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Problem Description

The trend is that modern cars are being equipped with increasingly advanced active safety
systems. These typically need accurate information about vehicle velocity, which is hard and
expensive to measure directly. On SINTEF/NTNU a computationally efficient nonlinear observer
for vehicle velocity estimation has been developed, but its performance on non-flat roads leaves
something to be desired. Thus, the task of the student is to extend the observer to cope with non-
flat roads, by also using other measurements. In view of the increasing availability of navigation
systems in cars most emphasis is put on GPS measurements, but also other measurements such
as inclination sensors, pressure sensors in active suspension systems (ABC), etc. are interesting.

1. Perform brief litterature review of bank- and/or inclination angle estimation in
automotive settings. Important issues are purpose of estimation (e.g. velocity estimation for ESC),
accuracy, if available, and types of sensors used.
2. Describe the sensors that are chosen, and how they give information about vehicle
velocity or road bank and inclination angles.
3. Develop velocity observer concepts for non-flat roads
a. Design and analyze the concepts
b. If possible, analyze robustness of the design
c. Implement and test the observer on real measurement data
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Supervisor: Tor Arne Johansen, ITK
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This report is a Master’s Thesis written at the Departement of Engineering Cybernetics
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Control Systems (CEmACS), in which SINTEF ICT and DaimlerChrysler participate.

CEmACS concerns active safety systems for cars. Since one ofthe main criteria
for achieving reliable control is having good state estimates, the development of a
nonlinear observer for vehicle velocity is part of the project. This report deals with the
idea that standard GPS and roll rate measurements can be integrated with the observer
to yield higher accuracy when the vehicle is subjected to disturbing elements like road
grade and bank angle.
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Summary

The main purpose of this report, is to evaluate feasibility of using The Global Position-
ing System as an aiding tool for vehicle state estimation based on nonlinear techniques,
and to develop a potential solution to the road bank angle problem. Previous work
within the CEmACS project, includes development of a general nonlinear observer for
lateral and longitudinal velocity, and an augmentation in the form of road-tire friction
adaptation. Because the existing solutions have been shownto lack robustness with
regards to certain disturbances, such as road grade and roadbank angle, it has been
stated that the estimation scheme should be upgraded, so that these disturbances can
be accounted for. By including GPS velocity or a or a roll rategyro measurement in
the observer feedback loop, the possibility of detecting previously inobservable quan-
tities is gained. In simple terms, evaluation of feasibility corresponds to demonstrating
improvements and limitations of new solutions, using relatively crude methods in the
test procedures.

Problems related to the above mentioned task, are approached by means of signal
processing and control theory. Following an intuitive sequence of operations, the re-
port presents GPS theory and results first, as this lays the foundation for all subsequent
results. Methods used comprise simple differentiaton, rotational kinematics and dis-
crete filtering. Secondly, theory and results related to nonlinear observers, with focus
on GPS aiding, are examined thoroughly. Lyapunov theory, known from control en-
gineering, is used to evaluate stability, while data from simulations and actual vehicle
tests is used to show how a new observer scheme can improve existing solutions.

Before the most important results are presented, somethingshould be said about
their accuracy and significance. It has already been pointedout that the methods used
are not based on optimality requirements, and consequentlythe results are best viewed
as indicators of potential, rather than absolute solutions. This is especially true for
the GPS velocity calculations, which are based on differentiation of position measure-
ments; generally not a desired approach.

In this report, it is firstly shown that GPS position measurements can be used to
compute receiver velocity in the body-fixed coordinate frame. While this is a crude
approach, resulting in relatively poor signal to noise ratio, it is easily implemented on
low-level equipment. It is also shown that it is possible to use these velocities as mea-
surements in a nonlinear observer structure, slightly modified from previous solutions
within the CEmACS project. By doing this, accurate estimates of road grade and bank
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angle are achieved, so long as these vary slowly enough. Stability of the observer is not
proven in the general sense, but it is shown that it can be madestable through realistic
assumptions and gain selection. Stability is further demonstrated through the use of
data sets from actual vehicle tests.

Secondly, a mathematical model of roll dynamics is combinedwith a roll rate mea-
surement to create the possibility of detecting road bank angle. This is done by the now
familiar nonlinear observer approach. Usefulness is demonstrated by simulations, but
no stability proof is presented.

The main conclusion is that it is feasible to use GPS aiding toaccount for robust-
ness problems in a vehicle state estimation scheme, and thatthe inclusion of a roll
rate measurement opens up possibilities for “cheap” bank angle detection. A direct
implementation of results presented in the report may not beideal, but the fact that the
system works for a large set of conditions, suggests that it is worthwhile to develop it
further. This is especially true when it is assumed that GPS receivers will become an
integral part of new vehicles in the near future. Refinementsand upgrades can be made
in the form of more advanced GPS technology, new parameter estimation techniques
and integration with the road-tire friction adaptation scheme.

vi



Chapter 1

Introduction

Over the last decade, two separate technologies have playedlead roles in changing
our perception of what a car and its computer system is capabale of doing. Active
safety systems help the driver cope with potentially dangerous situations, or to avoid
them altogether. Fitting the car with a Global Positioning System (GPS) receiver and
digital maps, makes it possible for the driver to navigate accurately based on computer
generated instructions. The first of these has a direct influence on how dangerous
an unwanted driving situation becomes, while the other is more of a perk, potentially
increasing safety by allowing the driver to concentrate on operating the vehicle. Lately,
however, it has been suggested that a powerful tool such as GPS should be integrated
with the safety system in order to achieve greater accuracy of estimates, and even give
information about previously inobservable states or disturbances.

A GPS system is typically much more expensive than standard measurement de-
vices used for vehicle state estimation. As the financial aspects of serial production
apply tight constraints with regards to cost of equipment, an estimation scheme re-
liant on GPS measurements is not desired. However, cars thatship with GPS receivers
should be able to take advantage of the new or redundant information such a system
provides.

As the name clearly states, GPS is a position determination system, specifically
designed for dynamic navigation purposes. The convenient irony here, is that with re-
gards to accuracy, speed determination is what GPS does best. Active safety systems,
e.g. ESP [1], which is a yaw stabilization system, uses vehicle velocity information
in the feedback loop. Direct measurement of velocity is typically done with costly
instruments, and is consequently not a viable solution. Thestandard approach to ve-
locity estimation has been (extended) Kalman filtering, as in [2], using acceleration
and yaw rate measurements as input. The drawback with this approach is that the
Kalman filter (KF) is computationally inefficient, in that itrequires real-time solving
of the differential Riccati equation, and that proofs of global stability can’t be given
in the general (nonlinear) case. Advances in nonlinear estimation and control tech-
niques have led to the observer presented in [3]. Here, stability guarantees for certain
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CHAPTER 1. INTRODUCTION

conditions are given. This observer is further refined by theintroduction of road-tire
friction adaptation in [4]. The measurement vector used as input consists of lateral and
longitudinal acceleration, yaw rate, wheel speed for each wheel and steering angle for
each wheel - standard measurements in modern cars with yaw stabilization systems.
When making a few, but severely limiting assumptions, such as setting the pitch and
roll of the vehicle to zero, the observer is proven to give highly accurate estimates of
lateral and longitudinal vehicle velocity. Consequently,safety systems using feedback
from these estimates can be expected to function reliably when the car is driven on
the highways of continental Europe. However, as e.g. scandinavian drivers are well
aware of, the combination of snow and variations in height isquite common; banked,
graded and bumpy roads, covered with ice, pose the biggest challenge to the driver and
the safety system. It is therefore imparative that the quality of a feedback observer is
not too degraded by variations in road structure. This is whyit is desired to include
GPS velocity in the measurement vector. The idea is that these measurements can be
used to compensate for the acceleration measurement error due to vehicle attitude, by
helping to identify road grade (RG) and bank angle (RBA) parameters in real-time.

When dealing with measurements, perfection can never be achieved. All signals
are approximations to a limited reflection of reality. Still, one has an idea about prac-
tical optimality - the concept of removing a problem as cheaply and effectively as
possible. Using GPS is most likely not an optimal solution yet. Therefore the prob-
lems related to RBA should be evaluated from a more basic perspective, using a roll
rate gyro as the only augmentation to the measurement vector. If this proves feasible,
it can perhaps fit into the category of practically optimal solutions.

This report deals with key aspects of integrating GPS velocity measurements with
the existing nonlinear observer, and development of a gyro based RBA observer. Firstly,
the various techniques used for velocity determination by GPS is presented. It is gen-
erally not advised to infer velocity information by differentiation of raw position data,
but since positioning is the common denominator of all GPS receivers and low cost
is a demand, it is highly desirable to see what can be gained bythis direct approach.
Secondly, limitations and potentials of the observers are discussed, together with ideas
on how GPS velocity can be used to improve existing estimates. Finally, results based
on simulations and data from a test vehicle are presented.

1.1 Previous work

Integration of GPS and estimation schemes has been done for awide range of appli-
cations and control purposes. In [5], wheel slip, body sideslip angle and tire sideslip
angle are estimated using GPS velocity information in conjunction with other sensors.
[6] suggests a method for integrating Inertial Navigation System (INS) sensors with
GPS measurements to estimate sideslip and cornering stiffness, while [7] focuses on
measurement limitations due to noise. In [8], feasibility of controlling a vehicle using
GPS-based slip angle measurements is shown. The commonly adopted technique of
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CHAPTER 1. INTRODUCTION

correcting inertial sensor errors by use of GPS is describedin [9]. All of the above
utilize the familiar Kalman filter scheme to state estimation. An ideal approach to
pitch and roll estimation, using a two-antenna GPS system, is presented in [10]. Dy-
namic estimation of RBA, using measurements of lateral acceleration and yaw rate, is
shown to be robust for a bicycle model in [11]. Estimation of vehicle parameters, such
as mass, rolling resistance and aerodynamic drag, by determining road grade through
GPS measurements is demonstrated in [12].

3



CHAPTER 1. INTRODUCTION

1.2 Nomenclature

CG - center of gravity of the vehicle
RC - roll center of the vehicle
PC - pitch center of vehicle
xCG, yCG, zCG - axes of the body-fixed coordinate system
n, e, d - axes of the north-east-down coordinate system

vx - vehicle velocity alongxCG, longitudinal velocity
vy - vehicle velocity alongyCG, lateral velocity
vz - vehicle velocity alongzCG, vertical velocity
φ, θ, ψ - Euler angles (roll, pitch, yaw)

vCORR
x - actual longitudinal velocity, measured
vCORR

y - actual lateral velocity, measured
vGPS

x - GPS-based longitudinal velocity, measured
vGPS

y - GPS-based lateral velocity, measured
ax - longitudinal acceleration,measured
ay - lateral acceleration,measured
rd - yaw rate, angular velocity aboutzCG, measured
pd, qd - pitch rate and roll rate relative to the road,measured(conditional)
ωi - wheel angular velocities, (i = 1, ..., 4), measured
δi - wheel angles, calculated from steering wheel angle, (i = 1, ..., 4)
d - vector of variables used in the friction model

gi - distance vectors from CG to each wheel, (i = 1, ..., 4)
µH - maximum road-tire friction coefficient
Fi(d, vx, vy, r, µH) - friction functions for each wheel, (i = 1, ..., 4)
FZij

- normal force for each wheel, (ij = FL, FR,RL,RR)
R(δi) - rotation matrices, wheel-fixed to body-fixed
fx - generalized force on the vehicle alongxCG

fy - generalized force on the vehicle alongyCG

fr - generalized torque aboutzCG

4



CHAPTER 1. INTRODUCTION

Jx, Jy, Jz - moment of inertia aboutxCG, yCG andzCG axes
bF , bR - distance between wheeels on front axle/rear axle
lF , lR - distance from CG to front axle/rear axle
hCG - height of CG
∆hr,∆hp - distance between roll/pitch center and center of gravity
g - gravitational constant,9.81 m/s

5



Chapter 2

Vehicle model

The vehicle model in Figure 2.1 is the same as in [3, 4].

