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Problem Description

The possibilities of controlling a multifunction upper-limb prosthesis by means of EMG signals and
basic Bayesian pattern recognition were demonstrated decades ago, but due to technological
limitations the results never became available for prothesis users.
Most of today’s research focuses on more complex classifiers with an ON/OFF-style output, and
no records indicate that these systems yield an outcome that is functionally superior to the simple
Bayesian approach. The SVEN methods have recently been revived in a cooperative efford by
NTNU and UNB, Canada. The purpose of this project is to further develop the results from a
previous term project to a practical proportional control algorithm for a multifunction prosthesis.
The rationale for this study is the hypothesis that a “simple” and smooth (proportional) control
function will be easier for the Central Nervous System to adapt to, and thus provide increased
functionality for the user.

1. Give an overview of existing methods and algorithms for EMG-based quantitative estimation of
mechanical parameters like force, velocity, position etc. Special emphasis should be given to
methods that are insensitive to amplitude variations, which is a fundamental problem associated
with surface EMG signals.

2. Establish a protocol for data acquisition, preferably using ITK’s motion lab, suitable for
collecting training, testing and validation data for a proportional, multifunctional myoprocessor.
The protocol should include implementation of any specific software needed.

3. Select a set of relevant pattern recognition methods, and adapt these to the problem at hand as
needed. Evaluate and compare their performance as proportional, multifunction myoprocessors
by means of real biomedical signals. Visualize the main results.
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Abstract

This study is a part of a renew and continuation of the SVEN work done in
Sweden in the later 1970’s. The SVEN hand was an on/off-controlled upper-
limb prosthesis based on measured electromyographic (EMG) signals. Recently
the SVEN methods have been revived in a cooperation by NTNU and UNB,
Canada.

The aim of this study is to further develop a practical porportional control
system for a multifunction upper-limb prosthesis. This is based on a hypothesis
that a simple and smooth proportional control system will be easier for the
central nervous system to adapt to, compared to existing systems, and will thus
provide increased functionality for the user.

A protocol has been developed for the recording of EMG signals and VICON
motion measurements in a laboratory. Suitable data sets have been recorded
from three test subjects, and signal processing and three pattern recognition
methods have been applied on these data sets to generate estimates of clinical
angles. The pattern recognition methods tested were linear (LF) and quadratic
(QF) mapping functions and multi-layer perceptron (MLP) network. The per-
formance of these methods has been evaluated, compared and visualized. More
testing is needed to find the best method, and the MLP network can be im-
proved in several ways.

To achieve better angle estimates that can be used for proportional control
of prostheses, we wanted to use EMG signal features that are insensitive to am-
plitude changes due to variations in skin conductance. Qualitative and quan-
titative EMG signal features are described with this property as an important
concern. The zero-crossings (ZC) feature has been tested as one of these, also
in combination with the averaged absolute value (AAV). Although ZC did not
always perform superior to AAV, it is likely that other features and combinations
of these should be tested. Inclusion of other properties from the prosthesis, like
elbow angle or measured pressure from the arm on the prosthesis, can also be
included to improve the estimates.

We now have a large, suitable data set from the laboratory, which can be used
for further work on pattern recognition and multifunction proportional control
of prostheses. There are also other applications for the methods developed.

The final step will hopefully be implementation in a real prosthesis.
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1 Introduction

This study is a part of a renew and continuation of the SVEN work done in
Sweden in the later 1970’s. The SVEN hand was an on/off-controlled upper-
limb prosthesis based on measured electromyographic (EMG) signals.

Midtgaard (2006) did a modern reconstruction of the SVEN project and es-
tablished a good starting point for further studies. The beginning of my work
on this topic (Fougner, 2006) introduced the use of a motion analysis system
(VICON) and applied pattern recognition methods on EMG signals to estimate
the relevant angles of the upper limb. The final step will be to use this estimate
and generate suitable control signals for proportional control of a prosthesis,
but first several improvements in the estimation procedure will be needed. This
study is a part of that.

To achieve better angle estimates that can be used for proportional control
of prostheses, we want to develop methods that are insensitive to amplitude
changes due to variations in skin conductance. Qualitative and quantitative
EMG signal features are described with this property as an important concern.

A great effort has been made to record suitable data sets in the laboratory,
and the developed signal processing and pattern recognition methods from
Fougner (2006) have been applied on these data sets. Their performance has
been evaluated, compared and visualized.
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2 Theory

2.1 Electromyography

Electromyography (EMG) is a medical technique for recording and evaluating
extracellular electrical potentials generated by muscles. A detailed description
of this technique used in prosthesis control can be found in Muzumdar et al.
(2004).

EMG is most often used for differentiating primary muscle conditions from
muscle weakness caused by neurological disorders. It is normally recorded with
a bipolar needle electrode inserted through the skin into the muscle of in-
terest, and it is displayed on an oscilloscope while doing muscle contractions
(MedlinePlus Medical Encyclopedia, 2007).

EMG is also used for prosthesis control. For this use, the needle electrodes
are too painful og not suitable, thus skin-electrodes are used instead. They are
less accurate but are still considered as a good measure of muscle activity or
muscle force. The technique is sometimes referred to as surface EMG (sEMG),
but in this thesis it will be called EMG.

The conductance of the skin-electrode interface is dependent on the place-
ment of electrodes, the preparation of the skin and the amount of sweat. This
affects the amplitude of the EMG signal and is a common problem in surface
EMG measurements. It may be helpful to investigate if alternative EMG sig-
nal features, that might be insensitive to these amplitude variations, can be
exploited for proportional prosthesis control. See Section 2.5.

2.2 The SVEN control system

This section is cited from Fougner (2006) and is mainly based on Midtgaard
(2006).

The SVEN control system was developed in the 1970s by a team of scientists
at Chalmers University of Technology in Göteborg, Sweden. It was designed for
controlling a prosthetic hand with three degrees of freedom. These were fin-
ger flexion/extension, wrist flexion/extension and pronation/supination. The
control system was electronic and utilised EMG signals measured by surface
electrodes on the forearm stump of amputees. It used simple Bayesian pattern
recognition techniques.

This control method lets the amputees move the muscles in their stump as
they would do to move a natural hand. This is based on phantom hand percep-
tion, which is a phenomenon where the amputee can feel the movement and
presence of the lost limb. This method is suitable because it requires minimal
training time.

The original SVEN hand provided only on/off control for the three degrees
of freedom. This included six movements (finger flexion/extension, wrist flex-
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ion/extension and pronation/supination), and the SVEN report (Almström, 1977)
describes the results of an experiment with six electrodes. The samples showed
distinct patterns of EMG signals for the six movements. Based on this a classifi-
cation procedure was made to figure out which movement to perform.

Rectify

6 EMG 
signals 
sampled at 
50Hz

Discriminant 
function

X

Treshold
function

f
j
(X) On/off control 

on movement j

Figure 1: The SVEN control system

The EMG signals were sampled at 50Hz and rectified before the classification
procedure.

2.2.1 The classification procedure

The classification in the SVEN control system was based on the following linear
discriminant function calculated from the six collected EMG signals.

fj(X) = W T
j X + w0j (1)

where

X = [x1, . . . , xi, . . . , x6]
T

Wj = [w1j, . . . , wij, . . . , w6j]
T

(2)

and

i : electrode site number
j : movement number
xi : rectified and filtered EMG signal from electrode site i
wij : corresponding weighting factor for electrode site i, movement j
w0j : constant term

For on/off-control, the resulting values of fj(X) decided whether to perform
movement j or not, and the movements were classified in one of two popula-
tions. If fj(X) > 0 the movement was performed and was said to be in the first
population, and if fj(X) < 0 the movement was not performed and was said to
be in the second population. This also made it possible to perform more than
one movement simultaneously.
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The weighting factors wij and the constant term w0j (which can be con-
sidered as the threshold level) had to be calculated to minimize the expected
loss of misclassification. The calculations were derived from Bayes’ criterion
of optimality and based on statistics of experiments. In these calculations the
covariance matrices of the six EMG signals were included, but to simplify the
discriminant function it was assumed that the covariance matrices of the sig-
nals were equal for all the movements in both populations. More about this
in Section 2.3. Another assumption was that the populations are normally dis-
tributed.

The covariance matrix and the weighting factors were calculated as follows

Σ =

 var(X1) . . . cov(X1, X6)
... . . . ...

cov(X6, X1) . . . var(X6)

 (3)

µij : mean values for population i, electrode site j

Mi = [µi1, . . . , µi6]
T (4)

W = Σ−1(M1 +M2) (5)

w0 = −1

2
(M1 +M2)

TΣ−1(M1 +M2) (6)

These equations are derived in Midtgaard (2006, on pp. 20–22).

2.3 The human nervous system

This section is cited from Fougner (2006).
The movement of a normal human upper limb is controlled through the

peripheral nervous system. In the case of arm movements, the signals are sent
from the motor cortex down the spinal cord, through a spinal nerve to the
nerve plexus in the shoulder. From the plexus, the radial, median and ulnar
nerves lead the signals to the forearm and hand muscles. Each of these nerves
consists of thousands of fibres that can carry individual signals.

The motoric part of these nerves control several muscles in the forearm and
the palm, so that the hand and fingers move. For the main movements of the
forearm, the most important muscles are described in Table 1 on page 15.

The nerves do not only control the positions/angles of the various parts of
the forearm, they control also motion speed and muscle force.

