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Abstract14

We present a theoretical and numerical framework – which we dub the Direct Integra-15

tion Method (DIM) – for simple, efficient and accurate evaluation of surface wave mod-16

els allowing presence of a current of arbitrary depth dependence, and where bathymetry17

and ambient currents may vary slowly in horizontal directions. On horizontally constant18

water depth and shear current the DIM numerically evaluates the dispersion relation of19

linear surface waves to arbitrary accuracy, and we argue that for this purpose it is su-20

perior to two existing numerical procedures: the piecewise-linear approximation and a21

method due to Dong & Kirby [2012]. The DIM moreover yields the full linearized flow22

field at little extra cost. We implement the DIM numerically with iterations of standard23

numerical methods. The wide applicability of the DIM in an oceanographic setting in24

four aspects is shown. Firstly, we show how the DIM allows practical implementation25

of the wave action conservation equation recently derived by Quinn et al. [2017]. Sec-26

ondly, we demonstrate how the DIM handles with ease cases where existing methods strug-27

gle, i.e. velocity profiles U(z) changing direction with vertical coordinate z, and strongly28

sheared profiles. Thirdly, we use the DIM to calculate and analyse the full linear flow29

field beneath a 2D ring wave upon a near–surface wind–driven exponential shear cur-30

rent, revealing striking qualitative differences compared to no shear. Finally we demon-31

strate that the DIM can be a real competitor to analytical dispersion relation approx-32

imations such as that of Kirby & Chen [1989] even for wave/ocean modelling.33

1 Introduction34

Surface waves in ocean and coastal waters are often affected by currents. Partic-35

ularly when the current varies with depth — i.e., it has vertical shear — the interactions36

between surface waves and current can be rich and highly non–trivial even in the linear37

wave regime. While this has been recognized for a long time [e.g. Peregrine, 1976], it is38

recently becoming increasingly clear that the effect of shear in the water column must39

be accounted for in order that environmental waves may be fully understood, and ad-40

equately modeled, as emphasized in a recent review of coastal wave modelling [Cavaleri41

et al., 2018]. Several oceanographic models such as Delft-3D [Elias et al., 2012] and ROMS,42

used for example in the coupled COAWST model [Kumar et al., 2012], now include as43

an option of the wave–dispersion correction due to a horizontal ambient current U(z)44

which varies with vertical coordinate z. Necessary theoretical tools and insights to this45

end have been developed in recent studies [Banihashemi et al., 2017; Quinn et al., 2017],46

where it was concluded that wrongly accounting for shear in such wave models, or ne-47

glecting it, can lead to serious errors. Failure to include Langmuir turbulence, a direct48

consequence of wave–shear current interaction [Leibovich, 1983], is a prime suspect for49

the systematic misprediction in global climate models of the ocean surface temperature50

and boundary layer depth, particularly in the southern oceans [Belcher et al., 2012]. Wave51

effects moreover greatly influence storm surge inundation as shown by Wu et al. [2018],52

where strongly sheared currents are present.53

Knowledge of the effect of shear on wave dispersion is also necessary in order to54

remotely measure near–surface currents using X-band of HF/VHF radar [Stewart & Joy ,55

1974; Teague, 1986; Shrira et al., 2001; Lund et al., 2015; Campana et al., 2017], used56

inter alia to shed light on exchange of heat, mass and momentum between ocean and57

atmosphere, and transportation of nutrients and pollutants.58

In this article we present a new framework for numerical calculation of wave dis-59

persion on arbitrary shear currents, which compliments the analytical framework devel-60

oped by Ellingsen & Li [2017], and applied to the case of ship waves by Li et al. [2017].61

We refer to it as the Direct Integration Method (DIM). The DIM is simple to implement,62

combining only standard operations for solving linear inhomogeneous differential equa-63

tions, numerical integration and root–finding, for which any of a number of methods may64
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be used. The implementation tested herein with an iterative scheme which uses very ba-65

sic procedures: finite differences, Simpson’s method, and Newton’s method, respectively66

(an example implementation in MATLAB is included in supplementary materials). In67

the interest of fair comparison the iterative numerical scheme is deliberately simple, and68

we do not claim it is the universally optimal option for implementation of the DIM.69

The DIM has a number of attractive features. It can handle ambient currents U(z)70

(z: vertical coordinate) which change direction with depth with the same ease as uni-71

directional currents. It facilitates estimation of the relative error of the calculated value72

of c(k) at little additional cost (k: wave vector in the horizontal plane; c: phase veloc-73

ity). And it may provide the full sub–surface flow field within linear wave theory, with-74

out any increase in complexity. The general solutions of the full flow field are the fun-75

damental components of analysing 3D rotational waves of finite amplitude, a question76

for future studies.77

A particular feature of the DIM is its ability to include the effects of slowly vary-78

ing water depth. A wave action conservation equation for this situation was recently de-79

rived by Quinn et al. [2017], but those authors deemed that its application in ocean and80

climate models was impractical due to computational cost. We believe that with the DIM81

this could change radically. We present both an analytical framework and an extension82

of DIM numerics to evaluate the equation of Quinn et al. [2017].83

We argue that the DIM is superior to the two existing numerical methods for cal-84

culating c(k) with arbitrary accuracy over constant water depth that we are aware of,85

namely the piecewise–linear method [e.g. Zhang , 2005], and a method due to Dong &86

Kirby [2012]. It is considerably simpler to implement than the former and is faster and87

easier to parallelize than the latter, which also cannot provide the flow field in a straight-88

forward manner. Neither method has been developed to handle changing depth.89

The structure of the paper is as follows. In Sec. 2 we define the system under con-90

sideration. Sec 3 reviews existing methods for calculating or estimating c(k) on a cur-91

rent U(k) of arbitrary depth dependence, including numerical procedures of arbitrary92

accuracy, and widely used analytical approximations. The Direct Integration Method93

is presented in Sec. 4. We apply it with an iterative scheme to a range of different cases94

in Sec. 5. In Sec. 6 we compare the DIM to existing numerical and analytical approaches95

in terms of accuracy and cost, before concluding remarks are provided in Sec. 7. The nu-96

merical performance of the iterative scheme is tested in an appendix.97

2 Theory formalism98

We consider a plane wave running on a horizontal background flow U(x, z) where100

x = (x, y) is the position vector in the horizontal plane and z is the vertical axis such101

that the undisturbed surface is located at z = 0, over varying water depth h(x).102

A geometry of the system is depicted in Fig. 2. Assume incompressible and invis-103

cid flow, and that the medium above the surface can be neglected. We assume pertur-104

bations of the background flow due to the wave motion is small, and work eventually within105

linear wave theory. A wave in the horizontal plane with wave vector k = (kx, ky) =106

k(cos θ, sin θ) generates perturbations that are understood to be proportional to exp(ik·107

x− ikc(k)t), where k = |k| is the wave number, c(k) is the phase velocity of the wave108

along direction k, and t is the time.109

Before proceeding to the governing equations and boundary conditions, we first in-110

troduce two key assumptions;111

–3–



Confidential manuscript submitted to JGR-Oceans
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k

Figure 1. Geometry of the three-dimensional wave and current system.99

I Fast variation of wave phase; the wave phase S ≡ k · x− kct is of rapid spatial112

and time variation – O(1) – when compared to the slow variation of the shear cur-113

rent, water depth , and wave amplitude A in the horizontal plane and time.114

II We assume wave motions to be affected by a background current, but not vice versa.115

Assumption II allows us to first look at purely non-wave motions (wherein param-116

eters are defined with the superscript ‘(0)’) and then together with wave motions.117

