmonic,

middle: second harmonic, bottom: third harmonic. Contributions uR (i.e. terms inside the summation of Eq. 13) are shown in the

columns for each wave period, while the random uncertainty sR (Eq. 11) is shown as a dashed line (assumed to be equal for all wave

periods).

unrealistic linear wave excitation of the first natural frequency) and underpredicted when the cut-off was set low

(ωcut = 1.2 rad/s, representing no excitation of the first natural frequency). The computed bias errors were therefore

in each case scaled by the same factor needed to make the estimated 90th percentile bending moment from the

simple model match the first repetition of the first seed of the experimental results.

As shown in Fig. 12, the selection of the cut-off frequency for the spectrum in the simple model affects the

importance of the mass, stiffness, and damping terms, while the uncertainty due to diameter, water depth, significant

wave height, peak period, and moment measurement is not dependent on the cut-off. This is as expected: without the

high-frequency components of the spectrum, the response is stiffness-dominated such that the structural damping

effects are negligible and inertia effects are relatively small. In the comparisons between the experimental and

numerical results, the experimental uncertainty is shown according to ωcut = 1.8 rad/s as this yields a larger

uncertainty. As with the regular wave results, the uncertainty due to bias errors is large compared to the uncertainty
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Figure 12: Contributions to the experimental uncertainty in the 90th percentile 30-minute bending moment response at z=-28.5 m

for long-crested waves with Hs =9 m and Tp =12.3 s, depending on wave spectrum cut-off frequency in the simplified uncertainty

propagation model. Contributions to uR are shown as columns, while sR is shown as a dashed line.

due to random errors, and the mass, diameter, and wave elevation (through Hs) are important contributors.

Compared to the first order RAO, the 90th percentile bending moment is more sensitive to the stiffness and

damping: this is as expected, since the higher frequency responses become more important. The contributions to

the experimental uncertainty estimated by the simplified and SIMA models are similar except that the SIMA model

suggests larger importance of Hs and Tp for the bias errors. The inclusion of higher order wave loads in the SIMA

model may explain this difference.

5. Experimental and numerical results

5.1. Pullout tests

Prior to installing the model in the basin, pullout tests were carried out on land in order to document the

model’s stiffness and check the consistency of the moment and shear force measurements. These tests were carried

out by attaching a string to the model at a given height and statically loading the string (through a pulley) with

known weights. The loads were incrementally increased and then decreased, such that all load levels were measured

twice except for the highest load.

The displacement of the model was measured at various locations using potentiometric displacement sensors.

These sensors are presumed accurate to 0.01 mm (model scale), but the alignment of the sensor and the applied

load is more difficult to control. Considering a possible error of ±5 degrees, error bars indicating ±0.4 % of the

displacement are indicated in Fig. 13, which shows the experimental and numerical results for one pullout test.

As shown in Fig. 13, the measured displacements and bending moments agree well with the measured values.

Larger deviations (not shown) could be seen for the shear force.

5.2. Decay tests

Decay tests were carried out to identify the eigenfrequencies and eigenmodes, and to quantify the different

damping contributions. The tests were carried out in both dry and wet configurations, and the dry tests were
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Figure 13: Selected pullout test results.

carried out in two configurations: first with a simple mass at the top, then with the aerodynamic drag disk which

was used in the tests with waves. During the decay tests, the model was either pulled and released, or simply hit,

at different vertical locations.

The time series of the mudline bending moment and the calculated damping ratio for the first global bending

mode (excited by hitting the top of the tower) are shown in Fig. 14. As shown, the dry test with top mass (no

aerodynamic drag disk) shows primarily linear damping. This damping is considered as structural damping and

modelled through stiffness-proportional Rayleigh damping in the numerical model. The presence of the aerodynamic

drag disk increases both the linear and the quadratic damping. Comparing the two tests with the drag disk present,

the decay test in water shows additional linear damping compared to the dry test. This damping is a combination

of hydrodynamic radiation damping and hydrodynamic linear damping due to attached boundary-layer flow [40].

