
June 2007
Kristin Ytterstad Pettersen, ITK

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

3D AUV Collision Avoidance

Øystein Engelhardtsen

Problem Description

Collision avoidance is a crucial part of an AUV's ability to perform planned missions in unknown
environments. The assignment is to create a system for 3D collision avoidance maneuvering for
the HUGIN AUV, able to handle vertical obstacles from ocean floor to surface (e.g. oil rig
foundations or piers) and rough sea floor topography in combination with surface ice.

1. Do a literature survey and give and overview of state-of-the-art technology on AUV collision
avoidance in 2 and 3 dimensions.

2.Develop an AUV simulator based on a complete hydrodynamic modell of the HUGIN AUV,
including a guidance and navigation system, sensor measurements, collision avoidance system
and a terrain consisting of vertical obstacles, rough sea floor topography and surface ice.

3.Develop a system for collision avoidance and justify chosen solutions. Assume the following
measurements are available to the system:

o Vertical sonar, measuring altitude from the AUV to the ocean floor.

o Forward tilted sonar measuring upcomming altitude to the ocean floor

o Right- and left side-scan-sonars, oriented perpendicularly to the AUV heading, measuring
distances to passing objects.

o 2D Forward Looking Sonar (line array) with 45 sonar beams covering a sector of 45O, each
covering 1 O x15 O with a range of 50 m providing distances for each of the 45 sonar beams.

o Other availiable sensors on the HUGIN AUV that prove to be useful for collision avoidance
purposes may also be included.

4.Discuss the derived system with respect to stability and its ability to avoid collisions.

5.Construct a mission plan where the AUV meets all the obstacles in item 2. Demonstrate a
collision avoidance system which brings the AUV from start point to endpoint. Vary the distribution
of obstacles to check the robustness of the system.

Assignment given: 09. January 2007
Supervisor: Kristin Ytterstad Pettersen, ITK

Preface

This master thesis is written as a compulsory part of the Master of Technology program on
NTNU, department of engineering cybernetics. The project work on AUV collision avoid-
ance has certainly been hard and consumed a great deal of time. Even so, the work has been
truly interesting and rewarding. The available literature on this subject seems endless, still
millions of dollars are spent on R&D around the world, and the AUV collision avoidance
community is constantly increasing.

I would like to thank all my guidance supervisors for the help during all the phases of the
project. A special thanks to Øivind Midtgaard at FFI and Bjørn Jalving at Kongsberg Mar-
itime, for always politely replying to my endless series of questions regarding the HUGIN
AUV.

Øystein Engelhardtsen
Trondheim, June 2007

i

ii

Abstract

An underlying requirement for any Autonomous Underwater Vehicle (AUV) is to navigate
through unknown or partly unknown environments while performing certain user specified
tasks. The loss of an AUV due to collision is unjustifiable both in terms of cost and re-
placement time. To prevent such an unfortunate event, one requires a robust and effective
Collision Avoidance System (CAS). This paper discusses the collision avoidance problem
for the HUGIN AUVs. In the first part, a complete simulator for the HUGIN AUV is im-
plemented in matlab and simulink. This includes a 6 degrees-of-freedom nonlinear AUV
model, simulated environment including bottom profile and surface ice, navigation- and
guidance functionality and sensor simulators. In the second part a number of well known
strategies for the collision avoidance problem is presented with a short analysis of their
properties. On the basis of the implemented simulator, a proposed CAS is developed and
it’s performance is analyzed. This system is based on simple principles and known collision
avoidance strategies, in order to provide effective and robust performance. The proposed
system provides feasible solutions during all simulations and the collision avoidance ma-
neuvers are performed in accordance with the specified user demands. The developed simu-
lator and collision avoidance system is expected to provide a suitable framework for further
development and possibly a physical implementation on the HUGIN AUVs.

iii

iv

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Project scope and emphasis . 4
1.3 Paper layout . 4

2 The HUGIN AUVs 5
2.1 Background . 5
2.2 HUGIN 1000 . 6
2.3 Navigation System . 9

2.3.1 Heading control . 9
2.3.2 Altitude control . 10

I AUV Modelling and Control - Developing the AUV simulator 11

3 Hydrodynamic modelling 13
3.1 Reference Frames and Motion Variables 13
3.2 Developing the AUV model . 14

3.2.1 Nonlinear hydrodynamic model 14
3.2.2 Propeller and rudder . 17
3.2.3 Matlab/Simulink implementation 19

3.3 AUV Model Simulations and discussion 19
3.3.1 Test 1: Zero rudder input . 19
3.3.2 Test 2: Maximum yaw rate . 20
3.3.3 Test 3: Maximum pitch rate . 21
3.3.4 Test 4: All rudders at maximum angle 23

4 Sonar modelling 24
4.1 HUGIN sonar configuration . 24
4.2 Digital Terrain Model (DTM) . 25
4.3 Developing the sonar simulators . 27

4.3.1 Single sonar beam . 27
4.3.2 Forward Looking Sonar (FLS) . 28
4.3.3 Side scan sonar . 30
4.3.4 Simulink implementation . 30

v

4.4 Sonar simulations and comments . 31

5 Autopilot design 33
5.1 Linearized and reduced vessel model . 33
5.2 LQ rudder control . 35

5.2.1 Simulation and comments . 36
5.3 LQ torque control with rudder allocation algorithm 38

5.3.1 Simulation and comments . 39
5.4 PID control . 40

5.4.1 Simulation and comments . 41
5.5 Feedback linearization roll control . 42

5.5.1 Simulation and comments . 43
5.6 General Autopilot Discussion . 45

6 Line of Sight Waypoint Guidance 46
6.1 Developing the LOS Guidance System . 47
6.2 Simulations and Comments . 48

7 Bottom follower 49
7.1 Developing the Bottom Follower . 49
7.2 Simulations and Comments . 52
7.3 Discussion . 54

8 General Modelling and Control Discussion 56

II Collision Avoidance System 57

9 Collision Avoidance - a literature review 59
9.1 Overall classification . 59
9.2 System functionality . 61

9.2.1 Path planning . 61
9.2.2 Reflexive avoidance . 65

10 Developing the Collision Avoidance System 66
10.1 Deriving overall objective and strategy . 66
10.2 Reflexive avoidance . 67

10.2.1 Case 1 - pitch rate constraints . 69
10.2.2 Case 2 - pitch constraint . 69
10.2.3 Case 3 - Critical distance already breached 70

10.3 Edge follower . 70
10.4 Ice detection . 72

10.4.1 Developing the ice detection algorithm 72
10.4.2 Ice detection simulations and discussion 74

vi

11 Collision Avoidance Simulations 75
11.1 Rugged terrain . 75
11.2 Rugged terrain with islet . 79
11.3 Extremely rugged terrain . 80
11.4 Vertical Obstacle . 82
11.5 Terrain with level surface ice . 83
11.6 Terrain with varying ice-depth . 85

12 General discussion and concluding remarks 87

13 Suggestions for future work 89

Bibliography 89

A User guide for the attached CD 93
A.1 CD structure . 93

B Simulink diagrams 94
B.1 The nonlinear HUGIN model . 94
B.2 LQ torque control autopilot with rudder allocation algorithm 95
B.3 The complete system with CAS . 96

vii

viii

List of Tables

2.1 HUGIN 1000 - Basic vehicle specifications (Kongsberg-Maritime n.d.) . . . 8

4.1 Sonar configuration . 25
4.2 Single sonar beam simulator pseudo code 28
4.3 Transforming one FLS iteration point to NED frame 29
4.4 FLS simulator pseudo code . 29
4.5 Transforming one SSS iteration point to NED frame 30

5.1 Rudder allocation algorithm . 39

10.1 Overall goals for the Collision Avoidance System 67
10.2 Overall strategy for the Collision Avoidance System 67
10.3 Fail-cases for the altitude controller . 68
10.4 Reflexive avoidance maneuver . 68
10.5 The pseudo code for the entire CAS . 72
10.6 Reflexive avoidance maneuver . 74

11.1 CAS simulations parameters . 75

1

2

Abbreviations

AINS Aided Inertial Navigation System
AUV Autonomous Underwater Vehicle
CAS Collision Avoidance System
CTD Conductivity-Temperature-Density
DVL Doppler Velocity Log
DTM Digital Terrain Model
FLS Forward Looking Sonar
HISAS HIgh resolution Interferometric Synthetic Aperture Sonar
IMU Inertial Measurement Unit
MBE Multi-Beam Echo Sounder
MCM Mine Counter Measures
MRS Mine Reconnaissance System
REA Rapid Environmental Assessment
SAS Synthetic Aperture Sonar
SSS Side-Scan Sonar

Chapter 1

Introduction

1.1 Motivation

In the past few decades, the number of Autonomous Underwater Vehicles (AUVs) has in-
creased exponentially. This is largely because of their excellent ability to explore and assess
the underwater environment. And as the technology development keeps progressing at a
steady pace, the cost for AUVs are decreasing and becoming available to an equally increas-
ing crowd. Whether it is mapping of the ocean floor for oil installations, assessing a naval
mine threat or collection of oceanographic data, these vehicles provide users a great resource
for better understanding of the ocean in general. (Tan et al. 2004a)

The most common way of planning an AUV mission today is to program a path based
on previous knowledge of the environment, existing of a set of Way Points (WPs). A guid-
ance and navigation functionality will then perform the task of following this predefined
WP path. A limitation of most AUVs are their inability to adjust to sudden or previously un-
known obstacles along this path, which can pose a threat in the form of a potential collision.
Potential collision threats are foremost the ocean floor itself, especially in rugged terrain,
but may also include a dredged harbor lane, an obstacle proud of the ocean floor, surface ice
and ships maneuvering at the ocean surface. Although most AUVs are built to cope with
a certain degree of impact, a collision will often lead to a mission-abort and may in some
cases even cause damage to the vehicle or to the collision object. In any case, the inability
to solve a potential collision threat and proceed on the planned mission will often lead to
economical consequences in some degree. (Horner et al. 2005)

Recent advances in sonar technology has enabled the development of relatively low cost,
low power, Forward Looking Sonars (FLS). These sensors have the ability to provide AUVs
information on upcoming terrain and may be used for obstacle detection. FLSs come in
many different formats and often have multiple sonar beams. By using this information in
an appropriate way, an AUV could not only be able to detect an obstacle in the path, but also
to calculate a way of avoiding it.(Horner et al. 2005) The AUV considered in this paper is
equipped with a 2 dimensional FLS with 45 beams covering a sector of 45◦ with each of the
beams covering a sector of 1◦ x 15◦.

3

4 CHAPTER 1. INTRODUCTION

1.2 Project scope and emphasis

In this paper, collision avoidance is defined as the ability to avoid previously unknown ob-
stacles on the predefined path while still attempting to accomplish the mission objective.
As given in the assignment text, the operation environment is considered unknown. As a
consequence of this, all obstacles on the path are initially unknown and collision avoid-
ance maneuvers may only be activated once a potential collision is detected based on sensor
information.

The complete set of requirements in the assignment text and the complexity of the given
task, involves a workload that greatly extends the available time for this master thesis, if ev-
ery sub-problem is to be fully analyzed and the developed system is to handle every think-
able situation. For this reason, the emphasis in this paper is put on developing a robust
concept of collision avoidance and to demonstrate this concept in simulations.

The initial design presented in this paper assumes the following restrictions on the oper-
ation environment:

• There are no dynamical obstacles present

• All measurements are considered free of noise and errors

• There is no current

These restrictions allows for a development focusing on the core functionality of the system
without delving to much with what is considered to be implementation issues. It is assumed
that all of these restrictions may be partly- or fully removed later, by introducing added
functionality based on the same principle design. Also, introducing these restrictions is not
in conflict with the assignment text.

1.3 Paper layout

As this project covers a number of different and partly independent subjects, it does not
follow the normal standard of technical reports. Instead, each subject is treated separately
followed by simulations and discussions regarding that particular section. This layout was
chosen to improve the readability of the report.

In the two first chapters the reader is introduces to the collision avoidance problem and
the HUGIN AUVs. Part I covers the development of the AUV simulator, representing the
HUGIN AUV as it is today. Part II deals with the collision avoidance problem and a concept
for a collision avoidance is developed, implemented and simulated using the simulator from
part I. Finally the proposed system is discussed and suggestions for future work is presented.

Chapter 2

The HUGIN AUVs

2.1 Background

The goal application for the system developed in this paper is the HUGIN AUV (www.ffi.no/hugin
n.d.) , developed in collaboration between the Norwegian Defense Research Establishment
and Kongsberg Maritime. By request, the collision avoidance system will be designed to be
compatible with the existing functionality of the HUGIN AUV. Therefore, this section gives
a short introduction to HUGIN, it’s main operational tasks and functionality.

Figure 2.1: The HUGIN AUV

5

6 CHAPTER 2. THE HUGIN AUVS

The development started in the 1990s and HUGIN vehicles are today used on a routine
basis for mapping and imaging services within the offshore oil and gas industry , naval de-
fense and ocean and fishery sciences. HUGIN has achieved great success in the offshore
industry, and survey companies in Norway, USA and Holland currently own and operate
HUGIN 3000 systems on a regular basis. A total of seven civilian HUGIN vehicles have
been delivered, with an accumulated billed survey distance fast approaching 100,000 km. In
addition, a specialized version (HUGIN MRS) has been developed for mine-counter mea-
sures (MCM) and rapid environmental assessment (REA) in naval operations. The MCM
vessel KMN Karmøy has employed HUGIN vehicles during numerous national and interna-
tional exercises since 2001. In 2004, a military pilot version (HUGIN 1000) was delivered
to the Royal Norwegian Navy for permanent installation on board. (Midtgård et al. n.d.)

Figure 2.2: DTM from the Ormen Lange field, created by HUGIN. (Kongsberg-Maritime
n.d.)

2.2 HUGIN 1000

The HUGIN 1000 represents the third generation of the HUGIN vehicles and builds upon
the track-record accumulated through the commercial survey operations with the HUGIN
I/II and HUGIN 3000 systems. The system is built around the same principles as HUGIN
3000, but is only half the volume, still maintaining the capability of carrying a sophisti-
cated suite of sensor systems. HUGIN 1000 is primarily designed to meet the operational
requirements from Military applications and Research and environmental monitoring appli-
cations. HUGIN 1000 can operate in two operational modes; acoustically supervised from
an accompanying surface ship or fully autonomous. Autonomous mode is required for e.g.

2.2. HUGIN 1000 7

covert military operations, mission under ice or to optimize efficiency by reliving the mother
ship to perform other duties. A collision avoidance system is a crucial component for fully
autonomous operation.

Figure 2.3: HUGIN 1000 (Kongsberg-Maritime n.d.)

HUGIN 1000 is currently equipped with an Aided Inertial Navigation System (AINS)
including; Inertial Measurement Unit (IMU), Doppler Velocity Log (DVL), Pressure Sensor
and Acoustic Navigation transponder. A path programmed in to HUGIN consist of a set of
horizontal WP’s, and given reference altitudes above the ocean floor on each leg. Additional
sensors are also available for improved accuracy. The AINS keeps track of the current po-
sition in 3 dimension using a Kalman filter to combine inputs from the available sensors,
while following the predefined path in the horizontal plane. Typical position accuracy range
from 0.2% for to 0.01% of travelled distance, depending on sensor configuration and trajec-
tory pattern. (Kongsberg-Maritime n.d.) The bottom following operation maximizes the use
of the surveying sensors by keeping a constant altitude above the bottom. This capability
is obtained through an altitude controller using feedback and feedforward from a separate
altitude and forward-looking echo sounder system. The altitude controller is able to main-
tain a given altitude to an acceptable degree as long as the path does not meet any obstacles
where a vertical avoidance is infeasible or the ocean floor is too rugged. Currently, no ad-
ditional collision avoidance system is implemented, so in these cases human intervention is
neccessary to avoid mission abortion and/or collision. (Midtgård et al. n.d.)

The HUGIN concept allows integration of alternative sensors for geophysical research
and inspection purposes. Such sensors are called payload sensors and is handled by a sep-
arate payload processor on the vessel. In most cases, the basic survey package selected by
the user will consist of all, or combinations, of the following sensors:

• synthetic aperture sonar (SAS) or side-scan sonar (SSS)

• multi beam echo sounder (MBE)

• sub-bottom profiler

• Conductivity-Temperature-Density (CTD) sensor

• volume search sonar

All of the payload sensors are mainly used to collect data about the passing environment
and are not used directly for navigational purposes. However, some sensors (eg. MBE

8 CHAPTER 2. THE HUGIN AUVS

and later;ISAS) are able to build up a DTM of the covered area which could be useful
when the AUV is passing through previously covered paths or nearby areas. This DTM
may potentially be used to improve navigation accuracy by bathymetry recognition. Such
information may also be used to re-plan the mission underway, producing a new collision
free trajectory based on the known obstacles before they are encountered. This is particularly
relevant when HUGIN is following ’lawn-mover’ patterns, as shown in figure 2.4, which is
a common way of operation. However, no such functionality is so far implemented on the
HUGIN range of AUV’s. (Kongsberg-Maritime n.d.)

Figure 2.4: HUGIN operating in lawn-moving pattern

Operational depth: 0 to 1000 m
Length: 4 to 5 m
Maximum diameter: 0.75 m
Volume: 1.3 m3

Weight in air: approximately 650 kg
Weight in water: Neutral
Nominal speed: 4 knots
Min / max speed: 2 to 5 knots
Total energy content of battery: Modular, 3 to 15kWh
Vehicle endurance: Up to 24 hours

Table 2.1: HUGIN 1000 - Basic vehicle specifications (Kongsberg-Maritime n.d.)

2.3. NAVIGATION SYSTEM 9

2.3 Navigation System

The navigation system of the HUGIN AUV is based on a decoupled structure where heading,
pitch and speed are treated separately, much like the structure discussed in chapter 13 in
(Fossen 2002). This decomposition has shown to describe the motion of slender formed
vehicles like the HUGIN AUV quite accurate. This structure also allows for easy integration
of a Collision Avoidance System (CAS) into the existing system architecture. Details about
the HUGIN autopilot is kept confidential but guidance, navigation and control for AUVs has
been addressed by a large number of authors. Some useful references are (Fossen 2002),
(Fryxell et al. 1996) and (Leonard 1997)

For the decoupling to be valid, the roll angle should be kept close to zero at all times.
Speed control is assumed a trivial task which may be performed by simple PID control or
similar algorithms. The heading- and pitch control is somewhat more complicated and is
covered by the two following sub-sections.