2.1 The steady background flow118

When there is no wave motion and the time dependence is negligible , the Euler119

and continuity equations yield after eliminating the horizontal velocity perturbation com-120

ponents û(0) and v̂(0),121

∇ ·U + ŵ′(0) =0; (1a)

(U · ∇)U + U′ŵ(0) =−∇p̂(0)/ρ; (1b)

(U · ∇)ŵ(0) + ŵ′(0) =− p̂′(0)/ρ. (1c)

where a prime denotes the derivative with respect to z, ŵ(0) is the vertical velocity and122

p̂(0) is the dynamic pressure, g is the grativational acceleration, and the operator ∇ ≡123

(∂x, ∂y). Eqs. (1) assume no variation of density ρ, precluding stratification and inter-124

nal waves.125

Thelinearized boundary conditions are

p̂(0) − ρgη(0) =0; at z = 0, (2a)

ŵ(0) −U · ∇η(0) =0; at z = 0, (2b)

ŵ(0) −U · ∇h =0; at z = −h, (2c)

where η(0) is the surface elevation and ρ is the density of fluid.126

The solutions of (1) and (2) work as boundary conditions when additional wave127

motions are considered.128
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2.2 Small wave motion in the presence of a shear current129

We now proceed to consider wave motion together with a background current. A130

generic field variable χ̃ is then expressed χ̃ ≡ χ̂(0) + χ exp[ik · x − ikc(k)t], the latter131

of which is the variable due to wave motion.132

The flow of a wave-shear current system is governed by the Euler and continuity
equations. Assumption I allows necessary linearisation as follows. After the linearisa-
tion with respect to surface steepness ε = kA (ε � 1 , A is a characteristic wave am-
plitude) the flow may be expressed as the boundary value problem

(k ·U− kc)(w′′ − k2w) = k ·U′′w; − h < z < η(0), (3a)

(k ·U− kc)2w′ − (gk2 +
Tk4

ρ
)w − k ·U′(k ·U− kc)w = 0; z = η(0), (3b)

w = 0; z = −h(x, y), (3c)

where w(k, z) is the amplitude of the vertical velocity due to wave motion and T is the133

surface tension coefficient. Eq. (3a) is called the Rayleigh equation (or the inviscid Orr–134

Sommerfeld equation). We are thus faced with an eigenvalue problem with two unknowns,135

w(z) and c(k).136

3 Existing approaches for constant h137

Existing approaches for calculating or estimating the value of c(k) when h is con-138

stant with respect to x may be divided into two categories: numerical procedures with139

arbitrary accuracy, and analytical approximations with theoretical error. In the follow-140

ing we briefly review these wherein constant water depth is assumed and η(0) ≡ 0 is141

hence obtained.142

3.1 Arbitrary accuracy143

Numerical schemes to determine c(k) in the past have included, in particular, two144

very different strategies.145

The first, and oldest approach is to divide the water column into n artificial lay-146

ers, and presume U(z) to vary as a linear function of z within each layer. The linearised147

Euler equations now permit explicit solutions with undetermined coefficients within each148

layer. When U(z) does not vary in direction there are n+1 free coefficients which are149

determined as zeroes of the system determinant. We refer to this method as the piecewise–150

linear approximation (PLA). The idea goes back well over a century [Rayleigh, 1892],151

and has recently been analysed in further detail [Zhang , 2005; Smeltzer & Ellingsen, 2017].152

The method is tried and trusted, physically intuitive, and reasonably efficient when mod-153

erate accuracy is required (4-5 layers are typically sufficient for error < 5%), but has154

certain drawbacks. The foremost of these is that n + 1 eigenvalues for c(k) are found155

of which two must be chosen which describe surface wave propagation, the rest being vor-156

ticity waves generated by the artificial discontinuities of U ′(z) and should be discarded.157

This considerably complicates implementation. Secondly, directly generalizing U(z) to158

allow changing direction would double the number of undetermined coefficients, much159

increasing the cost. A more sophisticated procedure could likely avoid this, but we are160

not aware of any implementation of the PLA for turning U(z) to date.161

An alternative procedure was used by Dong & Kirby [2012]. They introduce an ad-162

ditional function Q(z) = w(z)/w′(z) which transforms the Rayleigh equation into a non-163

linear ordinary differential equation for Q which contains both Q2 and dQ/dz, with bound-164

ary conditions at the bottom and free surface, respectively. The eigenvalue c is thence165

found using a shooting method. The fact that the system is nonlinear is a disadvantage166

which increases numerical cost and makes parallelization more cumbersome. We argue167
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in Section 6 that our new method has several advantages over that of Dong & Kirby [2012],168

perhaps the greatest of which that our new method solves a linear second order differ-169

ential equation .170

3.2 Analytical approximations171

An altogether different approach is to find an explicit analytical expression depen-
dent on k and U(z) which approximates c(k). The most used of these was first presented
by Skop [1987] generalizing Stewart & Joy [1974], and was developed to second order ac-
curacy by Kirby & Chen [1989]. This relation (generalized to the 3D case of a turning
U(z)) we call the 3DKC, and to leading order may be written (see Ellingsen & Li [2017])

c̃(k) ≈ c0(1− δ); δ =

∫ 0

−h
dz

k ·U′(z) sinh 2k(z + h)

kc0 sinh 2kh
. (4)

Here, and for later reference, we define

U0 = U(0), U′0 = U′(0), c̃(k) = c(k)− k ·U0/k,∆U = U−U0, w0 = w(k, 0)

and c0 =
√

(g/k + Tk/ρ) tanh kh. We recently proposed an alternative approximation

c̃(k) ≈ c0(
√
δ2 + 1− δ), (5)

which has certain advantages Ellingsen & Li [2017]. Both approximations come with a172

second order accurate extension providing excellent accuracy at far greater cost.173

For typical shear profiles occurring in oceanographic settings, both leading order174

approximations estimate c̃(k) to within 5% for all k, often significantly better. For many175

practical cases this is quite adequate. However, for strongly sheared flows occurring in176

other systems, such as fast discharge of a surface jet into quiescent water or fast flow in177

a thin film, both approximations may become inaccurate and approximation (4) could178

even become unphysical [Ellingsen & Li , 2017]. In a setting where computing cost is im-179

portant, (4) and (5) would in practice be used “blindly” without any estimation of er-180

ror, since this would in essence require a far more expensive second order calculation.181

We show in later sections that our method has an explicit error estimate as a built-in182

feature. It is moreover more robust than analytical approximations and with some ex-183

tra iterations is able to tackle even profiles with extremely large shear and curvature where184

(4) and (5) are poor. For moderately sheared profiles our method is comparable to (4)185

and (5) also in terms of cost, as discussed in Sec. 6.3.186

4 Direct integration method187

We now consider the more general situation where water depth is allowed to vary,
different from the existing approaches reviewed in Sec. 3. We define

[ū, v̄, w̄, p̄, ζ̄](k, z) = [u, v, w, p/ρ, ζ](k, z)/w(k, η(0)). (6)

Here u and v are amplitudes of the horizontal velocities, p(z) is amplitude of the dynamic
pressure, and ζ is the surface elevation, all in k space. The boundary value problem (3)
may then be written following Ellingsen & Li [2017] and Li & Ellingsen [2018] ,

w̄′′ − k2w̄ =
k ·U′′

k ·∆U− kc̃
w̄; − h < z < η(0); w̄(−h) = 0; w̄(η(0)) = 1. (7a)

DR(k, c̃) = 0, (7b)
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where

DR(c̃) ≡ c̃2 + c̃Ic(c̃)− c20h̄, (8)