Figure 2.1: Vehicle model

In [3], only forces caused by road-tire friction are included. This means that e.g.
air resistance is ignored in the dynamic equations. To compute the friction forces, a
nonlinear friction model is used. Generalized resultant forces are defined as

6



CHAPTER 2. VEHICLE MODEL

fx(t, vx, vy, r) :=

4
∑

i=1

[1 0]R(δi)Fi(d, vx, vy, r, µH) (2.1)

fy(t, vx, vy, r) :=

4
∑

i=1

[0 1]R(δi)Fi(d, vx, vy, r, µH) (2.2)

fr(t, vx, vy, r) :=
4

∑

i=1

[0 1]gT
i R(δi)Fi(d, vx, vy, r, µH) (2.3)

The resulting equations of motion are

v̇x = ax + rvy (2.4)

v̇y = ay − rvx (2.5)

ṙr =
1

Jz

fr(t, vx, vy, r) (2.6)

It can immediately be seen that this model does not include information about dynam-
ics along the z-axis. This is because roll and pitch of the vehicle have been ignored in
the existing observer scheme. Since vehicle attitude has a direct influence on acceler-
ation measurements, it is desirable to augment the existingmodel so that observability
of this coupling is increased. Figure 2.2, which is slightlymodified from [13], illus-
trates how the combination of road structure and driving pattern affects attitude of the
vehicle body. Note that two coordinate frames are defined forthe vehicle - road frame
and dynamic frame. The xy-plane of the road frame is parallelto the imaginary plane
defined by the contact points between wheels and road. The dynamic frame is rotated
from the road frame by the anglesφv andθv. Both have origins in the CG.
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CHAPTER 2. VEHICLE MODEL

(a) Pitch (b) Roll

Figure 2.2: Vehicle pitch and roll
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CHAPTER 2. VEHICLE MODEL

ECEF position pe =





xe

ye

ze



 ∈ R
3 Longitude and latitude Ψ =

[

l
µ

]

∈ S2

NED position pn =





n
e
d



 ∈ R
3 Attitude (euler angles) Θ =





φ
θ
ψ



 ∈ S3

Body-fixed linear velocity vb
o =





u
v
w



 ∈ R
3 Body-fixed angular velocity ω

b
nb =





pb

qb
rb



 ∈ R
3

Table 2.1: Frame associated vectors

R
n is theEuclidian spaceof dimension n andSn denotes atorusof dimension n.

For the idea of vehicle roll and pitch angle to give meaning, the body-fixed coordi-
nates must be related to another frame. Here, this is the North-East-Down (NED)
frame. NED is the tangent plane on the surface of the earth, moving with the vessel
[14], where the axes n, e and d point towards north, east and the center of the earth
respectively. It is important to note that directions of then and e axes are not dependent
on the orientation of the vehicle; they simply define a virtual plane which allows def-
inition of relative vehicle orientation. Attitude is givenas angles between body-fixed
(road) and NED coordinate axes. These are referred to as theEuler angles[15].

ψ - rotation about thez1 axis
θ - rotation about the current (rotated)y axis
φ - rotation about the current (rotated)x axis

Equations 2.4-2.5 are based on the assumption thatφ and θ are both zero. If they
are not, the acceleration measurementsay andax will be biased by gravitational com-
ponents given aswφ andwθ. To determine the magnitude of these biases, kinematic
relations are used. It is necessary to rotate the gravitational vector in the inertial frame
to the body fixed frame. The x and y components of the rotated vector represent ac-
celeration biases due to vehicle attitude. Using notation from Table 2.1, the following
expressions are derived
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CHAPTER 2. VEHICLE MODEL

gn =
[

0 0 g
]T

gb = Rn
b (Θ)T gn

wθ = eT
x gb

wφ = eT
y gb

WhereRn
b (Θ) is a rotation matrix defined as

Rn
b (Θ) =





cosψ cos θ − sinψ cos φ+ cosψ sin θ sin φ sinψ sinφ+ cosψ cosφ sin θ
sinψ cos θ cosψ cos θ + sin φ sin θ sinψ − cosψ sin φ+ sin θ sinψ cosφ
− sin θ cos θ sinφ cos θ cosφ





resulting in the expressions

wθ = −g sin θ

wφ = g cos θ sinφ

Properties of the rotation matrixR are described in Appendix A.1. The simplest way
to find the Euler angles, is to use a two-antenna GPS system, but this is currently not
an option. It will be necessary to estimateθ andφ using available sensors. To achieve
this, kinematic properties of the sensors have to be known.

Assumption 2.1: Sensorsax, ay, andrd, are located at the center of gravity.

Assumption 2.2: If pitch rate and roll rate sensors are available, they are denotedpd

andqd.

Assumption 2.3: All wheels are in contact with the ground at all times.

Angular velocities in the road frame must be converted by means of a transformation
matrix before a meaningful integration can be performed. Table 2.1 defines the body
fixed angular velocity vectorωb

nb. Since the vehicle body is expressed in terms of two
body fixed coordinate systems, it is necessary to separate these two. Angular velocity
in the road frame is given asωr

nr, while angular velocity in the dynamic frame is given
asω

d
nd. According to [14], the relationship is expressed as

10



CHAPTER 2. VEHICLE MODEL

TΘ =





1 sinφ tan θ cosφ tan θ
0 cos φ − sinφ

0 sinφ

cos θ

cos φ

cos θ





Θ̇ = TΘ(Θ)ωr
nr (2.7)

Now, the Euler rates for can be written out in component form

φ̇ = pr + qr sin φ tan θ + rr cos φ tan θ (2.8)

θ̇ = qr cos φ− rr sinφ (2.9)

ψ̇ = qr
sin φ

cos θ
+ rr

cosφ

cos θ
, θ 6= ±π

2
(2.10)

It is necessary to find the relationship between derivativesof road bank angle and road
grade, and the Euler angles. Firstly, it should be stated that φr andθr are physically
decoupled from the vehicle, although they are fully dependent on vehicle position and
orientation. Secondly, the Euler angles represent orientation of the road frame, not
the dynamic frame, which means thatφ and θ depend fully onφr and θr. Yaw is
insignificant with regards to road bank angle and road grade.By recalling that Euler
angleθ is a rotation about current y-axis, it is obvious thatθr equalsθ. Sinceφ is
rotation about current x-axis,θ affectsφ. The rate expressions become

φ̇r = cos θφ̇ (2.11)

θ̇r = θ̇ (2.12)

By substitution of equations 2.8-2.9

φ̇r = pr cos θ + qr sinφ sin θ + rr cosφ sin θ (2.13)

θ̇r = qr cosφ− rr sinφ (2.14)

Rotation between the road frame and the dynamic frame

Rd
r(Θv) = RT

x,φv
RT

y,θv
=





cos θv 0 − sin θv

sin θv sin φv cos φv cos θv sinφv

sin θv cosφv − sinφv cos θv cosφv



 (2.15)
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Now, the measurements of rotation can be expressed as functions of kinematic vari-
ables.

ω
d
nd =





φ̇v

θ̇v

0



 + Rd
r(Θv)ωr

nr (2.16)

In component form:

pd = pr cos θv − rr sin θv + φ̇v (2.17)

qd = pr sin θv sin φv + qr cosφv + rr cos θv sinφv + θ̇v (2.18)

rd = pr sin θv cosφv − qr sinφv + rr cos θv cos φv (2.19)

Ideally, a complete dynamic model of vehicle roll and pitch should be developed, but
due to the simplicity of the underlying goal, which is robustestimation ofvy, and the
small number of sensors, focusing on roll alone is a more feasible approach. This
means that a few assumptions have to be made.

Assumption 2.4: Pitch angleθ = 0.

Now equations 2.17 and 2.19 become

pd = pr + φ̇v ≈ φ̇r + φ̇v (2.20)

rd = rr cos φv − qr sinφv (2.21)

The point to be illustrated with these kinematic relations,is that a roll rate measure-
ment, in this casepd, is only an approximation to a linear superposition ofφ̇v and
φ̇r, meaning that the useful information is hard to extract. It is impossible to mea-
sure bank angle (semi) directly without a two-antenna GPS configuration; even with
an angular velocity gyro measurement, bank angle information will in some cases be
completely invisible in the sensor data. This is the case when the vehicle performs a
circle maneuver on a large, tilted plane. Therefore one can assume that a simple sensor
configuration will be inadequate in terms of exact bank angledetermination. However,
it is possible that improvements in the velocity estimationcan be made by accounting
for errors due to vehicle roll. A model of vehicle roll must bedeveloped.

For convenience, the two-track model presented in [16] willbe used here as well.
Figure 2.3 illustrates the basic mass-spring-damper characteristics of the system. The
original expression is

12



CHAPTER 2. VEHICLE MODEL

φ̈v =
1

Jx

[f yh cosφ+mgh sinφ− Cφφ−Kφφ̇+ ψ̇2(Jy − Jz) sinφ cosφ]

The modeled quantity is obviouslyφv, notφr. Intuitively, φv should be fairly small,
since there are physical limitations to how much the springscan be compressed. This
means that the model can be simplified in terms of trigonometry, resulting in the fol-
lowing equation

φ̈v =
1

Jx

[f yh +mghφ− Cφφ−Kφφ̇+ ψ̇2(Jy − Jz)φ]

Figure 2.3: Roll dynamics

ParametersKφ andCφ depend on the spring-damper configuration, but will have val-
ues that help forceφv to zero.ψ̇ is assumed equal to the yaw rate measurementr. The
new set of differential equations becomes

v̇x = ax + rvy − wθ = ax + rvy + g sin θ (2.22)

v̇y = ay − rvx − wφ = ay − rvx − g cos θ sinφ (2.23)

ṙ =
1

Jz

fr(t, vx, vy, r) (2.24)

φ̈v =
1

Jx

[fy(t, vx, vy, r)h+mghφ− Cφφ−Kφφ̇+ rh2(Jy − Jz)φ] (2.25)
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Notice that there is no link betweenφ andφv at this point. This link will have to be
established in conjunction with the development of a state estimator.

