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Problem Description

The trend is that modern cars are being equipped with increasingly advanced active safety
systems. These typically need accurate information about vehicle velocity, which is hard and
expensive to measure directly. On SINTEF/NTNU a computationally efficient nonlinear observer
for vehicle velocity estimation has been developed, but its performance on non-flat roads leaves
something to be desired. Thus, the task of the student is to extend the observer to cope with non-
flat roads, by also using other measurements. In view of the increasing availability of navigation
systems in cars most emphasis is put on GPS measurements, but also other measurements such
as inclination sensors, pressure sensors in active suspension systems (ABC]J, etc. are interesting.

1. Perform brief litterature review of bank- and/or inclination angle estimation in
automotive settings. Important issues are purpose of estimation (e.g. velocity estimation for ESC),
accuracy, if available, and types of sensors used.

2. Describe the sensors that are chosen, and how they give information about vehicle
velocity or road bank and inclination angles.

3. Develop velocity observer concepts for non-flat roads

a. Design and analyze the concepts

b. If possible, analyze robustness of the design

c. Implement and test the observer on real measurement data

Assignment given: 08. January 2007
Supervisor: Tor Arne Johansen, ITK
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CEmMACS concerns active safety systems for cars. Since otieeahain criteria
for achieving reliable control is having good state estasathe development of a
nonlinear observer for vehicle velocity is part of the pobje his report deals with the
idea that standard GPS and roll rate measurements can beateig with the observer
to yield higher accuracy when the vehicle is subjected ttuding elements like road
grade and bank angle.
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Summary

The main purpose of this report, is to evaluate feasibilitysing The Global Position-
ing System as an aiding tool for vehicle state estimatioethas nonlinear techniques,
and to develop a potential solution to the road bank angleleno. Previous work
within the CEmACS project, includes development of a gdrmeyalinear observer for
lateral and longitudinal velocity, and an augmentatiornmform of road-tire friction
adaptation. Because the existing solutions have been stwlack robustness with
regards to certain disturbances, such as road grade andan&dangle, it has been
stated that the estimation scheme should be upgraded, tsthéise disturbances can
be accounted for. By including GPS velocity or a or a roll rggeo measurement in
the observer feedback loop, the possibility of detectireyjmusly inobservable quan-
tities is gained. In simple terms, evaluation of feasipiibrresponds to demonstrating
improvements and limitations of new solutions, using reddy crude methods in the
test procedures.

Problems related to the above mentioned task, are appréghmeans of signal
processing and control theory. Following an intuitive ssaee of operations, the re-
port presents GPS theory and results first, as this lays thelfgion for all subsequent
results. Methods used comprise simple differentiatoratimal kinematics and dis-
crete filtering. Secondly, theory and results related tdinear observers, with focus
on GPS aiding, are examined thoroughly. Lyapunov theorgwknfrom control en-
gineering, is used to evaluate stability, while data fromudations and actual vehicle
tests is used to show how a new observer scheme can impretmgsolutions.

Before the most important results are presented, some#iagld be said about
their accuracy and significance. It has already been poouethat the methods used
are not based on optimality requirements, and consequiathesults are best viewed
as indicators of potential, rather than absolute solutiofisis is especially true for
the GPS velocity calculations, which are based on difféaénh of position measure-
ments; generally not a desired approach.

In this report, it is firstly shown that GPS position measuzata can be used to
compute receiver velocity in the body-fixed coordinate fearihile this is a crude
approach, resulting in relatively poor signal to noiseaitiis easily implemented on
low-level equipment. It is also shown that it is possible $e these velocities as mea-
surements in a nonlinear observer structure, slightly fremtifrom previous solutions
within the CEmACS project. By doing this, accurate estirmateroad grade and bank
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angle are achieved, so long as these vary slowly enoughili§tabthe observer is not
proven in the general sense, but it is shown that it can be statidée through realistic
assumptions and gain selection. Stability is further destrated through the use of
data sets from actual vehicle tests.

Secondly, a mathematical model of roll dynamics is combimithl a roll rate mea-
surement to create the possibility of detecting road bagkea his is done by the now
familiar nonlinear observer approach. Usefulness is destnated by simulations, but
no stability proof is presented.

The main conclusion is that it is feasible to use GPS aidingctmunt for robust-
ness problems in a vehicle state estimation scheme, andhehatclusion of a roll
rate measurement opens up possibilities for “cheap” bagkeasetection. A direct
implementation of results presented in the report may nadde, but the fact that the
system works for a large set of conditions, suggests thatwoirthwhile to develop it
further. This is especially true when it is assumed that Gi8ivers will become an
integral part of new vehicles in the near future. Refinemantsupgrades can be made
in the form of more advanced GPS technology, new parametienason techniques
and integration with the road-tire friction adaptationecte.
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Chapter 1

Introduction

Over the last decade, two separate technologies have plegddoles in changing
our perception of what a car and its computer system is cépatbaloing. Active
safety systems help the driver cope with potentially damgesituations, or to avoid
them altogether. Fitting the car with a Global Positioningt®m (GPS) receiver and
digital maps, makes it possible for the driver to navigatiaately based on computer
generated instructions. The first of these has a direct imfll®n how dangerous
an unwanted driving situation becomes, while the other isenod a perk, potentially
increasing safety by allowing the driver to concentrate perating the vehicle. Lately,
however, it has been suggested that a powerful tool such &ssBéuld be integrated
with the safety system in order to achieve greater accurbegtonates, and even give
information about previously inobservable states or distoces.

A GPS system is typically much more expensive than standaasorement de-
vices used for vehicle state estimation. As the financiaketspof serial production
apply tight constraints with regards to cost of equipmentgatimation scheme re-
liant on GPS measurements is not desired. However, carshipatvith GPS receivers
should be able to take advantage of the new or redundantmatoyn such a system
provides.

As the name clearly states, GPS is a position determinayisteis, specifically
designed for dynamic navigation purposes. The converieny ihere, is that with re-
gards to accuracy, speed determination is what GPS doesAmtsie safety systems,
e.g. ESP [1], which is a yaw stabilization system, uses \ehelocity information
in the feedback loop. Direct measurement of velocity isdgjly done with costly
instruments, and is consequently not a viable solution. staedard approach to ve-
locity estimation has been (extended) Kalman filtering,raf2], using acceleration
and yaw rate measurements as input. The drawback with tipiagh is that the
Kalman filter (KF) is computationally inefficient, in thatréquires real-time solving
of the differential Riccati equation, and that proofs oflgdbstability can’t be given
in the general (nonlinear) case. Advances in nonlineamasiton and control tech-
niques have led to the observer presented in [3]. Here lisyadpiarantees for certain
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CHAPTER 1. INTRODUCTION

conditions are given. This observer is further refined byitfwduction of road-tire
friction adaptation in [4]. The measurement vector usetpsticonsists of lateral and
longitudinal acceleration, yaw rate, wheel speed for edebeland steering angle for
each wheel - standard measurements in modern cars with gailizdtion systems.
When making a few, but severely limiting assumptions, suechedting the pitch and
roll of the vehicle to zero, the observer is proven to givehhigaccurate estimates of
lateral and longitudinal vehicle velocity. Consequergbfety systems using feedback
from these estimates can be expected to function reliabrvithe car is driven on
the highways of continental Europe. However, as e.g. socandin drivers are well
aware of, the combination of snow and variations in heiglguise common; banked,
graded and bumpy roads, covered with ice, pose the biggakerge to the driver and
the safety system. It is therefore imparative that the tyafia feedback observer is
not too degraded by variations in road structure. This is Wiy desired to include
GPS velocity in the measurement vector. The idea is thaethresasurements can be
used to compensate for the acceleration measurement edo dehicle attitude, by
helping to identify road grade (RG) and bank angle (RBA) paters in real-time.

When dealing with measurements, perfection can never bewsth All signals
are approximations to a limited reflection of reality. Stdhe has an idea about prac-
tical optimality - the concept of removing a problem as cheamd effectively as
possible. Using GPS is most likely not an optimal solutioh yEherefore the prob-
lems related to RBA should be evaluated from a more basigpetise, using a roll
rate gyro as the only augmentation to the measurement véttbis proves feasible,
it can perhaps fit into the category of practically optimdugons.

This report deals with key aspects of integrating GPS viloneasurements with
the existing nonlinear observer, and development of a gyseth RBA observer. Firstly,
the various techniques used for velocity determination B\5@ presented. It is gen-
erally not advised to infer velocity information by differgation of raw position data,
but since positioning is the common denominator of all GR®iwers and low cost
is a demand, it is highly desirable to see what can be gaingtiggirect approach.
Secondly, limitations and potentials of the observers aeudsed, together with ideas
on how GPS velocity can be used to improve existing estimé&ieslly, results based
on simulations and data from a test vehicle are presented.

1.1 Previous work

Integration of GPS and estimation schemes has been donenioiearange of appli-
cations and control purposes. In [5], wheel slip, body digesgle and tire sideslip
angle are estimated using GPS velocity information in cocijon with other sensors.
[6] suggests a method for integrating Inertial Navigatigist8m (INS) sensors with
GPS measurements to estimate sideslip and corneringestifnvhile [7] focuses on
measurement limitations due to noise. In [8], feasibilitgontrolling a vehicle using
GPS-based slip angle measurements is shown. The commapyeaidtechnique of
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CHAPTER 1. INTRODUCTION

correcting inertial sensor errors by use of GPS is describg]. All of the above
utilize the familiar Kalman filter scheme to state estimaticAn ideal approach to
pitch and roll estimation, using a two-antenna GPS systemrdasented in [10]. Dy-
namic estimation of RBA, using measurements of laterallecagon and yaw rate, is
shown to be robust for a bicycle model in [11]. Estimation elfiicle parameters, such
as mass, rolling resistance and aerodynamic drag, by deiegwoad grade through
GPS measurements is demonstrated in [12].
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1.2 Nomenclature

caG
RC
PC

Teay Yeay Zeca
n, e, d

9;

HE

Fi(d, vy, vy, 7, pigr)
Fz,

R(0;)

Je

Jy

Ir

- center of gravity of the vehicle

- roll center of the vehicle

- pitch center of vehicle

- axes of the body-fixed coordinate system

- axes of the north-east-down coordinate system

- vehicle velocity along: ¢, longitudinal velocity
- vehicle velocity along-¢, lateral velocity

- vehicle velocity along¢, vertical velocity

- Euler angles (roll, pitch, yaw)

- actual longitudinal velocity, measured

- actual lateral velocity, measured

- GPS-based longitudinal velocity, measured

- GPS-based lateral velocity, measured

- longitudinal acceleratiormeasured

- lateral acceleratiormeasured

- yaw rate, angular velocity about;, measured

- pitch rate and roll rate relative to the roadeasuredconditional)
- wheel angular velocities; & 1, ..., 4), measured

- wheel angles, calculated from steering wheel angle, (, ..., 4)
- vector of variables used in the friction model

- distance vectors from CG to each wheeék=(1, ..., 4)
- maximum road-tire friction coefficient

- friction functions for each wheel; & 1, ..., 4)

- normal force for each wheel,j(= F L, FR, RL, RR)
- rotation matrices, wheel-fixed to body-fixed

- generalized force on the vehicle along;

- generalized force on the vehicle along;

- generalized torque about
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oy Ly, I - moment of inertia about-q, ycq andzqq axes

br,br - distance between wheeels on front axle/rear axle

lp,lg - distance from CG to front axle/rear axle

hca - height of CG

Ah,., Ah, - distance between roll/pitch center and center of gravity
g - gravitational constanf).81 m/s



Chapter 2

Vehicle model

The vehicle model in Figure 2.1 is the same as in [3, 4].