Ic(c̃) =
k ·U′0 tanh kh̄

k2
+ c̃

η(0)∫
−h

dz
k ·U′′w̄(k, z) sinh k(z + h)

k(k ·∆U− kc̃) cosh kh̄
, (9)

c20h̄ = (g/k + Tk/ρ) tanh kh̄, (10)

h̄ = h+ η(0). (11)

Ic denotes the contribution from a shear current on wave motion. For the case where k·188

∆U−kc̃ = 0 for some critical depth zs ∈ 〈−h, η(0)〉, see discussion in section 4.3. The189

implicit dispersion relation (7b) is found by multiplying (3a) by sinh k(z+h), integrat-190

ing with respect to z, and using the boundary condition (3b) ; refer to Li & Ellingsen191

[2018] for details.192

For later references, we define

σ̃ =kc̃, σ0h̄ = kc0h̄, σ(k, z) = kc̃− k ·∆U ≡ kc− k ·U. (12)

As is discussed in Ellingsen & Li [2017] for uniform water depth, when we further193

assume slow current compared to fast wave motion – O(U/c) � 1, (4) is readily ob-194

tained from (7); when the depth vertical shear is assumed to be small compared to wave195

motion, we obtain (5).196

The philosophy of the direct integration method (DIM) is to treat Eqs. (7) as two197

coupled equations with w̄ and c̃ as the unknowns and then to obtain the solutions of Eqs. (7)198

with numerical approaches. Indeed, from a numerical point of view the DIM is simple199

to implement, combining only standard operations for solving linear inhomogeneous dif-200

ferential equations, numerical integration and root–finding, for which any of a number201

of methods may be used. We introduce an iterative scheme in Sec. 5.1 based on New-202

ton’s method; it is deliberately basic to ensure comparison with other methods be as fair203

as possible, and we do not claim it is the optimal choice.204

4.1 Error estimates205

Assume that c̃≈ is an approximation to the exact solution c̃e to (7b). A Taylor ex-
pansion of (7b) about c̃ = c̃≈ reads (dependence on k is understood)

DR(c̃≈ + ∆c) = DR(c̃≈) + ∆c
∂DR

∂c̃
(c̃≈) + ... = 0, (13)

where ∆c = c̃e − c̃≈ and

∂DR

∂c̃
=2c̃+

(
Ic + c̃

∂Ic
∂c̃

(c̃)

)
, (14)

∂Ic
∂c̃

=

η(0)∫
−h

dz
k ·U′′(k ·∆U)w̄(k, z) sinh k(z + h)

kσ2(k, z) cosh kh̄
. (15)

This yields an estimate of the relative error R(c̃≈),

R(c̃≈) ≡
∣∣∣∣∆cc̃e

∣∣∣∣ ≈
∣∣∣∣∣ DR(c̃≈)

c̃≈
∂DR

∂c̃ (c̃≈)

∣∣∣∣∣ , (16)

Since DR and ∂DR/∂c̃ need to be calculated anyway in order to solve (7a), the er-206

ror estimate (16) can be calculated with very little additional cost.207
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4.2 An explicit approximation of the DIM208

Based on (16) , we obtain

c̃ ≈ c̃≈ −
DR(c̃≈)

∂DR(c̃≈)/∂c̃
(17)

which gives a good approximation of c̃ if we insert either (4) or (5) as the c̃≈, as was noted.209

This is a form of the solution with a single iteration . In principle, this returns the next210

order approximation of c̃≈ to c̃ and the accurate w̄ of the input c̃≈(k). Compared to the211

second order corrections to (4) [Kirby & Chen, 1989] and (5) [Ellingsen & Li , 2017], (17)212

offers much faster computation213

4.3 Critical layers214

The integrand of the integral in (9) has poles whenever a critical layer exists, i.e.215

there exists a depth zc ∈ 〈−h, 0〉 so that k ·U(zc) = kc. This situation requires care-216

ful treatment of the integration path. In this circumstance one should in principle con-217

sider how the waves were created, treating the system physically as an initial value prob-218

lem [Peregrine, 1976]. One way to achieve this is to assume that a plane wave of frequency219

ω(k) has been created by a disturbance which has grown in time from zero at t = −∞,220

in a manner proportional to e−iωt+εt letting (ε→ 0+). Mathematically, this moves the221

integration path slightly off the real z axis, making the integral in (9) well defined. Us-222

ing the resulting integral, the real part c̃, pertaining to wave propagation, is kept in the223

limit ε→ 0+. (The imaginary part has a bearing on the stability of the critical layer;224

see e.g. discussion in Velthuizen & van Wijngaarden [1969]; Shrira [1993]; Ellingsen &225

Li [2017]).226

4.4 Full flow field solution227

A useful trait of the DIM is that in addition to the dispersion relation c(k) it can
calculate the full flow field with little extra cost. Given c and w̄(z), remaining scalar flow
fields ū, v̄, p̄, ζ̄ are given by

ik2p̄/ρ = −(kc− k ·U)w̄′ − k ·U′w̄, (18a)

k2(kc− k ·U)ū = ikx[k ·U′w̄ − (k ·U− kc)w̄′]− ik2U ′xw̄, (18b)

k2(kc− k ·U)v̄ = iky[k ·U′w̄ − (k ·U− kc)w̄′]− ik2U ′yw̄, (18c)

kc̃ζ̄ = iw̄0. (18d)

In order to obtain dimensional amplitudes we require the value of w0. It can most of-228

ten be readily calculated from the initial conditions of a particular problem. For a plane229

wave with known amplitude a, w0 = −ikc̃a, following from the kinematic free-surface230

boundary condition.231

4.5 Group velocity from a kinematic approach232

Based on a kinematic approach, the group velocity can be readily obtained using233

the full derivatives on the relation DR(k, kc̃) ≡ 0 with respect to kx and ky, i.e.234

∇kDR(k, σ̃) +
∂DR(k, σ̃)

∂σ̃
∇k(σ̃) ≡ 0, (19)
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in which the operator ∇k = (∂kx , ∂ky ). The above relation further yields the group
velocity defined

cg ≡∇k(σ̃) + U0 =
σ0h̄

σ̃ cgnc
− 1

2∇k(kIc)

1 + kIc
2σ̃ + 1

2
∂Ic
∂c̃ (c̃)

+ U0, (20)

cgnc
=
c0h̄
2

(
1 +

2kh̄

sinh 2kh̄

)
k

k
, (21)

in which ∇k(kIc) can be calculated via a numerical method and cgnc is the group veloc-235

ity in the absence of a background flow. (20) is applied to verify the group velocity de-236

scribed by (24).237

4.6 Conservation equation of wave action238

We now proceed to the conservation equation of wave action ( henceforth called239

the wave action equation, WAE ) first developed by Voronovich [1976] based on a dy-240

namic approach and further developed by Quinn et al. [2017], and show how the DIM241

can be used for a practical implementation of this equation. The equation is in general242

applicable for any flow where there is large separation of lengthscales between the wave243

motion and vertical current variation on the one hand, and the horizontal variation of244

the current and bathymetry on the other, an approach well known from geometrical op-245

tics. This is a very typical situation in ocean and coastal modelling; see Quinn et al. [2017].246

The WAE can be derived by retaining terms to O(ε2) to obtain247

∂Ivs
∂t

+∇ · (cgIvs) = 0. (22)

in which

Ivs =

η0∫
−h

k ·U′′

2σ2k2
w2dz +

[(
(g + Tk2/ρ)

σ3
− k ·U′

2σ2k2

)
w2

]∣∣∣∣
z=η0

, (23a)

cgIvs =

η(0)∫
−h

(
k ·U′′

2σ2k2
U +

U′′

2σk2
− k

k2

)
w2dz

+

[((
(g + Tk2/ρ)