2.3.1 Heading control

The planned horizontal path, consisting of a set of WPs is programmed into the onboard
computer. A guidance algorithm within the navigation system calculates a desired heading
based on current position and the WP-path. This desired heading is fed into the heading
autopilot which in turn performs the necessary rudder actuation. The guidance algorithm
is assumed to be able to handle disturbances like currents and still be able to follow the
planned path within an acceptable range. This sort of functionality is often called Trajectory
Tracking and examples of such are PID cross-tracking, Line of Sight cross tracking and
Linear Quadratic Optimal Cross-tracking. (Fossen 2002) An overview of the heading control
system is given in figure 2.5.

Figure 2.5: Functional architecture of the heading control system

10 CHAPTER 2. THE HUGIN AUVS

2.3.2 Altitude control

As discussed earlier, the planned path also consist of a desired altitude above the ocean
floor between two consecutive WPs. The pitch controller performs this functionality by
feedback from a vertical echo sounder (vertical altimeter) and feedforward from a forward
looking echo sounder (forward altimeter). The altitude control architecture consists of a
pitch controller and an altitude controller. The altitude controller uses feedback from the
vertical altimeter and feedforward from the forward altimeter to calculate the necessary
pitch The echo sounder configuration is shown in figure 2.6 and the feedback/feedforward
control principle is shown in figure 2.7.

Figure 2.6: Altitude control echo sounder configuration

Figure 2.7: Altitude controller architecture

Part I

AUV Modelling and Control -
Developing the AUV simulator

11

12

Simulator Overview

For the purpose of design and analyse of the proposed collision avoidance system (CAS), a
suitable test-bed is desirable. For this reason, a complete simulation environment has been
implemented in Simulink. A great deal of time and effort has been put into making this
simulator as accurately and as close to reality as possible, to ensure maximum validity to
the simulation results. The development of this simulator has also given the author a better
grasp the problem in general and a better understanding of the physics and forces involved.
The simulator includes a 6 Degrees of freedom nonlinear hydrodynamical model of the
HUGIN 1000 AUV and simulators for each of the sonars using given specifications. Next
an autopilot and a LOS Way point guidance system has been developed for the AUV model,
representing the existing navigation system of the real vessel. Finally the bottom-following
capability of the HUGIN AUVs needed to be replicated, so an altitude controller using the
ranges from the sonar simulators was developed and implemented. Figure 2.8 shows an
overview of the resulting simulator which is described in detail in this part.

Figure 2.8: The AUV simulator structure

Chapter 3

Hydrodynamic modelling

This model is based on structure and parameters obtained from the development team behind
the HUGIN AUVs (Kongsberg Maritime and FFI) and represents the most accurate (known)
model of the HUGIN 1000 AUV to date. This is to ensure that simulations performed with
the complete system is as close to reality as possible and reduce the need for adjustments in
a real implementation. Still the structure of this model is of standard form for marine vessels
and could represent any AUV, simply by using different model parameters and adjusting to
propeller and rudder configurations.

3.1 Reference Frames and Motion Variables

Figure 3.1: Reference frames (Fossen 2002)

For marine vessels operating in 6 degrees of freedom (DOF), 6 independent variables
are necessary to determine position and orientation (attitude). The three first coordinates,
and their time derivatives, correspond to position and translation. The last three coordinates,

13

14 CHAPTER 3. HYDRODYNAMIC MODELLING

and their time derivatives, determines orientation and rotational motions (rates). For marine
vessels, the 6 different motion components are defined as; surge, sway, heave, roll, pitch and
yaw (see figure 3.1).

When analyzing the motion of a marine vessel within a limited geographic area, it is
convenient to define two geographic reference frames; North-East-Down (NED) and Body
frame (BODY). The NED frame is attached with the origin at a designated position on
the earth surface. The X-component (N) corresponds with the local North direction, the
Y-component corresponds with the local East direction and the Z-component points down
along the normal of the earth surface (see figure 3.1). This frame is used for representing the
position and orientation relative to the local tangent plane of the earth. I should be noted that
this frame is not actually inertial since it moves and rotates with the earth, hence newtons
laws does not apply perfectly in this frame. In addition, the earth curvature is not take into
consideration. Still, for what is called flat-earth-navigation, the NED frame is normally
considered inertial and geographically correct.

The BODY frame is a moving coordinate frame which is attached to the vessel hull.
The position and orientation of the vessel are described relative to the reference frame NED
while the linear and angular velocities are described in the BODY frame. The origin of the
BODY frame is usually attached to the center of gravity or at the volumetric center of the
vessel. For marine vessels the axes of the BODY frame are usually defined with the x-axis
pointing from aft to fore, the-y axis pointing starboard and the z-axis pointing from top to
bottom (see figure 3.1). For further details about reference frames for marine vessels, the
reader is referred to Fossen (2002), chapter 2.

3.2 Developing the AUV model

3.2.1 Nonlinear hydrodynamic model

The dynamical equations of the system are based on the standard marine vessel equations of
motion shown in equations 3.2.1 and 3.2.2, as described in Fossen (2002).

η̇ = J(η)ν (3.2.1)

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ + g0 + w (3.2.2)

η =



x (north)
y (east)
z (down)
φ (roll)
θ (pitch)
ψ (yaw)

 , ν =



u (surge)
v (sway)
w (heave)

p (roll − rate)
q (pitch− rate)
r (yaw − rate)

 (3.2.3)

Equations 3.2.1 and 3.2.2 are actually 12 coupled differential equations, representing the
dynamics of a vessel in 6 degrees of freedom (DOF). The matrices for equations 3.2.1 and
3.2.2 are defined in equations 3.2.4 to 3.2.12 where the notation of SNAME (1950) is used.

3.2. DEVELOPING THE AUV MODEL 15

Mass Matrix:

M = MRB +MA =



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz
mzg 0−mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz



+



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ



(3.2.4)

Coriolis and Centripetal Matrix:

C(ν) = CRB(ν) + CA(ν) (3.2.5)

where

CRB(ν) =



0 0 0
0 0 0
0 0 0

−m(yg + zgr) m(ygp+ w) m(zgp+ v)
m(xgq − w) −m(zgr + xgp) m(zgp− v)
m(xgr + v) m(ygr − u) −m(xgp+ ygq)

m(ygq + zgr) −m(xgq − w) −m(xgr + v)
−m(ygp+ w) m(zgr + xgp) −m(ygr − u)
−m(zgp− v) −m(zgq + u) m(xgp+ ygq)

0 −Iyzq − Ixzp+ Izr Iyzr + Ixyp− Iyq
Iyzq + Ixzp+ Izr 0 −Ixzr − Ixyq + Ixp
−Iyzr − Ixyp+ Iyq Ixzr + Ixyq − Ixp 0



(3.2.6)

and

CA(ν) =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0

 (3.2.7)

where
a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr
a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr
a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr
b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr
b2 = Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr
b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

(3.2.8)

16 CHAPTER 3. HYDRODYNAMIC MODELLING

Damping Matrix:

D(ν) =



Xu +X|u|u|u| 0 0
0 Yuv|u|+ Yuv|u||v||u| 0
0 0 Zuw|u|+ Zuw|w||w||u|
0 0 0
0 0 Muw|u|+Muw|u||w||u|
0 Nuv|u| +Nuv|v||v||u| 0

0 0 0
0 0 Yur|u|+ Yur|r||r||u|
0 Zuq|u|+ Zuq|q||q||u| 0

Kup|u|+Kup|u||p||u| 0 0
0 Muq|u|+Muq|q||q||u| 0
0 0 Nur|u|+Nur|r||r||u|



(3.2.9)

Restoring forces:

g(η) =



(W −B) sin θ
(W −B) cos θ sinφ
(W −B) cos θ cosφ

− (ygW − ybB) cos θ cosφ + (zgW − zbB) cos θ sinφ
(zgW − zbB) sin θ + (xgW − xbB) cos θ cosφ

− (xgW − xbB) cos θ sinφ − (ygW − ybB) sin θ

 (3.2.10)

Transformation matrix:

J(η) =



cψcθ −sψcφ + cψsθsφ sψsφ+ cψcφsθ 0 0 0
sψcθ cψcφ + sφsθsψ −cψsφ + sθsφcφ 0 0 0
−sθ cθsφ cθcφ 0 0 0

0 0 0 1 sφtθ cφtθ
0 0 0 0 cφ −sφ
0 0 0 0 sφ/cθ cφ/cθ

 (3.2.11)

where
sθ = sin θ
cθ = cos θ
sφ = sinφ
cφ = cosφ
sψ = sinψ
cψ = cosψ
tθ = tan θ

(3.2.12)

The vector η denotes the position and orientation given in the earth fixed coordinate sys-
tem NED. This frame is a flat-earth approximation and is considered inertial in this model.
Such an approximation is considered to provide sufficient accuracy for this sort of simula-
tions, as the effects of the earth rotation and curvature are minimal compared to the other
forces and moments. The vector ν denotes the linear and angular velocity vectors which are
decomposed in the hull-fixed reference frame BODY (see 3.2.3). Equation 3.2.1 represents

3.2. DEVELOPING THE AUV MODEL 17

the transformation between BODY and NED and the matrix J is simply the transforma-
tion matrix obtained from the AUV euler angles given in NED. Equation 3.2.2 represent
the torque/force and acceleration balance of the system decomposed in BODY, derived from
newtons laws of motion. Starting on the left side, the matrixM (3.2.4) denotes the mass and
inertia (including added mass) of the vessel. The term C(ν)ν (3.2.5) denotes the nonlinear
coriolis and centripetal forces (including added mass) acting on the vessel. D(ν)ν (3.2.9)
denotes the system damping matrix. Worth noticing about the system damping is the lack
of a constant damping term. In fact, all damping terms are multiplied by the surge speed
which leads to zero damping once the surge speed is zero. This indicates that the model is
designed to be valid only around the nominal surge speed. The last term on the left side
is g(η) (3.2.10), which represent the forces due to gravity. τ is the complete control input
vector consisting of forces applied by the rudders and the propeller. This is the only term
in this equation which may be controlled during operation. The vector g0 may be used to
represent pre-trimming of the vessel using ballast tanks or similar systems. For the case of
simulating the HUGIN AUV in a collision avoidance context, this is not very relevant and
the term was therefore excluded. The last term w represents the external forces acting on
the vessel, which for an underwater vessel consists only of varying currents. A constant
current will not represent any acceleration to the system in steady state, and equation 3.2.2
is therefore not affected. By assuming the current to be constant or very slow varying, this
term was also neglected. Constant linear current may instead be simulated by adding a term
η̇c to equation 3.2.1 consisting of the linear velocity of the current given in NED. The re-
sulting equations used for modelling the HUGIN AUV are shown in 3.2.13 and 3.2.14. For
further details about equations 3.2.1 and 3.2.2 and modelling of marine vessels, the reader
is referred to Fossen (2002) chapters 2-4.

η̇ = J(η)ν + η̇c (3.2.13)

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ (3.2.14)

3.2.2 Propeller and rudder

As seen in figure 2.1, the HUGIN AUVs have 4 rudders and 1 propeller. Two of the rudders
are for horizontal control (yaw) and two of the rudders are for vertical control (pitch). All
of the 4 rudders may be deflected independently up to a given maximum angle in each di-
rection. Roll control may be applied by deflecting two adjacent rudders differently. Rudder
actuation is also limited by the maximum rate of the rudder-servos. The propeller input is
desired propeller rpm.

Propeller modelling was performed using the quasi-steady thrust and torque approach
(Fossen 2002, chap 12.2.1). In this approach the surge-thrust T and the roll-torque Q was
modelled as shown in equations 3.2.15 and 3.2.16. Here u is the surge speed, n is the
propeller angular rate and Tn|n|, T|n|u, Qn|n| and Q|n|u are propeller parameters.

T = Tn|n|n|n| − T|n|u|n|u (3.2.15)

Q = Qn|n|n|n| −Q|n|u|n|u (3.2.16)

18 CHAPTER 3. HYDRODYNAMIC MODELLING

The force and torque vector caused by the propeller (τpr) may then be derived as:

τpr =



T
0
0
Q
0
0

 (3.2.17)

The forces and torques caused by the rudders was modelled by a quadratic method, derived
from the hugin team. The vector δ consisting of the four rudder angles is denoted as:

δ =


δtop
δbottom
δport

δstarboard

 (3.2.18)

The rudder force/torque lift vector τrl may be estimated by equation 3.2.19. The matrix B
is defined by equation 3.2.20 where Yδu2 and Zδu2 are rudder parameters and lx, ly and lz
defines the position of the rudders in BODY coordinates.

τrl = Blδu
2 (3.2.19)

Bl =



0 0 0 0
Yδu2 Yδu2 0 0

0 0 Zδu2 Zδu2

Yδu2 lz −Yδu2 lz −Zδu2 ly Zδu2 ly
0 0 Zδu2 lx Zδu2 lx

−Yδu2 lx Yδu2 lx 0 0

 (3.2.20)

When the rudders are used for actuation, they also contribute to increased drag on the AUV.
This force τrd may be estimated by equation 3.2.21 where Xδ2u2 is a negative rudder pa-
rameter.

τrd =



Xδ2u2

0
0
0
0
0

 δ
T δu2 (3.2.21)

The complete input vector of forces and torques (τ) may then be calculated as:

τ = τpr + τrl + τrd (3.2.22)

The physical limitations of the rudders (max angle and max angle rate) were implemented
by a saturation and a rate limiter block on the rudder input.

3.3. AUV MODEL SIMULATIONS AND DISCUSSION 19

3.2.3 Matlab/Simulink implementation

Implementation in Simulink was performed using an embedded matlab block. The M-code
is simply the forming of the matrices in 3.2.13 and 3.2.14 and the calculation of the same
equations. As described in Smith & Ghidella (2004), this method of incorporating M-code
into Simulink results in comparable running times to the s-function method, when debugging
mode is disabled. The embedded matlab block was chosen for its simplicity in implementa-
tion, and the simulink diagram is shown in Appendix B.1. The simulink file hugin1000.mdl,
including the embedded matlab code is included on the attached CD.

Since the model parameters of the HUGIN AUV are confidential, they are not included
in the official part of the report. Interested readers must contact FFI or Kongsberg Maritime
for access to these data, as the author is not authorized to distribute them further. The
complete model with all parameters is included on the CD, attached to the restricted version
of the project report which is available only to examiners and guidance supervisors.

3.3 AUV Model Simulations and discussion

It is difficult to confirm the correctness of the implemented HUGIN model as the dynamics
are very complex. Also, this is considered out of the scope of this project. Still, the model
was run trough a series of tests to get an indication of stability properties and to investigate
maximum rates in pitch and yaw.

3.3.1 Test 1: Zero rudder input

In this test, the complete model described in section 3.2.1 was simulated with zero rudder
inputs and 2.65 revs/sec propeller speed (nominal) with initial speed 0. A plot of the 6
relevant states are shown in figure 3.3. As seen in the figure, the roll angle started deviating
as soon as the simulation began. This is because of roll torque caused by the propeller and
the lack of a constant damping term in roll. As the surge speed increased, the roll damping
also increased, and gravity forces decreased the roll angle back to an offset of about 0.0175
radians (1 degree). The surge speed gradually increased and settled at the nominal speed
(2.05 m/s) after about 50 seconds. The yaw and pitch angles and the sway and heave motions
experienced rapid deviations at the very beginning of the simulation, although no rudder
torque was present. The only explanation for this must be the lack of constant damping
terms for these states, as mentioned in section 3.2.1. This leads to virtually no damping
when the surge speed is close to zero. To sum this up, the vessel appears to be relatively
stable at nominal speed with no rudder inputs, as all states converge to constant values once
the surge speed approaches the nominal speed. However, the simulation indicates that the
model is not valid around zero surge speed. This should not be a problem for the use in this
project, as all simulations will be performed at nominal speed.

20 CHAPTER 3. HYDRODYNAMIC MODELLING

Figure 3.2: Hugin model test 1 - Zero rudder input

3.3.2 Test 2: Maximum yaw rate

In this test, the model was simulated with top and bottom rudder set to the saturation point
(12.5 degrees) and the propeller at nominal turn rate, in order to find the maximum yaw rate
and investigate the dynamics in this state. In this test the surge speed was initialized at the
nominal speed. The result is shown in figure 3.3.

As seen in the figure, the yaw rate quickly stabilized at approximately 0.095 rad/s (ap-
prox 6 deg/s) which correspond well with the given maximum yaw rate. It is also noticed
that the motion in sway is closely connected with the yaw rate. As the yaw rate increased,
so did the sway motion. This was expected since the yaw rate causes the vessel to ’side
slip’ through the water. At max yaw rate, the sway motion stabilized at approximately 0.25
m/s. This causes the vessel to obtain a course-through-water (CTW) angle at about 8 de-
grees off the actual heading (yaw angle) during maximum yaw rate turns. The surge speed
was slightly decreased because of the increased drag and settled at about 1.85 m/s. This is

3.3. AUV MODEL SIMULATIONS AND DISCUSSION 21

Figure 3.3: Hugin model test 2 - Maximum yaw rate

assumed acceptable and justifies the exclusion of a dedicated speed controller. The roll- and
pitch-angles were hardly affected by this maximum turn rate test, which indicates relatively
small coupling effects between the states. This should prove benifitial for the decoupled
autopilot structure.