Figure 2.1: Vehicle model

In [3], only forces caused by road-tire friction are inclddeThis means that e.g.
air resistance is ignored in the dynamic equations. To caenfhe friction forces, a
nonlinear friction model is used. Generalized resultartde are defined as
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CHAPTER 2. VEHICLE MODEL

4

fx(ta Uz, Uy, T) = Z[l O]R((si)Fi(d> Uz, Uy, T NH) (2-1)
i=1
4

Fy(tve,vy,) == > [0 1 R(6;)Fi(d, va, vy, 7, purr) (2.2)
i=1
4

[r(t vy, vy, 1) = Z[O 119! R(6;)Fi(d, vy, vy, 7, firr) (2.3)

=1

The resulting equations of motion are

Uy = Qg + Ty (2.4)

Uy = Qy — TV, (2.5)
1

T = jfr(t,vx,vy,r) (2.6)

It can immediately be seen that this model does not incluidenration about dynam-
ics along the z-axis. This is because roll and pitch of thaeclelhave been ignored in
the existing observer scheme. Since vehicle attitude haet thfluence on acceler-
ation measurements, it is desirable to augment the existodgl so that observability
of this coupling is increased. Figure 2.2, which is slightipdified from [13], illus-
trates how the combination of road structure and drivinggpataffects attitude of the
vehicle body. Note that two coordinate frames are definethimrehicle - road frame
and dynamic frame. The xy-plane of the road frame is partdl#ie imaginary plane
defined by the contact points between wheels and road. Thentgrirame is rotated
from the road frame by the angles andd,.. Both have origins in the CG.
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(a) Pitch (b) Roll

Figure 2.2: Vehicle pitch and roll
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Te _

ECEF position p¢ =1 y. | € R* Longitude and latitude ¥ =
Ze -

o 5

NED position p* = | e | € R® Attitude (euler angles) ®@ =|46

| d | ¥

[ u B

Body-fixed linear velocity V5 = | v | € R* Body-fixed angular velocity w?, = | ¢

| W | 7

Table 2.1: Frame associated vectors

R™ is theEuclidian spacef dimension n and™ denotes a@orusof dimension n.

For the idea of vehicle roll and pitch angle to give meanimg, body-fixed coordi-
nates must be related to another frame. Here, this is thehNgast-Down (NED)
frame. NED is the tangent plane on the surface of the earthingavith the vessel
[14], where the axes n, e and d point towards north, east andehter of the earth
respectively. Itis important to note that directions of thend e axes are not dependent
on the orientation of the vehicle; they simply define a virplane which allows def-
inition of relative vehicle orientation. Attitude is givexs angles between body-fixed
(road) and NED coordinate axes. These are referred to dsullee angleq15].

v - rotation about the; axis
0 - rotation about the current (rotateglaxis
¢ - rotation about the current (rotatecpxis

Equations 2.4-2.5 are based on the assumptiondletid # are both zero. If they
are not, the acceleration measurementanda, will be biased by gravitational com-
ponents given as, andw,. To determine the magnitude of these biases, kinematic
relations are used. It is necessary to rotate the grawitatigector in the inertial frame

to the body fixed frame. The x and y components of the rotatetbveepresent ac-
celeration biases due to vehicle attitude. Using notatiomfTable 2.1, the following
expressions are derived

e S§?

eS?

eR3
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g'=[00g]
g =Ry(©)'g"
wy = €;¢’

wy =€ g

WhereR} (©) is a rotation matrix defined as

cosycosf —siny cos g+ cosysinfsing  sinsin ¢ 4+ cos vy cos ¢ sin b
R, (®) = | sinycosf costpcosh +singsinfsiny  —cosipsin ¢ + sinfsin ) cos ¢
—sinf cos 0 sin ¢ cos B cos ¢

resulting in the expressions

wy = —gsinf

Wy = g cos fsin @

Properties of the rotation matrRR are described in Appendix A.1. The simplest way
to find the Euler angles, is to use a two-antenna GPS systdrthibus currently not
an option. It will be necessary to estim@tand¢ using available sensors. To achieve
this, kinematic properties of the sensors have to be known.

Assumption 2.1: Sensors.,, a,, andr,, are located at the center of gravity.

Assumption 2.2: If pitch rate and roll rate sensors are available, they amotdelp,
andg,.

Assumption 2.3: All wheels are in contact with the ground at all times.

Angular velocities in the road frame must be converted bymaed a transformation
matrix before a meaningful integration can be performedl&a.1 defines the body
fixed angular velocity vectap?,. Since the vehicle body is expressed in terms of two
body fixed coordinate systems, it is necessary to sepamge tivo. Angular velocity

in the road frame is given ag/ ., while angular velocity in the dynamic frame is given

nri

asw?,. According to [14], the relationship is expressed as

10



CHAPTER 2. VEHICLE MODEL

1 singtanf cos¢tand

To= 1|0 cos @ — sin ¢
0 sin ¢ cos ¢
cos 6 cos 6
6 = To(O)w!, (2.7)

Now, the Euler rates for can be written out in component form

¢ = pr + qrsin ¢ tand + r, cos ¢ tan 6 (2.8)

0 = g, cosp — r,sin g (2.9)

¢:qr81n¢+TTCOS¢’97§iz (210)
cos 6 cosf 2

It is necessary to find the relationship between derivatWwesad bank angle and road
grade, and the Euler angles. Firstly, it should be stated¢ghandd, are physically
decoupled from the vehicle, although they are fully depehda vehicle position and
orientation. Secondly, the Euler angles represent otientaf the road frame, not
the dynamic frame, which means thatand ¢ depend fully on¢, and#,. Yaw is
insignificant with regards to road bank angle and road gr&yerecalling that Euler
angled is a rotation about current y-axis, it is obvious tidatequalsf. Since¢ is
rotation about current x-axig,affects¢. The rate expressions become

b, = cos 0o (2.11)
6, =0 (2.12)

By substitution of equations 2.8-2.9

br = py cos 0 + ¢, sin ¢ sin 6 + r, cos ¢ sin 6 (2.13)
0, = q, cos ¢ — r, sin ¢ (2.14)

Rotation between the road frame and the dynamic frame

cos 6, 0 —sind,
RY(@©,) = Rf,d)v Rgﬁv = | sinf,sin¢, cos@, cosb,sin @, (2.15)
sin @, cos ¢, —sin¢, cosb, cos o,

11
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Now, the measurements of rotation can be expressed asdnadaif kinematic vari-
ables.

o
wl =146, | +RYO,)w., (2.16)
0
In component form:
Pa = pycosty, — 1, sinb, + ¢, (2.17)
qq = prsin 6, sin ¢, + ¢, cos ¢, + r, cos 0, sin ¢, + év (2.18)
rq = pysiné, cos ¢, — g, sin ¢, + r,. cos @, cos ¢, (2.19)

Ideally, a complete dynamic model of vehicle roll and pitblogld be developed, but
due to the simplicity of the underlying goal, which is robastimation ofv,, and the
small number of sensors, focusing on roll alone is a morelfEmapproach. This
means that a few assumptions have to be made.

Assumption 2.4: Pitch anglg = 0.

Now equations 2.17 and 2.19 become

Pa = Dr+ Gy & Gy + by (2.20)
rq = 'y COS ¢y, — @, SIN @, (2.21)

The point to be illustrated with these kinematic relatiasghat a roll rate measure-
ment, in this case,, is only an approximation to a linear superpositionggfand
#,, meaning that the useful information is hard to extract.s limpossible to mea-
sure bank angle (semi) directly without a two-antenna GR8iguaration; even with
an angular velocity gyro measurement, bank angle infoonatiill in some cases be
completely invisible in the sensor data. This is the casenwthe vehicle performs a
circle maneuver on a large, tilted plane. Therefore one saurae that a simple sensor
configuration will be inadequate in terms of exact bank adgtermination. However,
it is possible that improvements in the velocity estimatan be made by accounting
for errors due to vehicle roll. A model of vehicle roll must tbeveloped.

For convenience, the two-track model presented in [16] bélused here as well.
Figure 2.3 illustrates the basic mass-spring-damper ctarstics of the system. The
original expression is

12
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gﬁv = Ji[fyh cos ¢ +mghsing — Cyp — K¢gb + ¢Q(Jy — J,) sin ¢ cos @]

The modeled quantity is obviousty,, not ¢,.. Intuitively, ¢, should be fairly small,
since there are physical limitations to how much the sproagsbe compressed. This
means that the model can be simplified in terms of trigonomedsulting in the fol-
lowing equation

L1 o
Py = j[fyh + mgh¢ — Cy — Ky + 1*(J, — J.) 9]

May
By

Mg

Ky

. .

Figure 2.3: Roll dynamics

Parameterd(y andCy depend on the spring-damper configuration, but will have val
ues that help force, to zero. is assumed equal to the yaw rate measuremenihe
new set of differential equations becomes

Uy = Qg + TUy — Wy = ay + 70, + gsind (2.22)
Uy = Gy — TV — Wy = Ay — TV, — ¢ COS 0 sin ¢ (2.23)
1
7= jf’r‘(t7vxavy7r) (224)
. 1 .
¢1) - J_[fy(ta Vg, Uy, T‘)h + mghgb - O¢§b - K¢§b + th(Jy - Jz)¢] (225)

13
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Notice that there is no link betweehand ¢, at this point. This link will have to be
established in conjunction with the development of a stsiienator.