σ3
− k ·U′

2σ2k2

)
U− U′

2σk2
+

(g + Tk2/ρ)k

σ2k2

)
w2

]∣∣∣∣
z=η(0)

, (23b)

which are based on the notations defined herein and surface tension is considered and248

η(0) ≡ 0 for uniform water depth. w in (23) is the solution of the boundary value prob-249

lem described by (3a). Refer to Quinn et al. [2017] for details and discussions.250

The DIM can be readily employed in (23). As was noted, w = w̄wη0(k, η(0)) in
which w̄ is the solution of (7) and wη0 ≡ w(k, δtt, η

(0)) is the amplitude of slow spa-
tial and time variation, if any. We rewrite (22) and obtain

∂

∂t

(
w2
η0

kσ̃
Īvs

)
+∇ ·

(
cg Īvs

w2
η0

kσ̃

)
= 0, (24)
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wherein

Īvs =

η(0)∫
−h

σ̃

σ
Qkw̄

2dz +
σ2

0h̄

σ̃2 tanh kh̄
− Sk, (25a)

cg =
σ̃

k

N

Īvs
, (25b)

N =

η(0)∫
−h

(
Qk

kU

σ
+ Q− k

)
w̄2dz +

[(
σ2

0h̄

σ̃2 tanh kh̄
− Sk

)
U

c̃
− S +

σ2
0h̄

σ̃2 tanh kh̄

k

k

]∣∣∣∣∣
z=η(0)

,

(25c)

S =
U′

2σ̃

∣∣∣∣
z=η(0)

, Sk =
k · S
k

, Q =
U′′

2σ
, Qk =

k ·Q
k

, (25d)

where N, Īvs, S, and Sk are dimensionless parameters, Q and Qk are of the same unit251

as k. It is straightforward to find cg = cgnc
+ U when the current is irrotational, i.e.252

U′ = U′′ ≡ 0.253

5 Numerical scheme and example applications254

In this section we explore the numerical potentials of the DIM and demonstrate255

and test the DIM with an iterative algorithm for a range of different practical applica-256

tions. Discussions regarding criterion of convergence and an estimate rate of convergence257

of the iterative algorithm are presented in Appendix A: .258

5.1 Iterative algorithm259

Indeed, Eq. (7b) is but a nonlinear scalar equation for c̃, as can be seen by noting260

that for some value of c̃ Eq. (7a) determines w̄ completely. Naturally a solution for c̃,261

and consequently w̄, is iterative. The essence of the iterative algorithm is to consider w̄262

as a function of an approximation c̃≈ of c̃ defined implicitly by Eq. (7a) and evaluate w̄(c̃≈)263

with an explicit scheme, as described below in step 1.264

We discretize the z axis into N points zi, i = 1, 2, ..., N . The influence of U on265

the surface wave falls off for increasing |z| as ∼ exp(kz); For short waves compared to266

h, therefore, contributions from the water column will be negligible for z below some thresh-267

old which depends on the desired accuracy. We choose the grid points equidistantly so268

that z0 = η(0) and kzN = −max[α + 2 ln(N/N0), kh]; we found α = 3.5 and N0 =269

7 to be suitable. The “bottom” condition used is now w̄(zN ) = 0. This discretization270

works well for all cases we have tested yet we do not claim that it is the universally op-271

timal choice.272

Each iteration consists of three basic steps.273

1. w̄(c̃; zi) is calculated from Eq. (7a) using the value of c̃ from the previous itera-274

tion. For the first iteration an initial guess for c̃ is required.275

2. An improved estimate of c̃ is calculated from Eq. (7b) using w̄ from step 1.276

3. The error of the calculated c̃ is then estimated as described in section 4.1, and it-277

eration is terminated once a tolerance is reached.278

The number of iterations needed depends on the accuracy of the initial guess, yet279

in cases of moderate shear we shall see that a single iteration with c0(k) as a naive ini-280

tial guess, is accurate to within a few percent, sufficient for many purposes. A more ac-281

curate but more expensive first guess could be made using e.g. (4) or (5).282
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A number of standard methods exist for performing the first two steps of each it-
eration, the choice of which determines the computational cost and accuracy of the scheme
of the DIM. In our implementation we have solved Eq. (7a) [step 1] using a finite dif-
ference scheme with a 2nd order central difference approximation for w̄′′, resulting in a
tridiagonal linear problem. Updating the value of c̃ using (7b) [step 2] we do with a sin-
gle iteration of Newton’s method, i.e.

c̃j+1 = c̃j − DR(c̃j)

∂DR/∂c̃|c̃=c̃j
, (26)

in which j denotes the jth iteration.283

All integrals with respect to z we calculate using Simpson’s method, all on the same284

grid of z-values.285

5.1.1 Computational complexity286

The computational complexity of the above three steps is primarily from Step 1287

and is of O(N). If we implement ‘blind’ predictions as (4) or (5) do, then one or two it-288

erations (i.e. M = 1 or M = 2 in which M is the total number of iterations) is suffi-289

cient to achieve the same accuracy as (4) and (5), and an error estimate and a good ap-290

proximation of w̄ in all evaluation points along the z-axis are also obtained at little or291

no extra cost, see Sec. 5.3.292

Furthermore, if we use either (4) or (5) as an initial input of the DIM, The accu-293

racy of the DIM from a single iteration is much increased. In most of the tested cases294

in the present paper, we use coh̄ as a naive guess to make comparisons of methods as fair295

as possible. Also calculating group velocity cg using Eq. (24) incurs no additional com-296

plexity, and the overall complexity remains O(N).297

Quinn et al. [2017] comment that ”the WAE ... is difficult to apply to operational298

wave models as it is too computationally intensive: it is required to solve the Rayleigh299

equation for every node, frequency, direction, etc. at every time step” for which reason300

they derive an approximate (explicit) form of (23) that suffers from a loss of accuracy.301

However, the DIM can change this picture radically; good accuracy may be achieved with302

the same complexity as numerical evaluation of the explicit equation of Quinn et al. [2017].303

As we will demonstrate, N = 7 is enough for accuracy better than a few percent in typ-304

ical cases and an example implementation of the DIM for slowly varying water depth is305

provided in Sec. 5.5.306

5.2 Turning profiles307

In Ellingsen & Li [2017] approximations (4) and (5) were compared for a spiral-311

ing velocity field, but we were not in a position to compare the predictions to the accu-312

rate result since this was beyond the capabilities of the PLA, the best numerical method313

available at the time. With the DIM this task is easily accomplished.314

As in Ellingsen & Li [2017] we consider the profile,

U(z) = U0 sinhα(z + h)(ex cosκz + ey sinκz). (27)

Choosing αh = 1 corresponding to a wavelength 2πh, we consider waves propagating315

in different directions θ.316

As conjectured in Ellingsen & Li [2017] the 3DKC estimate (4) performs relatively317

poorly for the turning profiles compared to unidirectional examples, particularly in the318

area 0.1 . θ/π . 0.2 in this example. As shown in Fig. 2a-c, where kh = 1, this holds319

true even for very weakly turning profiles with κh = 0.3 and κh = 1, and worsens with320

stronger changes of direction. The 3DKC tends to perform well in the vicinity of θ =321

–11–



Confidential manuscript submitted to JGR-Oceans

0.02

0.01

0.
01

0.01

0.01

0.
01

0.
01

0.02

0.02

0.0
2

0.
02

0.
02

0.05

0.05

0.
05

0.
05

0.1

0.
1

0.
1 0.15

0.15

0.
15

0.
2

k
h

0.1

0.2

0.5

1

2

0.01
0.01

0.01

0.01
0.01

0.01

0.
01

0.
01

0.
01

0.
01

0.02

0.02

0.02

0.
02

0.
02

0.
02

0.
02

0.05

0.
05

0.
05

k
h

µ/¼

(d) (e)

µ/¼ µ/¼ µ/¼

0.2

0.5

1

2

5

10

µ/¼

∙h=0.3 ∙h=1.0 ∙h=¼/2
(a) (c)(b)

-1 0  1
0.1

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 -1 0  1-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

5

10
Error estimate from EL1st Error estimate from KC1st

Figure 2. Error calculated for estimates from analytical approximations (4) and (5) (Denoted

KC1st and EL1st, respectively, for the turning profile (27) with different parameters as shown. In

all panels Fr = U0/
√
gh = 0.5 and αh = 1. In (a,b,c), kh = 1, and in (d,e) κh = 1.

