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ABSTRACT

The spectral and spatial resolution of hyperspectral imaging is useful for investigation of tissue autofluorescence.
The low-light, noisy conditions in fluorescence imaging usually necessitates noise removal for extraction of precise
spectral signatures and peak shifts. However, noise removal techniques like low-pass filtering or the Maximum
Noise Fraction transform might discard information or distort spectral features. In this study, smoothing splines
is proposed as an alternative technique to avoid spectral distortion in analysis of hyperspectral fluorescence
images in the wavelength range 400-1000 nm. Continuous tuning parameters and use of natural cubic splines
makes the method advantageous for unbiased peak extraction. The method was tested on ex vivo images of
atherosclerosis lesions and simulations. The method was used to estimate autofluorescence peak shifts, and
found to perform well in comparison with MNF.

Keywords: fluorescence imaging, subresolution peak extraction, tissue optics, noise removal, maximum noise
fraction transform

1. INTRODUCTION

Hyperspectral imaging is a valuable tool for investigation of tissue autofluorescence. It has the spectral resolution
required to resolve multiple fluorophores, and can yield spatial maps over the locations of spectral signatures
of interest. Applications of hyperspectral fluorescence imaging include imaging of atherosclerotic plaques,1

food quality control2,3 and various medical applications like characterization of cancer cells.4 In the current
study, smoothing splines is explored as a tool for removing noise and characterizing autofluorescence peaks in
hyperspectral fluorescence images.

Imaging spectrometers require sufficient illumination. However, the only light available in imaged fluorescence
scenes is the low-intensity autofluorescence light generated in the samples. Increasing the integration time of
the camera or the power of the excitation light source is normally not feasible, as long exposure to strong
radiation would bleach the fluorophores. Hyperspectral fluorescence imaging therefore leads to images with a
low signal-to-noise ratio (SNR), where noise removal can be necessary as a pre-processing technique.

Automated characterization is important for processing larger datasets acquired as time series and across
samples. An ultimate goal is to unmix the data with respect to the various fluorophores. This is challenging
in tissue due to strong scattering and absorption at both excitation and emission wavelengths. Full unmixing
requires full characterization of e.g. reflectance images acquired under a visible light source to estimate scattering
and absorption properties, and the appropriate pairing of optical properties and apparent emission spectra.
Manual decision making might be necessary.

Emission peak characterization in terms of peak position, peak height and peak width is an alternative tech-
nique for obtaining an overview over the data. This can be used as a part of the fluorophore characterization
process, and for the initial visualization of the data. Comparability is an important requirement, where fluo-
rophores across measurements should have the same peak behavior, and not be subject to e.g. pre-processing
techniques that treat the data differently.
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Extracting peak positions at sub-resolution level could be useful for obtaining more accurate representations of
peak shift distributions over larger regions. These are otherwise limited to counts over the two closest wavelengths
due to the wavelength discretization. Sub-resolution peak shifts lead to subtle changes in the noise dynamics,
which could be exploited by a suitable interpolating technique to estimate peak shifts. Thus, there are two goals
in this study: To remove noise from the spectra in a comparable and objective way, and to estimate sub-resolution
peak shifts, where the two problems are strongly inter-related.

MNF (Minimum noise fraction)5 is a noise reduction technique often used for hyperspectral images, as it
retains spatial and spectral resolution while yielding smooth spectra. MNF decomposes the image in terms of
typically 8-10 less noisy, mixed components, with their own maxima and minima. Each pixel in the denoised
hyperspectral image will be a linear combination of these. It is not guaranteed that the MNF decomposition
is sensitive to small shifts in fluorescence emission peak position due to the way the images are decomposed.
The MNF technique is subject to the available image statistics. Choosing the number of components has to be
done based on visual inspection. MNF is not an interpolating technique, and the number of component cannot
be objectively chosen by cross-validation or similar techniques, unless techniques further down the processing
pipeline have properties that can be evaluated by cross-validation. In general, the subjectivity leads to images
that are not necessarily comparable.

