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Problem Description

At the Hammerfest LNG plant, a huge slug catcher is installed for receiving gas, condensate and
water from the Snøhvit field pipeline. The purpose of the slug catcher is to separate gas,
condensate and water and to buffer varying gas and liquid rates from the pipeline. The gas flow
from the slug catcher should be as constant and predictable as possible for optimal operation of
the LNG plant. The sizing of the slug catcher is based on handling the liquid flow from a desired
fast start-up of production after a set of selected scenarios with low or no production. The
question raised in this exercise is whether the slug catcher size could have been reduced by
applying nonlinear model predictive control (NMPC) using some combination of input. Possible
manipulated variables include: the subsea choke (at the pipeline inlet), the topside choke (at the
pipeline outlet) and the gas rate out of the separator. A simple feedback scheme for liquid flow
control was developed, implemented and tested in a project. The results were promising, but a
potential for more advanced control was identified.

1. Literature review on MPC with particular focus on NMPC.
2. Implement an NMPC algorithm in the in-house Statoil MPC tool, SEPTIC. Also test it on an
example to demonstrate the implemented algorithm’s performance.
3. Develop an interface between SEPTIC and OLGA
4. Implement an NMPC, using OLGA for predictions and as true process (no model errors) and test
it on selected cases.
5. Consider the strengths and weaknesses of different combinations of manipulated variables and
controlled variables.
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Supervisor: Ole Morten Aamo, ITK





Summary

PIPELINES with multiphase flow will exhibit large and highly nonlinear liquid rates dur-
ing transients caused by changes in production rate. This requires either a large separa-

tor (slug catcher) downstream, capable of handling all disturbances, or, some sort of control
of the rate change in order to ensure that the downstream processing equipment can cope
with the disturbances. In this report, it is proposed to use smart liquid control to optimally
control the production during rate changes. The term smart liquid control was coined to
describe the use of nonlinear model predictive control (NMPC) and a nonlinear pipeline
model to control liquid levels.

The pipeline from the Snøhvit field to the Hammerfest LNG plant was used as a test case
on which to implement smart liquid control. The technique was proved using a simplified
OLGA pipeline model for both predictions and as process, i.e. perfect model. Good results
were shown, especially when compared to manual control. Smart liquid control therefore
presents a possibility to reduce separator size for new projects. Another highly interesting
use of smart liquid control is to optimize the use of separator buffer capacity in order to
maximize production.

The NMPC method used in this report, a single shooting multistep quasi-Newton method,
was elaborated on in a literature review chapter. Also an implementation of the method
was made and described in the context of NMPC. The implementation of the algorithm
was made in the in-house STATOIL MPC-tool, SEPTIC. In order to assess the performance
of the algorithm, it was tested on a small continuously stirred tank reactor system and the
results reported and discussed.
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Chapter 1

Introduction

THE problem addressed in this report is liquid handling during production rate transients
in pipelines carrying multiphase flow. During the transient, liquid rates can become

much larger than the nominal rates, and will in general exhibit nonlinear responses to the
rate change. The cause of the variation in liquid rates is a phenomenon called entrainment.
This is when one fluid is moved by another. In the pipeline investigated, water and oil are
entrained by the gas. When the gas velocity is low during periods with low production,
the ability of the gas to carry liquid along is reduced. Thus, liquid is accumulated in the
pipeline until a new equilibrium is reached. The liquid handling challenge arises when
the production rate increases, resulting in greater entrainment because of the increased gas
velocity. This causes the accumulated surplus of liquid to be discharged from the pipeline,
transiently increasing liquid rates.

The goal of this work is to design a control system that optimizes the use of available
separator volume during such pipeline transients. The utilization of separator volume is
interesting for two reasons. Firstly, because of the large separator volumes required if no
control is used. Large separators require both large areas for construction as well as a
large initial investment. From an economic point of view, large expenses before revenues
are generated are unfortunate for the net present value. Reducing the size and cost of the
separator thus presents a possible increase of the profitability of a development. Secondly,
building a separator large enough to handle the liquid flows without control are often only
an option onshore. Offshore, the price of building a large separator is much greater as space
is a limited resource. Here, using the available separator volume effectively means a direct
increase in production, thus also increasing profits.

Due to the nonlinear liquid rate responses, a nonlinear model predictive control scheme
(NMPC) is used for liquid control. An OLGA model is used as pipeline model. OLGA is a
dynamic multiphase flow simulator (Scandpower, 2006). The exact same model is used for
both for predictions as well as process, i.e. zero plant-model mismatch. Although artificial,
the setup with perfect model demonstrates the best performance that can be expected. Model
error will in general reduce the performance achieved, and must be addressed in order to
obtain good control.
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Smart liquid control is introduced as a name for using NMPC and a nonlinear pipeline
model for liquid control and tested using different controller setups. One controller setup to
be tested introduces a choke upstream the separator as an extra input variable. The effect of
the extra input will be discussed. The NMPC will be implemented in STATOIL’s in-house
MPC tool, SEPTIC. SEPTIC will be enhanced with an implementation of a single shooting
multistep quasi-Newton method (SSMQN) algorithm based on the paper by Oliveira and
Biegler (1995).

A model of the Snøhvit pipeline was provided by STATOIL and will be used for testing
smart liquid control. The pipeline transports gas, oil and water from the Snøhvit field to
the Hammerfest LNG plant. Flow assurance for this system and separator dimensioning
is addressed an internal STATOIL report (Knutson, 2005) and in one engineering report
by BMH Eagleton (Eagleton, 2001). Two cases are in these reports identified as the most
difficult cases for liquid handling: pipeline rate ramp-up and pipeline start-up. These two
cases will form the basis for the tests performed. Similar tests using PI-controllers for liquid
control of the Snøhvit pipeline was performed in Torpe (2006). Here, NMPC was identified
as a possibility for improving control.

In the following, a brief description of the different chapters for quick reference. Chapters 2
and 3 as well as the implementation of the SSMQN method are written in collaboration
with Patrick Meum, who has used the same method to perform reservoir optimization on a
reservoir model in ECLIPSE. The interested reader are referred to Meum (2007).

• Chapter 2 gives a brief introduction to MPC and NMPC together with references to
sources with additional information.

• Chapter 3 narrows the perspective to the NMPC algorithm used in this report, a single
shooting multistep quasi-Newton method. The chapter starts by giving a short historic
introduction, before describing the steps in the algorithm. It concludes by discussing
the implementation developed for SEPTIC and shows the performance of the method
on a continuously stirred tank reactor system.

• Chapter 4 is a description of Hammerfest LNG, which is used as a test system for
implementation of smart liquid control.

• Chapter 5 contains a short review of multiphase flow, intended to give the unfamiliar
reader the background needed to assess the results given later in the report.

• Chapter 6 describes the problem in greater detail, as well as the setup used for simu-
lations. Some practical aspects of NMPC implementation is discussed in the context
of the specific setups.

• Chapter 7 give the results obtained using smart liquid control. The two scenarios sim-
ulated are described, and results given for different sizes of separator size. Also, the
different controller setups (described in Chapter 6) are tested and compared. Finally,
smart liquid control is compared to manual control.

• Chapter 8 discusses the different control setups and the benefits of introducing a
topside choke. Also, some conclusions on the subject of when to use smart liquid
control are drawn based on results obtained.
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• Chapter 9 contains the conclusion and summarizes the results found in this report.

• Chapter 10 proposes several issues to be addressed in future work.

• Appendix A contains a description of the library developed for communication be-
tween SEPTIC and OLGA
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Chapter 2

Model Predictive Control: A Short
Survey

Model predictive control (MPC) is one of today’s most commonly used techniques within
advanced control. Although MPC is the widely used term and by now the conventional
name of this technique, one can also find the term receding horizon control (RHC) used on
occasions in older literature. For simplicity this report will mostly refer to the former term,
though RHC will be used when found appropriate. Mayne, Rawlings, Rao and Stockaert
(2000) describes MPC as:

a form of control in which the current control action is obtained by solving
on-line, at each sampling instant, a finite horizon open-loop optimal control
problem.

By repeatedly solving the open-loop control sequence at each time step, the controller has an
inherently closed-loop effect. As the new control sequence is calculated from present state
of the system1, a stabilizing feedback control can be obtained. This is where this technique
has its main difference from other pre-computed, optimal control laws. The control law is
calculated for a given horizon, Tc, and the dynamic behaviour of the system is predicted for
a horizon Tp, where Tc ≤ Tp. As the controller moves forward in time, so does the horizon
(hence the mentioned term receding horizon control). The basic idea of this is illustrated in
Figure 2.1. A system is sought to be controlled at a set point, given by r(t). The controller
calculates an optimal input sequence, parameterized as a piecewise constant function of
time, for the control horizon. As time progresses all horizons are moved ahead as well, so
they slide along by one sampling interval at each step.

The MPC is now described in a more formal, mathematical formulation, following notation
from Allgöwer, Findeisen and Nagy (2004). Consider a general class of continuous time
systems described by some differential equation

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (2.1)

1In case of the system state not being fully measured, but estimated in an observer, the best estimate available
is used as the basis for the calculation
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Time

futurepast

t t+Tc t+Tp

set point
r(t)

y(t)

u(t)

control horizon Tc

prediction horizon Tp

closed-loop control

open loop input 
u*(t)

predicted system response

Figure 2.1: Principle of MPC

which is subject to input and state constraints of the form:

u(t) ∈ U, ∀ t ≥ t0, (2.2)

x(t) ∈ X, ∀ t ≥ t0. (2.3)

The inputs are given in the vector u(t) ∈ Rm and x(t) ∈ Rn denote the state vector,
and the sets U and X are assumed to satisfy necessary topological properties. The optimal
open-loop control is given by solving problem at every time instant:

min
ū(·)

J(x(t), ū(·)) =
∫ t+Tp

t
F (x̄(τ), ū(τ))dτ (2.4a)

subject to

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(t) = x(t) (2.4b)

ū(τ) ∈ U, ∀ τ ∈ [t, t+ Tc] (2.4c)

ū(τ) = ū(t+ Tc), ∀ τ ∈ [t+ Tc, t+ Tp] (2.4d)

x̄(τ) ∈ X, ∀ τ ∈ [t, t+ Tp], (2.4e)

where Tp and Tc refers to the control horizons already introduced above. The ū denotes
internal controller variables, and x̄ refers to the system response to the input vector ū, i.e. the
solutions to (2.4b). The cost functional J is a sum of performance costs, F (·), at each time
step. The cost function can in principle take any shape or form, but often arises from some
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economical consideration on the systems operational point (xop, uop) through a quadratic
form:

F (x, u) = (x− xop)Q(x− xop) + (u− uop)R(u− uop). (2.5)

Thus, the cost is given as a result of deviations from the operational set point, specified by
positive definite weighting matrices Q and R. Often one can also find additional terms in F
which penalize movements of the inputs where that is appropriate.

We define the solution to (2.4) as ū∗(t;x(t)), where the first set of inputs are applied to the
system:

u(t) = ū∗(t0;x0) = ū∗0. (2.6)

The optimal cost yielded by ū∗ is then a function of the state x(t) alone. This optimal cost
is often referred to as the value function

V (x) = J(x(t), ū∗(t;x(t)). (2.7)

This section gives a short review of selected portions of the existing theory available today
on the topic of model predictive control. It does by no means set out to include every
aspect of the subject, as that would be far out of scope for this report. This review relies
heavily on the reviews made by Mayne et al. (2000), Qin and Badgwell (2003), Morari and
Lee (1999), Allgöwer et al. (2004) and the book by Maciejowski (2002), and the reader
should assume to find all that is mentioned here in these excellent papers. Citations are
made in the largest extent possible, while simultaneously trying to maintain some degree
of readability. The interested reader should in any case seek to investigate these surveys
for a more comprehensive picture. Also recommended is the book by Allgöwer and Zheng
(2000). Now, we will first focus on the underlying fundamentals which make up MPC by
outlining the historical development from linear theory. Then we expand our horizon and
move the attention the work made on nonlinear MPC (NMPC), arising new issues on i.e.
solution time, algorithm design and feasibility considerations to name a few. The chapter
ends with some discussion on the topics of stability and robustness for MPC in general and
NMPC in particular.

2.1 The History and Evolution of MPC

Predictive control is the one general class of advanced control methodologies to have a
significant impact on the practice in industrial control engineering, Maciejowski (2002)
states. Much of this class is covered by varieties of MPC, though there other subclasses
can be found which share common properties with MPC (e.g. general predictive control).
We will here only consider MPC, without much loss of generality. MPC started out as an
industrial success only, because the advantages of this control were first recognized by the
industrial engineering community alone. It was within the industry that much of the early
work was done on the topic, covering only the analysis necessary to perform satisfactory
performance. Only in the past 20-25 years have MPC gotten the attention it deserves from
academia, which has made important contributions to clarifying the properties of stability
and robustness for predictive control.
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In the following of this subsection we consider a discrete, linear time-invariant (LTI) model

xk+1 = Axk +Buk (2.8a)

yk = Cxk. (2.8b)

2.1.1 Origin of MPC

Though MPC in the strong sense evolved within communities of industrial engineering, it
did in fact evolve from important academic work done in the 1960s on the topic of optimal
control. Mayne et al. (2000) states that MPC links

Hamilton-Jacobi-Bellman theory (Dynamic Programming), which provides suf-
ficient conditions for optimality and a constructive procedure for determining
an optimal feedback controller u = κ(x), and the maximum principle, which
provides necessary conditions of optimality and motivates computational al-
gorithms for the determination of the optimal open-loop control ū∗(·;x) for a
given initial state x. The link is

κ(x) = ū∗0 (2.9)

This represent the ideal case of optimal control. The feedback control is given by the so-
lution to the open-loop control problem, as in (2.4), for every x. Kalman (1960a) made
an important complementary observation to this when showing that optimal control does
not imply stability in the general finite horizon case. He found that stability can be shown,
with some assumptions on the system conditions, for an infinite horizon optimal controller,
known as the Linear Quadratic Regulator (LQR) (Kalman, 1960a,b). The LQR generates
the optimal control sequence from a static state feedback law where the feedback gain is
found via the solution of an Algebraic Riccati Equation (ARE), because the Hamilton-
Jacobi-Bellman equations simplifies to an ordinary differential equation for a LTI system,
the Riccati equation. Stability can be guaranteed by ensuring that the problem objective
function is positive definite through the choices of weighting matrices (Morari and Lee,
1999).

However, the stability properties alone were not enough to make the process industry em-
brace the LQR Qin and Badgwell (2003) reports, listing the following subjects that the
theory failed to address:

• constraints - typically the most economically profitable operating point of a process
lies in an intersection of several input or output constraints;

• process nonlinearities - LQR are based on LTI models;

• model uncertainties - LQR stability guarantees are made on assumptions of a perfect
model;

• performance criterion flexibility - many process units may require to combine several
objectives of different nature.
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To include constraints in the infinite horizon controller, ones again needs to solve (2.9) as
the solution based on ARE was no longer valid. However, computing the solution to the
Hamilton-Jacobi-Bellman equations in the infinite case is a difficult task. From an on-line
perspective this is usually not even close to practical to obtain. In fact, it often can not be
found analytically at all, even in the simplest form, the unconstrained case (Allgöwer et al.,
2004).

