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Abstract

The main objective of this thesis has been to study the phenomenon of water impact under-
neath the decks of offshore platforms due to propagating waves. The emphasis has been on the
impact loads. Two theoretical methods based on two-dimensional potential theory have been
developed, a Wagner based method (WBM) and a nonlinear boundary element method (BEM).
A procedure to account for three-dimensional effects is suggested. The deck is assumed to be
rigid. Initial studies of the importance of hydroelasticity for wave loads on an existing deck
structure have been performed. For a given design wave, the local structural responses were
found to behave quasi-static. Global structural response has not been studied.

In the Wagner based method gravity is neglected and a linear spatial distribution of the relative
impact velocity along the deck is assumed. The resulting boundary value problem is solved
analytically for each time step. A numerical scheme for stepping the wetted deck area in time
is presented.

The nonlinear boundary element method includes gravity, and the exact impact velocity is con-
sidered. The incident wave velocity potential is given a priori, and a boundary value problem for
the perturbation velocity potential associated with the impact is defined. The boundary value
problem is solved for each time step by applying Green’s second identity. The exact boundary
conditions are imposed on the exact boundaries. A Kutta condition is introduced as the fluid
flow reaches the downstream end of the deck. At present, the BEM is only applicable for fixed
platform decks.

To validate the theories, experiments have been carried out in a wave flume. The experiments
were performed in two-dimensional flow condition with a fixed horizontal deck at different ver-
tical levels above the mean free surface. The vertical force on the deck and the wetting of the
deck were the primary parameters measured. Only regular propagating waves were applied.

When a wave hits the deck, the structure experiences a positive slamming dominated force
(upward directed) during the initial water entry phase, followed by a negative force during the
water exit phase. The force in the latter phase is dominated by a negative added mass force
due to negative vertical fluid particle accelerations in the wave crest. The positive force peak is
highly dependent on the impact condition and is especially semsitive to the initial deck clearance.



The magnitude of the negative force peak is less dependent on the impact condition. This peak
occurs when the wetting of the deck is at its maximum and its magnitude may be larger than
the positive force peak. Thus, the water exit phase is important for global effects. The initial
impact yields the highest average pressures and is critical for local structural response in the deck.

Comparisons between experiments and theory have been performed for a number of impact
conditions. Second order Stokes’ theory is used to describe the incident waves. The Wagner
based method describes the water entry phase well. Both the magnitude and the duration of
the positive force peak are well predicted. The computations for the water exit phase are less
satisfactory. The WBM overestimates the magnitude of the negative force peak and it underes-
timates the duration of the water exit phase.

In the nonlinear boundary element method, the impact induced vertical force on the deck is
calculated by imposing conservation of fluid momentum and by using direct pressure integra-
tion. These two approaches yield similar force histories except during the final stage of water
exit, where they tend to diverge. This is caused by inaccuracies in the numerical solution and
in the formulation of the boundary value problem. The force at this stage is small. The BEM
yields results that compare well with experiments for both the water entry and the water exit
phase. Especially for the water exit phase the BEM is superior to the Wagner based method.
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CHAPTER 1

Introduction

1.1 Background and motivation

Water impact loads on offshore structures have been of concern for designers during the past 25
years. In the early years, the main interest was focused on impact forces on horizontal structural
members located in the splash zone, see e.g. Dalton and Nash (1976), Kaplan and Silbert (1976),
Faltinsen et al. (1977) and Sarpkaya (1978). Water impact on decks of platforms was of less
concern.

It is common practice to design the lower deck of offshore platforms to be above the maximum
predicted wave level. When the first generation of bottom-mounted platforms were designed,
the knowledge was limited regarding wave heights and variability of environmental conditions
with time. Even if the bottom-mounted platform is designed with a safe deck clearance, this
will in many cases be reduced in time. This reduction can be caused by either settlement of the
platform due to its own weight or by foundation subsidence and reservoir compaction. Therefore,
the deck may be imposed to wave induced loads which were not accounted for in the original
design. Due to these uncertainties in the safety level, it is important to accurately predict the
hydrodynamic loads and the structural response due to wave impact underneath decks of exist-
ing fixed platforms. The significant level of subsidence at the Ekofisk field launched the need to
re-examine all the platforms in the area with respect to wave impact, see e.g. Broughton and
Horn (1987).

Health & Safety Executive (HSE (1998)) gives a review of requirements for air gap provision for
fixed platform according to past, present and future guidelines. Different regional approaches
from the UK (Health & Safety Executive), USA (American Petroleum Institute) and Norway
(Norwegian Petroleum Directorate) are presented and compared with a draft ISO standard which
is seeking to evolve a state-of-the-art position. The UK and US practices dictate a finite margin
between the extreme wave crest and the deck at maximum tide, e.g. > 1.5m air gap above 100

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Model test of semi-submersible in ezxtreme waves.

years design wave crest is recommended by API. The air gap accounts for settlement, subsidence,
and uncertainties in environmental data. By contrast, Norwegian standards set no absolute val-
ue, but requires a sufficient air gap for the probability of structural damage to be less than 10~*
per year when all uncertainties are accounted for. The draft ISO standard is evolving towards
the same approach.

When the oil and gas production moves to deeper waters, bottom-mounted platforms become
less applicable. In deep water, floaters such as semi-submersibles are often used. Also for floaters
it has been customary to neglect any probability of waves reaching the deck, relying on that the
air gap provides a sufficient margin of safety. Even though water impact events have not been
accounted for in the design, existing floaters have experienced damages from waves impacting
on the lower deck structure. The deck height of floaters is limited by weight and stability con-
siderations, and this makes the air gap a substantial cost driver for the platform. In the design
of new floaters, one might allow some extreme waves to hit the deck structure. Reduction of
deck clearance of existing floaters may occur when they are in damaged condition or due to
failure in ballast systems. The deck clearance of existing floaters may also be decreased if higher
production is desired. Accordingly, increased storage capacity and deck weight must be com-
pensated by reduced deck clearance. This implies higher risk of wave impacts. A wave impact
event is depicted in Figure 1.1. The snapshot is taken during a model test of a semi-submersible
in extreme waves. A good structural design of the deck in this case requires accurate assessment
of both wave kinematics and hydrodynamic load response due to wave impact. The latter will
be the main topic of this work.
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In addition to massive wave impact events similar to the one depicted in Figure 1.1, run-up
of water along platform legs can also cause water impacts underneath platform decks. Impacts
caused by run-up are localized in space and crucial for local structural responses, but they are
unimportant for global effects. Run-up is not considered in this work.

1.2 Previous work

The general problem of hydrodynamic impact has been studied extensively motivated by e.g. its
importance for horizontal members in the splash zone of offshore platforms, bottom and bow-
flare slamming on ships, green water impact on deck structures of ships and wetdeck slamming
on catamarans. Faltinsen (2000b) gives an overview of the many water impact problems in ship
and ocean engineering. Water impact is also crucial for numerous problems within coastal engi-
neering. First ground-breaking studies on water impact of solid bodies were performed by von
Kérman (1929) and Wagner (1932). Von Karman analyzed the impact loads on sea plane floats
during landing by imposing conservation of fluid momentum. Wagner modified von Karman'’s
method to account for “pile-up” of water caused by the presence of the body. Further, Wagner
studied the details of the flow at the spray roots, where the maximum pressure occurs for small
local dead-rise angles. Both von Karman and Wagner assume two-dimensional flow and implic-
itly small local dead-rise angles. By local dead-rise angle it is meant the angle between the body
surface tangent and the horizontal plane. These impact formulae inspired much research in the
field of ship slamming. Zhao and Faltinsen (1992) studies the influence on the vertical accel-
eration of a catamaran due wave slamming on the wetdeck. Comprehensive reviews of works
related to ship slamming are given in e.g. Kvalsvold (1994) and in Haugen (1999). Rognebakke
and Faltinsen (2000) study the damping of sloshing motion due to fluid/ tank roof impact.
Bow-stem slamming and green-water impact on deck structures are of concern for floating pro-
duction, storage and offloading units (FPSO). Green-water problems are often associated with
the “dam-breaking” problem. This is studied by e.g. Buchner (1995) and Greco et al. (2000).
Korobkin and Pukhnachov (1988) give a good review of the numerical and analytical methods
which have been used to study the initial stage of water impact with solid bodies. They focus on
the effect of compressibility and find that in the initial stage of impact the flow will be supersonic.

The work performed on wave impact under platform decks is more limited, but it has been
considered by many researchers. An early work on this topic was performed by ElGhamry
(1963). He presented a theoretical and experimental investigation of the vertical forces on a
horizontal dock due to periodic waves. His conclusion was that for non-breaking waves, two
kinds of vertical forces act on the dock, namely an upward directed force caused by vertical fluid
velocities and a downward force which originates from the negative pressures associated with
the advancing of the trough under the dock.

Furudoi and Murota (1966) conducted an experimental investigation of the vertical force acting
on an overhang at a wall due to impacting standing waves. They developed formulae for loads
on protrusions in terms of water depth and standing wave properties. The same problem was
later studied by Ramkema (1978), who included air cushion compression in the theoretical model.
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An extensive study on wave induced uplift pressures on platforms was performed by French
(1969). He carried out experiments on a fixed horizontal deck exposed to solitary waves. The
positive pressures due to impact were found to be related to the wave celerity, and a simple
theoretical formula was developed. Negative pressures were observed when the wave became
detached from the platform. Following on from French’s and from other experiments, Lai and
Lee (1989) developed a Galerkin finite element method for this problem. Their numerical results
compare well with the experiments.

Denson and Priest (1971) performed experiments to study the pressure distribution on the
underside of an elevated horizontal deck in shallow water, due to impact of a solitary wave. The
destructive effects of shallow water wave action on platforms during hurricanes were of concern.
The experimental results were generalized by means of dimensionless parameters based on the
wave height, the water depth, the initial deck clearance and the deck’s length and width. Denson
and Priest (1972) presented a study of the total vertical force on the deck for the same problem.
They concluded that the maximum uplift force depends on the degree to which the structure
interferes with the wave motion, and that it decreases with increasing water depth. No theoret-
ical approach to the problem was attempted.

Cooker and Peregrine (1995) present a pressure-impulse theory for impact of an incompress-
ible fluid on a solid surface or on a second fluid. Wood (1997) uses the pressure impulse theory
to study wave impact on structures, and Wood and Peregrine (1998) extended this to study
wave impact on a structure with trapped air.

Shih and Anastasiou (1989) and Shih and Anastasiou (1992) presented a laboratory study of
wave induced up-lift pressures acting on a horizontal platform. Water was allowed to flow over
the deck, and the wave crests used in the experiments greatly exceeded the deck clearance. They
divide the pressure history into three phases. At the time instant when the wave hits the deck
an impact pressure of high magnitude and short duration is exerted. To detect this pressure
in the experiments, a very high sampling frequency must be applied. This initial phase is first
followed by a slowly varying positive and then by a slowly varying negative pressure. Since the
high pressure is very localized in space and time, the magnitude is generally not important for
the structural response. The important quantity is the integrated force impulse acting on the
structure causing local hydroelastic vibration. This is noted in Faltinsen (1997). Kvalvold et al.
(1995) presented measured peak pressures on a plate from drop tests on waves. The results for
a given wave and a given drop speed showed a tremendous scatter while the resulting maximum
strains were not sensitive. Kvalvold et al. (1995) concluded therefore that focus on the peak
pressure itself may be misleading from a design point of view.

The subsidence of Ekofisk, launched several studies on the wave loading and on the structural
response due to deck impact. Broughton and Horn (1987) performed a re-analysis of the Ekofisk
platform 2/4C. They obtained theoretical results for the maximum vertical force on the deck
during water entry by considering a slamming force from a von Karman type of approach. No
estimate of the water exit force was found. A more extensive theoretical analysis procedure
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for the assessment of the impact loading is given by Kaplan (1992). His model considers also
the water exit force, i.e. the force when the wetted area diminishes. Also Kaplan uses a von
Karman approach, but he includes both the slamming force and the added mass force due to
the wetting of the deck. In addition, he includes a drag force by using a drag coefficient for
viscous flow passed a flat plate. However, the physical basis for using a drag formulation can be
questioned since viscous flow separation does not occur in the present problem. The fluid veloc-
ities and accelerations within the crest region, are represented in a similar manner as in linear
theory, but nonlinear Wheeler stretching relations are used. In Kaplan et al. (1995) theoretical
results for both solid and porous decks are compared to experiments by Murray et al. (1995).
Kaplan's method describes the maximum impact force well, while the scatter between theory
and experiments is somewhat larger for the negative water entry force. The duration of the
water entry/ water exit process is not discussed. According to HSE (1998), Kaplan’s approach
is state-of-the-art in predicting impact loads on platform decks.

1.3 Outline of the thesis

The thesis is roughly divided into three main parts, which are presented according to the tem-
poral evolution of this work.

The first part describes a Wagner based method for solving water impact underneath an imper-
meable deck of a fixed or a floating platform, due to incident propagating waves. This part is
covered in Chapter 2 and Chapter 3. In the former the theoretical background for the method
is presented. A hydrodynamic boundary value problem is defined and an analytical solution is
derived. Expressions for the impact loading in both two-dimensional and three-dimensional flow
conditions are given. In the latter the numerical scheme for solving wave-in-deck events by the
Wagner based method is outlined. Assumptions and limitations are discussed and a parametric
study is carried out.

The second part of the thesis concerns the experimental work performed. This is presented
in Chapter 4, where the experimental program is described and the findings are discussed.
Comparisons between results from laboratory tests and theoretical results obtained by using the
Wagner based method are presented and discussed.

Chapter 5 and Chapter 6 cover the third of the main parts, dealing with boundary element
methods. Chapter 5 starts out by discussing the motivations for developing a boundary element
method (BEM) to study the wave-in-deck problem. Further, the mathematical formulation for
two-dimensional boundary element methods is outlined. A linear BEM and a fully nonlinear
BEM for forced oscillations of cylinders have been developed and validated. In Chapter 6 the
developed nonlinear BEM is extended to solve the deck impact problem. The method is de-
scribed and discussed. Numerical results are compared with the experiments.

Finally, in Chapter 7 the main conclusions are listed and some suggestions for further research
are given.
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1.4 Contributions of the thesis

From the author’s point of view, three main contributions can be addressed to work, each of
them associated with the corresponding main part outlined in Section 1.3.

The first contribution is the development of the Wagner based method. This is a simple method
for analyzing water impact on platform decks, and it is solved by establishing a boundary value
problem similar to the one presented in Zhao and Faltinsen (1992) for slamming on the wetdeck
of catamarans. The main enhancement when comparing with the analysis procedure described
by Kaplan (1992), is that the present method accounts for the free surface deformations caused
by the impact and ensures a better description of the wave kinematics. The Wagner based
method is applicable for floaters. But Kaplan (1987) has also applied his von Karman based
method to moving bodies. He considers flat bottom slamming on advanced marine vehicles.
Two-dimensional theory is applied for the Wagner based method , but an estimate of three-
dimensional effects is given. Knowing its limitations, designers may use this method to obtain
good estimates for impact loads and rigid body responses.

The experiments represent a valuable contribution. The impact conditions tested in the lab-
oratory are documented, and time series of both the loading on the deck and the wetting of
the deck are given for all cases. This may be a valuable source of reference for researchers who
want to validate theories for such impact events. Efforts have been made to properly describe
the physics of the problem, and the use of pictures and sketches in the description has been
emphasized.