14



Chapter 3

GPS

Two definitions of GPS are presented. “GPS is an all-weather,worldwide, continuous
coverage, satellite-based radio-navigation system” [17]and “The NAVSTAR Global
Positioning System (GPS) is a satellite-based radio-positioning and timetransfer sys-
tem designed, financed, deployed, and operated by the U.S. Department of Defense”
[18]. Currently, applications range from handheld devicesthat can be used for posi-
tioning by the general public, to dynamic positioning and navigation of large vessels,
such as ships and airplanes.

The automotive industry and its suppliers have realized thepotential of integrating
this technology with multimedia solutions to give drivers and passengers the ability
to navigate effortlessly through the aid of digital maps. This is by no means standard
equipment for low-priced cars, but hints at future solutions where less time is spent
on finding the way, and more time on performing the safety critical tasks presented
to the driver. As GPS equipment becomes cheaper and safety demands increase, it is
interesting to find new areas of application. In light of this, knowing the basic modes
of operation is key to understanding limitations and potentials of new solutions. The
following sections describe positioning and velocity determination by GPS, largely
based on [17].

3.1 Positioning

Position determination using GPS is a complex process whereseveral mathematical
techniques can be applied. Different manufactures use different approaches, which
gives a large variety in price and quality of the end product As this report focuses on
use of existing solutions, quantitative aspects and receiver implementations will not be
covered. Fundamentals of GPS positioning are briefly evaluated in a qualitative man-
ner. GPS is described in terms of segments: The space segment, the control segment
and the user segment.
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CHAPTER 3. GPS

The space segment

Using an informal comparison, the space segment is reminiscent of the physical layer
in the International Standard Organization’s Open System Interconnect (ISO/OSI) net-
work model: It consists of the GPS satellites orbiting the earth. Currently, 30 Block
II/IIA/IIR/IIR-M satellites are operational. For a detailed description, see [19].

GPS satellites orbit the earth in semi-circular orbital planes, with a configuration
that ensures visibilty of five to eight satellites from any point on earth. These orbits are
not geoshynchronous, however, making the position-estimation accuracy time-varying
for a given set of satellites. This is called Geometric Dilution of Precision (GDOP),
which can be kept at a stably low level by changing satellite combinations.

The control segment

This segment monitors health and status of the space segment. Ground monitoring
stations measure signals from the satellites, and transmitthese to a master control
station. The master calculates orbital model and clock correction parameters for each
satellite, which receive these updated values from ground antennas.

The user segment

The user segment consists of the multitude of GPS antenna/receiever pairs used for
military, industrial and public service purposes. Receivers provide users with posi-
tion, velocity and timing information, based on signals transmitted by the satellites.
No signals are transmitted from receiver to satellite, meaning that the system won’t
experience increased load when the number of active receivers increases.

3.1.1 Standard positioning

Mode of operation

GPS satellites transmit ranging codes and navigation data by code-division multiple ac-
cess (CDMA) on two frequencies, L1 (1575.42 MHz) and L2 (1227.60 MHz). These
are modulated by spread-spectrum signals to carry information to the user. Each satel-
lite is associated with three pseudorandom noise (PRN) ranging codes. In short, GPS
receivers lock on to satellites by correlating internally generated versions of the PRN
codes with the ones received from the satellites. Each satellites has a unique code,
making cross-satellite interference small.

Position determination is based on the fact that radio signals travel at the speed
of light. Receivers note the time of arrival of satellite ranging codes, and use this
information to find the propagation time from satellite to receiver. Propagation time
multiplied with speed of light equals pseudorange. The reason it is called pseudorange,
is that clock errors give a bias to the calculated propagation time. Several techniques
for bias compensation exist. For a detailed description, see Chapter 5.4 in [17].
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When satellite location is known, the pseudorange measurement defines a sphere
of possible receiver locations. An accurate position measurement is given by the inter-
section of four such spheres. It is possible to use three pseudrorange measurements and
a model of the earth as the fourth sphere, but in practice one always has four or more
pseudoranges. This leads to a set of nonlinear equations which contain the various bias
terms, and GPS receivers adopt extended Kalman filtering techniques to estimate their
solutions.

Accuracy

Several forms of error contribute to the deterioration of quality in GPS range mea-
surements, all of which can be categorized as common mode or non-common mode.
Common mode errors will be experienced in the samme manner byall GPS receivers
in a limited geographic area. Non-common mode errors are specific for given locations
and receivers. Typical standard deviations for the varioussources of noise are given in
Table 3.1

Errors Standard deviation (m)
Common mode
Ionosphere 7.0
Clock and ephemeris 3.6
Troposphere 0.7

Noncommon mode
Receiver noise 0.1-0.7
Multipath 0.1-3.0

Table 3.1: Error due to noise sources

The effect these have on position estimates can be expressedin terms of DOP
factors, which are found from the covariance matrix for userposition and clock bias
errors. This is typically done in real-time software. From the users perspective, know-
ing how accurate a position measurement generally will be beis usually enough. In
situations with low non-common mode error, this number can be approximated to 25
meters [20], meaning that a GPS receiver operating in standard mode will give position
information containing an error of 0-25 meters.

3.1.2 Advanced positioning

Several features of GPS can be exploited to give (much) more accurate position es-
timates. The problem with these improvements is that they must be supported by
hardware and external references, making them unsuitable for use with standardized
estimation schemes. Also, advanced hardware obviously leads to increased cost. For
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these reasons, advanced positioning is only briefly described. Techniques directly re-
lated to velocity estimation will be discussed in 3.2.

Differential GPS

Differential GPS (DGPS) is an effective approach to dealingwith common mode er-
rors. Since common-mode errors are the same for all receivers in a limited geographic
area, they can be reduced if a stationary receiver at a known location (base) estimates
them and broadcasts this information to the mobile units, which in turn use this to com-
pensate for errors. This results in accuracies of 1-5 meters. Distance between mobile
units and the base should not exceed 100 km, as this reduces correlation of common
mode errors.

DGPS is a common option for relatively low-cost receivers, so from an economi-
cal perspective, this approach has merit. The main drawbacklies in reliance on DGPS
base stations. Cars very often don’t follow preplanned routes, so availability of base
stations is non-deterministic. Therefore, using DGPS becomes an implementation is-
sue. If a vehicle state estimation scheme is to benefit from GPS measurements, it must
be able to determine what accuracy can be expected from the GPS receiver. In short,
measurements with high accuracy should be used when available, but the main con-
cern is that the estimation scheme works for low-level operating conditions. Possible
improvements due to DGPS can be investigated in future work.

Two-Frequency receivers

Two-frequency receivers use pseudorange measurements from two different frequency
bands to estimate ionospheric delays. Low-pass filtering the estimated delay and sub-
tracting it from the pseudorange gives increased accuracy of position estimates. The
practical drawback is that the receiver needs to support twofrequencies.

Carrier phase tracking

Carrier phase tracking is based on the idea that phase shiftsin the carrier can be tracked
if the receiver phase locks to the carrier signal. The numberof carrier cycles between a
receiver and a satellite can’t be measured directly, but thechange in number of cycles,
however, can be measured. Motivation for determining the carrier phase observable
stems from the fact that it reduces non-common mode errors byan approximate factor
of 0.01. To be able to use the carrier phase observable, a number called the integer
phase ambiguity has to be estimated. This is the whole numberof carrier phase cycles
between the receiver and the satellite at an initial measurement time. Resolving the
integer ambiguity is a non-trivial matter, and several approaches exist. See [21, 22, 23].

Carrier phase aided positioning requires use of a DGPS scheme, or else the integer
ambiguity can’t be computed. As discussed, this is currently not viable for use in a
general purpose safety system.
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3.2 Velocity determination

There are two main approaches to velocity determination using GPS: time differentia-
tion of position measurements, and doppler carrier phase processing. Advantages and
disadvantages of the two approaches are discussed in the following sections. Note that
the variables used are discrete for real-time applications. This means that any GPS
measurement, denotedX, will actually be the value ofXk at sample timek. Conse-
quently,Ẋ refers to the discrete derivative, given as

Ẋ =
Xk −Xk−1

1

ε

whereε is the sampling frequency. The receiver used in the tests referred to in this
report, hasε = 10 Hz.

3.2.1 Differentiating position measurements

Using dynamic position measurements to derive velocity is intuitively appealing, as
the physical interpretation of velocity is change in position with respect to time. Since
virtually all GPS receivers present position data to the user, a receiver independent ve-
locity estimation scheme can be implemented. Key aspects are position representation,
kinematics and noise handling.

Position measurements only make sense with relation to a geometric reference
frame. Terrestrial navigation usually doesn’t involve more than three standarized
frames: Earth-centered Earth-fixed (ECEF), North-East-Down (NED) and BODY. These
are described in [14]. Vectors associated with each frame are defined in Table 2.1.

Standard receiver output is longitude and latitudeΨ, and height above mean sea
level (MSL)h. These values are useful in map-based navigation, but need to be trans-
formed for effective computation of secondary information, such as velocity. GPS
systems use a reference ellipsoid, WGS-84, which relates ECEF coordinates to longi-
tude and latitude. Calculation of ECEF position from longitude, latitude and height is
given by:

pe =





xe

ye

ze



 =







(N + h) cosµ cos l
(N + h) cosµ sin l

(
r2
p

r2
e
N + h) sinµ






(3.1)

N =
r2
e

√

r2
e cos2 µ+ r2

p sin2 µ

re = 6378137m

rp = 6356752m
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where N is the radius of curvature in the prime vertical andre andrp are WGS-84
parameters. The set of ECEF coordinates inpe will be considered measured vari-
ables in the following sections, since equation 3.1 is a static transformation, and direct
time-differentiation of computedpe gives the same result as time-differentiation of the
analytical expressions ofxe, ye andze.