The solution to the infinite horizon problem was to redefine it as a receding horizon opti-
mal control problem. Mayne et al. (2000) mentions the work of Kleinman (1970); Thomas
(1975); Kwon and Pearsons (1977) and Kwon, Bruckstein and Kaliath (1983) as important
here, as they all proposed different extensions to a stabilizing receding horizon alternative.
With some variations the all shared a common approach, by introducing various types of ter-
minal constraints. Although, as we will see later on in Section 2.2.3, the concept of adding
a terminal constraint to the problem would show to have large impact on later research, the
stability results of Kleinman, Thomas and Kwon et al. was limited to hold for unconstrained
linear systems only. Hence, they also lacked many of the same properties as the LQR.

2.1.2 Industrial applications

The above listed weaknesses of the LQR were indeed reasons for the lack of its indus-
trial support, but in addition, there have been claimed that the main reason was a cultural
difference represented by LQR and the process industry. Control engineers either had no
exposure to LQR concepts or regarded them as impractical (Qin and Badgwell, 2003). So
the industry developed its own methodology, by including properties such as input/output
constraints and explicit process models from which could be estimated from test data.

In the following the first industrial MPC applications are presented, as presented in Qin and
Badgwell (2003). These represent pioneering work which has influenced later MPCs in one
way or the other.

IDCOM Though Lee and Markus (1967) was the first publication which explained MPC
in the broader sense, Richalet, Rault, Testud and Papon (1976) are the ones credited for
describing the first MPC control application, with their IDCOM (Identification and Com-
mand). IDCOM was described by the authors as a model predictive heuristic control
(MPHC), because a transfer function of the control law was not available. This is due
to the fact that MPC is not a linear controller, since it behaves nonlinear in terms of dealing
with constraints. Even so, the IDCOM is what today is known as a linear MPC, because
of its linear model representation. This was an impulse response model, known as a finite
impulse response (FIR) model. The model had inputs called manipulated variables (MVs),
if adjustable by the controller, and disturbance variables (DVs), if not available for control.
The outputs were termed controlled variables (CVs). The FIR was identified from plant
test data using a parameter estimation algorithm to minimize plant and model outputs. To
calculate the control problem IDCOM used the same algorithm, by noting that control is
the mathematical dual of identification (Qin and Badgwell, 2003). Most importantly, the
IDCOM included what the LQR lacked, an explicit formulation of input and output con-
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straints. These were included in the control calculations by checking for feasibility in all
algorithm iterations.

The contributions by Richalet et al. are important because they proposed an application
that satisfied particular demands of process control. Also, they pointed out the importance
of embedding dynamic control in a control hierarchy to be effective. The significant eco-
nomical benefits lies not in the low level dynamic control by reducing output variations, but
in the above level by dynamically allocation variable set point as close to the operational
constraints as possible. This has since been one of the crucial arguments in favour of MPC
to be chosen as the control application.

DMC Dynamic Matrix Control (DMC) was presented by Cutler and Ramaker (1979,
1980) and was the other algorithm to form the first generation of MPC, together with ID-
COM. DMC computed the optimal inputs as a solution to a least-squares problem, and did
not include constraint handling in the original version. This was taken care of by Prett
and Gillette (1980) which contributed with a modification to the DMC in which constraint
handling was included for absolute input constraints.

The DMC used a linear step response model where the output is described by a weighted
sum of past input changes, i.e. an integral of the impulse response. For multiple outputs
DMC imposed the superposition principle. By utilizing this step response model the pre-
dicted future output changes can be written as a linear combination of future input moves,
given an initial state. This way one can parameterize the computation of the optimal inputs
as relative movement from the initial input, a fact which is still appreciated in MPC today.
Considering the system from (2.8), and the fact that every future output can be written as a
sequence of changes from the current value

uk =∆uk + uk−1

uk+1 =∆uk+1 + uk

=∆uk+1 + ∆uk + uk−1

uk+2 =∆uk+2 + uk+1

=∆uk+2 + ∆uk+1 + ∆uk + uk−1

...

uk+Hu−1 =∆uk+Hu−1 + uk+Hu−2

=∆uk+Hu−1 + ∆uk+Hu−2

· · ·+ ∆uk+1 + ∆uk + uk−1,
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the future outputs can be written over the prediction horizon Hp as

xk+1 = Axk +B(uk−1 + ∆uk)
xk+2 = Axk+1 +B(uk + ∆uk+1)

= A2xk + (AB +B)uk−1 + (AB +B)∆uk +B∆uk+1

...

xk+Hp = AHpxk + (AHp−1B + . . .+AB +B)∆uk

. . .+ (AHp−1B + . . .+AB +B)∆uk+1

. . .+ (AHp−HuB + . . .+AB +B)∆uk+Hu−1

+ (AHp−1B + . . .+AB +B)uk+1.

Now we can stack the states and input changes over the prediction horizon in two vectors
X (k) and ∆U(k) respectively, and write it more compactly as

X (k) = ψxk + υuk−1 + θ∆U(k),

where

ψ =


A
A2

...
AHp

 , υ =


B
AB

...∑Hp−1
i=0 AiB

 ,

θ =


B · · · 0

AB +B · · · 0
...

. . .
...∑Hp−1

i=0 AiB · · ·
∑Hp−Hu

i=0 AiB

 .

The linear combination ties future inputs and outputs together through a so-called Dynamic
Matrix. The dynamic matrix is a sensitivity matrix, S, as will used later on in this report,
which expresses the influence from every input to every output in the discrete parameteriza-
tion over the prediction horizon. This matrix founds the basis for the least-squares problem
definition, as the solution is given by (Maciejowski, 2002)

∆U = S\ [Xref −X ] ,

where Xref depicts the control target.

Morari and Lee (1999) states that DMC had a tremendous impact on industry, estimating
that probably every major oil company in world has a DMC inspired application installed in
most new installations or revamps. But even if DMC, and IDCOM, did get the recognition
LQR failed to receive in process industry, there still was some weaknesses in their constraint
handling.
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QDMC The breakthrough in constraint handling came when García and Morshedi (1986)
showed how the DMC objective could be written as a standard quadratic program (QP), by
introducing a quadratic cost function similar to (2.5). The QP provides efficient constraint
handling in the control algorithm through the performance objective, both for inputs and
outputs. As in standard DMC the dynamic matrix plays a important role, as the process
constraints can be related directly to the input moves, re-written from uk to ∆uk.

The beauty behind QDMC lays in the fact that a QP is a simple optimization problem
to solve in the convex case. Since the Hessian of the QP is positive definite for linear
plants, QDMC could easily calculate optimal control inputs using standard commercial
optimization codes. This allowed the QDMC scheme to grow in model size and complexity,
since not much time was spent on calculations.

Though several other industrial MPC applications have been proposed after the QDMC,
this report will end this part of the review here. The interested reader is referred to Qin
and Badgwells excellent survey on the topic to learn more about the third and the fourth
generation of MPC. The next subsection will take a look at MPC from a nonlinear perspec-
tive, as this is where the interest lays currently. The QDMC seems like the natural place to
stop, as it has proven to be the basis of several attempts to extend the MPC technology to
incorporate nonlinear process models.

2.2 NMPC

This chapter addresses various elements on the topic of NMPC, from a control theoreti-
cal point of view. First possible model representations are presented, then different system
discretizations and solution methods. Stability and robustness will also be given some at-
tention, before ending with some notes on feasibility.

2.2.1 Model

The model is the heart of MPC. Qin and Badgwell (2003) states that, in principle, the
model can take any required mathematical form. Unsurprisingly, a wealth of model for-
mulations are used, although some are more common than others. In Qin and Badgwell
(2003) some of the model forms used in commercial products are listed; finite impulse
response (FIR), velocity FIR, Laplace transfer function, linear state-space, auto-regressive
with exogenous input, Box-Jenkins and multi-model, input-output, first-principle, nonlin-
ear state-space, nonlinear naural net and static nonlinear polynomial. These labels are not
mutually exclusive, nor do they represent an exhaustive list of models that can be used.
This section will look at some different categories in which most models can be sorted. The
classification is based on Meadows and Rawlings (1997) and Rawlings (2000).

Perhaps the most important classification is the divide between linear and nonlinear models.
For linear models, the superposition principle holds. That is, any linear combination of
solutions for the linear system, is in itself also a solution. Powerful tools for the analysis
and control of such systems are available. Nonlinear models will in general have no special
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characteristics, and are perhaps only characterized by not being linear. An introduction to
nonlinear models and nonlinear model identification, is presented in Pearson (1997).

Similarly, models can be classified as either first principles or experimental. First principles
models are based on physical knowledge of the system and are also referred to as physical
models. In general a first principles model will be given as differential equations, either as
ordinary differential equations (ODE) or as differential algebraic equations (DAE). Experi-
mental models, also called black-box models, are used to obtain models that fit the process
data sets. An experimental model will only contain the characteristics that were exhibited
by the system during the identification process. Hence, the data used for model identifica-
tion should be carefully selected, as the predictive ability of an experimental model is small
outside the range of data that was used to identify it. Common experimental model formu-
lations include step response and auto regressive external input models. The use of neural
networks as models in MPC is an active area of research. The interested reader can consult
Su and McAvoy (1997) with references. As a first principles model are based on physical
insight into the system, it can be expected to describe system dynamics more completely
than empirical models (Pearson, 1997). It should be mentioned that there exist model rep-
resentations that tries to combine both experimental and first principles, so-called hybrid
models. These can be thought of as experimental models based on fundamental physical
laws of the underlying process, which is tuned with respect to model parameters to be in
accordance to plant data.

Other classifications are possible. Continuous time or discrete time, distributed param-
eters or lumped parameters, deterministic or stochastic, input-output or state-space and
frequency domain or time domain. Although these classifications can be used to further
categorize models, they are less important than the first two already discussed.

2.2.2 Solution methods

There are three main strategies for solving the NMPC optimization problem (Allgöwer
et al., 2004; Strand, 1991; Tenny, Wright and Rawlings, 2004; Barclay, Gill and Rosen,
1997). These can be categorized as either sequential or simultaneous approaches (Biegler,
2000).

If the behaviour of a system is completely determined by its initial values it is called and
initial value problem (IVP). In order to determine the states in a time interval, [t0, t1] only
one simulation is necessary (single shot). This approach is also described as single shooting,
sequential approach or feasible path approach and are more thoroughly described in Oliveira
and Biegler (1995); Silva and Oliveira (2002); Tenny et al. (2004). A fuller description of
single shooting is given in Section 3.

Multiple shooting differs in that the time interval is divided into multiple intervals. In each
of these subintervals an IVP is solved independently. These IVPs must be solved itera-
tively with updated initial values that converge to the end value in the preceding interval.
Multiple shooting is therefore also coined as a sequential approach. Diehl, Bock, Schlöder,
Findeisen, Nagy and Allgöwer (2002) lists several advantages with multiple shooting:
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• As a simultaneous strategy, it allows to exploit solution information in controls, states
and derivatives in subsequent optimization problems by suitable embedding tech-
niques.

• Efficient state-of-the-art DAE solvers are employed to calculate the function values
and derivatives quickly and accurately.

• Since the integrations are decoupled on different multiple shooting intervals, the
method is well suited for parallel computation.

• The approach allows a natural treatment of control and path constraints as well as
boundary conditions.

The third option is to solve the differential equations and the optimization problem simulta-
neously, thus the term simultaneous approach. The differential equations are discretized and
enter the optimization problem as equality constraints. The manner in which the differential
equations are discretized is important. Silva and Oliveira (2002) lists weighted residuals,
orthogonal collocation and finite differences schemes as possible techniques for discretiza-
tion/parameterization. Of these, collocation is the technique most often referenced. Barclay
et al. (1997) explains collocation as “a form of multiple shooting in which an appropriate
implicit Runge-Kutta (IRK) formula is used to solve the initial-value problem”.

2.2.3 Stability

Before theory on stability and robustness is presented, it is appropriate to define what the
terms refers to. Skogestad and Postlethwaite (2005) mentions two types of stability —
nominal stability (NS) and robust stability (RS). If the system is stable for the nominal
plant, it is said to be nominally stable. Similarly, if the system remains stable for all plants
in the uncertainty set, it is said to be robustly stable. In this report, stability is taken to mean
nominal stability, while robustness is taken to mean robust stability.

Stability of NMPC is becoming a mature area of research, if not as mature as the stability
of linear MPC. A good starting point to NMPC stability literature is provided in Mayne
et al. (2000) and somewhat simpler stated in Allgöwer et al. (2004), the two of which this
discussion is based. The literature is focused on the stabilization of a steady state.

Due to constraints, even linear model predictive control will result in a nonlinear control
law, requiring nonlinear tools for the study of stability. For almost all stability analysis,
Lyapunov theory using the value function (recalling (2.7)) is therefore used. Mayne et al.
(2000) starts the stability analysis by listing several modifications to the MPC scheme such
that stability can be guaranteed.

Since MPC solves a open loop problem over a horizon, the easiest method of stabilization
to grasp is to extend the horizon infinitely. Due to Bellmanns principle of optimality, the
optimal trajectory in the next sample will be the remaining trajectory of the previous sample.
Since an infinite horizon input trajectory in general will be impossible to compute in finite
time, several approximations exists that ensures closed loop stability with finite horizon.
One can, without loss of generality, assume that the system is to be stabilized at the origin.
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Terminal equality constraint ensures stability by requiring that all states should be set to
zero at the end of the prediction horizon and the control inputs used to maintain the system
at the origin should also be zero,

x̄(t+ Tp) = 0. (2.10)

The obvious disadvantage of a terminal constraint is that it will force the system to a se-
lected state in finite time, heavily decreasing the solution space of the problem. Also, there
is in addition the extra computational burden of finding an exact satisfaction to the imposed
equality, as this transforms the problem to a boundary-value problem (BVP). Terminal cost
function uses no exact terminal constraint. Instead, a terminal cost is used to ensure the
stability. Such a terminal cost can unfortunately only be obtained generally for linear un-
constrained or linear constrained stable systems. The terminal costs can in these cases
be computed by solving the Lyapunov equation, see for example Maciejowski (2002). A
method related to terminal equality constraints is the terminal region constraint where the
states are required to lie within a terminal set at the end of the prediction horizon,

x̄(t+ Tp) ∈ Ω. (2.11)

This terminal region, Ω, are defined by calculating a controller that drives all states within
the terminal set exponentially fast to the origin. Finally, it is possible to combine terminal
set with terminal cost. A cost E is added to (2.4a) for the terminal state, giving

J(x(t), ū(·)) =
∫ t+Tp

t
F (x̄(τ), ū(τ))dτ + E(x̄(t+ Tp)). (2.12)

If the terminal cost equals the residual of weights for all t > Tp, the solution of (2.4)
extended with (2.11) and (2.12) will, in effect, become the infinite horizon solution. The
closer the terminal cost is to the infinite horizon weight, the more of the benefits gained by
infinite horizon are realized. A deduction of an infinite horizon scheme is given in Chen
and Allgöwer (1998a) and Chen and Allgöwer (1998b).