The final contribution of this thesis comes from the nonlinear boundary element method for
deck impact. This method yields results that compare well with experiments for both the water
entry phase and the water exit phase. Especially for water exit, this method is superior to the
Wagner based method and Kaplan’s approach. Its weaknesses are also discussed.

This work has partially been discussed in Baarholm and Faltinsen(2000, 2001) and in Baarholm
et al. (2001).
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The hydrodynamic formulation for the
Wagner based method

2.1 Introduction

The impact theories by von Kirmén {1929) and Wagner (1932) facilitates the derivation of sim-
ple analytical solutions for the initial impact of circular cylinders and wedges on a calm free
surface, see e.g. Faltinsen (1990). The simple expressions provide satisfactory results for wedges
with small dead-rise angles. The discrepancies between the analytical results and those of more
refined methods, such as a fully nonlinear boundary element method, increases for increasing
dead-rise angle. Zhao et al. (1996) developed a generalized Wagner’s method for slamming of
two-dimensional bodies. This method differs from the analytical one, since it uses the exact
body boundary condition. By using Green’s second identity to solve the velocity potential on
the body, Zhao et al. (1996) obtained good results for slamming of wedges with finite dead-rise
angles.

Motivated by these results, it was decided to develop a method analogous to the generalized
Wagner’s method for solving wave impact underneath deck’s of offshore platforms. The problem
to be solved is the impact process of a wave that reaches the deck at the front end of a platform
and propagates downstream along the length of the deck. The main target of this work is to
determine the time evolution of the hydrodynamic forces and moments acting on the deck. For
a floater, the rigid body response due to the water impact must also be found simultaneously,
since this affects the hydrodynamic impact loading on the deck.

In this chapter, the theoretical bases for the method will be described. In the following, this
method is denoted as the Wagner based method.
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20, 713 (heave) %0
QO 6 (yaw)
[ 1 L
~ Tos Th (surge] — Yo, T (sway)
Ny
74 (roll) 75 (pitch)

[ ) C—)

Figure 2.1: Definition of rigid body motion modes.

2.2 Definition of motions and coordinate systems

Propagating incident waves are assumed. The rigid body motion is described by six degrees
of freedom with respect to a global coordinate system, (zo, %o, 20). The (o, Yo, 20)-coordinate
system is earth fixed and attached to the mean body position, i.e. no drift forces are assumed
and thus the body has zero mean velocity. The coordinate system is right-handed, with positive
zp-axis vertically upwards through the body’s center of gravity. The zoyo-plane is located on
the undisturbed free surface. Let the oscillatory translatory displacements parallel to the zo-,
yo-, and zg-axis be referred to as surge, sway, and heave respectively, and denoted as 7, 72, and
n3. The angular oscillatory displacements of the rotational motions about the same axes are
denoted as 74, 75, and 7, i.e. roll, pitch and yaw respectively. See the illustration in Figure 2.1.

A two-dimensional problem is assumed. Accordingly, the yp-axis can be omitted. This is the
sitnation shown in Figure 2.2, where the waves propagate along the positive zo-axis. Small body
motions are assumed so that sin7ns = 75 and that cosns = 1. Three coordinate systems are
shown in the figure. The (%, Z)-coordinate system is right-handed and body fixed. Its axes and
origin are located so that the coordinate system coincides with the global earth-fixed coordinate
system when the body is in its mean position. The relationship between the body fixed and the
earth fixed coordinate systems may be written as

$0=5I+’I71 and Zo=2+7')3—.'i‘175 (21)

The third coordinate system has its origin in the center of the instantaneous wetted part of the
deck. The front end, or upstream end, of the wetted length is defined as Zp, while the aft end,
or downstream end, of the wetted length is denoted as %4, when measured in the body-fixed
Fz-reference frame. Similarly to the notation used in Faltinsen (1990) for impact problems, half
of the wetted deck length is denoted as ¢, so that the total length of the wetted part of the deck
is equal to 2¢. This gives the following relations between the zz- and the ZZ-coordinate systems.

z=F—Zr—c and z2=23 —1)ge , (2.2)

where 7440 is the deck clearance in still water. The different coordinate systems are shown in
Figure 2.2.
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Figure 2.2: The coordinate systems used in the calculations. The shaded area defines the wetted
length of the deck.

For the case with a bottom mounted platform the two first coordinate systems will be equal,
and the zyzp-coordinate system will be obsolete.

2.3 The hydrodynamic boundary value problem

Two-dimensional, irrotational flow and an incompressible fluid are assumed. Accordingly, po-
tential flow theory is applied and viscous effects are neglected. The approximation of two-
dimensional flow requires head or beam sea and that the incident waves are long relative to the
diameter of the platform legs, see Section 3.2.2. A velocity potential ® = ¢ + ¢; is introduced
to describe the flow around the platform. ¢ and ¢; are the velocity potential associated to the
disturbances due to the impact and the velocity potential of the undisturbed incident waves,
respectively. A hydrodynamic boundary value problem for the perturbation velocity potential
¢ can be set up for each time instant and for a given wetted body area.

The fluid flow is governed by the two-dimensional Laplace equation,

6%¢ 0%
2, 9% 09 .
V¢_0x2+622 O ’ (23)
which must be satisfied in the entire fluid domain. To solve Equation (2.3), boundary conditions
on both the free surface and the wetted body surface are also required.

2.3.1 The free surface conditions

The dynamic free surface condition is obtained from Bernoulli’s equation by imposing atmo-
spheric pressure on the free surface. It is assumed that the impact occurs over a small time
instant, meaning that the gravitational acceleration g is negligible relative to the impact in-
duced fluid accelerations, and that the rate of change of ¢ with time is generally larger than
the rate of change of ¢ with respect to the spatial coordinates. This gives %% = 0 on the free
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surface. Since the initial value of ¢ is zero, this gives ¢ = 0 on the free surface. When solving the
boundary value problem this condition is applied on the horizontal line z = 0, ¢.e. the dynamic
free surface condition becomes

¢=0 on z=0 (2.4)

This condition implies that no waves will be generated. This dynamic free surface condition
if often used in impact studies, starting with von Karmdn (1929). Wagner (1932) used this
condition in the outer domain (i.e. outside the spray root).

In addition, the kinematic free surface condition states that a fluid particle on the free sur-
face remains on the free surface. Also the kinematic condition is satisfied on z = 0.

2.3.2 The body boundary condition
The body boundary condition is defined as

d
g_n =U-n on the wetted body surface (2.5)
where % denotes differentiation along the normal direction to the body surface, U is the velocity
of the body, and n = (n;,n3) is the unit normal vector of the body surface. n is positive into the
fluid domain. In principle, U gets contributions from both rigid body motions and from flexible
modes. For a fixed, rigid body the right hand side of Equation (2.5) becomes zero.

Solving for %ﬂé, Equation (2.5) becomes

0¢p 0¢r

B U:n B on the body surface (2.6)
For impact with small local dead-rise angle, i.e. small angle between the body surface and the
free surface at their intersections, Equation (2.6) may be approximated as, Faltinsen (1990);

9 _
8z

where Vj is the relative impact velocity. 2c(t) is an approximation of the wetted length of the
deck. The boundary value problem for ¢ is illustrated in Figure 2.3. The shaded rectangle
symbolizes the instantaneous wetted area, and the zz2-coordinate system has its origin at the
center of this area. The relative impact velocity, Vg(z,t), is a function of both space and time.
In the section below, the solution of this boundary value problem will be discussed.

~Vg(z,t) on z=0 and |z| < c(¢) 2.7

2.4 Derivation of the velocity potential

The classical impact problem, with ¢ = 0 on z = 0 and spatially constant Vg, yields analytical
expressions for the velocity potential on the body and for the fluid velocity at the free surface.
Kvalsvold (1994) and Haugen (1999) study the impact on the wet deck of catamarans. They
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z
¢=0 $=0
N :
—c(t) c(t)
%f = —VR(IB, t)

Vip =0
Figure 2.3: The linearized hydrodynamic boundary value problem.

apply the high frequency free surface condition (i.e. ¢ = 0) but assume that the structural
responses of the deck are important for the hydrodynamic loading and must be accounted for.
They write the normal velocity of the body in terms of a Fourier cosine series when they solve
the boundary value problem. In this work it is assumed that the flexible modes in the deck
may be neglected and that spatial variation of Vi can be approximated by a linear function.
A similar assumption is made by Zhao and Faltinsen (1992). This will be discussed in Section
3.2.4. The body boundary condition can now be written as

g—f =-W-Viz on z2=0 and |z| < c(t) (2.8)
In order to approach this problem mathematically, a dimensionless boundary value problem is
introduced. This is shown in Figure 2.4. The boundary value problem is on the same form as the
lifting problem, discussed in Newman (1977). Newman solved this problem by using a distribu-
tion of potential vortices along the wetted length, and here an identical approach will be pursued.

The general solution for the vortex distribution < is on the form

2 1 [ rvea-e}
ve) =2 )%{f - ¢M+C} (2.9)

(1 - z?

where { denotes the principle value integral and C is a constant that is determined by an addi-
tional condition analogous to the Kutta condition for the lifting problem. V(£) is the relative
impact velocity on the wetted part of the body surface.

Assumed V() = -V, — Vi€ and introducing this expression in Equation (2.9), the vortex
distribution can be written in terms of the so-called Hilbert transforms H,(z), defined as

[ e
H"(x)_Jl[ €-a)a-e)p

since

1 1
(1-€%)3d¢ (1-¢€) de
J[ E-z J[ (€ - 2)(1 - €2)3 (210)

-1 -1
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z
$=0 =0

N

V2 =0 a="V-Vs

Figure 2.4: The dimensionless boundary value problem. The length parameters are made di-
mensionless by dividing by instantaneous chord length, c. The (+) indicates the upper side of
the cut, z = 0%, and the (—) indicates the lower side, z = 0™, see Equations (2.12) and (2.18).

The solution of H,(z) is given in Newman (1977). In particular, Ho(z) = 0 and the solution for
n > 11is given by

Hn(a:) = In—l + IHn_l ($)

where

/ z"dz qpidSen=l) o even
oy [ 2

246....(n)
1-— :1:2)% 0, otherwise.

In this specific case, n up to 3 is involved. By using the solution for H,, the constant and
the linear terms of the velocity distribution give

]i —Va(1- ) de
(

Vigl =g de _ _,(m o
£-2)(1-¢€7)> i )

= +Vonz and ][£ 2) 1_52)

for the integral in (2.9). Thus, the expression for the vortex distribution can be written as

2
Me)=2_C 4 2 W o (2.11)
Tl-o) (-} (-2  (1-2)3

From the lifting problem discussed by Newman (1977), it is known that the velocity components
induced on the body, by the vortex distribution +(z), are given by

0
ue =202 = 220(0) (212)

and

e

1
_ 91 [1O)
wy = — D2 = 2Wj§_ df ) (2.13)
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where u and w are the horizontal and vertical velocity, respectively. The signs in the subscript
indicates whether it is refers to the velocity on top (+) of the cut or on the underside (—) of the
cut (see Figure 2.4). In the present case only the velocities on the underside of the cut are of
physical interest. By inserting Equation (2.9) into Equation (2.12), it becomes possible to find
an expression for the velocity potential on the underside of the cut in the form of

1
(z,2=07)= [ -v(§) d¢
_[ 2 (2.14)

= % (sin'l:v—i—%) - WVV1l-122 - %Vla,‘\/l—ac2

Assuming that the velocity potential associated with V; is symmetric about £ = 0 and the
velocity potential associated with V) is anti-symmetric about z = 0, implies C = 0. In the
so-called lifting problem C is determined by the Kutta condition at the trailing edge. Since
an ambient horizontal velocity also is present in the present problem, one may have imposed a
Kutta condition. Later in Chapter 6 when the boundary element method is used, the Kutta
condition is imposed in the solution. In dimensional terms, the velocity potential now becomes

#(z) = VoV — 22 — %Vlzz:\/c'-’ —z2 on z=0, |z|<¢c (2.15)

The chord length ¢(t) is still unknown. To determine the wetted length of the deck, 2¢(2), the
vertical fluid velocity on the free surface has to be found. This requires the complex velocity
potential, W, to be known in the whole fluid domain. This is found by setting up an expression
that is consistent with Equation (2.15) and that satisfies the boundary conditions. The complex
potential is expressed as

W =-VWVe-22- %VlZ\/& —Z2+iVbZ+i%V1Z2 , (2.16)
where the complex variable Z = z + iz and i is the complex unit. Z + ¢ and Z — ¢ are defined
as in Figure 2.5 where —7 < 6; < 7. Since W = ¢ + i1, one can note that expression (2.16) is
consistent with (2.15) for z = 0 and |z| < ¢(t), and that ¢ = 0 on z = 0 outside the body. The
complex potential must also satisfy the body boundary condition. The complex velocity can be
written as

aw =u(z,z2) — zw(z, 2)

az (2.17)
__WZ vwa—Es L N2 vz '
T VE-22 2 2ve-z 0!

On the wetted body surface, i.e. at |z| < ¢(t) and z = 0, this yields the following real horizontal
and vertical velocities:

Vozx 1 Viz?
VWe — 12
u= _._ﬂ 2 - +2 i (2 18)
Voz 1 Wi Viz? '

=\/02—z2—§\/c2—m2+\/02—:z:2
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and
w=-V,— Viz (2.19)

The vertical velocities in Equation (2.8) and in Equation (2.19) are equal, i.e. the suggested
complex potential satisfies the boundary condition on the body. Similarly, Equation (2.18) and
Equation (2.11) can be compared. One stress that u = 1y on body, that Equation (2.11) was
developed for a dimensionless chord length and that the constant C is set equal to zero. From
this it can be concluded that, consistently with the boundary value problem defined in Figure
2.4, the complex potential in Equation (2.16) yields the correct velocities on the wetted part of
the deck.

Note that this solution gives zero fluid velocities at infinite distance from the body. Far away
from the body V& — 22 =iZ (1 — 3(£)? — O(£)*) and 7;;1:7 =-:(1+3(£)*+0(£)*), and
the complex velocity can be written as

(14 (5)) - 12 (-3 3))
- %VIZ (1 + (%)2) +iVo+iViZ (2.20)
i Vo2

2 Z2

This means that the velocities due to the impact tend to zero as Z~2 away from the body.

The suggested complex potential given in Equation (2.16) satisfies the boundary value prob-
lem sketched in Figure 2.3 with Vi(z,t) = Vp + Viz. The vertical velocity on the free surface,
i.e at |z| > c(t) and z = 0, can now be derived from the complex velocity. For simplicity, the
square root expression is rewritten by introducing polar coordinates as

VE =72 = \fr1 17 e101H0+5 (2.21)

where the definition of the symbols in (2.21) are given in Figure 2.5. The square root expression
for the two different cases, z < —c(t) and z > ¢(t), must be examined. This is done by setting,
respectively, 6; = 6, = 0 and 6; = 6, = —7 in Equation (2.21). For the first case the square
root expression is equal to iv/z2 — ¢2, while for the latter case it is equal to —iv/z? — ¢2. This
means that the vertical velocity on the free surface can be written as:

8 _ Volsl 1 T, & )_ _
P z2_02+2sg11(m)V1 2 -2+ = Vo—Viz (2.22)

for |z| > c(t).
Except from the signs, which are opposite due to a different body boundary condition, Equation

(2.22) and Equation (2.15) are the same as the expressions given in Zhao and Faltinsen (1992).
Note that the vertical velocity is singular at the body/ free surface intersections.
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roefr=2Z+¢

Figure 2.5: The distance from the ends of the cut to an arbitrary point P in the fluid.