3.3.3 Test 3: Maximum pitch rate

The third test was performed to find the maximum pitch rate and the dynamic properties
during this maneuver. The simulation was run with port and starboard rudders at satura-
tion levels (12.5 degrees), the propeller at the nominal turn rate and surge initialized at the
nominal speed. The result is shown in figure 3.4

22 CHAPTER 3. HYDRODYNAMIC MODELLING

Figure 3.4: Hugin model test 3 - Maximum pitch rate

As seen in the plots, the vessel quickly obtained the maximum pitch rate at approxi-
mately 0.096 rad/s (5.5 deg/s). As the pitch angle increased, the forces due to gravity also
increased which lead to a gradual reduction in pitch rate. When the pitch angle reached
approximately 1.4 radians (80 deg), the roll angle started to deviate and as the pitch angle
increased the vessel actually flipped around. This is because the stabilizing effect of the low
center of gravity tends to zero at such high pitch angles. The small roll torque applied by
the propeller then caused the vessel to flip around. For this reason, the pitch angle operation
range has been limited to +-60 degrees. This limitation has also been introduced on the real
HUGIN vessel for the same reasons. Within this range, the simulation indicate low coupling
into the roll- and yaw states. Similar to the sway motion experienced during the maximum
yaw test, the heave motion is closely coupled with the pitch rate, reaching a maximum heave
speed of approximately 0.3 m/s during this maneuver

3.3. AUV MODEL SIMULATIONS AND DISCUSSION 23

3.3.4 Test 4: All rudders at maximum angle

In this third test, all 4 rudders are set to the saturation point. The simulation was initialized
with nominal surge speed and all other states set to zero. The result is shown in figure 3.5.

Figure 3.5: Hugin model test 4 - All rudders at max angle

This sort of maneuver represents the most extreme maneuver which may be used for
e.g. critical collision avoidance. As seen in the plots, both pitch and yaw quickly started to
deviate from the initial condition. At the same time, the roll angle quickly deviated from
zero and kept increasing up to an angle of about 43◦. Of course, surveying made under such
conditions are not ideal as the surveying sensors are rotated as well. The reason for this large
roll deviation is because of simultaneous rates in pitch and yaw which lead to an increasing
roll angle. In the model, this effect is implemented in the rotation matrix. The low center
of gravity is the only reason the vessel does not flip all the way around. The high roll angle
is also the reason the pitch angle never reaches the instability point (ref test 3). Instead the
vessel stabilizes in an upwards helix motion.

Chapter 4

Sonar modelling

The term ’SONAR’ is defined by Winder (1975) as ’the method or equipment for deter-
mining by underwater sound the presence, location or nature of objects in the sea.’ It is an
acronym for ’Sound Navigation and Ranging’. Active sonar, which is the type discussed
in this paper, involves the transmission of an acoustic signal which, when reflected from a
target, provides the sonar receiver with a basis for detection and range-estimation. To mea-
sure the distance to an object, the time from transmission of a pulse to reception is measured
and converted into a range by estimating the speed of sound through water. To measure the
bearing, several hydrophones are used to measures the relative arrival time to each. An-
other method is to use an array of hydrophones and measure the relative amplitude in beams
formed through a process called beam forming. The target signal (if present) together with
noise is then passed through various forms of signal processing. It is then processed by
some form of decision algorithm that determines how the signal is to be interpreted. For fur-
ther details about sonars and sonar signal processing, the reader is referred to Knight et al.
(1981).

4.1 HUGIN sonar configuration

The HUGIN AUV discussed in this paper is assumed equipped with the following sonars
(see fig 4.1):

• Vertical Altimeter - Single sonar beam pointing straight down.

• Forward Altimeter - Single sonar beam pointing down and forward.

• Starboard Side Scan Sonar - Wide sector sonar beam primarily used for imaging.
Directed 90◦ starboard in the horizontal plane (sector: 0.5◦) and covers a sector from
10◦ to 80◦ (measured from vertical down) in the vertical plane. For ranging, this sonar
returns the shortest range within the entire coverage sector.

• Port Side Scan Sonar - Identical to the Starboard Side Scan Sonar, only directed
port.

• Forward Looking Sonar (FLS) - Array of 45 sonar beams covering a sector of 45◦,
each covering 1◦ x 15◦..

24

4.2. DIGITAL TERRAIN MODEL (DTM) 25

Figure 4.1: Sonar configuration (with vertically mounted FLS)

Sonar Orientation Range
(Euler angles in BODY)

Vertical Altimeter [0 90◦ 0] 50m
Forward Altimeter [0 45◦ 0] 50m
Starboard SSS [0 (10◦ → 80◦) −90◦] 50m
Port SSS [0 (10◦ → 80◦) 90◦] 50m
FLS (vertical configuration) [0 (−22.5◦ : 1◦ : 22.5◦) (−7.5◦ → 7.5◦)] 50m

Table 4.1: Sonar configuration

4.2 Digital Terrain Model (DTM)

The simulated environment is represented by a Digital Terrain Model (DTM). The DTM
consists of 2 DTM matrices; one containing depths for square sections in the North and East
plane as shown in figure 4.2, and the other containing depths of the surface ice in the same
area. The depth within each sector is considered equal, and the resolution is determined by
how large area each square represents in the real world. A visualization of a DTM (without
ice) derived by HUGIN from the Breiangen area in the Oslo fjord, is shown in figure 4.3.
This DTM contains 300 x 300 depths and the resolution is 10 meters, so each number in the
matrix covers an area of 10m x 10m of the real world. This resolution is used throughout
the work on this project but may easily be changed to any value. The matlab script for
visualizing DTM matrices (mapmaker.m) is included on the CD.

26 CHAPTER 4. SONAR MODELLING

Figure 4.2: An example DTM matrix

Figure 4.3: A visualization of a DTM for the Breiangen area.

4.3. DEVELOPING THE SONAR SIMULATORS 27

4.3 Developing the sonar simulators

Each sonar range is calculated by iterating along the sonar direction until intersection with
the bottom or the ice, represented by the DTM matrices, or until the maximum range is
reached. This calculation is performed for each time-step during simulations and must take
into consideration the vessel position and attitude as well as the DTM values in the particular
area. The single sonar ranges may be calculated in the same way, and this is covered in
the first section. The calculation of the side scan sonars and the FLS are somewhat more
complicated and are covered in two consecutive sections.

4.3.1 Single sonar beam

In order to find the point of intersection between the bottom profile (or ice) and the sonar
beam, the heights of the iteration points must be compared with the bottom height and ice
depths. For this reason, a new coordinate frame is introduced; the SONAR frame. This
frame has it’s origin at the sonar position (given in BODY coordinates) and is rotated with
respect to the BODY frame according to the orientations given in table 4.1. Each iteration
point Pi is simply given as [mi 0 0] in SONAR coordinates where mi is the iteration vari-
able. Starting with mi = 0, the sonar beam is then checked with the desired resolution (δm)
by increasing mi with δm in each step. The iteration points must then be transformed to
NED coordinates in order to compare the height to the DTM values in the particular DTM
section. Denoting the iteration point in sonar coordinates as psi , the sonar position in BODY
coordinates as pbs and the rotation matrix from SONAR to BODY coordinates as Rbs. The
position of the iteration point with respect to the BODY frame may be then be found by
equation 4.3.1. This may be rewritten into 4.3.2 which is the standard form of homogen
transformation used widely within robotics. The homogen transformation matrix (in this
case: Abs) performs both rotation and translation in one single operation. For further details
about homogen transformations, the reader is referred to Sciavicco & Siciliano (2000).

[
pbi
1

]
=
[
Rbs pbs
0 1

] [
psi
1

]
(4.3.1)

P bi = AbsP
s
i where Abs =

[
Rbs pbs
0 1

]
, P bi =

[
pbi
1

]
, P ai =

[
psi
1

]
(4.3.2)

The iteration point psi may be transformed directly into NED coordinates (pni) using the
same principle, as shown in equation 4.3.3

Pni = AnbP
b
i = AnsP

s
i where Ans = AnbA

b
s, Pni =

[
pni
1

]
(4.3.3)

In this fashion, the iteration points may be transformed from the SONAR frame to the NED
frame in one single operation and the height of the iteration point may be directly compared
with the DTM matrices. The pseudo code for the single sonar beam simulator is shown in
table 4.2. This simulation code may be used for each of the single beam sonars, simply by
adjusting the orientation and position (in BODY coordinates) in the transformation matrix
for each sonar. The matlab source code for calculating single sonar ranges (singleSonar-
Range.m) included on the CD.

28 CHAPTER 4. SONAR MODELLING

1. Initialize; m=0

2. Set P si =[m 0 0 1]’, Pni = AnsP
s
i =[x y z 1]

3. Find correct section in DTM using x and y coordinates of Pni

4. IF z coordinate is below bottom or above ice⇒ FINISHED, range = m

5. Update range: m=m+δm

6. IF m > max range⇒ FINISHED, range = m

7. Go back to 2

Table 4.2: Single sonar beam simulator pseudo code

4.3.2 Forward Looking Sonar (FLS)

The Forward Looking Sonar (FLS) consists of 45 separate sonar beams which each have
to be calculated separately. However, each sonar beam has a horizontal (in body cord.)
resolution of 15 degrees. This means that the sonar cannot separate echoes within this
sector. To add this effect in the simulator, each beam range is calculated by iterating along 3
lines within the beam sector as shown in figure 4.4 and using the shortest range. This results

Figure 4.4: Iterating 3 lines within each FLS beam

in the range calculation of 45 x 3 = 135 lines in each time step to calculate the complete
set of FLS ranges. The ranges are calculated by introducing two new coordinate frames:
SONAR BEAM frame and SONAR LINE frame. The SONAR BEAM frames represents
each of the 45 sonar beam sectors. The SONAR LINE frames represent each of the three
lines within each beam. Both these frames have origins equal to the SONAR frame, hence
only rotation matrices are necessary in order to transform the iteration points to the SONAR
frame. The complete set of transformations necessary to transform one iteration point to the

4.3. DEVELOPING THE SONAR SIMULATORS 29

NED frame is given in table 4.3. In this table the following notation is used: Ryx denotes the
rotation matrix from X frame to Y frame, Azx denotes the homogen transformation matrix
from X frame to Z frame, SONAR LINE = sl, SONAR BEAM = sb, SONAR = s, BODY =
b and NED = n. Using the principle of homogen transformation, each transformation may
be performed in one single operation as shown in equation 4.3.4, where psli is the iteration
point in SONAR LINE coordinates and pni is the same point in NED coordinates.

SONAR LINE frame: Psl
i =[m 0 0 1]

⇓ (Rsbsl) (rotation)

SONAR BEAM frame: Psb
i

⇓ (Rssb) (rotation)

SONAR frame: Ps
i

⇓ (Abs) (rotation + translation)

BODY frame: Pb
i

⇓ (Anb) (rotation + translation)

NED frame: Pn
i

Table 4.3: Transforming one FLS iteration point to NED frame

[
pni
1

]
= Ansl

[
psli
1

]
= AnbA

b
sl

[
pni
1

]
=
[
Rnb pnb
0 1

] [
RbsR

s
sbR

sb
sl pbs

0 1

] [
psli
1

]
(4.3.4)

The pseudo code for the FLS simulator is given in table 4.4 The implemented matlab code
SonarRanges.m is included on the CD.

1. For each of the 45 beams, form Ansb

2. For each of the 3 lines in each beam form Ansl, calculate range using
single sonar script 4.2, return smallest value of the three.

Table 4.4: FLS simulator pseudo code

30 CHAPTER 4. SONAR MODELLING

4.3.3 Side scan sonar

The two side scan sonars are identical and are calculated by the same method. Each of the
sonars have a vertical resolution of 70 degrees. The sonars return the shortest range within
this sector in the same way as each of the FLS beams. In order to incorporate this effect
in the simulator, each of the ranges are calculated by iterating along 10 lines within the
beam sectors of which the shortest range is returned. The calculation of each of the side
scan sonars are performed in the same way as with each of the FLS beams, by introducing
SONAR LINE frames for each of the lines to be checked. The set of transformation neces-
sary to transform one iteraion point to the NED frame is given in table 4.5, where the same
notation as with the FLS is used. The implemented matlab code for calculating the side scan

SONAR LINE frame: Psl
i =[m 0 0 1]

⇓ (Rssl) (rotation)

SONAR frame: Ps
i

⇓ (Abs) (rotation + translation)

BODY frame: Pb
i

⇓ (Anb) (rotation + translation)

NED frame: Pn
i

Table 4.5: Transforming one SSS iteration point to NED frame

sonar ranges SideScan.m is included on the CD.

4.3.4 Simulink implementation

As the sonar simulator performs a great number of calculations in each time step, the sim-
ulation speed was significantly reduced after implementing this functionality. One of the
reasons for this is the large amount of data that is passed around when reading from the
DTM matrices. In order to speed up the simulations, a small modification was made. In-
stead of reading DTM data from the complete DTM matrices, the data was obtained from
a small section of them, covering an area of 50m X 50m around the current position of the
AUV. This must be done for both DTMs, and the implemented matlab functions for this task
(makeSDTM.m and makeSICE.m) are included on the CD. The complete script for simulat-
ing all sonars SonarSimulator.m is also included on the CD. This script was included in the
simulink model using an embedded matlab block.

4.4. SONAR SIMULATIONS AND COMMENTS 31

4.4 Sonar simulations and comments

Single sonar beam simulator

The single sonar beam simulator was tested by letting the model run along the surface
(depth=0m) through an example landscape. The depth was then measured by the verti-
cal altimeter. The measured depth is plotted against the actual depth in figure 4.5. The sonar
resolution was set to 0.1 meters during the run.

Figure 4.5: Testing the single sonar simulator

Figure 4.5 indicates that the single sonar simulator is accurate. The measured depth
is almost identical to the actual dept. A closer analysis of the plot shows that the single
sonar measurement is at max 0.1 meters away from the actual depth. This is because of the
chosen sonar resolution (δm) which is set to 0.1 meters. Decreasing this resolution would
result in even more accurate sonar ranges. This would also decrease the simulation speed,
as the simulator has to perform more iterations in order to calculate the distance. For this
reason, 0.1 meters is chosen as the simulated resolution as it provides enough accuracy for
the system to function properly. This is also close to the resoultion one could expect from a
physical sonar.

FLS simulator

One of the tests performed with the FLS simulator was to point the AUV model straight
towards a vertical wall at a distance of 40 meters with a horizontal FLS configuration. A
visualization of the resulting FLS measurements is shown in figure 4.6.

The figure indicates that the FLS simulator calculates all of the sonar ranges correctly.
Again, the small variations is assumed to be a result of the chosen sonar resolution. Further
tests using higher resolutions confirms this. The correctness of the FLS simulator was also
confirmed in a number of additional tests.

32 CHAPTER 4. SONAR MODELLING

Figure 4.6: Testing the FLS simulator

Side scan sonars

The side scan sonar simulator is not easily tested because of the wide sector and low reso-
lution. Although some simple tests were performed indicating correct implementation. In
addition, the calculations rely on the single sonar beam implementation which has been
proven correct. For these reasons, the side scan sonar implementation is assumed to be
correct. Later simulations using the complete system has confirmed this assumption.

Chapter 5

Autopilot design

In order to simulate the complete system, an autopilot needed to be designed for the AUV
model, similar to the one used on the actual HUGIN. For this reason a number of different
autopilot versions were developed, specifically designed to work in coherence with the rest
of the system (see figure 2.8) and a proposed Collision Avoidance System. The Autopilot
should accept input in the form of desired angles in roll, pitch and yaw to fit into this system.
There are many choices for the design of an autopilot for AUVs, and this has been addressed
by a large number of authors. Some useful references are Healey & Lienard (1993), Fryxell
et al. (1996), Pascoal et al. (1997) and Leonard (1997). As with almost any physical control
design, the principle choice is whether the autopilot is to be based on nonlinear or linear
design. While a nonlinear design has the potential of global stability (Khalil 2000) and to
handle rigorous nonlinearities in the physical system, a linear design is often preferred be-
cause of its simplicity in tuning and good practical performance (Chen 1999). This chapter
describes the development and implementation of several linear designs. In section 5.5 a
nonlinear feedback linearization scheme is derived and applied to the AUV model. It should
be noted that autopilot design is not considered the main core of this project work.

Although the roll dynamics of the HUGIN are inherently stable, as the center of gravity
is below the center of buoyancy, additional roll control was applied in the autopilots in
order to maintain a minimal roll angle during all maneuvers. This was to ensure maximum
utilization of the payload sensors and to minimize coupling effects in pitch and yaw. Surge
speed control was not implemented, as the vessel surge speed is considered sufficiently
uniform using a fixed propeller revolution. In addition, stable surge speed is not considered
critical for the overall operation.

5.1 Linearized and reduced vessel model

For the purpose of a linear autopilot design, a linear model describing the dominating dy-
namics of roll, pitch and yaw was needed. For this reason, the nonlinear model in 3.2.13
and 3.2.14 was reduced by assuming sway and heave to be small and surge to be the nearly
constant (u0 = 2, 0474 m/s). The simulations performed in chapter 3 confirms this assump-
tion. In addition, including these states in the autopilot model has no purpose as the rudders
may only apply torques in roll, pitch and yaw. This resulted in the following reduced (but

33

34 CHAPTER 5. AUTOPILOT DESIGN

still nonlinear) model:

M

˙pq
r

+ C

pq
r

+D

pq
r

+

 0
ZgW sin(θ)

0

 =

τpτq
τr

 (5.1.1)

where:

M =

Ix 0 0
0 Iy −Mq̇ 0
0 0 Iz −Nṙ

 (5.1.2)

C = CRB + CA (5.1.3)

CRB =

 0 Izr −Iyq
−Izr 0 Ixp
Iyq −Ixp 0

 (5.1.4)

CA =

 0 −(Yṙv +Nṙr) Zq̇w +Mq̇q
Yṙv +Nṙr 0 −Kpp

−(Zq̇w +Mq̇)q Kpp 0

 (5.1.5)

D =

Kup|u0| 0 0
0 Muq|u0| 0
0 0 Nur|u0|

 (5.1.6)

Linearizing this model about zero roll and pitch, yields the linear differential equations in
5.1.7, 5.1.8 and 5.1.9. As seen from these equations, coriolis effect has been eliminated by
the linearization, resulting in three linear decoupled differential equations.