Allgöwer et al. (2004) gives the following theorem ensuring stability of the NMPC, after
modifying the original problem (2.4) with (2.11) and (2.12):
Theorem 2.1. Assume that:

1. U ⊂ Rm is compact,X ⊆ Rn is connected and the origin is contained in the interior
of U ×X .

2. The vector field f : Rn × Rm → Rn is continuous in u and locally Lipschitz in x
and satisfies f(0, 0) = 0.

3. F : Rn × U → R is continuous in all arguments with F (0, 0) = 0 and F (x, u) >
0∀(x, u) ∈ Rn × U\0, 0.

4. The terminal penalty E : Ω→ R is continuous with E(0) = 0 and that the terminal
region Ω is given by Ω := x ∈ X|E(x) ≤ e1 for some e1 > 0 such that Ω ⊂ X .

5. There exists a continuous local control law u = k(x) such that k(x) ∈ U for all
x ∈ Ω and dE

dx f(x, k(x)) + F (x, k(x)) ≤ 0,∀x ∈ Ω.
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6. The NMPC open-loop optimal control problem has a feasible solution for t = 0.
Then for any sampling time 0 < δ ≤ Tp the nominal closed-loop system given by the
problem (2.4) extended with (2.11) and (2.12), and the input (2.6), is asymptotically
stable and the region of attraction R is given by the set of states for which the open-
loop optimal control problem has a feasible solution.

Mayne et al. (2000) concludes the discussion about stability with the conclusion that a
combination of terminal set and terminal cost seems to be the best way to ensure both
stability and good performance.

2.2.4 Robustness

When NMPC is applied in practice, it is unrealistic to assume that the model used for predic-
tion will accurately match the process and similarly that no un-modelled disturbances enters
the process. Obviously a successful implementation of NMPC relies on being able to cope
with these issues. The MPC formulation has an inherent robustness, due to its similarity
with optimal control. (Allgöwer et al., 2004) According to Qin and Badgwell (2003) most
commercial MPC products relies on this robustness and brute force evaluation of model
mismatch to ensure robustness. Qin and Badgwell (2003) calls for MPC formulations that
ensure robust stability. A survey of different schemes to ensure robust stability can be found
in Allgöwer et al. (2004) and Mayne et al. (2000) which is also the basis for this discussion.

Three approaches to achieve robust stability are outlined. The first of these is to solve an
open-loop min-max problem, which minimizes the maximum objective function value for
a set of uncertainties. The input sequence must be feasible for every realization in the set
of uncertainties, possibly giving feasibility problems or conservative solutions. H∞ MPC
is another approach, using H∞ control to achieve robustness. Large computational cost and
the need for a global optimum are drawbacks for this approach. The third approach is to
use the parameters of a feedback controller as optimization variables instead of using inputs
directly. Because a feedback controller is used, disturbances are rejected also between
sampling times, reducing the need for conservative control.

Mayne et al. (2000) concludes the discussion of robustness by stating that current robustness
schemes must be regarded as conceptual rather than practical.

2.2.5 Feasibility

Model based predictive control is based on finding a solution to the optimization prob-
lem (2.4). Feasibility problems arise when no solution to this problem can be found. Nor-
mally, feasibility problems are solved by relaxing process constraints. Process constraints
are often output constraints that define safety constraints, process equipment limitation or
product specifications. Such constrains are by nature different from input constraints that
are physical constrains imposed by the actuator. Such constrains can be maximum power,
maximum opening etc. Thus, input constraints can normally not be violated.
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Different ways of imposing soft constraints are possible. Oliveira and Biegler (1994) advo-
cates for the use of exact penalty functions. Hence, process constraints are only violated if
no other feasible solution exists. It is also possible to penalize constraints relaxation using
a normal quadratic penalty. A quadratic penalty implies that, if the optimal operation is on
the constraint, a small violation of the constraint will be allowed. This violation will be
reduced as the penalty is increased. However, as long as the penalty is finite, the violation
will also be finite.

When discussing feasibility of MPC, there is one additional type of constraints that needs
to be considered, namely model constraints. Naturally, these constraints cannot be relaxed.
For a linear system, the model constraints can be solved exactly and simultaneously with
the optimization problem. In general, this will not be possible for nonlinear models. A
discussion of how nonlinear equalities enters the optimization can be found in Section 2.2.2.
A short discussion of the different solution methods impact on the feasibility of the model
follows.

Single shooting enjoys the advantage that the model equations are satisfied along the whole
prediction horizon. Thus, each iterate will be a feasible albeit suboptimal solution of the
optimization problem. Multiple shooting and collocation allows iterations, inconsistent with
the system dynamics. (Tenny et al., 2004) Thus, the solution cannot be guaranteed feasible
until convergence is achieved.

This concludes the chapter on MPC theory. From a focus on methodological overview and
important properties such as stability and robustness, the following chapter will present a
dedicated NMPC application, derived from a SQP principle.
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Chapter 3

A multistep quasi-Newton method

This chapter will focus on the method developed in this report, a single shooting, multi-
step, quasi-Newton method (SSMQN). The first section contains the motivation for using
NMPC along with some background on the chosen method. A detailed description of the
single shooting multistep quasi-Newton method follows in the second section, while the
implementation used for this report is described in the third section. Finally, an example
used extensively in the development of the SSMQN — NMPC used on a CSTR system, is
presented.

3.1 Background and motivation

When the model used for predictions in an MPC application is changed from a linear model
to a nonlinear model, the optimization problem to be solved online changes from a QP (or
LP if a linear objective function is used) to a NLP1. While QP’s are solved fast and re-
liably with standard QP solvers, algorithms for solving NLP’s are much more an area of
research. In this report, the NLP will be solved using a single shooting multistep quasi-
Newton method. The method was described by Li and Biegler (1989) extending the previ-
ous single-step method by Li, Biegler, Economou and Morari (1990). An algorithm very
similar to the one used in this report can be found in Oliveira and Biegler (1995) where
more general objective functions can be accommodated. A linearized input output model is
obtained from a black box nonlinear model around the nominal input sequence found at the
previous sample. A search direction is found by formulating a QP sub problem using the
linearized model. In order to avoid algorithm divergence, a linesearch is performed along
the calculated search direction, ensuring descent in the objective function. The solution
found is checked against a convergence criterion, and, if not satisfactory, set as nominal
input trajectory and the procedure repeated. All in all, the algorithm is a SQP algorithm
especially adapted to the NLP’s generated by a NMPC.

Single shooting has some known stability and robustness issues (Barclay et al., 1997;
Biegler, 2000). If the system is locally unstable, the states can diverge, giving immedi-

1NLP is a commonly used acronym for nonlinear programming
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ate failure. It can also be difficult to find input trajectories with bounded outputs except
very close to the optimal trajectory making single shooting unsuitable as an optimization
strategy. Despite these problems, single shooting has been reported to successfully control
some nonlinear systems, e.g. batch processes in Silva and Oliveira (2002).

3.2 Algorithm description

3.2.1 Outline of algorithm

The following outline of the algorithm is based on the algorithm described in Oliveira and
Biegler (1995)

1. Set QP sub problem iteration counter to zero.

2. Compute input sensitivities for the nominal input trajectory.

3. Solve the QP sub problem with the linearized model to find a search direction

4. Employ a line search algorithm to determine a suitable step size along the search
direction.

5. If the solution found satisfies some convergence criteria, the first input of the com-
puted input trajectory given to the controlled system, and the new input trajectory
shifted one sample and set as the nominal input trajectory.

6. If the solution fails to satisfy some convergence criteria, the QP sub problem itera-
tion counter is checked, and if less than the iteration limit, it is incremented and the
algorithm jumps to Step 2. If the maximum iteration limit is reached, the algorithm
is stopped and the best input trajectory found returned.

The following subsections will describe some of these steps in greater detail. It can be
practical to return to this algorithm outline to keep the right perspective.

3.2.2 Input sensitivities

Step 2 of the algorithm is to linearize the model by computing sensitivities. Depending on
the level of model control, there are several different possibilities as to which sensitivities
should be calculated. Silva and Oliveira (2002) shows figures of two possible methods of
calculating sensitivities. The first method is to calculate the sensitivities from inputs to state,
state to state and state to output. The second is to only calculate input to state and state to
output sensitivities. The drawback of this approach is that the input sensitivity for one input
must be calculated for all subsequent states as opposed to calculating only the sensitivity to
the states in the next sample, and then to use state to state sensitivities. However, it can be
seen as an advantage that it is not necessary to perturbate the states, as this is problematic
for black box models.
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The scheme for calculating sensitivities used in this report, can be seen as a variant of the
second approach. Sensitivities are calculated from input to outputs directly, analogous to
defining the outputs as the state vector x and using a unity measurement sensitivity. Inspired
from Silva and Oliveira (2002) the sensitivities are given in a matrix with elements given by

Sj+1,i =
∂xj+1

∂ui
, j ≥ i, (3.1)

Sj+1,i = 0, else, (3.2)

j ∈ [k, Tp − 1], i ∈ [k, Tc]. (3.3)

The sensitivities calculated are shown in Figure 3.1. As can be seen, the sensitivity from
each input parameter to each subsequent coincidence point is calculated. In this report,
sensitivities will be obtained numerically by perturbation. Notice that in Figure 3.1 only
perturbations in the inputs are necessary.
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Figure 3.1: Calculation of sensitivities

The sensitivity matrix calculated gives a linearized input-output model of the form:
xk+1

xk+2
...

xk+Tp

 =


Sk+1,k 0 . . . 0
Sk+2,k Sk+2,k+1 . . . 0

...
...

. . .
...

Sk+Tp,k Sk+Tp,k+1 . . . Sk+Tp,k+Tc




∆uk

∆uk+1
...

∆uk+Tc

 + b, (3.4)

where xk+i is the output at time k + i, ∆uk+i is the change in input at time k + i and b is
a vector containing the constant terms of the linearizations.

The sensitivity matrix is obtained by perturbating the inputs by small, but finite, values. The
size of the perturbations influences the accuracy of the sensitivity, and hence also the con-
vergence rate of the SQP algorithm. Too small perturbations give sensitivities dominated by
numerical noise, while too large perturbations will give inaccurate sensitivities and possibly
problems with convergence. It is therefore desirable to select a perturbation size as small
as possible without encountering numerical difficulties. The lower limit on perturbations is
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determined by the accuracy of the solver used to simulate the nonlinear model. An example
showing the effect of too large perturbation is shown in Figure 3.2. The large perturbation
will wrongly indicate an increase in the objective function value moving from right to left,
where as the small perturbation correctly shows a descent direction towards the minima.

Large pertubation

Small pertubation

Gradient calculated with appropriate pertubation size
Gradient calculated with too large pertubation size

Objective function value

Input value

Current point

Figure 3.2: Effect of too large pertubation on numeric gradients

3.2.3 The QP sub problem

This section will discuss the present the QP sub problem generated by SQP algorithms.
Solving the QP sub problem is done in Step 4 in order to find a search direction. The
introduction and the notation will follow Nocedal and Wright (1999).

Assuming a nonlinear problem of the form:

minf(x) (3.5a)

s.t. ci(x) = 0, i ∈ E (3.5b)

ci(x) ≥ 0, i ∈ I, (3.5c)

where f(x) is the function to be minimized, subject to state constraints ci(x), i ∈ E ∪ I .
E is the set which contains the indices of equality constraints, as I is the set of indices of
inequality constraints.

The QP subproblem (3.6) to be solved in order to find the search direction, p, are obtained
by linearizing both equality and inequality constraints

min
1
2
pTWkp+∇f(xk)T p (3.6a)

s.t.∇ci(xk)T p+ ci(xk) = 0, i ∈ E (3.6b)

∇ci(xk)T p+ ci(xk) ≥ 0, i ∈ I (3.6c)
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Where Wk = W (xk, λk) = ∇2
xxL(xk, λk) denotes the Hessian of the Lagrangian of (3.5),

with the Lagrangian defined as L(x, λ) = f(x)− λT c(x).

For general SQP algorithms it is important to maintainWk positive definite to avoid generat-
ing non-descending search directions, p. This is necessary in order to guarantee convergence
on non-convex problems and from remote starting points. There are several possibilities as
to how this can be accomplished. Nocedal and Wright mentions using full quasi-Newton
approximations, such as the BFGS formula, using the Hessian of an augmented Lagrangian
functions or using reduces-Hessian approximations. However, none of these techniques are
required for NMPC if using a special choice of Hessian, as proven in the following section.

In MPC, the objective function f(x) = 1
2x

TQx are quadratic in x. Thus, the Hessian be-
comes ∇xxf(x) = Q and will be positive definite as long as Q is chosen positive definite.
The only possibility for Wk not to become positive definite is if −∇2

xxλ
T c(x) is negative

definite. By linearizing the constraints c(x) before the QP sub problem is formulated, the
contribution to Wk from the Hessian of the constraints will always be zero. This is equiv-
alent to the “Gauss-Newton” choice of Hessian where the effects of the nonlinear model
equations on the Hessian is neglected. The effects of neglecting the contribution from the
nonlinear model is described (among other choices for Hessians) in Tenny et al. (2004).
Here it is stated that this choice in not asymptotically equivalent the true Hessian of the
Lagrangian unless the model is linear or the Langrange multipliers for the model is zero.
It is also pointed out that when x in (3.5) is close to its optimal value, the state equations
will be only weakly active, and their Lagrange multipliers close to zero. The Gauss-Newton
choice of Hessian will therefore be close to the true Hessian. In fact, according to Biegler
(1998), a NMPC has a structure that, for a solution interior to the constraints, will have
Wk ≈ ∇2L when using the “Gauss-Newton” choice of Hessian. The approximated Hes-
sian of the Lagrange function will be asymptotically equivalent to the actual Hessian at the
solution, resulting in a Q-quadratic convergence rate.

3.2.4 Linesearch

The QP sub problems are based on a quadratic approximation of the original NLP. If the
approximation is poor, the solutions found may in fact cause the algorithm to diverge, if
implemented unbounded. In order to ensure that the step taken is a descending step, a line-
search algorithm is employed in Step 4. This algorithm must decide the fraction of the step
to be taken. Newton methods have a natural step length of one. The fraction, α, of the step
taken should therefore be in the interval (0, 1]. One can potentially solve an optimization
problem, finding the step length, α ∈ (0, 1], minimizing the objective function. However,
it will in general be a compromise between doing a thorough linesearch with fewer QP so-
lutions, or a approximate linesearch with more QP solutions. Nocedal and Wright (1999,
chap. 3) describes some approaches to linesearch based on the Wolfe conditions — the suf-
ficient decrease condition and the curvature condition. The sufficient decrease condition
ensures that the step is descending while the curvature condition makes certain that the step
length is not unacceptably short steps.
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3.2.5 Convergence criterion

The optimization termination criteria in Step 5 can be specified as in generic SQP algo-
rithms. However, since the single-shooting quasi-Newton methods searches along a feasible
path, optimization can be terminated before exact convergence is achieved, still yielding fea-
sible solutions although not optimal. Especially since NMPC generates a series of NLP’s,
where the solution of the previous NLP can be used as a starting point for the next NLP,
and where the solution often converges over time, the convergence criterion can be relaxed.
Since the accuracy of the sensitivities are bounded by the perturbation size (as discussed
earlier in section on sensitivities (Section 3.2.2)), and thus also the solver accuracy, it can
be convenient to use a relaxed convergence criterion.