2.5 Impact pressure and normal force on the deck

Once the perturbation velocity potential on the body is known, an expression for the impact
pressure on the deck may be derived. The hydrodynamic pressure on the deck follows from
Bernoulli’s equation. Assuming large fluid accelerations implies that the impact event has short
duration and that the rate of change of ¢ with respect to time, is generally larger than the rate
of change with respect to the spatial coordinates. This means that the velocity squared term
—%,0|V¢|2 can be neglected relative to —p%té. This is consistent with neglecting the velocity
squared term in the free surface condition in the outer fluid domain. In the inner domain
discussed below, however, the velocity squared term is important. A first approximation for the
dynamic fluid pressure on the body due to ¢ is given by

__,%
P—Po= =Py (2.23)

The —p%f— term is determined for the velocity potential as given in Equation (2.15). In this
context and in the rest of this section the pressure due to ¢; is disregarded. Its contributions
to the total pressure is discussed in Section 3.4. In the following discussion, the upstream and
downstream body/ free surface intersection will be denoted as a{t) and b(t), respectively, in
earth fixed coordinates, so that z(t) = zo — (a(t) — ¢(t)) or z(t) = zo — (b(t) + ¢(2)). Figure 2.6
illustrates the relationship between the coordinates. By exerting this relationship, the following
expression for the impact pressure on the wetted body surface is obtained as

leg o (g + &)

outer = p(Vo + V
Douter — Po = p(O ‘/m (2.24)
OV 10Vi 1. (dc da —
+p[0t+26t +§V‘(E'dt)]°°2 g

Since the pressure obtained from Equation (2.24) is singular at the body/ free surface intersec-
tions, the hydrodynamic pressure must be studied in more detail. The singular pressure is a
consequence of incorrect free surface conditions in the immediate vicinity of |z| = c(¢), thus the
solution is not valid in this region.
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2p

b(t) a(t) Zo

Figure 2.6: The relationship between the local and the earth fized coordinate system.

The free surface condition ¢ = 0 was obtained by neglecting gravity and the velocity squared
terms in the exact free surface conditions, but the solution of the boundary value problem leads
to singular vertical velocities at the intersection points. To obtain the correct pressure in the
vicinity of the body/ free surface intersections, an inner solution to account for the jets that will
develop at the intersections must be derived. Wagner (1932) uses a local jet solution to find the
pressure distribution close to the jet root, i.e. near |z| = ¢(t). At small dead-rise angles it is
possible to use Wagner’s analysis in combination with matched asymptotic expansion to solve
the boundary value problem. Armand and Cointe (1986) did that when studying water impact of
a circular cylinder. Zhao and Faltinsen (1993) use Wagner’s solution for an inner region together
with a matched asymptotic expansion, to find a composite solution for the velocity potential
and the pressure valid everywhere along the body. The same procedure will be followed here to
determine a composite solution for the pressure in the region 0 < z < ¢(t).

2.5.1 Inner expansions of outer solutions

The inner expansions of the outer velocity potential ¢ and the outer pressure on the body near
the downstream intersection % = a(t) is obtained by letting z — c(t) on the body. This implies
that ¢ — z? = 2c(c — ), which gives the inner expansions of the outer velocity potential and
the outer pressure as

¢ =—(Vo+ %Vlc) 2¢(c - z)

1 (2.25)
= —(Vo+ §Vlc) 2¢(a — o)
and
v o = oV + Hie)
outer ~ - = C)—F/—
b Do PVo 2 1 m
) & (2.26)
c—.
oo 2 1) 2¢c(a — xo)

respectively. Similarly, inner expansions near the upstream body/ free surface intersection & =
b(t) are determined by letting z — —c(t) on the body.
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V////2/4844/44/4414117/4 #

Body

z

LP& : Lps Lm ;

Figure 2.8: The boundary value problem mapped onto the complex T-plane. The points p;
corresponds to the transformed values of the corresponding points indicated in Figure 2.7.

2.5.2 Inner solution of the impact pressure

The intersection point between the body and free surface in the outer flow solution moves
tangentially to the body with a velocity a(t) relative to the earth fixed coordinate system. A
new local reference frame, the g-plane, that moves with this velocity is introduced in the inner
flow. The complex coordinate is given by § = £ + i2. In this reference system the problem is
steady. Next, an auxiliary complex 7-plane is introduced. The relationship between the -plane
and the 7-plane is given by the conformal mapping, Wagner (1932);

F+iz= 3 [Iog (—%) +4ivVT+T+ 5] (2.27)

T

where the quantity J, is defined as the thickness of the spray at o = a. The jet is mapped onto
7 = 0, the free surface is transformed onto the positive real axis, and the body onto the negative
real axis, see Figure 2.7 and Figure 2.8.

On the body, 7 = —|7|. This means that
. _ 0 .
zo—a=z—c=z=;[log|rl—4z |'r|-|7'|+5] (2.28)
The inner flow potential is according to Wagner

&= U (1 +loglr| - Ir) (2.29)
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2.5.3 Matching of inner and outer solutions

The outer expansion for the inner potential is found by letting |7| — co. This gives the following
expressions

Z=—-—|7| (2-30)
and
P U—|T| -Uz (2.31)
for the leading order terms of the real coordinate Z and of the inner potential ®
One must recall that the origin of the j-plane moves with the body/ free surface intersection

found in the outer flow solution. In order to compare the two solutions, they must be described
in the same reference frame. The inner solution is therefore rewritten as

¢ inner = @ + Uz (232)
where U is the propaga.tion velocity of the spray root relative to the earth-fixed coordinate
system, i.e. U = % for the downstream jet. From Equation (2.31) and Equation (2.32) it

follows that in order for @iuge to be different form zero, one more term must be kept in the
expansion of £:

= [ /17 = Irl] (2.33)
The expression for the inner potential can then be found as

daé, [|Z|n

inner — s - 2.34
¢ - dtmy 6 (2:34)
From this one the outer expansion follows as

out da (8,

(¢inner) = _4_" - V |-7;0 - a‘l
(2.35)
= —4— \/ -
The matching of Equation (2.25) and Equation (2.35) leads to the expression
7 (Vo + tVic)%c
Oy = ———2 72 2.36
dt

for the jet thickness.
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The pressure due to the inner flow solution in the vicinity of z = ¢(t) is derived by Wagner
(1932) as

Pinner — Po = 2p ( ) Vil (1 +/17] ) (2.37)

where 7 is related to z by Equation (2.28). Wagner found this expression by using Bernoulli’s
equation on the flow that is steady in the inner frame of reference. By letting £ — oo in the
inner solution, an outer expansion is obtained. This implies that |7| — oo, yielding

da\? 1 d\*>1 [5
inner — out=2 (_) —_— =2 (_) —/=
(%) Wt e

“P\&) T e

_ 1,0 <@
—p(Vo+ Vlc) 2¢(c— z)
_ Loy c@)
=7 (Vo * 2Vlc) \/20(:— Tp)

This is the same expression as the inner expansion of the outer solution for the pressure, given
in Equation (2.26).

(2.38)

2.5.4 Composite solution for pressure

The pressure distribution in the region 0 < = < ¢(t) is found by adding the inner and the outer
solution and subtracting terms that are in common.

D—Do= (pouter Po) + (pmner Po) (pcommon - Po)
- ot Ll 2 CE )

W
g s b (6 4)) e
o & e )

where |7| is evaluated from Equation (2.27).

The composite solution for the pressure in the region —c(t) < z < 0 is written as

_ 1 [c dt+z(dt+zg)]
P—Po—P(VO'i' 2V1z) m
oV, 16v; 1 dc db 3
+p[—6t +55.2 5% (dt+ )] Vet -z (2.40)

12 (B VT ) - (- )

2¢(c+ 1)
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where |7| is related to z by
8
m-b=z+e=g=2 [log|7'| — 4/l - |7']+5] (2.41)
In the jet regions, |z| > ¢(t), the pressure is given by the inner solution.

If a(t) or b(t) are stationary the inner pressure and the common pressure term vanish, but
the pressure in the vicinity of the intersection remains finite. As an example, if b(t) = —% for a
fixed deck then % becomes zero. This enforces the two last terms in Equation (2.40) to be zero
also. By letting £ — —c(t) Equation (2.40) can be approximated by

1 cdt
(p = po)(z = —c) = p(Vo — -2—V1c)—2‘1c‘—\/c+ z

Ve 10V 1 .dc
[E‘iﬁ“i"la] 2e(c+ )

(2.42)

which approaches zero. Similarly, when fi‘% = 0 it can be shown that the total pressure approach-
es zero as T — ¢(t).

If both intersection points, a(t) and b(t), are constants, which is the case when the deck of
a fixed platform is fully wetted, the expression for the pressure reduces to

P—po=p(%+%%z) Ve2—2? on [z]<c (243)

and is finite everywhere on the body.

2.5.5 Integrated pressure versus momentum analysis

The total normal force on the deck can be found by integrating the fluid pressure over the wetted
surface,

F3=B/ (p_pO)dx’

B being the breadth of the deck. The force Fj referred to in this context is the force normal
to the deck, i.e. in z-direction. If the deck has a finite pitch angle, the normal force can be
decomposed into a horizontal and a vertical component.

The impact force can be found by imposing the conservation of fluid momentum. The related
derivation is given e.g. in Faltinsen (1990) and in the present case it can be written as

F :% (47Vz) (2.44)
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The derivation of (2.44) is based on the outer flow with the free surface condition ¢ = 0. It can
be shown that the inner pressure is very localized in space. This means that it dies out quickly
away from z = c(t), and its contribution to the integrated force is insignificant. Though the
outer pressure is singular at |z| = c(t) the integrated force is finite. It is straightforward to show
that integration of the outer pressure and Equation 2.44 with Vi = V} give the same value of
the force normal to the deck,

F3 =B (pouter - Po) dz

-C

dc —dc 4 da
—B/ Vo+ m)[cdt_i_x( dt+dt)] dz

o
+B/ %+1% +1V1 de Ve -2 dz
at dt (2.45)
BV
— Zpdle
—wpdthVo+p2B a5t
d (%pTI‘BCzVo)
(00)
= 5 (45w)

where B is the breadth of the deck. One should note that b+ é =a—¢é. In addition, the
fact that one can set Vg = V} in the momentum equation to get the integrated force from the
outer pressure distribution, does not imply the Vjz term in the body boundary condition to be
insignificant. Conversely, V; is very important when determining c(t) and consequently Aj; (o),
Since Viz is anti-symmetric the pressure due to this velocity will cancel out, and 1ntu1t1ve1y, Vo
being the mean impact velocity, the result above is correct.

2.6 Added mass for a thin plate

To evaluate the force on the deck through Equation (2.44) Ag‘?) must be found. This quantity
represents the added mass of a plate with zero thickness placed on the free surface and forced to
oscillate with frequency w — oo. The added mass of a thin plate on the free surface is equal to
the half added mass of a thin plate in unbounded fluid (see page 296-298 in Newman (1977)).
The two-dimensional added mass of a thin plate in unbounded fluid is given by

Agy = prc?, (2.46)

where c is the half-breadth of the plate. This is the same as the two-dimensional added mass
of a circular cylinder with a radius ¢. Finally, the two-dimensional high frequency limit added
mass in heave of the wetted deck length is

A = % prc?, (2.47)

which proves that the conclusion expressed by Equation (2.45) is correct.
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2.6.1 Two-dimensional versus three-dimensional added mass coeffi-
cient

Three-dimensional effects will reduce the added mass. When referring to a three-dimensional
plate with length equal to 2¢ and breadth equal to B, these effects will depend on the plate’s

aspect ratio K = % i.e. the three-dimensional added mass can be written as
AP = Lonems
4P = ZpneBJ(x) (2.48)

where J(k) is a correction factor accounting for three-dimensional effects.

Meyerhoff (1970) has done calculations of the added masses of thin rectangular plates in in-
finite fluid. Meyerhoff uses a distribution of dipoles over the length (z-direction) and breadth
(y-direction) of the plate to solve the resulting boundary value problem. The dipole density in
z- and y-direction is expressed as a double series of Chebyshev polynomials of the second kind
with unknown coefficients. The coefficients are found by imposing the body boundary condition
at an equal or larger number of collocation points. Calculations are performed for a number
of different aspect ratios s, and the results are compared to empirical formulae and experi-
mental values. These comparisons show that a simple formula developed by Blagovenshchensky
(1962) yields results that are in good agreement with the theoretical results by Meyerhoff (1970).
Blagovenshchensky (1962) writes the three-dimensional coefficient J(k) as

1 0.425x
o) = = {1 ok +n2)} (2.49)

This equation is empirical and based on measurements performed by Pabst (1930) for a plate in
infinite fluid.

From Figure 2.9 it can be seen that the three-dimensional effects are significant for the added
mass. For a quadratic plate, the J(k)-coefficient will be just = 55% of the corresponding coeffi-
cient for an infinitely long plate. This suggests that the added mass coefficient of the wetted part
of the deck varies significantly as a wave hits the front end of deck and propagates downstream.
It is important in practice to account for this when using Equation (2.44) to calculate the load
response due to the water impact. Figure 2.10 illustrates how J(k) may vary for a deck with
L/B = 2. The wetted area is shaded. Note that the time intervals between each sketch in the
figure are not identical. The J(x)-coefficient is equal to unity at the initial impact but decreases
as the wetted area increases. J(x) reaches a minimum when the wetted area is at its largest
value. When the deck is fully wetted x = 2 and J(x) = 0.371. This means that the added mass
is only 37.1% of the value obtained by using the two-dimensional added mass coefficient. As the
water detaches from the deck, i.e. when x decreases, J(k) starts to increase towards 1.0 again.
Taking this into account the impact force on the deck associated with the perturbation potential
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Figure 2.9: The three dimensional added mass coefficient for a thin rectangular plate. Compar-
isons of numerical results by Meyerhoff (1970) to the empirical formula by Blagovenshchensky
(1962) given in Equation (2.49). Note that the horizontal azis is logarithmic.

¢, may be written as
_ 4 (,6D)
Fo=g (487%)
(2D) _
= J(k) dA’jt Byt d‘;(t")AggD)B% + J (k) AZP) BV, (2.50)

= (J(n)p'/chc' + j(n)—;-pwc23> Vo + J(n)%pnczBVo

Here Agf;D) and AgD) denote the high frequency limit of the two-dimensional and three-dimensional
added mass, respectively. J(«) is given in Equation(2.49) and J(k) can be written as

)
2

J(k) = %é {1.275»;2 (144277 — (k+0.425) (1 + rf)‘%} (2.51)

Accounting for three-dimensional effects in this manner implies that the wetting is calculated
by two-dimensional theory. This is an approximation.
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Figure 2.10: The variation of the correction factor J(k) for the added mass due to three-
dimensional effects, as a wave propagates along a deck. The L/B-ratio for the deck is equal to
2. The wetted part of the deck is shaded.