14



Chapter 3

GPS

Two definitions of GPS are presented. “GPS is an all-weathenidwide, continuous
coverage, satellite-based radio-navigation system” fd “The NAVSTAR Global
Positioning System (GPS) is a satellite-based radio-positg and timetransfer sys-
tem designed, financed, deployed, and operated by the Ugreent of Defense”
[18]. Currently, applications range from handheld devites can be used for posi-
tioning by the general public, to dynamic positioning angigation of large vessels,
such as ships and airplanes.

The automotive industry and its suppliers have realizegttential of integrating
this technology with multimedia solutions to give driversdgpassengers the ability
to navigate effortlessly through the aid of digital mapsisTie by no means standard
equipment for low-priced cars, but hints at future solusievhere less time is spent
on finding the way, and more time on performing the safetycaiittasks presented
to the driver. As GPS equipment becomes cheaper and safeigdis increase, it is
interesting to find new areas of application. In light of ttkieowing the basic modes
of operation is key to understanding limitations and po#siof new solutions. The
following sections describe positioning and velocity detmation by GPS, largely
based on [17].

3.1 Positioning

Position determination using GPS is a complex process wswreral mathematical
techniques can be applied. Different manufactures userdiit approaches, which
gives a large variety in price and quality of the end produsti#is report focuses on
use of existing solutions, quantitative aspects and recénwplementations will not be
covered. Fundamentals of GPS positioning are briefly etadlia a qualitative man-
ner. GPS is described in terms of segments: The space segheenbntrol segment
and the user segment.

15



CHAPTER 3. GPS

The space segment

Using an informal comparison, the space segment is renenisd the physical layer
in the International Standard Organization’s Open Systasr¢onnect (ISO/OSI) net-
work model: It consists of the GPS satellites orbiting theleaCurrently, 30 Block
I/IIA/IIR/IIR-M satellites are operational. For a detad description, see [19].

GPS satellites orbit the earth in semi-circular orbitahgls, with a configuration
that ensures visibilty of five to eight satellites from anyrp@n earth. These orbits are
not geoshynchronous, however, making the position-estimaccuracy time-varying
for a given set of satellites. This is called Geometric Ddatof Precision (GDOP),
which can be kept at a stably low level by changing satelbi@isinations.

The control segment

This segment monitors health and status of the space seg@eotnd monitoring
stations measure signals from the satellites, and trarntbese to a master control
station. The master calculates orbital model and clockection parameters for each
satellite, which receive these updated values from groutehaas.

The user segment

The user segment consists of the multitude of GPS anteme#ker pairs used for
military, industrial and public service purposes. Recesverovide users with posi-
tion, velocity and timing information, based on signalssmitted by the satellites.
No signals are transmitted from receiver to satellite, nmgathat the system won't
experience increased load when the number of active resgivereases.

3.1.1 Standard positioning
Mode of operation

GPS satellites transmit ranging codes and navigation gatade-division multiple ac-
cess (CDMA) on two frequencies, L1 (1575.42 MHz) and L2 (1BRMHZz). These
are modulated by spread-spectrum signals to carry infoomé&a the user. Each satel-
lite is associated with three pseudorandom noise (PRN)mgrapdes. In short, GPS
receivers lock on to satellites by correlating internalyngrated versions of the PRN
codes with the ones received from the satellites. Eachlisasehas a unique code,
making cross-satellite interference small.

Position determination is based on the fact that radio $sgtmavel at the speed
of light. Receivers note the time of arrival of satellite garg codes, and use this
information to find the propagation time from satellite toce®er. Propagation time
multiplied with speed of light equals pseudorange. Theae#ss called pseudorange,
is that clock errors give a bias to the calculated propagdiime. Several techniques
for bias compensation exist. For a detailed description G®apter 5.4 in [17].
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When satellite location is known, the pseudorange measnedefines a sphere
of possible receiver locations. An accurate position measant is given by the inter-
section of four such spheres. Itis possible to use threedpseange measurements and
a model of the earth as the fourth sphere, but in practice vee/a has four or more
pseudoranges. This leads to a set of nonlinear equatiorwbntain the various bias
terms, and GPS receivers adopt extended Kalman filterifmopigaes to estimate their
solutions.

Accuracy

Several forms of error contribute to the deterioration olqy in GPS range mea-
surements, all of which can be categorized as common modemcommon mode.
Common mode errors will be experienced in the samme mannelt BPS receivers
in a limited geographic area. Non-common mode errors arafgpr given locations
and receivers. Typical standard deviations for the varsmusces of noise are given in
Table 3.1

Errors Standard deviation (m)
Common mode

lonosphere 7.0

Clock and ephemeris 3.6
Troposphere 0.7
Noncommon mode

Receiver noise 0.1-0.7
Multipath 0.1-3.0

Table 3.1: Error due to noise sources

The effect these have on position estimates can be exprassedns of DOP
factors, which are found from the covariance matrix for ysasition and clock bias
errors. This is typically done in real-time software. Frdre users perspective, know-
ing how accurate a position measurement generally will bes lisually enough. In
situations with low non-common mode error, this number camproximated to 25
meters [20], meaning that a GPS receiver operating in stdmdade will give position
information containing an error of 0-25 meters.

3.1.2 Advanced positioning

Several features of GPS can be exploited to give (much) mmrerate position es-
timates. The problem with these improvements is that thegtrba supported by
hardware and external references, making them unsuitablese with standardized
estimation schemes. Also, advanced hardware obvioudlig lEaincreased cost. For
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these reasons, advanced positioning is only briefly desgribechniques directly re-
lated to velocity estimation will be discussed in 3.2.

Differential GPS

Differential GPS (DGPS) is an effective approach to dealuity common mode er-
rors. Since common-mode errors are the same for all resdiverlimited geographic
area, they can be reduced if a stationary receiver at a knogatibn (base) estimates
them and broadcasts this information to the mobile unitsclvim turn use this to com-
pensate for errors. This results in accuracies of 1-5 meRistance between mobile
units and the base should not exceed 100 km, as this redugetation of common
mode errors.

DGPS is a common option for relatively low-cost receivecsfrem an economi-
cal perspective, this approach has merit. The main drawexckn reliance on DGPS
base stations. Cars very often don’t follow preplannedasuso availability of base
stations is non-deterministic. Therefore, using DGPS tm&soan implementation is-
sue. If a vehicle state estimation scheme is to benefit frol® @Pasurements, it must
be able to determine what accuracy can be expected from tBer&feiver. In short,
measurements with high accuracy should be used when aeaitali the main con-
cern is that the estimation scheme works for low-level ojegaconditions. Possible
improvements due to DGPS can be investigated in future work.

Two-Frequency receivers

Two-frequency receivers use pseudorange measurememtsmmdifferent frequency
bands to estimate ionospheric delays. Low-pass filteriagettiimated delay and sub-
tracting it from the pseudorange gives increased accurbpgstion estimates. The
practical drawback is that the receiver needs to supporfreguencies.

Carrier phase tracking

Carrier phase tracking is based on the idea that phaseisttfies carrier can be tracked
if the receiver phase locks to the carrier signal. The nurabearrier cycles between a
receiver and a satellite can’t be measured directly, buttiagge in number of cycles,
however, can be measured. Motivation for determining theergphase observable
stems from the fact that it reduces non-common mode erroas lapproximate factor
of 0.01. To be able to use the carrier phase observable, aerurabled the integer
phase ambiguity has to be estimated. This is the whole nuaoflzarrier phase cycles
between the receiver and the satellite at an initial measemé time. Resolving the
integer ambiguity is a non-trivial matter, and several apphes exist. See [21, 22, 23].

Carrier phase aided positioning requires use of a DGPS sghmmelse the integer
ambiguity can’t be computed. As discussed, this is curyamtk viable for use in a
general purpose safety system.
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3.2 Velocity determination

There are two main approaches to velocity determinatiamuGIPS: time differentia-
tion of position measurements, and doppler carrier phaseepsing. Advantages and
disadvantages of the two approaches are discussed in kwifgd sections. Note that
the variables used are discrete for real-time applicatiartes means that any GPS
measurement, denoted, will actually be the value o, at sample timé:. Conse-
quently, X refers to the discrete derivative, given as

o X — X
X — klkl

wheree is the sampling frequency. The receiver used in the tesgsresf to in this
report, has = 10 Hz.

3.2.1 Differentiating position measurements

Using dynamic position measurements to derive velocityisiiively appealing, as
the physical interpretation of velocity is change in pasitwith respect to time. Since
virtually all GPS receivers present position data to the,se=ceiver independent ve-
locity estimation scheme can be implemented. Key aspee{saamition representation,
kinematics and noise handling.

Position measurements only make sense with relation to eegeic reference
frame. Terrestrial navigation usually doesn't involve mdhan three standarized
frames: Earth-centered Earth-fixed (ECEF), North-EastiDNED) and BODY. These
are described in [14]. Vectors associated with each framelefined in Table 2.1.

Standard receiver output is longitude and latitideand height above mean sea
level (MSL) h. These values are useful in map-based navigation, but ndsglttans-
formed for effective computation of secondary informagisach as velocity. GPS
systems use a reference ellipsoid, WGS-84, which relatésHg0ordinates to longi-
tude and latitude. Calculation of ECEF position from loog#, latitude and height is
given by:

. (N + h) cos pcosl
p= 1|y | =| (N+h)cosusinl (3.1)
2
Ze (%3N + h)sin
N = re
\/rg cos? 1+ r2 sin® pu

r, = 6378137m
rp = 6356752m
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where N is the radius of curvature in the prime vertical an@éndr, are WGS-84
parameters. The set of ECEF coordinatepinwill be considered measured vari-
ables in the following sections, since equation 3.1 is acstinsformation, and direct
time-differentiation of computep® gives the same result as time-differentiation of the
analytical expressions af, y. andz..