3.3 Implemented algorithm

The previous section described some issues in the single shooting multistep quasi-Newton
algorithm used in this report. In this section, the solutions used are described, as well as a
pseudo code of the implementation.

3.3.1 Description of SEPTIC

The NMPC application was implemented in STATOIL’s in-house MPC tool, SEPTIC (Sta-
toil Estimation and Prediction Tool for Identification and Control). SEPTIC was first used
in 1997 Strand and Sagli (2003), and has since then been implemented on 70 installations.
Most of these applications have been implemented using linear and experimental models,
as these have proved sufficiently accurate for the respective processes. There is however
possible to use first principles nonlinear models, either as models programmed in SEPTIC,
or through a interface against an external simulator. Either way, SEPTIC treats the model as
a black-box model. None of the previous applications have used nonlinear simulator mod-
els, and as such SEPTIC did not include a robust algorithm for an iterative NMPC scheme.
Hence, there was a need to develop the algorithm presented here.

3.3.2 Computation of sensitivity

Because of the simple model interface in SEPTIC, each column in the sensitivity matrix
in (3.4) is calculated by simulating the system from tk to tk+Tp , which might seem unnec-
essary as all columns except the one to the extreme left contains one or more zero elements
in the top. Two facts, however, implies that this implementation is not as wasteful as it might
seem at first sight. Firstly, input blocking are normally implemented with increasing block
length. Consequently the number of zero elements in the sensitivity matrix will be much
less than half the total number of elements. Secondly, if the sensitivity matrix is found from
parallel processing where each input parameter sensitivity is simultaneously calculated on
separate CPUs, all processes calculating sensitivities for inputs ui, i ∈ [k + 1, k + Tc] must
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wait for the process calculating the sensitivity for uk to end. Simulating shorter horizons
for ui, i ∈ [k + 1, k + Tc] will therefore have no effect on the algorithm run time.

3.3.3 QP solver

The QP solver used in SEPTIC is a C compilation of a Fortran implementation developed
by Schittkowski (2005) This implementation is based on the dual method developed by
Goldfarb and Idnani (1983) The motivation for the development of this algorithm was the
need for fast and robust solutions to the QP sub problems generated by a SQP algorithm.
The dual QP solver implemented requires the QP to be positive definite. Earlier in this
chapter, in section 3.2.3, it was shown that this will be true for the Gauss-Newton choice of
Hessian approximation used in SEPTIC.

Compared to a primal algorithm, the advantage presented by a dual method is that there is no
need for an expensive search for a feasible starting point (Goldfarb and Idnani, 1983). The
unconstrained solution of the primal problem is a feasible solution for the dual problem.
A feasible solution for the primal problem is obtained by solving series of sub problems
where violated constraints are added until all constraints are satisfied. This procedure is
in Goldfarb and Idnani (1983) considered superior to primal algorithms when no feasible
starting point is immediately available.

In conclusion the QP sub problem solved in SEPTIC are stated in (3.7) where the Hessian
of the objective function will be positive definite as long as the Q used is positive definite.

min
1
2
pTQp+∇f(xk)T p (3.7a)

s.t.∇ci(xk)T p+ ci(xk) = 0, i ∈ E (3.7b)

∇ci(xk)T p+ ci(xk) ≥ 0, i ∈ I (3.7c)

3.3.4 Linesearch

Backtracking is the implemented method of linesearch. The algorithm is a modified version
of the backtracking linesearch found in Nocedal and Wright (1999, procedure 3.1, pages 41-
42). First the full step is evaluated, then smaller and smaller fractions is evaluated until an
acceptable step length is found. The difference between subsequent steps is a constant
factor, ξ. For a step ξi to be accepted, two criteria needs to be fulfilled. First, the objective
value with step length ξi must be less than the objective value with step length ξi+1. Second,
the objective value with step length ξi must be less than the objective value with step length
zero. Figure 3.3 shows a case designed to illustrate the convergence criteria. Here, the
algorithm will choose a step length α = ξ3, since this is assumed to be a local minima with
greater objective function values on both sides.
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Figure 3.3: Backtracking linesearch

3.3.5 Convergence criterion

Convergence criteria considered in the algorithm developed in this report were linearization
error, change in objective function and change in input parameters. The original SEPTIC
algorithm used the linearization error criterion — after a step, the difference in the response
of the controlled variables using the nonlinear and the linearized model is computed. If the
linearization error is below a limit, the linear model is assumed to be an accurate description
of the nonlinear model along the solution. However, consistent performance was difficult to
obtain with this criterion.

Instead, the norm of the input change was used. Li and Biegler (1989) proposed this in their
algorithm, as

∑
k

∥∥ūk − ūk−1

∥∥2 ≤ ε, but noting “that it is not really necessary to solve
the QP problem (...) repeatedly (i.e. ε can be large)”. This was found not to be true using
models of such a degree of nonlinearity as in this report. Thus, a small value should be
chosen for ε, so that a sufficient number of QP’s are solved at each iteration.

∑
k

||∆uk||2 < MVnorm. (3.8)

The explicit criterion used is given in (3.8) where MVnorm is the convergence limit. This
criterion gave consistent performance while the resulting algorithm was significantly sim-
pler. Alternatively, the change in the objective function could have been used. The obvious
drawback is that if a step gives a reduction in the objective function value below the limit,
the step may still be of significant length and the sensitivity around the new solution may
be quite different from the previous. Using only the descent in objective function will then
stop the optimization even if the new solution can result in a significant improvement in
objective function value. Possibly, a criterion combining change in objective function with
the norm of the input change would be better. However, the algorithm in its current form
performs well.
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3.3.6 Algorithm pseudo code

The SQP algorithm implemented in SEPTIC is given as pseudo code in Algorithm 1. The
linesearch used is also given in pseudo code in Algorithm 2. Pseudo code is used in order
to be able to state the algorithms more clearly, as the actual SEPTIC code makes extensive
use of specialized methods and data structures which would have made the presentation
of the algorithm unduly involved. Some previously presented and some new parameters
will be used. MV norm and ξ was described in Sections 3.3.5 and 3.3.4 respectively. In
addition will NQP,max be used to represent the maximum number of QP iterations allowed
in one NMPC step, Nls,max the maximum number of linesearch iterations and Uvalid is the
feasible input values. In addition will some of the variables used in Algorithm 1 be used in
Algorithm 2. The used variables are declared at the top of Algorithm 2.

Algorithm 1 SEPTIC SQP algorithm
Require: unom ∈ Uvalid, MVnorm and NQP,max

Ybest ← calcObjectiveValue(unom)
S ← calcSensitivity(unom)
∆u← solveQP, nQP ← 1
Ynew ← calcObjectiveValue(unom + ∆u)
runSQP ← true
while runSQP do
αbest ← doLineSearch
unom ← unom + αbest ∗∆u
Ybest ← calcObjectiveValue(unom)
if ||αbest ∗∆u|| < MVnorm then
runSQP ← false

else if nQP == NQP,max then
runSQP ← false
warning← maximum number of iterations without convergence

else
S ← calcSensitivity(unom)
∆u← solveQP(unom), nQP ← nQP + 1
Ybest ← calcObjectiveValue(unom)

end if
end while

3.4 Test system: a continuously stirred tank reactor

This section shows NMPC tested on a small continuously stirred tank reactor (CSTR)
model. Even though the intension behind developing the SSMQN algorithm was to ap-
ply it to a computational expensive simulator model, developing it on such models hardly
proved practical considering the time spent on retrieving results after algorithm modifica-
tions or tuning. To develop and verify the NMPC application there was a need for quick and
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Algorithm 2 doLineSearch
Require: Ynew, Ybest, unom, ∆u, ξ and Nls,max

nls ← 0, α← 1
runLS ← true
while runLS do
nls ← nls + 1
αnew ← ξ ∗ α
Yold ← Ynew

Ynew ← calcObjectiveValue(unom + αnew ∗∆u)
if Yold <= Ybest and Yold <= Ynew then
runLS ← false
αbest ← α

else if nls == Nls,max then
runLS ← false
warning← no good step length found
if Ynew <= Ybest then
αbest ← αnew

else
αbest ← 0

end if
else
α← αnew

end if
end while
return αbest

simple model, which could simulate a number of runs in only a few seconds time, but still
exhibit severe nonlinearities in order to challenge the algorithm robustness.

3.4.1 CSTR model description

The test model used is a CSTR with multiple steady states, previously investigated by both
Oliveira and Biegler (1995) and Martinsen, Biegler and Foss (2004). The model equations
are given in (3.9). The equations are similar to the system given in Martinsen et al. (2004),
with the exception that the effect of inputs u1 and u2 on dx1

dt is quadratic. This modification
was done in order to make the system more nonlinear, and does not reflect any physical
interpretation.

dx1

dt
= u2

1 + u2
2 − k1

√
x1 (3.9a)

dx2

dt
= (CB1 − x2)

u1

x1
+ (CB2 − x2)

u2

x1
− k2x2

(1 + x2)2
(3.9b)
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x ' = u1 + u2 - k1 x(0.5)                                  
y ' = (Cb1 - y) (u1/x) + (Cb2 - y) (u2/x) - (k2 y)/(1 + y)2

Cb1 = 24.9
k2 = 1

u2 = 1
k1 = 0.2

u1 = 1
Cb2 = 0.1
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Figure 3.4: Solution trajectors for CSTR system

The initial parameters, following Martinsen et al. (2004), are set to: k1 = 0.2, k2 = 1,
CB1 = 24.9 and CB2 = 0.1. With inputs (u1, u2) = (1, 1) the system has three equilibrium
points. These can be found at x1 = 100 and x2 ∈ (0.633, 2.78, 7.07), the middle one being
unstable. Figure 3.4 shows computed trajectories from different starting points with the
initial parameter values. The plot was made using pplane7 and the Dormand-Prince solver,
and shows the systems two stabile equilibrium points, and the unstable one in (x1, x2) =
(100, 2.78).

Martinsen et al. (2004) uses a nonlinear combination of variables as the controlled variable
to be held at a constant reference value,

y = k1
√
x1x2, (3.10)

giving the extended CV vector

x =
[
x1 x2 y

]T
. (3.11)

The MVs are gathered in the vector

u =
[
u1 u2

]T
. (3.12)

To impose additional nonlinearities to the system, yref is introduced as an arbitrary refer-
ence trajectory for y to follow, transforming the problem into a trajectory tracking problem.

3.4.2 Algorithm Performance

This section presents the performance of the SSMQN algorithm applied to the CSTR exam-
ple. The sampling time Ts was set to one second, and simulations where carried out for 20
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Figure 3.5: CSTR state plot for yref
1

seconds. Tc and Tp was chosen to 30 steps, parameterizing each input with 10 blocks, yield-
ing a total of 20 optimization parameters considering both u1 and u2. Weighting matrices
was chosen as

Q =

1 0 0
0 16 0
0 0 4e104

 , R = P =
[
4 0
0 4

]
, (3.13)

where P is a penalty term added to the cost functional on movements in ∆u giving

F (x, u) =(x− xop)TQ(x− xop) + (u− uop)TR(u− uop)

+ ∆uTP∆u.
(3.14)

The system is attempted driven to the unstable equilibrium point
(
x1,op x2,op

)
=

(
100 2.78

)
,

uop =
(
1 1

)
and y = yref for two different reference trajectories.

Simulations for both reference trajectories were done with different values for the linesearch
factor ξ and the MVnorm convergence criterion, as described in Section 3.3, to investigate
the effects of these parameters on algorithm performance. Simulation results are shown in
Figure 3.5 for yref

1 and in Figure 3.6 for yref
2 . We only show one simulation for each

reference vector, since the state plots differ only slightly from one parameter setting to
another. As we can se from both figures, the algorithm controls the system in a satisfying
manner. The reference trajectory is closely followed by y, and only some slight deviations
for x1 and x2, as a result of the tuning in Q. An additional remark on the plot for x2 must
be made in Figure 3.6. The deviation from set point here is caused by the values in yref

2
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Figure 3.6: CSTR state plot for yref
2

which are found further away from the “nonlinear equilibrium”

yop = k1
√
x1,opx2,op (3.15)

= 0.2 ·
√

100 · 2.78 = 5.56. (3.16)

Figure 3.7 and Figure 3.8 shows the difference in the algorithm performance for different
values of MVnorm for both reference trajectories. Both figures shows the performance for
the different MVnorm relative to MVnorm = 0.01, along with the total number of simula-
tions done at each sample interval for each value of MV convergence criterion tested. As
one might expect, the more relaxed MVnorm values perform more poorly then for the more
rigid (lower) convergence criteria, but only in a few isolated samples, e.g. sample 11-14 in
Figure 3.7 and samples 2-3 and 17-19 in Figure 3.8. The cost of a rigid MVnorm value is a
high number of extra simulations at each timestep, and may in many cases not be justifiable.
The figures show that performing an extensive number of extra simulations does in many
cases not yield a significant objective value improvement. When using large commercial
simulator models for prediction the simulation time overhead can be of considerable size if
the algorithm performs additional simulations without producing objective improvement.

Figure 3.9 and Figure 3.10 shows the difference in the algorithm performance for different
values of ξ for both reference trajectories. Both figures shows the performance for different
ξ values relative to ξ = 0.7, along with the total number of simulations done at each sample
interval for each value of backstepping factor tested. Here it is not so obvious what is the
effect of the choice of ξ, as there are no clear trends shown like in the case of the varying
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Figure 3.7: Algorithm performance for different MVnorm using yref
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Figure 3.8: Algorithm performance for different MVnorm using yref
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Figure 3.9: Algorithm performance for different ξ using yref
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Figure 3.11: Total number of simulations for different values of MVnorm

MVnorm. The performance of the different values of ξ gives no indication of any value
being superior to the others, and ought to be chosen from knowledge of the underlying
process to be controlled. It should be noted that in these simulations Nls,max were chosen
large enough to avoid any linesearch from being terminated before finding a satisfying step
length, αbest. If the control application is facing tight real-time deadlines, leaving only a
limited number of simulations available for the algorithm to converge and obtain a solution,
the Nls,max must be chosen low. If this is the case, the algorithm performance will benefit
from a lower ξ, as the linesearch will cover a greater part of the α interval (0, 1] in fewer
iterations.