Smoothing splines6,7 is proposed as an alternative technique for satisfying both denoising and peak detection
aspects in fluorescence images. The method uses natural cubic splines to interpolate the data. Wavelength
bands can be left out during fitting, to be evaluated by the fitted model at a later time. This makes the concept
of independent test data well-defined. Subresolution peak positions are efficiently found using the analytical
derivative. The spline coeffients are restricted according to a roughness penalty, in effect making the method a
denoising method with the appropriate smoothing parameter. Smoothing splines is a linear method, and can
thus be efficiently estimated on multiple spectra at the same time. Linearity also means that the leave-one-
out cross-validation error is trivial to calculate without refitting the method. All spectra in the hyperspectral
datacube can therefore efficiently be represented using spline coefficients, with crossvalidated tuning parameters
that objectively can yield smoothed spectra that are comparable.

Smoothing splines, or variations of the technique, have been used in both hyperspectral imaging and in
fluorescence spectroscopy. Marion et al.8 uses smoothing splines as a basis for a method to recover reflectance
values within major gas absorption bands in remotely sensed images. Berman9 uses thin-plate smoothing splines
to smooth the MNF transformation bands of remote sensing data. Lee et al.10 compares various smoothing
methods on autofluorescence data, including LOESS, COBS and robust smoothing splines, which uses a scale
function on the mean squared error part of equation (1). Various methods are given for approximating the
cross-validation error.8–10

The theory for the smoothing splines technique and considerations for application to hyperspectral images
is outlined in section 2. The technique is then applied to images of atherosclerosis images and simulations, and
compared to MNF.

2. SMOOTHING SPLINES

Given a data set with inputs x = [x1, x2, . . . , xK ]T and outputs y = [y1, y2, . . . , yK ]T , the smoothing splines
method estimates the function f(x) which minimizes the penalized residual sum of squares (PRSS)6

PRSS(f, α) =

K∑
i=1

{yi − f(xi)}2 + α

∫ ∞
−∞

{
d2

dt2
f(t)

}2

dt. (1)

The first term deals with the closeness of the function f(x) to the outputs yi, and the second term penalizes
the curvature of the function.6 Setting α = 0 interpolates the outputs exactly (maximum curvature), while
α = ∞ yields a straight line (no curvature allowed). In practice, α controls the smoothness of the resulting
function, and regularizes between under- and overfitting. An alternative, more convenient formulation is to

express the PRSS as7 p
∑N
i=1{yi − f(xi)}2 + (1− p)

∫∞
−∞

{
d2

dt2 f(t)
}2

dt, with α = (1− p)/p. Here, p = 0 yields a

straight line and p = 1 fits all datapoints exactly.
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The parameter α is a tuning parameter which has to be estimated using independent validation data or
through cross-validation. Minimization of PRSS(f, α) would always set α = 0, effectively overfitting the model
on the data.

It can be shown that the solution f̂(x) is a natural cubic spline with K knots,6 meaning that the function
between the first and second datapoint and the function between datapoint K − 1 and datapoint K are linear
functions. The other line segments are cubic polynomials with continuous first and second derivatives. The
linear segments reduce erratic behavior at the edges of the dataset.6 The solution can be written as

f̂(x) =

K∑
j=1

Nj(x)θ̂j , (2)

where Nj(x) are the basis functions for the natural cubic splines. The coefficients θ̂j are given as6

θ̂ = [θ̂1, . . . , θ̂K ]T = (NTN + αΩN )−1NT︸ ︷︷ ︸
def
=Hα

y = Hαy. (3)

The matrices N and ΩN consist of the elements {N}ij = Nj(xi) and {ΩN}jk =
∫

d2

dt2Nj(t)
d2

dt2Nk(t)dt, respec-
tively.6 These are dependent only on xi.

Evaluating f̂(x) at the inputs of the training set xi yields

f̂ = [f̂(x1), f̂(x2), . . . , f̂(xK)]T (4)

=

K∑
j=1

[Nj(x1), . . . , Nj(xK)]T θ̂j = Nθ̂ (5)

= N(NTN + αΩN )−1NT︸ ︷︷ ︸
def
=Sα

y = Sαy. (6)

Here, the matrix Sα depends only on the training inputs xi and α, and the fit f̂ is therefore linear in y. The
coefficients θ̂ are also similarly linear in y. Linearity has two main advantages which makes the method ideal
for large datasets like hyperspectral images.