CHAPTER 3

Water impact solved by the Wagner
based method

3.1 Introduction

In the previous chapter the theoretical background for the Wagner based method has been
presented. In this chapter a numerical scheme for solving water impact underneath a platform
deck is derived and the related assumptions will be discussed. A crucial task in the numerical
solution is a correct evaluation of the body/free surface intersections and of the free surface at
each time instant. In the case of a floating platform, it is also important to predict well the
water impact induced rigid body motions, and the related velocities and accelerations. These
aspects will be thoroughly discussed in the following.

3.2 Assumptions and basic concepts

In addition to the assumptions leading to the two-dimensional boundary value problem in Figure
2.4, a set of secondary assumptions for the fluid flow and for the structure are introduced as
follows

e Hydroelasticity is not important for the loading.

e Long wave approximation, i.e. the wavelength is large compared to the body dimensions.
This means that one assume that body generated gravity waves can be neglected.

o Wave direction yields head sea or beam sea only, i.e. no oblique headings.
e Incident waves are modeled by second order regular wave theory.

e Impact velocity varies both in time and space.

The validity of these assumptions will be discussed in the following.

25
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3.2.1 Importance of hydroelasticity

Hydroelasticity means that the hydrodynamic load acting on a structure is a function of the
structural elastic response, which again is a function of the hydrodynamic load. The latter is al-
ways true, while the former occurs when the elasic response significantly influences the behavior
of the fluid pressure. In this case a coupled fluid-structure analysis becomes necessary. Faltinsen
(2000a) gives a review of hydroelastic slamming problems within ship and ocean engineering. In
the present study, the structure is assumed to be infinitely stiff when the hydrodynamic pressure
is calculated. This allows the hydrodynamic and structural analyses to be performed separately.
This is supported by calculations performed on an existing platform using the hydroelastic the-
ory by Faltinsen (1997). The calculations are presented in Appendix A, and the results suggest
that local structural response during the water entry phase can be described by quasi-static
theory. The water entry phase yields the largest averaged pressures on the wetted part of the
deck.

When hydroelasticity has to be accounted for, the analysis becomes much more complicated
since a coupled fluid-structural analysis is required. This can be done, either by including a sim-
plified structural model in the theory as done e.g. by Haugen (1999) and by Kvalsvold (1994) for
the hydroelastic analysis of wetdeck slamming on a catamaran, or by coupling the hydrodynamic
analysis with a more general structural analysis. Kvalsvold (1994) uses a one-beam representa-
tion of the wetdeck while Haugen (1999) uses a three-beam model to analyze the stiffened plates
in the wetdeck. The beam deflection is expressed by linear combination of eigenmodes obtained
from free vibration analyses in air. This simple description of the structural behavior is not
satisfactory since the lower deck of a platform is more complex than the wetdeck structure of
catamarans. For isolated stiffened plates, the beam model could be applied locally, but it gives
a too crude approximation for the whole deck.

Coupling of the hydrodynamic analysis with a more general dynamic structural model is at
this stage difficult because it requires extensive work on structural modeling and on the predic-
tion of the structural response. This was not considered to be within the scope of this work.
Based on the discussion given in Appendix A, it was decided to neglect hydroelastic effects
when performing the hydrodynamic analysis. In any case, it is important to establish a robust
way of calculating the hydrodynamic pressure before introducing the mechanical response to the
problem.

3.2.2 Two-dimensional flow condition

As pointed out in Chapter 2, the high frequency limit of the two-dimensional added mass co-
efficient of a thin plate is an important parameter when calculating the force or the pressure
distribution due to water impact. Here the thin plate refers to the wetted area of the deck. A
finite width of the deck violates the assumption of two-dimensional flow. However, for rectangu-
lar shaped wetted areas, the two-dimensional flow assumption can be applied, and a reduction
factor given by Blagovenshchensky (1962) to account for three-dimensionality can be introduced.
For an arbitrarily shaped plate the added mass coefficient has to be found numerically instead.
Meyerhoff (1970) presents a numerical method for calculating the added mass for rectangular
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thin plates by representing the body as a distribution of normal dipoles. As shown in Figure 2.9,
Meyerhoff’s results compare well with results obtained by using the empirical formula (2.49)
from Blagovenshchensky (1962) to account for three-dimensional effects. The panel program
WAMIT (see WAMIT (2000)) has the option of having panels located on the free surface. An
example of the use of this option is given in Newman et al. (1996). This option in combination
with the infinite frequency option also available in the program, makes it possible to solve the
high frequency added mass of arbitrarily shaped thin plates on the free surface.

The present work focuses on head and beam sea conditions. This is due to two main rea-
sons. First, when oblique headings are considered, a numerical method for calculating added
mass for the wetted area becomes necessary. If WAMIT is not to be used, this would require
an extensive and time consuming code development and would make the problem of interest
more complicated than necessary according to the scope of this work. Secondly, it is believed
that head and beam sea give the largest impact forces on the platform and will therefore be the
most severe conditions for both global structural response and for rigid body response of floaters.

Also if vertical platform members are present, the two-dimensional flow assumption will be
violated since these will disturbe the flow locally. One must require that the wavelength of the
incident wave to be much larger than the diameter of the platform legs (A > 5D). In this case,
waves generated by the vertical platform members are negligible relative to the incident wave.
The long wave approximation is not restrictive for the present problem because wave impact
events are mostly associated with long incoming waves. Diffraction due to the columns will of
course give local run-up along the columns, but this is not taken into account in this work.

3.2.3 Wave conditions

Wind generated sea waves are a nonlinear random process. The nonlinearity is more prominent
in severe sea states where many observations show a large excess of high crests to shallow troughs.
Longuet-Higgins (1963) represents the nonlinear wave elevation ¢y to third order as combinations
of independent, regular components. In many applications in ship and ocean engineering one
can disregard higher order contributions and ¢; can be written as a linear combination of regular
components. The wave kinematics can then be solved in the frequency domain, where the wave
elevation is described through the wave spectrum. In general the wave spectrum is a function
of both wave frequency and heading, but for long-crested sea states the spectrum is a function
of the wave frequency only, given as S¢(w).

For problem such as wave impact on platform decks where the wave kinematics in the wave
crest and the wave elevation are crucial, a first order representation of the irregular sea may not
be sufficient. Stansberg(1993, 1994) presents a procedure for estimating second-order random
wave elevation and kinematics. He describes the second-order random wave in the frequency
domain by using quadratic transfer functions. Stokka (1994) has extended this method to ac-
count for third-order effects. He reports that the extreme crest heights are increased with up to
12% due to second order components, while the contribution to the extreme crest height from
third order are found to be only 1% in a sea state characterized by the significant wave height
H,; = 15.5m and spectral peak period T}, = 17.8s. Both the second-order and the third-order



28 CHAPTER 3. WATER IMPACT SOLVED BY THE WAGNER BASED METHOD

components increase the steepness of extreme waves.

In a preliminary design a regular wave may be used as an approximation of an extreme sea
state. This regular wave is often denoted as the design wave. NORSOK STANDARD (1999)
gives suggestions for suitable design waves. For fixed platforms the maximum wave action effects
occur for the highest wave. Effects with annual exceedance probability of 102 can be deter-
mined by using the wave height Hygp which has 10~2 annual exceedance probability. According
to NORSOK STANDARD, Hjq should be equal to 1.9 times the significant wave height of the
corresponding sea state, and the wave period T used together with Hjoo should be varied in
the range 1/6.57, < T < /11T,. The wave height has dimension m and the wave period has
dimension s. Further, in absence of more detailed documentation, the wave height, Hygpg, with
annual exceedance probability of 10~ can be taken as 1.25H1q, while the period should be
increased by 5% compared to the 100 yrs value.

For floaters a specific wave period, Ty, instead of the highest wave, e.g. Hig, may be the
most critical from wave effects point of view. To this purpose NORSOK STANDARD suggests
that the corresponding design wave height should be taken as

0.227%2, for T; < 6s
15t002(T3—36) 10T 1d > 0s

for deep water waves. However, if an annual exceedance probability of 1072 is desired, Hy does
not have to be taken larger than 1.9Hgs, where Hs is the significant wave height that for the
given wave period, corresponds to a “100 years” sea state.

In this work regular waves are used as an approximations for extreme waves. The use of regular
waves, simplifies the analysis and limits the computational time.

Linear wave theory is based on the assumption that the wave steepness is small, i.e. k(, is
small. Here k is the wave number given by the dispersion relation and (, is the first order wave
amplitude. The derivation of the velocity potential for linear waves can be found in several
books on water waves, e.g. in Mei (1989). Linear theory has proved to be successful in numerous
respects, even in cases where its fundamental requirement, small k{,, has been violated. How-
ever, for waves of finite amplitude, linear theory may yield poor results for the maximum wave
elevation and the description of the kinematics in the wave crest region. These are crucial pa-
rameters when solving the water impact under a platform deck problem. From this perspective
it is believed that linear wave theory is insufficient, and that nonlinear waves must be utilized
for obtaining accurate results for the impact loading and rigid body and structural responses.

The difference between linear theory and fully nonlinear theory is that in the former the lin-
earized free surface boundary conditions are satisfied along a known and fixed surface. In the
latter the exact boundary conditions are satisfied on the exact free surface, which is a time
dependent unknown of the problem. No exact theory is able to give the solution in closed form,
but several theories exist which determine the solution by using series expansion. Examples
are the cnoidal waves for shallow water and the solitary waves for very shallow water depths.



3.2. ASSUMPTIONS AND BASIC CONCEPTS 29

For finite and infinite water depths Stokes (1847) improved the wave solution by using a second
order theory instead of the linear theory. He did this by applying a perturbation technique in
terms of k(, as small parameter, and by keeping all terms up to second order. He applied a
Taylor expansion of the free surface conditions around the mean free surface. This implies that
all the terms involved have to be evaluated along this known and constant plane. In principle,
Stokes theory may be extended to any order, but as the order increases the solution becomes
more arduous and difficult to evaluate. The fifth order theory by Skjelbreia and Henderson
(1961) is much used for engineering purposes. Schwartz (1974) presented a method for comput-
er extension of Stokes’ expansion for gravity waves to “infinite” order. Alternative methods are
presented by Rienecker and Fenton (1981) and by Bryant (1983). Schwartz and Fenton (1982)
give a comprehensive review of computational methods for strongly nonlinear waves.

The Stokes wave profile is symmetric about a vertical axis through the wave crest, and the
wave crests are higher than the first order amplitude. Similarly, the negative extreme is smaller
than the first order amplitude. The wave nonlinearity yields a free surface profile that is more
peaked at the wave crest and flatter at the wave troughs than the sinusoidal profile of the linear
wave. For Stokes waves of third or higher order the dispersion relation, and thus the propagation
velocity of the wave, become dependent on the amplitude of the wave. The major contributions
of higher order effects, both for the wave elevation and for the wave kinematics, originates from
the second order terms. In this work it is assumed that second order theory is sufficient to get
reliable results for the impact loading. For finite water depths and z; < 0 the velocity potential
¢r and the wave elevation (; for second order Stokes waves can be written as

¢ =" + ¢

_ Gag cosh(k(h + 20)) _ _ 3 .5 cosh(2k(h + 2)) . i (3.2)
=W cosn(Rhy ke —wi) + glg——C n gy Sn (ke —ut))
and
G=¢P+¢?
: 3.3
= Ca. COS(k‘.'Eo - wt) + i—k% (2 + COSh(Zkh)) COS(2(k$O _ wt)) ( )
where
w wave frequency
h water depth

(1), 9 first and second order velocity potential, respectively

191
(}1), C§2) first and second order wave elevation, respectively

and wave number k is given from the dispersion relation
w? = gktanh(kh) (3.4)

This is the same dispersion relation as for linear theory, but for higher order perturbations also
the dispersion relation contains higher order terms. The first order terms in Equation (3.2) and
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Equation (3.3) oscillate with frequency w, while the second order terms oscillate with frequency
2w. In order to use Equation (3.2) in the “wave zone” for 0 < 2z < (;, a Taylor expansion about
2p = 0 consistent with the theoretical derivation of the potential is applied. The horizontal and
vertical fluid velocities can be obtained by differentiating ¢; with respect to zo and 24, respec-
tively.

The expressions for infinite water depth represent the limit of Equation (3.2) and Equation
(3.3) as b — o0o. In this case the second order velocity potential ¢§2) vanishes and the velocity
potential and the wave elevation reduce to

;= i:—gek‘° sin(kzg — wt) (3.5)
and
¢ = ¢, cos(kzo — wt) + %(ﬁkcos(2(kzo —wt)), (3.6)

respectively. Finally, the dispersion relation becomes w? = kg.

The coordinate system used in the derivation of these expressions has its origin at the mean
free surface and with the zp-axis pointing upwards.

The accuracy of Stokes’ second order theory depends on the wave steepness. In Figure 3.1
second order wave profiles are compared to “infinite” order wave profiles for four different wave
steepnesses. The “infinite” order wave profile for H/A = 0.10 is given by Schwartz (1974), while
the theory presented by Bryant (1983) is used to determine the “exact” wave profile for the
other H/\-values. Bryant (1983) presents a method where the Stokes wave in deep water is rep-
resented by truncated Fourier series for ¢; and {;. The number of harmonics used is determined
by trial and error so that the set of Fourier coeflicients includes all the amplitudes greater than
some prescribed value. Here the error tolerance in the wave elevation was set to be 1.0 - 10711
With this error the numbers of harmonics needed for H/A = 0.073, 0.049, and 0.031 were 22,
16 and 13, respectively. The computations are performed by Greco (2001).

The wave profiles computed by second order theory and “infinite” order theory compare very
well for H/A = 0.031 and H/X = 0.031. For H/X = 0.073 the deviation are larger, but still
the relative error for the maximum wave elevation is less than 0.8%. When the wave steepness
is increased to 0.1 the relative difference between the two different wave profiles becomes more
significant. The exact wave profile is more peaked at the crest and flatter at the troughs than the
second order profile. This indicates that second order wave theory is not sufficient to describe
the wave properly for steep waves. However, in the following Stokes’ second order theory is used
to describe the incident wave elevation and kinematics.

3.2.4 Distribution of impact velocity

In Section 2.4 the boundary value problem in Figure 2.3 was solved analytically given a linearly
distributed impact velocity, Vg = Vo + Viz. In the following this functional variation in the
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Figure 3.1: Second order and “infinite” order wave profiles for deep water Stokes waves.

impact velocity is assumed. This assumption leads to a fast solution of the BVP at each time
instant. In the case of a general velocity distribution a Fourier series expansion can be used to
represent it and the related BVP can be solved numerically in the same manner as described
in Kvalsvold (1994). When the exact body boundary condition is enforced, the solution can be
represented as a sum of boundary integrals through Greens’ second identity, but it has to be
solved numerically. This would in general lead to more time consuming calculations. Bound-
ary value problems solved by using Greens second identity will be discussed comprehensively in
Chapter 5 and Chapter 6.