Figure 3.11 and 3.12 shows bar plots of the total number of model simulations for each
reference vector and for the different choices of MVnorm and ξ respectively. These figures
further confirm the trends discussed earlier, as we can see a clear effect on the number
of simulations from the value of MVnorm, the number of simulations increasing as the
convergence criterion is tightened. The effect of the value of ξ is, however, not as evident.
The problem seems to need a certain number of simulations for convergence, regardless of
the value of ξ.
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Figure 3.12: Total number of simulations for different values of ξ
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Chapter 4

Hammerfest LNG — from reservoar
to shipping

The system simulated in this report is a simplified subsystem of Hammerfest LNG1 (often
referred to as Snøhvit). This chapter attempts to give an overview over Hammerfest LNG,
from reservoir to shipping. It is not necessary to read this chapter in order to be able to
interpret results later; it can however be desirable to gain a wider perspective on the total
process in order to appreciate the choice of boundaries for the simulated system, and the
conditions imposed by the surrounding process. A simple and readable review of the Ham-
merfest LNG subsystems which is the basis for this review can be found at the Snøhvit web
pages. (STATOIL, 2005)

The products from Hammerfest LNG is LNG, LPG2 and condensate which is transported
to customers by ship. A schematic diagram of the connection between Snøhvit subsystems
is shown in Figure 4.1. Later chapters in this report will focus on the system between the
pipeline end manifold (PLEM) and (including) the slug catcher. The slug catcher will in
later chapters be referred to as the separator. (While the Hammerfest LNG plant contains
several, the subsystem simulated later contains only this one)

From the onshore plant, CO2 and mono ethylene glycol (MEG) is sent subsea. The CO2 is
injected into the reservoir for storage, while MEG is used as an anti-freeze and mixed with
the well stream in order to avoid the formation of hydrates in the pipeline. The well stream
from several templates, each with three wells, is gathered in the PLEM before it is sent into
the pipeline. Pressure is controlled to a suitable level with a valve situated at the top of each
well. In the simulations, however, the choke situated at the PLEM, called the subsea choke
in Figure 4.1, is used to control the flow.

Between the subsea equipment and the onshore plant, a 143 km pipeline is used for the
transportation. The pipeline flow is multiphase, composed of an aqueous phase, consisting
of water and MEG, a condensate phase (oil) and a gaseous phase. The pipeline stream is
cooled along the pipeline, from about 25 ◦C at the PLEM to the sea temperature of about

1Liquid Natural Gas
2Liquid Petroleum Gases; a mix of butane and propane
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Figure 4.1: Schematic diagram of Hammerfest LNG

4− 5 ◦C when arriving onshore. Because of the fall in temperature, gas will condense along
the pipeline. Multiphase flow will be discussed in greater detail in Chapter 5.

Onshore, the pipeline flow is received in the slug catcher. The slug catcher is basically a
volume used as a buffer between the field and the plant, smoothing variations in flow and
pressure. In addition, the Hammerfest LNG slug catcher provides a first separation between
water, gas and condensate.

From the slug catcher the gas is sent to the inlet facilities where it is stabilized at 70 bar and
where a second separation of condensate takes place and particles removed. The condensate
is sent to the condensate separator, while the gas is then sent to pre-treatment, where CO2 is
removed, the gas dehydrated and mercury removed, in that order. The CO2 is sent offshore
for injection. From pre-treatment, the gas is sent to fractionation, where heavier components
such as propane and butane (C3 and C4), known as natural gas liquids (NGL), are separated
and liquefied to LPG product. The remaining gas is then sent to liquefied natural gas (LNG)
production, which basically consists of cooling in three steps. During this cooling, nitrogen
is removed. Product LNG has a temperature of about −163 ◦C.

The condensate production receives streams from different parts of the process. The con-
densate enters a separator, where gas and water/MEG is removed. Then, light components
are removed from the condensate in a separator column and transferred to gas processing
(not shown in Figure 4.1).

The aqueous phase from the separator (slug catcher) and the condensate separator (located
in the condensate production box in the figure) is sent to MEG recycling. Here, particles,
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salt and most of the water is removed. The recycled MEG is then sent offshore, once again
to be injected into the well stream.

As the name of this chapter suggest, the products produced at Hammerfest LNG are trans-
ported to the markets by ship. The LNG are transported on ships especially build for LNG
transportation. Main markets for the gas are stated to be USA and countries in southern
Europe.
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Chapter 5

Multiphase flow

THE previous chapter described the Hammerfest LNG systems. However, before the con-
trol system developed is described and tested, it is appropriate to describe the pipeline,

which is the system to be controlled, more closely. Some of the relevant properties is flow
regimes in multiphase flow and how liquid is transported by gas (entrainment). Examples
from simulations will be given.

5.1 Flow regimes

Multiphase flow has several different flow regimes, also called flow patterns. A short de-
scription is given in Fuchs (1997) which is the basis for this section. For horizontal flow,
the flow regimes possible includes stratified, slug, annular and bubbly flow, or some inter-
mediate state during transition from one flow regime to another. Only slug and stratified
flow occurs in the simulations done in this report. Stratified is distinguished by a layer of
liquid film in the bottom of the pipeline, and gas flowing above. Slug flow is characterized
by alternating film thickness — slugs where the liquid film is so thick that it occupies the
entire pipe cross section area are separated by sections where the liquid film thickness is
significantly less.

The pipeline incline is important for when the transition between slug flow to stratified flow
or vice versa occurs. If the incline is negative in the direction of the flow, gravity will
contribute to liquid flow, reducing film thickness, extending the region of stratified flow.
Conversely, if the incline is positive in the direction of the flow, gravity will impede liquid
flow, extending the region of slug flow. Even gentle slopes influence the conditions where
the transition between slug and stratified flow occurs.

5.2 Entrainment

The subject treated in this report is flow assurance in the face of large pipeline transients.
Such transients can be pipeline ramp-up or pipeline start-up. The challenge posed by such
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transients is caused by a phenomenon called entrainment. Entrainment, one fluid moved by
another, can be described by the drag equation (Fuchs, 1997):

Dr =
Ai

V
fρG(uG − uL)2 (5.1)

where Dr is drag [N/m3], Ai
V interphasearea [m2/m3], f interaction coefficient, ρG gas den-

sity and uG − uL difference in velocity between liquid and gas. Because all parameters
except the last are relatively constant, entrainment of liquid is largely decided by gas ve-
locity — low pipeline production and low gas velocity will give a larger hold-up of liquid,
while high pipeline production give higher gas velocity and a smaller liquid hold-up. A rate
change from high production to low production will therefore start a build-up of liquid in
the pipeline. The opposite case, a rate change from low production rate to high production
rate, will thus entail the discharge of such a liquid build-up.

5.3 Simulations of Snøhvit pipeline — liquid transportation

The preceding section discussed some general mechanisms for liquid transportation. In this
section, some multiphase flow effects will be demonstrated using the Snøhvit pipeline.

As earlier stated, it is ramp-up of the production rate that can cause trouble for the pro-
cessing plant. The trouble is due to a transient period with elevated rates of liquid after the
ramp-up. The case simulated is ramp-up of production from 60% (12.8 MSm3/d) to 100%
(20.8 MSm3/d) over one hour. Transient effects can be observed over a period of about 25
hours after the production rate ramp-up. Figure 5.1 contains graphs of the liquid hold-up
along the pipeline during this period, while Figure 5.3 contains the same graphs for the
liquid mass flow. The graphs of liquid hold-up and liquid mass flow have been smoothed
using weighted moving average in order to improve readability, since the true graphs are
“noisy”. A comparison of true and filtered liquid hold-up and liquid mass flow can be found
in Figures B.1-B.2.

Starting with the figure of liquid hold-up, it is obvious that the amount of liquid at steady-
state conditions depends on the gas velocity, and through gas velocity, also gas rate. The
graph showing liquid hold-up at steady state 100% production is below the graph showing
liquid hold-up at steady state 60% production through the entire length of the pipeline. It
is interesting to note the correlation between low liquid hold-up at steady state and the
pipeline profile shown in Figure 5.2. The decline in pipeline height at about 110 - 120 km
corresponds to low liquid hold-up. Conversely, the upward slope between 50 and 100 km
has high values of liquid hold-up.

While the liquid hold-up is closely related to the incline of the pipeline under steady state
conditions, the correlation is weaker during the transient. The reason for this can be found
in the plots of liquid mass flow in Figure 5.3. The ramp-up starts a wave of liquid that
moves through the pipeline. When the liquid wave passes through some section of the
pipeline, the liquid hold-up in that section will increase relative to the rest of the pipeline,
thus obliterating the correlation between incline and hold-up.
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Figure 5.1: Liquid hold-up during step in production rate from 12.8 MSm3/d to 20.8 MSm3/d
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Figure 5.2: Pipeline profile



44 5. MULTIPHASE FLOW

0 50 100 150
0

10

20

30

40

50

60

70

80

90

Pipeline length [km]

Li
qu

id
 m

as
s 

flo
w

 [k
g/

s]

 

 
Steady state 60% production
2 hours after ramp−up
4 hours after ramp−up
6 hours after ramp−up
8 hours after ramp−up
10 hours after ramp−up
12 hours after ramp−up
14 hours after ramp−up
16 hours after ramp−up
18 hours after ramp−up
Steady state 100% production

Figure 5.3: Liquid mass flow during step in production rate from 12.8 MSm3/d to 20.8 MSm3/d

During the ramp-up, the pipeline model estimates that the pipeline flow will be stratified
everywhere, except at some sections with high hold-up relative to the rest of the pipeline,
where slugging may occur. This form of slugging are referred to as hydrodynamic slugging
by Storkaas (2005). It is described as caused by liquid waves growing on the gas-liquid
interface eventually closing the cross-section. As the slugs disintegrate after the uphill
pipeline section, this sort of slugging does not present any trouble for the downstream sep-
aration equipment.
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Chapter 6

Problem description and simulation
setup

THIS chapter starts with a presentation of the problems to be addressed. These will be
further demonstrated through simulation results in Chapter 7, and discussed in Chap-

ter 8. Also, this chapter contains a description of the setup used for the simulations with
emphasis on models and controller structures used.

6.1 Problem to be addressed

In the previous chapter it was described how changing from low to high production of a
pipeline will result in elevated liquid rates for a period. It is this discharge that poses the
challenge which will be addressed in this report. For the purpose of maximizing production,
it is ideal to use a separator large enough to handle all possible liquid rates. However, the
cost of such a separator will often be very large (the Hammerfest LNG slug catcher costs 500
MNOK) and may not be possible due to space limitations. Downstream process facilities
with limited liquid handling capacity, will thus requiring some sort of strategy in order to
avoid overflowing the separator during ramp-ups. Such a strategy can be guidelines for
ramp-up for the operators to follow, or it can be some sort of closed-loop control. The
strategy developed and tested in this report falls into the latter category. The idea is to use
model information about liquid inventory in order to predict onshore liquid arrival and to
meet the constraints on liquid arrival imposed by the receiving facilities. The production
rate should be maximized while respecting the constraints on liquid discharge. Optimizing
ramp-up speed can be exploited in two different concepts. Firstly, new projects can consider
reducing separator size, as better ramp-up speeds are possible. Secondly, existing separators
can be used more efficiently, reducing production loss during pipeline ramp-ups.
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6.2 Pipeline model

Although the pipeline model was provided by STATOIL, and a commercial product, OLGA
version 5.0.2 (Scandpower, 2006), was used to simulate the pipeline, some modifications
was necessary in order to generate a model suitable for control. Also, using OLGA as a
prediction model required a new model interface. This section contains a short description
of the work done on the pipeline model.

6.2.1 Using OLGA as model for prediction

OLGA is in this report used as the prediction model, which requires that the MPC is able
to start simulations and wait until they are completed before moving on. Waiting on sim-
ulations are not necessary when using OLGA as process model — measurements from the
process model are simply sent to the MPC when they become available, and the MPC sends
the control inputs back when they are computed. Previously, STATOIL has used OLGA
as the MPC process model, communicating over OPC (OLE for Process Control). It would
probably be possible to use a similar solution using flags to signal simulation start and finish
between the MPC and OLGA. However, such an implementation would probably require
much more logic than the chosen solution which is to make a dynamic link library (DLL)
from the OLGA-MATLAB toolbox (Scandpower, 2005b). A description of how such a
DLL can be generated is given in Appendix A. It is not necessary to know how the link
is implemented in order to understand the results given in this report. The description is,
however, attached for completeness and because considerable time was spent developing
this solution.

6.2.2 Simplification of OLGA model

The original OLGA model had a detail level that enabled the simulations to be performed at
about 20 times real-time speed. While this speed is suitable for testing different scenarios, it
would have made for very long computation times if used as predictive model for calculat-
ing sensitivity matrices. Consequently, the smallest pipeline section lengths was increased
from 200 m to about 1000 m using OLGA’s integrated profile tool, Grid Generator (Scand-
power, 2005a). Grid Generator is able to do this simplification while the angle distribution
is retained. The angle distribution is plays an important role in the calculation of liquid
hold-up. Maintaining the angle distribution is done at the cost of changing the pipeline pro-
file. The amount of change in pipeline profile is dependent on the amount of simplification.
Original and simplified pipeline profiles is shown in Figure 6.1. The extra bulges seen on
the simplified profile are due to keeping the angle distribution and increasing the section
length.

Model behaviour changed due to the simplification. While the steady state rates of gas,
oil and liquid are largely correct, the same can not be said for liquid hold-up. Since the
liquid hold-up are changed, so are also the rates during pipeline production ramp-up when
surplus liquid is discharged. A more accurate model with similar reduction in simulation
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Figure 6.1: Original and simplified pipeline profiles

time could probably have been obtained. However, pipeline modeling was not the subject
of this report, and the simplified pipeline model is assumed to be correct. The use of the
simplified pipeline was made necessary by the fact that during the course of this report, a
total of 3 to 4 years of pipeline flow was simulated. A fast model was therefore required. By
changing the model, the relevance to the Snøhvit pipeline and the Hammerfest LNG plant
is, however, somewhat reduced.

6.2.3 Pipeline source

Subsea, the pipeline end manifold (PLEM) connects the stream from all the wells before it
is sent through the pipeline. The separate wells and the pipelines connecting them to the
PLEM was not simulated. Instead, the PLEM was simulated as a boundary having constant
temperature and constant pressure. A choke was then used in order to limit the flow through
the boundary. Not modeling the different wells are of course a simplification, it is however a
question of how much of the system that should be modeled, and the PLEM was considered
to be a natural boundary.
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6.3 Separator model

The separator (slug catcher) downstream from the pipeline needed to be modeled, as the
separator liquid levels and the pressure was used as controlled variables. Flexibility con-
siderations demanded that the separator should be modeled outside OLGA. If the separator
had been modeled in OLGA, a separate initial state file would have been required for each
size of separator used. Also, by modeling the separator outside of OLGA, full control over
liquid controllers could be afforded. For practical reasons, the separator was modeled in
SEPTIC.

The modeling accuracy reflects the fact that separator dynamics is not the subject of this
report. The main quality of the model is modeling liquid levels. Several simplifications
were used:

1. Water and oil (condensate) are incompressible

2. The pressure is the same in the entire separator and is a linear function of gas density.

3. The separator has a constant temperature of 5 ◦C

4. There are no phase transition between gas and oil (condensate)

5. Separation is assumed perfect

Modeling the separator outside OLGA raises the question of how to provide feedback from
the separator model to the pipeline model. In the OLGA model, the pipeline ends in a
pressure boundary. By updating the boundary pressure with the separator pressure a con-
nection between the models are made. Figure 6.2 shows the pressure boundary. A minimum
pressure boundary update frequency is required unless the separator pressure will become
unstable. This is due to the fact that the boundary pressure is held constant over a sample.
For example, let the current boundary pressure be 80 bar. OLGA calculates a mass rate, say
40 kg/s which is sent to the separator model. Now, let the mass flow out of the separator
be 30 kg/s. If the sampling time, ∆t is 5 minutes, this will result in 3000 kg of additional
mass in the separator. If little capacity is available, either because the separator is small or
that it is nearly full, the extra mass will result in a significant increase in pressure. The in-
creased pressure will cause OLGA to calculate much smaller mass rate in the next sample,
which causes the pressure to drop. This effect may result in an oscillating system. Thus,
in order to retain the self stabilizing quality of the true system, it is necessary to select the
sampling time sufficiently small. The discussion is analogous to that of a digital controller
implementation.