First, for a single α, it is computationally efficient to apply the method to multiple spectra. Given a hyper-
spectral image in matrix form, B = [y1, . . . ,yN ]T (N spectra × K wavelengths), the corresponding xi are the
same across all spectra. The matrices N and Ω can therefore be calculated once for a specific α, and spline
coefficients or function evaluations are obtained by a matrix multiplication:

Bα = SαB (7)

θ̂α = HαB. (8)

An efficient BLAS (Basic Linear Algebra Subprograms)11 implementation then ensures computational efficiency.

Second, linearity enables the calculation of the leave-one-out cross-validation error without refitting. Leave-
one-out cross-validation estimates the test error of a given method by training on K − 1 datapoints and testing
on the remaining datapoint, and averaging over all combinations. This requires the model to be fitted K times
for each parameter choice. For models that are linear in y, as expressed in (6), the leave-one-out cross-validation
error can be calculated directly from Sα:6

ErrCV(f̂α) =
1

K

K∑
i=1

(
yi − f̂α(xi)

1− Sα(i, i)

)2

, (9)

where Sα(i, i) are the diagonal elements of the matrix Sα. Thus, the smoothing splines for a given parameter
choice α has to be fitted only once, and the full cross-validation error for this parameter choice is available
using the above formula without refitting. For a given spectrum y, the parameter α can objectively be found by
minimizing (9). This yields the lowest cross-validation error, and provides an optimal choice between closeness
and smoothness in the resulting spline.
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2.1 Estimating optimal tuning parameters for all pixels

Choosing any α between 0 and∞ yields a gradual transition from high-variance, noisy fits to smoother fits - and
an optimal parameter in-between representing a denoised spectrum. This coincides with the parameter chosen
through cross-validation.

The tuning parameter α is directly dependent on the signal to noise ratio in a given spectrum. An image
might have the same noise variance in all pixels and bands, but the signal level varies. A constrained fit with
high α would be required for low signal levels, where the noise dominates, while a less constrained fit and lower
α is appropriate for high signal levels, where the relative noise contribution is low. An image containing various
kinds of signals and signal amplitudes requires a different α for every single pixel.

Consider a typical bracketing routine for minimizing ErrCV,α for a given spectrum, assuming a well-behaved
error curve with a single, global minimum. All spectra would require estimation of the cross-validation error at
a common set of lower and upper α. Multiple spectra would likely end up within the same parameter ranges,
and go through a sequence of bracketing at the same αi. All spectra share the same xi, and a single Sα can be
calculated for a specific αi. A divide-and-conquer approach may therefore be used.

Figure 1. Split based on cross-validation error during divide-and-conquer strategy for estimating optimal α.

Assume lower and upper brackets αl and αu for the α providing the minimum cross-validation error for a
range of pixels B:

1. Calculate αc = 0.5(αu + αl), αlc = 0.5(αl + αc) and αuc = 0.5(αu + αc).

2. Estimate Sα for αlc and αuc.

3. Calculate the cross-validation error for all pixels for αuc and αlc using Sα.

4. Divide the pixel set in two subsets: Assign pixels to [αl, αc] for the pixels which has the lowest cross-
validation error for αlc, and assign to [αc, αu] for the pixels which has the lowest cross-validation error for
αuc.

5. Repeat the process from 1. on each of the pixel sets until convergence (|αl − αu| < αc · t).

One iteration of the algorithm is illustrated in Fig. 1.

Thus, each pixel can have its optimal α estimated independently of each other to an arbitrary numerical
precision, with full reuse of the same computations across pixels. This approach assumes that the cross-validation
curve has a single minimum. This has been seen to be valid for most of the spectra encountered in this study,
though there are cases where this is not valid.