It is believed that a linear distribution of the impact velocity is a reasonable assumption as
long as structural response is neglected. The contribution to the impact velocity from the rigid
body motion can be described at all times by a linear function. Now, the leading order term of
the vertical fluid velocity on the wetted part of the deck is proportional to cos(kzo — wt), where
zp is measured in the earth fixed coordinate system. This means that the wetted part of the
body is relative short compared to the wave length the velocity distribution may be fairly well
described by a linear function. The discrepancy between the exact velocity distribution and the
linear approximation increases when ¢(t)/) increases, where A = 27 /k is the wave length. As
will be shown later, this assumption is only important during the water entry phase, i.e. when
the wetted area is increasing.

Figure 3.2 shows a sketch of how the impact velocity may vary across the wetted body surface.
Two alternative linear approximations are suggested. Alternative 1 uses the impact velocities
at the body/ free surface intersections to make a linear approximation, and the approximated
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/7 Exact velocity distribution
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Figure 3.2: Alternative approaches for approzimating the ezact impact velocity distribution by
a linear distribution.

velocity distribution may be expressed as

Vr(e,t) + Va(—c,t) N Vr(c,t) — Vr(—c,1)

Va(z,t) = 2 2¢(t)

(1), (3.7)

where
Vr(—c,t) relative impact velocity at upstream intersection point
Vr(c,t)  relative impact velocity at downstream intersection point

From Figure 3.2 one can see that this approach leads to an underestimation of the impact
velocity for the entire region between the intersection points.

The second alternative uses the values for the relative impact velocity at z(t) = 0 and at
the downstream intersection point, z(t) = c(t), to build up a linear distribution. This yields the
following expression for the impact velocity

Vr(c,t) — Vr(0,1)
c(t)

Vr(z,t) = Va(0,t) +
= Va(t) + Va(t)z(t)

2(t) (3.8)

where V(0,1) is the relative impact velocity at the center of the wetted part of the body. This
expression underestimates the velocity somewhat for z(¢) > 0 while it overestimates the velocity
for z(t) < 0. Even though this alternative also underestimates the relative impact velocity for
z(t) > 0, it gives a better approximation than Equation (3.7) in this region. As mentioned
in Section 2.5.5, the linear part of the impact velocity distribution does not contribute to the
impact force directly but is crucial when determining c(t). It is believed that the contribution
of the impact velocity near the upstream intersection point influences the wetting of the deck
the most. This suggests that approximated impact velocity in this region has to be as close
as possible the real one. Alternative 2 is therefore chosen. Other alternatives than the two
discussed above may in principle be used, but this has not been studied in this thesis.
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Figure 3.3: Stepping of the free surface. The ﬁgure shows a zoom up of the body and the free
surface near the downstream intersection point ¢ and ¢t are the chord lengths at t and /11,
respectively.

3.3 The wetted length

A major task in the Wagner based methods is to determine the wetted length. The wetted
length is described by c(t), which is an important parameter in the boundary value problem.
Wagner (1932) found the wetted length from the geometrical intersection between the body and
the free surface when the pile up of water due to the impact is included. To determine the
downstream body/ free surface intersection during the water entry phase a procedure similar to
the generalized Wagner method described in Zhao et al. (1996), is implemented. Zhao et al.
(1996) studies water entry of two-dimensional sections into an initially undisturbed free surface.

When the time instant of impact is found, the initially undisturbed free surface downstream
of the impact point is discretized. The surface is divided in a finite number of fluid particles.
According to the kinematic free surface condition, a fluid particle on the free surface will always
stay on the free surface. The free surface evolution is thus obtained by time integration of the
velocities of the free surface particles.

Let superscript j denote a time instant and subscript ¢ denote a fluid particle, so that P,-j is
the position of particle ¢ at ¢ = t/. Figure 3.3 illustrates the free surface ¢/ and ¢#*! at time
instants #/ and #*1. The free surface conditions are satisfied on the horizontal line z = 0. A
linearly varying impact velocity is constructed and the corresponding boundary value problem
is solved analytically. It is also assumed that the vertical velocity due to ¢ is the same on ¢’ as

itison z =0.

Instead of using predefined time steps, the intersection points are decided a priori and the
corresponding time increments are evaluated numerically. With reference to Figure 3.3, at time
instant ¢/ particle P/ is the free surface particle closest to the body/ free surface intersection
point. It is imposed that this particle will reach the body at time instant #*+!. The required
time increment then has to be At/ = t/+! — ¢/, It is also assumed that close to the body the
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Figure 3.4: Local polar coordinate system (rq,0:).

velocity due to the impact will dominate, and thus the horizontal velocity may be neglected for
the particle closest to the body. Hence, A#’ is found as the time the particle P; needs to cover
the vertical distance Az (see Figure 3.3). To determine this time increment accurately a local
solution of the flow close to the intersection point is needed. For the other free surface particles
both vertical and horizontal velocities are accounted for.

3.3.1 Local solution near downstream intersection point

As mentioned above, the time increment A¢/ must be found by a local analysis for the flow in the
vicinity of the downstream body/ free surface intersection. This can be explained by considering
Equation (2.22). At the intersection points, z(t) = Zc(t) the vertical velocity is singular. This
means that the vertical velocity of P; becomes singular at the time instant t/+!, and a local
solution for the flow near the intersection point is therefore considered.

Assume a complex potential similar to the one found in art. 63 by Lamb (1932):
W(Z)=1iAZ" (3.9)

where the complex variable Z = z, + i2; and A is a real value. The coordinate system for the
local analysis is shown in Figure 3.4. The origin is located at the intersection point I, while
o is the angle between the body and the free surface at I. The z,-axis is horizontal with the
positive axis pointing in downstream direction. The body surface is shaded while the double
body mirrored about zo = 0 is indicated with dashed lines. When polar coordinates, (2, 62),
are introduced the velocity potential and the stream function may be written as

roc = —Ary sin(nby) (3.10)
and

Pioe = Arly cos(nbs) (3.11)
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respectively, where W = ¢y, +ithic. By properly choosing the value of n the irrotational solution
when the boundary is characterized of two rigid walls is obtained. The equation for streamlines
in the case of the corner flow is

5 cos(nfz) = constant

implying that the lines s = +1Z are parts of the sa.me streamline. A solution for flow around

the corner with angle 2¢, is chosen by letting n = 2(w_a) This yields
1
2 T—a
Gloc = —Ari "° sin (2 o) 02) (3.12)
and
1 x
2 n—a
Y1 = Ary ™% cos (2_(7r —a) 02) (3.13)

The local solution must match with the boundary value problem outlined in Section 2.4, thus
a = 0. This gives ¢joc = 0 for §; = 0, while along the body, i.e. for #; = —7, the potential
becomes

Bloc = Ar3 (3.14)
Further, the velocities in 7o- and f,-direction are given as
Uy = —A—;-r;% sin (%02) (3.15)
and
up = —A%r;% cos (%92) , (3.16)

respectively, and the velocities on the free surface are found by setting #; = 0. Along the z,-axis
there is zero flow, and the velocity parallel to the 2,-axis can be written as

= Alr; : (3.17)

At is determined by using the procedure outlined in Zhao et al. (1996). Assuming that the
intersection point at time instant ¢4, has coordinates (:1:;?“, z{“), one can then write

ti+1
Az= / oo (c(2), 711) it (3.18)
ti
where Az is the vertical distance the surface particle P’ has to travel before it reaches the body.
c(t) is the instantaneous chord length and 7, = (zi™" — ¢(t)). The vertical velocity wj,. depends
on ¢(t) and Equation (3.18) can be rewritten as
= dt

Az:/z:{_l Wioe (c(t), 21T )dcd (3.19)
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The unknown coefficient A in (3.17) is found by matching the local velocity potential on the
body with the global velocity potential given in Equation (2.15), and an average value A, is
used from ¢; to t+1. This gives

pe=(8) ad [T @ oy tas () aE@-d)t o)
de/, T2 s, de o -1
and
(%) S T— (321)
€/'m Am(xf'*'l—z-}_l)"’
The time increment can thus be determined as
AY = (Z_z) (=t - 21) (3.22)

3.3.2 Stepping of the free surface

Once the time increment is found, the free surface particles are moved with their local velocities,
and the new free surface position ¢#*! is found. The horizontal and vertical velocities due to the
incident wave are evaluated by Taylor expansion about the mean free surface correct to second
order. The disturbance potential ¢ yields zero horizontal velocity, while the vertical velocity is
given in Equation (2.22).

For infinite water depth, the fluid velocities on the free surface at time instant ¢, are given
as

_0¢1 . 0¢1 ) _6%¢r
(anZO C t) amo 20=¢ 3:1:0 20=0 I 62061:0 20=0 (323)
= (ow cos (kzg — wt) + (Cwk cos? (kzo — wt)
and
8¢ O o2
w(z, o, 20 = (,t) = ¢ 5+ B(Z e +¢V =5 62,1 | =
- v;,|x| 3, = 3.24
_—z2__cz+§Sgn(.’L‘)V1( T _02+—\/ﬁ)—le ( )

+ (wsin (kzg — wit) + %(fwk sin (2 (kzo — wt))

Here u and w are the horizontal and vertical velocity, respectively. In Equation (3.24) the
slamming induced vertical velocity is written for simplicity as a function of z. The z¢-coordinate
is measured in the global earth fixed coordinate system which is convenient to use when solving
the surface evolution. By combining Equation (2.1) and Equation (2.2) the relationship between
the z- and zg-coordinates and it can be obtained as

T=x9—Mm—Ip—cC (3.25)
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The velocity of a fluid particle varies with space and time. By assuming the functional variation
in the velocity during the time step A#/, zo- and zo-coordinates of a particle P; at time /! are
obtained as

¢t

ot =, + / u(Zo,i, 20,4, T) AT (3.26)
e
and
g+
i =2+ / w(Zo,i, 20,4, 7) AT (3.27)
ti

According to the assumed time dependence for the fluid velocity, different integration schemes
may be developed. The Runge-Kutta methods are a family of explicit one-step methods. They
are named after Carl Runge and Wilhem Kutta and are designed to behave as the Taylor series
method but without requiring analytical differentiation of the original differential equation. Due
to the singular nature of the intersection point, one should only apply such method based on
Taylor series expansion away from the intersection point. Approximate expressions for Equation
(3.26) and Equation (3.27) can be established on the form

Tptt = oh + AV f(h 2,1, ) (3.28)

and

A =z, + Atg(zh;, 2,1, AT) (3.29)

which advance the solution of zg; and z;, respectively, from ¢/ to t/+! = ¢/ + At/. f(-) and
g(-) represent averaged values of the horizontal and the vertical velocity of P; during the time
increment A#/. Many different ways exist to evaluate the right-hand sides, f(-) and g(-), that
all agree to first order, but which have different coefficients for the higher order terms. Adding
up the right combination of the higher order terms, the error terms can be eliminated order by
order, see e.g. Press et al. (1989). That is the basic idea of the Runge-Kutta methods, and
the procedure for determining the higher order coefficients is described in many text books on
numerical mathematics, see e.g. Cheney and Kincaid (1985). Abramowitz and Stegun (1964)
give various specific formulae for the right hand side. In this work the classical fourth order
Runge-Kutta scheme is used to step the free surface in time. The method is of fourth order
since the error is O(At7)%. The coordinates of P; at time instant #/+! are written as

At

Tt = ah+ - (0 + 2052 + 21 + ai) (3.30)
and
) . At?
Z(JJ::'-I =z + 5 (big + 2b;2 +2b; 3 + bia) (3.31)
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where a; . and b;; are approximations of the horizontal and vertical velocity of P; at the begin-
ning, at the middle and at the end of the time increment, and they can be written as

aiy = U(T(’;,i’ Zg,,', tj)
biy = w(x(’),i’ Zg,z’v tj)

u(zh; + 'A2—tjai,h A+ Athbi,l’ t + Ath)

biz = w(zh; + Azt a1, 2); + Athbi,l,t" + Ath)
ai3 = u(zh; + A;Ia,z,zﬂ,, - A2tj bia,t + %t—)
big=w (Zj + Atjazzyzf),. av :2,tj+—t)

T
ai4 = u(zh; + A a,-a,zﬂ,, + Atib; 3, t 4 AH)
+

big=w (z-’ + Ata;s, 2 + Atib s, ¢ + AtY)

s

This integration scheme requires the boundary value problem to be solved four times for each
time step.

3.3.3 Wetted length during water exit

When the intersection point has reached the aft end of the deck it is assumed that this is wetted
throughout the rest of the impact process.

Due to the vertical side on the front end of the platform deck, it is not possible to trace the free
surface upstream of the wetted body in the same manner as described above. Therefore, the
upstream part of the free surface is assumed to be undisturbed and the fore body/ free surface
intersection is found by using a von Karman approach. von Kirman (1929) determined the
wetted part of the body as the length between the geometrical intersections of the body with
the undisturbed free surface. This means that the Z-coordinate of the upstream intersection
point, Zp, is found from

Nago + M3 — ZFrNs — (1(Zo = T +m,1) =0 (3.32)

which may be easily solved by applying e.g. a Newton-Raphson scheme If the incident wave
elevation is larger than the instantaneous deck clea.ra.nce at £ = 2 , the fore intersection point
is at the upstream end of the deck, i.e. Zp = —— . For a fixed deck the Zp moves downstream
with a velocity equal to the phase velocity of the mc1dent wave when Zp > ——

3.4 The impact loading on the deck

The load on the deck can be decomposed into surge and heave forces and pitch moment. The
pressure and the normal force on the deck due to the disturbance potential ¢ were discussed in
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Section 2.5. Though the outer pressure is singular at the intersection points these singularities
are integratable and the resulting force is finite. The contribution from the inner solution to the
force is negligible. Also the pitch moment evaluated by the outer pressure is finite.

The fluid pressure on the front end of the platform deck will also contribute to the loads on
the deck if it is wetted. This can not be computed by the present method, but the Froude-
Kriloff force can be taken into account. In the following expressions, this pressure is included in
the surge force and the pitch moment, but its contribution to the heave force is disregarded.

3.4.1 Pressure and force expressions

The total velocity potential is assumed to be a linear superposition of the velocity potentials due
to the disturbance and the incident waves. The quadratic term in Bernoulli’s equation is ne-
glected, which means that the total load can be found by adding the contributions from ¢ and ¢;.

The dynamic pressure field due to ¢y is found from Bernoulli’s equation and it is combined
with the hydrostatic pressure term —pgz. The combined pressure is denoted as the incident
wave pressure and the corresponding integrated force is called the incident wave force. For a
second order Stokes wave and infinite water depth, the incident wave pressure on the deck may
be approximated as

991 0*¢r
(p—po)i = P, P 200t |z~ P20 (3.33)

20=0

= pla(g + n.w?) cos(kzo — wt) — pgn,

where 7,(Zo,t) = fago + 73 — (Zo — 71)7s is the instantaneous deck height, i.e. the instantaneous
vertical distance from the mean free surface to the deck in the earth-fixed frame of reference.
It is assumed that 7,(zo, ) is of the same order of magnitude as ¢,. Note that consistent with
the derivation of second order theory, the term —3p|V¢;|2 _ should also have been included
in the Froude-Kriloff pressure. However, the neglected second order pressure term from the
perturbation velocity potential —%p|V¢|2 and the coupling term —pV¢ - V¢ will partly cancel
the contribution from this term. Also, since the quadratic pressure term due to ¢ is neglected
when deriving the dynamic free surface condition, it is reasonable to disregard —%p|V¢;|§O=O
and quadratic coupling terms when computing the incident wave pressure.