308

309

310

π, yet the approximation (5) appears to be more consistent. The error estimates for the322

two analytical approximations as functions of θ and kh are shown in Fig. 2d,e. For both323

cases performance is least good for long wavelengths. While one should not draw too strong324

conclusions based on a single example, Fig. 2 seems to indicate that approximation (5)325

is preferable for turning profiles. A more careful analysis is beyond the scope of the present326

Article.327

5.3 Strongly sheared profiles328

In this section we demonstrate how the DIM can readily handle very strongly sheared
profiles, of which we consider two example flows

U(z) = 3
√
gh exp(z/h), (28a)

U(z) =
√
gh exp(10z/h). (28b)

For both examples the first–order analytical approximation (4) performs poorly, and even334

yields unphysical results for some wavelengths. Also approximation (5) is poor for pro-335

file (28b) (see further details and discussions in Ellingsen & Li [2017]).336

The profiles (28) are too strongly sheared to represent oceanographic flows, but could337

realistically occur in other flow settings. Eq (28a) could represent, e.g., for a flow of sur-338

face velocity 4m/s of 40cm depth, for example over a local shallow in a river, or a film339

flow of 1cm depth with surface velocity 60cm/s, which is readily produced. Eq (28b) might340

represent a surface jet due to discharge of a fast flow into a still water reservoir, e.g. a341

jet speed of 3m/s over 1m depth. An oceanographic situation where shear can be strong342

is a relatively short period after the onset of wind over the surface Caulliez et al. [1998].343
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Figure 3. Applying the DIM to two very strongly sheared velocity profiles given in (a,b):

Eq. (28a) and (c,d): Eq. (28b). Velocity profiles are shown in (a,c), corresponding to plots of

relative error R, Eq. (16) for different calculations. K&C1st: Approximation (4), E&L1st: ap-

proximation (5), M0 = 1, 2, 3: DIM with initial guess c0 using 1, 2 and 3 iterations, respectively,

MEL = 1, 3: DIM using (5) as initial guess.

329

330

331

332

333

Relative errors for calculations of phase velocity for waves propagating along the344

direction of the flow as a function of wave number are shown in Fig. 3. It is clear to see345

that DIM converges quickly, producing accurate results in these cases with only 3 iter-346

ations even with a poor initial guess c0. For the velocity profile of Fig. 3a, approxima-347

tion (5) is reasonably successful (within 20 % of the true value) and using this as initial348

guess the accuracy is better than 0.1% with only one iteration of the DIM.349

In a sense, a single iteration of DIM can be interpreted as sibling of the analyti-350

cal approximations, in that it also constitutes a single integration of a functional of U(z)351

along the z axis. Just like (4) and (5) this may be inaccurate for extreme profiles. Un-352

like these, however, the DIM can simply be iterated whereas the second order extensions353

of (4) and (5) are far more expensive.354

One should note that when the initial guess is very poor, as for example when us-355

ing c0 in the examples (28), the error estimate (16) is far from its real value. Neverthe-356

less it will produce an estimate that is higher than any realistic error tolerance, ensur-357

ing that more iterations are performed, with correspondingly more accurate error esti-358

mates.359

5.4 Velocity field360

Using Eqs. (18), the full flow field is readily obtained by the DIM at little extra cost.
As demonstration we calculate the wave–induced velocity field due to an initial surface
perturbation in 2 dimensions, on a shear flow with the profile

U(z) = 0.1
√
gh(exp (6z/h)− 1) (29)

representative of a surface drift layer. To our knowledge such a Cauchy–Poisson prob-361

lem has not been considered before for the velocity field in the presence of a velocity field362

of non–uniform vorticity.363
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Figure 4. Waves from initial pressure pulse with (i-p) and without (a-h) shear current profile

(29) at times T = 1 (left column) and 7.5 (right column) . Surface elevation (a,e,i,m), veloc-

ity field (b,f,j,n), velocity magnitude (c,g,k,o) and pressure (d,h,l,p). Video in supplementary

materials.

364

365

366

367
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h1

h2

L

Figure 5. Waves propagating over slowly varying water depth in the presence of a wind-

induced current. In the figure, h1 and h2 are water depth and L is the characteristic length in

the horizontal plane. The slowness of depth variation is indicated by |h1 − h2|/L� 1 .

392

393

394

Fig.4 depicts the velocity field and surface elevation in 2D at two instant times T =368

t
√
g/h = 1 and 5 generated by an initial impulsive pressure

p̂ext

ρgh
= exp(−π

24x2

h2
)δ(t).369

Results in the presence and absence of the sub-surface velocity profile (29) are shown in370

the right and left columns of Fig.4, respectively. The velocities and pressures plotted are371

the perturbation fields, i.e., after subtracting their values when no waves are present.372

As one would expect in light of previous studies (e.g. Ellingsen [2014]; Li et al. [2017])373

the surface shape is changed visibly, yet moderately by the shear flow. The velocity and374

pressure fields, on the other hand, are strikingly different in qualitative appearence. With-375

out shear current the velocity magnitude beneath the surface elevation has slow spatial376

variation with only the direction changing rapidly. Not so in the presence of the sheared377

current, in which case there are several highly distinct regions directly beneath the largest378

surface excitations with far lower absolute velocities. In the present example these re-379

gions are near–vertical in shape. The rotating wave motion undergoes a depth–dependent380

phase shift due to the depth–varying velocity field.381

While only a single example, these observations seem to indicate that the veloc-382

ity field beneath waves can be strongly affected by e.g. a wind–driven shear layer, as (29)383

might represent. This is a potentially important observation, since the near–surface fluid384

mechanics of the oceans is crucial for processes in oceanography and climate modelling,385

in particular transportation of nutrients and algae, and mixing of warmer and colder wa-386

ters. The effect of shear–modified wave motion on sub-surface turbulence intensity, Reynolds387

stresses and thermal mixing are all virtually unknown and make for an important as well388

as intrinsically interesting area of future study. We have demonstrated how the DIM can389

offer a fast and computationally cheap first insight.390

5.5 Wave amplitudes over slowly varying water depth391

As noted in section 4.6, the DIM calculates wave rays and amplitudes with com-
putational complexity of order O(N). We now consider as an example, steady wave prop-
agation over a sloping seabed in the presence of a constant wind–induced shear current,
as depicted in Fig. 5. Due to waves being steady, the time–dependent term in the wave
action equation is zero, hence

∂x

(
cgxĪvs

w2
η0

σ̃

)
+ ∂y

(
cgy Īvs

w2
η0

σ̃

)
= 0, (30)

which can be solved numerically using ray theory when information at a point is spec-395

ified. For more details in the absence of a shear current, one may refer to Mei et al. [2017].396
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Figure 6. Comparison of wave amplitudes in the presence and absence of a vertical shear flow

at different relative water depth H = h1/h2. In the figure, (a-c) Frh = 0.1; (d-f) Frh = 0.4.