Coefficients can either be kept during the cross-validation routine, or they can be obtained by reapplying the
method on smoothed data using a smoothing parameter α close to 0, as illustrated in Fig. 2. The latter approach
can also be applied on spectra denoised using e.g. MNF to obtain spline coefficients for peak characterization.
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Figure 2. Flowchart for possible application of the method: Apply smoothing splines separately on each pixel and then
apply a common smoothing spline matrix with low α to estimate spline coefficients for further analysis.

3. THE MINIMUM NOISE FRACTION TRANSFORM

The MNF transform T of an image B with band means B̄ can be expressed using a linear transformation matrix
A as5

T = A(B− B̄), (10)

where the subraction of the band means B̄ are taken row-wise. The constituent vectors a of the transformation
matrix A = [a1, . . . ,aK ]T are found by solving the eigenvalue problem5

ΣNa = λΣa, (11)

where ΣN and Σ are the noise and image covariance matrices, respectively.

The bands in T are sorted in terms of decreasing SNR by sorting the eigenvalues.5 Most of the signal is
compressed in the first bands, slowly degrading into pure noise with increasing band index. Discarding the last
K − r bands can be used as a compression technique, and processing algorithms can be made to work on the r
transformed bands instead of the full image. Using the first r components of A−1 on these r components would
yield noise-reduced spectra within the original image space. If only the denoising properties of the technique are
desired, this process can be expressed as

B∗ = B̄ + A−1RA(B− B̄) = B̄ + D(B− B̄), (12)

where R is the identity matrix with the last K − r diagonal entries set to zero. All steps in the method can be
implemented as matrix operations, which can make use of efficient linear algebra implementations.12

4. EXPERIMENTAL SETUP

The smoothing splines method was tested for its peak extraction capabilities on a fluorescence dataset. The noise
removal capabilities were compared against MNF on the same dataset. Here, the ground truth is not known.
Simulations were therefore also generated in order to evaluate the methods on denoising of spectra where the
underlying models are known. For the simulated dataset, quantification was done using the mean squared error
between the original, noise-free spectra and the denoised spectra.

4.1 Measurements

The fluorescence example dataset consists of measurements over atherosclerotic lesions from human aortic sam-
ples, previously published in Larsen et al.13 and Randeberg et al.14 The data were acquired using a push-broom
Hyspex VNIR-1600 camera (Norsk Elektro Optikk, Lillestrom, Norway). The images were acquired in the wave-
length range 400-1000 nm, with a spectral resolution of 3.7 nm. The samples were illuminated using a frequency
tripled Nd:YAG-laser (Quanta Ray Lab-series L-190, Spectra Physics, Mountain View, California), providing
UV-excitation at 355 nm. For more details on the experimental setup, see Larsen et al.13
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4.2 Simulations

To emulate fluorescence spectra similar to the spectra encountered in the measurements, data were generated
using the function

R(x) = exp(mx exp(−x/s+ 1)/s), (13)

with x ranging from 0 to 100 in discrete steps. Three baseline spectra were chosen using parameters s = [10, 20, 60]
and m = [4.0, 3.8, 3.6], shown in Fig. 3.
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Figure 3. Three basic spectra used in the simulations.

An image with 3 rows and 500 columns was created. Each of the basic baseline spectra were assigned to
a row. Each row was divided into 100 patches with 5 pixels in each patch, where parameters m and s were
randomly generated from a Gaussian distribution with means corresponding to the baseline parameters and
standard deviation 1, and used to yield variations of the baseline spectra. Constant variance (σ = 1) Gaussian
noise was added to the spectra. The goal was to create an image with a large enough number of pixels to be
able to estimate reliable image statistics, but let no specific spectrum be homogeneously overrepresented.

5. RESULTS AND DISCUSSION

The smoothing splines method is explored as a technique for noise removal and subresolution peak character-
ization in hyperspectral images, and compared against MNF. The method is first applied to autofluorescence
measurements, and then to simulations of spectra with additive noise.

5.1 Peak position characterization in fluorescence data
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Figure 4. Peak positions (left), peak values (center) and smoothing parameters p = 1
α+1

as estimated using the cross-
validation approach (right).
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Figure 5. Comparison of the blue band before and after application of smoothing splines.
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Figure 6. Raw spectra compared against smoothing splines and MNF denoised spectra.