Kinematics

The position vectop® represents distances along three earth fixed axes defined as
the (accelerated) ECEF frame. Its derivatipe,consequently only gives information
about the positional change of a point in space, relativaaaenter of the earth, with
regards to time. This has limited usefulness in practicpliegtions, s@“ needs to be
converted by means of kinematic manipulation. To decidetwhasformations should
be made, one has to look at the task to be performed. Whemdewlih ground based
vehicles, the NED and BODY frames give intuitive represtoie of linear velocity,
angular velocity and attitude. Linear velocity of the GPS receiver, given in the
BODY frame, is the velocity the receiver has alonguits i, and z, axes, where the
origin lies at the base of the receiver. Ideally, thandv components 0é® should be
equal to the correct values of andv, of the vehicle the receiver is associated with,
but this will generally not be the case. For this reas§myill be referred to as receiver
velocity instead of vehicle velocity. Finding is done using the following relation:

p* =R} (¥)p" = R (V)R}(O)v, (3.2)

Premultiplying with the transpose of the rotation matrigags

v, = Ry(0)"R},(¥)"p* (3.3)

whereR¢ (V) is defined as

—coslsiny —sinl —coslcos
RC(V) = | —sinlsinpg  cosl —sinlcosp
COS 1 0 —sin pu

From 3.3 it can be seen that the receiver’s linear velocitgleted to the differentiated
position measurements through the attitude (Euler angletpv©, which is the argu-
ment of Ry. Ideally one would have measurements or estimates of aethngles,
but in the current configuration, none are available. The $itesp in circumventing
this problem, is to assume that rglland pitché of the vehicle are both zero. Con-
sidering that RBA and RG give the vehicle roll and pitch, #ssumption can appear
counterproductive. However, ignoring RBA and RG when daliing V2, leads to the
possibility of finding attitude information from the diffemce in observer based veloc-
ity and GPS based velocity.
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If 3.3 is to make sense, a good measurement isf needed. Since the orientation
of the receiver is static with regards to the orientatiorhef ¥ehicley> can be defined
as equal for both. From a mathematical point of view, it waddm logical to perform
an integration of the yaw-rate measuremenut two things stand in the way of this
approach. Integrating the biased yaw-rate gyro measuitegness large offsets over
time. It is also impossible to know the initial yaw of the velei Because of this)
can’t be determined accurately. A new assumption is nealféen sideslip is low, the
absolute velocity can be assumed to point in nearly the sameetion as longitudinal
velocity v, of the vehicle. The direction of absolute velocity is callsmlirse. Let
absolute velocity and course in the two dimensional NE-&&m® defined ag andi.,
where

Vi=VaZt & (3.4)
e := Atan2(n, é) (3.5)

From 3.5 it can be seen that the velocity componérdadé must be calculated. They
are found as the the first two elementg06f given

p" = RL(T)"p* (3.6)

Substituting® in R} (©) with ©., where
O.:=1 0 (3.7)

gives

cosy. —siny. 0
R, (©.) = | sint. cosyy. 0 (3.8)
0 0 1

For ease of distinctiory“"* is defined

GPS
USC

GPS ._ | ,GPS | _\p
% = | v, =V, (3.9
USPS

Substituting 3.8 and 3.9 into 3.3, gives
vers = Ry(0,)TRE (1) p° (3.10)
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This simple expression determines receiver velocity inBR®Y frame, by transfor-
mation of measured receiver position in the ECEF frame.

Noise and filtering

GPS accuracy determination is a field of study which requiggsous and time con-
suming test procedures, combined with statistical methadss report focuses on
relevance and feasibility of integrating existing GPS sohs with a nonlinear ob-
server, and consequently a detailed analysis of the agcofdbe receiver used in the
tests presented, is not given. Here it is more interestirsgpéowhat can be gained by
using a general class receiver in a direct manner.

If p¢ was a perfect measurement, direct calculation of 3.10 wgiviel a perfect
estimate of the receiver’s linear velocity when moving inasizontal plane, without
difference between yaw and course. To no great surprisegémerally does not hold.
Firstly, position measurements have time correlated &ritarpractice, this means that
a north-east position plot for a static receiver, taken tivee, will give a “wandering”
graph contained within a circular region, disregardingespikes due to multipath or
signal loss. The structure of the time correlation cannaddtermined without access
to internal receiver variables. On a positive note, thetpmserror is slowly varying. If
the position error jumped between e.g. -10 m and 10 m for twisecutive samples,
with frequency 10 Hz, a differentiation of the measuremeauld give an instanta-
neous absolute velocity of 200 m/s, which of course wouldieerthe differentiation
useless. To illustrate how the position measurement eaes, Figure 3.1(a) shows
a plot of theEuclidian normof the normalized ECEF position vectdp©||,, with zero
mean, for a static receiver sampling at 10 Hz. The actuabwaiithe position measure-
ment is unimportant, but how it varies around the mean, aecotwalue, is not. 3.1(b)
gives an idea of what velocity errors can be expected wheglypdifferentiating the
unfiltered position measurements. For this particular 6dtata, the maximum value
of velocity error is approximately 0.4 m/s, or 1.44 km/h. Td ghis into perspective:
The position measurement error can be significant if usedtimate low velocities,
such agy,,.

When the receiver is accelerated (within the ECEF framedy @nagnitude increases.
This is harder to analyze, since the receiver’s actualdtafg isn’'t known. It is, how-
ever, possible to compare measured position trajectorithscerresponding velocity
trajectories, and try to infer noise information from thiggure 3.2 shows a normal-
ized trajectory ofy, alongsidey., for a flat surface vehicle test with slalom maneuver.
Note that similar results are obtained fQrandz.. The shape of. is in no way subtle

- direct differentiation gives huge, noise-like spikes aloulated velocity. Through
closer inspection, it is revealed that the noise is causesbhyething similar to quan-
tization error in the position measurement. When two camsee samples have the
same value, the time derivative approaches zero. From #ygestf 3.2(a), it can be
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Figure3.1: (a) Variations in absolute ECEF position about mean valueafstatic receiver.
(b) Velocity error due to position error

seen that the vehicimost likelyundergoes continuous motion, so existence two iden-
tical consecutive samples must be caused by an error in ti8 S&fhal or receiver
algorithm.

The problem illustrated by Figure 3.2, has to be accountedlfothis report, three
approaches are considered:

Method 1: Linear filtering of the time differentiated 10Hz position aseirement.

To utilize a linear filter efficiently, it is important to knothe frequency properties of
the signal. The goal is to filter out high-frequency noise ponents, without affecting
signal information too much. A typical approach to decouplnoise and signal, is to
subtract a perfect measurement from the noisy one, leaviogsa sequence with base
at zero. For ease of implementatioff”® will be used instead qi°, even though this
means that the errors in the measurement-dependent rotatitrices will contribute
to the end-signal error. The nonlinear observer from [3] bel considered a “perfect”
measurement. In short, this is the only way of comparisomeadly available. A
detailed description of digital signal processing can hmtbin [24].

The first step is to determine the power spectral density jP&otedS(w), of the
signal noise. This gives information about which frequebayds have to be filtered.
To find the PSD, numerical methods are applied to the noisees®eg. See Appendix
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B.2 for details. Figure 3.3 shows noise sequence and PSiigitudinal velocity,
given by the same test as in Figure 3.2. It can bee seen thatahibe noise power

lies from about 1 Hz and up. This knowledge will be used to lsgsize a discrete
low-pass filter.

(a) Noise sequence
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Figure 3.3: (a) Noise sequence extracted frefi” (b) PSD of the noise sequence

The filter is presented as a transfer function in the compldrmain, and takes the
following generalized form:

B(z) b+ boz L by
A(z)  14agzt4 -+ apyi2!

H(z) = (3.11)

n denotes the filter order, andandb are filter coefficients. This configuration gives
a Butterworth filter Desired low-pass characteristics are determinea,by andb,

which are user-specified parameters. By making appropelatees, thecutoff fre-
guencyw,, defined here as

w = [H(w)| = % (3.12)

can be placed in such a way that undesired high-frequencyaonemts are damped.

By recalling that the noise sequence had most of its powehenfriequency range
above 1 Hz, the following statement can be made:
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we. <1Hz

The reasonu,. isn't more accurately specified, is that one usually hasytséveral
configurations before good filtering is achieved. Deterngni andb is most easily
done by using the MATLAB functiomutter(), which is described in Appendix B.1.

Phase delay is the main drawback when using linear filtergahtime applica-
tions. If a signal is to be used in a feedback loop, a delay sif gufew milliseconds
can render it useless. Therefore, a compromise betweentimg@nd delay must
be made. Through experimentation, it is discovered that edew-order-high-cutoff
filter gives the signal a significant phase delay. Figure Botws comparisons between
the filtered GPS signals and actual vehicle velocities. imdhse, noise has been ade-
quately damped, but it's obvious that the phase delay isteatdor the signal to be of
use. By reducing filter order and increasing noise becomes the dominating factor in
signal degradation. It is possible to conclude that lowsgddtering the differentiated
signal is not a feasible approach to dealing with noise.

(a) Longitudinal speed, n=2, W, = 0.25 Hz
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Method 2: Resampling the position measurement at 100Hz, smoothangétv sig-
nal with a linear filter, downsampling to 10Hz, time diffetiating the smooth 10Hz
signal.

The idea here is that the measurement signal can be smoaothreddns of sampling
and filtering. By upsampling the GPS signal to 100Hz, no imfation is gained or
lost. Filtering the new signal with a cut-off frequency ofoalb 10Hz should result in
a smoother version of the original signal. Downsampling thi10Hz gives a signal
with fewer “flat spots” than the original signal, and consewufly a better candidate for
differentiation.

This procedure uses the same filter structure ad&hod 1, so the best results
are presented directly. See Figure 3.5. Note that it's thEE@osition signals that
are filtered. Without providing any further discussion,sitstated thaMethod 2 is
infeasible for this type of filtering problem.