ṗ = −Kup|u0|p
Ix

+
τp
Ix

(5.1.7)

q̇ = −Muq|u0|q
Iy −Mq̇

− Wzgθ

Iy −Mq̇
+

τq
Iy −Mq̇

(5.1.8)

ṙ = −Nur|u0|r
Iz −Nṙ

+
τr

Iz −Nṙ
(5.1.9)

Including the NED states; φ, θ and ψ with the linearized relationships given in 5.1.10, the
total linearized model may be represented in state space, as shown in equation 5.1.11. As
seen in 5.1.11, the linearized model is completely decoupled in roll, pitch and yaw. Hence,
the resulting controllers based on this model will not take into account the coupling effects
present in the real vessel.

φ̇ = p, θ̇ = q, ψ̇ = r (5.1.10)

ṗ
q̇
ṙ

φ̇

θ̇

ψ̇

 =



−Kup|u0|
Ix

0 0 0 0 0
0 −Muq |u0|

Iy−Mq̇
0 0 − Wzg

Iy−Mq̇
0

0 0 −Nur|u0|
Iz−Nṙ

0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





p
q
r
φ
θ
ψ

+



1
Ix

0 0
0 1

Iy−Mq̇
0

0 0 1
Iz−Nṙ

0 0 0
0 0 0
0 0 0


τpτq
τr



(5.1.11)

5.2. LQ RUDDER CONTROL 35

5.2 LQ rudder control

This controller was designed to output the 4 different rudder angles directly. For this reason,
the linearized model used in designing the feedback gains, had to be extended by including
the effect of rudder deflections. Since the relationship between rudder deflections and re-
sulting torque is already linear, this extension was performed by simply including the rudder
control matrix (3.2.20) in the linearized model (5.1.11). This resulted in the linear model
given in 5.2.1. The rudder drag effect is not included in this equation as it only affects the
surge speed.



ṗ
q̇
ṙ

φ̇

θ̇

ψ̇

 =



−Kup|u0|
Ix

0 0 0 0 0
0 −Muq |u0|

Iy−Mq̇
0 0 − Wzg

Iy−Mq̇
0

0 0 −Nur|u0|
Iz−Nṙ

0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





p
q
r
φ
θ
ψ

+



Ydu2 lz
Ix

−Ydu2 lz
Ix

−Zdu2 ly
Ix

Zdu2 ly
Ix

0 0 Zdu2 lx
Iy−Mq̇

Zdu2 lx
Iy−Mq̇

−Ydu2 lx
Iz−Nṙ

−Ydu2 lx
Iz−Nṙ

0 0
0 0 0 0
0 0 0 0
0 0 0 0




δtop
δbottom
δport

δstarboard

u2
0

(5.2.1)

This state space model is of standard form and may be written as:

ẋ = Ax+Bδ, δ =
[
δtop δbottom δport δstarboard

]T (5.2.2)

The controller was then designed by applying feedback as shown in 5.2.3, where the input
are the desired angles in roll (φd), pitch (θd) and yaw (ψd).

δ = −K



p
q
r

φ− φd
θ − θd
ψ − ψd

 (5.2.3)

The feedback gain matrix K may be found using different methods of linear feedback, eg.
Pole Placement (see Chen 1999, chap 9) or Linear Quadratic (LQ) optimization (see Foss
2004). A Linear Quadratic design was chosen for its intuitive method of tuning. Finding
the feedback gains then consisted of solving the optimization problem 5.2.4 and 5.2.5. This
was performed using the matlab function lqr().

min J(u) =
∫ ∞

0
xTQx+ δTRδ dt (5.2.4)

36 CHAPTER 5. AUTOPILOT DESIGN

subject to equality constraints (system dynamics):

ẋ = Ax+Bδ (5.2.5)

The input matrix R was set to the identity matrix, as all 4 rudders are equal and their de-
flection should be weighted equally. Tuning the controllers therefore consisted of setting the
state weight matrix Q. All off-diagonal elements were set to zero as the states are completely
decoupled. The diagonal elements representing each of the three controlled states (roll,pitch
and yaw) determines how much weight the controller should put on each of them. As stated
earlier, the roll angle should be kept close to zero at all times in order to maximize payload
sensor utilization and to keep coupling effects to a minimum. For this reason the roll state
weight was set slightly larger than the pitch- and yaw state weights. The resulting weight
matrices used for calculating the gain matrix are shown in (5.2.6).

Q = 300×



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 3 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.2.6)

The m-file used to calculate the controller gains LQrudder.m is included on the restricted
CD.

5.2.1 Simulation and comments

In order to test and compare the different autopilot designs, they were all run through the
same test. This test consisted of a simultaneous step in pitch and yaw, large enough to
cause saturations for all rudders. This is assumed to represent the most extreme case for
the autopilot. The test were initialized with all states set to zero, except for the surge speed
which was set to the nominal speed (2,05 m/s). At time = 10, the desired yaw was set to 90
degrees (π/2 rads) and desired pitch to 45 degrees (π/4 rads). In the simulation plot 5.1,
the reference inputs are marked red and the measured state outputs are marked blue.

Because of the large step applied to pitch and yaw at time=10s, all four rudders were
saturated for a period of 10 seconds, only delayed by the rudder rate saturations. This
resulted in the same behavior as in test 4 (maximum rudder test, figure 3.5) where the roll
angle started deviating immediately. Although the roll controller was active during this
time, the applied roll-torque was suppressed by the rudder saturations. Only when the roll
deviation reached approximately 0.15 radians, the applied roll torque became visible on
the rudder outputs. And once the pitch and yaw angle approached the reference angles,
the roll controller steadily gained control of the rudders, eventually forcing the roll angle
back to the equilibrium point. This behavior is caused by the continuous struggle between
the controllers, all trying to apply different torques on the rudders. When the rudders are
saturated, the desired roll torque is simply suppressed.

Effectively, this autopilot consists of 3 separate PD controllers for roll,pitch and yaw.
In practice however, these controllers are not separate, as the same control inputs are used
to control different states (see equation 3.2.20). Although yaw and pitch command are

5.2. LQ RUDDER CONTROL 37

Figure 5.1: Testing the LQ rudder autopilot

separated, the roll control input affect both pitch and yaw control as they use the same
rudders to apply torque. Because of the rudder saturations, this causes the roll control to
conflict with yaw and pitch control. Say the roll controller attempts to apply roll torque
using the rudders. Then it will add a small deflection angle to 2 of the rudders (e.g starboard
and top) and subtract a small deflection angle to the other two. If the desired deflection
commanded by the pitch and yaw controllers are already well above the saturation points,
the small deflections from the roll-controller will not have any effect on the actual rudder
outputs as they are already at the saturation points. As a result, no roll torque is applied
leading to free roll response. The internal priorisation of the three states may be adjusted to
a certain degree by altering the weight matrices proportionally, but is still mostly governed
by the current rudder saturations. Also, adjusting the weight matrices to much could degrade
the performance and may also cause unnecessary ’stiffness’ in the system, causing it to be
more sensitive to measurement noise.

The torque forces from the propeller caused a small steady state error on the roll angle
(approximately 0.0005 radians). In addition, the gravity forces causes a steady state error on

38 CHAPTER 5. AUTOPILOT DESIGN

the pitch angle of about 0.03 radians (1.7 degrees). This offset may have been handled by
various strategies. One option is including an integrated pitch state, but as the pitch torque
suffers from heavy saturations one would have to include some sort of anti-windup strategy
as well, in order to avoid windup problems. Another option would be to feedforward the
gravity forces and this option would probably yield the best results. However, the offset
was considered acceptably small so no strategy was applied. As the torque due to gravity is
linearly dependent on the pitch angle, the steady state error experienced should never exceed
0.03 radians.

5.3 LQ torque control with rudder allocation algorithm

In order to better control the internal priorisation of the different states, an alternative autopi-
lot strategy was developed. This autopilot uses the LQ method in a similar way, but instead
calculates the desired torque for each of the controlled states. (roll, pitch and yaw). The
model derived in 5.1.11 was used to calculate the LQ controller gains, again using the mat-
lab function lqr(), and the weight matrices were used to tune the performances separately.
For details, see the matlab script LQtorque.m which is included on the CD. In this way, the
controller outputs the desired torque for each of the states, and not the rudder deflections
directly. Internal priorisation of the different states may then be achieved by controlling
which of the desired torques are to be prioritized in the rudder deflections. A rudder alloca-
tion algorithm was developed for this purpose. This algorithm has the option of prioritizing
roll control before pitch- and yaw-control. The algorithm must take into consideration the
direction of the applied pitch- and yaw-torque together with the direction of the desired roll
torque obtained from the controller. Using this information, the algorithm decides which
rudder needs to be relaxed or increased in order to apply the desired roll torque. The algo-
rithm first attempts to apply the desired roll torque without affecting applied pitch and yaw
torque, by adjusting corresponding rudders equally (e.g. top rudder +1◦, bottom rudder
−1◦). If this is not possible due to rudder saturations and the algorithm is set to prioritize
roll control, the algorithm decreases applied pitch- and yaw-torque equally by relaxing one
of the rudders for each state. The overall strategy/pseudo code is shown in table 5.1.

It is worth noticing that this algorithm does not change the control law in any way, it
simply controls the state input saturations by deciding which states are to be prioritized.
Assuming the roll angle is kept within a certain area, this would effectively stop the roll
controller from ever getting saturated, reducing the overall roll deviation. By keeping the
roll angle close to zero, the coupling effects are minimized which is assumed to increase
the overall performance of the autopilot, as it is designed on the basis of full decoupling.
In addition, variations in roll will degrade the quality of payload sensor measurements and
should therefore be kept to a minimum. However, this roll-priorisation will necessarily
increase the response time of the roll- and pitch controllers in some cases. In some situations,
e.g. a critical collision avoidance maneuver, this is not desirable and for this reason the
priorisation may be altered during operation. As a result, the autopilot may operate in two
different modes; roll-priorisation mode and pitch- and yaw-priorisation mode, hence it may
be regarded as a hybrid system (see Branicky 1998). Item number 6 in table 5.1 is only
executed when the autopilot is in roll-priorisation mode. Mode switching is performed by
the Collision Avoidance system which is described in chapter 10.

5.3. LQ TORQUE CONTROL WITH RUDDER ALLOCATION ALGORITHM 39

1. Obtain desired torques in roll, pitch and yaw from the LQ controllers.

2. Apply desired yaw torque using top and bottom rudder within satura-
tions

3. Apply desired pitch torque using port and starboard rudder within satu-
rations

4. Calculate ’available rudder deflection’ for each of the two pairs (top-
bottom and port-starboard). This is the difference between the applied
rudder deflection and the saturation limit.

5. Apply desired roll torque within the ’available rudder deflection’ by ap-
plying deflection differences in the rudder pairs. This operation does not
alter the applied pitch- or yaw-torque.

6. IF (roll prioritized)
Apply remaining desired roll torque (if there is any), reducing pitch- and
yaw-torque by equal amounts. This operation takes into consideration
the direction of the desired roll torque compared with the direction of
the rudder saturations and calculates which rudders are to be relaxed.

Table 5.1: Rudder allocation algorithm

In the linear model (5.1.11) used for autopilot design, the BODY-states p, q and r are
in fact equal to the derivatives of the controlled NED states φ, θ and psi, although this is
not true in the nonlinear model. For implementation of these PD controllers, the measure-
ment/estimate used for the D-parts may be either the BODY states or the derivatives of the
NED states. Based on simulation results, the derivatives of the NED states was chosen to
be used for the rest of the project. Using the derivatives of the NED states is also assumed
to be the better choice, as these measurements include the effects of rotating from BODY to
NED. The rudder allocation algorithm (rudderalloc.m) is included on the CD. The simulink
diagram of this autopilot design is shown in appendix B.2.

5.3.1 Simulation and comments

An identical test was performed using this autopilot, consisting of a step input in pitch and
yaw after 10 seconds. The result is shown in figure 5.2 where the reference inputs are marked
red and the measured state outputs are marked blue. As the rudder allocation algorithm was
set to roll priority, the rudders immediately responded to the increasing roll angle. In fact, the
roll angle never exceeded 0.005 radians off the 0 reference input compared to 0.15 radians in
the pure LQ rudder strategy. However, this use of the rudders comes at the cost of decreased
torque in pitch and yaw, causing a delay of approximately 4 seconds to reach steady state
for these states compared to the previous autopilot. Setting the priority to pitch and yaw and
running the same test, lead to very similar results as with the LQ rudder controller. The only
difference was that the pitch and yaw responses were completely uninterrupted by the roll

40 CHAPTER 5. AUTOPILOT DESIGN

Figure 5.2: Testing the LQ autopilot with rudder allocation algorithm

controller, leading to faster pitch and yaw responses and larger roll deviation. The choice of
priority must therefore be made on the basis of user demands and the current situation. E.g in
a critical collision avoidance maneuver the roll deviation is irrelevant and the pitch and yaw
states should be prioritized in order to achieve the fastest response possible. However, when
the vessel is performing measurements sensitive to roll angle deviation, the roll angle should
be prioritized as there is no use being in the exact preferred position if the measurements are
unusable. For this reason the priority may be altered during operation and controlled by the
collision avoidance functionality discussed in chapter 10.

5.4 PID control

Assuming the roll controller not to be saturated, using the rudder allocation algorithm in roll
priorisation mode, integral action may be applied in order to eliminate steady state errors (e.g
due to propeller torque). For this reason the linear model in equation 5.1.11 was extended

5.4. PID CONTROL 41

by adding a integrated roll state, as shown in equation 5.4.1



ṗ
q̇
ṙ

φ̇

θ̇

ψ̇
φ


=



−Kup|u0|
Ix

0 0 0 0 0 0
0 −Muq |u0|

Iy−Mq̇
0 0 − Wzg

Iy−Mq̇
0 0

0 0 −Nur|u0|
Iz−Nṙ

0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




p
q
r
φ
θ
ψ∫ t

0 φ(τ)dτ


+



1
Ix

0 0
0 1

Iy−Mq̇
0

0 0 1
Iz−Nṙ

0 0 0
0 0 0
0 0 0
0 0 0


τpτq
τr



(5.4.1)

The controller gains were then found by the matlab function lqr() and applied to the simulink
model as with the PD controllers, in conjunction with the rudder allocation algorithm. For
details, see the matlab script (LQpid.m) which is included on the CD.

5.4.1 Simulation and comments

The same test was performed on this autopilot, consisting of a step input in pitch and yaw
after 10 seconds. The result is shown in figure 5.3 where the reference inputs are marked
red and the measured state outputs are marked blue. Effectually, this autopilot forms a
PID controller for the roll state. The reason for including the integrated roll state was to
minimize slow varying and steady state errors on the roll state. As the plots show, the error
is in fact reduced significantly compared to the PD controller in section 5.2. As the roll
angle started to deviate after the step inputs, the integrator started to build up and suppress
further roll deviation. However, once the maneuver suddenly stopped, all the accumulated
roll error caused a deviation in the opposite direction. Still the integrated state controller
surpasses the performance of the pure PD controller in terms of roll deviation. The steady
state error caused by the propeller was also suppressed by the integral effect. In fact, the
simple inclusion of the integrated roll state proved to be surprisingly effective, both in terms
of reducing maximum roll deviation and steady state error.

A similar strategy may have been applied to the other states. However, integral action in
pitch and yaw would probably suffer from wind-up effects because of the heavy saturations.
Anti wind-up strategies could have been applied to reduce this, but integral action was in-
stead excluded in yaw and pitch control as they have shown not to suffer from significant
steady state errors.

42 CHAPTER 5. AUTOPILOT DESIGN

Figure 5.3: Testing the Integrated state autopilot

5.5 Feedback linearization roll control

The various nonlinear and coupling effects present in the vessel (coriolis etc.) causes devi-
ations in roll as they are not taken into consideration in the linear autopilot design. In order
to further decrease the errors in roll, a nonlinear feedback linearization scheme was applied.
Recall the nonlinear system dynamics equations (3):.

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ (5.5.1)

η̇ = J(η)ν (5.5.2)

In Fossen (2002), the following derivation is suggested.

η̈ = an (5.5.3)

where an denotes the NED-frame commanded acceleration. Differentiation of the kinematic
equation with respect to time yields:

ν̇ = J−1(η)[η̈ − J̇(η)ν] (5.5.4)

5.5. FEEDBACK LINEARIZATION ROLL CONTROL 43

Choosing the nonlinear control law

τ = Mab + C(ν)ν +D(ν)ν + g(η) (5.5.5)

where ab denotes the commanded acceleration in the BODY frame. Applying this to the
system dynamics yields

M(ν̇ − ab) = MJ−1(η)[η̈ − J̇(η)ν − J(η)ab] (5.5.6)

Choosing:
an = J̇(η)ν + J(η)ab (5.5.7)

results in the linear decoupled system

J−T (η)MJ−1(η)(η̈ − an) = 0, J−T (η)MJ−1(η) > 0 (5.5.8)

From 5.5.7 it can be seen that

ab = J−1(η)[an − J̇(η)ν] (5.5.9)

The commanded acceleration in the NED frame may then be chosen as a linear PD controller

an = −Kd
˙̃η −Kpη̃ (5.5.10)

Once again the controller gains were found using LQ optimization, but they may have been
calculated using any linear feedback design. Although this method could have been ap-
plied for all of the controlled states, it was only applied to the roll controller as the pitch
and yaw controllers have already proven sufficient performance using pure linear feedback.
Cancellation of the propeller torque was also introduced by setting the applied roll torque

τ rollrl = τ roll − τ rollp (5.5.11)

This was then applied to the autopilot in combination with the rudder allocation algorithm
derived in section 5.3. Of course, such a nonlinear cancellation assumes a perfect hydro-
dynamical model of the vessel which is unlikely to occur for an AUV due to the complex
dynamical environment. The rudder saturations and rate limitations will also degrade the
cancellation. However, it is believed that this feedback linearization will reduce the overall
roll deviation.