Peak positions, peak values and the corresponding smoothing parameters for the measurements are shown in
Fig. 4.

Band images before and after application of the technique for one of the noisier bands in the blue region
are shown in Fig. 5. Spatial noise is reduced in these bands after application of the technique, due to the
constraining effect of the splines. See for example the region marked in red, where graininess in the raw image
is replaced by a smoother texture with more detail.

Raw fluorescence spectra were selected from three pixels for further comparison (positions (x, y) = (279, 232),
(272, 336), (598, 398) for spectrum 1, 2 and 3, respectively), and are compared against the smoothing splines fit
in Fig. 6. The splines yield smooth spectra that well follow the trends in the spectrum.
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Figure 7. Cross-validation curves (left) and corresponding spectra (right) at the cross-validated smoothing parameters
and parameters above and below this parameter.
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Figure 8. The rounded smoothing splines maximum estimate (left), compared to the maximum position as estimated
using max on each raw spectrum (right).

Corresponding cross-validation error curves are shown in Fig. 7, along with examples of spectra smoothed
at parameters outside the minimum. A parameter above the cross-validated parameter yields a spectrum which
follows the noise. A parameter below the cross-validated parameter yields a smooth spectrum, but has bias. The
smoothing parameter at the lowest cross-validation error yields a compromise between the two.

The peak position as estimated from the raw spectra by simply finding the index position for the max
value throughout the noisy spectrum was compared against the rounded smoothing splines estimate in Fig. 8.
Rounding the peak position as obtained from the smoothing splines method yields an index value similar to the
simple max, but chooses a wavelength index closer to the sub-resolution estimate. This represents an estimate
with less spatial noise. Working in the subresolution regime would especially be useful for characterization of
gradual changes over time when the wavelength discretization is large. The use of cross-validation to estimate
smoothness makes the results comparable across pixels and images.

5.2 Comparison between smoothing splines and MNF

The smoothing splines method was compared to MNF on the autofluorescence data and the simulations described
in section 4.2.

5.2.1 Application of MNF to fluorescence data
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Figure 9. Components of the inverse MNF matrix.
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Figure 10. Inverse MNF spectra for different number of com-
ponents in inverse, and statistics obtained from a larger sub-
set of the image.

The first components in the inverse transform and the corresponding first bands in the forward transformed
image are shown in Fig. 9 and 11, respectively. The inverse, denoised spectra will be a linear combination of
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Figure 11. The first bands of the MNF transform.

the components in the inverse transform, with the pixel values in the transformed bands as the coefficients. It
is seen that the components gradually contain more and more noise. Seven bands were taken to construct the
inverse transform considered further on.

Example spectra are compared against corresponding splines in Fig. 6. This shows some deviations be-
tween the smoothing splines spectrum and the MNF spectrum: for spectrum 1, the denoised spectra do not
overlap around 500 nm, and for spectrum 3, the MNF spectrum has oscillations not present in the smoothing
splines spectrum. The true spectra are not known here, and the differences were therefore not evaluated for the
measurements. Differences for simpler simulations are evaluated in section 5.2.3.

MNF has a tuning parameter similar to the smoothing parameter, the number of components to use in
the inverse transform. Selecting a low number of components leads to bias in the inverse spectrum, which is
demonstrated by the denoised spectra using 1 and 2 bands in the inverse in Fig. 10. Including all components in
the inverse reproduces the original spectrum exactly. An intermediate value produces a smooth approximation,
subject to the image statistics and the spectrum at hand.

Tuning number of components using cross-validation is not well-defined, as MNF would have to be fitted with
one of the bands missing from the data. MNF does not interpolate missing bands, and calculating the prediction
error on the left-out band is not well-defined. The number of components is therefore usually selected through
visual inspection of the plot over the SNR as a function of the number of components, or by visual inspection
of the noisiness of the transformed MNF bands or inverse spectra. In addition to subjectivity, this means that
the parameter is chosen based on the bulk properties of the image. Individual spectra could require less or more
components due to spatial variations in the SNR, but adjusment on pixel level is not possible due to the method
not being interpolating.