The peripheral nervous system also has a sensoric part. This includes propri-
oception (the sense of the relative position of neighbouring parts of the body,
such as muscles, joints and tendons) and exteroception (sensors in the skin that
can feel touch/pressure, temperature and pain) which are both important for
the control of the upper limb. The proprioceptors are placed inside the limb,
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around muscles and tendons, while the exteroceptors lay in the skin or close to
the skin. The other senses (vision, taste, smell, hearing and balance) by organs
in the head can also play their role in the control of the upper limb.

In all, the human nervous system makes an accurate, reliable and robust
control.

2.4 Comparison

This section is cited from Fougner (2006).
A fully functional human upper limb naturally has more DoFs (degrees of

freedom) than the SVEN control system. The fingers can be moved individually
and do fast and complex movements, and the whole system is very flexible. It
is also stronger, more reliable, natural-looking and easier to carry around. The
fingers can feel the temperature or the structure of a surface. In addition, the
hand has its own properties; the surface may be soft and warm and the fin-
gerprint is unique. To reconstruct all these qualities in a prosthesis is extremely
difficult and may be impossible. Anyway, it is not obvious that we need all these
qualities to manage the daily life, and an improved control system may be satis-
fying as a substitute after an amputation. So far, the main goal is not necessarily
to reproduce a perfect upper limb, but to make a tool which can be useful for
an amputee in daily life.

The SVEN control system had some advantages compared to other prosthesis
control systems, because it was adapted to the amputees. In contrast to most
other existing systems, the SVEN system allowed the amputees to move the
muscles in their stump as they would do to move a natural hand.

The on/off control was one of the obvious drawbacks of the SVEN control
system. Because of this, one of the main targets in this project is to introduce
proportional control. Instead of comparing a function value with a treshold to
turn motors on and off, the function value can be used as a control signal.

Another drawback was the reliability of the SVEN system. While a healthy
limb has 100% reliability, the SVEN control system had up to 24% wrong clas-
sification on some movements (Almström and Herberts, 1980). One of the rea-
sons was probably that the assumptions made in the SVEN study were too sim-
plified, to make it possible to calculate with the technology of the 1970’s. For
example, the assumption that the covariance matrices are identical for all move-
ments, is probably not true. Midtgaard (2006) showed that the covariance ma-
trices of each population are not identical, and inside each population they are
probably also different. Due to this, we want to try more complicated pattern
recognition methods to generate a better control signal.

Using the SVEN control system on an upper-limb prosthesis, a normal prob-
lem was that the wrist flexes when you want to flex the fingers. This happened
because the two movements use essentially the same muscles. In a healthy up-
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per limb, this is solved by stabilizing the wrist with antagonists (extensor carpi
ulnaris, extensor carpi radialis longus & brevis) (Dahl and Rinvik, 1999). Equiv-
alent problems and solutions also exist on several other movements, and in a
prosthesis this may need special attention. In our control system, we will try to
place electrodes on the relevant opposing muscles to be able to distinguish the
relevant movements. We also need effective pattern recognition methods.

Possibly, our proportional control may introduce some sort of feedback through
the amputee’s eyes. If there is an error due the pattern recognition, and the
prosthesis moves wrong, the amputee may detect this visually in an early stage
and autocorrect it - consciously or unconsciously.

2.5 EMG-based estimation

2.5.1 Qualitative EMG signal features

Averaged absolute value (AAV) The averaged amplitude of the EMG signal is
the most common feature used in prosthesis control. A simplified formula
is

AAV =
1

N

N∑
i=1

xi (7)

where N represents the number of samples in the segment and i is the
sample number within the segment (Boostani and Moradi, 2003). This
calculation can be done directly on the raw EMG signal or (more usual) on
a filtered EMG signal. Usually some signal processing will be performed.

The main problem of this feature is that it will be dependent on ampli-
tude changes due to sweat and varying skin conductance. The calculation
time is short and the implementation is easy, but some effort is needed to
optimize the signal processing. See Section 5.3.1 and 9.

2.5.2 Quantitative EMG signal features

Variance (VAR) The variance of the signal may be calculated for each time seg-
ment. This is a common statistical feature and also represents the signal
power. The formula is

VAR =
1

N − 1

N∑
i=1

x2
i (8)

where N represents the number of samples in the segment and i is the
sample number within the segment (Boostani and Moradi, 2003).

The calculation time is very short and the implementation is easy, but this
feature has the same problems as AAV.
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Willison amplitude (WAMP) The Willison amplitude is counted every time
the change of amplitude between two samples exceed a treshold value
(Philipson, 1987), typically 50µV. This can be expressed mathematically
(Boostani and Moradi, 2003)

WAMP =
N∑
i=1

tresh(|xi+1 − xi|) (9)

where

tresh(x) =

{
1 if x > treshold
0 otherwise.

(10)

This feature has a short calculation time and is easily implemented. We
do not know if will have the same problems as AAV.

Zero-crossings (ZC) Zero-crossings count the number of times the EMG signal
crosses the zero amplitude level (Boostani and Moradi, 2003). Mathemat-
ically it is calculated as

ZC =
N∑
i=1

tresh(−xixi+1) (11)

where the tresh function is defined in (10).

It is important to high-pass filter the signal before calculating the ZC fea-
ture, so that offset changes do not affect the result. This could be a higher-
order filter with 1Hz cut-off frequency, to keep intact as much of the signal
as possible.

The treshold value is introduced to avoid low voltage fluctuations around
zero being counted as zero-crossings (Philipson, 1987). If it is set to zero,
the ZC feature will be independent of amplitude changes due to varying
skin conductance, and that is a good property.

In this study we may try ZC as a single feature, but also combined with
AAV as a complementing feature.

Number of turns (NT) Number of turns count the number of times the slope
of the EMG signal changes sign (Philipson, 1987). Mathematically it is
calculated as

NT =
N∑
i=1

sgn(−(xi+1 − xi)(xi+2 − xi+1)) (12)

where

sgn(x) =

{
1 if x > 0
0 otherwise.

(13)
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This feature is closely related to ZC. It has a short calculation time and is
easily implemented.

Myopulse percentage rate (MYOP) The myopulse output (Philipson, 1987) is
defined as 1 when the absolute value of the EMG signal exceeds a tresh-
old value, and as 0 otherwise. The myopulse percentage rate is then the
average value of the myopulse output. Mathematically it is calculated as

MYOP =
1

N

N∑
i=1

tresh(xi) (14)

where the tresh function is defined in (10).

This feature will be dependent on amplitude changes due to sweat and
varying skin conductance . The implementation is easy and the calculation
time will be short.

Average amplitude change (AAC) This feature is calculated as the mean value
of the difference between two consecutive samples of the EMG signal
(Boostani and Moradi, 2003):

AAC =
1

N

N∑
i=1

|xi+1 − xi| (15)

This feature is also easily implemented and calculated.

2.5.3 Other qualitative EMG signal features

Boostani and Moradi (2003) have described several other EMG signal features,
but none of them were described clear enough to be reproduced and explained
well in this study. The feature Energy of wavelet packet coefficients was the
most promising, so it would be interesting to try this feature in the future (possi-
bly combined with other features) if it can be reproduced. More time is needed
to test these features. All the following features are found in the study of Boost-
ani and Moradi (2003) and their performance in classifying EMG signals was
investigated. For all features, the calculation time was evaluated and compared
to the maximum tolerable time consumption for real-time calculations with
reasonable hardware.

Wavelength (WL) This feature was partially described with a formula, but
their formula is not usable without a better description. A short explana-
tion is that this feature estimates the length of a waveform in a segment.
This feature performed quite well.
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Mean frequency / Median frequency Mean frequency is partially described
by referring to Park and Meek (1993), but they are mixing up the expres-
sion mean frequency with median frequency and it is not known exactly
how this was calculated. No formulas are given.

Histogram This is a count of signal samples in different amplitude levels within
a time segment. It can be described as an extension of the ZC and WAMP
features. Boostani and Moradi (2003) used nine amplitude levels and we
do not know how these levels were selected.

Auto-regressive coefficients A fourth-order autoregressive (AR) model was
used. Signal samples are estimated by linear combinations of previous
samples, and the AR coefficients will change with the muscle force. The
AR coefficients can also be extracted from the third- or fourth-order cu-
mulant of the signal in a time segment, and doing this will determine the
relations among samples in higher orders and will also contain phase in-
formation on the signal. This is not described in detail. The calculations
are quite time-consuming.

Cepstrum/cepstral coefficients Cepstrum is explained as finding the spectrum
of the spectrum (the fourier transform of the fourier transform) of a sig-
nal, as if the spectrum was a normal signal. This feature is widely used
for representing voice and music, but it can be used also on EMG signals.
Often the cepstrum is found by doing the inverse fourier transform of the
fourier transform of the signal, but this is not the original definition. It was
never explained in detail how the coefficients were found in this case, but
the feature performed very well in classification of EMG signals and the
calculation time was short.

Energy of wavelet coefficients The EMG signals were decomposed by wavelet
transform into nine scales and the signal energy was found as components
of the feature vector. A biorthogonal mother wavelet was used because it
has similarities with the action potential of muscles. There were 29 sam-
ples in each time segment of 200ms and thus the number of scales was
chosen to be nine. No further description is given, so to reconstruct this
feature exactly is impossible. Finding the wavelet transform is however a
common method for classifying EMG signals, and it should be investigated
also for proportional control.