An earlier study with a pitching monopile [9] estimated the radiation damping to be on the order of 1 % of critical

damping. For the fully flexible monopile, the velocity of the wetted section of the monopile is much lower than

that of the pitching monopile. As a result, both the radiation damping and the linear damping due to attached

boundary-layer flow are significantly smaller. Simplified estimates assuming a linear deformation of the monopile

under sea level suggest that the radiation damping contributes 0.16 % of critical damping and attached boundary-

layer flow contributions 0.03 % of critical damping. This agrees with the observed increase in linear damping for

the wet decay test compared to the dry test. The damping in the model tests is quite low compared to what might

be expected for the prototype (1.7-2.8 %) [41–43]

The obtained eigenfrequencies of the numerical and experimental models are summarized in Table 7. For

reference, the corresponding eigenfrequencies of the 5 MW basis design, after which the experimental model was

designed, are also given. For the prototype, additional blade-related modes are present, but the selected frequencies

correspond to the first three monopile/tower bending modes. The dry mode shapes are shown in Fig. 15. In the

numerical model, when changing from the mass to the disk, the center of gravity of the mass is moved higher in

addition to adding the inertia of the disk. This modification was made in order to capture the change in the first

natural frequency.

As shown, the first mode shape does not depend strongly on how the RNA is modelled, while the second and

third modes show greater variation. For the dry tests, the frequencies from simulation model are within 6 % of the
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Figure 14: Decay test results, model hit from the top. Left: mudline bending moment time series. Right: damping ratio calculated by

logarithmic decrement.
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measured values for the first two modes. The third mode is in good agreement for the model with just mass at the

top, but the agreement is worse for the model with the disk. Qualitatively, the first and second mode shapes appear

similar for the simulation and experimental models, but the accuracy of such a comparison is somewhat limited by

the number of accelerometers along the model.

The wet mode shapes are shown in Fig. 16, while the frequencies are given in Table 7. Compared to the dry

simulation model, added mass is included in the wet simulation model. The simulation model does not show as

large of a change in the first modal frequency when moving from the dry to wet model. There are several possible

reasons for the discrepancy: there may be some entrapped water within the monopile which is not captured by the

numerical model, and the stiffness of the attachment in the basin may be softer than the dry set-up. The second of

these two possibilities is judged to be most likely: an assumption that the model was completely hollow and became

filled with water would have negligible impact on the natural frequency, while allowing the soil spring to be 20 %

softer could explain the observed difference.

The damping in the numerical model is implemented based on the experimental results: Rayleigh stiffness-

proportional damping is used to match the linear damping contributions, while quadratic drag coefficients on the

drag disk were used to match the quadratic damping contributions.

Table 7: Eigenfrequencies of the experimental model, numerical model of the experiments, and the reference prototype. Differences are

computed between the experimental model and the numerical model of the experiment.

configuration mode exp. (Hz) num. (Hz) diff (%) prototype (Hz)

dry, mass at the top

1 0.26 0.27 2.7 N/A

2 1.09 1.03 5.2 N/A

3 4.06 3.85 5.0 N/A

dry, aerodynamic disk

1 0.24 0.24 0.9 N/A

2 1.00 0.91 8.9 N/A

3 2.69 2.27 15.8 N/A

wet, aerodynamic disk

1 0.22 0.24 8.2 0.26

2 0.85 0.85 2.9 1.07

3 2.40 2.11 11.8 3.22

5.3. Regular wave tests

Fig. 17 compares the mudline bending moment RAO from the experiments and the numerical simulations. Error

bars for the first order RAO indicate the total uncertainty as in Eq. 14, computed either using the simplified model

or the SIMA model. This total uncertainty could further be increased to account for the expanded uncertainty [36],

however this is not included in the present work. For the second and third order RAO, in the simplified uncertainty

analysis, the total uncertainty from the first order RAO is divided by the first order wave amplitude (once or twice,

respectively), in the same way that the second and third harmonic RAOs are computed. In the SIMA uncertainty

analysis, the bias error in the second and third harmonic RAOs is estimated directly from the simulations.
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Figure 15: Numerically and experimentally obtained dry mode shapes for modes 1-3. (Prototype modes are for wetted monopile).
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Figure 16: Numerically and experimentally obtained wet mode shapes for modes 1-3.
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The simulations in SIMA capture the main trends in the results, but do not match the experimental results

within the estimated uncertainty bands for all frequencies. For the first order RAO, there is no difference in the

numerical results between the different wave steepnesses. The experimental RAO shows some discrepancies in the

first order RAO, especially for the 8 s wave. The 8 s wave corresponds approximately to twice the natural period

of the first bending mode of the monopile, and there may be interactions among different frequencies in the load

and response. The numerical simulations are also seen to give poorer agreement for the first order RAO for shorter

wave periods. This agreement might be improved by choosing the added mass and damping coefficients for each

wave period, or by applying the MacCamy-Fuchs correction.