5.5.1 Simulation and comments

Finally the feedback linearization autopilot was run trough the same test, consisting of a
step input in pitch and yaw after 10 seconds. The result is shown in figure 5.3 where the
reference inputs are marked red and the measured state outputs are marked blue. This control
strategy is identical to the PD controller with rudder allocation, except for the nonlinear
feedback in roll. In theory, this feedback removes all nonlinearities from the roll dynamics,
resulting in a pure linear system. However, the rudder rate saturation causes an inexact
cancellation. In addition, model errors and uncertainties would cause additional errors in the
nonlinear cancellation. But, as shown in the plots, the strategy decreases the roll deviation

44 CHAPTER 5. AUTOPILOT DESIGN

Figure 5.4: Testing the Feedback linearization controller

significantly compared to the pure LQ strategy in the simulations, resulting in a maximum
roll deviation of 0.002 radians (0.11 degrees). In addition, the steady state roll-error due
to propeller torque is completely removed. This result is based on a perfect model and
the only reason the cancellation is not perfect, is the rudder rate saturations. In a practical
implementation one can not assume a perfect model which leads to a degradation of the
nonlinear cancellations. For this reason a number of test were run with the model used for
feedback linearization slightly perturbed. Surprisingly, the controller performed remarkably
well, even with relatively large perturbations. A clear disadvantage of this strategy are
stability concerns. As the cancellation is never perfect, stability properties are very hard to
determine.

5.6. GENERAL AUTOPILOT DISCUSSION 45

5.6 General Autopilot Discussion

The inclusion of the rudder allocation algorithm has proved to give better control of state
priorisation in the autopilot design. The two last autopilot options indicate that using this
algorithm in combination with additional measures to reduce roll deviation (feedback lin-
earization and integrated roll state), reduces the overall roll error during heavy maneuvering.
However, such maneuvers are not considered to occur often during normal operation as most
maneuvers are pure pitch or yaw changes. As discussed before, the only situation such a ma-
neuver is likely to happen is during a critical collision avoidance maneuver in which the roll
deviation is irrelevant. For this reason the pure LQ torque controller with rudder allocation
(section 5.3) has been chosen to be used for the rest of the project. The designs discussed in
sections 5.5 and 5.4 may be applied if additional roll control is desired.

The question of stability is an important factor in designing any controller. Deriving non-
linear analytical stability for such a coupled system with 6 degrees of freedom is not straight
forward. Such approaches will often use a Lyapunov function and design the controller
based on this. The aim of such a controller is to obtain a positive definite lyapunov function
V (x) with a negative (semi)definite time derivative V̇ (x). Different properties on the V (x),
V̇ (x) pair leads to different degrees of stability. For details about Lyapunov function based
controllers, the reader is referred to Khalil (2000). Autopilots for underwater vehicles based
on this approach have been derived by several authors, e.g. Fossen (1991) and Healey &
Lienard (1993). Still linear designs are often preferred in practical applications. A reason
for this might be that the parameters of nonlinear controllers are often non-intuitive and
obtaining desired performance with such controllers may prove to be a challenge. In addi-
tion, linear controllers often prove excellent practical performance in AUV autopilot design.
The main disadvantage with the linear design is the lack of analytical stability outside the
point of linearization. Stability properties for linear controller designs, as discussed in this
section, are based on linear stability analysis around the point linearization. Generally this
implies that the system poles must have negative real parts. For details see Chen (1999).
If the linearized system is stable based on this criteria, this implies asymptotic stability to
the nonlinear system around the point of linearization. (Lyapunovs indirect theorem, Khalil
(2000) p.139). As all linear controllers in this section are found using the Linear Quadratic
method, they are guaranteed stable in the linear systems sense (Foss 2004). This implies
that all the autopilots, except for the feedback linearization which requires further analysis,
are asymptotically stable around zero pitch and yaw for the entire nonlinear system. De-
riving stability properties outside of this point requires additional analysis. Still, extensive
simulations indicate that all of the autopilots are indeed stable for the entire operation area
(pitch angle between −60◦ and +60◦). As autopilot design is not considered to be the main
core of this assignment, no further analysis has been derived. However, this is something
that should be analyzed further, prior to a practical implementation.

Chapter 6

Line of Sight Waypoint Guidance

The task of the guidance system is to follow the pre-planned horizontal path, consisting
of a set of WP’s. A line of sight scheme is chosen to simulate the guidance functionality
of the HUGIN AUV since the actual guidance functionality is kept confidential. Line Of
Sight (LOS) guidance is a simple, yet attractive method for path control. A LOS vector is
created from the vessel position to a point ("aiming point") on the current waypoint line, n
meters ahead of the vessel. This vector defines the desired course which in turn is fed into
the autopilot. The concept is illustrated in figure 6.1. A circle-of-acceptance is then created
around the next WP and the guidance algorithm switches to the next WP set when the vessel
reaches this circle (Fossen 2002).

Figure 6.1: Line Of Sight Guidance

46

6.1. DEVELOPING THE LOS GUIDANCE SYSTEM 47

6.1 Developing the LOS Guidance System

The desired heading may be calculated in many ways and one alternative is by homogen
transformation. A new coordinate frame is defined by the previous and the next WP. The
vessel position is then transformed into this frame and the along track distance da and the
cross track distance dx may be found as shown in 6.1.1. Here θwp is the yaw angle from
previous WP to the next WP and (xnwp1, y

n
wp1) is the position of the previous WP in NED

coordinates.dadx
1

 =

cos(θwp) −sin(θwp) xnwp1
sin(θwp) cos(θwp) ynwp1

0 0 1

−1 xnvesselynvessel
1

 = (Anwp)
−1

xnvesselynvessel
1

 (6.1.1)

The aiming point (xna , y
n
a) is calculated by adding m meters to the along track distance and

transform this back to the NED coordinate system as shown in equation 6.1.2.xnayna
1

 = Anwp

da +m
0
1

 (6.1.2)

The desired heading is then simply found by equation 6.1.3, where atan2(y,x) is the four
quadrant inverse tangent function.

ψd = atan2(yna − ynvessel, xna − xnvessel) (6.1.3)

In addition to this, the guidance system must keep track of how many turns around the
compass the vessel has made (360◦ crossing). It also needs to take the vessel heading into
consideration as to make sure it is making the shortest turn towards the aiming point. For
details, see the matlab source code (LOS.m) which is included on the CD.

48 CHAPTER 6. LINE OF SIGHT WAYPOINT GUIDANCE

6.2 Simulations and Comments

The LOS guidance was tested by designing a horizontal WP route an letting the complete
model with LOS guidance follow this path. The result of the test run is shown in figure
6.2. The ’distance-to-aiming-point’ was set to 15 meters and the ’radius-of-acceptance’ to
10 meters during the run. As shown in the figure, the LOS guidance tracks the WP path

Figure 6.2: Testing the LOS guidance

relatively well. The ’distance to aiming point’ and ’radius of acceptance’ could be tuned
to obtained different tracking. However, the values used in this test run (15m and 10m
respectfully) proved to provide sufficient performance and was used throughout the work

Chapter 7

Bottom follower

Figure 7.1: The bottom follower problem

The bottom follower implemented on HUGIN seeks to maintain a constant altitude
above the ocean floor by using feedback from the vertical altimeter and feedforward from
the forward altimeter as shown in figures 2.6 and 2.7. In order to produce realistic simula-
tion results, a similar functionality needed to be implemented in the simulator model. The
bottom follow control problem is illustrated in figure 7.1 where θrel is the relative angle
between the current pitch angle and the bottom gradient and the distance h is the controll
variable. Note that the distance h is not the same as the measured distance from the vertical
altimeter.

7.1 Developing the Bottom Follower

Currently on HUGIN, the angle θrel is calculated by trigonometric relationships between the
vertical- and the forward altimeter. As the FLS is introduced, the center beam may also be
used for angle calculations as shown in figure 7.1. As shown in figure 7.2, this calculation

49

50 CHAPTER 7. BOTTOM FOLLOWER

Figure 7.2: Calculating the relaive angle θrel

would lead to two potentially different angles. By choosing the steepest of the two gradients,
the bottom follower would be provided with an "earlier warning" on upcoming gradients
making it able to handle steeper gradient transitions. The relative distance h may then
easily be calculated by equation 7.1.1, where hv is the vertical altimeter range. This may be
considered as an output linearization of the measurement.

h = hvcos(θ) (7.1.1)

The fundamental choice in designing the bottom follower is whether to control the rud-
ders directly or to design an outer control loop feeding reference pitch angles to the pitch-
autopilot. The last option is what is called cascade control. In order to avoid switching
between different controllers actuating the rudders, the cascade control design was chosen.
For this reason a model of the closed loop pitch dynamics was derived. The linearized open
loop pitch dynamics was in section 5.1 derived as;

q̇ = −Muq|u0|q
Iy −Mq̇

− Wzgθ

Iy −Mq̇
+

τq
Iy −Mq̇

(7.1.2)

and
θ̇ = q (7.1.3)

Inserting the linear PD feedback in the autopilot, yields the closed loop dynamics.

q̇ = −
(Muq|u0|+Kd)q − (Wzg +Kp)θ +Kpθref

Iy −Mq̇
(7.1.4)

Here Kp and Kd are the proportional and derivative gains of the pitch-autopilot and θref
is the reference pitch input. From figure 7.1 one may derive the relationship between the
distance h and the relative pitch angle θrel, where u0 is the constant surge speed (2 m/s).

ḣ = u0sin(θrel) (7.1.5)

Linearizing this equation about the relative pitch angle 0 (when the AUV is running in
parallel with the bottom) yields equation 7.1.6.

ḣ = u0θrel (7.1.6)

7.1. DEVELOPING THE BOTTOM FOLLOWER 51

Combining equations 7.1.6 and 7.1.4 yields the state space relative altitude dynamics for the
AUV:  ḣ

θ̇rel
q̇

 =

0 u0 0
0 0 1
0 − Kp

Iy−Mq̇
−Muqu+Kd

Iy−Mq̇


 h
θrel
q

+

 0
0
Kp

Iy−mq̇

 θref (7.1.7)

In this state space model, the effect of gravity has been neglected as this relies on absolute
pitch θ which is not included in this model. However, as the gravity only appears together
with the proportional gain Kp in (7.1.4) and since Wzg << Kp, this exclusion will have
minimal effects on the feedback design. Based on this state space model, a feedback con-
troller was designed. Proportional- and derivative control was chosen for this purpose as
shown in equation 7.1.8, where href is the constant altitude reference input, Lp the propor-
tional gain and Ld the derivative gain.

θfbref = −Lp(h− href)− Ldθrel (7.1.8)

The gains were found by pole-placement (Chen (1999)), using the model (7.1.7) and the
matlab function place(). In this pole placement design, the outer altitude loop was designed
to have a time constant 8 times slower than the inner autopilot loop. This was chosen partly
because of the added time-lag of the rudder rate limitations. The resulting step response is
shown in figure 7.3. (This step response does not include the physical rudder limitations)

Figure 7.3: Step response of the bottom follower

Measuring the relative angle θrel relies on sonar measurements from the vertical sonar
and either the FLS or the forward sonar. In those cases where the forward sonar and the
FLS does not obtain measurements, θrel may not be calculated. For this reason, the θrel
measurement used for feedback was instead calculated by equation 7.1.6 using approximate
differentiation of the distance h, in order to reduce noise in the control loop. This insures
stability even when the controller relies on vertical sonar measurements alone. Note that
this is done only for the feedback part of the controller. The feedforward still uses the actual
measured θrel (se figure 7.4).

52 CHAPTER 7. BOTTOM FOLLOWER

As the control law operates relatively around the angle θrel, measured by the sonars, this
angle must be forwarded into the control. Also, θrel is a relative measurement between the
AUV pitch angle and the bottom gradient. Since the pitch controller needs an absolute pitch,
the current pitch angle θ is added to the measured relative angle θrel. The resulting bottom
follower control law is shown in 7.1.9 where θdesired is the desired pitch passed on to the
autopilot. The complete block diagram of the bottom follower is shown in figure 7.4.

θdesired = θfbref︸︷︷︸
feedback

+ θrel︸︷︷︸
feedforward

+ θ (7.1.9)

The controller may be viewed as a feedback - feedforward controller where the PD control
regulates the system to the current altitude and theta is feedforwarded in order to give the
controller information on upcoming terrain. Because of the time constant of the system, pure
feedback would not be able to handle steep changes in bottom gradients. Integral action in
the regulation loop would counteract the feedforward and is therefore not included. When

Figure 7.4: Bottom Follower block diagram

the measured angle θ is negative, the feedforward action will counteract the feedback loop
by forwarding a negative pitch angle. In some cases, as shown in figure 7.5, this could
lead to an altitude below the desired altitude and even collision in extreme cases. For this
reason negative angles are not feedforwarded which leaves the bottom follower with pure
feedback control when θ is negative. The controller will also rely on pure feedback when a
measurement of θ is impossible because of limited sonar range.

7.2 Simulations and Comments

Original bottom follower

The original bottom follower, using only vertical- and forward altimeter, was tested by let-
ting the vessel run through an example landscape with very rugged terrain. A plot of the test
is shown in figure 7.6. The desired altitude was set to 20 meters during the run.

7.2. SIMULATIONS AND COMMENTS 53

Figure 7.5: Negative measurement of angle theta

Figure 7.6: Testing the original bottom follower in very rugged terrain

This terrain is clearly too rugged for the original bottom follower to handle. Although
the vessel is physically capable of avoiding collision in this case (as shown in figure 7.7),
the forward altimeter does not provide information about the upcoming terrain in time for
the vessel to evade. For more relaxed terrains, the original bottom follower proves excellent
performance. This corresponds well with the successful track-record of the bottom follower
implemented on the HUGIN AUV.

FLS aided Bottom Follower

The bottom follower was enhanced by including measurements from the FLS as described
in section 7.1. This controller was then tested by letting the vessel run through the same
example landscape with desired altitude set to 20 meters. The resulting plot is shown in
figure 7.7

This test indicates that the inclusion of FLS measurements in the bottom follower en-
hances it’s performance in difficult terrains. The FLS measurements give the controller a

54 CHAPTER 7. BOTTOM FOLLOWER

Figure 7.7: Testing the FLS aided bottom follower in very rugged terrain

’warning’ of the increasing bottom gradient, early enough for the vessel to avoid collision.
Still, the distance to the bottom at the closest point is well below the desired altitude (20
m). A closer inspection of this simulation reveals that the bottom follower commanded
maximum pitch rate almost instantly after the steep slope appeared on the FLS. Therefore
it is concluded that the gradient transition in this terrain is simply to steep for the vessel to
maintain the desired altitude using only a vertical maneuver. Further simulations revealed
that the earlier warning also causes the vessel to exceed the desired altitude more often. This
could have been counteracted by increasing the feedback gains but this would also increase
the occurrence of negative altitude errors (and the risk of collision).In order to minimize
the risk of collision, the feedback gains were left unchanged. In any case, this is open for
adjustments according to user demands.

7.3 Discussion

As with the autopilot (except for the feedback linearization scheme), the bottom follower
is based on linear control design. Although linear stability is guaranteed by the pole place-
ment strategy, stability outside the point of linearization may not be guaranteed. In order to
derive nonlinear stability for this controller, the complete nonlinear system must be taken
into consideration including all states and internal couplings, which has proven to be quite
a challenge. As the implementation of this bottom follower is only a part of developing the
simulator and is not considered to be the main focus of this assignment, such an analysis is
instead recommended for future work. However, the controller appears stable in all simula-
tions providing the simulator with excellent performance in terms of maintaining the given

7.3. DISCUSSION 55

altitude, even in very rough terrains.

Figure 7.8: Bottom following strategy presented in Nuno et al. (2006)

In Nuno et al. (2006), an alternative strategy is presented. This design uses the forward
looking sonar to create a bottom profile and then creates a reference path by adding a cer-
tain altitude to this profile (se figure 7.8). The simulations in this paper indicate excellent
performance in terms of maintaining a desired altitude above the bottom. However, this dif-
fers from the controller designed in this section which seeks to maintain a constant vertical
altimeter measurement. This means that the distance to the bottom in BODY coordinates
should be kept constant. Using the Nuno et al. (2006) approach in high gradient terrains
would lead to a correct altitude in the NED - Z direction, but the distance measured with the
vertical altimeter (BODY cord) would be much less (distance = altitude*cos[bottom gradi-
ent]). As the goal for the bottom follower for this application is to provide a constant given
distance for the payload sensors (attached to the BODY frame), the implemented controller
is preferred.

Chapter 8

General Modelling and Control
Discussion

In this part a complete simulation environment for the HUGIN AUV has been developed, as
illustrated in figure 2.8. Although the simulator has been designed and developed around the
HUGIN AUV, it may represent any AUV simply by adjusting model parameters and sensor
configuration. The model including the sensor simulators and control systems has proven
excellent performance in the simulations and should provide a suitable and accurate test
bench for collision avoidance- development and testing. The development of this simulator
has also given an indication on how the current altitude controller on the HUGIN AUV may
be enhanced, using the added information from the proposed Forward Looking Sonar (FLS).

As discussed earlier in this chapter, all the implemented controllers except for the feed-
back linearization autopilot, are based on linear theory and design. This implies stability
around the points of linearization. However, all simulations performed indicates stability
within the entire operation region. Although nonlinear controllers would have been desir-
able for this application, this has proven not to be an easy task for this complex model with 6
degrees of freedom and multiple couplings between the states. And as AUV control is only
a part of this (rather extensive) project, this is considered out of the scope of this assignment.
Further nonlinear analysis (and potential control design) is instead recommended for future
work, in the case of a practical implementation of any of the controllers designed in this
part.

56

Part II

Collision Avoidance System

57

58

Collision Avoidance Overview

The objective of this part is to develop functionality that is not yet present on the HUGIN
AUV. The developed Collision Avoidance System (CAS) should make the vessel capable of
handle terrain which previously lead to collision. This includes very rough bathymetry with
steep transitions in bottom gradients, vertical obstacles and bottom intersecting the ocean
surface or surface ice.

By request, the proposed CAS should be compatible with the existing navigation system
on the HUGIN AUV. Figure 8.1 illustrates how the CAS is planned to work in coherence
with the existing navigation system implemented in the simulator. As long as the CAS is
not active, the signals from the LOS guidance and the altitude controller are simply passed
on to the autopilot.