MNF is expected to yield a less optimal estimate if the shape of the spectrum at hand is less represented in the
statistics matrices. Essentially, pure components would be used to represent less represented spectra. Different
components would be mixed where there is no mixture of such fluorescence components. Such mixture behaviour
would be more prominent with less components, while more components leads to more noise, essentially being a
bias-variance consideration.

5.2.2 Comparison of denoising matrices
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Figure 12. Components of the denoising matrices for MNF (left) and smoothing splines (right, p = 0.001) that yields
denoised spectral values at three discrete bands.
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Evaluating the smoothing splines at the training points xi can be expressed as a matrix multiplication Sαy,
while denoising using MNF is also similarly expressed as a matrix multiplication D(y − B̄). A value at the
band i is therefore calculated by linearly combining values of the raw spectrum using coefficients present along
a row i of the denoising matrix. Linear combination coefficients yielding a specific band value are plotted in Fig.
12, and shows that the coefficients are similar for smoothing splines and MNF. There exists a relation between
smoothing splines and ridge regression,6 and ridge regression and PCA,6 and MNF can be expressed as a PCA
transform of the noise whitened image.15 The similarity of the denoising matrices could indicate some relation
between smoothing splines and MNF, but would have to be further investigated.

5.2.3 Application of MNF and smoothing splines to simulations
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Figure 13. Comparison of MNF and smoothing splines as applied to simulated spectra.
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Figure 14. Mean squared error between smoothing splines and MNF for the three spectral types present in the simulated
dataset.

MNF was run on the simulations with 6 components in inverse, with the seventh component consisting of
pure noise. Examples of denoised spectra are shown in Fig. 13. The mean squared error between the original
spectra before noise was added and the denoised spectra is shown in Fig. 13. The examples show alien spectral
components in the MNF denoising of spectrum 3. This demonstrates component mixing, where components from
from spectrum 1 are used to denoise spectrum 3. The spectra also show some bias. The bias is summed up as a
higher bulk mean squared error as compared to the smoothing splines technique. The smoothing splines technique
has lower mean squared error, and the examples show that the smoothing splines method well approximates the
high-SNR parts of the original spectra. However, the smoothing splines estimate has high variance and follows
the noise too closely for the low-SNR parts. The choice of α is low in order to accomodate the high-SNR parts,
but results in a fit with too many degrees of freedom in the low-SNR parts. This is behavior that was also seen
for the measured fluorescence spectra, especially evident in Fig. 10.

5.2.4 General discussion

Smoothing splines interpolates the trends of the noisy spectra, using an objective measure with a clear minimum
to determine the amount of smoothness for each pixel. This makes the results comparable regardless of image
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and noise statistic estimates, which is especially useful for characterization across images. The smoothing splines
tuning parameter is continuous, allowing individual tuning down to an arbitrary numerical precision.

MNF is tuned by visual inspection of either components or SNR plots, and the results are not necessarily
comparable across different images or even pixels. The MNF tuning parameter is discrete, restraining somewhat
the possbility for tuning.

MNF takes image statistics from the image at large into account when smoothing the spectra, whereas
smoothing splines considers only one spectrum at a time. This can have both advantages and disadvantages. It
was seen in the simulations that using the full image to denoise single spectra can lead to component mixing, which
can have negative ramifications for further processing. Different images would have different image statistics,
and different components would be used to build the denoised spectra. Using components from the full image
makes full use of the available information, however, and restrains the spectra in low-SNR parts properly, as
seen in the simulations. The smoothing splines estimates of α mainly satisfies the high-SNR parts of the spectra,
while the low-SNR parts will have an α which is not restrictive enough.

Thus, MNF and splines represent two extremes: MNF uses information from the image at large, but makes
no individual tailoring, while smoothing splines considers each spectrum individually, but makes no use of prior
information. Improvements could be made by centering and standardizing the image bands or applying weights
to the method using the image covariance matrix. In addition, there exists modifications to the technique which
have α dependent on x,16–19 which would be appropriate here.