The main discrepancies in the second order RAO are for wave periods 8 s and 9 s, which are approximately

twice the natural period of the first bending mode. The numerical simulations greatly overpredict the response

at these frequencies, indicating that either the second order wave excitation is overpredicted, or the damping is

underpredicted in the simulations, or both. The second order wave excitation according to Morison’s equation with

second order wave kinematics is expected to be overpredicted [9, 44]. There may additionally be a change in the

hydrodynamic damping in waves compared to the damping in still water which was estimated from the decay tests,

but this effect is expected to be minor compared to the overprediction of the loads. Numerical models a1 and a2,

which include some advective terms, show slightly larger overestimation than model a3.

Similarly, the third order response is not captured accurately for wave periods close to three times the first

natural period of the structure. The uncertainty based on the simplified method is seen to be relatively large

for the shortest periods, which is intuitively related to the fact that these waves and the corresponding higher

order bending moments are quite small, and become difficult to measure experimentally. The SIMA approach for

estimating uncertainty gives larger uncertainty in the second harmonic at 8 s and in the third harmonic at 12 and

14 s, which is related to the excitation of the first mode of the structure.

Fig. 18 shows an example time series of the regular wave elevation and the mudline bending moment. The

selected case with T = 12 s shows good agreement in the first and second order responses, while the third order

component is somewhat overestimated by the numerical results. Even higher frequency components can be seen in

the experimental results.

5.4. Long-crested irregular wave tests

Fig. 19 compares the experimental and numerical prediction of the second response metric, the 90th percentile

30-minute bending moment response at z=-28.5 m for long-crested waves with Hs =9 m and Tp =12.3 s (TMA

spectrum). In Fig. 19, the metric is calculated based on one of each of the experimental realizations, and also

numerically using the corresponding calibrated wave as input. For the first realization, two repetition tests were

carried out for the wave calibration, and each measured calibrated wave was used as input to the numerical simu-

lations with the three different acceleration formulations, such that nine numerical results are present for the first

realization.

As shown in Fig. 19, the numerical simulations can sometimes, but not always, predict the 90th percentile

mudline bending moment within the estimated experimental uncertainty. The estimated uncertainty is very similar

for the simplified and SIMA methods. Model a1 consistently predicts the largest extreme, followed by model a2,
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Figure 17: Comparison of numerical and experimental mudline bending moment RAO from the regular wave tests. Experimental

results are slightly shifted along the x-axis for readability. Error bars indicate total uncertainty as in Eq. 14. The amplitude of the total

uncertainty for the lowest frequency for the 3rd harmonic using the simplified uncertainty analysis is approximately 2.5x106 Nm/m3.
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followed by model a3.

For realization 3, the discrepancy between simulated and predicted results is particularly large. This discrep-

ancy is related to two wave events where the simulation tool, regardless of the acceleration formulation, greatly

overpredicts the response at the first bending mode. One of these events in shown in Fig. 20. The simulation tool

overpredicts the response to the first of two waves, such that the numerical model still has a significant resonant

response when the second wave excites the model even more. This can be seen more clearly in Fig. 21, where the

response is bandpass-filtered about the first eigenfrequency, and then about the second eigenfrequency. The rest

of the response is then denoted “QS”, although this response includes both the quasi-static contributions and all

other contributions outside of the two first modes (as in [20]). The overprediction of second order wave loads may

be a reason for large first mode response to the first wave.
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Figure 20: Comparison of time series of wave elevation (next to the model, with model present) and mudline bending moment, Hs =9 m

and Tp =12.3 s, showing extreme overprediction in realization 3.

Additional examples of the time series of response are compared in Fig. 22-24. Fig. 22 shows an example of

fairly good agreement between the model tests and the numerical model for two maxima. The simulation does not

capture the decay of the response at the first natural frequency, but both maxima are captured within the level of

variation seen in the repetition tests.

Fig. 23 shows the filtered responses for the same event as in Fig. 22. Here, we can observe that the good agreement

in the total response does not necessarily correspond to good agreement in all frequency components. For the first

maximum (around 9070 s), the numerical model captures both the first mode and quasi-static contributions fairly

well. For the second maximum (around 9110 s), the numerical model overestimates the quasi-static component and

underestimates the first mode response. As expected, the numerical model does not have any significant forcing

near the second eigenfrequency, and therefore cannot capture any of the response in that frequency range.