(a) Longitudinal speed
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Figure3.5: (a) Actualu, and filteredv$"¥ (b) Actualv, and filteredv("S
Method 3: Applying a heuristic nonlinear filter to the time differesitd 10Hz posi-
tion measurement.
The previous two methods lead to heavily phase-delayedigimeasurements, espe-
cially when the filters are configured to remove all noise congmts. For this reason,
the idea of a task specific nonlinear filter is introduced. &yking at GPS data from

several tests, it is possible to get an intuitive understandf the structure of noise
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seen in the velocity measurements. For example, Figur®)3shpws that the noise
usually comes in packets of two or three samples. This itesddat it should be pos-
sible to reduce noise significantly by evaluating a set oVipres sample values and
determining whether the current sample holds a realistizevar not. A few defini-
tions:

U, — filter input at current time:
Y. — filter output at current timé
My, — mean value of previous outputs
Do — difference between current input and mean value of prevooijsuts

Yii+Yio+tYis
3.13
- (3.13)

DO = |Uk - My‘ (314)

My = MY3 =

Equations 3.13-3.14 define parameters to be used in the Titermain idea is that the
filter should let measurements pass through without modidica when they are ex-
pected to be accurate. If an unrealistically large spikgected in the input, however,
the filter algorithm calculates an expected value of outpstead. In practice, this
means that the output is held constant when noise-burstieteeted. In its simplest
form, the algorithm becomes:

Do>k=Y,=Y,_4 (316)

k is the number which determines how large the deviation betwe and My is al-
lowed to be. If it is chosen very large, the filter will only betiae for extreme noise
conditions. An acceptable value has to be determined by kil evaluation of em-
pirical data. The filter should only modify the signal wheisihoisy, which means that
realistic vehicle accelerations must be tolerated. Lamjital acceleration magnitude
is largest for hard braking maneuvers. Consider a situatiarnich the vehicle brakes
hard, and goes from 25 m/s to O m/s in three seconds. Assurirggant deceleration,
the following relation holds:

= —8.33m/s”

1A predictive filter has also been developed, but because wbmstability problems, it won't be
presented in this report.
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When acceleration is constant and GPS measurements agetptré change between
each sample ig/10 (10 Hz), and the braking maneuver gives:

Dy = Uy — My/|
B 2a
N €

= 1.67

This example gives an indication of what valaeshould be, at least for longitudinal
velocity. Since acceleration measurements are availabsn be made dynamic,
defined as:

9

Ky = Co Z 6> (3.17)
2a

Ry =G || G2 1 (3.18)

This ensures, at least theoretically, that the filter worddify correct measurements.
Note that practical experiments show that it is wise to chigsand(, larger than 3.
The reason for this, is that because three samples are mdluamust reflect the
sum of three consecutive acceleration measurements.sknréne measurements are
not considered. Naturally, a filter structure such as thesdd remove all noise from
the signal, but practical experiments show that it outper®the linear filters by a
large margin. Figure 3.6 and Figure 3.7 demonstrate thetefémess of the heuristic
approach. Notice that the filtered signals have no phase.ddlais is because the
output is calculated within the sample time interval defibgdarrival of a new input.
Numerical efficiency is equally good, since only a few simelg@ressions have to
be solved for each sample. In the following sectiovfs}® will refer to the signal
calculated by this filter, unless something else is expjisiated.
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3.2.2 Doppler based velocity determination

GPS-based velocity determination is usually done by aicdbppter carrier-phase pro-
cessing. This approach eliminates the need for a diffexkmtiplementation, by sim-
ply calculating the change of doppler phase (range) betiveesamples, and dividing
this by sample time. Itis possible to get doppler-basedonds for three dimensions,
but as this is a receiver specific procedure, only absoluteing will be considered
here. A comparison between doppler velocity and actuallateseelocity® is shown
in Figure 3.8. The test performed is a circle maneuver wiginisideslip values, prov-
ing that the doppler method gives a very accurate represamtaf absolute velocity.

Absolute velocity
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Figure 3.8: Comparison between GPS doppler velocity and actual aleseélocity

1Actual absolute velocity is computed &g = , /v2 + vZ, using the optical velocity measurements
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Observers

This chapter focuses on vehicle state estimation usingmear observers. Existing
solutions, presented in [3], [4] and [25], are described,@&w methods are developed
- both GPS based and stand-alone approaches.

4.1 Non-adaptive observer

The non-adaptive observer presented in [3] takes the fallpiorm

4

U = g + 10y + ¥ Ki(t)(va; — a) (4.1)
=1
by = a, — 10, — K, (may, — f,(t, 4,0y, 7)) (4.2)
. 1
P = jfr(t,@x,@y,f) + K, (r —7) (4.3)

As stated in [26], it is possible to write

e ORIl (4.4

under the assumption that longitudinal velocity is measyoerfectly. In this report,
this will be referred to ag\ssumption 4.1: Error functions forf, and f, are defined

fy(taﬁzaﬁyaf) - fy(tavmvyﬂn) - fy(t7@$7@y7f>
fr(t76$7ﬁy7f) - fr(tavm7vy7r) - fr(talA)m?@y?,f‘)

Now, the error dynamics can be written
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Uy = 10y — K, (1), (4.5)
by = —10y + Koy, [y (t, U, By, 7) (4.6)
. 1 -
F= jfr(t, By, Dy, 7) — K, 7 4.7)

To prove stability, [3] uses the assumption that longitatirelocity is measured per-
fectly, and that

af,
a—UZ(t,vx,vy,r) < —c<0 (4.8)

The first assumption means that the estimate,ahay become degraded when lon-
gitudinal wheel slips for all wheels are high. The secondiagdion means that con-
vergence of, depends on measured acceleratipnSince the non-adaptive observer
is based on flat-earth dynamics, i.e.and6 equal zerop, will be biased when the
vehicle experiences RBA. If the friction coefficient; is wrong, all estimates will

be degraded, and potentially uselesg if has large enough error. Figure 4.1 shows
plots of v, for a real life driving test, given by an optical measurememt and the
observer. Although the direct (optical) measurement isigrfted by high-frequency
noise, it gives an unbiased valuewgf which can be used to test the correctness of the
observer. It is easy to see that the two signals are diffenethie time period between
10 and 25 seconds. This is because the test vehicle expesi&RA in this interval.
Here, the maximum friction coefficienty; has been set to 1, since the test was done
on a high friction surface. Figure 4.2 shows what happenswitgis set to a lower
(less correct) value. The observer with road-tire frictamraptation presented in [4]
tries to deal with this problem by providing an estimate:gf
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Figure4.1: Test drive with RBAuy =1
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Figure4.2: Test drive with RBA ;7 = 0.8

4.2 Adaptive observer

In [4], the estimate of lateral velocity uses feedback fromicdion model based on
friction adaptation. Since the state estimates have aria@structure to those pre-

sented in Section 4.1, the adaptive observer will only bemesd in a qualitative
manner.

The main idea of road-tire friction adaptation is to provaddynamic estimate of
the generalized resultant forgg(t, v, v,, ), which is used for feedback in equation
4.2. This force depends on the friction coefficient, represented by the parameter
estimateé“, while v, andr are assumed known, such that the expression becomes

fy(t, vy, 0,).

To prove stability, certain assumptions are made. It iedtétatf, (¢, v,,6,) can
be written as a truncated Taylor series expansion, L@jr@déu as arguments, and
that this expansion is bounded and piecewise continuoygiven that the estimation
errors are small. It is also necessary that the vehicle isimgoforward with high

enough velocity, without rotating too fast. For a detailestdssion of all assumptions,
see [4].

Without going into specifics about what can cause adaptéditure, it is easy to
see, by looking at test results, that certain conditionst ¢centolerated. Figure 4.3a
shows that the estimate of is sufficiently accurate when the car performs a circle
maneuver on a flat, snowy surface. In 4.3b , however, a biassmrnding to RBA
with ¢ = 2 deg is added to the acceleration measurement at 10 secondsis Hiota

completely accurate representation of RBA, but illussdiew sensitive the adaptation
scheme is to error in the acceleration measurement.
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Figure 4.3: Circle maneuver, low friction. (a) Unbiases). (b) Biaseda,

4.3 Augmented observer for road grade and bank
angle estimation

To sum up the previous two sections: The non-adaptive obs&sensitive to errors
in the user specifieg;, especially ifuy is chosen too low. If.y is higher than the
actual surface conditions indicate, the estimateg,afill be conservative, meaning that
0, is of lower magnitude than, when the vehicle is driven on a flat road.

The adaptive observer is very sensitive to errors,jnresulting in unpredictable
behaviour of, andéu when the vehicle experiences RBA. This is especially proble
atic in that the estimates depend on the sign of the acceleraias, i.e. a right turn
on a right banked road gives a too large value,ofwhile a left turn on a left banked
road gives a too small value of,, even though the physical properties of these two
maneuvers are identical. It is obvious that these effeats taabe accounted for.

[25] lays the framework for an estimation structure whiatorporates RBA in the
observer equations, which are formulated as

A

Uy = ay — 10, — Wy — Ky, (may — f,,(t, 05, 0,,7)) (4.9)
= —K,,(ma, — f,(t,vy,0y,7)) (4.10)
Wy = Ky(0y — 2 —0,") (4.11)

Here,v, andr are assumed known. Note that a new variatﬂJe,has been included.
In [25], this “measured” variable is actually a calculatiiw,, based on the friction
model. The relations used are
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1
ay - Efy(t Uy, Uy7 T)

v, = fy_l(t,ay,vl,,r)

Stability of this observer is proved using the assumpti@t#}} is a perfect measure-
ment, so that it cancels ou}, terms in the error dynamics. Obviously, this can’t be
expected to hold in general, especially sinffedepends on the inverted friction model,
which becomes nearly singular for high slips. This is wheRS&nters the eqations.
By using velocity measurements from a GPS receigrpecomes completely inde-
pendent of the observer equations. The following definfidhbe used

vy
vTi= vy: (4.12)
/UZ
o™ =GP (4.13)
v, = vyGPS (4.14)
o™ = 8PS (4.15)

Now, a new approach to estimating andv, can be utilized. Let’s first write out the
new observer equations.

Uy = Qg + 10, — g + Koy, (t)(vy — 0y) (4.16)
Zp = Koy, (1) (05 — 0g) (4.17)
o = Koy (g — 25 — ™) (4.18)
by, = a, — 10, — Wy — Ky, (may — f,(t,0,,0,,7)) (4.19)
2y = =K, (may, — fy(t, 0y, 0y,7)) (4.20)
Wy = Ky, (0 — 2y — v,") (4.21)

(4.22)

Note thati, andéy have been updated with information about RG and RBA respec-
tively. Estimation errors are defined as
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Uy 1= Uy — Uy (4.23)
B, =, — b, (4.24)
Wy 1= wy — Wy = Wy + Ky, (2 + V) (4.25)
Wy 1= Wy — Wy = We + Ky, (2, + Ty) (4.26)

where the following assumptions have been made:
Assumption 4.2: v;* andv;" are perfect measurements.

=0
=0

Uy — U

€383

Uy —V

Assumption 4.3: RG and RBA are constant.