Energy of wavelet packet coefficients Instead of wavelet transform it is pos-
sible to use wavelet packet transform. This feature will be more complex,
but it actually had the best performance of all features in the study of
Boostani and Moradi (2003). The calculation time was the longest of all
features. It is not completely described how to calculate, but Matlab has
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some built-in algorithms in the Wavelet Toolbox that might be used in
future work on this topic.

ZC of wavelet coefficients This is a simple combination of other features; us-
ing zero-crossings on the wavelet coefficients. This feature performed well
in classification of EMG signals, but it was too sensitive to noise and the
calculation time was long.

AAV and ZC of wavelet coefficients This feature will have twice as many com-
ponents as the previous feature.

AR coefficients of wavelet coefficients These coefficients can be calculated
by the third- or fourth-order cumulant of wavelet coefficients. Both are
sensitive to noise and require quite time-consuming calculations.
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3 Aim of the study

The aim of this study is to further develop a practical proportional control for a
multifunction upper-limb prosthesis.

A protocol will be established for recording of electromyographic (EMG)
signals and VICON motion measurements in a laboratory, and the protocol will
be used for recording suitable data sets for training, validation and testing of
pattern recognition methods. See Section 4.

Several methods and algorithms are described for EMG-based quantitative
estimation (see Section 2.5). They will be evaluated, and special emphasis will
be given to EMG features that are independent of amplitude variations due to
skin conductance, which is a common problem in EMG-based estimation.

Three pattern recognition methods (see Section 5.2) will be evaluated and
compared in producing proportional control signals for an upper-limb prosthe-
sis.
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4 Protocol for data aquisition

This section describes:

• The equipment used for recording EMG signals and positions of the upper
limb

• The placement of electrode sites and markers

• Guidelines for selection of test persons

• A specification of movements to be recorded to form data sets used for
pattern recognition and proportional control of upper-limb prostheses

4.1 Technical specifications

4.1.1 EMG sampling equipment

EMG was sampled using a portable multi-channel box (Fig. 2a) connected to the
VICON system. The eight electrodes used (Fig. 2b–2c) had a signal ground point
between the contact points, and a built-in 20x pre-amplifier. In addition an extra
signal ground point electrode was connected to the multi-channel box for zero
voltage reference level. The multi-channel box was set to 4000x amplification
for all EMG channels.

EMG signals normally have a bandwidth of 500Hz. VICON did the EMG
sampling at 1.5kHz, which is a common sampling frequency for surface EMG
signals and according to the Nyquist criterion 1kHz would be enough.

2a: EMG multi-channel box 2b: Electrode 2c: Electrode

Figure 2: Equipment
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4.1.2 VICON equipment for motion measurements

VICON is a motion measurement system made for gait analysis, biomechanical
research, sports motion analysis and animal science. The system can compute
two-dimensional positions from one camera or three-dimensional coordinates
from 2-16 cameras. The cameras have two or four megapixles and record digital
photos in grayscale, usually 60 photos per second (60 Hz recording).

Six cameras were used in this study; four cameras under the ceiling in the
corners of the room and two cameras placed high on the end walls of the room.
They were all directed towards the center of the room and the recording system
was always calibrated on the day of recording. See Fig. 3.

Since the laboratory is normally used for gait analysis, all cameras were
placed high, which is not optimal for the marker visibility in our study. Any-
way, it was decided not to move the cameras as long as no problems occurred
concerning the marker visibility.

Center

Figure 3: VICON camera placement

VICON Workstation v.4.6 was used. The motion measurements were 60 Hz.
They were however downsampled to 20 Hz before being used as input to pat-
tern recognition, see Section 5.3.2.

4.2 EMG electrode site placement

When selecting the placement of EMG electrode sites, the main focus should be
to place them as close as possible to the relevant muscles. Table 1 was made to
select the best placements of the electrodes (Midtgaard, 2006; Stavdahl, 2002;
Perotto, 1994; Gray, 1918; Boostani and Moradi, 2003). See illustration of the
forearm muscles in Fig. 4.

The movements of the wrist are illustrated in Fig. 5. The finger flexion/ex-
tension movement is not illustrated here but is assumed to be known.
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4a: Anterior view, superficial

4b: Anterior view, deep

4c: Posterior view, superficial

4d: Posterior view, deep

Figure 4: Forearm muscles, illustrations from Gray (1918)
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Figure 5: Clinical angles of the wrist (Stavdahl, 2002)

Movement Muscles in prioritized order
Finger flexion Flexor digitorum superficialis/sublimis, Opponens

pollicis2, Flexor pollicis brevis2, Abductor pollicis brevis2

Finger extension Extensor digitorum, Flexor carpi radialis,
Flexor carpi ulnaris

Pronation Pronator teres, Pronator quadratus1

Supination Supinator
Wrist flexion Flexor carpi ulnaris, Flexor carpi radialis, Palmaris longus
Wrist extension Extensor carpi radialis brevis & longus3,

Extensor carpi ulnaris, Extensor digitorum
Radial deviation Extensor carpi radialis brevis & longus3,

Flexor carpi radialis
Ulnar deviation Flexor carpi ulnaris, Extensor carpi ulnaris

Table 1: Relevant muscles for specific movements

In total, this table indicates use of at least eight different electrodes on the
forearm, to distinguish the eight movements. This leads to the EMG electrode
site placement of Table 2.

An important concern is that for each person the electrodes should be placed
correctly and at the same place every time, so that the classification procedure
is adapted to the correct signals.

1These muscles probably lay too deep to be measured with EMG signals
2These muscles are placed inside the hand and are irrelevant in amputees
3Extensor carpi radialis brevis & longus are usually considered as one single muscle, since

they are not distinguished easily when placing the electrodes (Perotto, 1994)
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6a: Anterior view

6b: Posterior view, with markers

Figure 6: Electrode site placement
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Electrode site Muscle(s)
1 Pronator teres
2 Supinator
3 Flexor digitorum superficialis/sublimis
4 Extensor digitorum
5 Flexor carpi radialis
6 Flexor carpi ulnaris
7 Extensor carpi radialis brevis & longus
8 Extensor carpi ulnaris

Table 2: Electrode site placement

4.3 VICON marker set placement

For calculation of relevant lines and angles of the upper limb, to record the
movements of Table 1, the marker set placement of Table 3 is sufficient. Note
that the markers A and LMB were recorded but not used in this study, however
they might be useful in future work on the recorded data sets.

Abbreviation Description
A Acromion
LMB Lateral (side of) Musculus Biceps
LE Lateral Epicondyle
ME Medial Epicondyle
RS Radial Styloid Process
US Ulnar Styloid Process
MCP(1,3) (1st, 3rd) Metacarpophalangeal joint
DIP(1,3) (1st, 3rd) Distal interphalangeal joint

Table 3: Marker set placement abbreviations

See the marker set in Fig. 8.

4.4 Test subjects

EMG and VICON position measurements were done on three volunteers. These
persons are held anonymous. To have a more generally valid result, at least
one person of each gender was chosen, with different age and body build and
without any known neuromuscular diseases. Here are descriptions of the three
test persons chosen:

Person 1 Male, 26 years, very athletic, elite cross-country skier, well-trained
forearm muscles, little subcutaneous fat. Right-handed.
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Person 2 Male, 57 years, athletic, regularly exercising, moderately trained fore-
arm muscles. Left-handed.

Person 3 Female, 55 years, non-athletic, normal build. Right-handed.

We wanted to record signals from the non-dominant hand, because for most
unilateral amputees the remaining hand will become dominant. In the study of
Kestner (2006), only 2 of 40 individuals with unilateral limb loss who lost their
dominant hand did not change hand dominance to their unaffected side.

One of the test persons appeared to be left-handed. However, it was pre-
ferred to use the same side for all test persons, thus all data were recorded
from the left arm in this study.

4.5 Choice of movements

We want to choose a set of movements that we can record in the laboratory
and use for training, testing and validation of different pattern recognition tech-
niques. The system should be able to recognize and perform simple movements,
combinations of these, and activities of daily living (ADLs). Thus, the movement
sets should include these types of movements, and originally a set containing
ADLs (slicing bread, eating, cutting paper, stirring, sweeping, hanging clothes
on a clothesline) was selected.

However, the ADLs proved to be non-suitable for this purpose. The reason
was that ADLs were selected such that they are movements that require both
hands (since single-hand movements will normally be done with the healthy
hand, not the prosthesis), and such that the healthy hand does the main move-
ment while the prosthesis does the support (if the amputee is unilateral). This
resulted in very small movements that were very difficult to record with VICON,
although the EMG signals and the muscle force used for support (which we do
not record) was significant. To find a relation between these EMG signals and
very small movements was not a good idea, and another choice of movements
was done.

All possible combinations of two simple movements were selected. This in-
cludes movements following each other, like first pronating and then doing fin-
ger flexion/extension, and movements done simultaneously, like wrist flexion
while doing pronation or supination. These combinations span a space which
we want to cover as good as possible. See Fig. 7 for an example. Note that this
space is not always a rectangular space, for example the radial/ulnar deviation
is very restricted when doing maximum wrist flexion or extension. a and b refers
to doing wrist flexion and two different amounts of pronation at the same time,
while c and d refers to doing first wrist flexion and then pronation.