Similarly, if (;(z0 = —% + m,t) > n.(z0 = —% + m,t) the incident wave pressure on the
front end of the deck may be written as

(p = po)1(z0 = Ly m,t) = pla (g + (2 + nz) w®) cos (k(—g +m) - wt)

2 (3.34)

-pg(z+mn:) ,

and otherwise the pressure on the front end is equal to zero.

The total surge and heave forces due to the water impact on the platform deck may now be
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written as

S
Fl = —EZ (AI(SS )%) n —f (p—po)mldS
S
1 . (3.35)
= —pncBn, (J(n)c’ 4 Ej(n)c) Vo — §p7rczBJ(n)Von1 — | (p—po)m.dS

Sp
and

a(t)
F3 = —pncBng (J(fc)é+ —;—J(n)c) Vo — %p'lrc"’BJ(n)Vona - B /(p — po)madzg (3.36)
b(t)

where F; is the surge and Fj is the heave force, respectively. Sp is the instantaneous wetted
area with the wetted part of the front end included. When computing the added mass force, the
average relative acceleration between the fluid and the body along the wetted length is used.
The contribution to the surge and heave force from the incident wave pressure can be solved
analytically. The full expressions are given in Appendix B.

To find the pitch moment, Fj, the pressure distribution from both the disturbance and the
incident wave have to be considered. The moment arm is measured in the body fixed coordinate
system ZZz. The relationship between z and % is £ = z + Zp + ¢. The outer pressure distribu-
tion due the disturbance velocity potential is given in Equation (2.24) and is here denoted as
(p — po)p- In Appendix B it is shown that the pitch moment due to the outer pressure is finite
and the inner solution is therefore omitted. The total fluid pressure (p — po):o: then becomes

(P = Po)tor = (P — Po)p + (P~ Po);

[+ (-5 + )]
= o(Vo 4+ V4 t dt dt
S ve-a (3.37)
+ 6V0+1§E _V de da \/02___—2
Ploe 26 "\at " a ‘

+ pCa(g + n:(z, t)w?) cos (k(z + Ep + c+ m) — wt) — pgn:(z, 1)

The pitch moment may thus be written as

X (3.38)

F=—B/ (z+Epr+c)(p— po)to,dz-i-B/Z—ZG)(P Pl)dz

Nzg

where 2g is the z-coordinate of the center of gravity. The latter integral is set equal to zero
when (;(Z = —%,t) < n.(2 = —-%,1).

The full expression for the pitch moment is given in Appendix B.
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3.4.2 The impact force during water exit

The impact formula (2.44) follows from pressure integration under the assumption that g is
negligible and that 1|V¢|? is small relative to %f. These are the same assumptions that lead to
the dynamic free surface condition ¢ = 0. While these are reasonable assumption initially, the
importance of neglected terms will grow with time. ¢ = 0 may therefore be a poor approxima-
tion for the exact free surface condition during water exit and thus the impact formula will no
longer be valid. In the same manner as in Kaplan (1992), the slamming term proportional to &
is only evaluated when ¢ > 0. When ¢ = 0 the slamming term is zero, while this particular term
is set equal to zero when ¢ < 0. Such treatment is commonly used in ship slamming analyses.
This can be seen e.g. in Kaplan and Malakhoff (1978), Yamamoto et al. (1980) and Kaplan
(1987).

The added mass and the incident wave force are retained also during water exit. The total
pressure used in the force calculations during water exit is thus found by setting V4 equal to zero
in Equation (3.37). For the surge and the heave force the slamming term as well as V; are set
equal to zero during water exit. Both V, and V; are set equal to zero when computing the pitch
moment during water exit.

3.5 Water impact on a bottom mounted platform

In this section the theory given in Chapter 2 and in the preceding sections of this chapter is
used to solve water impact underneath a fixed platform deck. This may be considered to be a
special case of wave impact on a floater, but it is simpler since rigid body responses do not have
to be solved. A generalization of the solution procedure to solve impact on a floating platform is
straightforward, and a procedure is outlined in Appendix C. In the following a fixed horizontal
deck is assumed.

The earth-fixed and body-fixed coordinate systems coincide. In regular waves, impact will occur
if the maximum wave elevation is greater than the initial deck clearance. For deep water, impact
will occur if {, + %C,fk > flago. Time of first impact, ¢y, is found from

Tago — Ca COS (ké + wto> - %ka cos (2(k—§— + wto)> =0 (3.39)
by using the Newton-Raphson method.

The free surface downstream of zy = —% is discretized by free surface particles, and integrated
in time by a fourth order Runge-Kutta scheme as outlined in Section 3.3.2. The time increments
A# and the downstream intersection point during water entry are determined by the procedure
described in Section 3.3.1. Since the body is fixed, the impact induced loads on the deck are the
parameters to be calculated. The expressions for the incident wave loads are simplified since the
motion of the platform is zero.

Since the velocity of the deck is zero, only the wave kinematics contribute to the relative impact
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velocity. With reference to Equation (3.8), V and V; may now be written as

_ 01(Fr +ct) _ 091(ZF +c,t) 0¢r(Zr + ¢, t)

VO(t) 820 |zo=nago ~ 0z0 |Zo=0 + "lago_W_leO (3. 40)
= (ow (1 + nagok) sin (k(Zr + ¢) — wt)
and
1 6¢1(5JF + 2c, t) a¢1(§tp +c, t)
‘/1(t) = Z&‘)‘ —0Z—I20=7la90 - —6Z—|zo=7lag0
1 0 0 (3.41)
™ c_(t—)_ (Caw (1 + nagk)) (sin (k(ZF + 2¢) — wt) — sin (k(ZF + ¢) — wt)) ,

respectively. The upstream intersection point, Z, is found from Equation (3.32) with the plat-
form motion set equal to zero. Similarly, the average impact acceleration V; is only dependent
on the kinematics associated to the undisturbed wave.

The fact that the platform does not move, provides many simplifications in the numerical so-
lution of the water impact problem. The equation of motion for the platform does not to be
solved, and the expressions for both the loading and the impact velocity become less compli-
cated. Further, the wave induced platform motion, and the added mass and damping matrices
of the submerged platform volume have not to be evaluated. The latter represents probably
the greatest simplification. If the motion transfer functions and the added mass and damping
matrices are not given, these have to be estimated first.

In the rest of this thesis, only fixed platform decks and the vertical force are considered.

3.6 Convergence tests for the Wagner based method

It is important to check the convergence of a numerical method. Parameters that may affect
the solution for a problem in the time domain are the spatial discretization of the problem and
the time step used in the time integration. In the Wagner based method, the time step is a part
of the solution, and A#’ and the spatial discretization of the free surface are closely connected.
The convergence with respect to the discretization of the free surface must therefore be checked.

The convergence tests below and the parametric studies described in Section 3.7 are performed
for a fixed deck with dimensions equal to the model used in the experiments described in next
chapter. The length of the deck is 0.63m and the breadth is 0.56m. The wave conditions chosen
are also taken from the same experiments. Model scale is used in the parametric study because
this may be helpful when discussing the experiments presented in Chapter 4. However, the
following discussion is also valid for full scale results. Length parameters are linearly scaled,
while time is Froude scaled, which means that the ratio between the force in model scale and in
full scale is equal to the scale factor cubed.

A portion of the free surface with a horizontal extension equal to 2L is discretized. The first
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Figure 3.5: Discretization of the free surface. 150 surface points are used. The wave condition
is T = 1.25s and {, = 0.05m. The position of the body is indicated by the shaded area.

element in the initial grid is located at the point where the impact first occurs, i.e. at the front
edge of the deck. The free surface points are equally spaced in z¢-direction downstream of the
point of initial impact. Since the water exit is approximated by a von Karman type approach,
the upstream part of the free surface does not have to be discretized. Figure 3.5 shows the initial
discretization of the free surface and the discretization at a time instant when almost half of
deck is wetted. In this case the surface is described by 150 fluid particles. For the latter time
instant, the fluid particles upstream of the aft body/ free surface intersection point are located
on the body surface.

The results for the impact force should converge as the number of free surface particles used in
the calculations is increased. A more refined discretization reduces the time increments, and this
should make the time integration converge. This has been studied for a number of combinations
of wave condition and 7,40 and the results for all cases converge nicely. The number of fluid
particles needed in order to obtain converged results varies from case to case. For the majority
of the cases tested the results converge rapidly, and 100-150 particles are sufficient for the rela-
tive errors for the maximum and mimimum force, Fmax and Fpi;, to be less than 1%. Figure
3.6 shows an example of a case that converges easily and a case that needs a large number of
particles to converge. N is the number of fluid particles used in the calculations. The case in
Figure 3.6(a) corresponds to 7,40 = 0.04m, 7 = 1.25s and {, = 0.06m. This yields a relative
violent impact and the deck gets fully wetted for a part of the duration of the water impact
event. A plot of the corresponding converged wetted length is given in Figure 3.10(b). The
results for the total impact force converge rapidly. Good results are obtained with N = 100.
Once the downstream edge of the deck is wetted, the number of particles is irrelevant for the
force calculations. Figure 3.6 shows a plot for the calculated values of the largest positive force,
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Figure 3.6: The convergence of the impact force results with respect to the number of free surface
particles, N, used in the calculations. The case depicted in the left figure has 7.0 = 0.04m,
T = 1.25s and {, = 0.06m. The case to the right has 10 = 0.06m, T = 1.25s and {, = 0.06m.
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Figure 3.7: Convergence of Fmaz for fago = 0.04m, T = 1.25s and (, = 0.06m.

Fpax, for the same impact condition. Fpax approaches 58.96N as N is increased. The error
made for Fmax with N = 100 is less than 0.1% when comparing to the converged result. Figure
3.6(b) gives the total impact force results for a “gentle” impact event, where 7,450 = 0.06m,
T = 1.25s and {;, = 0.06m. The positive impact force during the initial stage of the impact
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seems to be well described when using N = 200. However, the negative force peak does not
converge so quickly. In the negative force region before Fp i, is reached, the wetted length is
still increases slightly, while the water exit has started at the downstream edge of the deck. The
slamming force is still not set equal to zero, but the total force is dominated by the negative
added mass force. As a consequence, a small change in the velocity of the upstream inter-
section point influences both the slamming and the added mass forces. When N is sufficiently
large the total impact force and the wetted length results converge. N = 300 yields good results.

For most of the cases the results converge fast but for some cases a finer discretization is needed
to obtain convergence. Particularly for the region where the force is negative. The computa-
tion time increases approximately as N2, which means that by increasing N by a factor 2, the
computation time increases approximately by a factor 4. Unless N becomes very large, the
computation time is small and convergence tests are not expensive to perform. The CPU-time
for the case plotted in Figure 3.6(a) with N = 200 is approximately 5 seconds on a 450MHz
Pentium II computer.

3.7 Parametric study for the Wagner based method

A parametric study to determine the importance of the primary parameters governing the ver-
tical impact loading on the deck is performed by using the Wagner based method. This may be
helpful when trying to understand the physics of the problem. The main parameters governing
the impact force can be listed to be the wave amplitude, the wave period and the deck clearance
in still water. The latter is here denoted as deck height. Additional effects may be cushioning
due to entrapped air, compressibility of the fluid and three-dimensional effects in the waves.
These are assumed to be of minor importance.

The force on the deck may be divided into three components as shown in Equation (3.36).
These are the slam force, the added mass force and the incident wave force, respectively.

The water entry/ water exit process due to a regular propagating wave hitting the deck, yields a
force history where the structure experiences a positive slamming dominated up-lift force during
the initial water entry phase. This is followed by a negative force dominated by the negative
added mass force. For many impact conditions the incident wave force becomes larger than the
magnitude of the added mass force during the final part of water exit, and the total force becomes
thus positive. Figure 3.8 presents the total force on the deck, as well as the contribution from
each of the terms mentioned above for two different cases. Both cases have a first order wave
amplitude {, = 0.06m and deck heigth 7,40 = 0.04m, but different wave periods, T = 1.11s and
T = 1.43s, respectively. Similarly, Figure 3.9 gives the total force and the different components
for two wave amplitudes when the wave period and the deck height are kept fixed and equal to
T = 1.25s and 7440 = 0.04m, respectively.

The positive water entry force is dominated by the slamming force caused by the rapid in-
crease of added mass. Fmax also gets a significant contribution from the incident wave force,
while the added mass force yields a negative contribution of the same order of magnitude. The
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Figure 3.8: The total impact force and its contributions from the slamming term, added mass
term and incident wave term. (, = 0.06m and 740 = 0.04m.
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Figure 3.9: The total impact force and its contributions from the slamming term, the added
mass term and the incident wave term. T = 1.25s and 1450 = 0.04m.
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slamming force is always positive, but it is set equal to zero when the wetted area decreases.
The added mass force is negative throughout the entire impact event since the fluid particle
accelerations due to ¢; are negative in the wave crest. The magnitude of the added mass term
has its maximum at the same time as the wetting of the deck does. The incident wave force is
positive and yields a significant contribution to the total force.

Below, the influence of the primary parameters on the total impact force is discussed.

3.7.1 Wave period dependency on the impact force

The maximum vertical particle velocity in the wave crest of an undisturbed regular wave decreas-
es with increasing wave period. From Equation (2.44) it is known that the vertical fluid particle
velocity is crucial for the impact force. In spite of this, it can be noted from Figure 3.10(a)
that for a given 7440 and (s, Fmax increases as the wave period gets longer. This is mainly due
to a more rapid wetting of the deck for increasing period. Longer waves allow the body to get
wet faster because of lower wave steepness. Figure 3.10(b) shows how the wetted length evolves
as function of time for the different wave periods, while Figures 3.11(a) and 3.11(b) show the
corresponding wave period dependency of V; and ¢, respectively. The time instants when Fmax
occurs are indicated with circles. Even if average impact velocity V; at the time instant where
Fmax occurs, is smallest for the longest wave period, this is compensated by an increased ¢ and
by a larger wetted area when Fmax occurs. The latter is also a direct consequence of increased
¢. A larger ¢ implies that the slamming force dominates the total force to a greater extent.
The wetted area is thus larger when the total force gets its largest value. Another consequence
following from the more rapid wetting, is that the decay of V; with time is smaller for waves
with smaller steepness than for steeper ones. If {; < 7a40, however, the smallest of two wave
periods may give the largest Fipax because it yields the largest second order wave amplitude.

The maximum magnitude of the negative force peak, |Fp,iy|, occurs when the wetting of the
deck is at its maximum. At this time instant only the incident wave force and the added mass
force contributes. Given that the maximum wetted area is equal for two incident waves with
different periods, |Fy,iy| is smaller for the longer wave. This is mainly due to that the negative
particle accelerations, and thus the negative added mass force, are proportional to 72, Figure
3.8 shows the contributions to the force relative to two different wave periods. The maximum
magnitude of the negative added mass term is clearly larger for the shorter wave. Also the
positive incident wave force is smaller at the point of maximum wetting for the shortest wave.