Kinematics

The position vectorpe represents distances along three earth fixed axes defined as
the (accelerated) ECEF frame. Its derivative,ṗe, consequently only gives information
about the positional change of a point in space, relative to the center of the earth, with
regards to time. This has limited usefulness in practical applications, sȯpe needs to be
converted by means of kinematic manipulation. To decide what transformations should
be made, one has to look at the task to be performed. When dealing with ground based
vehicles, the NED and BODY frames give intuitive representations of linear velocity,
angular velocity and attitude. Linear velocityvb

o of the GPS receiver, given in the
BODY frame, is the velocity the receiver has along itsxb, yb andzb axes, where the
origin lies at the base of the receiver. Ideally, theu andv components ofvb

o should be
equal to the correct values ofvx andvy of the vehicle the receiver is associated with,
but this will generally not be the case. For this reason,vb

o will be referred to as receiver
velocity instead of vehicle velocity. Findingvb

o is done using the following relation:

ṗe = Re
n(Ψ)pn = Re

n(Ψ)Rn
b (Θ)vb

o (3.2)

Premultiplying with the transpose of the rotation matricesgives

vb
o = Rn

b (Θ)T Re
n(Ψ)T ṗe (3.3)

whereRe
n(Ψ) is defined as

Re
n(Ψ) =





− cos l sin µ − sin l − cos l cosµ
− sin l sinµ cos l − sin l cosµ

cosµ 0 − sin µ





From 3.3 it can be seen that the receiver’s linear velocity isrelated to the differentiated
position measurements through the attitude (Euler angle) vectorΘ, which is the argu-
ment ofRn

b . Ideally one would have measurements or estimates of all three angles,
but in the current configuration, none are available. The first step in circumventing
this problem, is to assume that rollφ and pitchθ of the vehicle are both zero. Con-
sidering that RBA and RG give the vehicle roll and pitch, thisassumption can appear
counterproductive. However, ignoring RBA and RG when calculating vb

o, leads to the
possibility of finding attitude information from the difference in observer based veloc-
ity and GPS based velocity.
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If 3.3 is to make sense, a good measurement ofψ is needed. Since the orientation
of the receiver is static with regards to the orientation of the vehicle,ψ can be defined
as equal for both. From a mathematical point of view, it wouldseem logical to perform
an integration of the yaw-rate measurementr, but two things stand in the way of this
approach. Integrating the biased yaw-rate gyro measurement gives large offsets over
time. It is also impossible to know the initial yaw of the vehicle. Because of this,ψ
can’t be determined accurately. A new assumption is needed.When sideslip is low, the
absolute velocity can be assumed to point in nearly the same direction as longitudinal
velocity vx of the vehicle. The direction of absolute velocity is calledcourse. Let
absolute velocity and course in the two dimensional NE-frame be defined asV andψc,
where

V :=
√
ṅ2 + ė2 (3.4)

ψc := Atan2(ṅ, ė) (3.5)

From 3.5 it can be seen that the velocity componentsṅ andėmust be calculated. They
are found as the the first two elements ofṗn, given

ṗn = Re
n(Ψ)T ṗe (3.6)

SubstitutingΘ in Rn
b (Θ) with Θc, where

Θc :=





0
0
ψc



 (3.7)

gives

Rn
b (Θc) =





cosψc − sinψc 0
sinψc cosψc 0

0 0 1



 (3.8)

For ease of distinction,vGPS is defined

vGPS :=





vGPS
x

vGPS
y

vGPS
z



 = vb
o (3.9)

Substituting 3.8 and 3.9 into 3.3, gives

vGPS = Rn
b (Θc)

T Re
n(Ψ)T ṗe (3.10)
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This simple expression determines receiver velocity in theBODY frame, by transfor-
mation of measured receiver position in the ECEF frame.

Noise and filtering

GPS accuracy determination is a field of study which requiresrigorous and time con-
suming test procedures, combined with statistical methods. This report focuses on
relevance and feasibility of integrating existing GPS solutions with a nonlinear ob-
server, and consequently a detailed analysis of the accuracy of the receiver used in the
tests presented, is not given. Here it is more interesting tosee what can be gained by
using a general class receiver in a direct manner.

If pe was a perfect measurement, direct calculation of 3.10 wouldgive a perfect
estimate of the receiver’s linear velocity when moving in a horizontal plane, without
difference between yaw and course. To no great surprise, this generally does not hold.
Firstly, position measurements have time correlated errors. In practice, this means that
a north-east position plot for a static receiver, taken overtime, will give a “wandering”
graph contained within a circular region, disregarding error-spikes due to multipath or
signal loss. The structure of the time correlation cannot bedetermined without access
to internal receiver variables. On a positive note, the position error is slowly varying. If
the position error jumped between e.g. -10 m and 10 m for two consecutive samples,
with frequency 10 Hz, a differentiation of the measurement would give an instanta-
neous absolute velocity of 200 m/s, which of course would render the differentiation
useless. To illustrate how the position measurement error varies, Figure 3.1(a) shows
a plot of theEuclidian normof the normalized ECEF position vector,‖pe‖

2
, with zero

mean, for a static receiver sampling at 10 Hz. The actual value of the position measure-
ment is unimportant, but how it varies around the mean, or correct value, is not. 3.1(b)
gives an idea of what velocity errors can be expected when purely differentiating the
unfiltered position measurements. For this particular set of data, the maximum value
of velocity error is approximately 0.4 m/s, or 1.44 km/h. To put this into perspective:
The position measurement error can be significant if used to estimate low velocities,
such asvy.

When the receiver is accelerated (within the ECEF frame), error magnitude increases.
This is harder to analyze, since the receiver’s actual trajectory isn’t known. It is, how-
ever, possible to compare measured position trajectories with corresponding velocity
trajectories, and try to infer noise information from this.Figure 3.2 shows a normal-
ized trajectory ofye alongsideẏe, for a flat surface vehicle test with slalom maneuver.
Note that similar results are obtained forxe andze. The shape oḟye is in no way subtle
- direct differentiation gives huge, noise-like spikes in calculated velocity. Through
closer inspection, it is revealed that the noise is caused bysomething similar to quan-
tization error in the position measurement. When two consecutive samples have the
same value, the time derivative approaches zero. From the shape of 3.2(a), it can be
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Figure 3.1: (a) Variations in absolute ECEF position about mean value for a static receiver.
(b) Velocity error due to position error

seen that the vehiclemost likelyundergoes continuous motion, so existence two iden-
tical consecutive samples must be caused by an error in the GPS signal or receiver
algorithm.

The problem illustrated by Figure 3.2, has to be accounted for. In this report, three
approaches are considered:

Method 1: Linear filtering of the time differentiated 10Hz position measurement.

To utilize a linear filter efficiently, it is important to knowthe frequency properties of
the signal. The goal is to filter out high-frequency noise components, without affecting
signal information too much. A typical approach to decoupling noise and signal, is to
subtract a perfect measurement from the noisy one, leaving anoise sequence with base
at zero. For ease of implementation,vGPS will be used instead oḟpe, even though this
means that the errors in the measurement-dependent rotation matrices will contribute
to the end-signal error. The nonlinear observer from [3] will be considered a “perfect”
measurement. In short, this is the only way of comparison currently available. A
detailed description of digital signal processing can be found in [24].

The first step is to determine the power spectral density (PSD), denotedS(ω), of the
signal noise. This gives information about which frequencybands have to be filtered.
To find the PSD, numerical methods are applied to the noise sequence. See Appendix
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Figure 3.2: (a) ye (b) ẏe
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B.2 for details. Figure 3.3 shows noise sequence and PSD for longitudinal velocity,
given by the same test as in Figure 3.2. It can bee seen that most of the noise power
lies from about 1 Hz and up. This knowledge will be used to synthesize a discrete
low-pass filter.
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Figure 3.3: (a) Noise sequence extracted fromvGPS
x (b) PSD of the noise sequence

The filter is presented as a transfer function in the complex z-domain, and takes the
following generalized form:

H(z) =
B(z)

A(z)
=
b1 + b2z

−1 + · · · + bn+1z
−n

1 + a2z−1 + · · ·+ an+1z−1
(3.11)

n denotes the filter order, anda andb are filter coefficients. This configuration gives
a Butterworth filter. Desired low-pass characteristics are determined byn, a andb,
which are user-specified parameters. By making appropriatechoices, thecutoff fre-
quencyωc, defined here as

ωc ⇒ |H(ωc)| =
1√
2

(3.12)

can be placed in such a way that undesired high-frequency components are damped.
By recalling that the noise sequence had most of its power in the frequency range
above 1 Hz, the following statement can be made:
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ωc ≤ 1 Hz

The reasonωc isn’t more accurately specified, is that one usually has to try several
configurations before good filtering is achieved. Determining a andb is most easily
done by using the MATLAB functionbutter(), which is described in Appendix B.1.

Phase delay is the main drawback when using linear filters in real-time applica-
tions. If a signal is to be used in a feedback loop, a delay of just a few milliseconds
can render it useless. Therefore, a compromise between smoothing and delay must
be made. Through experimentation, it is discovered that even a low-order-high-cutoff
filter gives the signal a significant phase delay. Figure 3.4 shows comparisons between
the filtered GPS signals and actual vehicle velocities. In this case, noise has been ade-
quately damped, but it’s obvious that the phase delay is too great for the signal to be of
use. By reducing filter order and increasingωc, noise becomes the dominating factor in
signal degradation. It is possible to conclude that low-pass filtering the differentiated
signal is not a feasible approach to dealing with noise.
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Method 2: Resampling the position measurement at 100Hz, smoothing the new sig-
nal with a linear filter, downsampling to 10Hz, time differentiating the smooth 10Hz
signal.

The idea here is that the measurement signal can be smoothed by means of sampling
and filtering. By upsampling the GPS signal to 100Hz, no information is gained or
lost. Filtering the new signal with a cut-off frequency of about 10Hz should result in
a smoother version of the original signal. Downsampling this to 10Hz gives a signal
with fewer “flat spots” than the original signal, and consequently a better candidate for
differentiation.

This procedure uses the same filter structure as inMethod 1, so the best results
are presented directly. See Figure 3.5. Note that it’s the ECEF position signals that
are filtered. Without providing any further discussion, it is stated thatMethod 2 is
infeasible for this type of filtering problem.
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y

Method 3: Applying a heuristic nonlinear filter to the time differentiated 10Hz posi-
tion measurement.

The previous two methods lead to heavily phase-delayed velocity measurements, espe-
cially when the filters are configured to remove all noise components. For this reason,
the idea of a task specific nonlinear filter is introduced. By looking at GPS data from
several tests, it is possible to get an intuitive understanding of the structure of noise
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seen in the velocity measurements. For example, Figure 3.2(b) shows that the noise
usually comes in packets of two or three samples. This indicates that it should be pos-
sible to reduce noise significantly by evaluating a set of previous sample values and
determining whether the current sample holds a realistic value or not. A few defini-
tions:

Uk − filter input at current timek

Yk − filter output at current timek

MYn
− mean value ofn previous outputs

DO − difference between current input and mean value of previousoutputs

MY := MY3
=
Yk−1 + Yk−2 + Yk−3

3
(3.13)

DO := |Uk −MY | (3.14)

Equations 3.13-3.14 define parameters to be used in the filter. The main idea is that the
filter should let measurements pass through without modifications when they are ex-
pected to be accurate. If an unrealistically large spike i detected in the input, however,
the filter algorithm calculates an expected value of output instead. In practice, this
means that the output is held constant when noise-bursts aredetected.1 In its simplest
form, the algorithm becomes:

DO ≤ κ⇒ Yk = Uk (3.15)

DO > κ⇒ Yk = Yk−1 (3.16)

κ is the number which determines how large the deviation betweenUk andMY is al-
lowed to be. If it is chosen very large, the filter will only be active for extreme noise
conditions. An acceptable value has to be determined by logic and evaluation of em-
pirical data. The filter should only modify the signal when itis noisy, which means that
realistic vehicle accelerations must be tolerated. Longitudinal acceleration magnitude
is largest for hard braking maneuvers. Consider a situationin which the vehicle brakes
hard, and goes from 25 m/s to 0 m/s in three seconds. Assuming constant deceleration,
the following relation holds:

a =
vx2

− vx1

t
= −8.33m/s2

1A predictive filter has also been developed, but because of minor stability problems, it won’t be
presented in this report.
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When acceleration is constant and GPS measurements are perfect, the change between
each sample isa/10 (10 Hz), and the braking maneuver gives:

DI = |Uk −MY |

=

∣

∣

∣

∣

−2a

ε

∣

∣

∣

∣

= 1.67

This example gives an indication of what valueκ should be, at least for longitudinal
velocity. Since acceleration measurements are available,κ can be made dynamic,
defined as:

κx := ζx

∣

∣

∣

∣

2ax

ε

∣

∣

∣

∣

, ζx ≥ 1 (3.17)

κy := ζy

∣

∣

∣

∣

2ay

ε

∣

∣

∣

∣

, ζy ≥ 1 (3.18)

This ensures, at least theoretically, that the filter won’t modify correct measurements.
Note that practical experiments show that it is wise to choseζx andζy larger than 3.
The reason for this, is that because three samples are evaluated, κ must reflect the
sum of three consecutive acceleration measurements. Errors in the measurements are
not considered. Naturally, a filter structure such as this doesn’t remove all noise from
the signal, but practical experiments show that it outperforms the linear filters by a
large margin. Figure 3.6 and Figure 3.7 demonstrate the effectiveness of the heuristic
approach. Notice that the filtered signals have no phase delay. This is because the
output is calculated within the sample time interval definedby arrival of a new input.
Numerical efficiency is equally good, since only a few simpleexpressions have to
be solved for each sample. In the following sections,vGPS will refer to the signal
calculated by this filter, unless something else is explicitly stated.
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3.2.2 Doppler based velocity determination

GPS-based velocity determination is usually done by aid of doppler carrier-phase pro-
cessing. This approach eliminates the need for a differential implementation, by sim-
ply calculating the change of doppler phase (range) betweentwo samples, and dividing
this by sample time. It is possible to get doppler-based velocities for three dimensions,
but as this is a receiver specific procedure, only absolute velocity will be considered
here. A comparison between doppler velocity and actual absolute velocity1 is shown
in Figure 3.8. The test performed is a circle maneuver with high sideslip values, prov-
ing that the doppler method gives a very accurate representation of absolute velocity.
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Figure 3.8: Comparison between GPS doppler velocity and actual absolute velocity

1Actual absolute velocity is computed asVA =

√

v2
x + v2

y, using the optical velocity measurements
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Chapter 4

Observers

This chapter focuses on vehicle state estimation using nonlinear observers. Existing
solutions, presented in [3], [4] and [25], are described, and new methods are developed
- both GPS based and stand-alone approaches.

4.1 Non-adaptive observer

The non-adaptive observer presented in [3] takes the following form

˙̂vx = ax + rv̂y +
4

∑

i=1

Ki(t)(vx,i − v̂x) (4.1)

˙̂vy = ay − rv̂x −Kvy
(may − fy(t, v̂x, v̂y, r̂)) (4.2)

˙̂r =
1

J
fr(t, v̂x, v̂y, r̂) +Kr(r − r̂) (4.3)

As stated in [26], it is possible to write

∑

4

i=1
Ki(t)vx,i

Kvx

, Kvx
(t) :=

4
∑

i=1

Ki(t) (4.4)

under the assumption that longitudinal velocity is measured perfectly. In this report,
this will be referred to asAssumption 4.1: Error functions forfy andfr are defined

f̃y(t, ṽx, ṽy, r̃) = fy(t, vx, vy, r) − fy(t, v̂x, v̂y, r̂)

f̃r(t, ṽx, ṽy, r̃) = fr(t, vx, vy, r) − fr(t, v̂x, v̂y, r̂)

Now, the error dynamics can be written
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˙̃vx = rṽy −Kvx
(t)ṽx (4.5)

˙̃vy = −rṽx +Kvy
f̃y(t, ṽx, ṽy, r̃) (4.6)

˙̃r =
1

J
f̃r(t, ṽx, ṽy, r̃) −Krr̃ (4.7)

To prove stability, [3] uses the assumption that longitudinal velocity is measured per-
fectly, and that

∂fy

∂vy

(t, vx, vy, r) ≤ −c < 0 (4.8)

The first assumption means that the estimate ofvx may become degraded when lon-
gitudinal wheel slips for all wheels are high. The second assumption means that con-
vergence of̃vy depends on measured accelerationay. Since the non-adaptive observer
is based on flat-earth dynamics, i.e.φ andθ equal zero,̂vy will be biased when the
vehicle experiences RBA. If the friction coefficientµH is wrong, all estimates will
be degraded, and potentially useless ifµH has large enough error. Figure 4.1 shows
plots of vy for a real life driving test, given by an optical measurementunit and the
observer. Although the direct (optical) measurement is influenced by high-frequency
noise, it gives an unbiased value ofvy, which can be used to test the correctness of the
observer. It is easy to see that the two signals are differentin the time period between
10 and 25 seconds. This is because the test vehicle experiences RBA in this interval.
Here, the maximum friction coefficientµH has been set to 1, since the test was done
on a high friction surface. Figure 4.2 shows what happens when µH is set to a lower
(less correct) value. The observer with road-tire frictionadaptation presented in [4]
tries to deal with this problem by providing an estimate ofµH
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Figure 4.1: Test drive with RBA,µH = 1
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Figure 4.2: Test drive with RBA,µH = 0.8

4.2 Adaptive observer

In [4], the estimate of lateral velocity uses feedback from afriction model based on
friction adaptation. Since the state estimates have an identical structure to those pre-
sented in Section 4.1, the adaptive observer will only be described in a qualitative
manner.

The main idea of road-tire friction adaptation is to providea dynamic estimate of
the generalized resultant forcefy(t, vx, vy, r), which is used for feedback in equation
4.2. This force depends on the friction coefficientµH , represented by the parameter
estimateθ̂µ, while vx and r are assumed known, such that the expression becomes
fy(t, vy, θµ).

To prove stability, certain assumptions are made. It is stated thatfy(t, vy, θµ) can
be written as a truncated Taylor series expansion, usingv̂y and θ̂µ as arguments, and
that this expansion is bounded and piecewise continuous in t, given that the estimation
errors are small. It is also necessary that the vehicle is moving forward with high
enough velocity, without rotating too fast. For a detailed discussion of all assumptions,
see [4].

Without going into specifics about what can cause adaptationfailure, it is easy to
see, by looking at test results, that certain conditions can’t be tolerated. Figure 4.3a
shows that the estimate ofvy is sufficiently accurate when the car performs a circle
maneuver on a flat, snowy surface. In 4.3b , however, a bias corresponding to RBA
with φ = 2 deg is added to the acceleration measurement at 10 seconds. Thisis not a
completely accurate representation of RBA, but illustrates how sensitive the adaptation
scheme is to error in the acceleration measurement.
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Figure 4.3: Circle maneuver, low friction. (a) Unbiaseday. (b) Biaseday

4.3 Augmented observer for road grade and bank
angle estimation

To sum up the previous two sections: The non-adaptive observer is sensitive to errors
in the user specifiedµH , especially ifµH is chosen too low. IfµH is higher than the
actual surface conditions indicate, the estimate ofvy will be conservative, meaning that
v̂y is of lower magnitude thanvy when the vehicle is driven on a flat road.

The adaptive observer is very sensitive to errors inay, resulting in unpredictable
behaviour of̂vy andθ̂µ when the vehicle experiences RBA. This is especially problem-
atic in that the estimates depend on the sign of the acceleration bias, i.e. a right turn
on a right banked road gives a too large value ofv̂y, while a left turn on a left banked
road gives a too small value of̂vy, even though the physical properties of these two
maneuvers are identical. It is obvious that these effects have to be accounted for.

[25] lays the framework for an estimation structure which incorporates RBA in the
observer equations, which are formulated as

˙̂vy = ay − rv̂x − ŵφ −Kvy
(may − fy(t, vx, v̂y, r)) (4.9)

ż = −Kvy
(may − fy(t, vx, v̂y, r)) (4.10)

ŵφ = Kw(v̂y − z − vm
y ) (4.11)

Here,vx andr are assumed known. Note that a new variable,vm
y , has been included.

In [25], this “measured” variable is actually a calculationof vy, based on the friction
model. The relations used are
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ay =
1

m
fy(t, vx, vy, r)

vm
y = f−1

y (t, ay, vx, r)

Stability of this observer is proved using the assumption that vm
y is a perfect measure-

ment, so that it cancels outvy terms in the error dynamics. Obviously, this can’t be
expected to hold in general, especially sincevm

y depends on the inverted friction model,
which becomes nearly singular for high slips. This is where GPS enters the eqations.
By using velocity measurements from a GPS receiver,vm

y becomes completely inde-
pendent of the observer equations. The following definitionwill be used

vm :=





vm
x

vm
y

vm
z



 (4.12)

vm
x := vGPS

x (4.13)

vm
y := vGPS

y (4.14)

vm
z := vGPS

z (4.15)

Now, a new approach to estimatingvx andvy can be utilized. Let’s first write out the
new observer equations.

˙̂vx = ax + rv̂y − ŵθ +Kvx
(t)(vx − v̂x) (4.16)

żx = Kvx
(t)(vx − v̂x) (4.17)

ŵθ = Kwθ
(v̂x − zx − vm

x ) (4.18)

˙̂vy = ay − rv̂x − ŵφ −Kvy
(may − fy(t, v̂x, v̂y, r)) (4.19)

ży = −Kvy
(may − fy(t, v̂x, v̂y, r)) (4.20)

ŵφ = Kwφ
(v̂y − zy − vm

y ) (4.21)

(4.22)

Note that ˙̂vx and ˙̂vy have been updated with information about RG and RBA respec-
tively. Estimation errors are defined as
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ṽx := vx − v̂x (4.23)

ṽy := vy − v̂y (4.24)

w̃θ := wθ − ŵθ = wθ +Kwθ
(zx + ṽx) (4.25)

w̃φ := wφ − ŵφ = wφ +Kwφ
(zy + ṽy) (4.26)

where the following assumptions have been made:

Assumption 4.2: vm
x andvm

y are perfect measurements.

vx − vm
x = 0

vy − vm
y = 0

Assumption 4.3: RG and RBA are constant.

θ̇ = 0

φ̇ = 0

The error dynamics are given by time differentiation of equations 4.23-4.26

˙̃vx = −w̃θ + rṽy −Kvx
(t)ṽx (4.27)

˙̃vy = −w̃φ − rṽx +Kvy
f̃y(t, ṽx, ṽy, r) (4.28)

˙̃wθ = Kwθ
(rṽy − w̃θ) (4.29)

˙̃wφ = −Kwφ
(rṽx + w̃φ) (4.30)

4.3.1 Stability analysis

Goals of the observer can be described in the following way:

Goal 1: Observer states,̂x(t) = [v̂x v̂y ŵθ ŵφ]
T , must all converge to the actual states

x(t).