Figure 8.1: The CAS incorporated in the Simulator

Chapter 9

Collision Avoidance - a literature
review

In general, AUV collision avoidance systems (CASs) are usually designed to work in par-
allel with the existing navigation system on board. The CAS is normally activated only
when a future collision is inevitable without intervention. As a result, a collision avoidance
system is to be considered as a "last-line-of-defense", and should be extremely robust in it’s
functionality and execution. A complete CAS system should ideally be able to handle ev-
ery possible situation in an optimal way based on certain criterias. However, such a system
is not likely to ever exist because of the unpredictable nature of the problem and the vast
number of potential collision situations and obstacles. In addition, the information available
through sensors is often very limited and corrupted with noise and errors, making it very
hard to guarantee a collision free solution. Because of this, a CAS should base it’s choice
of actions on a combination of the available information and the probability of the different
collision scenarios. In this way, the probability of a collision could be kept to a minimum.
(Tan et al. 2004a)

9.1 Overall classification

The inclusion of a collision avoidance system in AUVs is increasing as AUV operations
require an increasing degree of autonomy. Although there are many approaches to such a
system, the different solutions may be characterized by their fundamental functionality. In
Tan et al. (2004a) and Tan et al. (2004b) CASs are classified into three general types:

Deliberate architecture

This is a sense-plan-act approach to the CAS problem. Such a system extracts information
from the sensor measurements and stores these data for later use. These data are often re-
ferred to as a World Model, as they contain information about the environment around the
vessel. This allows the AUV to make reasoned decisions, predictions and plans for how to
avoid upcoming obstacles. This task is often solved as an optimization problem, in order to

59

60 CHAPTER 9. COLLISION AVOIDANCE - A LITERATURE REVIEW

plan a new collision free trajectory, taking the mission goals and specifications into consid-
eration. Such an architecture is most commonly known as a motion- or path planner. The
path planner scheme differs from the motion planner in the way that the resulting collision
free trajectory is independent of time and may be fed into the navigation system as any pre-
planned path. This scheme is also potentially independent of the sensor configuration in the
way that it may use all available information to create a collision free path. In many ways,
this may seem like the ideal CAS solution. However, the amount of information flow from
the sensor to the on board computing resources may be significant. In addition, solving such
an optimizing problem is often a computational expensive task and may not be very well
suited for real-time implementation. Unless the computational resources are extensive, the
response may simply be to late in the case of late detection of imminence obstacles. Another
disadvantage of this scheme, is that the path planning algorithms normally demands perfect
and complete knowledge of the area in which the collision free path is to be planned. This
is rarely the case for a surveying AUV. This architecture is employed in the EAVE (Blidberg
et al. 1990) and the OTTER (Rock et al. 1995)

Reactive architecture

This architecture is a more simple, sense-react approach. It is normally based on a parallel
structure where each sensor is used individually to sense on its environment and activate
specific behaviors based on predefined rules. The desired global behavior is achieved by
carefully adjusting each sensor and its rules to work in parallel with the others. The per-
formance of such an architecture is often excellent when it comes to sudden obstacles and
unknown environments, much because of its short reaction time and robust functionality.
However the resulting collision avoidance maneuver of a pure reactive architecture is rarely
optimal and it is also very sensor depended, as each sensor relies on its’ own set of rules.
This type of architecture is employed in the Sea Squirt (Bellingham et al. 1990) and the Twin
Burger (Fujii & Ura 1996)

Hybrid architecture

This is a combination of both of the above architectures. As stated previously, pure delib-
erate and reactive architecture do not function adequately for all collision avoidance tasks.
As an hybrid, it may combine the advantages of the two architectures and provide a more
robust and a closer-to-optimal solution than any of the two alone. However, the inclusion
of reactive functionality does increase the sensor dependability compared, to the pure de-
liberate architecture. Still, it is not surprising that the hybrid architecture is implemented
in the majority recent collision avoidance systems. This is also the architecture which will
be discussed in this paper. The Garbi (Ridao et al. 2001), the SAUVIM (Yuh & Choi 1999)
and the Phoenix (Healey et al. 1995) are some of the AUVs exploiting the advantages of the
hybrid architecture.

9.2. SYSTEM FUNCTIONALITY 61

9.2 System functionality

Tan et al. (2004a) suggests the following functionality for a hybrid system. First of all, a
target must be detected by the FLS. This information has to be interpreted and combined
with the AUV navigation data such as position and attitude, to be included into the world
model. From this information, a path planning technique is applied to find a new collision
free trajectory based on the original trajectory and predefined criterias. Once the obstacle
has been successfully avoided, the AUV should return to the originally planned trajectory.
To cope with sudden or unexpected objects, a reactive submodule is included. This module
normally becomes operative if it detects that the path planner is unable to avoid collision. In
this case it performs a collision avoidance maneuver based on predefined logic and returns
the control to the path planner.

In Tan et al. (2004a) and Tan et al. (2004b) the following decomposition of a hybrid
architecture CAS is suggested:

Obstacle Detection Module
1. Forward looking sonar (FLS)
2. Sonar Processing module
3. Navigation submodule (provided by the navigation system)
4. Map builder

Obstacle Avoidance Module
1. Path Planner / Way Point (WP) generator.
2. Trajectory tracker (provided by the navigation system)
3. Reflexive submodule

The obstacle detection module is responsible for building up a world model of the known
environment and obstacles using the available sensors. This information is the basis for the
obstacle avoidance module to create a new collision-free trajectory. The main challenge is
to interpret and extract useful information from noisy and maybe even conflicting data from
the sensors. The main functionality of each submodule is given by it’s name. For further
details about this module and possible solutions, the reader is referred to Tan et al. (2004a).

The Obstacle Avoidance Module is responsible for planning and executing collision
avoidance maneuvers, when the original planned trajectory is infeasible. The trajectory
tracker submodule is often provided by the standard navigation system which is assumed
already implemented on the AUV. But in some cases, the trajectory planning and execution
may be performed by the same functionality. Details and possible solutions for the two other
submodules are given in the two following subsections.

9.2.1 Path planning

In (Tan et al. 2004b) the general path planning problem is defined as:

Find a continuous sequence of configurations that leads from a start- to a
goal- configuration, while respecting certain constraints.

62 CHAPTER 9. COLLISION AVOIDANCE - A LITERATURE REVIEW

This problem has been covered widely by the robot community for decades and there is
plentiful of literature regarding possible solutions. However, for AUV purposes the num-
ber of suitable algorithms decreases significantly as the AUV path planning problem differs
somewhat from the general case. Most classic path planning approaches assume a com-
pletely known environment. Unfortunately, this is rarely the case for an AUV. In addition,
an AUV operates in 3 dimensions while most of the path planning solutions are based on
a 2 dimensional space. However, many of the algorithms may be extended to the 3D-case
in exchange for increased computational complexity. For an AUV collision avoidance sys-
tem, the path planning problem may be considered as a search in state space for a control
input that can bring an AUV from an initial position to a goal position, respecting the given
constraints. Following are some of the most promising path planning approaches already
exploited for AUV collision avoidance purposes.

Cell decomposition

Cell-decomposition is one of the most popular path planning schemes. The basic principle
is to the separate the entire search space into free- and blocked- cells. The connection be-
tween adjacent free cells are represented as a connectivity graph and this may be searched
by various algorithms to find a path that connects the start cell with the goal cell. A few of
the most popular ones are breadth-first search, depth-first search and shortest distance algo-
rithms (e.g. Dijkstra). In many cases, especially for the 3D case, searching the entire search
space can simply be too computationally-demanding to be implemented on an AUV. There-
fore some heuristically-enhanced versions have been deviced. One of these involve using the
Euclidean path (line-of-sight) as a starting point for the search. An approach that uses this
principle and a combination of breadth-first and depth-first is called A* (Hart et al. 1968).
In Hyland (1989) and Hyland (1990), this algorithm is implemented as a 3D path planner
in a simulated AUV model. Other versions of algorithms based on cell decomposition have
also been implemented for AUV path planning purposes.((Allison et al. 1989),(Aria et al.
1994),(Arinaga et al. 1996)) (Tan et al. 2004b)

Potential field

The potential field method uses a very interesting approach and has become very popular
within AUV collision avoidance. Basically, the environment around the AUV is represented
by an artificial potential field. Obstacles are represented as repulsive fields and the goal as
an attractive field. The total potential field is the combination of the repulsing obstacles and
the attractive goal. An example of such a field is given in figure 9.1. Eventually, the vehicle
is required to just follow the local gradient of the combined field to reach the goal position,
much like a ball continuously rolling in the direction of the slope. The field of artificial
forces ~F (q) in C is produced by a differentiable function, U : Cfree → R with:

~F (q) = −~∆U(q) (9.2.1)

U(q) = Uatt(q) + Urep(q) (9.2.2)

Here, Uatt is the attractive potential field of the goal position qgoal and Urep is the repulsive

9.2. SYSTEM FUNCTIONALITY 63

Figure 9.1: Potential field with 2 obstacles and goal position = (0,0).

field of the obstacles. The attraction field may be derived as:

Uatt(q) =
1
2
ξρ2
goal(q) (9.2.3)

The attraction force of each position may then be stated:

~Fatt(q) = −ξ(q − qgoal) (9.2.4)

where ξ is the positive scaling factor, ρ is the euclidean distance, q is the current position
and qgoal is the goal position. The repulsive field of the obstacles may be derived as:

Urep(q) =

{
1
2

(
1
ρ(q) −

1
ρ0

)2
if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0

}
(9.2.5)

And the repulsion force may be written as:

~Frep(q) =

{
η
(

1
ρ(q) −

1
ρ0

)
1

ρ2(q)
~∆ρ(q) if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0

}
(9.2.6)

where ξ is a positive scaling factor, ρ is the distance to the obstacle and ρ0 is the minimum

64 CHAPTER 9. COLLISION AVOIDANCE - A LITERATURE REVIEW

distance of influence from the specific obstacle.
One major advantage of the potential field method, is its’ low computational requirement

which makes it ideal for real-time implementation. The big problem of this approach, is the
tendency to get trapped in a local minima and not reach the goal position. In order to avoid
this, each obstacle field must be convex. Intersecting obstacle fields, may be replaced with a
single convex obstacle field covering all of the intersecting fields. However, this may lead to
an unnecessary wide avoidance maneuver. For this reason, the potential field method is most
often used as a local path planner, combined with another global path planner that will be
invoked when trapped. Versions of this method has been applied to several AUVs (Yoerger
et al. (2000),Warren (1990) and Lane & Trucco (2000)) for path planning purposes. (Tan
et al. 2004b)

Bug algorithm

The bug algorithm is also known as the edge following algorithm and is a simple and yet
remarkable path planning scheme. The main idea is to follow the planned path until an
obstacle is encountered, and then follow the edge of the obstacle until the original path is
reached again. (se figure 9.2). So in general the algorithm consist of two modes; following

Figure 9.2: An AUV using the bug algorithm to avoid obstacles

the pre-planned path and circumnavigating obstacles. The great advantage of this algorithm,
is that it does not need any a priori information about it’s environment. In addition, it is
guaranteed to find a solution if it exists. This makes the bug algorithm especially suited for
collision avoidance in unknown environments. Although this is a very simple algorithm, it
is somewhat difficult to implement in practice. Following a boundary, as illustrated in figure
9.2, requires a horizontal distance controller which in turn requires sensors for obtaining the
distance to to the obstacle and upcoming distances. A horizontally mounted FLS may be

9.2. SYSTEM FUNCTIONALITY 65

an option for this purpose. In addition, performance of this algorithm in a 3D environment
together with varying pitch, is somewhat hard to predict. The common implementation of
this path planning scheme, bases it’s decisions almost directly on sensor information and
hence it could be considered a hybrid architecture. Examples of AUVs utilizing versions of
this algorithm are the Phoenix (Healey et al. 1995) and the Autolocus (Cornforth & Croff
2000)

Visibility Graph

(McKendrick 1989) applied a visibility graph method in an unknown 2-D environment. This
method utilizes a shortest path algorithm where the nodes are the vertices of the obstacle,
represented as convex polygons. Each node in line-of-sight of each other are then connected
with edges, and the shortest path algorithm is applied to find the route. However, the simu-
lations showed that the path is highly inefficient, as such, a simple bug algorithm surpasses
its performance.

Another method of placing the nodes, are by random selection and eliminating nodes
that are within obstacles. This method is called Probabilistic road-map planner (PRM) (Tan
et al. 2004b) and the route is found by making a visibility graph of the remaining nodes
and use a shortest-path algorithm. The random placement of the nodes may be modified in
order to reduce the search space. (Fox et al. 2000) In any case, the partly-random selection
of nodes usually compromises the solution optimality for enhanced robustness. The PRM is
also known for its long running times and difficulty in finding a path in environments with
large amounts of obstacles. (Tan et al. 2004b)

9.2.2 Reflexive avoidance

The reflexive avoidance module is normally implemented to provide the AUV with a fail-
safe mechanism in the case of path planner failure. The failure may either be a system
malfunction or simply that the path planner fails to find a solution in time to avoid the
obstacle. In this case, the reflexive avoidance module must take over control, and safely
guide the AUV into a safe area. Technically, the reflexive avoidance module bases its actions
directly on the sensor(s) and hence, belongs to the reactive architecture design. For this
reason the reflexive avoidance module must be rapid in its decisions, robust and provide a
fail-safe solution. (Tan et al. 2004b)

There are many different implementations of such a module (i.e.Demuth & Springsteen
(1990),Zapata & Lepinay (1996)), but in general, they all consist of some sort of logic based
decision-taking. The main difference between the implemented versions are how the ’rules’
are made and how the collision avoidance maneuver is performed.

Chapter 10

Developing the Collision Avoidance
System

In this section a Collision Avoidance System (CAS) has been developed and designed to be
compatible with the existing navigation system implemented in part I. The CAS should
be able to handle all obstacles mentioned in the assignment text. This includes rough
bathymetry, vertical obstacles and bottom intersecting ocean surface. The system should
also be able to handle under-ice operations. This capability puts special requirements to the
developed system, especially for the fail-safe mechanisms. For operations operating in open
waters, a typical fail-safe behavior would be to bring the vessel to the surface. Such situa-
tions would include hardware or software failure, a collision or simply a mission abortion.
For under-ice operations, bringing the vessel to the surface is simply not an option. This
environment also puts special requirements to the CAS, as the existing system is designed
to pass over all encountered ’obstacles’ detected by the sonars. The CAS must therefore
monitor the exiting navigation system and intervene if necessary to avoid a collision with
ice or other objects.

10.1 Deriving overall objective and strategy

In order to develop an appropriate collision avoidance strategy, the overall objectives should
be stated. To derive this, the normal operating pattern of HUGIN needed to be taken into
concern. The primary task of this vessel is to gather information about the environment
using the payload sensors, e.g. Multi Beam Echo sounder (MBE) or Synthetic Aperture
Sonar (SAS). The user specifies where this information should be gathered by programming
a way-point route into the navigation controller. Hence, a primary goal for the collision
avoidance system should be to minimize the cross track error (xte) from the way-point route
during collision avoidance maneuvers. In addition, the user specifies a desired altitude above
the bottom for each leg. Various altitudes give different properties for the gathered survey
information. In order to act in accordance with the user’s specifications, the error in altitude
should also be minimized during collision avoidance maneuvers. A natural priority of these
goals would be to make measurements in the desired position (minimize cross track error)
and then try to make the measurements as specified (minimize error in altitude). As a result
of this, the overall goals for the collision avoidance system were derived in the prioritized

66

10.2. REFLEXIVE AVOIDANCE 67

sequence as given in table 10.1.

1. Avoid collision and the violation of a minimum critical distance to
any object. (defined by the user)

2. Minimize horizontal cross track error from the planned Way Point
route.

3. Minimize errors from the desired altitude on the current leg. Prior-
itize negative errors.

Table 10.1: Overall goals for the Collision Avoidance System

The minimum critical distance was introduced to give the system added robustness.
Setting this to zero will result in a pure collision avoidance behavior and may cause the
vessel to pass obstacles very close and make the system very sensitive to noise and errors.
As a consequence of the overall system goals, the collision avoidance strategy shown in
table 10.2 was derived.

1. Attempt to pass over any obstacles encountered up to a specified distance
to the surface or to the surface ice.

2. If this is not possible, circumvent the obstacle keeping a minimum dis-
tance to the way-point route.

Table 10.2: Overall strategy for the Collision Avoidance System

In most situations and conditions the current system (LOS guidance and bottom fol-
lower) is able to follow the pre-planned path without violating the critical distance. In fact,
with the addition of the center FLS measurement in the bottom follower controller (chapter
7) the following assumption is made:
The altitude controller is able to maintain an altitude above the critical distance as
long as it is possible with respect to physical constraints (pitch and pitch rate) and
maximum sonar ranges.
An analytical proof of this statement is not straight forward to derive since it does not con-
cern stability. However, the statement has proven to be very likely based on abundant sim-
ulations. The remaining cases may be listed as follows as shown in table 10.3. Clearly, in
these cases the CAS must be activated in order to avoid collision.

10.2 Reflexive avoidance

As described in the literature review (chapter 9), the normal functionality of the reflexive
avoidance module is to provide the CAS with a fail-safe solution in case of motion planner
failure based on robust logic based decisions. As a consequence of the defined overall goals

68 CHAPTER 10. DEVELOPING THE COLLISION AVOIDANCE SYSTEM

1. The pitch rate constrains makes it impossible to maintain an altitude
above the critical distance

2. The maximum pitch constrains makes it impossible to maintain an alti-
tude above the critical distance

3. Critical distance is already violated

4. The altitude between the ocean floor and the surface (or surface ice) is
to small to maintain desired distances to both objects.

Table 10.3: Fail-cases for the altitude controller

, the motion planner in this system should not be activated unless it is absolutely impossible
to pass over the obstacle. This would be the case when there is less water between the
surface or surface ice and the obstacle than a specified minimum, which corresponds to case
4 in table 10.3. In all other cases the system should bring the vessel over the obstacle. For
this reason, the reflexive avoidance functionality plays a somewhat different part in this CAS
then what is suggested in Tan et al. (2004a); In the 3 first cases of altitude controller failure,
the reflexive avoidance module should be activated and bring the vessel out of the current
situation and into another situation where it is potentially possible to pass over the obstacle.
A proposition for such a maneuver is described in table 10.4

1. Turn 180◦.

2. Go back x meters and climb y meters.

3. Turn 180◦ again and return to planned path.

4. Return control to the navigation system.

Table 10.4: Reflexive avoidance maneuver

The direction (port/starboard) of this reflexive avoidance maneuver is decided based on
side scan sonar measurements at the time of activation; The side with the largest measure-
ment is chosen to be the direction of the maneuver. The most critical part of the reflexive
avoidance module are the activation criterias. These criterias must be carefully set so that
the reflexive avoidance maneuver is performed only when it is absolutely necessary. In ad-
dition they must cover all 3 first cases of altitude controller failure. This may be solved by
dealing with each of the cases separately.