In Figure 6.2, let Q denote volume rate, V denote volume, m denote mass rate,M denote
mass and ∆t denote the sampling time. Then the separator equations can be given as (6.1)-
(6.3).

Vwater,k+1 = Vwater,k + ∆t(Qwater,in −Qwater,out) (6.1)

Voil,k+1 = Voil,k + ∆t(Qoil,in −Qoil,out) (6.2)

Mgas,k+1 = Mgas,k + ∆t(mgas,in −mgas,out) (6.3)
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Figure 6.2: Separator model

To calculate pressure, first the density must be obtained. This is done simply by dividing
the gas mass by the available volume:

ρgas =
Mgas

Vtotal − Vwater − Voil
(6.4)

The relationship between density and pressure is obtained by linearizing data from the
OLGA file containing the fluid properties. Equation (6.5) shows the relationship used. The
factors a and b was found for an operating point of 80 bar and 5 degC.

pseparator = a ∗ ρgas + b (6.5)

a = 7.208 5 ∗ 1 04 m2/s2

b = 1.654 0 ∗ 1 06 Pa

Figure 6.2 shows valves on the outlets for gas, oil and water. These valves are not modeled.
Instead, the desired outlet rates are set directly. This is analogous to having perfect flow
controllers. For oil and water, the outlet rates are set by simple P-controllers. The choice of
controller is not important, as long as reasonable performance is achieved.

The parameters for the full-size separator are given in Table 6.1. The separator are con-
ceptual and several aspects such as the specific shape are left undetermined. It is however
assumed that the separator is cylindrical, with a fixed height and fixed maximum water and
oil drainage rates. The full-size separator parameters in Table 6.1 will later be referenced
as the 100% separator, while smaller separators will be referred to as p% separators where
p will be the new base area. Volume and rates are given in Knutson (2005) and Eagleton
(2001).



50 6. PROBLEM DESCRIPTION AND SIMULATION SETUP

Parameter name Value
Base area 100 m2

Total height 32.45 m
Oil drain height 9.15 m
Water drain height 0 m
Maximum oil drainage 295.3 m3/h
Maximum water drainage 32.4 m3/h

Table 6.1: Separator parameters

6.4 NMPC implementation

After having decided which models to use, the question of how to implement the NMPC
remains. Implementation poses several issues — which CVs to control and which MVs to
control them with, weight matrices, sampling time, prediction horizon and control horizon.

6.4.1 Prediction and control horizon

Since the purpose of the controller is to discharge liquid optimally during a pipeline tran-
sient, it is essential that the controller sees the entire course of the transient. The prediction
horizon, Tp, therefore needs to be set larger than the transient behaviour. For the choice of
control horizon, Tc, Strand (1991) states that robustness usually increases with decreasing
Tc
Tp

, while nominal performance increases when Tc
Tp

approaches unity. Since robustness is
not an issue in this report, Tc was chosen equal to Tp.

6.4.2 Control structure

Finding an optimal start-up strategy requires that all relevant degrees of freedom are avail-
able to the controller. Determining which inputs to use is therefore of great importance.
Controller structures using different combinations of inputs were therefore tested, along
with adding a topside choke as an extra MV. The original control structure at Hammerfest
LNG is shown in Figure 6.3. The PLEM and the separator outlets were chosen as system
boundaries.

Inside the system boundaries, multiple objectives can be identified. Not all objectives needs
to be accounted for in each proposed control structure. The control objectives in descending
order are:

1. Keep separator pressure and separator water and oil levels within given limits

2. Keeping the gas rate out of the separator smooth and non-decreasing during the
pipeline ramp-up.

3. Maximize gas rate out of separator

4. (Avoid unnecessary topside choking)
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Figure 6.3: Original pipeline control structure at Hammerfest LNG

The last objective is given in parenthesis as this is only a relevant if a topside choke is
present. Now, keeping these objectives in mind, different control structures are discussed.

Original control structure

The solution that will be used at Hammerfest LNG is given in Figure 6.3. The pipeline
rate is set by using the subsea choke, while the gas rate required by the plant is drawn by
using the gas outlet choke. No restriction of pipeline flow is needed since the separator is
designed to be large enough to accept the surge waves generated by ramp-ups and start-
ups (See Knutson (2005) and Eagleton (2001)). Separator pressure floats on the pipeline
pressure. Thus, as long as roughly the same gas rate flows into the pipeline as flows out of
the separator, the separator pressure will be relatively slow varying and stable.

Controlling the gas rate

As gas rate has great impact on liquid movement in the pipeline, any control structure with
the purpose of controlling liquid discharge needs to in some way control the pipeline gas
flow. The simplest control scheme is to only control the gas rate out of the pipeline. Fig-
ure 6.4 shows the structure used, except that the subsea choke will be controlled by some
simple controller, or set by operators. In later simulations, a basic controller controlling
the separator pressure will set the subsea choke in this setup. Thus, the objectives to be
addressed in the NMPC are: liquid levels, smooth and non-decreasing gas rate and maxi-
mizing gas rate output.
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Controlling gas rate and subsea choke

Enhancing the controller setup with NMPC control of the subsea choke, the controller struc-
ture in Figure 6.4 is obtained. Because the subsea choke is included as a MV, it is possible
for the NMPC to adjust the separator pressure. Hence, in addition to the objectives stated
for the previous setup, the separator pressure must also be controlled.

Controlling subsea and topside choke

By introducing a topside choke (see Figure 6.5), a dynamic degree of freedom is introduced.
Using the topside choke, the pipeline downstream pressure can be changed more rapidly,
compared to using the choke on the gas outlet from the separator. The topside choke is
controlled by a PI flow controller whose set point is provided as a MV to the MPC. Since
the pressure difference over the topside choke can vary significantly, gain scheduling are
used to achieve consistent performance for various pressure differences. Gain scheduling
for the topside choke is described in Torpe (2006).

While the benefit of using a topside choke will be discussed in later chapters, some other
effects of introducing a topside choke needs to be discussed. When using a topside choke
the separator pressure potentially becomes uncoupled from the pipeline pressure. The more
the topside choke is closed, the more uncoupled from the pipeline pressure the separator
pressure becomes. As the separator volume is much smaller than the pipeline volume,
this makes the separator pressure more sensitive for differences in flow in and out of the
separator. If the NMPC is to control the pressure with the topside choke, a maximum sample
time is imposed if the pressure is to be kept within the pressure limits. The discussion is
quite similar to that in Section 6.3. There, it is argued that the maximum sample time is
dependent on the separator size. The smaller the separator size, the smaller the maximum
sample time becomes. This limitation is unnecessary, as model predictive control is not
needed for pressure control of the separator. A simple PI-controller is sufficient for this



NMPC IMPLEMENTATION 53

PLEM

Subsea 

well

Subsea 

well

Topside choke Separator

Condensate outlet

Gas outlet

Subsea choke

Water outlet

Snøhvit pipeline

SEPTIC

LC

LC

FC

PC

Setpoint 

ramp

FC

-

+

Figure 6.5: Control structure - using a choke upstream the separator

purpose. The pressure controller sets the set point for the flow controller controlling the gas
rate out of the separator. A disadvantage with this solution is that the adjustments made in
the flow out of the separator become a disturbance for the Melkøya plant, undermining the
separators function as a buffer.

The NMPC will in this setup have no direct control of the gas flow out of the separator. The
control will be indirect through keeping the separator pressure high enough to maintain the
wanted gas flow. A potential enhancement of this setup would be to provide the separator
pressure setpoint as an additional MV.

Loss of performance from using distributed level control

Some low-level control is built around the separator to limit the size and complexity of the
MPC. Two PI-controllers controls the water- and the oil level respectively. This removes
the need for level set point and low level limit. However, because of the maximum liquid
outlet rates (i.e. actuator limitations), low level control cannot ensure that liquid level high
limits will be respected.

The computational cost of calculating the sensitivity matrix is proportional to the number
of input parameters. Keeping the number of inputs small is therefore vital in order to keep
computation times reasonable. Control of separator liquid levels were considered of less
importance to the control performance. This section is an attempt to justify that assertion.

During normal operation, control of liquid levels is fairly straight forward. The levels should
be held low and a smooth flow of condensate out of the separator maintained. However,
during transients, when liquid are discharged from the pipeline, the liquid flow out of the
separator should increase until the maximum separator liquid drain rates are reached. Both
of these tasks can be performed adequately by correctly tuned P or PI controllers.
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6.4.3 NMPC challenges

When implementing NMPC, some challenges were encountered. Two examples of such
challenges and the solution chosen will follow.

Time varying actuator limitations

When actuator constraints are time varying, they cannot be included explicitly in the NMPC.
Thus, the NPMC is not able by itself to determine if the inputs are saturated. The sensitiv-
ities obtained by the NMPC will therefore not necessarily be correct, as a perturbation in
a saturated input will have no effect on the controlled variables. This section will describe
a solution for this problem, and how it was implemented in the control structure shown in
Figure 6.5.

For a NMPC to be effective, the controller needs to see how much the inputs can be changed
until some CV reaches its limit. When an input is saturated, a change in a MV will have no
effect on CVs, thus effectively removing the MV in question as a degree of freedom.

In Figure 6.6, a MV with a time varying high limit, β, is shown. If the MV set point
exceeds β, the violation is penalized by introducing a CV that measures the saturation,
εmeas
sat = MVsetpoint − βmeasured, with a high limit of zero. Measured εsat can be seen as

the red line in Figure 6.6. Point B illustrates the fact that as long as the MV is not saturated,
εmeas
sat (and its sensitivity to perturbations in the MV set point) will be zero. Hence, the MPC

cannot judge how much the MV set point can be increased before β is reached. The desired
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sensitivity is shown as point A. In order to estimate the sensitivity shown in point A, the
point at which the MV saturates (here given as β) must be estimated when the MV is not
saturated. εestsat is then calculated as MVsetpoint − βestimated and is shown as the green line
in Figure 6.6. The sensitivity obtained in point C is a good approximation of the sensitivity
in point A as long as the estimate, βestimated, is good.

In the controller setup where a topside choke is used, the set point to the topside flow con-
troller is an example of an input with a time varying actuator limitation. The maximum
flow is a function of the differential pressure over the topside choke, which will vary over
time. This issue is managed using the above described technique. That is, when the topside
choke is not fully opened, a simple model is used to estimate how much the gas rate can
be increased before the topside choke controller is fully opened. Figure 6.7 shows the es-
timated maximum flow in red and the actual flow in blue. This estimation of negative flow
limitation is necessary in order to obtain nonzero sensitivities as shown in Figure 6.6. How-
ever, keeping the topside flow controller within actuator limitations, that is, the controller is
active, effects the sensitivities obtained from the subsea choke. The subsea choke controls
the pipeline flow. However, the gas rate set point is set at the topside choke. If the topside
gas rate controller is active, a perturbation in subsea choke opening will have little or no
effect on the topside gas rate, effectively ruining the sensitivity accuracy. The solution is
to allow the flow controller to be saturated by a small value. A perturbation in the subsea
choke opening will then result in a change in the gas rate.
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Sensitivity problems using CVs with very dynamic responses

Some controlled variables have naturally very dynamic responses. Obtaining correct sen-
sitivities from such CVs are a challenge. Figure 6.8 shows a perturbation in a MV and the
response of the perturbation in the CV. As can be seen, the change in CV is in the same di-
rection as the perturbation. However, the CV value in the evaluation point shows a change
in the opposite direction. Thus the sensitivity value will not only be wrong, but also have a
wrong sign! Inaccurate sensitivities may cause the next search direction to be found to be
non-descending, causing the SQP algorithm to abort. Generally, it would be preferable to
model the CV such that large dynamic effects that need not be accounted for is ignored. It
would also be possible to use a shorter the NMPC sampling time such that the dynamic re-
sponse is visible to the NMPC. In cases where this is not possible, it is important to choose
CVs and MVs such that the dynamic response of the CV is minimized.
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Chapter 7

Results

THE simplified Snøhvit pipeline and the separator model discussed in the previous chap-
ter has been used to test the proposed control system, smart liquid control. This chapter

contains the most relevant and interesting results. First, a description of the two simulation
scenarios used is given. Then, the results of the two scenarios are given respectively. A
comparison between smart liquid control and manual control is made, before the last sec-
tion gives some results used for demonstrating the effects of using a topside choke.

7.1 Scenarios simulated

Among the reports written on the Hammerfest LNG project, several adress flow assurance.
Two reports, one engineering report by BMH Eagleton (Eagleton, 2001) and an internal
STATOIL report (Knutson, 2005), discuss the slug catcher size and the scenarios that the
slug catcher should be able to cope with. The information in this section is derived from
these reports. Two cases have been identified as critical for liquid management of the Ham-
merfest LNG pipeline. Each case place emphasis on distinct capacities.

• Case I: Ramp-up of pipeline production from 60% to 100%

• Case II: Start-up of pipeline from shut-in conditions

The former case, ramp-up of pipeline production from 60% to 100%, places the greatest de-
mands on water handling capacities. The pipeline should be produced at 60% until pipeline
equilibrium is reached. Equilibrium in this context refers to the amount of liquid hold-up in
the pipeline, that is, the volume of oil and the volume of water in the pipeline is constant.
Some time after the equilibrium has occurred; the pipeline should be ramped up to full pro-
duction as quickly as possible in order to maximize production. The latter case, start-up of
pipeline from shut-in conditions will place the greatest demands on the oil handling. The
pipeline is shut-in from full production, and remains shut-in until all states are stabilized,
i.e. the temperature is converged to the ambient temperature. It is then assumed that the
Hammerfest LNG plant has had a major stop, requiring the pipeline to be produced at 30%
for 24 hours until all systems are fully operational. During the 24 hours where the pipeline is
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produced at 30%, no liquid will arrive onshore, causing a build-up of liquid in the pipeline.
After the 24 hours, the plant is fully operational and the production should be ramped up as
fast as possible. A closer investigation of the scenarios and the pipeline behaviour can be
found in Torpe (2006).

7.2 Smart liquid control: ramp-up of production

This section will look at how separator size reduction affects the pipeline performance. That
is, the total production of gas during the ramp-up. As discussed in the previous section,
the ramp-up will be from 60% to 100% production and the scenario will challenge the
water handling capacity. The control structure used was control of gas rate out of separator
and basic control of the subsea choke. The total gas production during the 40 hours the
system was simulated is given in Table 7.1. The reference is 40% separator size. This is

Separator Total prod. Prod. loss Rel. prod. Marginal
size [MSm3] [MSm3] loss prod. loss
40% 34.03
33% 33.67 0.36 2.057 2.057
20% 33.03 1.00 2.000 1.625
5% 32.65 1.38 1.577 0.507

Table 7.1: Total gas production during ramp-up with different separator sizes

the smallest separator that can follow the nominal ramp-up trajectory without exceeding the
maximum water level, i.e. no control used. However, if no liquid control is used in an actual
implementation, a more conservative ramp-up trajectory would have to be used to allow for
disturbances and model errors. In Table 7.1, the third column shows the production loss
compared to using the nominal (fast) ramp-up trajectory. Unsurprisingly, reducing separator
volume also increases production loss. Less available water storage requires the rate to be
increased more slowly in order to avoid the water level rising past the maximum water level.