Goal 2: The origin of the observer error dynamics must be locally asymptotically
stable.
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To determine if these goals are achieved, traditional Lyapunov-theory will be used.
First a Lyapunov function candidate (LFC) must be developed. This function has to
meet certain demands to be classified as an actual Lyapunov function (LF). If analysis
shows that these demands are met, the LFC is proven to be an actual LF, meaning
that the origin of the observer error dynamics is asymptotically stable. Consider the
following LFC:

V (x̃) =
1

2
(ṽ2

x + ṽ2

y + w̃2

θ + w̃2

φ) (4.31)

If the conditions ofTheorem 4.10in [27] hold for V (x̃), it is an LF, and the origin
of the observer error dynamics is exponentially stable. Note that ∂V

∂t
= 0, sinceV

does not taket as an argument. Choosingk1 ≤ 1

2
, k2 ≥ 1

2
anda = 2, the following

inequalities hold

k1 ‖x̃‖a ≤ V (x̃) ≤ k2 ‖x̃‖a (4.32)

where‖x̃‖ is the Euclidian norm of̃x. This proves that the first condition of exponential
stability holds. To evaluate the second condition,V̇ is calculated:

V̇ = ṽx(−w̃θ + rṽy −Kvx
(t)ṽx)

+ ṽy(−w̃φ − rṽx +Kvy
f̃y(t, ṽx, ṽy, r))

+ w̃θ(Kwθ
(rṽy − w̃θ))

+ w̃φ(−Kwφ
(rṽx + w̃φ))

= −Kvx
(t)ṽ2

x −Kwθ
w̃2

θ −Kwφ
w̃2

φ − ṽxw̃θ − ṽyw̃φ

+Kwθ
rṽyw̃θ −Kwφ

rṽxw̃φ +Kvy
f̃y(t, ṽx, ṽy, r)ṽy

The last term depends oñfy, and should be rewritten. According toLemma 1in [3], it
is possible to state the following assumption:

Assumption 4.4: The friction model is continuously differentiable with regards toṽy

andṽx, and bounded by positive constantsc1 andc2, such that:

ṽyf̃y(t, ṽx, ṽy, r) ≤ −c1ṽ2

y + c3|ṽx||ṽy|

Substituting this intoV̇ , gives
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V̇ ≤−Kvx
(t)ṽ2

x − ṽxw̃θ −Kwθ
w̃2

θ − c1Kvy
ṽ2

y + c3Kvy
|ṽx||ṽy|

− ṽyw̃φ −Kwφ
w̃2

φ +Kwθ
rṽyw̃θ −Kwφ

rṽxw̃φ

This inequality can be upper bounded by expressing the righthand side in terms of|x̃|,
assuming|r| < ru,Kx = min(Kvx

(t)),Ky = Kvy
, whereru denotes a physical upper

bound on yaw-rate, in the following way:

V̇ ≤−Kxṽ
2

x + |ṽx||w̃θ| −Kwθ
w̃2

θ − c1Ky ṽ
2

y + c3Ky|ṽx||ṽy|
+ |ṽy||w̃φ| −Kwφ

w̃2

φ +Kwθ
ru|ṽy||w̃θ| +Kwφ

ru|ṽx||w̃φ|
= − |x̃|T A|x̃|

If the matrixA is positive definite, andk3 is a positive constant such that

k3 ≤ λmin
A

whereλmin
A denotes the smallest eigenvalue ofA, V̇ satisfies the second condition of

exponential stability, which in this case becomes:

V̇ (x̃) ≤ −|x̃|T A|x̃| ≤ −k3 ‖x̃‖a (4.33)

The matrixA is defined as:

A :=





















Kx −1

2
c3Ky −1

2
−1

2
Kwφ

ru

−1

2
c3Ky c1Ky −1

2
Kwθ

ru −1

2

−1

2
−1

2
Kwθ

ru Kwθ
0

−1

2
Kwφ

ru −1

2
0 Kwφ





















(4.34)

The proof is concluded ifA can be shown to be positive definite.Theorem 3.7in [28]
states that a symmetricn × n matrix A is positive definite if all the leading principal
minors are positive. Calculating the principal minors, denoteddi, i = 1, ..., 4, gives:
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d1 =Kx (4.35)

d2 =Kxc1Ky −
1

4
c3K

2

y (4.36)

d3 =Kxc1KyKwθ
− 1

4
KxK

2

wθ
r2

u −
1

4
c3KyKwθ

ru −
1

4
c23K

2

yKwθ
− 1

4
c1Ky (4.37)

d4 =Kxc1KyKwθ
Kwφ

− 1

4
KxK

2

wθ
r2

uKwφ
− 1

4
KxKwθ

− 1

4
c23K

2

yKwθ
Kwφ

− 1

2
c3KyKwθ

ruKwφ
+

1

16
− 1

4
c1KyKwφ

(4.38)

− 1

8
Kwθ

ruKwφ
− 1

4
K2

wφ
r2

uc1KyKwθ
+

1

16
K2

wφ
r4

uK
2

wθ

The goal is to find the set of gains which yieldsdi > 0, i = 1, ..., 4. At this juncture,
it is constructive to realize the potential of finding one configuration which makesA
positive definite. By doing this, the existence ofat least oneset of stabilizing gains is
proven. While not a mathematically satisfying solution, itis of practical value, con-
sidering that gain-tuning for physical systems is largely an empirical science. Another
motivating factor, is that the stability analysis is largely based on assumptions about
properties of the physical system; when these assumptions no longer hold, stability
proofs fail, which in turn means that the correctness of a proof is non-deterministic.
With this in mind, an approach to finding one set of stabilizing gains is presented.

By statingKy > 0, it can immediately be seen fromd1 andd2 that

Kx >
1

4c1
Kyc

2

3 (4.39)

These are the criteria used for gain selection in [3]. Intuitively, the observer presented
in this section should have roughly the same performance as the non-adaptive observer
when the vehicle does not experience RG and RBA. This indicates that the gainsKwθ

andKvφ
can be chosen for a configuration in which the non-adaptive observer is not

degraded. If it is degraded,Kwθ
andKvφ

can’t be used to improve stability either
way. The constantsc1, c3 andru govern stability properties. By reviewing test results
in which the non-adaptive observer fails, practical valuesof c1, c3 andru can be es-
timated. Figure 4.4 shows results of a flat surface test with high-dynamics and low
friction, using the non-adaptive observer. Observer failure is easily identified, and by
inspecting internal states, it can be seen that the follwingbounds give an approximation
to conditions which must be tolerated:
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c1 > 1

c3 < 1

ru < 1 rad/s
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Figure 4.4: Circle maneuver on ice

After some experimentation, it is discovered that the gainscan be chosen as:

Ky = 1

Kx = 3

Kwθ
= 1

Kwφ
= 1

To verify correctness, the gains can be substituted into equations 4.35-4.38, along with
the bounds onc1, c3 andru. Sincedi > 0, i = 1, ..., 4, the origin of the observer error
dynamics is proven to be locally exponentially stable for atleast one set of feedback
gains. This analysis does not allow stating thatGoal 1 andGoal 2 have been achieved,
but it has been shown that the observer can be made stable as long as certain physical
properties hold. While the theoretical implications are small, an implementation of the
observer for test purposes is justified.
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4.4 Roll observer

A GPS based approach to RBA compensation is realistic, but still a bit luxurious.
With this in mind, an observer scheme based on vehicle roll dynamics is developed.
The idea is that a roll rate gyro can give some information about the road structure.
In any case, a good estimate of vehicle roll can be used to correct gravity based errors
in the lateral acceleration measurement. To implement a vehicle roll observer, it is
convenient to express the dynamics on standard state-spaceform, using a temporary
variable change.

xφ :=
[

vy x1 x2

]T
=

[

vy φv φ̇v

]T
(4.40)

fy = fy(t, vx, vy, r) (4.41)

f̂y = f̂y(t, vx, v̂y, r) (4.42)

f̃y = f̃y(t, vx, ṽy, r) (4.43)

Now, equation 2.25 can be written as

ẋ1 = x2 (4.44)

ẋ2 =
1

Jx

[f yh + (mgh− Cφ + r2(Jy − Jz))x1 −Kφx2] (4.45)

This model is based on familiar mass-spring-damper dynamics. Development of an
observer is simplified by making two realistic assumptions.

Assumption 4.5: vx and r are known, and some form of roll rate measurement is
available

Assumption 4.6: Roll angles are small enough forsinφ ≈ φ to hold

The following observer is proposed

˙̂vy = ay − rvx − gx̂1 −Kvy
(may − f̂y) (4.46)

˙̂x1 = x̂2 (4.47)

˙̂x2 =
1

Jx

[f̂ yh+ (mgh− Cφ + r2(Jy − Jz))x̂1 −Kφx̂2] +K2[x2 − x̂2] (4.48)

The error dynamics are
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˙̃vy = −gx̃1 +Kvy
f̃y (4.49)

˙̃x1 = x̃2 (4.50)

˙̃x2 =
1

Jx

[f̃ yh + (mgh− Cφ + r2(Jy − Jz))x̃1 − (Kφ +K2Jx)x̃2] (4.51)

To get an idea about stability properties of the observer, anLFC will be evaluated.

V =
1

2
(vy

2 + x̃1
2 + x̃2

2 + ax̃1x̃2) (4.52)

wherea is a positive constant such that

x̃1
2 + x̃2

2 + ax̃1x̃2 > 0, ∀x̃1, x̃2 6= 0

This is true for

0 < a < 2

The expression of the time derivative ofV determines stability.

V̇ = − gṽyx̃1 +Kvy
ṽyf̃y +

h

Jx

x̃2f̃y +
ah

Jx

x̃1f̃y +
a

Jx

(mgh− Cφ + r2(Jy − Jz))x̃1
2

+
1

Jx

(mgh− Cφ + r2(Jy − Jz) + Jx − aKφ − aJxK2)x̃1x̃2 − (
Kφ

Jx

+K2 − a)x̃2
2

Assumption 4.4 must be used to rewrite the cross termsṽyf̃y, x̃1f̃y andx̃2f̃y. Note that
ṽx is zero for this observer, and that|f̃y| ≤ c1|ṽy| is implied by the assumption. For
simplicity, the following variable change is used

α1 = −(mgh− Cφ + r2(Jy − Jz))

which results in

V̇ ≤− gṽyx̃1 − c1Kvy
ṽy

2 +
ahc1
Jx

x̃1|ṽy| +
hc1
Jx

x̃2|ṽy| −
aα1

Jx

x̃1
2

− 1

Jx

(α1 + a(Kφ + JxK2) − Jx)x̃1x̃2 − (
Kφ

Jx

+K2 − a)x̃2
2
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It is necessary to make another technical assumption.

Assumption 4.7: α1 > 0 and− 1

Jx
(α1 + a(Kφ + JxK2) − Jx) ≤ −s1 < 0

This assumption will be correct for all practical values ofCφ. Writing V̇ in matrix form
is convenient for analysis, but the current expression requires that absolute values of
the error states are used. This creates an upper bound forV̇ .