See Section 6.3 on page 31 for example plots of combined movements recorded
in the laboratory.
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Figure 7: Example of combined movements

A set of movements was selected, see Table 4. These movements should be
recorded at least three times for each subject, so that we have sets for training,
testing and validation. We record all these movements every time, but we will
be able to select a subset later on if the sequence is too long or if we want to
see if a subset performs better than the total sequence.

S# Simple movements
S1 Finger flexion/extension
S2 Wrist flexion/extension
S3 Pronation/supination
S4 Radial/ulnar deviation
C# Combined movements
C1 Finger flexion/extension and wrist flexion/extension
C2 Finger flexion/extension and pronation/supination
C3 Finger flexion/extension and radial/ulnar deviation
C4 Wrist flexion/extension and pronation/supination
C5 Wrist flexion/extension and radial/ulnar deviation
C6 Pronation/supination and radial/ulnar deviation

Table 4: Movements

4.6 Training, testing and validation sets

For each test subject, three different data sets were recorded:

Set 1 & 2 Recorded at the same day, with the same electrodes and markers

Set 3 Recorded at another day, with new electrodes and markers
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Training - Validation - Testing
1 - 2 - 3
1 - 3 - 2
2 - 1 - 3
2 - 3 - 1
3 - 1 - 2
3 - 2 - 1

Table 5: Data set combinations

The purpose of recording set 3 at another day, was to see if a trained pattern
recognition method will still be useful when new electrodes and markers have
been placed and the skin conditions may be a little different.

These three data sets may be combined in six ways as training, testing and
validation sets, see Table 5. We want to try all these combinations.
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5 Method description and implementation

5.1 Angle calculations

The clinical angles of the upper limb were calculated based on the recorded
marker positions. Several vectors were calculated, see Table 6 and Fig. 8. The
clinical angles were calculated from these vectors, as presented in Table 6.

Vector Markers
Fvec1 MCP1, DIP1
Fvec3 MCP3, DIP3
WristAxis RS, US
ElbowAxis ME, LE
Radius RS, LE
Ulna US, ME
Hand US, MCP3
Angle Vectors
Finger flexion/extension Fvec1, Fvec3
Wrist flexion/extension Hand, Ulna
Pronation/supination WristAxis, ElbowAxis
Radial/ulnar deviation Hand, WristAxis

Table 6: Vectors and angles of the upper limb

A special problem occured in the case of finger flexion/extension and wrist
flexion/extension, because resulting angles were rectified (the angle was found
as the smallest angle of two vectors, thus it will be positive). This was solved
using the following method:

1. project the vectors into a plane orthogonal to the WristAxis vector

2. calculate the angle of the new vectors (this will always be positive)

3. calculate the cross product of the new vectors (we can use the name Xprod
for this cross product)

4. calculate the dot product of the vectors Xprod and WristAxis

5. check the sign of the result, and use this sign for the angle

The new angles are now in the area [-180,180] degrees instead of [0,180]
degrees. See angle calculation results in Section 6.2
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Figure 8: Vectors and angles of the upper limb (note that the arm is pronated)
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5.2 Pattern recognition methods

This section is cited from Fougner (2006).
The most simple and intuitive way to introduce proportional control of the

upper-limb prosthesis, is to use estimated angles directly as control output sig-
nal. I have investigated three methods for this estimation process.

From now on the discriminant function is renamed to a mapping function,
since we are talking about proportional control rather than on/off-control. It is
still a simple Bayesian classifier, but we use the function value directly instead
of a treshold function.

5.2.1 Problem description

In the calculation of input data for the pattern recognition methods, the VI-
CON system is essential. This system gives reference values θj representing the
angles of the natural limb on which we are measuring the EMG signals. The
measured θj are then ideal values, while the pattern recognition methods cal-
culates estimated values θ̂j.

The goal of the pattern recognition methods will be to minimize the error
ej = θj − θ̂j. This process will be done on a training data set, and then the
calculated function parameters or relations may be used to find estimated an-
gles θ̂j as control signal for a prosthesis. The minimizing process can be done
in several ways, but the conventional method is least-squares estimation.

5.2.2 Linear mapping function

fj(X) = W T
j X + w0j (16)

We may use the linear mapping function (LF) (16) as in (Midtgaard, 2006).

fj(X) : X → θ̂j|min
θ̂j

(θj − θ̂j)2 (17)

θ̂j = g(fj(X)) (18)

We use least-squares estimation (17) to find the best values of Wj and w0j.
This is done with the Matlab function secondOrderEstimation.m in Appendix
A.1, which returns the values θ̂j.

5.2.3 Quadratic mapping function

fj(X) = XTW1jX +W T
2jX + w0j (19)

An alternative is the quadratic mapping function (QF) (19). Since X is a mea-
sured EMG signal, the rest of the minimizing to find the best values of W1j,
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W2j and w0j is analog to the linear case. This is done with the Matlab function
secondOrderEstimation.m in Appendix A.2, which returns the values θ̂j.

5.2.4 Multi-layer perceptron network

This section is based on Bronzino et al. (2005) and is not a complete description
of MLP networks, but a short introduction to the concept.

A Multi-layer perceptron (MLP) network is a special version of an Artificial
Neural Network (ANN) and is a pattern recognition method commonly used
on bioelectric signals. It can be constructed by built-in functions of the Neural
Network Toolbox in Matlab.

A simple MLP network consists of three layers of nodes (also called neurons)
and is a simplified model of how the network in a human brain works. See
example in Figure 9.

Input
layer

Hidden
layer

Output
layer

Figure 9: Example of MLP network with 3 inputs, 2 outputs and 4 nodes in the hidden
layer

The first layer is called input layer and has as many nodes as input signals.
When we have eight EMG electrode sites, we want eight nodes in the input
layer. The middle layer is called hidden layer and most of the processing occurs
in this layer. The size of this layer is important for the result of the estimation.
The third layer, output layer, defines the output signals. If we want to estimate
four angles, this layer will have four nodes.

Each node in the MLP network does a summation of all the inputs and a bias
value, and a transfer function to generate the output. See Fig. 10. In Matlab’s
Neural Network Toolbox, a useful transfer function is tansig, based on the
formula of (20). It is mathematically equivalent to tanh, with some numerical
differences, but it is faster to calculate.

tansig(x) =
2

(1 + e−2x)− 1
(20)

The MLP network in this project is trained using least-squares estimation and
back-propagation. In this process, the derivative of the transfer function is used,
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Figure 10: Example of a single node in a MLP network

and that is the reason why a smooth transfer function is chosen. The derivative
of the tansig function is a very simple calculation and makes the training pro-
cess fast. When the MLP network is made with tansig transfer functions in every
node, and the number of nodes is equal to the number of parameters in one of
the mapping functions, the MLP network and the mapping function actually
gives the same result.

The MLP network may be a good alternative to the mapping functions. Of
the three methods mentioned, the MLP network can be implemented faster
and is also easier to improve or extend, by adjusting a few parameters, but it is
trained slower than the mapping functions. Since the training is done off line,
not in real time inside a prosthesis, the training time is not that important and
the MLP network may be useful.

The implementation of the MLP network is done with the Matlab function
neuralNetwork.m in Appendix A.3, which returns the values θ̂j.

It is important to choose the training data such that it contains a large variety
of movements. Then the network is able to recognize many different moves. See
Section 4.5.

5.3 Choice of EMG feature sets

Originally it was a wish to try several different EMG feature sets and compare
them to find the best combination of features. However, after a time-consuming
work in the laboratory, only three EMG feature sets were selected:

1. Averaged absolute value (AAV), a filtered EMG signal, the filtering proce-
dure is described in Section 5.3.1

2. Zero-crossings (ZC) without treshold, on a high-pass filtered EMG signal

3. Combination of AAV and ZC
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AAV was selected because this is the traditional and most used feature set.
ZC without treshold was selected because this is is completely independent of
amplitude changes due to varying skin conductance; as long as the EMG signal
is first high-pass filtered so that the average is zero. Independency of amplitude
changes is interesting, thus two completely different sets were chosen, and also
the combination of these, to see how this affects the result.

5.3.1 EMG filtering procedure

The purpose of this filtering procedure is to make a smooth representation of
the signal’s amplitude.

The EMG signal is sampled at 1500 Hz. We use a high-pass filter (21) with a
cut-off frequency of 1 Hz to remove the bias and rectify the signal. A low-pass
filter (22) is used to remove the highest frequencies. After some testing, a low-
pass filter with a cut-off frequency of 10 Hz was chosen because this made a
smooth signal and a good representation of the amplitude of the EMG signal.

Hhigh−pass =

1

2π
s

1

2π
s+ 1

=
s

s+ 2π
(21)

Hlow−pass =
1

1

2π10
s+ 1

=
20π

s+ 20π
(22)

In the end of the signal processing part, a special non-linear dead-zone filter
(Fig. 11) was used, based on the tanh function. The dead-zone assures that the
integrator’s output does vary only when the difference between the input and
the output is larger than the width of the dead-zone. Small changes in the input
will not affect the output, while larger changes will affect like they should. This
can however introduce some problems when the amplitude for some reason
is smaller than normal, for example due to increased skin conductance or bad
contact with the electrode. This is discussed in Section 7 and 9.

Note also that the dead-band function in Fig. 11a has a small overshoot,
which is not very evident but it can be seen when zooming into the plot. The
overshoot is not optimal and should be removed. It may be possible to make
a smooth dead-zone function by using a higher-order function and combine it
with a linear function that has the same function value and slope in the meeting
point. This is a topic for future work, see Section 9.