10.2. REFLEXIVE AVOIDANCE 69

10.2.1 Case 1 - pitch rate constraints

This criteria may be constructed by considering the radius at maximum pitch rate and as-
suming the bottom gradient is constant within the area. In addition, some meters needs to
be added in order to count for the time lag in obtaining the maximum pitch rate. Using the
model and simulating the worst case; when the vessel is already in max negative pitch rate,
this radius was found to be 30 meters. One must then derive if this radius will violate the
critical distance. The problem is illustrated in figure 10.1. If the circle representing the pitch

Figure 10.1: The pitch rate constraint case

radius intersects the critical distance, then reflexive avoidance should be activated. The co-
ordinates of the closest point with reference to the vessel may be derived by equation 10.2.1,
where x represents the distance along the current pitch, y represents the distance abeam the
current pitch and r is the pitch radius. Again, θ is the relative bottom gradient.

x = rsin(θ) y = r − rcos(θ) (10.2.1)

The closest distance (dc) may then be derived by equation 10.2.2 where FLSdist is the
distance in front of the vessel measured by the FLS. An comparison of this distance with the
critical distance yields the first activation criteria of the reflexive avoidance module.

dc =
(√

(FLSdist − x)2 + y2
)
sin

(
π − θ − atan

[
FLSdist − x

y

])
(10.2.2)

10.2.2 Case 2 - pitch constraint

This may seem like a simple criteria by just comparing the absolute bottom gradient with the
pitch constraint. However, using this as an activation criteria, the reflexive module would
trigger for every bottom gradient larger than the pitch constraint even if the critical distance
would not be breached. For this reason, an alternative triggering strategy is chosen. The
criteria is set as follows: If anything is detected within the critical distance on the FLS while
the vessel is at maximum pitch, the reflexive avoidance module is triggered. In this case,
the altitude controller simply cannot avoid violating the critical distance since the pitch is
already maxed out.

70 CHAPTER 10. DEVELOPING THE COLLISION AVOIDANCE SYSTEM

10.2.3 Case 3 - Critical distance already breached

If one of the measurements are already within the critical distance, it is clear that the altitude
controller has failed and the reflexive module must be activated.

The complete reflexive avoidance matlab script reflexive.m is included on the CD.

10.3 Edge follower

In the last case of altitude controller failure, the obstacle must be circumvented. In order
to do this, a motion planner strategy needs to be implemented. Most of the path-planning
algorithms described in the literature review (chapter 9), require a perfectly known operation
area. In fact, the edge following algorithm is the only known path planning scheme which
does not require any previous information. Another property of this algorithm is that it
continuously maintains a minimum distance to the desired way-point route given proper
implementation and correct choice of circumventing direction (left/right). Most of the other
motion planners does not minimize the cross track error, instead they are optimized to obtain
a shortest possible path from the start position to the goal position. For this reason the edge
follower (bug) algorithm is chosen as the motion planner strategy.

Although the edge following algorithm it selves does not require any prior knowledge
of the operation area, the choice of circumventing direction does require perfect knowledge
in order to guarantee optimality in the sense of minimizing cross track error. Since the area
is unknown, this choice has to be made based upon sensor information. The implemented
algorithm chooses the direction in which the side scan sonar is largest. This is probably the
best choice one can make based on the available information.

As the yaw dynamics of the HUGIN AUV are identical to the pitch dynamics, except for
the gravity term, the edge follower problem is very similar to the altitude control problem.
Infact, as the gravity term was neglected in the altitude controller design, the implemented
feedback design is identical. Instead of repeating the same derivation, the reader is referred
to section 7.1 for details.

The resulting control law for the edge follower may then be stated as:

ψdesired = −Lp(d− dref)− Ld︸ ︷︷ ︸
feedback

+ ψrel︸︷︷︸
feedforward

+ ψ (10.3.1)

where Lp and Ld are the proportional- and derivative gains, d is the linearized distance to the
obstacle, dref is the desired obstacle distance and ψrel is the measured relative (horizontal)
gradient to the obstacle. The measurements of d and ψrel however, differ somewhat from the
altitude controller. During edge following the vessel should maintain the desired distance
to obstacle not only straight out to the side, but also downwards. Also, in some cases the
distance between the surface and the bottom is above the desired bottom-altitude but not
high enough to keep both desired bottom-altitude and desired surface/ice- distance. In these
cases the edge follower is activated but the ’edge’ is infact below the vessel. The wide
sector side scan sonars enables edge following even in these cases. The feedforward part
of the controller must also be designed to maintain distances both straight out to the side
and downwards. Figure 10.2 illustrates how the feedforward term is calculated in the edge

10.3. EDGE FOLLOWER 71

follower. As seen in the figure, this calculation gives feedforward from both obstacles and

Figure 10.2: Calculating the relative horizontal angle

bottom depths less than the desired altitude. Only the lower part of the FLS is used and only
bottom echoes above the desired altitude are considered in the feedforward calculation.

The edge follower activation criteria must be set so that it covers the last (4th) case of
altitude controller failure (see table 10.3). For this reason, a minimum depth variable is
introduced. This variable is set by the ice detection module, discussed in the next section,
and represents a limit for how high in the water column the vessel is allowed to go. When
the vessel approaches the minimum depth, the altitude controller is relieved by a depth con-
troller. The depth controller regulates the vessel to the minimum depth and is active as long
as the commanded pitch from the altitude controller i positive. This controller was imple-
mented by proportional and derivative feedback from the depth obtained from the autopilot
and the gains were found using pole placement. This derivation is not included here, as it
is almost identical to the altitude controller developed in section 7.1. As a consequence of
introducing the depth limit, the vessel must circumvent any obstacle present at this depth.
The activation criteria for the edge follower may then simply be to trigger if any obstacles
are detected when the depth controller is activated. The matlab code implementation of the
edge follower edgefollower.m is included on the CD.

72 CHAPTER 10. DEVELOPING THE COLLISION AVOIDANCE SYSTEM

IF(Altitude control impossible because of AUV physical constraints)
⇒ Reflexive avoidance

ELSE IF(Altitude control impossible because of lacking depth)
⇒ Edge follower and minimum depth control

ELSE IF(Approaching minimum depth)
⇒ Use LOS heading and depth controller pitch

ELSE
⇒ Use LOS heading and altitude controller pitch

Table 10.5: The pseudo code for the entire CAS

Another issue arrives when trying to run the altitude controller simultaneously with the
edge follower. In this condition, the vessel tend to ’slide down’ steep gradients and the
resulting trajectory may end up far away from the desired WP path. For this reason, the
depth controller must stay in control during the entire edge following maneuver, even if the
altitude to the bottom increases. The minimum depth variable however, may be changed by
the ice-detection module if ice below the present depth is detected during the maneuver. The
pseudo code for the entire CAS functionality may then be derived as stated in table 10.5.

10.4 Ice detection

The inclusion of surface ice in the collision avoidance problem brings forth a set of new
challenges. Up until now, the system has been designed to pass over any encountered ob-
stacles below the depth of the desired altitude. As surface ice may have varying depths this
is no longer the case, and the limit for how high in the water column the vessel should go
depends on the depth of the surface ice in that particular area. As mentioned in the previous
section, the Ice Detection Module (IDM) developed in this section is responsible for set-
ting a limit for how high in the water column the vessel is allowed to go. Setting this limit
correctly will allow the current system to operate in the same way without risking collision
with the ice. For this reason an ice-detection algorithm has been developed.

10.4.1 Developing the ice detection algorithm

Several approaches have been tried out in order to separate ice from bottom in the sonar
measurements. Knight et al. (1981) indicates that classifying the reflective object based
on the properties of the received echo, is not an easy task. The strength and nature of the
received echo depends on several factors such as; angle-of-approach, water temperature,
water particle content and bottom vegetation. For this reason, it is assumed that identifying
ice based on the properties of the sonar echo will not provide the robustness needed for a
collision avoidance system. Therefore, an alternative strategy has been developed.

The reason surface ice makes out a problem for the collision avoidance system, is that

10.4. ICE DETECTION 73

it consists of overhangs. In fact, all overhangs represent the same problem; they must be
evaded by diving and not climbing. In addition to surface ice, such overhangs may consist of
anything present at the ocean surface e.g. floating oil-rigs, vessels etc. Simulations indicate
that overhangs of more than 70◦ (from horizontal) are handled well by the existing system.
Such overhangs causes the reflexive avoidance module to trigger repeatedly until the vessel
reaches the minimum depth. Then the edge follower module is activated and the obstacle is
circumvented. For overhangs of less than 70◦ the system is not able to maintain the critical
distance and there is a risk of collision. As a consequence, all overhangs of less than 70◦

are classified as ice and should be evaded by diving. The probability of encountering such
overhangs on the ocean floor is considered minimal. In addition, the developed algorithm
includes additional features preventing bottom overhangs to be classified as ice. In the same
way, all gradients (not overhangs) of less then 70◦ are classified as bottom.

The ice-detection algorithm uses the FLS to classify and determine the depth of ice/over-
hangs by measuring the absolute gradient between adjacent sonar beams. The points of in-
terception are rotated to the NED frame and the absolute gradient is calculated. In order to
determine if the gradient is an overhang or not, the algorithm also have to calculate if the
extension of the line between the two interception points crosses above or underneath the
vessel. This is illustrated in figure 10.3. If the gradient is classified as ice, the ice depth is

Figure 10.3: Classifying ice and bottom

set to be the depth of the lowest of the two points. As ice is most likely to be discovered by
the topmost sonar beams, the algorithm starts at this end. It then iterates downwards through
the sonar beams, checking for overhangs in each pair. The current ice-depth is continuously
set to the deepest measurement obtained. If the algorithm finds a bottom gradient or a sonar
beam that has reached it’s maximum distance, the search is stopped and the lowest ice mea-
surement so far is used as the ice depth. This is to reduce the risk of classifying ocean floor
overhangs as surface ice. In the same fashion the algorithm searches through every FLS
measurement and updates the current ice-depth if the latest measurement detects ice at a
greater depth. The pseudo code for the ice-detection algorithm is shown in table 10.6.

The ice detection algorithm is run continuously as the vessel operates. Assuming the
vessel is moving in the direction of the nose, the only way it may collide with ice is by run-
ning into it. In these situations, the ice detection algorithm should detect the ice and set the
depth limit a given amount of meters below it so that collision is avoided. The only cases in

74 CHAPTER 10. DEVELOPING THE COLLISION AVOIDANCE SYSTEM

For all FLS beams (starting at the topmost beam):

1. IF (Current or next sonar beam have reached maximum distance)
END SEARCH→ Keep current ice depth

2. Calculate point of interception for current and next sonar beam in the
BODY frame

3. Rotate the two interception points to the NED frame

4. Calculate absolute gradient between the two points

5. IF (Gradient < 70◦)
(a) IF (Extension line crosses above the vessel)

Update ice depth if lowest point is below current ice depth

(b) IF (Extension line crosses below the vessel)
END SEARCH

Table 10.6: Reflexive avoidance maneuver

which the ice depth is used, is under edge following maneuvers where the depth is regulated
to the depth limit. After the edge following maneuver is finished, the bottom follower is
reactivated and the current ice depth is set to zero. The ice detection algorithm should detect
any new occurrences of ice and set the ice depth accordingly. The implemented matlab-
code ice detection algorithm iceDet.m is included on the CD. The simulink diagram of the
complete simulator system with CAS is shown in appendix B.3 and the file simulator.mdl is
included on the CD. For details on how to run simulations using this file, se appendix A.

10.4.2 Ice detection simulations and discussion

The ice detection algorithm was run trough a series of simulated terrains with different ice
depths. In all simulations the algorithm was able to detect and determine the lowest point
of the ice within 0.1 meters. The simulations in the next sections will show how the ice
detection module works in cooperation with the rest of the CAS. The main concern with
this algorithm is the risk of classifying bottom as ice, and setting the ice-depth accordingly.
In the simulated environment this has not been a problem, but it is hard to predict how this
would appear in a real environment. Sill it is believed that this method of classifying ice
should provide a worthy basis for ice-detection in a real environment. A possible extension
to this algorithm is to add a criteria of how long an overhang section must be in order to
be classified as ice. This should prevent any small overhangs at the bottom (e.g. due to
vegetation) to be wrongfully detected as ice. In any case, physical trials and adjustments
should be performed prior to a full CAS implementation.

Chapter 11

Collision Avoidance Simulations

In this chapter the AUV simulator with the complete Collision Avoidance System (as illus-
trated in figure 8.1) was run through a series of simulated landscapes in order to test the
robustness of the system. This includes all of the obstacles mentioned in the assignment
text. All the simulations are included on the CD and it is STRONGLY recommended to
view these plots using a computer, as they are 3 dimensional and not very well suited to
be presented on paper. Still 2D representations of each simulation is included in the report,
together with a plot of the along track- depth and bottom profile for some of the runs.

All of the simulated terrains are unusually rugged compared to the normal operating
areas of the HUGIN AUV and for most other AUVs. Still, it is under such conditions
the CAS plays a part in obtaining the mission goal. For less rugged terrains, the original
navigation system does not need CAS functionality to operate safely, hence simulating such
conditions is not very interesting when evaluating the CAS. All simulations in this chapter
have been performed with the parameters set according to table 11.1. Se chapter 10 for
details about the different parameter significance.

Desired bottom altitude 20m
Critical distance 10m
Minimum distance to ice or surface 15m
Reflexive avoidance backtracking distance 30m
Reflexive avoidance altitude increase 30m
Desired edge following distance 20m

Table 11.1: CAS simulations parameters

11.1 Rugged terrain

The first test run was performed on a landscape with rugged terrain. This included bottom
gradients exceeding 60◦ and steep gradients transitions. First the model was run through this
landscape without the collision avoidance module (With the FLS aided bottom follower).
The result is shown in figures 11.1 and 11.2 and can be found on the CD (RuggedTer-
rain1.fig). Then the complete system with collision avoidance was run through the same

75

76 CHAPTER 11. COLLISION AVOIDANCE SIMULATIONS

landscape and WP-trajectory with the results shown in figures 11.3 and 11.4. This plot can
be found on the CD under RuggedTerrain2.fig.

The simulated test run without the CAS reveals that this terrain is clearly to rugged
for the original system to handle. The rapid gradient transitions combined with the steep
gradients makes it impossible (because of the physical vessel constraints) to maintain desired
altitude and to avoid collision based on vertical maneuvers alone. This causes the vessel to
touch the bottom at about 200m along the trajectory. For such rugged terrains, a Collision
Avoidance System is clearly necessary in order to fulfill the mission goals and to avoid
collision.

In the simulation test with CAS the reflexive avoidance is activated just before the same
section, avoiding the collision and the violation of the critical distance. Of course, such
a maneuver would cause the vessel to spend more time (and electricity) because of the
additional traveled distance. Even so, the overall goal is to cover the entire WP path as
close to the desired altitude as possible, without violating the critical distance. Figure 11.4
shows that the altitude is very high during the reflexive avoidance maneuver but this is not
a part of the WP path and the altitude in this section is therefore considered irrelevant. The
non-symmetric nature of the reflexive avoidance maneuver is caused by varying pitch which
affects the horizontal turning radius. The maneuver is started with maximum pitch until the
desired altitude increase is reached and then continued at that altitude with zero pitch. The
minimum horizontal turning radius at maximum pitch is about half of the radius when the
pitch is zero.

Because of the pitch constraint, the only way to increase the ’climb rate’ beyond the
maximum pitch is to perform an extra loop. Alternative solutions without this loop would
have to maintain higher altitudes in some sections of the WP path, leading to reduction of
measurement quality in these sections.

11.1. RUGGED TERRAIN 77

Figure 11.1: Running the system without CAS through rugged terrain

Figure 11.2: Bottomplot of the system without CAS through rugged terrain

78 CHAPTER 11. COLLISION AVOIDANCE SIMULATIONS

Figure 11.3: Running the system with CAS through rugged terrain

Figure 11.4: Bottomplot of the system with CAS through rugged terrain

11.2. RUGGED TERRAIN WITH ISLET 79

11.2 Rugged terrain with islet

This test run was performed on the exact same landscape, only elevated so that the highest
peak was above the surface forming an islet in the middle of the WP path. Only the system
with the collision avoidance was run through this terrain, as the system without CAS would
clearly not handle this terrain. The results are shown in figures 11.5 and 11.6. In figure
11.6, RA denotes that Reflexive Avoidance is activated and EF denotes that Edge Follower
is activated. This notation is also used for the remaining simulations. The same test run is
shown in the file RuggedIslet.fig on the CD.

As this terrain is identical to the last section, only elevated in order to make an islet, the
reflexive avoidance was triggered in the exact same position. When the vessel approached
the islet, the depth controller assumed pitch command as the depth approached the minimum
allowed depth (15 m). When the islet was detected by the FLS, the edge follower was
activated. First, the direction of the avoidance maneuver was decided based on Side Scan
Sonar measurements. As the starboard side had a somewhat larger value than the port, the
edge follower decided to circumvent the islet on the right side. The simulation shows that the
islet is circumvented smoothly and control was passed on to the LOS guidance and altitude
controller, once the vessel was back on the WP path.

Figure 11.5: Running the system with CAS through rugged terrain with islet

80 CHAPTER 11. COLLISION AVOIDANCE SIMULATIONS

Figure 11.6: Bottomplot of the system with CAS through rugged terrain with islet

11.3 Extremely rugged terrain

The model was then run through an extremely rugged terrain with the highest peak forming
a bank, to shallow for vertical avoidance. This includes bottom gradients exceeding 75◦ and
extreme gradient transitions. The result of the model with CAS running through this terrain
is shown in figures 11.7 and 11.8. The same run is displayed on the file ExtremeTerrain.fig
on the CD.