V̇ ≤− c1Kvy
ṽy

2 − aα1

Jx

x̃1
2 − (

Kφ

Jx

+K2 − a)x̃2
2

+
1

Jx

(ahc1 + gJx)|ṽy||x̃1| +
hc1
Jx

|ṽy||x̃2| + s1|x̃1||x̃2|
(4.53)

In matrix form:

V̇ = −|xφ|TP|xφ|

whereP is a symmetric3 × 3 matrix. If P is positive definite, the observer is glob-
ally exponentially stable. Criteria for positive definiteness were stated in the previous
section.

P =













c1Kvy
− 1

2Jx
(ahc1 + gJx) − hc1

2Jx

− 1

2Jx
(ahc1 + gJx)

aα1

Jx
−1

2
s1

− hc1
2Jx

−1

2
s1 (

Kφ

Jx
+K2 − a)













The leading principal minors ofP are

d1 =c1Kvy
(4.54)

d2 =
1

Jx

(aα1c1Kvy
− 1

4Jx

(ahc1 + gJx)
2) (4.55)

d3 =c1Kvy

[

aα1

Jx

(

Kφ

Jx

+K2 − a

)

− 1

4
s1

2

]

− 1

2Jx

(ahc1 + gJx)

[

1

2Jx

(ahc1 + gJx)

(

Kφ

Jx

+K2 − a

)

+
hc1s1

4Jx

]

− hc1
2Jx

[

s1

4Jx

(ahc1 + gJx) +
aα1hc1
2Jx

2

]

(4.56)
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Sinced1, d2 andd3 have to be positive for P to be positive definite,Kvy
andK2 must

be specified to meet this demand. The first two minors give

Kvy
>

(ahc1 + gJx)
2

4aα1c1Jx

> 0 (4.57)

The expression ford3 is quite complicated, so determining absolute bounds on the
gains is impracticalfor this LFC, especially considering how conservative inequality
4.53 is. However, it is apparent that the first term ofd3 can be made positive by
selectingK2 correctly, which in turn means that selectingKvy

large enough will make
d3 positive. The follwing inequality states the necessary bound onK2 with regards to
the analysis performed in this section

K2 >
Jxs1

2

aα1

− Kφ

Jx

+ a (4.58)

Without further analysis, it is stated that the roll observer can be made asymptotically
stable by gain selection. Usefulness can be determined through simulations.

4.4.1 Bank angle estimation

At this point, it is appropriate to make an attempt at tackling the real issue at hand
- acceleration measurement errors due to road bank angle. The term bank angle is
somewhat misleading, as it is the vehicle’s orientation on the surface of the road which
is important, not the road angle itself. For the problem to bereasonably managable, an
assumption has to be made.

Assumption 4.8: Whenever the road bank angle changes, the vehicle is parallel to the
road (no sideslip), meaning that the change is visible in a roll rate gyro.

The motivation for this assumption stems from vehicle kinematics. To illustrate: If the
vehicle changes orientation, for example due to large sideslip on a low friction surface,
when the bank angle is constant with magnitude larger than zero, the gravitational bias
experienced by accelerometeray may become significantly smaller than the road bank
angle indicates. However, the bank angle estimate won’t be affected, as this maneuver
only gives a visible change in dynamic rollφv. When the vehicle recovers from this
undesired event and returns to driving straight ahead, the bank angle estimate will be
correct.

The mathematics of the roll observer in the previous sectionis only concerned with
rolling motion of the vehicle chassis relative to the wheels, not bank angle. A roll gyro
measurement will under Assumption 4.8 include change in bank angle. This leads to
the following relation:
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φ̇r ≈ pd − φ̇v (4.59)

Usingpd = x2, with x2 as defined in the previous section, an observer with bank angle
compensation is specified.

˙̂vy = ay − rvx − g(x̂1 + φ̂r) −Kvy
(may − f̂y) (4.60)

˙̂x1 = x̂2 (4.61)

˙̂x2 =
1

Jx

[f̂ yh + (mgh− Cφ + r2(Jy − Jz))x̂1 −Kφx̂2] +K2[x2 − x̂2] (4.62)

˙̂
φr = K3[x2 − x̂2] (4.63)

Showing stability of this observer has proved difficult, so instead of including an in-
complete mathematical analysis, the observer will be evaluated by aid of simulations.
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Chapter 5

Experimental results and
discussion

When combining the various results presented in this report, there are four main criteria
which determine practical usefulness.

Criterion 1: GPS-based velocity measurements must give areasonablyaccurate ap-
proximation to actual vehicle velocity.

Criterion 2: The augmented observer must work perfectly whenµH is specified cor-
rectly andvm = vCORR.

Criterion 3: The augmented observer must haveacceptableperformance whenµH is
specified correctly andvm = vGPS.

Criterion 4: Implementation of the bank angle observer must improve estimates ofvy

for all conditions. Tests are performed using the CASCaDE simulator.

The following sections demonstrate how these criteria compare to test results, both
positively and negatively. Naturally, the wide array of configurable parameters affect-
ing performance of each test won’t be printed out, as this would distract from under-
standing of general results. However, it is necessary to state properties of three key
parameters:

Kwθ
− Set to one

Kwφ
− Set to one

µH − Chosen to match known surface conditions

If different configurations are used, they wille be specifiedexplicitly.
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5.1 Criterion 1

The first criterion can be expected to hold when vehicle sideslip is low. This is because
ψc ≈ ψ. Test conditions should therefore beµH ≈ 1, θ = 0 andφ = 0. Figure 5.1
shows results of a test where these conditions hold.
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Figure 5.1: (a) Actualvx and filteredvGPS
x (b) Actualvy and filteredvGPS

y

The vehicle performs a slalom maneuver. While the shape ofvGPS
y gives a good ap-

proximation to actualvy, it is unfortunately corrupted by time delay (0.5 s). Recalling
from Section 3.2 that the heuristic filter does not give any extra phase to the signal,
the conclusion is that the time delay stems from intrinsic properties of the GPS sys-
tem. Using the current configuration, this delay can’t be accounted for by software
manipulation, renderingvGPS

y a poor candidate for feedback in the observer.
Although the negative implications of this result are overshadowing, it is wise to

analyze howvGPS
y performs with respect to other properties, since it is possible that

the time delay can be decreased significantly, e.g. by using ahigher update frequency
in the receiver.

The amplitude ofvGPS
y is slightly lower than that of actualvy. Here, the main

culprit is expected to be error inψc, considering that the vehicle most likely experi-
ences some degree of sideslip for lateral velocities of thismagnitude. The definition
of sideslip, is as follows:

β := ψ − ψc (5.1)
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Since the current observer implementation produces an estimate of sideslip, it is possi-
ble to useψ instead ofψc in Rn

b , by settingψ = ψc +β. A practical implementation of
this, requires thatβ is delayed correspondingly to the time-delay of the GPS measure-
ments. Figures 5.2 and 5.3 show what happens when this approach is utilized. Note
thatvy has been delayed to make signal comparison easier.
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Figure 5.2: Actual vy and filteredvGPS
y , using feedback from sideslip
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Figure 5.3: Actual vy and filteredvGPS
y , using feedback from sideslip

In short, Criterion 1 will hold if GPS time delays can be reduced to an acceptable level.
For the data sets used in this report, however, Criterion 1 fails.
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5.2 Criterion 2

The second criterion states that when a correct measurementof vy is used, the aug-
mented observer should be able to handle variations in RBA and RG, given a correct
specification ofµH .

Figure 4.1 demonstrated how the non-adaptive observer was affected by RBA. If
the augmented observer is to be of use, it has to remove the RBA-error component from
v̂y. Figure 5.4 shows the same maneuver, using the augmented observer with feedback
from vCORR

y . Observer error is well within accepted margins, showing that for this
particular test, the augmented observer has desired performance. Unfortunately, actual
RBA values are unknown, so the correctness ofŵφ can’t be confirmed without new
test data sets.
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Figure 5.4: Actual vy andv̂y

To verify, another data set is evaluated. In Figure 5.5, it can be seen that the non-
adaptive observer gives a very large error inv̂y towards the end. This error is caused
by RBA. By comparison, the augmented observer works close toperfectly, as seen in
Figure 5.6.
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Figure 5.5: Actual vy andv̂y, non-adaptive observer
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Figure 5.6: Actual vy andv̂y, augmented observer

Because none of the data sets currently available contain tests performed with RG,
correctness of̂vx andŵθ can’t be shown directly. However, by adding a slowly varying
sinus signal toax, the estimation error caused by RG can be simulated. To boldly
go where few vehicles will, the sinus signal is given an amplitude corresponding to
θ = 20 degrees, which is an extreme and unlikely road condition. Figure 5.7 shows
what happens to the non-adaptive estimate of longitudinal velocity in this case.
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Figure 5.7: Actual vx andv̂x, non-adaptive observer
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Performing the same test with the augmented observer, givesan expected result.̂vx

converges to the correct value, andŵθ gives a very good indication of what the actual
RG is, although variations in lateral velocity and sideslipinduce some oscillations. See
Figure 5.8.
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Figure 5.8: (a) Actualvx andv̂x, augmented observer (b) Acceleration bias and estimated RG

In this section, it has been shown that Criterion 2 holds. This is only important in that
it demonstrates correctness of the augmented observer whenvm is correct, which is a
fundamental requirement of the estimation scheme.

5.3 Criterion 3

The conditional failure of Criterion 1 indicates that Criterion 3 should suffer the same
fate. Luckily, things are not quite that black and white. Failure of Criterion 1 was
based on the GPS based velocity signal’s lack of ability to track high dynamic ma-
neuvers correctly, due to an inherent time delay in the system. While the augmented
observer is expected to have reduced performance when the vehicle experiences fast
changes in acceleration, it should still be able to compensate for RG and RBA when
these disturbances vary slowly. Still, a few proverbial bumps in the road have to be
considered:
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• The rotation matrixRn
b currently in use, does not include information aboutφ

andθ. In practice, this means thatvGPS
x andvGPS

y actually give receiver velocity
components in a horizontal plane. If e.g. the vehicle is driven up a steep hill,
vGPS

x will become significantly lower than actualvx. The most immediate so-
lution to this problem, is simply to use feedback of estimated φ andθ, from the
augmented observer, inRn

b .

• While vGPS
x will be a good approximation tovx most of the time,vGPS

y can
corrupt v̂y significantly due to time delay. Disregarding the limiting choice of
gains used in the stability proof in Section 4.3,Kwφ

should be set fairly low,
that isKwφ

< 1. Knowing that this gain determines to what degree the GPS
measurement is allowed to influence the state estimation, justifies experiments
with lower values. All tests in this section are based onKwφ

= 1

2
.

• For certain tests, the GPS measurement is extremely corrupted. If an actual
implementation of the results from this report is to be considered, some form of
software procedure which discovers GPS failure has to be developed.