The amplifier (Ki = 200) was adjusted such that the integrator is fast
enough to follow the changes of the input.

Our system is now quite similar to the SVEN control system, but with some
significant improvements (Fig. 12).
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11a: Response plot, smoothened dead-zone filter
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Figure 11: Non-linear dead-zone filter
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Figure 12: Proportional control system based on EMG signals

5.3.2 Signal preparation for pattern recognition

Mann et al. (1989) found the bandwidth of the wrist to be ≈ 10–12 Hz, con-
taining ≈ 75% of the signal. The finger flexion/extension might have a slightly
larger bandwidth since fingers are is faster than the wrist, but normal prosthe-
ses are not able to do the motions that fast. Because of this and the Nyquist
criterion, a sample frequency of 20 Hz was chosen as a starting point for the
pattern recognition and prosthesis control signals.

Thus, for doing effective estimation, the VICON position measurements (60Hz)
and the processed EMG signals (1500 Hz) were all averaged to 20 Hz before be-
ing used as input to the pattern recognition algorithms. This allowed a choice
more nodes in the MLP networks (see Section 5.2.4) without tying up all mem-
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ory on the computer during the estimation procedure. The zero-crossing values
were calculated at periods of 1/20 second to get the same frequency, and the
resulting estimated angles were 20 Hz.

In short parts of the data sets, not all markers were visible. These periods
were always removed from the data set before using the set in pattern recogni-
tion.

5.4 Proportional control

As mentioned, the estimated angles may be used directly as control signal for a
prosthesis. This, however, will introduce noise and unwanted movements when
the amputee tries to relax and let the prosthesis stand still, because the esti-
mates will always contain some noise. To reduce this problem, we may imple-
ment low-pass filtering and a dead-zone element on the control signal.

To be able to use the θj values from VICON, the angles must be chosen such
that we get the best measure of the degrees of freedom that we want to control.
This is proportional control of position. It is not trivial that this solution is the
best, it could be just as intuitive to control velocity, torque or even mechanical
impedance (Abul-Haj and Hogan, 1990). To make it simple and easier to verify
how good the pattern recognition methods works as control signals, we will try
simple control of positions/angles first.
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6 Results and observations

6.1 EMG processing

The EMG signal processing is described in Section 5.3.1. The results of this
process is presented in Fig. 13. Note that this is a 10 seconds segment example
from a data set of approximately 600 seconds.

The zero-crossings plot shows a noisy 20 Hz signal which should have been
filtered in some way before being used as input to the estimation procedures.
This is a topic for future work, see Section 9. In this case, the treshold value
was chosen to be zero, to make it independent of skin conductance.

The signals from pronator and supinator seemed to be very weak, for all
three test persons, and especially the supinator signal was weak. It is expected,
because supinator is laying under brachioradialis and because supinator is rel-
atively small.
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Figure 13: EMG processing example, channel 1 (Pronator), person 1
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6.2 Angle calculation

The angle calculation procedure is described in Section 5.1. An example plot
of calculated angles is presented in Fig. 14. This is a segment of 50-60 seconds
from data set 1 for person 1, and it contains the simple movements (S1-S4 from
Table 4).

These angles will be used in training sets for pattern recognition methods
and as reference for pattern recognition performed on validation sets and test
sets (see Section 4.6).

The radial/ulnar deviation angle contains some noise, though not more than
3-4 degrees, while the other angles are very smooth. The reason for the noise is
unknown. All in all the angle calculations seem to work properly. In the future,
inverse kinematics may make more accurate angles (see Section 9), but the
method used is probably good enough as input to the estimation procedures.

We had some trouble with the finger flexion/extension angle, because the
thumb markers (MCP1, DIP1) were placed too close to each other and were
sometimes interchanged in the results. A solution to this was to do new record-
ings until the result was correct, but an easier option for future studies might
be to place the DIP1 marker a bit further out on the thumb.

Some of the angles have a broken graph after 60 seconds, and this is due to
a couple of markers that were not visible at that time. See Section 5.3.2.
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6.3 Combined movements

Fig. 15 shows the combined movements (as described in section 4.5) of the
complete data set 1 for person 1. The purpose of this plot is to check if our
data sets contained all possible combinations of two simple movements. This
example data set seems to be a good set of the possible combined movements,
although combinations of more than two simple movements are not checked.

Note that the radial/ulnar deviation is usually restricted by the other move-
ments, so the spanned space will not be rectangular. The results containing
radial/ulnar deviation are also affected by noise (see Fig. 14).
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6.4 Pattern recognition

Measured angles (calculation in Section 5.1) vs. estimated angles (using all
three methods described in Section 5.2) are presented in Fig. 16 on pp. 32–33.
Accompanying linear regression lines and 95% confidence intervals are pre-
sented in the plots, and a line for perfect estimation (estimated angles = mea-
sured angles) is also plotted for reference. The r values indicate the slope of the
regression lines, while the mean(delta) values indicate the mean distance from
the regression lines to the 95% confidence intervals, as a measure of the spread.
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Figure 16: Estimated vs. measured angles, validation set, person 1
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Figure 16: Estimated vs measured angles, validation set, person 1
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Example plots of the estimation are presented in Fig. 17. These are segments
of 50-60 seconds from the validation set; one segment of simple movements
and one segment of combined movements, to show the variations. Both are for
person 1, using an MLP network of 8 nodes. The training set and the validation
set were in this case made at the same day. The results for person 2 and 3 were
slightly worse than for person 1.

Two more example plots of the estimation are presented in Fig. 18. They
compare the estimation results for the training set, the validation set and the
test set. In all cases only the wrist flexion/extension angle is represented, and
the results are for person 1, using an MLP network of 8 nodes. The training
set and the validation set were made at the same day while the test set is from
another day (set 3). The plots are from the same periods of all sets, but they
contain slightly different movements since the movement order was different
in the three sets.

Note the errors in the estimate of pronation/supination angle after for ex-
ample 20-30 seconds and 290-300 seconds. Errors occur also when the angle
is close to the maximum range of motion (≈ 180 degrees). All these errors are
probably the same as already seen in Fig. 16d.
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Figure 17: Estimated and measured angles, validation set, trained MLP network of 8
nodes, person 1
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Figure 18: Comparison plot for training-validation-test sets (set 1-2-3), wrist flex-
ion/extension, MLP network of 8 nodes, person 1)
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6.4.1 RMS error

The root mean square (RMS) error values for all persons are presented in
Fig. 19 on pp. 37–39. For the MLP network estimation, this value represents
the average of all six possible combinations of training, validation and test sets.

The terms amp, amp+zc and zc in these plots refer to the different EMG fea-
ture sets described in Section 5.3.
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Figure 19: RMS error (average of all six training processes for each number of nodes
in the MLP network)
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Figure 19: RMS error (average of all six training processes for each number of nodes
in the MLP network)
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Figure 19: RMS error (average of all six training processes for each number of nodes
in the MLP network)
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Because the RMS error of these plots (Fig. 19) was quite high, especially for
the validation and test sets for all persons, new plots were made by restricting
the training and validation sets to be from day 1 (set 1 and 2) and the test set
from day 2 (set 3). See table 5. This results in only two combinations.

The purpose of these plots was to check if set 3 resulted in stopping the
training procedure too early, because set 3 was too different from set 1 and 2.
The train method of Matlab’s Neural Network Toolbox stops training when the
error for the validation set starts to increase. If the validation set is too different
from the training set, the training will stop already after the initialization, and
the resulting angle estimates will only be the initial values.

As we see in Fig. 20 on pp. 41–43, this may have happened in some cases,
because the RMS error of these combinations is lower than the mean RMS error
of all combinations. Compare especially Fig. 19b and 20b, which show the same
person with completely different results.

Note that the angle axes in the plot for person 3 are different from the other
two plots, because the results were quite different.
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20a: Person 1

Figure 20: RMS error (average of training combinations 123 and 213)
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Figure 20: RMS error (average of training combinations 123 and 213)
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Figure 20: RMS error (average of training combinations 123 and 213)
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So far, the RMS error plots have only been calculated as a mean value for
all four angles. Since the angles have very different range of motion (ROM),
for pronation/supination ≈ 0–170 degrees and for radial/ulnar deviation ≈ 55–
75 degrees (for person 1), it was decided to make a new example plot where
the RMS error is calculated separately for each angle. Fig. 21 shows the specific
RMS error for each angle. This is for person 1, the EMG feature set was only
the AAV (see Section 5.3) and the MLP network had 8 nodes.

The training and validation sets are from day 1 (set 1 and 2) and the test set
from day 2 (set 3), in the same way as in Fig. 20a.

Table 7–8 show the RMS error in percentage of the motion range, for the
validation set and the test set. These are approximate values and are based on
the data from person 1 trained with an MLP network of 8 nodes. Note that the
values are measured in Matlab, not in this small figure. For a closer look and
similar plots for the other test persons, see Appendix B.

Angle ROM [deg] RMSE [deg] RMSE [% of ROM]
Finger flexion/extension (−40, 80) 23 19
Wrist flexion/extension (−40, 80) 19 16
Pronation/supination (0, 170) 32 19
Radial/ulnar deviation (55, 75) 2.5 13

Table 7: RMS error, person 1, validation set

Angle ROM [deg] RMSE [deg] RMSE [% of ROM]
Finger flexion/extension (−40, 80) 24 20
Wrist flexion/extension (−40, 80) 27 23
Pronation/supination (0, 170) 63 37
Radial/ulnar deviation (55, 75) 5 25

Table 8: RMS error, person 1, test set
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Figure 21: RMS error, separate angles, person 1 (average of training combinations 123
and 213)
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The comparison of estimated angles and measured angles, in Fig. 17–18, are
promising. Although there are some spikes and errors, the estimated angles
follow the measured angles quite good, and it seems like some kind of low-pass
filtering of the estimated angles could be a solution to minimize these errors.
See Section 9 for notes about this filtering.