3.7.2 Wave amplitude dependency on the impact force

Figure 3.12 shows an example of the wave amplitude dependency on the total impact force and
on the wetting of the deck. The wave period and the deck height are kept constant, while the
wave impact is calculated for three different wave amplitudes. The wetted lengths during the
initial water entry phase are relatively similar for the three different amplitudes, while the max-
imum force Fmax is very dependent on the wave amplitude. Even if é(¢) is not much affected
by an increased amplitude, for constant T and 7,40, Fmax increases rapidly as the amplitude
increases. Several reasons for this can be detected, i.e. by studying the contributions to the
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Figure 3.10: The wave period dependency on the total impact force and the wetted area of the
body. {, = 0.06m and 1,4 = 0.04m. The circles indicate the wetting of the body at the time
instant where Fmag occurs.
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Figure 3.11: The wave period dependency on the average impact velocity and the change of
chord length with time. {;, = 0.06m and .90 = 0.04m. The circles indicate the velocities at the
time instant where Fyqg occurs.
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Figure 3.12: The wave amplitude dependency on the total impact force and the wetted area of
the body. T = 1.25s and .90 = 0.04m. The circles indicate the wetting of the deck at the time
instant where Fyqg occurs.

Vo(t) [m/s] Vo(t) [m/s?
o4 ' o = 0.05m — 00 ' G0 = 0.05m —
03 F (,-=0.06m — - G = 0.06m —
o \E ¢ = 0.07m — o C = 0.07m§ —_
0.1 e \\\\ |
00 \i‘\ -1.0

~_ 7

N N § —
——

02 \\\ 45 \\ ~a_

03 \l ~
-04 20 \\//

00 0t 02 03 04 05 06 07 00 01 02 03 04 05 08 07
t[s] t [s]
(a) Average impact velocity (b) Average impact acceleration

Figure 3.13: The wave amplitude dependency on the impact velocity and acceleration used in
the force calculations. T = 1.25s and 1,50 = 0.04m. The circles indicate the time instant where
Fmag occurs, while the squares indicate the occurrence of Fpy;p.
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total force for the two wave amplitudes presented in Figure 3.9. Both the incident wave force
and the added mass force are affected by the increase in wave amplitude, but the main con-
tribution to the change in Fmax comes from the change in the slamming force. é(t) remains
quite unaffected by the increased wave amplitude in this case, but due to larger impact veloc-
ities the slamming term increases significantly. The amplitude dependence on V; is shown in
Figure 3.13(a). The circles indicate the location where Fimax occurs. The increase in Vj is
caused by two effects. When the wave amplitude increases the vertical fluid velocities in the
undisturbed wave increase. The leading order term of the fluid velocity varies linearly with the
wave amplitude. Also, as the wave amplitude increases, the first impact moves further down-
stream of the wave crest toward a location where the vertical fluid velocities are larger. Since
the slam force increases more than the magnitude of the negative added mass force, the wet-
ted area is larger for Fimax for the higher wave. This is indicated by the circles in Figure 3.12(b).

In the present case, an increase in the wave amplitude does not significantly affect the mag-
nitude of Fi ;. Here Fi,;;, occurs when the deck is fully wetted, but generally it occurs when
the wetted area gets maximum value. The magnitude of the added mass force becomes larger
due to an increase of averaged fluid accelerations across the wetted area. This is pointed out in
Figure 3.13(b), where the squares indicate the time instant of maximum negative force. Howev-
er, the increase in the incident wave force when increasing the wave amplitude, approximately

compensates for the change in the added mass term.

Increased wave amplitude leads to a larger duration of the total impact event.

3.7.3 Deck height dependency on the impact force

The deck height for a fixed platform deck obviously affects the water impact greatly. In full
scale the deck height is a parameter which can be controlled. Figure 3.14 shows time histories
of the total impact force and the wetting of the deck for three different values of 7,4. The
wave conditions are the same for all three cases, T = 1.11s and {, = 0.06m. Though é(¢) is
not sensitive to 7,4 during the initial water entry phase, the loading is greatly affected by the
change in deck height. This can easily be explained. Firstly, the reduction in the deck height
gives a larger incident wave force. Secondly, é(t) is similar for the three cases initially, but
a significant difference in V; can be noted from Figure 3.15(a) and thus a large difference in
the slamming force. The latter gives the main explanation to the difference. The circles in the
figure indicate the velocity at the location of maximum up-lift force. At first impact, V; is in
this case almost two times as large for the smallest value of 7,4 than it is for the largest. The
whole difference is due to the initial impact occurring at different positions on the wave crest.
Also, since the slamming term dominates more for the smaller deck height, Fmax will occur for
a larger wetted area.

Fiin 18 in this case also greatly affected by changes in 7)40. This is mainly due to the dif-
ference in the maximum wetting, but the change in Vo plays also a certain role, see Figure
3.15(b). Because of a smaller positive incident wave force, the largest of two different deck
heights may give the largest value for |Fi,;, | if the maximum wetted lengths are similar.
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Figure 3.14: The deck height dependency on the total impact force and the wetted area of the
body. (; = 0.06m and T = 1.11s. The circles indicate the wetting of the deck at the time instant
where Fmar occurs.
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Figure 3.16: The deck height dependency on the total impact force and the wetted area of the
body. (; =0.05m and T = 1.11s.

Since the total impact force is so strongly affected by 7,40, the accuracy when determining
the deck height in the experiments is crucial. Figure 3.16(a) shows how the results are affected
by a small shift in the deck height. ¢(t) is almost unchanged for these three impact events, but
Vo is affected by the small change in the deck height, see Figure 3.16(b).

3.7.4 Two-dimensional versus three-dimensional flow condition

The results from the Wagner based method presented in the parametric study above, as well as
the experimental results that will be presented in Sections 4.5, are all for two-dimensional flow
conditions. However, when applying this theory on a real full scale platform, three-dimensional
effects should be taken into account. Otherwise, the calculated results for the loading and the
responses could be significantly overestimated. In Section 2.6.1 a method for correcting the
two-dimensional calculations for three-dimensional flow is presented. The high frequency limit
added mass coefficient is corrected using the simple empirical formula presented by Blagoven-
shchensky (1962). The formula for the correction factor J(«) is given in Equation (2.49),  being
the aspect ratio of the wetted area, Kk = %‘. In this section, results for two-dimensional flow will
be compared with results corrected for three-dimensional effects.

The three-dimensional effects play an important role for the loading, both during the water
entry and the water exit phase. Figure 3.17(a) presents results of force calculations with with-
out accounting for three-dimensional effects. Only the slamming force and the added mass force
are corrected. The wave condition is described by {, = 0.05m and T = 1.25s, while the deck
height is equal to 0.04m. In Figure 3.17(b), the corresponding time histories of the correction
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Figure 3.17: The flow condition dependency of the total impact force. The deck has dimensions
0.63m by 0.56m, the deck height is 0.04m and the wave condition is given by T = 1.25s and
(o = 0.05m. On the right figure, the correction factors J(k) and J(k) as well as the aspect ratio
of the wetted area, k, are shown for the same impact event.

factors J(x) and J(x) are presented together with the related value of x. At the initial impact, &
is small and J{(x) is close to unity, and the difference in the vertical impact force due to the two
different flow conditions is small. But as the wetted ara increases, the three-dimensional effects
tend to become significant. The term connected to J(k) in Equation (2.50) gives an unimpor-
tant negative contribution for small wetted lengths, but at the location of the maximum positive
impact force both the correction terms contribute. When Fmax occurs for the three-dimensional
flow, the added mass is only 81% of the two-dimensional one. The magnitude of the added mass
force is reduced by 19%. Due to the term involving J(k) the slamming term is reduced by an
even larger factor. At the location of the maximum positive vertical force, the slamming force is
only 71% of the corresponding two-dimensional slamming force at the same time instant. The
maximum three-dimensional total force is in this case 70% of maximum two-dimensional total
force.

Once k reaches its maximum value only the added mass term is affected by three-dimensional
effects. Fy;, occurs when the wetting is maximum. The value of & is then 1.125 and the cor-
responding value of J(x) is 0.524, meaning that the added mass force for the three-dimensional
flow condition is only 52.4 % of the corresponding value for the two-dimensional case. However,
since the positive incident wave force is the same for both cases, the magnitude of the minimum
force is now reduced by more than 60% due to three-dimensional effects.
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Figure 3.18: Dimensionless wetted length and vertical force as function of dimensionless time
for full scale and model scale with scale 1:150. T = 1.11s, {, = 0.06m and 7550 = 0.06m in model
scale. T =13.59s, {; = 9.0m and nag0 = 9.0m in full scale.

3.7.5 Full scale versus model scale

So far in the parametric studies, model scale has been used to describe the impact process, but
for practical use full scale computations are important. From the force expressions in Section
3.4.1, one can show that if time is Froude scaled and length is linearly scaled, that the time series
for the dimensionless vertical force acting on a fixed horizontal deck, F3 = F3/pg(3 as function
of the dimensionless time t1/g/L is constant for given 7,40/A and {,/A. This should also be the
case for numerical solution results determined by the Wagner based method.

Figure 3.18 and Figure 3.19 show two specific examples on computations of the wetted length
and the vertical force in model scale and in full scale. The model has the same dimensions as the
model described in Chapter 4, L = 0.63m and B = 0.56m. A model scale of 1:150 is assumed,
giving L = 94.5m and B = 84.0m in full scale. The same number of fluid particles, N = 500,
is used for both model scale and full scale computations. On dimensionless form the vertical
forces and the wetted lengths calculated in model scale and full scale, respectively, are close to
identical.
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CHAPTER 4

Experiments and results from the
Wagner based method

4.1 Introduction

An important task when developing a numerical code is validation or verification. Verification
means that the numerical solution is proved to be consistent with the theoretical basis of the
method, i.e. the governing differential equation is correctly solved by the numerical method. The
method can be verified by comparing to known analytical results or by performing convergence
studies. Validation means that theory is compared to the physical reality, which means that
experimental studies are needed. The most controlled way of doing this is by model tests. Of
course one is then left with how to scale the results to full scale condition.

If analytical expressions are available for the given problem, this would be the best verifica-
tion test case. For wave impact underneath a platform deck, no analytical solution is available.
Experimental results for both impact in quay-aprons and on platform decks are published (see
Section 1.2), but it is often difficult to extract the necessary information from these publications.
By performing the experiments oneself, better control over the measurements and the design of
the models and the equipment needed is obtained. Taylor made experiments for the given physi-
cal problem can then be performed. Also, model tests may provide important information about
the physical approximation of the theory. This is a great advantage when analyzing the results.
This was the main motivation for starting out with the experimental work.

The phenomenon of interest is the water impact process due to an incident wave reaching the deck
and propagating through. To study the overall stability and global strength of a structure, it is
necessary to consider the total force and moments acting on it. Therefore the main parameter to
measure in the laboratory study, was chosen to be the total vertical wave induced force acting on
the platform deck. The principle parameters governing the loading are assumed to be the wave
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Figure 4.1: The narrow wave flume at the Department of Marine Hydrodynamics, NTNU.

amplitude, the wave period and the initial deck clearance. These parameters can readily be con-
trolled in the laboratory. Additional effects on the load may be air cushioning due to entrapped
air, compressibility of the fluid, three dimensional effects in the wave field and surface roughness.

In addition to the vertical impact force, the wetted area of the deck and the wave elevations at
different position were measured.

This chapter describes the experimental work and findings as well as comparisons to theoretical
results obtained by the Wagner based method.

4.2 Experimental set-up

4.2.1 The laboratory

The experiments were carried out in the wave flume at the Department of Marine Hydrodynam-
ics, NTNU. This is a narrow wave flume, and the main dimensions are 13.5 m long, 1.3 m deep,
and 0.6 m wide. It is designed for a water depth of 1.0 m. Figure 4.1 shows a sketch of the flume.

An important reason for choosing this tank was the possibility of getting visual observations,
which may be helpful for the understanding of the physics involved. Other reasons were avail-
ability and costs of the experiments. By choosing this flume, two-dimensional experiments were
possible to perform. This was considered to be an advantage, since the simple experiments made
it easier to isolate the primary effects to be studied. In reality three-dimensional effects are im-
portant, but in the Wagner based method they are accounted for by the procedure described in
Section 2.6.1.

The use of optical measurement techniques was a primary concern when the flume was de-
signed. Both side walls and bottom of the flume are made of 19mm thick glass panes, which
ensures good access for visual inspections and good conditions for optical measurements tech-
niques. The glass is supported by a steel structure designed to withstand the static pressure
present when the flume is filled, and to be stiff enough to avoid vibrations due to dynamic
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pressure. A wavemaker is installed in the flume. This is an electronically operated, computer
controlled, single flap wavemaker. It is fitted with a control system that enables the flap to damp
out reflected waves. The flap is hinged 0.10m above the bottom of the lume. The wavemaker
is capable of generating regular, irregular and breaking waves. More information on the design
and characteristics of the lume and the wavemaker can be found in Lader (2001).

To damp out the waves at the end of the flume, a beach was installed. This is a conventional
type beach and it has a parabolic arc profile.

4.2.2 Specifications and design of the model

To isolate and study the important physical effects governing the impact process, a fixed hori-
zontal platform deck in two-dimensional flow conditions was considered. Two-dimensional flow
requires that the model has to cover the entire breadth of the flume. Further, no obstructions
underneath the bottom plate of the model should be present.

A number of additional requirements for the model design and the experimental set-up, were
specified. These specifications are listed below.

¢ Realistic relationships between the length of the model and the wavelengths should be
used in the experiments.

o The deck clearance must be easy to change without changing the water level in the flume.
o The force transducers must be easy to remove for calibration or for replacement.

o The force transducers must absorb all the vertical forces acting on the bottom plate of the
model.

e The model must be rigid enough to withstand the impact. Hydroelastic effects should be
of no significance.

o The model must be water tight, and water must not be allowed to flow over the model.

o To reduce the hazard of damage to the side walls of the flume, the model must not be
in contact with the glass panes, but to satisfy the two-dimensional flow conditions, water
must not be allowed to escape up between the model and the flume side walls.

e The experimental set up must not be a hindrance for visual observation of the impact
process.

In addition to these specifications, there was also a wish of being able to watch the impact from
above. This requires a transparent model without any equipment inside.

The lowest eigenmode for transverse waves in the flume has a frequency equal to 1.14 Hz (7.16
rad/s). This is associated with a wavelength equal to two times the breadth of the flume. To
avoid transverse waves from being excited, the highest wave frequency to be used was chosen
to be 1.0Hz (6.283rad/s). On the other hand, the length of the flume sets restrictions on the
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maximum possible wavelength that can be used. If deep water waves are desired, the water
depth limits the wavelength. Finite water depth was accepted, and wave periods equal to 1.0s,
1.11s, 1.25s and 1.43s were used in the experiments. The overall length of the model was 0.65m.
Assuming a 1:150 scale, the full scale wave periods would be in the range of 12.24 to 17.5 sec-
onds, while the full scale length of the platform would be 97.5m. These are realistic values. The
width of the platform deck was limited by the width of the flume and was set to be 0.58m. This
ensures a 10mm clearance on each side to protect the flume walls. In addition, the sides of the
model parallel to side walls of the flume were covered with foam rubber. To keep the water from
flowing into the model from above, it was built with 0.30m high sides walls.