=0
»=0

The error dynamics are given by time differentiation of dopres 4.23-4.26

Uy = —y + 10y, — K, (t)0, (4.27)
by = — g — 10, + Ky [y(t, By, Ty, 7) (4.28)
Wy = Ky, (1, — y) (4.29)
Wy = — Ky, (i, + i) (4.30)

4.3.1 Stability analysis

Goals of the observer can be described in the following way:

Goal 1: Observer states(t) = [0, 0, Wy wy)", must all converge to the actual states

X(t).

Goal 2: The origin of the observer error dynamics must be locallyngstptically
stable.
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To determine if these goals are achieved, traditional Lyapttheory will be used.
First a Lyapunov function candidate (LFC) must be developHus function has to
meet certain demands to be classified as an actual Lyapunotido (LF). If analysis

shows that these demands are met, the LFC is proven to be @el &6 meaning

that the origin of the observer error dynamics is asympaditicstable. Consider the
following LFC:

1
V(X) = 5(1}3 + 02 + Wy + w3) (4.31)

If the conditions ofTheorem 4.10n [27] hold for V' (X), it is an LF, and the origin
of the observer error dynamics is exponentially stable.erat%—‘t/ = 0, sinceV

does not take as an argument. Choosirg < % ko > % anda = 2, the following
inequalities hold

R [IX[* < V(X)) < R X" (4.32)

where||x| is the Euclidian norm ak. This proves that the first condition of exponential
stability holds. To evaluate the second conditigns calculated:

V = b, (—y + 10, — K, (1)7,)
+ By (=g — 10, + Ky, (£, 0, Dy, 7))
+ Wy( Ky, (10, — Wp))
+ g (— Ko, (10, + 104))

= — K, ()0} — Ky, — Ko, 05 — 5109 — Tyt

-+ Kwe’f‘@ylﬂg — Kwd)’f‘f)g;w(z) + Kvyfy(ta Uy, ﬁyv T)@/
The last term depends gf), and should be rewritten. According temma 1in [3], it
is possible to state the following assumption:

Assumption 4.4: The friction model is continuously differentiable with eags tov,
andv,, and bounded by positive constantsandc,, such that:

6yfy(ta Uy Uy, 1) < _0165 + 3]0, ||y

Substituting this intd”, gives
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V < — K, ()02 — 0,109 — K2 — &1 K, | |5, |

— Dyy — Ky, 05 + Koy r0ythg — Ko, 10,104

~2
yl)y + C3Kvy

This inequality can be upper bounded by expressing the hnigindl side in terms dk|,
assumingr| < r,, K, = min(K,,(t)), K, = K,,, wherer, denotes a physical upper
bound on yaw-rate, in the following way:

V < — K02+ |0 [te] — KuyWy — 1K, 0o + 3K,y | 0]y
+ |@wa¢| - chpwz + Kweruwy||w9| + Kw¢TU|@$Hw¢|
= — [X[TAX]
If the matrixA is positive definite, and; is a positive constant such that

where)\,&“in denotes the smallest eigenvaluefqf’ satisfies the second condition of
exponential stability, which in this case becomes:

V(X) < —xTAIX| < —ks X (4.33)

The matrixA is defined as:

[ K, 5C3 I, —% —%K%ru i
—%CgKy Cle —%Kweru —%
A= (4.34)
—% —%ngru Ky, 0
1 1
L _§Kw¢/’nu -3 0 Kw¢ ]

The proof is concluded iA can be shown to be positive definitBheorem 3.7n [28]
states that a symmetric x n matrix A is positive definite if all the leading principal
minors are positive. Calculating the principal minors,aedd;,: = 1, ..., 4, gives:
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d, =K, (4.35)
1
dg :Kxcle — ZCgKg (436)
1 9 o 1 15 1
d3 :Kaxcleng - ZKwae'f‘u - ZC3Kwa8Tu - ZC3Kwa9 - chKy (437)
1 1
Ay =K1 K Ko Kooy = KK r K, — 1KoK,
1, . 1 11
— O Ky Koy = 503K, KgruKou, + ¢ = 01K K, (4.38)
1 1 1
-3 woTulw, — ZKi¢chleKw9 + 1—6Ki¢r3K59

The goal is to find the set of gains which yieldis> 0,7 = 1, ...,4. At this juncture,

it is constructive to realize the potential of finding one foguration which make#
positive definite. By doing this, the existenceabfileast oneset of stabilizing gains is
proven. While not a mathematically satisfying solutionsiof practical value, con-
sidering that gain-tuning for physical systems is largelyempirical science. Another
motivating factor, is that the stability analysis is laggelased on assumptions about
properties of the physical system; when these assumptionsnger hold, stability
proofs fail, which in turn means that the correctness of api® non-deterministic.
With this in mind, an approach to finding one set of stabiliggrains is presented.

By statingk, > 0, it can immediately be seen froth andd, that

1

These are the criteria used for gain selection in [3]. Iitely, the observer presented
in this section should have roughly the same performandeeasan-adaptive observer
when the vehicle does not experience RG and RBA. This inescdiat the gaing’,,
and K, can be chosen for a configuration in which the non-adaptigeier is not
degraded. If it is degradedy,,, and K,, can't be used to improve stability either
way. The constants,, cs andr, govern stability properties. By reviewing test results
in which the non-adaptive observer fails, practical valoks,;, ¢; andr, can be es-
timated. Figure 4.4 shows results of a flat surface test wigh-dynamics and low
friction, using the non-adaptive observer. Observer failg easily identified, and by
inspecting internal states, it can be seen that the folNvowgnds give an approximation
to conditions which must be tolerated:
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cp > 1
cg3 <1
ry < lrad/s
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Figure 4.4: Circle maneuver on ice

After some experimentation, it is discovered that the gearsbe chosen as:

K, =1
K,=3
Ky, =1
Ky, =1

é

To verify correctness, the gains can be substituted intatsapus 4.35-4.38, along with

the bounds om,, c3 andr,. Sinced; > 0,7 = 1, ..., 4, the origin of the observer error
dynamics is proven to be locally exponentially stable foleast one set of feedback
gains. This analysis does not allow stating tBatl 1 andGoal 2 have been achieved,
but it has been shown that the observer can be made stablegaad@ertain physical

properties hold. While the theoretical implications areafnan implementation of the

observer for test purposes is justified.
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4.4 Roll observer

A GPS based approach to RBA compensation is realistic, duadbit luxurious.
With this in mind, an observer scheme based on vehicle ragihgyics is developed.
The idea is that a roll rate gyro can give some informationuélioe road structure.
In any case, a good estimate of vehicle roll can be used tecogravity based errors
in the lateral acceleration measurement. To implement &bheeloll observer, it is
convenient to express the dynamics on standard state-gpaceusing a temporary
variable change.

Xy = [ vy T1 T }T = [ vy Oy by }T (4.40)
fy = fy(t,vp,0,,7) (4.41)
fy = fy(t,vx,f)y,r) (4.42)
fo = Tyt v, 0y, 1) (4.43)

Now, equation 2.25 can be written as

51.3'1 ) (444)

. 1
f— 7[ fuh+ (mgh — Cyg +1*(J, — J.))x1 — Kyxa) (4.45)

xT

This model is based on familiar mass-spring-damper dymanievelopment of an
observer is simplified by making two realistic assumptions.

Assumption 4.5: v, andr are known, and some form of roll rate measurement is
available

Assumption 4.6: Roll angles are small enough fain ¢ ~ ¢ to hold
The following observer is proposed

y =y — 10, — g1 — K, (ma, — fy) (4.46)
9 (4.47)

[S3%
I

&>
I
=>

1

: 1.4 . . .
g = j[fyh + (mgh — Cy + 7‘2(Jy — J.))T1 — Kpio| + Ko[xg — T9) (4.48)

The error dynamics are

42



CHAPTER 4. OBSERVERS

B, = —gi1 + Ko, f, (4.49)
BL= iy (4.50)
- 1= o T

T2 = [fyh+ (mgh = Co+1°(Jy = L))o = (Ko + KaJu)@] - (451)

To get an idea about stability properties of the observeL,F@ will be evaluated.
a2 a2t an 4.52
V_é(vy + T1° 4+ To” + aZ139) (4.52)
whereq is a positive constant such that
i'12 + i‘gQ + axi12y > 0, VZi’l, Ty 7é 0

This is true for

O<a<?2

The expression of the time derivative dfdetermines stability.

. o o= h . ~ ah_ -~ a 5
V = — gi,&1 + K,, 0y f, + jngy + = 1 fy + J—(mgh — Oy +1%(J, — J1.)7,?
1 K
+ J—(mgh — O¢ + T2(<]y - Jz) + J$ - (IK¢ — (IJ$K2)£'1£'2 — (J—d) + K2 — a)jf

Assumption 4.4 must be used to rewrite the cross tefyfis 7, f, andz, f,. Note that
0, is zero for this observer, and thig,| < ¢|7,| is implied by the assumption. For
simplicity, the following variable change is used

a1 = —(mgh = Cy +1%(J, = J.))

which results in

. h h
V < — giyd — 1Ky, b,k + &J§1f1|~y| Ji:@ry\ - azla:«f
1 s K¢ =~ 2
— 7(041 +a(Ky+ J, Ky) — Jy) 3132 — (T + Ky — a)Zy
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It is necessary to make another technical assumption.
Assumption 4.7: a; > 0 and—+-(ay + a(Ky + J,K;) — J;) < —s1 <0
This assumption will be correct for all practical valuegbt Writing V' in matrix form

is convenient for analysis, but the current expressionireghat absolute values of
the error states are used. This creates an upper boumd for

(4.53)
1 - - hCl - - ~ ~
-+ j(ahcl +ng)|vy||:E1| + J—"Uy||l'2| -+ 81‘1’1||.CL'2|

x x

In matrix form:
V = —|x4|"P|xy|

whereP is a symmetria x 3 matrix. If P is positive definite, the observer is glob-
ally exponentially stable. Criteria for positive definiesms were stated in the previous
section.

ak,, —5-(ahey + gJ.) —fa
P=| —5r(ahe +gJ.) o —551
—2a —351 (Ij—j+K2—a)

The leading principal minors d® are

dy =c Ky, (4.54)
dy :Z(aalclKvy — 4—1J$(ahcl +9J:)%) (4.55)
dz =1 K, {&;;1 ([j—j + Ky — a) — 1512}
_ 2}7:6 (ahcy + gJ3) {ij (ahcy + gJ3) <% + Ky — a) - hz]il} (4.56)
_ g;i { 42 (ahey + gJ,) + ag}? 1}
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Sinced,, d; andds have to be positive for P to be positive definit€, andK; must
be specified to meet this demand. The first two minors give

h J2)?