Fig. 24 shows the same event as in Fig. 6, and the numerical model is seen to underestimate the bending moment,

giving results well below the range of results obtained through repetition tests. The numerical model consistently

underpredicts the response following a smaller wave (near 8325 s), possibly due to wave breaking (based on the
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Figure 21: Comparison of time series of mudline bending moment, bandpass filtered about 1st eigenfrequency (top), 2nd eigenfrequency

(middle), and remainder (bottom). Hs =9 m and Tp =12.3 s, showing extreme overprediction in realization 3.
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Figure 22: Comparison of time series of wave elevation (next to the model, with model present) and mudline bending moment, Hs =9 m

and Tp =12.3 s, showing good match for maxima. Repetition tests are included in the experimental results.

very sharp elevation pattern), and continues to underpredict the response to the larger waves around 8350 s. The

elevation of the wave which excites the response appears to be well captured by the second order approximation,

while several other waves in the same portion of the time series are not.

These time series highlight the challenges of drawing event-based conclusions for this very lightly damped model:

the response is dominated by the first mode, and the dynamics of the system prior to a subsequent steep wave can

be important for the response. While there is significant spread among the experimental repetitions, there are

clearly events which this simple numerical model is able to capture within that level of variation.

The 90th percentile 30-minute bending moment response at z=-28.5 m was also estimated for additional long-

crested wave conditions, as shown in Fig. 25. The repeatability was assumed to be the same as in the Hs =9 m

and Tp =12.3 s when assessing the experimental uncertainty using the simplified model. It should be noted that

not all of the conditions in Fig. 25 represent 50-year conditions; the 90th percentile 30-minute response is used as

a comparison measure but does not have any design relevance. A similar level of agreement is seen for these sea

states as in the previously discussed results.

6. Conclusions

Model tests of a fully flexible monopile were carried out at SINTEF Ocean. The level of uncertainty in the model

tests has been examined and an engineering model based on a modified Morison’s equation with second order wave

kinematics has been compared to the experimental results, focusing particularly on a set of response metrics for

which experimental uncertainty was estimated.

The experimental results highlighted the resonant response of the monopile when subjected to severe wave loads.

The first mode of the response, which could be excited primarily by second and third order wave loads, dominated

the response due to the low damping in the system. As expected, the steep wave conditions gave large bending

moments at the mudline. Out of the tested sea states, the condition with Hs =8.1 m and Tp =10 s gave the largest
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Figure 23: Comparison of time series of mudline bending moment, bandpass filtered about 1st eigenfrequency (top), 2nd eigenfrequency

(middle), and remainder (bottom). Hs =9 m and Tp =12.3 s. Repetition tests are included in the experimental results.
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Figure 24: Comparison of time series of wave elevation (next to the model, with model present) and mudline bending moment, Hs =9 m

and Tp =12.3 s, showing poor match for ringing event. Repetition tests are included in the experimental results.
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Figure 25: Comparison of numerical and experimental 90th percentile 30-minute bending moment response at z = −28.5 m for various

long-crested waves. Results for four independent realizations (seeds) are shown for Hs 4.6 m, Tp 9 s.
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measured responses, but the 90th percentile 30 minute bending moment was similar for all of the selected conditions

along the 50-year contour with Hs > 8.0 m and 9 s<= Tp <=12.3 s.

The uncertainty analysis suggests that the random errors (estimated through repetition tests) are of minor

importance compared to bias errors (estimated through a simplified analytical uncertainty propagation and through

numerical simulations) for the estimation of RAOs and statistical results. Based on a somewhat conservative

estimate - local variation applied as a global variation - the mass and stiffness of the model itself were found to

be important contributors to the bias error. The wave elevation and model diameter, where the bias errors were

estimated more realistically, were also seen to be important.

The numerical results for the engineering model, considering three formulations of the wave particle acceleration,

showed that only some of the response metrics were in agreement within the level of experimental uncertainty. The

numerical results including the advective terms of the acceleration always predicted larger responses than the

numerical results without these terms. The reasons for discrepancies between numerical and experimetnal results

could include the overprediction of second order wave excitation in the numerical model, incorrect estimation of

the third order wave excitation, small differences in the natural period, and the challenges associated with the

extremely low damping in the physical model. Due to the low damping of the model, the history of the response

was very important for the response in the largest waves. Future work should examine the use of more accurate

wave kinematics and higher order wave load formulations for the long-crested and short-crested wave conditions,

and new experimental campaigns with additional sources of damping should be considered.
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