The fourth column in Table 7.1 shows the reduction in gas production relative to the reduc-
tion in separator size compared to the 40% size separator. For example, the value for 33%
separator are calculated by: 0.36/((40 − 33)/40) = 2.057. It might be a surprise to learn
that reducing the separator by a fixed volume has less impact for a small separator than a
large.

It is interesting to note that reducing the separator size from 20% to 5% only causes a slight
decrease in the total production of gas, even if the separator size is reduced by a fourth.
To illustrate this, the fifth column in Table 7.1 shows the marginal gas production loss.
That is, the reduction in gas production relative to the reduction in separator size between
adjacent separator sizes. For example the value for the 5% separator size are given by:
(1.38 − 1.00)/((20 − 5)/20) = 0.507. The effect of the water drainage rate are relatively
larger for a small separator compared to a large separator, thus giving a smaller marginal
gas production loss.
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Figure 7.1: Gas rate during ramp-up of pipeline

Although the results that are economically important are given in Table 7.1, it is from a
control perspective interesting to see the differences in the gas and water level trajectories
resulting from the different separator sizes.

The gas rates are shown in Figure 7.1. Regardless of separator size, all gas rate trajectories
show one common trait; a large increase in gas rate during the first couple of hours. There
are at least two reasons for this. Not ramping up steeply at the beginning means that a huge
amount of potential production is lost. Also, there must be an increase in gas velocity in
order to start the discharge of liquid. After the initial increase in production two different
behaviours are seen — the rates for separator sizes 33% and 20% shows a reduction in
ramp-up speed until approximately 20 hours, while the rate for separator size 5% shows
an increase in ramp-up speed during the same period of time. The reason for the different
behaviours can be seen in Figure 7.2. The water level for the 33% and 20% separators
comes up to the maximum water level only once during the simulation — at approximately
20 hours. The water level for the 5% separator, however, comes up to the maximum water
level no less then three times during the simulation — between 10 and 20 hours. Thus, the
gas rate for the 5% separator must be carefully controlled in this period of time as opposed
to the gas rates for the 33% and 20% separators which need only to take into account the
tangent of the maximum water level at 15 hours.

At first sight it might seem strange that the water levels return to normal at the same time
for the different separator sizes. The reason is simply that the maximum water drainage rate
and the amount of water to be discharged from the pipeline are the same independently of
separator size.
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Figure 7.2: Water level during ramp-up of pipeline
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7.3 Smart liquid control: pipeline start-up

The second case to be investigated is pipeline start-up (see Section 7.1). The control struc-
ture used was control of gas rate out of separator and basic control of the subsea choke.
Table 7.2 shows the total production of gas during the 40 hours the case was simulated. (For
a description of what the two right-hand columns contains and how they are calculated, see
the previous section.) It is interesting that the reduction of the separator size seems to have

Separator Total prod. Prod. loss Rel. prod. Marginal
size [MSm3] [MSm3] loss prod. loss
45% 32.80
33% 31.91 0.89 3.338 3.338
20% 29.92 2.88 5.184 5.052

Table 7.2: Total gas production during start-up with different separator sizes

a greater effect on production for a small separator than a large. This is opposite to what
was found in the ramp-up scenario. An important cause of the difference is that the maxi-
mum oil drainage rate is only 140% of the oil rate at 100% steady-state production, while
the maximum water drainage is 290% of the water rate at 100% steady-state production.
Thus, the buffer volume is more important for oil handling than water since the drainage is
relatively less for oil compared to water.

Control performance can be seen as gas rate in Figure 7.3 and oil level height in Figure 7.4.
Clearly, the gas rate increase is adapted such that the oil level does not exceed the maximum
level. The small overshoot of oil level is due to tuning and problem formulation. A quadratic
penalty function is not exact; the limitation is violated by a small amount (soft constraint).
The overshoot could have been reduced by increasing the penalty weight.
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Figure 7.3: Gas rate during start-up of pipeline

0 5 10 15 20 25 30 35 40
10

12

14

16

18

20

22

24

26

28

30

Time [h]

O
il 

le
ve

l h
ei

gh
t [

m
]

 

 

Separator 45% size
Separator 33% size
Separator 20% size
Maximum level

Figure 7.4: Oil level during start-up of pipeline
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Ramp-up:
Smart liquid control 33.03 [MSm3]
Manual control 32.20 [MSm3]
Difference + 0.84 [MSm3]

Start-up:
Smart liquid control 29.92 [MSm3]
Manual control 27.95 [MSm3]
Difference + 1.98 [MSm3]

Table 7.3: Comparison of production using smart liquid control and manual control

7.4 A comparison between smart liquid control and manual con-
trol

As discussed in Section 6.1, there exists two possibilities for using smart liquid control.
In this section some results showing the optimalization of liquid buffer volume for a fixed
separator size will be shown. Smart liquid control was compared to a simple rate trajectory,
such as may result from manual control. The cases tested was ramp-up (Figures 7.5 and 7.6)
and start-up (Figures 7.7 and 7.8) of pipeline with a 20% size separator. The results are given
in table form in Table 7.3. There are not much to comment on, except that the use of smart
liquid control increases production significantly. The gain in profit is large, regardless of
whether a price of 1 NOK/Sm3 or 2 NOK/Sm3 is used.

Figure 7.5 shows the difference in gas rates between smart and manual control during ramp-
up. The manual control gas ramp-up was found by trial and error using the pipeline model
to look ahead. Even if the rate change can be completed in less time using a linear gas
trajectory, the total production during the ramp-up are much less than with smart liquid
control. The water levels during ramp-up is shown in Figure 7.6. Both manual and smart
liquid control complies with the maximum water level.

The improvement in production was even better in the start-up scenario than in the ramp-up
scenario. Figure 7.7 shows the gas rates, while Figure 7.8 shows the oil level. The shape
of the gas rates when using smart liquid control is distinctive. While the rates compared
are almost equal at 7 hours, 19 hours and 32 hours, smart liquid control manages to utilize
buffer volume to increase production in the intermediate time periods. As Figure 7.8 shows,
both manual and smart liquid control respects the upper oil level limit.
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Figure 7.5: Gas rate during ramp-up

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Time [h]

W
at

er
 le

ve
l h

ei
gh

t [
m

]

 

 

Smart liquid control
Manual control

Figure 7.6: Water level during ramp-up
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Figure 7.7: Gas rate during start-up
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Figure 7.8: Oil level during start-up
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Figure 7.9: Gas rate during start-up using different controller structures

7.5 Use of topside choke

Three different controller setups was described in Section 6.4.2. One setup introduced a
new manipulated variable, namely a topside choke. The effect of a topside choke is mainly
dynamic, as in steady-state, the same amount of mass must enter and leave the separator.
However, the topside choke can isolate the separator pressure from the pipeline pressure,
something that cannot be done without it. In this section, the performance with the different
controller setups will be compared. The case investigated is pipeline start-up with 20% size
separator.

Figure 7.9 shows the gas rates for the different controller setups. As can be seen, the setup
with control of the subsea choke and the gas rate out of the separator clearly outperforms
the two others. This requires an explanation, as the setup using a topside choke should at
least be as good. However, if one studies Figure 6.5 closely, it can be seen that the separator
pressure is not controlled by SEPTIC. And indeed, Figure 7.10 shows that pressure, when
using the setup with topside and subsea choke, behaves differently. Particularly interesting
is the drop in pressure from 4 till 6 hours. When examining the oil rates in Figure 7.11, it
can be seen that far more oil is discharged in this period with the subsea choke and gas rate
controller than with the other controllers. This result implies that control of the separator
pressure can change the discharge rates of liquid. A topside choke will give faster control
of separator pressure, thus increasing the possibility of using the pressure to an advantage.
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Figure 7.10: Separator pressure using different controller structures
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Figure 7.11: Oil rates during start-up using different controller structures
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Chapter 8

Discussion of results

SEVERAL interesting results using smart liquid control were shown in the previous chap-
ter. This chapter will further discuss the results, and tie any loose ends.

8.1 Should a topside choke be used?

While tests performed using a topside choke was insufficient to establish confidence in
the benefit of using it as an extra MV, the test results in Section 7.5 nonetheless showed
promise. A connection between separator pressure and liquid transportation was pointed
out. Since, using a topside choke enables the separator pressure to be changed more quickly,
an improved NMPC formulation may improve production during transients.

8.2 Controller structure

Due to computational effort, the number of MVs used should be kept to a minimum. How-
ever, for the Snøhvit case studied results indicate that at least the subsea choke as well the
gas rate out of the separator should be used as inputs. Possibly, a topside choke should also
be used as an extra input. A possible control structure to consider is given in Figure 8.1.
The structure presents several advantages compared to the ones used in the report. Firstly,
the separator pressure is controlled explicitly by setting the pressure controller set point.
Secondly, the pressure control uses the topside choke to control the pressure. Hence, the
adjustments made by the pressure controller will not become a disturbance for the down-
stream plant.

8.3 When to use smart liquid control?

Two different uses of smart liquid control have been outlined. The first use is in the design
phase. Depending on the specific project, the optimal separator size may be smaller than
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Figure 8.1: Suggestion to new controller structure to be investigated in future work

full-size separator if smart liquid control is used. The full-size separator refers to the size
needed for handling liquid discharge without control. The reason for the possible change
in optimal separator size is that smart liquid control reduces the production loss associated
with choosing a smaller separator. Reducing the separator at Hammerfest LNG would be an
example of such a use. Here, the chosen solution was to build a separator large enough to
cope with surge waves without limiting ramp-up. Depending on several parameters, such as
the frequency of large rate changes and the reduction in cost using a reduced size separator,
an economic evaluation can be performed.

The second use is perhaps more relevant for retrofit projects. If the current separator is
a bottleneck when ramping up production, losses can be reduced by using smart liquid
control. Here, the gains from using smart liquid control only have to be assessed against
the cost of implementing it. Another advantage when implementing smart liquid control
retrofit is that it is possible, in advance, to judge the pipeline model accuracy.
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Chapter 9

Conclusions

OVER the lifetime of a pipeline, production will be shut-down, started up, increased
and decreased many times. Causes for this can be partial or full shut-downs of the

processing plant due to troubles or revision stops, trouble with the reservoir or wells or
changes in production due to market conditions. Large changes in pipeline production can
potentially pose challenges for the liquid handling system. In this report it has been shown
how using smart liquid control can improve production rates during pipeline rate changes
due to better usage of available buffer volume. The term smart liquid control was coined
to describe the use of NMPC to control liquid levels using a detailed pipeline model for
prediction of liquid rates.

Although smart liquid control still is more conceptual than a practical solution, due to the
perfect model assumption, two promising application has been identified. Firstly, as smart
liquid control reduces production loss it may enable the use of smaller separators. In this
scenario, smart liquid control must be considered in the design phase. Smart liquid control
has shown potential to change how separator size is calculated by reducing the production
loss associated with smaller buffer volume. Secondly, smart liquid control can optimize
the use of separators that are already built, increasing production. This option allows smart
liquid control to be applied retrofit, which might entail smaller financial risk compared to
the first option. Both options was tested on two different cases, one with emphasis water
handling, the other with emphasis on oil handling. Good simulation results were obtained
for both cases using both options.

Several combinations of inputs were considered. Good dynamic control of the separator
pressure was shown to be important for the performance achieved. With control of the
subsea choke and the gas rate out of the separator smart liquid control was able to exploit the
connection between separator pressure and liquid control to increase production. However,
the use of a topside choke downstream the pipeline was identified as having even greater
potential in this respect.

The smart liquid control was implemented in SEPTIC, a STATOIL in-house MPC tool,
while OLGA was used as the pipeline model. SEPTIC functionality was enhanced with
an implementation of a single-shooting algorithm (Li and Biegler, 1989; Li et al., 1990;
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Oliveira and Biegler, 1994, 1995; Silva and Oliveira, 2002) and tested on a continuously
stirred tank reactor example. A interface between OLGA and SEPTIC was generated using
the OLGA-MATLAB toolbox as basis.
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Chapter 10

Future work

While the results presented in this report are promising, there are several issues that need to
be addressed before smart liquid control can be considered ready for implementation. The
main obstacle is the subject of perfect model, or more precisely, that the prediction model
will be imperfect, both in terms of structure and parameters. (Allgöwer et al., 2004) Thus,
the NMPC application needs to address model updates and robustness. In addition, model
validation will be important in order to obtain the best possible predictions.

10.1 Robustness

In chapter 2, the robustness of NMPC was discussed. It will be difficult to employ the
academic approach used there on a large pipeline model. Robustness must therefore be
shown through tests using different model errors such as structural errors and parameter
errors. A rigorous scheme of tests should be used in order to show satisfactory robustness
to model errors.

10.2 Feedback from measurements

Although smart liquid control can be used in open loop, feedback from measurements and
model update should be used to realize as much as possible of the potential of the receding
horizon formulation. Some state updates are simple, such as model update of separator
pressure and liquid levels. Other, such as pipeline liquid hold-up requires more thought. If
the measured pipeline liquid rates differ from the predicted rates, should the estimated total
hold-up of liquid in the pipeline be changed, or should the calculated hold-up be trusted?
This and similar questions needs to be answered before smart liquid control can be used in
closed loop.

Although closed loop implementation of smart liquid control needs further work, it is the
authors opinion that further research will be worthwhile. Especially open-loop implementa-
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tion of smart liquid control for a pipeline where liquid handling are restrictive for production
during transients look promising and can be tested without much further work.

10.3 Model validation

This report is based on the assumption that the model used for predictions are perfect, i.e. no
model error. In a real application, this will not be the case. The previous section discussed
future work to manage the plant-model mismatch. However, using measurement feedback
cannot compensate for a poor model without sacrificing performance. Smart liquid control
is based on using a model to predict the arrival of liquid. The resulting solution will be
optimal only if the prediction is perfect. However, small differences from the predicted
arrival of liquid can be accounted for by small input adjustments. Larger differences will
require larger adjustments in input. The system is thus transferred away from the initial
solution, reducing the optimality of the closed loop control. Also, in order to account for
large model errors, more conservative control must be used, thus reducing performance.
To avoid the problems described, emphasis should be placed on tuning the model to the
pipeline responses

10.4 Meeting real-time constraints

The optimization algorithm described and used in this report is tailored to NMPC. Further
algorithm refinements, reducing the required number of times the system needs to be sim-
ulated are possible. However, more reduction in calculation time could probably be gained
from two other improvements.

The brute force approach for reducing the computation time is parallel processing. Given
enough computers, the sensitivity matrix can be obtained by simulating the system through
the prediction horizon only one time on each computer. The linesearch can be computed in
parallel in a similar manner.

Running simulations in parallel can only reduce the number of simulations that need to be
computed on the same computer – the simulation time over one prediction horizon will
remain unchanged. In order to reduce the time needed to simulate the system over the
prediction horizon once, the model must be simplified. Effort should be made in order to
obtain the fastest model that still fulfils the demands made on accuracy.