MNF would also be more adaptable for various types of noise distributions and image spectra, while the
smoothing spline is more restrictive and sensitive to spectral behavior. Attempts to apply the method on
reflectance data from human skin yielded unphysical results due to the high variation in noise variance as a
function of wavelength, and absorption features being confused as undesired noise variance. The method was
more suitable for fluorescence data, due to the simple polynomial-like behavior of these spectra. Centering and
standardization of the image bands could improve applicability to reflectance data. It is expected that the
method will be less suitable when the fluorescence spectra are strongly influenced by absorption features.

Inverse spectra obtained using the MNF transform can discard or mix important spectral features. Still,
MNF is often the most suitable alternative, and for some data this might be a good enough approximation. The
variant of MNF considered here is also the most extreme variant, in that a hard cut-off is used for the transformed
bands. A more gradual variant could be to apply gradually more aggressive noise removal on the transformed
bands before back-transformation, but objective evaluation of such improvements could be challenging. MNF is
also valuable in dimensionality reduction.

Regardless of denoising method, the smoothing splines method is well suitable for investigating the spectra
at subresolution positions and be used to estimate fluorescence emission peak positions or other properties that
are easily extracted from spline coefficients. The results here also suggests that it is appropriate as a denoising
method for fluorescence spectra.

6. CONCLUSION

The smoothing splines method has been adapted for use in hyperspectral images, with individual smoothing
parameters that are appropriate for every single pixel in the image. The method has been applied to images
of atherosclerosis plaques, and found to yield smooth spectra. The spline coefficients were used to find sub-
resolution peak positions of the emission spectra. Comparison of MNF and smoothing splines on simulations
showed the smoothing splines estimate to yield spectra with lower bias. While the appropriateness of MNF is
subject to the availability of image statistics, smoothing splines represents a robust method with an objective
choice between smoothness and closeness of the spectra, and which apparently has advantages over MNF for the
type of data represented by autofluorescence images.
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APPENDIX A. MANIPULATING SMOOTHING SPLINES SOFTWARE PACKAGES
TO OBTAIN THE SMOOTHING MATRIX

The techniques presented in this paper assume the availability of Sα, the smoothing matrix. This is usually not
made available in a given software implementation. Smoothing splines is implemented in MATLAB (version 9.2.0,
The MathWorks Inc., Natick, Massachusetts, USA) through the function csaps, and a Python implementation
can be found in the Python package pywafo.20 Both implement smoothing splines according to the definitions
given in de Boor,7 which use p instead of α as the smoothing parameter.

A.1 Estimation using the identity matrix

This method requires no software modification, and obtains Sα by manipulating the input. Given a spectrum
I1 = [1, 0, . . . , 0]T , the resulting fitted smoothing spline is

f̂α = SαI1 = [S11, S12, . . . ]
T . (14)

Iteratively putting in columns of the identity matrix I reproduces Sα.

A.2 Estimation using intermediate results

This method requires software modification. As both MATLAB and pywafo implementations are based on de
Boor,7 a couple of intermediate results can be exploited to estimate Sα directly. Below, this is outlined using de
Boor’s notation, usually translated into similar variable names in the code. de Boor’s method also considers the
covariance matrix of y, D, but this is neglected below for simplicity.

The smoothing splines are here formulated in terms of their piece-wise polynomial form (ppform). One of
the intermediate results is the vector a, defined to be

fp(xi) = ai, (15)

i.e. the elements of fp(x) = Sαy. It is in the packages found from

a = y − 6(1− p)Qu. (16)

The vector u is found by solving
(6(1− p)QTQ + pR)︸ ︷︷ ︸

def
=Bp

u = QTy (17)

Both a and u are used to estimate the other parameters defining the ppform of the smoothing spline, which can
then be used for interpolation. The matrices Q and R are calculated from differences between data points xi.

Inserting (17) into (16) then yields

a = (I− 6(1− p)QB−1p QT )︸ ︷︷ ︸
Sα

y. (18)

Thus, Sα is estimated from Q and Bp, which are all available in a given smoothing splines implementation.
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