The terrain simulated here is truly extreme and not very suited for AUV operations. Still,
the simulation shows that the CAS makes the vessel capable of covering the entire feasible
section of the WP path without violating the critical distance. The simulation also shows
that the edge follower was able to circumvent the shallow bank smoothly, even though the
’edge’ was infact below the vessel and not straight out to the side. The wide sector side scan
sonars enables this capability.

11.3. EXTREMELY RUGGED TERRAIN 81

Figure 11.7: Running the system with CAS through extremely rugged terrain

Figure 11.8: Bottomplot of the system with CAS through extremely rugged terrain

82 CHAPTER 11. COLLISION AVOIDANCE SIMULATIONS

11.4 Vertical Obstacle

In accordance with the assignment text, the model was run through a terrain with a vertical
obstacle. Figures 11.9 and 11.10 displays the resulting trajectory of the vessel encountering
a 200m high vertical obstacle. The file VerticalObstacle.fig on the CD displays the same
run.

When the vessel encountered the vertical obstacle, the reflexive avoidance was activated
and re-activated until the minimum depth was obtained. When the FLS detected that the
obstacle was still present, the edge follower was activated. In this case, the Side Scan Sonar
measurements were equal and a starboard maneuver was chosen by default. As the simu-
lation shows, the edge follower experienced some problems with the square corners of the
obstacle. The feedback gain of the edge follower is very relaxed in order to avoid suppres-
sion of the feedforward. For this reason the distance controller needed some time to stabilize
on the desired distance after each corner. Additional tuning of the edge follower control al-
gorithm would probably have increased it’s performance in this case. However, the system
was still capable of safely circumventing the obstacle without violating the critical distance,
which is the primary goal of the CAS.

Figure 11.9: The system with CAS encountering a vertical obstacle

11.5. TERRAIN WITH LEVEL SURFACE ICE 83

Figure 11.10: Bottomplot of the system with CAS encountering a vertical obstacle

11.5 Terrain with level surface ice

In order to test the ice detection capability of the CAS, the system was run trough a terrain
covered with level surface ice at 30 meters depth. In this simulation, the ice detection
module had to detect and measure the depth of the ice and set the minimum allowed depth
accordingly (15m below). The result of this simulation is shown in figures 11.11 and 11.12.
The same simulation is included on the CD under LevelIce.fig.

Although the bottom follower is able to run through this bottom-terrain without CAS
interruption, the inclusion of the surface ice demands a different trajectory in order to fulfill
the mission goals. As the vessel approached the the first peak, a reflexive avoidance maneu-
ver was triggered due to the small gap between the ice and the bottom profile. Infact, this
gap is to small to maintain desired distances to both bottom and ice. For this reason the edge
follower was triggered and the gap was circumvented. The depth controller assumed com-
mand of the pitch during this maneuver and regulated the depth to 15m below the measured
ice depth. Printouts from the ice detection algorithm showed that the module was able to
determine correct ice depth within 0.1 meters. After the first edge following maneuver was
finished, the ice depth was again set to zero. As the vessel approached the second (highest)
peak, the ice detection algorithm once again found the correct ice depth (within 0.1 meters),
and circumvented the peak at given distances to both the ice and the obstacle. This simula-
tion indicates that the ice detection algorithm works as specified and enables the system to
handle operating areas covered with surface ice.

84 CHAPTER 11. COLLISION AVOIDANCE SIMULATIONS

Figure 11.11: Simulation with level surface ice (viewed from above

Figure 11.12: Simulation with level surface ice (lateral view)

11.6. TERRAIN WITH VARYING ICE-DEPTH 85

11.6 Terrain with varying ice-depth

In order to test the ice detection module under varying ice-depths, the system was run
through an identical bottom profile with undulating surface-ice. The result is shown in
figures 11.13 and 11.14. The same simulation may be found on the CD under VaryingIce.fig

As shown in the figures, the system detected and determined the ice depths in both
cases were a horizontal maneuver was necessary. The edge follower then circumvented the
obstacles at the given depth below the lowest measured ice in that particular area, in order to
avoid collision with either ice or ocean floor. This simulation indicates that the ice detection
algorithm is able to measure the ice, even under varying ice-depths, by calculating the depth
of the lowest point of the ice. The simulation also shows that the ice detection module works
well in cooperation with the rest of the CAS.

Figure 11.13: Simulation with varying ice-depth (viewed from above)

86 CHAPTER 11. COLLISION AVOIDANCE SIMULATIONS

Figure 11.14: Simulation with varying ice-depth (lateral view)

Chapter 12

General discussion and concluding
remarks

In all the simulations the collision avoidance system performs well and acts in accordance
with the overall goals and user requirements. However, due to the complexity of the collision
avoidance problem, it is very difficult to design a system capable of handling every thinkable
situation. By the same reason, there are a number of situations in which the developed
system will not be able to avoid collision. An example is the AUV getting trapped within
a subsurface cave. However, it is assumed that the developed system will be able to handle
most situations by adding functionality for special cases. For this reason, the developed
system in this project should be considered only as a concept of collision avoidance. There
is still a number of issues that needs attention before the system is ready for implementation.

The collision avoidance system, including all the subsystems, forms what is called a
hybrid system. As described in Branicky (1998), a hybrid system combines logical and con-
tinuous processes into one dynamical system. In this system, the logic part is performed by
the CAS functionality, e.g switching between the bottom follower and the depth controller.
Analytical stability for hybrid system is a subject which is still under extensive research, and
is in any case not straight forward to derive. Branicky (1998) suggest a stability analysis us-
ing multiple Lyapunov functions. One of the concerns with hybrid systems is the occurrence
of limit cycles. This is normally caused by the switching logic, where the system ends up
switching continuously back and forth between two controllers. In order to avoid such be-
havior, the switching criterias must be carefully set (Branicky 1998). During development
of the CAS, this behavior was experienced several times. The criterias have therefore been
carefully adjusted to avoid this problem, and no such behavior have been experienced with
the final system. Further analytical analysis is considered to be out of the scope of this
project, but should be looked into prior to a practical implementation.

As stated earlier, deriving analytical stability for the entire system developed in this pa-
per relies on many factors which is considered to out of the scope of this project. Still, all
of the subsystems have been stabilized in the linear sense, and the logic which switches
between the different subsystem-controllers have been carefully adjusted to avoid limit cy-
cles. Extensive simulations with the complete system indicate that the complete system is
stable. For this reason it is concluded that the systems, based on the previous statements
and simulations, appears stable and is able to avoid collision in the majority of situations.

87

88 CHAPTER 12. GENERAL DISCUSSION AND CONCLUDING REMARKS

Further analysis on stability for this system, and it’s ability to avoid collisions, is not straight
forward to derive.

The developed simulator has proven to be a suitable testbed for collision avoidance sys-
tems. The simulator may be extended in order to produce more realistic simulations e.g.
by including senor noise and ocean currents. However, such factors are considered to be
an implementation issue and is therefore not covered by the conceptual design discussed in
this paper. The proposed collision avoidance system shows promising results in the simu-
lated environment and is able to fulfill the defined goals in all performed simulations. The
functional simplicity of the derived system enhances it’s robustness which is crucial for a
CAS. Additional functionality may be added in order to make the system handle potential
fail-situations which may be encountered in a real environment. In any case, the developed
system provides a framework for further analysis and development for the HUGIN AUV
collision avoidance problem.

Chapter 13

Suggestions for future work

As mentioned in the previous chapter, there are still a number of issues that needs attention
prior to a practical implementation of the proposed collision avoidance system. This in-
cludes extensions to the simulator to include some of the unpredictable factors in a physical
environment, such as; ocean currents, sensor noise, drift in position and attitude estimates
etc. The derived system should also be further analyzed in terms of stability and it’s abil-
ity to avoid collisions. Such analysis would provide enhanced credibility towards potential
customers and users but may also uncover elements of risk in the design which should be
altered.

In chapter 9, several path planning strategies were presented. Some of these solutions
creates a map over the covered area and uses path planning algorithms in order to develop
a new path. As the HUGIN AUVs are already equipped with sensors and functionality to
create map-data from the passing environment, a natural extension to the proposed system
would be to use these data for collision avoidance purposes. This could, amongst other
things, assist the edge follower in choosing the optimal direction of circumventing obstacles.
Another problem, which is not covered in this paper, arises when a planned waypoint turns
out to be at the same position as an obstacle. In these cases, a superior functionality should
be added which re-plans the route or simply removes the unreachable waypoint from the
current way point route. Combining these features with the existing system could provide
improved collision avoidance functionality.

89

Bibliography

Allison, J., Watson, D. & Cook, T. (1989), ‘Intelligen waypoint transiting in complex auv
environment’, IEEE Int Symposium On Unmanned, Untethered, SUbmersibel Technology
6th, 246–257.

Aria, H., Tanie, K. & Shiroma, N. (1994), ‘Time-scaling control of an underactuated manip-
ulator’, IEEE INt Conference on Robotics and Automation 4, 525–536.

Arinaga, S., Nakajima, S., Okabe, H., Ono, A. & Kanayama, Y. (1996), ‘Motion planning
method for an auv’, IEEE Proc Symposium Autonomous Underwater Vehicle Technology
(AUV) pp. 477–484.

Bellingham, J., Consi, T. & Beaton, R. (1990), ‘Keeping layered control simple’, IEEE Proc
Symposium Autonomous Underwater Vehicle Technology (AUV) pp. 3–8.

Blidberg, D., Chappel, S., Jaibert, J., abd G. Sedor, R. T. & Eaton, P. (1990), ‘The eave
auv program at the marine systems engineering laboratory’, Proc of the 1st Workshop on:
Mobile Robots for Subsea Environments pp. 33–42.

Branicky, M. S. (1998), ‘Multiple lyapunov functions and other analysis tools for swithched
and hybrid systems’, IEEE Transactions on Automatic Control 43.

Chen, C.-T. (1999), Linar Systems Theory and Design, Oxford University Press.

Cornforth, W. & Croff, K. (2000), ‘Development of an environment-sensitive navigation
system for the auv autolycus’, Marine Technology 37, 238–245.

Demuth, G. & Springsteen, S. (1990), ‘Obstacle avoidance using neural networks’, IEEE
Proc Symposium Autonomous Underwater Vehicle Technology (AUV) pp. 213–215.

Foss, B. A. (2004), ‘Linear quadratic control’, Department of Engineering Cybernetics,
NTNU .

Fossen, T. (2002), Marine Control Systems, Marine Cybernetics AS.

Fossen, T. I. (1991), Nonlinear modeling and control og underwater vehicles, PhD thesis,
Norwegian University of Science and Technology.

Fox, R., Garcia, A. & Nelson, M. (2000), ‘A generic path planning strategy for autonomous
vehicles’, The Univeristy of Texas-Pan American, Department of Computer Science Tech-
nical Report CS-00-25.

90

BIBLIOGRAPHY 91

Fryxell, D., Oliveira, P., Pascoal, A., Silvestre, C. & Kaminer, I. (1996), ‘Navigation, guid-
ance and control of auvs: An application to the marius vehicle.’, Control Engineering
Practice CEP-4(3), 401–409.

Fujii, T. & Ura, T. (1996), ‘Development of an autonomous underwater robot ’twin burger’
for testing intelligent behaviours in realistic environments’, Autonomous Robots 3, 285–
296.

Hart, P., J-Nilson & Raphael, B. (1968), ‘A formal basis for the heuristic determintation of
minimum cost paths’, Transaction on Systems Man and Cybernetics, 100–107.

Healey, A. J. & Lienard, D. (1993), ‘Multivariable sliding-mode control for autonomous
diving and steering of unmanned underwater vehicles’, IEEE Journal of Oceanic Engi-
neering 18.

Healey, A., Marco, D., McGhee, R., Brutzman, D. & Cristi, R. (1995), ‘Evaluation of the nps
phoenix autonomous underwater vehicle hybrid control system’, Proc American Control
Conference pp. 477–484|.

Horner, D., Healey, A. & Kragelund, A. (2005), ‘Auv experiments in obstacle avoidance’,
Oceans Proceedings of MTS/IEEE.

Hyland, J. (1989), ‘Optimal obstacle avoidance path planning for autonomous underwa-
ter vehicles’, IEEE Int Symposium on Unmanned, Untethered, Submersible Technology
pp. 226–278.

Hyland, J. (1990), ‘A comparison of two obstacle avoidance path planning for autonomous
underwater vehicles’, IEEE Proc. Symposium Autonomous Underwater Vehicle Technol-
ogy (AUV) .

Khalil, H. K. (2000), Nonlinear Systems, Prentice Hall Inc.

Knight, W. C., Pridham, R. G. & Kay, S. M. (1981), ‘Digital signal processing for sonar’,
Proceedings of the IEEE 69.

Kongsberg-Maritime (n.d.), ‘Hugin 1000 - autonomous underwater vehicle’.
URL: http://www.km.kongsberg.com

Lane, D. & Trucco, E. (2000), ‘Embedded sonar and video processing for auv application’,
Proc Annual Offshore Technology Conference 2, 599–607.

Leonard, N. (1997), ‘Stability of a bottom heavy underwater vehicle’, Automatica AUT-
33(3), 331–346.

McKendrick, J. (1989), ‘Autonomous knowledge-based navigation in an unknown two-
dimensional environment eith convex polygon obstacles’, IEEE Int Symposium on Un-
manned, Untethered, Submersible Technology pp. 258–265.

Midtgård, ., Jalving, B. & Hagen, P. E. (n.d.), ‘Initial design of anti-collision system for
hugin auv’, FFI/RAPPORT -2006/01905 (In Confidense) .

92 BIBLIOGRAPHY

Nuno, P., Silvestre, C., Cunha, R. & Pascoal, A. (2006), ‘A bottom-following preview con-
troller for autonomous underwater vehicles’, Proc CDC2006 - 45th IEE Confernece on
Decision and Control .

Pascoal, A., Oliveira, P. & Silvestre, C. (1997), ‘Marius: An autonomous underwater vehicle
for coastal oceanography’, IEEE Robotics and Automation Magazine RAM-4(4), 46–59.

Ridao, P., Batlle, J. & Carreras, M. (2001), ‘A new object oriented control architecture for
autonomy. the reactive layer’, Control Engineering in Practice Journal .

Rock, S., Wang, H. & Lee, M. (1995), ‘Task-directed precision control of the mbari/stan-
ford otter auv’, Proc of the Int Pogram Development in Undersea Robotics & Intelligent
Control (URIC): A joint US/Portugal Workshop pp. 131–138.

Sciavicco, L. & Siciliano, B. (2000), Modelling and Control of Robot Manipulators, Mc-
Graw Hill Inc.

Smith, F. & Ghidella, J. (2004), ‘Incorporating m-code into simulink models’, Matlab Digest
September.

SNAME (1950), Nomeclatue for treating the motion of a submerged body through a fluid,
in ‘Technical and Research Bulletin NO.3-47’.

Tan, C., Sutton, R. & J.Chudley (2004a), ‘Collision avoidance systems for autonomous
underwater vehicles, part a: a reveiw of obstacle detection’, Journal of Marine Science
and Environment C2.

Tan, C., Sutton, R. & J.Chudley (2004b), ‘Collision avoidance systems for autonomous
underwater vehicles, part b: a reveiw of obstacle avoidance’, Journal of Marine Science
and Environment C2.

Warren, C. (1990), ‘A technique for autonomous underwater vehicle route planning’, IEEE
Journal of Oceanic Engineering 15, 199–204.

Winder, A. A. (1975), ‘Ii. sonar systems technology’, IEEE Trans. Sonics Ultrasonics SU-
22.

www.ffi.no/hugin (n.d.).

Yoerger, D., Bradley, A. & Cormier, M. (2000), ‘Fine-scale seafloor survey in rugged deep-
ocean terrain with an autonomous robot’, IEEE Int Conference on Robotics and Automa-
tion pp. 34–55.

Yuh, J. & Choi, S. (1999), ‘Semi-autnonomous underwater vehicle for intervention mis-
sions’, Sea Technology Magazine Vol: 40, No: 10, 31–40.

Zapata, R. & Lepinay, P. (1996), ‘Collision avoidance and bottom following of a torpedo
like auv’, IEEE Oceans Conference Record 2, 571–557.

Appendix A

User guide for the attached CD

The matlab and simulink files included on the CD are created using Matlab version 7.2.232
(R200a). If you are using older versions of matlab, you may experience problems with some
or all of the files.

A.1 CD structure

The CD contains the following folders:

CAS simulations:

All of the Collision Avoidance system simulations mentioned in chapter 11 are placed her.
Use the zoom buttons to zoom in and out on the plots and use the 3D rotate button to view
the plot from different angles (recommended).

The complete simulator:

In order to run the complete model, the gnc toolbox is required. (This may be downloaded
from: http://www.itk.ntnu.no/fag/gnc/matlab.htm) To run a simulation, DTM matrices for
bottom and surface ice is required. To create an example landscape, run the file Exam-
pleTerrain.m. Also controller gains for the autopilot must be calculated. To do this, run the
file LQtorque.m Then simply run the simulation from the simulink file. Once the simulation
is finished, use the matlab script TrajectoryPlotter.m to create a 3D plot of the simulation.
To set a different WP path, double click on the ’Horizontal LOS Guidance’ block and input
desired Way points in the ’Waypoint North’ and ’Waypoint East’ boxes.

Matlab source code:

This folder contains all of the matlab files mentioned through the report.

93

Appendix B

Simulink diagrams

B.1 The nonlinear HUGIN model

huginmodel.mdl

Figure B.1: The nonlinear HUGIN model implemented in Simulink

94

B.2. LQ TORQUE CONTROL AUTOPILOT WITH RUDDER ALLOCATION
ALGORITHM 95

B.2 LQ torque control autopilot with rudder allocation algo-
rithm

torqueAutpilot.mdl

Figure B.2: The LQ torque controller with rudder allocation implemented in simulink

96 APPENDIX B. SIMULINK DIAGRAMS

B.3 The complete system with CAS

simulator.mdl

Figure B.3: The complete simulator with CAS implemented in simulink