K, > @hatal)” (4.57)
Y dacicy Jy,

The expression fods is quite complicated, so determining absolute bounds on the
gains is impracticafor this LFC, especially considering how conservative inequality
4.53 is. However, it is apparent that the first termdgfcan be made positive by
selectingK’, correctly, which in turn means that selectifig, large enough will make
ds positive. The follwing inequality states the necessaryrgbon K, with regards to
the analysis performed in this section
Jx812 K(z)

—2%4q (4.58)

Ky >
ao Jy

Without further analysis, it is stated that the roll obsema&n be made asymptotically
stable by gain selection. Usefulness can be determinedghrsimulations.

4.4.1 Bank angle estimation

At this point, it is appropriate to make an attempt at tagkline real issue at hand
- acceleration measurement errors due to road bank angle.téfim bank angle is

somewhat misleading, as it is the vehicle’s orientationhensturface of the road which
is important, not the road angle itself. For the problem todasonably managable, an
assumption has to be made.

Assumption 4.8: Whenever the road bank angle changes, the vehicle is gla@athe
road (no sideslip), meaning that the change is visible inlaate gyro.

The motivation for this assumption stems from vehicle kia&os. To illustrate: If the
vehicle changes orientation, for example due to large kpdes a low friction surface,
when the bank angle is constant with magnitude larger than) #ee gravitational bias
experienced by accelerometgrmay become significantly smaller than the road bank
angle indicates. However, the bank angle estimate won’ffeetad, as this maneuver
only gives a visible change in dynamic r@l}. When the vehicle recovers from this
undesired event and returns to driving straight ahead, dn& bngle estimate will be
correct.

The mathematics of the roll observer in the previous seaionly concerned with
rolling motion of the vehicle chassis relative to the wheett bank angle. A roll gyro
measurement will under Assumption 4.8 include change itk laaugle. This leads to
the following relation:
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gzlsr ~ Pd — QZ.SU (459)

Usingpy = x4, With 2, as defined in the previous section, an observer with bankeang|
compensation is specified.

>
I

y =y — 0y — g(T1 + @T) - K, (ma, — fy) (4.60)
(4.61)

8-
I
=>

1

5 I 5 7 %
Ty = T[fyh + (mgh — Cy + TQ(Jy — J2))i1 = Kos] + Kofry — ] (4.62)

2

¢ér = K3[zy — 1 (4.63)

Showing stability of this observer has proved difficult, sstead of including an in-
complete mathematical analysis, the observer will be etatlby aid of simulations.
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Experimental results and
discussion

When combining the various results presented in this refiaate are four main criteria
which determine practical usefulness.

Criterion 1. GPS-based velocity measurements must gixeagaonablyaccurate ap-
proximation to actual vehicle velocity.

Criterion 2: The augmented observer must work perfectly whgns specified cor-
rectly andv™ = pCORR,

Criterion 3: The augmented observer must haeeeptablgerformance whepy is
specified correctly and™ = v&7%,

Criterion 4: Implementation of the bank angle observer must improvenesés ofy,
for all conditions. Tests are performed using the CASCabiufator.

The following sections demonstrate how these criteria @mapo test results, both
positively and negatively. Naturally, the wide array of igarable parameters affect-
ing performance of each test won'’t be printed out, as thislevdistract from under-
standing of general results. However, it is necessary te gt@perties of three key
parameters:

K,, — Settoone
K,, — Settoone
iy — Chosen to match known surface conditions

If different configurations are used, they wille be specigeglicitly.
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CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Criterion 1

The first criterion can be expected to hold when vehicle $jgeslow. This is because
1. ~ 1. Test conditions should therefore pg ~ 1,0 = 0 and¢ = 0. Figure 5.1
shows results of a test where these conditions hold.

(a) Longitudinal velocity
T T

IS
o

VCORR
X

___yoPs ||
X

[
S
T

Longitudinal velocity (m/s)
N
o

N
S

| | | |
5 10 15 20 25 30 35 40
Time (s)

o

(b) Lateral velocity

Lateral velocity (m/s)
o

Figure5.1: (a) Actualv, and filteredvS"¥ (b) Actualv, and filteredv("S

The vehicle performs a slalom maneuver. While the shap€’6f gives a good ap-
proximation to actuad,, it is unfortunately corrupted by time delay (0.5 s). Reoall
from Section 3.2 that the heuristic filter does not give anlyaephase to the signal,
the conclusion is that the time delay stems from intrinsmperties of the GPS sys-
tem. Using the current configuration, this delay can't beoaoted for by software
manipulation, rendering{”"* a poor candidate for feedback in the observer.

Although the negative implications of this result are ohadowing, it is wise to
analyze hovaGP S performs with respect to other properties, since it is geghat
the time delay can be decreased significantly, e.g. by usimgteer update frequency
in the receiver.

The amplitude ofuyGPS is slightly lower than that of actual,. Here, the main
culprit is expected to be error in., considering that the vehicle most likely experi-
ences some degree of sideslip for lateral velocities ofrtiagnitude. The definition
of sideslip, is as follows:

Bi=1— 1 (5.1)
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Since the current observer implementation produces amatsiof sideslip, it is possi-
ble to usey instead ofy. in Ry, by settingy = ¢ + 3. A practical implementation of
this, requires that is delayed correspondingly to the time-delay of the GPS oreas
ments. Figures 5.2 and 5.3 show what happens when this agppioatilized. Note

thatv, has been delayed to make signal comparison easier.

Lateral velocity (m/s)

Lateral velocity (m/s)

Time (s)

Figure5.3: Actual v, and filteredv$”*, using feedback from sideslip

In short, Criterion 1 will hold if GPS time delays can be reeldto an acceptable level.
For the data sets used in this report, however, Criterionld. fa
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5.2 Criterion 2

The second criterion states that when a correct measuresheptis used, the aug-
mented observer should be able to handle variations in RRIARLB, given a correct
specification ofy.

Figure 4.1 demonstrated how the non-adaptive observer fiextedd by RBA. If
the augmented observer is to be of use, it has to remove thedRBAcomponent from
v,. Figure 5.4 shows the same maneuver, using the augmentex/ebwith feedback
from vaRR. Observer error is well within accepted margins, showirag tor this
particular test, the augmented observer has desired paifme. Unfortunately, actual
RBA values are unknown, so the correctnessogfcan’t be confirmed without new
test data sets.

Lateral speed
T

Lateral speed (m/s)
o

0 10 20 30 40 50 60
Time (s)

Figure 5.4: Actual v, andd,

To verify, another data set is evaluated. In Figure 5.5, iit lba seen that the non-
adaptive observer gives a very large erropjrtowards the end. This error is caused
by RBA. By comparison, the augmented observer works clopetictly, as seen in
Figure 5.6.
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Figure5.5: Actual v, and?,, non-adaptive observer
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Lateral speed

CORR

Lateral speed (m/s)
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Figure5.6: Actual v, and?,, augmented observer

Because none of the data sets currently available contsis performed with RG,
correctness of,, andw, can’t be shown directly. However, by adding a slowly varying
sinus signal taz,, the estimation error caused by RG can be simulated. Topoldl
go where few vehicles will, the sinus signal is given an atngk corresponding to

0 = 20 degrees, which is an extreme and unlikely road conditiogufé 5.7 shows
what happens to the non-adaptive estimate of longitudiglaloity in this case.

Longitudinal speed
60 T

CORR

VX
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Figure5.7: Actual v, andv,, non-adaptive observer
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Performing the same test with the augmented observer, givexpected resultw,
converges to the correct value, aglgives a very good indication of what the actual
RG is, although variations in lateral velocity and sidesigiuce some oscillations. See
Figure 5.8.

(a) Longitudinal speed

60 T
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(b) Road grade
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Road grade (deg)
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Figure5.8: (a) Actualv, andd,, augmented observer (b) Acceleration bias and estimated RG

In this section, it has been shown that Criterion 2 holdssT$ionly important in that
it demonstrates correctness of the augmented observerahisncorrect, which is a
fundamental requirement of the estimation scheme.

5.3 Criterion 3

The conditional failure of Criterion 1 indicates that Criten 3 should suffer the same
fate. Luckily, things are not quite that black and white. |&a& of Criterion 1 was

based on the GPS based velocity signal’s lack of ability askrhigh dynamic ma-

neuvers correctly, due to an inherent time delay in the ays¥hile the augmented
observer is expected to have reduced performance when ltheevexperiences fast
changes in acceleration, it should still be able to compgerisa RG and RBA when

these disturbances vary slowly. Still, a few proverbial pgnn the road have to be
considered:
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e The rotation matrix}, currently in use, does not include information abeut
andd. In practice, this means thaf"* andv{""* actually give receiver velocity
components in a horizontal plane. If e.g. the vehicle isadriup a steep hill,
v&PS will become significantly lower than actual. The most immediate so-
lution to this problem, is simply to use feedback of estirdatendd, from the
augmented observer, Ri;.

e While v&"% will be a good approximation to, most of the time,vS"® can
corrupty, significantly due to time delay. Disregarding the limitinigoece of
gains used in the stability proof in Section 413,,, should be set fairly low,
that is K, < 1. Knowing that this gain determines to what degree the GPS
measurement is allowed to influence the state estimatistifigs experiments
with lower values. All tests in this section are basediap = 3.

e For certain tests, the GPS measurement is extremely cedudf an actual
implementation of the results from this report is to be cdestd, some form of
software procedure which discovers GPS failure has to beldeed.