The RMS error, for pattern recognition methods trained on six different com-
binations of data sets (Fig. 19 on pp. 37–39), is not satisfactory low. An RMS
error of ≈ 30–35 degrees (for person 1) is too much compared to the range
of motion (≈ 0–170 degrees for pronation/supination and ≈ 55–75 degrees for
radial/ulnar deviation, see Fig. 14 for an example). A possible reason is that
the MLP network training procedure terminates extremely early if the valida-
tion data is too different from the training data, and this seems to happen when
the validation data is recorded in another day than the training data. The RMS
error plots in Fig. 20 on pp. 41–43, which are restricted to training and vali-
dation data from the same day and test data from another day, perform better
for the validation data and just slightly worse for the test data. The RMS error
is ≈ 20–25 degrees for validation data and 35 degrees for test data (for person
1); this is much, but it should be compared to the range of motion.

The RMS error was plotted separately for each estimated angle, as in Fig. 21.
It is now possible to calculate the RMS error compared to the range of motion,
and the example in Table 8 shows that the RMS error for the test set varies
from ≈ 20 % for finger flexion/extension to ≈ 37 % for pronation/supination.
It is not satisfactory, but we do not know exactly how these errors will be ex-
perienced by the user of a real prosthesis. It remains to see if the amputee will
adapt to the errors, in a conscious or unconscious manner.

The EMG processing needs to be optimized. The amplitude of the data sets
seems to vary, especially from one day to another, and this is probably due to
varying electrode contact and skin conductance. It is a problem when we use the
averaged absolute value (AAV) EMG feature set, because the non-linear dead-
band filter (see Section 5.3.1) is amplitude dependent. For data set 3 for person
3, almost no signals came through the filtering, and it affected the training of
the MLP network. This might be solved with better EMG filtering procedures
and by choosing other EMG feature sets.

The linear regression line in Fig. 16 on pp. 32–33 should be close to r ≈ 1,
but it is not always close. In the worst case we have r ≈ 0.6 for radial/ulnar
deviation. Since it appears in all the pattern recognition methods this may be a
result of differing EMG amplitudes in the validation set compared to the train-
ing set. This is a another good example of why we should try to include EMG
signal features that are insensitive to amplitude changes due to varying skin
conductance.

Since the results for the zero-crossing (ZC) feature are not much worse and



7 Discussion 47

sometimes better than the AAV feature, it seems like the zero-crossing feature
contains useful information for the pattern recognition. Thus, the MLP networks
also performs better when the AAV feature is combined with the ZC feature as
input. This is in fact promising - it indicates that the use of other features,
preferably insensitive to conductance changes of the skin, may be used. There
exist many other possible EMG signal features that can be combined and opti-
mized for this use. 3,4 or even 10 different EMG signal features might be com-
bined as input, and if they are chosen in the right way they may complement
each other. A combined input will possibly contain more information than just
one of these features. The extra information can result in much better pattern
recognition results. See Section 9.

All pattern recognition methods used in this thesis are easily adapted to
more complex inputs than an EMG signal feature set. More features may be
used; for example the elbow angle or pressure/force measurements inside the
prosthesis. Both of these features contain information about noise caused by
elbow motion or forces applied on the prosthesis. As long as these features
contain information that complement the EMG signals, they may be useful in
the pattern recognition. This is another topic for future work, see Section 9.

The ZC feature tried (see Section 2.5.2 and Fig. 13 on page 29) contains
noise which seems to run through the pattern recognition and result in a noisy
output signal. Low-pass filtering the ZC feature may help on this.

In Fig. 16, which shows the estimated angles versus the measured angles for
a validation set, it is interesting to see the lines of the 95% confidence intervals
- they actually show that the linear mapping function (LF) has a wider spread
of estimation than the MLP network, although the MLP network has larger root
mean square (RMS) error (see Fig. 20a). The quadratic mapping function (QF)
performs in the middle between these. However, the RMS error plots (Fig 20
and 21) show clearly that the QF have problems on the test set. The error
for QF is sometimes low and sometimes more than the double of the other
methods, especially for the test set. The test set is the most important, since it
was recorded on an other day than the other sets, and a real prosthesis should
function properly also the day after training. The QF may be too adapted on the
training set and will thus perform bad on other sets; an over-trained pattern
recognition method. Fig. 16a indicates that the LF may be under-trained, and
this is not surprising since the relationship between EMG signals and upper-
limb angles is not a linear relationship. Anyway, the LF performs well in some
cases, and Fig. 21 shows that the RMS errors for LF and MLP network are close.

In Fig. 16d we see that the estimates of pronation/supination are sometimes
far away from the real angles, and this appears usually when the measured
angle is close to its maximum or minimum. A possible reason is that when you
are close to a joint’s minimum/maximum range of motion, the antagonists will
be activated, and this might cause the estimate to be smaller than it should be.
We do not know how this error will be experienced by a prosthesis user, but we
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would like to find a method for reducing this problem.
A possibility to get less noise and better MLP network outputs, is to do some

kind of averaging of the output from several MLP networks (of equal or dif-
ferent sizes) and use this as a common output. This can be the mean value of
all outputs, the mean value when extreme output values are neglected, or the
optimum value can be found using other statistical methods. This should be
tested, see Section 9.

In this study, only 2-6 MLP networks of each size were tried, and this was
not enough to find the optimum number of nodes. We should try to train many
MLP networks of each size and find the mean RMS error for each size. If we do
this for enough networks, we may find a clear trend and choose the optimum
number of nodes with the least RMS error.

In some special cases (for example in Fig. 20a, see the MLP network of 15
nodes with combined AAV and ZC features, and in several cases in Fig. 20c),
the results for the training set are much worse than for MLP networks of other
sizes. In these cases the MLP network performs worse also on the validation
set and the test set. We do not know why this happens, but we know that MLP
networks are never identical because of varying initial values, and some aver-
aging or other statistics on several trained MLP networks could be a solution.
See suggestions for future work in Section 9.

According to the example in Fig. 15, our data sets contained a large variety
of combined movements. When this is used in training of pattern recognition
methods, they will likely be able to recognize both simple and combined move-
ments.
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8 Conclusion

A protocol has been developed for the recording of EMG signals and VICON mo-
tion measurements in a laboratory. This protocol contains guidelines to assure
that recorded data sets are usable in the further work on pattern recognition
and proportional prosthesis control.

Three months have been spent in the laboratory to record suitable data sets
for this study. Further studies remain on these data sets, but some research was
done to check if other EMG signal features than the averaged absolute value
(AAV) can be usable as input for pattern recognition. The zero-crossings (ZC)
feature was tested as one of these, mainly because it is insensitive to amplitude
changes due to varying skin conductance. It was also tested in combination with
AAV feature. Although ZC did not always perform superior to AAV, it is likely
that other features should be tested and tried in combinations. Other properties
measured in the prosthesis, like elbow angle or pressure from the arm on the
prosthesis, can also be included.

The results of the estimation methods are not yet convincing. The RMS error
is 20–37 % of the range of motion, for four angles of the example test set (Fig.
21). Other plots indicate that the high RMS errors may be due to noise and
spikes on the output signal, which may quite easily be removed through some
filtering procedure or other limitations on the control signal of a prosthesis.
We do not yet know how this would affect the RMS error and how it will be
experienced by the amputee when using this control signal on a prosthesis.

The EMG signal processing to generate the AAV feature needs optimaliza-
tion to make it less sensitive to skin conductance variations. The MLP networks
need more testing to be able to find the optimum number of nodes in the hid-
den layer. The estimated angles need processing and filtering to be usable as a
proportional control signal for a prosthesis.

We now have a large, suitable data set from the laboratory, which can be
used for further work on pattern recognition and multifunction proportional
control of prostheses. See Section 9.

The final step will hopefully be implementation of proportional control in a
real prosthesis.
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An extensive work was done to record suitable data sets in the laboratory, and
a deep analysis and research may still be done on these. This section explains
the interesting topics for future work on this data set and the possibilities for
making a real prosthesis.

Filtering of EMG signals The averaged absolute value (AAV) and zero-crossings
(ZC) are features that are filtered or should be filtered before being used
as pattern recognition input.

The non-linear filtering procedure for AAV needs is sensitive to amplitude
variations due to varying skin contact and skin conductance. This may be
improved by dynamically updating the width of the dead-band function
according to the amplitude.

The dead-band also has a small overshoot which should be removed. It
may be possible to make another smooth dead-zone function by using a
higher-order function and combining it with a linear function that has the
same function value and slope in the meeting point.

The ZC feature contains noise and should be filtered. The treshold value
for this feature (see Section 2.5.2) would also need to be optimized; it is
not obvious that the treshold value should be zero.