406

407

As depicted in Fig. 5, we consider a linearly varying seabed h(x) that has a neg-
ligible effect on the wind-induced current, implying η(0) = 0 and |h1−h2|/L� ε where
L is the characteristic horizontal length; A surface drift is expressed U = Frh

√
gh2(exp(6z/h2)−

1); H = h1/h2 > 1 is defined where h(x1) = h1 and h(x2) = h2 and Frh = U0/
√
gh2.

Hence, (30) yields

A2

A1
=

√
cgx(x1)

cgx(x2)
. (31)

where A2 = A(x2) and A1 = A(x1). For cases with the absence of a shear current,397

we use the subscript ‘nvs’ to note. Eq. (31) is solved using the DIM wherein the frequency398

of an incident wave remains constant over the varying water depth.399

Fig. 6 compares the amplitude change of waves at different frequencies with and400

without the shear when Frh = 0.1 and Frh = 0.4, respectively. It is seen the ampli-401

tude change of a wave oscillates at a specific frequency can be over(under) estimated by402

up to 6% (Frh = 0.1 ) or to 15% (Frh = 0.4 ) when a subsurface shear is neglected.403

This is in keeping with the conclusions drawn by Zippel & Thomson [2017]. The DIM404

offers a viable route to this end.405

6 Comparison with other approaches408

In this section we will compare the DIM with the iterative scheme to existing ap-409

proaches for calculating dispersion relation c(k), both numerical methods with arbitrary410

accuracy, and analytical approximations with theoretical error. These two categories of411

existing approaches were reviewed in Sec. 3.1 and 3.2, respectively.412

6.1 The piecewise–linear approximation413

We compare first with the piecewise–linear approximation (PLA, c.f. Sec. 3.1). Hav-414

ing implemented both the PLA (albeit only for unidirectional flow; see Smeltzer & Ellingsen415

[2017] for full details) and the DIM, we are in a position to directly compare the two meth-416

ods. While the choice of method will always remain a point of preference of the user, we417
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find it hard to imagine a practical application for which the DIM is not preferable to the418

PLA.419

The one point in favor of the PLA compared to the DIM is its physical transparency.420

It is very easy to follow all physical quantities explicitly throughout calculations. The421

rate of convergence of the PLA is typically similar to that of the iterative approach of422

the DIM employed here, ∼ N−2 (see Zhang [2005]; Smeltzer & Ellingsen [2017] and Fig. A.1).423

The DIM reaches a higher convergence rate if a numerical approach of higher accuracy424

(than the second-order central difference approximation for w̄′′ ) is used. Both the DIM425

and PLA can approximate the full flow field with little extra effort.426

However, from a numerical point of view the DIM has a number of advantages. Firstly427

its implementation is significantly simpler. The PLA initially produces N+1 solution428

to the dispersion relation, N−1 of which are artifacts of the abrupt change of vortic-429

ity at layer interfaces. There are reliable ways to deal with this problem [see Smeltzer430

& Ellingsen, 2017], but it remains a hurdle. Secondly, and for the same reason, compu-431

tation is less costly, since detecting the correct eigenvalues of c̃ can be the most costly432

part of the PLA calculation. Thirdly, the DIM can easily handle cases where U(z) changes433

direction with depth, as demonstrated in Sec. 5.2. Short of a more sophisticated PLA434

implementation than has been developed to date to our knowledge, this would double435

the number of free coefficients to be determined in the PLA. Fourthly, the DIM comes436

with a direct estimate of the error with very little extra cost; error estimation using PLA437

is not straightforward (the obvious solution is by comparing results from different val-438

ues of N ; however we cannot preclude that a more intelligent way can be found).439

6.2 Dong & Kirby’s method440

Also compared to the method of Dong & Kirby [2012] the DIM definite advantages.441

Foremost of the advantages of the DIM over Dong & Kirby’s (DK) procedure is that the442

ordinary differential equation to be solved, (7a), is linear, allowing a fast and cheap so-443

lution e.g. with a finite difference scheme. Dong & Kirby’s method (DK), on the other444

hand solves a nonlinear ordinary differential equation of the function Q(z) = w(z)/w′(z),445

determining the eigenvalue c with a shooting method. For the DIM the linear solution446

is easily parallelizeable, able to perform all operations for an array of k values at once.447

Should the full flow field be required, the DIM produces this automatically whereas DK448

produces only Q(z), requiring further integration in order to obtain the velocity via w(z) =449

exp(
∫

dz
Q ). The explicit error estimate of DIM could be a further advantage, although450

convergence of DK’s shooting scheme can also be used for error estimation. Also com-451

pared to the DK procedure it is our opinion that the DIM is superior for all purposes452

we can think of.453

6.3 Analytical approximations454

We finally compare the DIM to analytical approximations with theoretical error455

presented in Sec. 3.2. Obviously such a comparison will be context dependent, since the456

philosophies behind numerical and analytical approximations are fundamentally differ-457

ent: A numerical implementation of the DIM has arbitrary accuracy while approxima-458

tions (4) and (5) have finite theoretical error no matter the accuracy with which the as-459

sociated integrals are evaluated. With this in mind, we have tried to make comparison460

as fair as possible. We will presume a context which involves calculating c(k) for a large461

range of k spanning all directions and several orders of magnitude in terms of wavelengths462

ranging from very deep to very shallow waves, and that at least a rough notion of the463

calculation error is desired.464

There are obvious advantages to using DIM rather than analytical approximations465

such as (4) and (5), beyond the mere fact that arbitrary accuracy can be achieved. Firstly,466
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as demonstrated in Fig. 3, DIM can easily handle difficult cases where analytical approx-467

imations perform poorly, without greatly increasing computational cost compared to weakly468

sheared flows. Secondly, the DIM yields the full velocity and pressure fields, whereas (4)469

and (5) provide c(k) only. Perhaps most pertinently, DIM facilitates low-cost error es-470

timation, whereas in a context where computational cost is of importance, first–order471

analytical approximations must in practice be used “blindly”, without any control of the472

error made, since an error estimate will essentially involve going to far more costly second–473

order approximations (refer to Kirby & Chen [1989]; Ellingsen & Li [2017]).474

We choose a context where neither of these advantages play a role, and where an-475

alytical approximations (4) and (5) are routinely in use today, namely for quick estima-476

tion of dispersion relations as part of a bigger oceanographic or coastal flow simulation,477

c.f. e.g. Elias et al. [2012]; Kumar et al. [2012]. For this purpose the analytical approx-478

imations (4) and (5) are very suitable: shear profiles are typically not strongly sheared479

so that analytical approximations are typically well within accuracy requirements. The480

analytical approximations are also cheap to calculate compared to numerical schemes481

reviewed in Sec. 3.1. For fairness, however, we will also employ the iterative DIM algo-482

rithm “blindly”, spending no time on error estimation and tolerance comparison. For483

the iterative algorithm this amounts to a cost reduction of only a few percent for the small484

number of iterations we consider. Integrals in analytical approximations as well as the485

iterative algorithm are calculated with the same 2nd order accurate method (Simpson’s486

method), with the number of grid points as specified. For some N , the same discretiza-487

tion is appropriate for both schemes. For analytical approximations, the smallest cho-488

sen N is just large enough so that calculation of the integral is not the main source of489

error (naturally this can only be checked a posteriori with an expensive error calcula-490

tion, hence a somewhat higher N should be used in practice). In order not to favour any491

particular range of wavelengths we calculate values for a grid of 512×512 values of k492

covering values |k|h from 10−2 to 102 isotropically. The maximum value of R from these493

values is presented. Since calculational times are essentially identical for (4) and (5), and494

their theoretical errors are similar in magnitude for moderately sheared flows, we include495

results only for the 3DKC (4) from Skop [1987]; Kirby & Chen [1989].496

Calculation times are given in Table 6.3 for the wind-driven profiles shown in Fig. A.2a.497

c(k) was calculated using MATLAB for a grid of 512× 512 values of k on a standard498

desktop computer (8 processors: Intel i7-4770 3.4 MHz, 32 GB RAM). Naturally com-499

putational cost depends on the choice of methods for calculation of integrals and solu-500

tion of the boundary value problem (7a) as well as for the analytical approximations. Cal-501

culations were parallelized, calculating the full matrix of k values simultaneously.502