To begin with something familiar, the test shown in Figure 4.1 is presented once again,
this time using the augmented observer with feedback from GPS based velocities. De-
sired behaviour is correction of error due to RBA, and acceptable magnitude of degra-
dation due to GPS time delay. See Figure 5.9 and Figure 5.9. Asexpected, the estimate
of vx can be considered to be perfect. Even thoughv̂y suffers some degradation during
the slalom maneuver, it has been corrected for the RBA disturbance, which is the main
purpose of the augmented observer.vGPS

y can be seen to contain a good deal of noise,
but very little of this passes through tôvy, implying observer robustness with regards
to high frequency noise.
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Figure 5.9: (a)vGPS
x (b) Actualvx andv̂x, augmented observer
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Figure 5.10: (a) vGPS
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It has been mentioned several times that thevGPS
y can get extremely noisy. Because of

this, it is necessary to see how the augmented observer behaves when this happens. The
test from Figure 5.5 and Figure 5.6 is evaluated again, this time using the augmented
observer with feedback from a noise-riddenvGPS

y . See Figure 5.11 and Figure 5.12.
Once again it can be seen that the high-frequency componentsof vGPS

y have very little
effect onv̂y. If a larger value ofKwφ

was chosen, a larger degradation ofv̂y would be
seen.
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Figure 5.11: (a)vGPS
x (b) Actualvx andv̂x, augmented observer
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Figure 5.12: (a) vGPS
y (b) Actualvy andv̂y, augmented observer

To see exactly how accurate the RG and RBA compensation is, itis constructive to
evaluate performance when bothax anday are biased by simulated gravity compo-
nents, much like in Figure 5.8. To minimize disturbances caused by driving pattern, a
data set for a stand-still test will be considered. Adding a sinusoidal bias to the accel-
eration measurements, corresponds to placing the vehicle on a tiltable platform. Since
velocity and slip are both zero, the results will not be affected by errors in the friction
model. Figure 5.13 shows what happens to the non-adaptive observer whenax anday

are affected by the same bias; in this case a sinus with amplitude corresponding to RG
and RBA of 10 degrees. Even when the vehicle isn’t moving, theacceleration bias
causes a relatively large error in the velocity estimates. Figure 5.14 demonstrates how
the augmented observer deals with the problem.
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Figure 5.14: (a) Actualvx andv̂x, augmented (b) Actualvy andv̂y, augmented
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Clearly, the augmented observer has better performance when the assumption of flat
surface driving no longer holds. While the estimates of RG and RBA are slightly
skewed, they account for velocity errors quite nicely. The error observed in̂vx is less
than 0.1 m/s, and in effect negligible.

The test results presented in this section show thatCriterion 3 holds, even though
many more tests should be performed for a definite conclusionto be made. Ideally, all
the data sets should contain information about road structure, making verification of
observer correctness (or failure) easier.

5.4 Criterion 4

Criterion 4 is tested using the physically accurate CASCaDEsimulator, in which all
relevant parameters can be adjusted manually. Roll and bankangle compensation is
tested for basic maneuvers on varying surface conditions. There is one large disad-
vantage with these tests - a simulator can’t fully representreal life physics or sensor
configurations. It does, however, help in determining feasibility of suggested solutions.

The roll rate measurement is simulated by the Euler rateφ̇ which is available in
CASCaDE. This will be a good approximation as long as Euler angle θ = 0. When
the vehicle experiences sideslip on a banked road, this won’t be the case, meaning that
certain results need a more thorough examination than others.
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5.4.1 Roll compensation

In this section, performance of the roll compensated observer from section 4.4 is tested
for steady turn and slalom maneuvers. The goal is to determine if roll compensation
can lead to improvements in̂vy. All tests are performed without friction adaptation,
using longitudinal speedvx = 80 km/h and feedback gains set to 1. Variables used:

φ− Actual Euler angle, as given by CASCaDE

φOBS− Estimated roll angle without roll compensation

φOBSφ− Estimated roll angle with roll compensation

vy− Actual lateral speed, as given by CASCaDE

vy
OBS− Estimated lateral speed without roll compensation

vy
OBSφ− Estimated lateral speed with roll compensation

Figures 5.15, 5.16, 5.17 indicate that roll compensation probably isn’t necessary when
there is no bank angle.̂vy is degraded for high friction conditions, and slightly im-
proved for low friction conditions, which means that the essence lies in howKvy

is
tuned, not howay is modified. This is an expected result, as dynamic roll is propor-
tional to lateral acceleration, and can be corrected for by simply scaling the accelera-
tion measurement.
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Figure 5.15: Slalom maneuver,µH = 1
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Figure 5.16: Steady turn,µH = 1
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Figure 5.17: Slalom maneuver,µH = 0.5
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5.4.2 Road bank angle compensation

As bank angle compensation is the main focus of this report, performance of the ob-
server in section 4.4.1 is of great interest. If an arbitrarypercentage of the accelerom-
eter bias due to RBA can be removed, a corresponding improvement in v̂y can be
expected. Because stability of the RBA observer hasn’t beendetermined mathemat-
ically, these results should only be viewed as indicators ofpractical usefulness, not
validations of presented theory. The RBA estimate itself isjust the integral of the dif-
ference between measured and estimated roll rate, and will likely diverge over time if
used directly. This problem is left untreated for the time being.

Figures 5.18 and 5.19 demonstrate how the RBA estimate can beused to correct
large gravitational biases in the accelerometer. Of coursean RBA value of 0.12 rad,
which is about 7 degrees, represents a completely unrealistic driving condition, but it
shows that the observer is able to handle regular roads.
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Figure 5.18: Straight drive with change in RBA after two seconds, RBA = 0.12 rad,µH = 1
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Figure 5.19: Slalom maneuver with change in RBA after two seconds, RBA = 0.12 rad,
µH = 1
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In Figure 5.20 it can be seen thatφOBSφ deviates fromφ. The exact reasons for this
can’t be identified, but a contributing factor is vehicle sideslip. Recalling thatφ is
the Euler angle, one can deduce that it will be smaller than the bank angle when the
vehicle experiences sideslip. The observer, however, has no mechanism for sideslip
compensation, an improvement that will be necessary in a practical implementation.
Either way, estimated lateral velocity is better than without RBA compensation.
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Figure 5.20: Right-left turning maneuver with change in RBA after two seconds, RBA = 0.12
rad,µH = 1

Figures 5.21 and 5.22 demonstrate what happens when the friction parameterµH is
set to 0.5 instead of 1. For the slalom maneuver, estimated RBA is correct and̂vy

improved, althougĥvy is too conservative for the slippery surface conditions. (Ob-
server tuning is not considered an important aspect of this report - the main focus lies
in getting estimates that mimimc reality in terms of shape.)For the slower right-left
maneuver, a deviation affects the RBA estimate. Like before, it is hard to determine
exactly what happens, but it most likely has to do with sideslip and vehicle orientation
on the surface. These conditions break Assumption 4.8 and will have to be considered
in future observer improvements. By letting the vehicle perform a longer left turn, the
result is as shown in Figure 5.23.

It is clear that the RBA observer has merit. A simulator can’trecreate reality, so
there’s obviously need for testing and tuning on a vehicle, but as an initial indicator,
the presented results are positive.
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Figure 5.21: Slalom maneuver with change in RBA after two seconds, RBA = 0.087 rad,
µH = 0.5
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Figure 5.22: Left-right turning maneuver with change in RBA after two seconds, RBA = 0.087
rad,µH = 0.5
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Figure 5.23: Left-right turning maneuver with change in RBA after two seconds, RBA = 0.087
rad,µH = 0.5
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Chapter 6

Conclusion

In this report, an approach to estimating road grade and roadbank angle, using GPS as
an aiding system, has been presented, together with an approach to bank angle estima-
tion using a roll rate gyro as measurement. The interest in this stems from the knowl-
edge that existing nonlinear observers for vehicle state estimation have weaknesses
with regards to these disturbances. Firstly, it has been shown that calculating vehicle
velocity from GPS position measurements is a straightforward procedure, although far
from ideal with regards to noise and accuracy. Furthermore,the GPS measurements
suffer from a time delay which is too large for them to be used in a stand-alone imple-
mentation. However, simple filtering techniques have been demonstrated to give good
enough signals for integration with a nonlinear observer. Secondly, augmentations to a
previously developed nonlinear observer has been made, so that it is able to make use
of the new information that GPS provides. Also, the development of a mathematical
model for vehicle roll has made bank angle detection possible through the aid of a gyro
measurement. Stability of the augmented observer has not been proven for a general
set of constrained feedback-gains, but it has been shown that stability is ensured when
certain assumptions about the physical system holds. The same is true for the roll
observer without bank angle compensation. However, no stability proof is presented
for the bank angle parameter estimate. Finally, it has been demonstrated that the aug-
mented observer gives good estimates of road grade and road bank angle, and accounts
for the errors they cause when not compensated for, through evaluation of data from
actual vehicle tests. While the augmented observer sufferssome degradation of per-
formance when no disturbances are present, the overall increase in robustness is good
enough to consider it an improvement over existing solutions. The gyro based bank
angle observer shows potential, and should be considered for implementation on a test
vehicle.

The main focus of this report has been to determine if it is feasible to use GPS
as an aiding system for vehicle state estimation with nonlinear observers, and if the
problems related to bank angle can be partially removed using a simpler measurement
unit, such as a roll rate gyro. For the GPS problem, the conclusion is obvious: By in-

66



CHAPTER 6. CONCLUSION

corporating relatively poor GPS velocity measurements in the feedback loop, a notable
increase in estimation performance during periods of road disturbance is gained. This
clearly demonstrates feasibility of the proposed solution. Bank angle estimation by
aid of a roll gyro also looks promising, but because stability proofs and actual vehicle
tests are lacking, no final conclusions can be made at this point. Note that although
the presented results are positive, they should not be regarded as optimal. For the aug-
mented observer to be implemented in an actual vehicle, it would need modifications
and improvements which haven’t been considered in this report. Notwithstanding, the
ability to account for disturbances such as road grade and road bank angle, makes it
successful in laying a foundation for future solutions. Thesame can be said for the
less rigorously tested bank angle observer.
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Appendix A

Kinematics

A.1 Rotation matrix

The rotation matrixR between two frames a and b is denoted asRa
b , and it is an element

in SO(3), which is the special orthogonal group of order 3:

SO(3) = {R|R ∈ R
3×3,R is orthogonal and detR = 1} (A.1)

The groupSO(3) is a subset of all orthogonal matrices of order 3,SO(3) ⊂ O(3),
whereO(3) is defined as:

O(3) = {R|R ∈ R
3×3,RRT = RT R = I} (A.2)
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Appendix B

MATLAB functions

B.1 Butter

BUTTER - Butterworth digital and analog filter design. [B,A]= BUTTER(N,Wn)
designs an Nth order lowpass digital Butterworth filter and returns the filter coefficients
in length N+1 vectors B (numerator) and A (denominator). Thecoefficients are listed
in descending powers of z. The cutoff frequency Wn must be 0.0< Wn < 1.0, with 1.0
corresponding to half the sample rate.

B.2 Pwelch

PWELCH - Power Spectral Density estimate via Welch’s method. Pxx = PWELCH(X)
returns the Power Spectral Density (PSD) estimate, Pxx, of adiscrete-time signal vec-
tor X using Welch’s averaged, modified periodogram method. By default, X is divided
into eight sections with 50window and eight modified periodograms are computed and
averaged.
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