Testing other EMG signal features The methods used in this project uses the
averaged absolute value (AAV) and zero-crossings (ZC) feature of the
EMG signal as input. Other features are described but not yet tested for
proportional control, see Section 2.5. Among the features tried for on/off
control (classification) in Boostani and Moradi (2003), the best result was
from a feature which was not completely described, but with some re-
search work it might be reconstructed and tried on proportional control
or combined with other features. As for AAV and ZC, all the described fea-
tures will probably need some filtering/smoothening before being used as
pattern recognition input.

Risdal (2006) describes a technique for selection of feature sets. Start by
choosing the feature that performs best on its own, and add the next best
features one by one until the performance curves flatten out. This may
be a suitable method for choosing the best feature set. The performance
curves can be based on RMS error calculated for multiple MLP networks
of equal or different sizes.

Additional input data The upper limb has several properties that can be mea-
sured; not only the muscle force measured through EMG. The elbow angle
is easy to measure, and pressure sensors inside the prosthesis can also eas-
ily be used as input to the pattern recognition methods. The elbow angle
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affects which muscles are used for each movement, so it contains useful
information for the estimation. Pressure sensors will feel the muscle con-
tractions in another way than EMG electrodes, and this information may
be a good supplement. The pattern recognition methods from this study
are already suitable for more input data; they do not need any change to
take advantage.

The technique of measuring noise and artifacts to improve the estimation,
reminds of the multi-channel recursive adaptive matching pursuit (MC-
RAMP) algorithm for electrocardiogram (ECG) measuring, described by
Husøy et al. (2002). A similar technique may be improve the EMG mea-
suring.

Time delay from EMG to motion There is a natural delay from muscle force
(and EMG signals) to motion. Muscle force affects acceleration, and from
acceleration to position there will be a 180 degrees phase shift causing
a small delay. This is a knowledge that could be exploited in the pattern
recognition procedures.

Improvements in angle calculation More accurate angles of the upper limb
can be calculated with the use of rotation matrices, based on defined co-
ordinate systems for ulna and the palm. The rotation matrix from ulna
to the palm would actually contain all the three important angles for
wrist flexion/extension, radial/ulnar deviation and pronation/supination
(Stavdahl, 2002, on p.24). These will be extracted from the rotation ma-
trix using inverse kinematics. This method may give more accurate angles
than the method used in this thesis.

The finger flexion/extension may also be calculated in a similar way, but
the method used in this thesis seems good enough for the purpose.

Improvements of pattern recognition methods More pattern recognition meth-
ods should be tried and tested. There are many different methods that
may give different results, so all of these should be tried and the best of
these should be tested more.

The number of nodes in the MLP network may be optimized. We need to
do many trainings on different MLP networks of each size, until we see a
clear trend on what number of nodes is optimal.

Different filtering procedures on the control signals, like low-pass filter-
ing, may improve the control and should be tested and evaluated.

Recurrent or dynamic MLP networks may be used. Feedback connections
in the MLP network will introduce states that are rememberes in the
nodes; thus the network will be able to behave like a dynamical sys-
tem and may for example converge to a low-pass filtered output if this
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is optimal. The training procedures for recurrent MLP networks are not as
simple as for normal MLP networks but would be explored.

Statistical methods for multiple MLP networks A possible method to get bet-
ter and more reliable outputs from the MLP network, is to use more than
one network. Several MLP networks can be trained, either on the same
training set or on different training sets from the same person, and the
outputs of these network can be averaged or applied to other statisti-
cal methods. For example, 18 MLP networks can be trained, distributed
on three different training sets and different number of nodes. The most
extreme outputs (for example the two highest and two lowest) can be ne-
glected when calculating the mean output. The output may contain less
noise (if the noise was random) and give a more accurate estimate.

Subspace estimation Techniques exist for subspace estimation; methods that
estimate the order and structure of a system. In this study, this would be
the order and structure of the upper limb, from nerve signals to position-
s/angles of the wrist and fingers. This estimate might be a help in choos-
ing the optimal pattern recognition method. See Schneider and Willsky
(2000).

Choice of proportional control method If we manage to design pattern recog-
nition methods that produce a usable output for proportional control, we
should try, and test, several different methods for proportional control.
Control of position, velocity, force and mechanical impedance are some
possibilities, and there are other existing methods that could be interest-
ing for the control of an upper-limb prosthesis.

Visualization It would be nice to be able to test the different control methods
on a virtual hand, for example in Matlab, or to have some other good
visualization of the result. This would make it easier to try, test and val-
idate the different pattern recognition methods and proportional control
methods, before the implementation in a real prosthesis.

Realization It must be developed a procedure for training the pattern recog-
nition methods also on amputees, because they do not have a hand on
which we can measure the angles with VICON. Some kind of visualiza-
tion may be required. An idea is to visualize a virtual hand doing a set of
movements, while the amputee tries to follow it.

Finally, the system can be implemented in a real prosthesis.

Alternative applications The methods developed in this study can be used
also on other problems; not only upper-limb prostheses. They can be used
on other joints like the elbow and the knee. We have applied methods
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for a man-machine interface which have several possible applications in
robotic telemanipulation.
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Appendix A Source code from Matlab

Comment: All my programs are tested in Matlab R2006a and require the Neural
Network Toolbox.

Appendix A.1 firstOrderEstimation.m

1 function [ F_e , Fval_e , F t e s t _e ] = f i r s t O r d e r E s t i m a t i o n (
Tdata , Tval , T tes t ,N, Xdata , Fdata , Xvaldata , Fvaldata ,
Xtes tdata , F t e s tda t a )

2 % FIRSTORDERESTIMATION C a l c u l a t e s f i r s t −order parameters
W to es t imate the

3 % func t ion F from s i g n a l s in Xdata using l e a s t−squares
es t imat ion .

4 % There are N s i g n a l s and T time s t ep s .
5 %
6 % For every time s tep we have
7 % F_e (X) = X ’ ∗W+ w0
8 %
9 % where

10 % X = (x1 , x2 , . . . , xN) , W = (w1,w2 , . . . ,wN) , w0 i s a s c a l a r
t r e sho ld value

11 %
12 % We rewr i t e i t as
13 % F_e (X) = X ’ ∗W+ W_0
14 %
15 % where
16 % X = (1 , x1 , x2 , . . . , xN) , W = (w0,w1,w2 , . . . ,wN)
17 %
18 % W i s found such tha t we minimize V = 0.5∗sum( ( F_e (X) −

F(X) ) 2̂ )
19 % where X and f (X) are known v ec to r s .
20 %
21 % F_e , Fval_e and F te s t _e are then found using W.
22 %
23 % Fina l l y , the func t ion re tu rns F_e , which i s the

es t imate of F ,
24 % Fval_e , which i s the es t imate of Fval , and Ftes t_e ,

which i s
25 % the es t imate of F t e s t .
26 %
27 % See a l so SECONDORDERESTIMATION, NEURALNETWORK, MAKEDATA
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28

29 % Anders Fougner , anderfo@stud . ntnu . no
30 % $Revis ion : 2.0 $Date : 2007/05/20 22:13:00 $
31

32 %% Est imat ion 1 s t order
33 % Performing l e a s t−squares e s t imat ion fo r each of N

s i g n a l s
34

35 % Adjust X
36 X = [ ones (1 , Tdata ) ; Xdata ] ; % add ’ ones ’ f o r c a l c u l a t i n g

W_0 parameters
37

38 %Cal cu la t e the opt imal W_big conta in ing W, W_0
39 W = X ’ \ Fdata ’ ;
40

41 % Cal cu la t e F_e (X) , the es t imate of F( x )
42 F_e = W’ ∗X ;
43

44 %% Simulate using v a l i d a t i o n data
45 % Adjust Xval
46 Xval = [ ones (1 , Tval ) ; Xvaldata ] ; % add ’ ones ’ f o r

c a l c u l a t i n g W_0 parameters
47 % Cal cu la t e Fval_e (X) , the es t imate of Fval ( x )
48 Fval_e = W’ ∗ Xval ;
49

50 %% Simulate using t e s t data
51 % Adjust X t e s t
52 X t e s t = [ ones (1 , T t e s t ) ; X te s tda ta ] ; % add ’ ones ’ f o r

c a l c u l a t i n g W_0 parameters
53 % Cal cu la t e Fval_e (X) , the es t imate of Fval ( x )
54 F t e s t _e = W’ ∗ X t e s t ;
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Appendix A.2 secondOrderEstimation.m

1 function [ F_e , Fval_e , F t e s t _e ] = secondOrderEst imation (
Tdata , Tval , T tes t ,N, Xdata , Fdata , Xvaldata , Fvaldata ,
Xtes tdata , F t e s tda t a )

2 % FIRSTORDERESTIMATION C a l c u l a t e s second−order
parameters W to es t imate

3 % the func t ion F from s i g n a l s in Xdata using l e a s t−
squares e s t imat ion .