A number of interesting observations can be made. Firstly, discretizing the z axis505

with only N = 7 points and running a single iteration is sufficient to achieve accuracy506

at the level of the theoretical error of the 3DKC even though the initial guess c̃ = c0507

is naive and does not make use of any knowledge of U(z). Using instead cKC as initial508

guess the error is reduced by a factor 10 or more, although calculation is then necessar-509

ily more expensive.510

Although results show that with N = 7, 3DKC gives errors < 5%, likely to be511

adequate in many cases, the error in the integral evaluation is still a significant and un-512

controlled contributor to the maximum error, thus without an error estimate a higher513

value of N should be used in practice. Using N = 16, the calculation time is only slightly514

lower than the N = 7 DIM calculation which has essentially the same accuracy. In con-515

trast, increasing N for the iterative DIM algorithm516

does not significantly improve accuracy, which depends almost exclusively on the517

number of iterations in the examples shown. Based on this we opine that it is fair to say518

that the iterative DIM algorithm can realistically compete with analytical approxima-519

tions even in cases where the latter is particularly suitable and in routine use, and given520
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Table 1. Computation times for calculating c(k) for a grid of k-values using the iterative

algorithm and analytical approximation (4). See main text for further details.

503

504

Max R
Time, 5122 values

c0 init. ckc init.N M
c0 init. ckc init. profile 1 profile 2 profile 3 profile 1

1 0.181 0.241 0.0242 0.0318 0.0154 6.50E-03
2 0.302 0.361 7.71E-04 4.51E-04 9.49E-05 3.04E-057
3 0.426 0.486 4.06E-05 1.44E-05 1.36E-06 1.69E-06
1 0.520 0.599 0.0245 0.0318 0.0153 1.26E-03
2 0.893 0.929 8.58E-04 4.64E-04 1.07E-04 7.35E-0516
3 1.251 1.308 5.13E-05 1.51E-05 1.62E-06 4.56E-06
1 1.178 1.232 0.0244 0.0317 0.0153 1.00E-03
2 1.871 1.951 8.65E-04 4.68E-04 1.08E-04 5.94E-05

DIM

32
3 2.576 2.554 5.23E-05 1.52E-05 1.65E-06 3.75E-06

7 0.075 0.045 0.036 0.024
16 0.141 0.023 0.033 0.011KC1st

32
—

0.282 0.022 0.031 0.010
———

the advantage of easy control of errors, can be a very viable alternative for implemen-521

tation in oceanographic models such as detailed in Elias et al. [2012]; Kumar et al. [2012].522

Including an error estimate for the iterative DIM algorithm only has numerical cost523

in the last iteration because both integrals calculated to estimate R in Eq. (16) are made524

use of in the next iteration if the latter is performed. Calculating the estimated R then525

incurs approximately half the cost of the next, unevaluated, iteration. Checking the rel-526

ative error for N = 7,M = 1, for example, increases calculation time to about 0.24,527

an increase of less than 30%. Relative increase in cost is obviously smaller for higher M .528

Should higher accuracy be required, results in Table 6.3 also show that additional529

iterations are significantly cheaper than the first.530

7 Conclusions531

We have developed a direct integration method (DIM) for linear surface waves trav-532

elling at arbitrary angles atop a horizontal background current U(z)allowing slowly vary-533

ing barthymetry; both the magnitude and direction of the current may vary arbitrar-534

ily as a function of depth. In particular, when depth is constant the DIM allows efficient535

evaluation of the dispersion relation over arbitrary shear. We also derive the full ap-536

proximate flow field solution of the wave-shear current-sloping seabed system and revisit537

the conservation equation of wave action for which the DIM offers cost-efficient means538

of numerical evaluation.539

We implement the DIM in an iterative procedure using standard constituent meth-540

ods due to Quinn et al. [2017]. The iterative DIM algorithm comes with a built–in er-541

ror estimate for comparison with a tolerance level and can make the DIM somewhat ex-542

plicit by limiting the total number of iterations with a reasonable initial guess.543

We argue that the DIM is superior to existing calculation methods with arbitrary544

accuracy with constant depth , namely the piecewise–linear approximation (PLA) in which545

the water column is divided into N artificial layers with linear U(z) within each [Zhang ,546

2005; Smeltzer & Ellingsen, 2017], and a shooting method due to Dong & Kirby [2012]547
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(DK).Compared to the PLA, the DIM is at least as fast at comparable accuracy, con-548

siderably easier to implement, and can easily handle turning profiles. The DK solves a549

non-linear differential equation and is considerably slower, and arguably numerically more550

complicated, than the DIM.551

Compared to analytical approximations such as those of Skop [1987]/Kirby & Chen552

[1989] (KC) or Ellingsen & Li [2017] (EL), the DIM has some obvious advantages be-553

yond the mere fact that arbitrary accuracy can be achieved; it can easily handle diffi-554

cult, strongly sheared flow situations where the above analytical approximations perform555

poorly; it yields the full flow field with little extra effort; and it provides an estimate of556

the relative error of the intrinsic phase velocity at only slightly increased cost, whereas557

the analytical approximations must either be used without any control of errors, or a far558

more expensive 2nd order estimate must be calculated.559

The respective importance and relevance of the above advantages will naturally de-560

pend on the context in which c(k) is required. We argue, however, that the DIM can even561

compete with analytical approximations like KC and EL in contexts where the latter are562

particularly well suited and in routine use, e.g. as part of oceanographic models where563

the KC approximation is currently in use. Making as fair a comparison of these fun-564

damentally different methods as we have been able to, we show that the iterative DIM565

algorithm predicts c(k) for a typical wind–driven shear profile with the same accuracy566

as the KC (better than 5%) when the z axis is discretized with only 7 points, perform-567

ing just a single iteration, and using a naive and inaccurate initial value of c. The cost568

involved is of comparable magnitude to that of the analytical approximations whose in-569

tegrals are evaluated with the same method as those required for the iterative DIM al-570

gorithm . This holds true even when including estimation of error during DIM imple-571

mentation (KC is in practice used “blindly” with no accuracy check). Based on these572

cost considerations and the mentioned advantages of error control and additional cost–573

free flow field information it is our opinion that the DIM can compete with analytical574

approximations even in such applications.575

We have applied the DIM to several examples, some of which have not been con-576

sidered before to our knowledge. We make use of the DIM’s ability to easily handle turn-577

ing velocity profiles to compare the KC and EL approximations in this case, something578

which was not done in Ellingsen & Li [2017] due to lack of a suitable computation method.579

We secondly calculate the velocity and pressure fields beneath a wave created by a short,580

localized pressure pulse upon a background flow representing a near–surface shear layer,581

and compare them to the case without shear. Although the surface deformation is only582

moderately different in the two cases, the sub-surface flow field (when background flow583

is subtracted) is strikingly different.584

We have demonstrated that the DIM can be used for efficient evaluation of the wave-585

action conservation equation in the presence of shear currents and slowly varying bathymetry586

(shear-WAC) derived by Quinn et al (2017). These authors themselves commented that587

this was not practical due to high cost; we argue otherwise. The shear-WAC is re-written588

in a suitable form, and applied for demonstration to waves above a depth changing lin-589

early between two constant levels, with an exponentially decaying surface shear current.590