To begin with something familiar, the test shown in Figurkid.presented once again,
this time using the augmented observer with feedback fror8 kd3ed velocities. De-
sired behaviour is correction of error due to RBA, and acaptmagnitude of degra-
dation due to GPS time delay. See Figure 5.9 and Figure 5.8xpexted, the estimate
of v, can be considered to be perfect. Even tholigsuffers some degradation during
the slalom maneuver, it has been corrected for the RBA diatwe, which is the main
purpose of the augmented obser\@?s can be seen to contain a good deal of noise,
but very little of this passes through {9, implying observer robustness with regards
to high frequency noise.
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Figure5.9: (a)v$"* (b) Actualv, and?,, augmented observer
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Figure5.10: (a) vS"* (b) Actualv, and?,, augmented observer
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It has been mentioned several times thatuﬁés can get extremely noisy. Because of
this, itis necessary to see how the augmented observerésivdnen this happens. The
test from Figure 5.5 and Figure 5.6 is evaluated again, iime tising the augmented
observer with feedback from a noise-riddefff”>. See Figure 5.11 and Figure 5.12.
Once again it can be seen that the high-frequency compookrff$® have very little
effect ond,. If a larger value ofk’,,, was chosen, a larger degradatioripfvould be
seen.
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Figure5.11: (a)vS"S (b) Actualv, andv,, augmented observer
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Figure5.12: (a)v$"* (b) Actualv, andi,, augmented observer

To see exactly how accurate the RG and RBA compensationigsgcanstructive to
evaluate performance when bath anda, are biased by simulated gravity compo-
nents, much like in Figure 5.8. To minimize disturbancessediby driving pattern, a
data set for a stand-still test will be considered. Addinghasoidal bias to the accel-
eration measurements, corresponds to placing the vemdaditiable platform. Since
velocity and slip are both zero, the results will not be atedy errors in the friction
model. Figure 5.13 shows what happens to the non-adaptseredr when, anda,
are affected by the same bias; in this case a sinus with ardplitorresponding to RG
and RBA of 10 degrees. Even when the vehicle isn’t moving,aiteeleration bias
causes a relatively large error in the velocity estimategurié 5.14 demonstrates how
the augmented observer deals with the problem.
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Figure5.13: (a) Actualv, and?,, non-adaptive (b) Actual, andv,, non-adaptive

56



CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION

(a) Longitudinal speed

Longitudinal speed (m/s)

12

10 15 20 25 30
Time (s)

(c) Road grade

10f

Road grade (deg)

o N~ OO ©

Sinusoidal bias
— — - Estimated RG

0 5

10 15 20 25 30
Time (s)

Lateral speed (m/s)

Road bank angle (deg)

0.5

(b) Lateral speed

10 15 20 25 30
Time (s)

(d) Road bank angle

Sinusoidal bias
— — - Estimated RBA

10 15 20 25 30
Time (s)

Figure 5.14: (a) Actualv, andv,, augmented (b) Actual, andv,, augmented
(c) Acceleration bias and estimated RG (d) Acceleratios biad estimated RBA

Clearly, the augmented observer has better performance thieeassumption of flat
surface driving no longer holds. While the estimates of R@ RBA are slightly
skewed, they account for velocity errors quite nicely. Thereobserved irv,, is less
than 0.1 m/s, and in effect negligible.

The test results presented in this section show@néterion 3 holds, even though
many more tests should be performed for a definite conclusibe made. Ideally, all
the data sets should contain information about road streictnaking verification of
observer correctness (or failure) easier.

5.4 Criterion 4

Criterion 4 is tested using the physically accurate CASCaiiulator, in which all
relevant parameters can be adjusted manually. Roll and dagle compensation is
tested for basic maneuvers on varying surface conditiof®reTlis one large disad-
vantage with these tests - a simulator can’t fully represeail life physics or sensor
configurations. It does, however, help in determining feitisi of suggested solutions.

The roll rate measurement is simulated by the Euler ¢atehich is available in
CASCaDE. This will be a good approximation as long as Eulgieafh = 0. When
the vehicle experiences sideslip on a banked road, thistwerthe case, meaning that
certain results need a more thorough examination thansther
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5.4.1 Roll compensation

In this section, performance of the roll compensated olesérom section 4.4 is tested
for steady turn and slalom maneuvers. The goal is to deterthioll compensation
can lead to improvements i,. All tests are performed without friction adaptation,
using longitudinal speed, = 80 km/h and feedback gains set to 1. Variables used:

¢— Actual Euler angle, as given by CASCaDE
#9P5 — Estimated roll angle without roll compensation
#9P5% _ Estimated roll angle with roll compensation

v,— Actual lateral speed, as given by CASCaDE

vyOBS — Estimated lateral speed without roll compensation

v,?P%¢ — Estimated lateral speed with roll compensation

Figures 5.15, 5.16, 5.17 indicate that roll compensatiob@bly isn't necessary when
there is no bank anglev, is degraded for high friction conditions, and slightly im-
proved for low friction conditions, which means that theezg= lies in howi,, is
tuned, not how, is modified. This is an expected result, as dynamic roll igppre
tional to lateral acceleration, and can be corrected foritoply scaling the accelera-
tion measurement.
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5.4.2 Road bank angle compensation

As bank angle compensation is the main focus of this reperfppmance of the ob-
server in section 4.4.1 is of great interest. If an arbitfaycentage of the accelerom-
eter bias due to RBA can be removed, a corresponding imprerem v, can be
expected. Because stability of the RBA observer hasn't ietarmined mathemat-
ically, these results should only be viewed as indicatorprattical usefulness, not
validations of presented theory. The RBA estimate itsglii$s the integral of the dif-
ference between measured and estimated roll rate, andkeily diverge over time if
used directly. This problem is left untreated for the timage

Figures 5.18 and 5.19 demonstrate how the RBA estimate caldzeto correct
large gravitational biases in the accelerometer. Of coansBBA value of 0.12 rad,
which is about 7 degrees, represents a completely unieaisting condition, but it
shows that the observer is able to handle regular roads.
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- - — OBS
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Time (s)
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Figure5.18: Straight drive with change in RBA after two seconds, RBA =20rdd, iy = 1
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In Figure 5.20 it can be seen that?°? deviates fromp. The exact reasons for this
can’t be identified, but a contributing factor is vehicleestlp. Recalling that is
the Euler angle, one can deduce that it will be smaller tharbdmk angle when the
vehicle experiences sideslip. The observer, however, basethanism for sideslip
compensation, an improvement that will be necessary in etipah implementation.
Either way, estimated lateral velocity is better than withRBA compensation.
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Figure 5.20: Right-left turning maneuver with change in RBA after two@eds, RBA = 0.12
rad,uy =1

Figures 5.21 and 5.22 demonstrate what happens when therfrggarametef. is
set to 0.5 instead of 1. For the slalom maneuver, estimatedl iREorrect and,
improved, although, is too conservative for the slippery surface conditionsb-(O
server tuning is not considered an important aspect of gpert - the main focus lies
in getting estimates that mimimc reality in terms of shagey the slower right-left
maneuver, a deviation affects the RBA estimate. Like befibis hard to determine
exactly what happens, but it most likely has to do with sigesshd vehicle orientation
on the surface. These conditions break Assumption 4.8 alhtavie to be considered
in future observer improvements. By letting the vehicld@an a longer left turn, the
resultis as shown in Figure 5.23.

It is clear that the RBA observer has merit. A simulator caedreate reality, so
there’s obviously need for testing and tuning on a vehidg,ds an initial indicator,
the presented results are positive.
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Chapter 6

Conclusion

In this report, an approach to estimating road grade andbvaakl angle, using GPS as
an aiding system, has been presented, together with anagtpit@bank angle estima-
tion using a roll rate gyro as measurement. The interestsnstems from the knowl-
edge that existing nonlinear observers for vehicle staienason have weaknesses
with regards to these disturbances. Firstly, it has beewshioat calculating vehicle
velocity from GPS position measurements is a straightfoiygaocedure, although far
from ideal with regards to noise and accuracy. Furthermbee GPS measurements
suffer from a time delay which is too large for them to be used stand-alone imple-
mentation. However, simple filtering techniques have besnahstrated to give good
enough signals for integration with a nonlinear observecdddly, augmentations to a
previously developed nonlinear observer has been madkasi is able to make use
of the new information that GPS provides. Also, the develeptof a mathematical
model for vehicle roll has made bank angle detection passiiinbugh the aid of a gyro
measurement. Stability of the augmented observer has eot fo@ven for a general
set of constrained feedback-gains, but it has been showstttality is ensured when
certain assumptions about the physical system holds. Tine satrue for the roll
observer without bank angle compensation. However, nalisygiroof is presented
for the bank angle parameter estimate. Finally, it has beemodstrated that the aug-
mented observer gives good estimates of road grade and ao&ahgle, and accounts
for the errors they cause when not compensated for, throvajbation of data from
actual vehicle tests. While the augmented observer sustarse degradation of per-
formance when no disturbances are present, the overadlaserin robustness is good
enough to consider it an improvement over existing solgtionhe gyro based bank
angle observer shows potential, and should be considereanptementation on a test
vehicle.

The main focus of this report has been to determine if it isifda to use GPS
as an aiding system for vehicle state estimation with nealirobservers, and if the
problems related to bank angle can be partially removedywssimpler measurement
unit, such as a roll rate gyro. For the GPS problem, the cermatus obvious: By in-
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corporating relatively poor GPS velocity measurementkéféedback loop, a notable
increase in estimation performance during periods of rostdidance is gained. This
clearly demonstrates feasibility of the proposed solutiBank angle estimation by
aid of a roll gyro also looks promising, but because stablibofs and actual vehicle
tests are lacking, no final conclusions can be made at thrg.pbiote that although
the presented results are positive, they should not bededas optimal. For the aug-
mented observer to be implemented in an actual vehicle, uldveeed modifications
and improvements which haven’t been considered in thisrtepotwithstanding, the
ability to account for disturbances such as road grade aadi lbank angle, makes it
successful in laying a foundation for future solutions. Baene can be said for the
less rigorously tested bank angle observer.
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Appendix A

Kinematics

A.1 Rotation matrix

The rotation matribR between two frames a and b is denote&gsand it is an element
in SO(3), which is the special orthogonal group of order 3:

SO(3) = {R|R € R*** Ris orthogonal and dBt = 1} (A.1)

The groupSO(3) is a subset of all orthogonal matrices of orderS8)(3) C O(3),
whereO(3) is defined as:

0(3) = {RIR e R** RR" =R"R =1} (A.2)
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Appendix B

MATLAB functions

B.1 Butter

BUTTER - Butterworth digital and analog filter design. [B,A]BUTTER(N,Wn)
designs an Nth order lowpass digital Butterworth filter agtdims the filter coefficients
in length N+1 vectors B (numerator) and A (denominator). Tbefficients are listed
in descending powers of z. The cutoff frequency Wn must bec®\h < 1.0, with 1.0
corresponding to half the sample rate.

B.2 Pwelch

PWELCH - Power Spectral Density estimate via Welch’s metfboc = PWELCH(X)
returns the Power Spectral Density (PSD) estimate, Pxxdif@ete-time signal vec-
tor X using Welch'’s averaged, modified periodogram methgdd&ault, X is divided
into eight sections with 50window and eight modified perigions are computed and
averaged.
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