10.5 Connection between changes in separator pressure and liq-
uid rates

In Section 7.5, a connection between changes in separator pressure and the amount of liq-
uid discharged from the pipeline was pointed out. This phenomenon should probably be
investigated more closely in a multiphase flow setting in order to be able to use it to the
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full advantage. A proposal for a new control structure that might be investigated in order
to exploit the effect of separator pressure on liquid rates was proposed by the author in
Figure 8.1.



76



Bibliography

Allgöwer, F. and Zheng, A. (2000), (Eds.). Nonlinear model predictive control, progress in
systems and control theory, Vol. 26. Birkhauser Verlag.

Allgöwer, F., Findeisen, R. and Nagy, Z. (2004). “Nonlinear model predictive control: From
theory to application", J. Chin. Inst. Chem. Engrs., Vol. 35, no. 3, pp. 299–315.

Barclay, A., Gill, P. and Rosen, J. (1997), “SQP methods and their application to numerical
optimal control". citeseer.ist.psu.edu/barclay97sqp.html. Last visited: 1.
May 2007.

Biegler, L. T. (1998). “Advances in nonlinear programming concepts for process control",
Journal of Process Control, Vol. 8, no. 5,6, pp. 301–311.

Biegler, L. T. (2000). In Nonlinear Model Predictive Control, F. Allgöwer and A. Zheng
(Eds)., Chapter Efficient Solution of Dynamic Optimization and NMPC Problems, pages
219–244. Birkhäuser. ISBN 3-7643-6297-9.

Chen, H. and Allgöwer, F. (1998a). “A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability", Automatica, Vol. 34, no. 10, pp. 1205–1217.

Chen, H. and Allgöwer, F. (1998b). “A computationally attractive nonlinear predictive
control scheme with guaranteed stability for stable systems", Journal of Process Control,
Vol. 8, no. 5-6, pp. 475–485.

Cutler, C. R. and Ramaker, B. L. (1979). “Dynamic matrix control - a computer control
algorithm". In Proc. AIChE 86th National Meeting, Houston, TX.

Cutler, C. R. and Ramaker, B. L. (1980). “Dynamic matrix control - a computer control
algorithm". In Proc. The Joint Automatic Control Conference, San Francisco, CA.

Diehl, M., Bock, H. G., Schlöder, J. P., Findeisen, R., Nagy, Z. and Allgöwer, F. (2002).
“Real-time optimization and nonlinear model predictive control of processes governed
by differntial-algebraic equations", Journal of Process Control, Vol. 12, pp. 577–585.

Eagleton, B. (2001). “Snøhvit project: Hammerfest LNG project, slug catcher preliminary
engineering report". Engineering report.

Fuchs, P. (1997). “Multiphase pipeline flow". Technical report, NTNU. Norwegian original
title: Flerfase rørstrømning.

77

citeseer.ist.psu.edu/barclay97sqp.html


García, C. E. and Morshedi, A. M. (1986). “Quadratic programming solution of dynamic
matrix control (QDMC)", Chemical Engineering Communucations, Vol. 46, pp. 73–87.

Goldfarb, D. and Idnani, A. (1983). “A numerically stable dual method for solving strictly
convex quadratic programs", Mathematical Programming, Vol. 27, pp. 1–33.

Kalman, R. E. (1960a). “Contributions to the theory of optimal control", Bulletin de la
Societe Mathematique de Mexicana, Vol. 5, pp. 102–119.

Kalman, R. E. (1960b). “A new approach to linear filtering and prediction problems",
Transactions of ASME, Journal of Basic Engineering, Vol. 87, pp. 35–45.

Kleinman, B. L. (1970). “An easy way to stabilize a linear constant system", IEEE Trans-
actions on Automatic Control, Vol. 15(6), pp. 692.

Knutson, A. (2005). “Flow assurance operating strategy". Internal Statoil report.

Kwon, W. H. and Pearsons, A. E. (1977). “A modified quadratic cost problem and feedback
stabilization of a linear system", IEEE Transactions on Automatic Control, Vol. 22(5),
pp. 838–842.

Kwon, W. H., Bruckstein, A. M. and Kaliath, T. (1983). “Stabilizing state-feedback design
via the moving horizon method", International Journal of Control, Vol. 37(3), pp. 631–
643.

Lee, E. B. and Markus, L. (1967). Foundations of optimal control theory. Wiley.

Li, W. C. and Biegler, L. T. (1989). “Multistep, newton-type control strategies for con-
strained, nonlinear processes", Chem. Eng. Res. Des., Vol. 67, pp. 526 – 577.

Li, W. C., Biegler, L. T., Economou, C. G. and Morari, M. (1990). “A constrained pseudo-
newton control strategy for nonlinear systems", Computers and Chemical Engingeering,
Vol. 14, no. 4/5, pp. 451 – 468.

Maciejowski, J. M. (2002). Predictive Control with constraints. Prentice Hall. ISBN 0-
201-39823-0.

Martinsen, F., Biegler, L. T. and Foss, B. A. (2004). “A new optimization algorithm with
application to nonlinear MPC", Journal of Process Control, Vol. 14, no. 8, pp. 853 – 865.

Mathworks (2006), “The Mathworks, Inc. Software License Agreement - Deployment Ad-
dendum".

Mayne, D. Q., Rawlings, J. B., Rao, C. V. and Stockaert, P. O. M. (2000). “Constrained
model predictive control: Stability and optimality", Automatica, Vol. 36, pp. 789–814.

Meadows, E. S. and Rawlings, J. B. (1997). In Nonlinear process control, Chapter 5: Model
predictive control. Prentice Hall PTR. ISBN 0-13-625179-X.

Meum, P. “Optimal Reservoir Control with Nonlinear MPC and ECLIPSE". Master’s thesis,
Norwegian University of Science and Technology (NTNU).

Microsoft (1996), “DLLs for beginners". Microsoft Developer Support, Visual Studio 6.0.

78



Morari, M. and Lee, J. H. (1999). “Model predictive control: Past, present and future",
Computers and Chemical Engingeering, Vol. 23, pp. 667–682.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer-Verlag New York.
ISBN 0-387-98793-2.

Oliveira, N. M. C. and Biegler, L. T. (1995). “An Extention of Newton-type Algorithms for
Nonlinear Process Control", Automatica, Vol. 31, no. 2, pp. 281 – 286. ISSN 0005-1098.

Oliveira, N. M. C. and Biegler, L. T. (1994). “Constraint handling and stability properties
of model-predictive control", American Institute of Chemical Engineers Journal, Vol. 40,
no. 7, pp. 1138–1155.

Pearson, R. K. (1997). In Nonlinear process control, Chapter 2: Nonlinear Process Identi-
fication. Prentice Hall PTR. ISBN 0-13-625179-X.

Prett, D. M. and Gillette, R. D. (1980). “Optimization and constrained multivariable control
of a catalytic cracking unit". In Proc. The Joint Automatic Control Conference, San
Francisco, CA.

Qin, S. J. and Badgwell, T. A. (2003). “A survey of industrial model predictive control
technology", Control Engineering Practice, Vol. 11, no. 7, pp. 733 – 764.

Rawlings, J. B. (2000). “Tutorial overview of model predictive control", IEEE Control
Systems Magazine, Vol. 20, no. 3, pp. 38 – 52.

Richalet, J., Rault, A., Testud, J. and Papon, J. (1976). “Algorithmic control of industrial
processes". In Proc. The 4th IFAC symposium on identification and system parameter
estimation, pages 1119–1167.

Scandpower (2005a), “OLGA 2000 Grid Generator". Scandpower Petroleum Technology.

Scandpower (2006), “User Manual: Transient Multiphase Flow Simulator, Version 5".
Scandpower Petroleum Technology.

Scandpower (2005b), “User’s Manual: OLGA-Matlab toolbox ver 1.01". Scandpower
Petroleum Technology.

Schittkowski, K. (2005). “QL: A Fortran code for convex quadratic programming - User’s
guide, Version 2.11". Technical report, Department of Mathematics, University of
Bayreuth.

Silva, D. C. M. and Oliveira, N. M. C. (2002). “Optimization and nonlinear model predictive
control of batch polymerization systems", Computers and Chemical Engineering, Vol.
26, pp. 649 – 658.

Skogestad, S. and Postlethwaite, I. (2005). Multivariable Feedback Control: Analysis and
Design. John Wiley & Sons. ISBN 0470011688.

STATOIL (2005), “The long road to LNG". http://www.statoil.com - Snøhvit LNG
project, Electronic report. Last visited: 5. June 2007.

79

http://www.statoil.com


Storkaas, E. (2005). Stabilizing control and controllability: Control solutions to avoid
slug flow in pipeline-riser systems. PhD thesis, Norwegian University of Science and
Technology.

Strand, S. and Sagli, J. R. (2003). “MPC in STATOIL - Advantages with in-house technol-
ogy". In Proc. ADCHEM 2003, pages 97–103.

Strand, S. T. (1991). Dynamic optimization in state-space predictive control schemes. PhD
thesis, The University of Trondheim, Norwegian Institute of Technology.

Su, H. T. and McAvoy, T. J. (1997). In Nonlinear process control, Chapter 7: Artificial
Neural Networks for Nonlinear Process Identification and Control. Prentice Hall PTR.
ISBN 0-13-625179-X.

Tenny, M. J., Wright, S. J. and Rawlings, J. B. (2004). “Nonlinear model predictive control
via Feasibility-Pertubed Sequential Quadratic Programming", Computational Optimiza-
tion and Applications, Vol. 28, pp. 87–121.

Thomas, Y. A. (1975). “Linear quadratic optimal estimation and control with receding
horizon", Electronics Letters, Vol. 11(1), pp. 19–21.

Torpe, H. (2006). “Surge wave control: Can a topside choke and a controller replace a 500
million nok slug catcher?". Project assignment report, Department of technical cybernet-
ics, Norwegian University of Science and Technology.

80



81

Appendix A

Using OLGA as model in MPC

THIS appendix will describe the implementation of the SEPTIC-OLGA interface aling
with some of the general aspects of the solution. In Section 6.2.1 the need for extended

interaction, requiring new capabilities, is explained.

A.1 SEPTIC-OLGA interface

A.1.1 Interface description

As OLGA is provided with a toolbox that can be used for online control of simulations
from MATLAB (Scandpower, 2005b), this was thought to provide a good starting point
for communication between OLGA and SEPTIC. The toolbox is in the form of MATLAB
p-files, which means that the source code cannot be read. Hence, its functionality cannot be
copied into a C++ library directly. The only way to utilize this code is therefore to call the
p-files.

A.1.2 MATLAB-generated DLL

MATLAB is equipped with a toolbox called MATLAB COMPILER. This toolbox can cre-
ate C and C++ library files from MATLAB script files (m-files). Used in conjunction with
MATLAB Component Runtime (MCR) this library can be used to access the functionality
in m-files from a C or C++ application. The library, in the form of a DLL was generated
using the command:

mcc -W cpplib:<name-of-interface> -T link:lib <list-of-m-files> -v

The argument “mcc” is used to invoke the Compiler. “-W cpplib:<name-of-interface>”
specifies that a C++ interface should be built with interface and header files named “name-
of-library”. In addition an initialization and a termination function for including the library



in applications are created. “-T link:lib” specifies that C/C++ wrapper files should be com-
piled to object form which is linked into a DLL. <list-of-m-files> is simply a list of files that
should be included in the library. “-v” displays the compilation steps.

The compiler only accepts m-files when building libraries. The toolbox, however, are sup-
plied as p-files. (MATLAB pseudo code files) Thus, MATLAB m-files calling the toolbox
p-files had to be created.

Because the OLGA-MATLAB toolbox has been unchanged for the last couple of versions,
the library generated can (at least) be used to interface OLGA versions between 4.13 and
5.1. As long as the toolbox is unchanged, no modification is needed. Also, if the toolbox is
changed, it is fairly quick to generate a new library.

A.1.3 Using the MATLAB-generated library from SEPTIC

Matlab Compiler generates <name-of-interface> files with the extensions cpp, h, lib, ctf, dll,
exp and exports as well as a <name-of-interface>_mcc_component_data.c file. There are
probably numerous possibilities as to how these files could be included in an application in
Microsoft Visual Studio 6.0. However, the following recipe works and is the method chosen
for this application.

- The file with the extension lib and the mclmcrrt.bil file residing in $MATLAB\extern\lib\
win32 are added to the project. - The $MATLAB\extern\ include directory is added to the
“Additional include directories” along with the directory containing the generated interface
files.

After the correct files have been included, the project can be built. However, before any li-
brary functions can be called, the mclInitializeApplication and the <name-of-interface>Initialize
functions needs to be called. In PipeModelModl this is accomplished by calling these func-
tions the first time its model function is called.

Consider a MATLAB function of the following form:

[ ouput1, output2 ] = important_function ( input1 , input2 )

The function prototype for the C++ library function created from important_function will
be:

void MW_CALL_CONV important_function ( int nargout
, mwArray& output1
, mwArray& output2
, const mwArray& input1
, const mwArray& input2 )

mwArray is the parameter type used for input to and output from MATLAB generated
C++ libraries. For more information on this class, consult MATLAB help. The parameter
nargout is the number of function output parameters.

82



Deployment of application requires the installation of MCR. MCR and the library created
by MATLAB COMPILER can be deployed without the need for a MATLAB license, as can
be seen in the MATLAB license agreement. Mathworks (2006)

The first time the application is started, some time will be spent extracting the Component
Technology File (CTF) archive. It is also possible to do this without starting the application.

A.2 Dynamic Link Libraries

Dynamic Link Libraries (DLLs) are shared libraries used for WIN applications. This dis-
cussion will only address DLLs for WIN32 applications. For additional information on
DLLs, se for example Microsoft (1996). This section is based on information from this
source.

Dynamic linking differs from static linking in that the application is linked to the library
at run time. This is a significant difference compared to static libraries which is linked to
the application at link time and incorporated in the applications executable file. This is an
advantage if the code in the DLL needs to be rebuilt. Since applications are linked to the
library only at run time, the application needs to be neither recompiled nor relinked.

Another difference is how the library is loaded into memory. With static libraries, the
library code is incorporated in every application that uses it, thus occupying as many times
the library size as there are applications using it. A dynamic library will often reside in
its own memory and which are mapped into each application using it. Therefore, only one
copy of the DLL will exist at run time. There is, however, possible for the DLL to contain
separate sets of data for each of the applications that uses the DLL.
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Appendix B

Additional simulation results

0 50 100 150
5

10

15

20

25

30

Pipeline length [km]

Li
qu

id
 m

as
s 

flo
w

 [k
g/

s]

 

 
True liquid mass rate
Filtered liquid mass rate

Figure B.1: Comparison of true liquid mass rate and filtered liquid mass rate during step in production rate from
12.8 MSm3/d to 20.8 MSm3/d
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Figure B.2: Comparison of true liquid holdup and filtered liquid holdup during step in production rate from
12.8 MSm3/d to 20.8 MSm3/d
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Figure B.3: Oil level during ramp-up of pipeline
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Figure B.4: Water level during start-up of pipeline
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