Thus the DIM seems to be a viable way in which the shear-WAC can be applied in oceano-591

graphic wave models.592
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A: Numerical performance600

The DIM, concisely formulated in the coupled equations (7a) and (7b), is, from a601

numerical point of view, a scalar system with c̃ as unknown. For some value of c̃, Eq. (7a)602

implicitly defines the function w̄(z; c̃). In an iterative scheme at iteration n + 1, c̃n+1
603

will depend on c̃n and w̄n, but w̄n+1 depends only on the most recent value of c̃, not on604

w̄n.605

The convergence of our iterative implementation of the DIM as a whole thus shares606

the well known criteria for Newton’s method, in particular that DR(z) has continuous607

derivative with respect to c̃ at the root. It is obvious from Eqs. (8) and (9) that this is608

so when there are no critical layers, i.e., when k ·∆U − kc̃ 6= 0 throughout the range609

of z. Also critical layers in the interior of the range pose no problems, since it is well known610

that w̄(z) is continuous across critical layers. A critical layer cannot occur at the sur-611

face. The remaining point of interest is the case where a critical layer occurs at zs =612

−h. In this case ∂Ic
∂c̃ appears to have a double pole at the lower endpoint of the integral.613

However, the numerator of Eq. (15) has a factor sinh(k(z+h)), and the boundary con-614

dition w̄(−h) = 0 ensures that ∂DR/∂c̃ exists and is continuous also in this case. Con-615

vergence is thus assured providing the initial guess for c̃ is sufficiently close to the root.616

We have yet to come across a case where c0(k) is not an adequate choice for convergence.617

We have chosen a simple central difference approximation for w̄(z) from Eq. (7a),618

which is known to converge at least as N−2. The same rate of convergence is true of New-619

ton’s method (c.f., e.g. Chap.3 & 8 in Isaacson [2012]), so an overall convergence rate620

of at least N−2 is expected, and indeed found in the case considered below.621

As with many numerical integration schemes, convergence issues can arise if the622

grid is too course, i.e., N is too small. In this case the numerical evaluation of w̄, and623

hence DR and ∂DR/∂c, will have error. Cases with high values of U ′′(z) will require a624

finer grid, although for typical oceanographic profiles such as in Section 6.3, convergence625

is fast already at N = 7. A general criterion for the minimum value of N to ensure con-626

vergence remains an open question.627

To show how the iterative algorithm numerically converges, we make use of a class628

of special class of shear currents that satisfy U ′′(z)/U(z) =constant, analysed by Pere-629

grine [1976] (Section IV.B.2). Assuming c = 0 the corresponding streamwise wave num-630

ber can be found exactly. We will do the opposite: given a profile U(z) = U(z)ex and631

streamwise wave number kx for which c = 0 is the exact solution, we use the DIM to632

estimate k with increasing accuracy by increasing the discretization N and the number633

of iterations, M .634

We let U(z) = U(z)ex where

U(z) = U0 coshκz + U ′0κ
−1 sinhκz. (A.1)

Assuming c = 0 (stationay waves in chosen frame of reference), the Rayleigh equation635

(3a) has the exact solution w(z) = w(0) sinhK(z + h)/ sinhKh with K =
√
k2
x + κ2.636

Given parameters κ, U0 and U ′0, the streamwise wave number component kx solves the637

implicit dispersion relation Kh cothKh = gh/U2
0 + U ′0h/U0. We choose U(−h) = 0,638

which fixes κ implicitly. Calculated numerical values for c will converge towards zero.639

We perform calculations for various propagation directions θ ∈ 〈π2 ,
3π
2 〉, i.e. different640

values of ky and hence k.641

Convergence is tested for a single iteration and increasing grid refinement in Fig. A.1a650

and for increasing iterations in Fig. A.1b. We consider propagation in direction θ = 5π/4651
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0.5

(a) (b) (c)

~
~

Figure A.1. Test cases for which c = 0 is the exact solution: Velocity profile (A.1) is as-

sumed with parameters U0/
√
gh = 0.5, hU ′0/U0 = 4, κ given by U(−h) = 0, whereupon, for

a chosen propagation direction θ ∈ 〈π
2
, 3π

2
〉, the appropriate k is calculated (see main text).

(a) Squares: |c|/U0 for increasing N for θ = 5π
4

. Lines are proportional to N−2 (solid) and

N−3 (dashed). (b) Squares and circles: |c|/U0 for increasing M for θ = 5π
4

when N = 64 and

N = 1024, respectively. Lines are proportional to M−11 (dashed) and M−3 (dash dot). (c) Cal-

culational time on desktop computer for M iterations, 50 equidistant values of k between 0.51π

and 1.49π. See main text for further details.

642

643

644

645

646

647

648

649

as a representative example and we used a naive initial guess c0 for Fig. A.1b. The fig-652

ure shows that with our implementation the convergence with respect to N is better than653

∼ N−2, and approximately ∼ N−3 for the level of accuracy required in many practi-654

cal applications. Even for N = 1024 accuracy becomes limited by N , not M already655

after 4-5 iterations.656

In Fig. A.1c we show calculation time on a standard desktop computer (8 proces-657

sors: Intel i7-4770 3.4 MHz, 32 GB RAM) for M = 1, 2 and 3 iterations and increas-658

ing discretisation N . In order to test a range of different wavelengths, each calculation659

runs through 50 values of ky (the value of kx will be the same for all) by choosing 50 equidis-660

tant values of θ in the range 〈π2 ,
3π
2 〉 of counterstreamwise directions, where stationary661

wave solutions are possible. In all cases we find that calculation time scales approximately662

as N0.85.663

A.1 Wind-induced profiles664

In this section our demonstration is for three typical examples of wind–induced sur-665

face flows, taken from Swan & James [2000], shown in Fig. A.2a. For five different cal-666

culation procedures we study the relative error made in the calculation, R = |c̃≈−c̃e|/c̃e,667

where c̃e is the fully converged, “exact” value. The five procedures are labelled as fol-668

lows. K&C1st: Approximation (4). E&L1st: Approximation (5). M0 = 1,M2 = 2:, cal-669

culations using DIM with 1 and 2 iterations, respectively, using c0 as the initial guess.670

MKC0 = 1: one iteration of DIM, using approximation (4) as initial guess. (For a care-671

ful analysis of the performance of Eqs. (4) and (5) and their extensions, see Ellingsen672

& Li [2017].) In all methods the DIM as well as numerical integration is performed on673

appropriate grids of z-values with N = 7.674

Figure A.2 shows how a single iteration of DIM with the no–shear velocity c̃ = c0678

as initial guess, gives results that are as good as the analytical approximations (4) and679

(5). In the discussions in section 6.3 we show that calculation times are also typically680

similar, although depending on context and exact implementation. In all cases a second681

iteration of the DIM brings the calculated result to within 0.1% (much better in most682
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in the presence of U1 in the presence of U2 in the presence of U3

U1

U2
U3

(a) shear profiles

Figure A.2. (a) Wind–driven velocity profiles taken from Swan & James [2000]. (b,c,d) Rel-

ative errors of calculated value of c̃(k) for waves on the profiles in panel a, respectively. See main

text for details.

675

676

677

of the cases) of the true value, more than adequate for many practical purposes. The same683

high accuracy or better is obtained with a single iteration of the DIM if the analytical684

approximation (4) is used as initial guess. A second iteration of DIM is much faster than685

including the second order accurate analytical expressions using Kirby & Chen [1989]686

or [Ellingsen & Li , 2017], which give similarly high accuracy.687
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