4 % There are N s i g n a l s and T time s t ep s .
5 %
6 %
7 % For every time s tep we have
8 %
9 % F_e (X) = X ’ ∗W2∗X + W1’ ∗X + w0

10 %
11 % where
12 % X = (x1 , x2 , . . . , xN) , W1 = (w1,w2 , . . . ,wN) , w0 i s a s c a l a r

t r e sho ld value
13 % and
14 % |w11 . . . w1N|
15 % W2 = | . . . . . . . . . |
16 % |wN1 . . . wNN|
17 %
18 %
19 % We rewr i t e i t as
20 %
21 % F_e (X) = W∗X
22 %
23 % where
24 % X = ( 1; x1 :xN ; x1x1 :xNxN; x1x2 : x (N−1)xN; x1x3 :

x (N−2)xN; . . . )
25 % W = (w0, w1:wN, w11:wNN, w12:w(N−1)N, w13:w

(N−2)N . . . )
26 %
27 % W should be found such tha t we minimize V = 0.5∗sum( (

f_e (X) − f (X) ) 2̂ )
28 % where X and f (X) are known v ec to r s .
29 %
30 % F_e , Fval_e and F te s t _e are then found using W.
31 %
32 % Fina l l y , the func t ion re tu rns F_e , which i s the

es t imate of F ,
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33 % Fval_e , which i s the es t imate of Fval , and Ftes t_e ,
which i s

34 % the es t imate of F t e s t .
35 %
36 % See a l so NEURALNETWORK, MAKEDATA, FIRSTORDERESTIMATION
37

38 % Anders Fougner , anderfo@stud . ntnu . no
39 % $Revis ion : 2.0 $Date : 2007/05/20 22:13:00 $
40

41 %% Est imat ion 2nd order
42 % Performing l e a s t−squares e s t imat ion fo r each of N

s i g n a l s
43

44 % Adjust X
45 X = [ ones (1 , Tdata ) ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0

parameters
46 X = [X ; Xdata ] ;
47 % The for−loop goes on l i k e t h i s :
48 % X = [X ; ( Xdata (1 :N, 1 : T) .∗ Xdata (1 :N, 1 : T) ) ] ;
49 % X = [X ; ( Xdata (1 :N−1 ,1:T) .∗ Xdata (2 :N, 1 : T) ) ] ;
50 % X = [X ; ( Xdata (1 :N−2 ,1:T) .∗ Xdata (3 :N, 1 : T) ) ] ;
51 % . . .
52 % X = [X ; ( Xdata (1 :1 ,1 :T) .∗ Xdata (N:N, 1 : T) ) ] ;
53 for k=N:−1:1
54 X = [X ; ( Xdata (1 : k , 1 : Tdata ) .∗ Xdata (N−k+1:N, 1 : Tdata ) ) ] ;
55 end
56

57 %Cal cu la t e the opt imal W
58 W = X ’ \ Fdata ’ ;
59

60 % Cal cu la t e F_e (X) , the es t imate of F( x )
61 F_e = W’ ∗X ;
62

63 %% Simulate using v a l i d a t i o n data
64 % Adjust Xval in the same way as X was ad jus ted
65 Xval = [ ones (1 , Tval ) ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0

parameters
66 Xval = [ Xval ; Xvaldata ] ;
67 for k=N:−1:1
68 Xval = [ Xval ; ( Xvaldata (1 : k , 1 : Tval ) .∗ Xvaldata (N−k+1:N

, 1 : Tval ) ) ] ;
69 end
70
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71 % Cal cu la t e Fval_e (X) , the es t imate of Fval (X)
72 Fval_e = W’ ∗ Xval ;
73

74 %% Simulate using t e s t data
75 % Adjust X t e s t in the same way as X was ad jus ted
76 X t e s t = [ ones (1 , T t e s t ) ] ; % add ’ ones ’ f o r c a l c u l a t i n g W_0

parameters
77 X t e s t = [ X t e s t ; X te s tda ta ] ;
78 for k=N:−1:1
79 X t e s t = [ X t e s t ; ( X te s tda ta (1 : k , 1 : T t e s t ) .∗ Xte s tda ta (N−k

+1:N, 1 : T t e s t ) ) ] ;
80 end
81

82 % Cal cu la t e F t e s t _e (X) , the es t imate of F t e s t (X)
83 F t e s t _e = W’ ∗ X t e s t ;
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Appendix A.3 neuralNetwork.m

1 function [ F_e , Fval_e , F t e s t _e ] = neuralNetwork ( Tdata , Tval ,
T tes t , Nx , Nf , Xdata , Fdata , Xvaldata , Fvaldata , TfChoice ,
HiddenNodes , Xtes tdata , F t e s tda t a )

2 % FIRSTORDERESTIMATION Uses neura l network theory to
f ind a r e l a t i o n

3 % between a s i g n a l matr ix X ( fo r N s i g n a l s and T time
s t ep s ) and a func t ion

4 % matrix F .
5 % Then i t generates an es t imate F_e of the func t ion

matr ix F , us ing the
6 % neural net .
7 %
8 % Fina l l y , the func t ion re tu rns F_e , which i s the

es t imate of F , and
9 % according r e s u l t s f o r v a l i d a t i o n and t e s t s e t s .

10 %
11 %
12 % See a l so MAKEDATA, FIRSTORDERESTIMATION ,

SECONDORDERESTIMATION
13

14 % Anders Fougner , anderfo@stud . ntnu . no
15 % $Revis ion : 2.0 $Date : 2007/05/20 22:13:00 $
16

17

18 % " Normal izat ion / s t anda rd i za t i on " of output data
19 [ Fdata2 , FdataS ] = mapminmax( Fdata ) ;
20 [ Fvaldata2 , FvaldataS ] = mapminmax( Fva ldata ) ;
21 [ Ftes tdata2 , F te s tda taS ] = mapminmax( F t e s tda t a ) ;
22

23 % Choice of t r a n s f e r func t ion in the nodes/ synapses of
the NN

24 Tfs (1 : HiddenNodes , 1 : Nf ) = { TfChoice } ; % t a n s i g i s d e f a u l t
25 disp ([ ’ Using ’ num2str ( HiddenNodes ) ’ nodes in the hidden

l a y e r . ’ ] ) ;
26

27 % % Adjust X to 2nd degree
28 % X = Xdata ;
29 % fo r k=Nx:−1:1
30 % X = [X ; ( Xdata (1 : k , 1 : Tdata ) .∗ Xdata (Nx−k+1:Nx , 1 : Tdata

) ) ] ;
31 % end
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32 % % Adjust Xval in the same way as X was ad jus ted
33 % Xval = Xvaldata ;
34 % fo r k=Nx:−1:1
35 % Xval = [ Xval ; ( Xvaldata (1 : k , 1 : Tval ) .∗ Xvaldata (Nx−k

+1:Nx , 1 : Tval ) ) ] ;
36 % end
37 % % Adjust X t e s t in the same way as X was ad jus ted
38 % X t e s t = Xte s tda ta ;
39 % fo r k=Nx:−1:1
40 % X t e s t = [ X t e s t ; ( X te s tda ta (1 : k , 1 : T t e s t ) .∗ Xte s tda ta (

Nx−k+1:Nx , 1 : T t e s t ) ) ] ;
41 % end
42

43 % Generate a neura l network
44 net = newff (minmax( Xdata ) , [ HiddenNodes Nf ] , T f s ) ;
45

46 % Make v a l i d a t i o n and t e s t i n g s t r u c t u r e s
47 VV . P = Xvaldata ;
48 VV . T = Fvaldata2 ;
49 TV . P = Xtes tda ta ;
50 TV . T = Ftes tda ta2 ;
51

52 % Train the neura l network , but do not p r i n t e r ro r
messages

53 net . trainParam . show = NaN;
54 [ net , t r ]=t r a i n ( net , Xdata , Fdata2 , [ ] , [ ] , VV , TV) ;
55

56 % Simulate Xdata and Xvaldata in the NN to es t imate F and
Fval

57 F_e = sim ( net , Xdata ) ;
58 Fval_e = sim ( net , Xvaldata ) ;
59 F t e s t _e = sim ( net , X te s tda ta ) ;
60

61 % " Denormal izat ion / u n i t i z a t i o n " of output data
62 F_e = mapminmax( ’ r eve r se ’ , F_e , FdataS ) ;
63 Fval_e = mapminmax( ’ r eve r se ’ , Fval_e , FvaldataS ) ;
64 F t e s t _e = mapminmax( ’ r eve r se ’ , F tes t_e , F te s tda taS ) ;
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Appendix B DVD

Here is a short explanation of what is put on the DVD.

B.1 Report Contains the Master’s thesis as a PDF file, and a subfolder with
LATEX source code.

B.2 References Contains most of the references as PDF files, and the BibTEX file
bibliography.bib.

B.3 LaboratoryWork Contains all files from the laboratory, divided in five parts.
The subfolders are arranged cronologically:

B.3.1 RecordingProcess Contains the marker set definition used for au-
tolabels in VICON.

B.3.2 C3DtoMatlab Contains methods for importing data from VICON
C3D files to a Matlab .mat file, it contains also alldata.mat with
all recorded data from the laboratory. The C3D files are thus not
included.

B.3.3 GenerateInputs Contains methods for calculating vectors and an-
gles from the 3D coordinates, a file with the calculated vectors and
angles included, and methods for plotting them.

B.3.4 EMGprocessing Contains methods and SimuLink diagrams for pro-
cessing EMG signals, files with all the processed signals and methods
for plotting the results.

B.3.5 PrepareForPatternRecognition Contains methods for calculating
the zero-crossing feature and preparing all data sets for the pattern
recognition. It contains also prepared data files for all test persons.

B.3.6 PatternRecognition Contains methods for pattern recognition and
the results of the different methods applied. It contains also the re-
sults of the pattern recognition and methods for plotting the results.

All plots are available in pdf, eps and png format in subfolders with the
name /gfx/.

Regarding the data sets: Most of the file names are self-explaining, for
example containing the code of the test person, which recording set (v1,
v2 or v3), which training-validation-test order (123, 312 etc) and/or how
many nodes were used in the MLP network.