From the specifications given above, two different models were made. One was made of alumini-
um, while the other was made of plexi-glass. The plexi-glass model was built purely for visual
observations. Both the side walls and the bottom plate of the former model are made of 6mm
thick aluminium plates. This was believed to ensure that structural response would be of little
importance. To keep water from flowing up between the models and the side walls of the flume,
rubber seals were glued along the flume/ model intersections. This ensured two-dimensional
flow conditions. Since the total vertical force must be picked up by the force transducers, the
bottom plate of the aluminium model had to be free from the side walls. The bottom plate was
only connected to the force transducers. The plate was cut with a clearance to all the side walls
of the box. The dimensions of the bottom plate was chosen to be 630mm by 560mm, this gave
a 4mm clearance along all the sides. To keep water from penetrating through this clearance
and into the model, a rubber membrane that covered the entire bottom plate, was glued onto
the model. The rubber menbrane has very small bending stiffness, and thus the shear force
transferred to the side walls is negligible. Also, since the bottom plate and the force transducers
are stiff, the deformation of the rubber membrane is small, i.e. the vertical force transferred to
the side wall through the membrane force may be disregarded compared to the total force acting
on the bottom plate. This rubber membrane also served another purpose when measuring the
wetted area. This will be described in Section 4.2.3.

In addition to the box itself, a rig to mount the model and the measuring equipment to the
wave flume had to be made. To keep the bottom plate stable in the case of a skewed force
distribution in the y-direction, three force transducers were distributed in a triangular configu-
ration, as shown in Figure 4.2. The position of the force transducers are indicated by the shaded
squares, and the wetted area measurement device is also shown. The instrumentation used is
described below in Section 4.2.3. Figures 4.3(a) and 4.3(b) show sketches of the model seen from
the side and the front, respectively. The lower ends of the force transducers were screwed onto
the bottom plate and the upper ends were mounted on three beams parallel to the wave flume.
These longitudinal beams were then mounted on two cross beams which were connected to the
steel frame of the flume. The box itself was also connected to the cross beams. With the given
configuration all the vertical forces acting on the bottom plate were transferred all the to the
transducers. Clamps were used to fasten the model to the steel frame of the flume. The initial
deck clearance could be easily changed by placing thin aluminium bricks with a given thickness
under each of the four cross beam ends.
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level.

The model described above, satisfied all specifications, except for the wish of watching the
impact process from above. This was satisfied by the plexi-glass model.
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4.2.3 Instrumentation and calibration

Figure 4.2 shows the location of the most important measurement devices. The sampling fre-
quency used in the experiments was 100 Hz, which was believed to be sufficient for force mea-
surements.

The force transducers used in the experiments are in house made by Marintek (Norwegian Ma-
rine Technology Research Institute). They measure forces along three axes using strain gauges.
In the present experiments, only the force along the 2-axis was considered. The transducers are
designed to measure force in the range £1000N. To measure the wetted area of the bottom plate
at any time instant, a wetted area measurement device was introduced. This device is based
on the same principle as a capacitance type wave gauge. The idea is to use two parallel copper
tapes along the bottom of the model. The distance between the two tapes was chosen to be
approximately 20mm. The rubber membrane acted as an insulator. The output voltage from
this device was directly proportional to the wetted tape length. Three pairs of copper tapes
were used for the aluminium model, giving three independent measurements. Knowing the wet-
ted length of the copper taper, good estimates for the wetted area can be obtained by simply
multiplying by the width of the bottom plate. Surface piercing wave gauges, consisting of two
vertical electrodes, 3mm in diameter and 12.5mm apart, were used to measure wave elevation.
The instrumentation also included amplifiers, data logging and storage units for the data ac-
quisition. In addition a camera and a digital video recorder were used to record the experiments.

The force transducers were carefully calibrated before they were mounted on the experimen-
tal set-up. They were also regularly calibrated during the experimental program. A detailed
description of the initial calibrations are given in Appendix D. The wave gauges and wetted
area measurement devices were cleaned and calibrated regularly. The latter were calibrated by
fixing the model with an inclination and by stepwise increasing the water level in the flume. The
wetting of the copper tapes could then be easily measured and calibration coefficients set.

4.3 Experimental work

4.3.1 Test conditions

Originally, the idea was to perform experiments for both regular and irregular waves. But the
ambition of doing wave impact experiments with irregular waves was later dropped. There are
several reasons for this decision. Most importantly, as the experiments for regular waves were
ongoing, challenges that were not anticipated, arose. It was decided that it was important to ad-
dress these new challenges properly for regular waves before extending the problem to irregular
sea. Further, the suitability of the flume for irregular sea experiments that require long realiza-
tion times, is questionable. Even though the beach functions well and that the flap of the wave
generator is designed to damp out reflected waves, very long time series for free regular waves are
difficult. After a time, cross waves may develop, and standing waves with wavelengths equal to
twice the breadth of the flume occur. It has not been checked what will happen for free irregular
waves, but since a irregular sea in principle contains all frequencies, it is likely that transverse
standing waves will be excited and thus making valuable experimental data difficult to obtain.
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By concentrating on the simple case with regular incident waves it is easier to study the impact
process in details and to get a better understanding of the physics involved. It was believed
that if the theory could be validated for regular waves, the theory also would be applicable for
more general sea states. Thus, only regular incident waves were used in the experiments. For
each wave period, several wave heights, H, were used, ranging from H = 0.10m to H = 0.14m.
The steepest wave used in the experiments has wave period 7" = 1.11s and H = (0.14m, which
corresponds to a wave steepness H/A = 0.073 if deep water is assumed. The wave profile of this
wave and the second order approximation are shown in Figure 3.1. Similarly, the least steep
wave used has T'= 1.43s and H = 0.14m, which corresponds to a wave steepness H/A = 0.031.
Also this wave is shown in Figure 3.1. When second order wave theory is applied, {, = H/2
is used in Equations (3.5) and (3.5) . The wave heights in the experiments are limited by a
criterion of generating regular waves. If the wave steepness becomes to large, time series with
regular waves are difficult to obtain since breaking may start to occur at the wave crest.

Three different deck clearances, 7,40, were used. Those were 7,90 = 0.04m, 740 = 0.06m and
7lago = 0.08m. The deck clearance is defined as the clearance between the model and the mean
free surface. The deck clearances were changed by inserting thin aliminium bricks between the
transverse beams and the flume frame, when fixing the model to the flume structure. The given
values for 7,40 assume constant water level in the tank. Due to a small leak in the outlet valve
in the flume, water had to added regularly, and the water level might differ slightly between
test cases. For a given test case, however, the deck clearance can be considered constant. Since
impact will not occur for many combinations, experiments for all combinations of the three pa-
rameters described above were not performed.

The model was fixed in the middle of the wave flume, equally far away from the wavemaker
and the beach. The location was chosen so that it was sufficiently far away from the wavemaker
to allow the waves to fully develop and also reasonable far away from the beach. This means
that when steady state condition is obtained, there are negligible effects of the local flows at the
wavemaker and at the beach. This location also provides good conditions for visual inspection
of the water impact process.

4.3.2 Single impact event vs multiple impact events

As the experiments were ongoing, a significant difference in the impact process due to the first
wave hitting the structure and the impact process due to the following waves was noted. The
main reason for this deviation is that the preceding wave impact gives a significant disturbance
to the free surface, which does not die out before the next wave reaches the deck structure. The
second wave that hits the deck is therefore not equal to the regular incident wave. In addition
to the slam that occurs when a wave hits the front end of the deck, the disturbance in the wave
elevation causes a second slam when it hits the structure. This second slam was both clearly
visible and audible, as well as clearly seen in the measurements. For the second slam, the water
hits the deck in a manner which is analogous to a wedge of water impacting on a flat body.
This leads to a rapid increase in the wetted area and a large impact force. Since this type of
impact process occurs when more than one successive waves hit the deck structure, and because
it leads to two slam events on the deck, this type of process is denoted as a Multiple impact
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Figure 4.4: Single impact event. Fish-eye view. T = 1.00s, H = 0.10m and 7,40 = 0.04m.

event. Similar, the impact due to the first wave reaching the deck or when only one wave hits
the deck, is denoted as a Single impact event.

Figure 4.4 shows pictures at six time instants of the impact process associated with the first
wave hitting the structure. The perspective in these pictures is approximately 45 degrees from
the side and upwards, so that they show three dimensions. A part of the side plate of the model
can be seen as light grey areas at the top of the pictures. The bottom plate is nearly black, but
can be recognized by the three pairs of copper tape for the wetted area measurements. Also
the wave profile can be observed. Since it might be difficult to see the physics of the impact
process clearly when looking at it from this perspective, complementary sketches of the process
seen from the side are shown in Figure 4.5. The sketches are purely two-dimensional and the
indicated time instants correspond to the ones in Figure 4.4.
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Figure 4.5: Single impact event. The time instants t; correspond to the time instants in
Figure 4.4.

The wave period is T = 1.00s, the wave height is H = 0.10m and 7,40 = 0.04m for this particular
case. In the discussion below, it will mainly be referred to the sketches in Figure 4.5, but recall
that these correspond to the corresponding pictures in Figure 4.4. The first sketch 4.5(a) shows
the platform deck and the wave before impact occurs. The wave profile is smooth and undis-
turbed. The wave propagates from left to right. As the wave hits the deck at the front end, the
wetted area increases smoothly and a pile-up of water and a jet is formed at the upstream end
of the deck. Compared to the undisturbed wave, there will also be a significant pile-up of water
downstream of the wetted body. The profile of free surface at a small distance downstream of the
wetted part of the body is smooth with a relatively small curvature. But due to the impact it is
given a perturbation compared to the undisturbed incident wave profile. At the body-free sur-
face intersection a jet is formed, and foam on the free surface is observed close to the intersection.

In Figure 4.5(c) the upstream body/ free surface intersection has just moved around the cor-
ner at the front end of the deck to the bottom plate. The free surface near the intersection
is characterized by high curvature. As the downstream intersection reaches the aft end of the
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deck, the fluid flow leaves the deck tangentially, which implies that fluid particles on the free
surface at the immediate neighborhood of the body has no vertical velocity. This is showed in
Figure 4.5(d). Spray is observed on the free surface behind the body. This originates mainly
from spray caused by the jet at the downstream intersection before the fluid reach the aft end.
Breaking is also observed behind the body. These effects will dissipate energy from the system,
and the wave amplitude behind the body is reduced compared to the amplitude of the incident
wave. The reduction is also caused by wave reflection from the front end and the bottom plate.
The magnitude of this reduction will depend on both the wave condition and the deck clear-
ance. If the difference between the maximum elevation of the incident wave and the initial deck
clearance is small, the deck will experience a “gentle” impact. The reflected part of the wave
will be small and also energy drain through the jet and wave breaking will be relatively small
compared to more powerful impact events. The transmitted wave will therefore not be reduced
much compared to the incident wave. On the other hand, if the maximum elevation of the
incident wave is large relative to 7,40, the reflected wave will be more significant. Also the more
massive impact yields a greater energy dissipation through the jet and through wave breaking.
The relative reduction in the transmitted compared to the incident amplitude will be greater in
this case than for the more “gentle” impact. The dissipation of energy is not considered in this
work.

After some time, depending on the wave condition and 7,40, the downstream intersection starts
to move forward again, and finally the water exits the deck in a manner as shown in Figure 4.5(f).

While the water entry phase behaves as expected according to the Wagner based method, the
water exit phase, i.e. when the wetted surface decreases, behaves differently from what was
anticipated. First, in the Wagner based method as it is described in Chapter 3, the upstream
intersection point is found by the intersection between the body and the incident wave, which
means that the upstream intersection propagates along the body with a velocity equal to the
phase velocity of the incident wave. This is done in lack of a better way to determine this
intersection point, and it is analogous to the approach by von Kérméan (1929). Naturally, this
is not the case since the front end gives a significant perturbation to the free surface. In reality,
the water exit phase is complicated and its duration is greater than the duration obtained by
considering the deck intersection with the incident waves. As the upstream intersection point
has moved around the corner from the front end to the bottom plate, the water seem to “stick”
to the bottom plate and the intersection propagates significantly slower than the undisturbed
wave. This results in a free surface profile with high curvature close to the body. This can
not be modeled with the present method. Especially, as the fluid flow goes around the fron-
t corner the free surface has high curvature locally. This will be discussed more in Section 6.2.2.

It was expected that the upstream free surface and intersection would behave differently from
the von Karman approach, but the behavior of the downstream intersection was more surpris-
ing. In the Wagner based method, it is assumed that the aft end would be the last part of the
bottom plate to become dry as the water exits the body, but this was in general not the case
in the experiments. As the aft end gets wet, the water leaves the body tangentially, and the
downstream body/ free surface intersection is located at the bottom/aft end corner of the body.
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Figure 4.6: Multiple impact event. Fish-eye view. T =1.00s, H = 0.10m and 1qg0 = 0.04m.

In the impact conditions tested, water did not wet the aft end plate of the model. After a while
the downstream intersection starts to propagate upstream towards the fore body/ free surface
intersection. The location of the final water exit is dependent on the impact condition, but in
general it is located somewhere between the middle and the aft end of the deck.

The curvature of the free surface profile on both sides of the intersections are high as the
water leaves the deck, and a significant perturbation of the free surface remains when the deck
has become completely dry. This residual disturbance from the preceding impact event, greatly
affects the water impact process due to the next wave. While Figure 4.4 shows pictures of the
first wave hitting the structure, Figure 4.6 shows a series of pictures of the impact due to the
next wave in the wave train . The pictures in Figure 4.6 are taken exactly one wave period later
than the corresponding pictures in Figure 4.4, and the perspective is the same. Figure 4.7 shows
corresponding sketches to illustrate the impact from a purely two-dimensional view.
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Figure 4.7: Multiple impact event. The time instants t; correspond to the time instants in
Figure 4.6.

Figure 4.7(a) is taken a small time instant before water impact occurs, and it can be noted
that the wave profile is different from the undisturbed wave. The preceding wave impact has
left a significant local maximum in the wave elevation beneath the location of final water exit
of the preceding wave. The first phase of the impact for the second wave behaves similarly to
the first impact event. The wetted length increases smoothly and a jet is formed at the front
end. However, as seen in Figure 4.7(b), the local maximum steepens, and eventually it reaches
the structure. This causes a severe second slam on the aft part of the deck, and a corresponding
rapid increase in the wetted area.

Approximately from the time of maximum wetting and thereafter, the two different impact
processes behave similarly. This means that the water exit phase is not much affected by the
initial disturbance of the free surface. The impact events due to the following waves will behave
as the one depicted in Figure 4.6.
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Figure 4.8: Difference between single and multiple impact event. Ezperimental results.
T =1.00s, {1, = 0.05m, and 1,y = 0.04m. The time instants indicated of the plots correspond
to the time instants of the snapshots in Figures 4.4 and 4.6.

Figure 4.8 presents the corresponding measurements made. The left figure shows the time
histories for the wetted length for the two different impact events, while the right figure depicts
the corresponding vertical force acting on the bottom plate. The time axes has been adjusted so
that the two events can be directly compared. The wetted length measurements for the multiple
impact event give the total wetted length from both impacts. The time instants marked with ar-
rows in the plots, correspond to the time instants of the snapshots in Figures 4.4 and 4.6. Due to
the uprise of the free surface elevation caused by the preceding impact, the first contact between
water and body occurs a small time increment sooner for the second wave hitting the deck than
it would given the incident wave. Still, during the first part of the water entry phase, the two
events behave similarly. The curves for the wetting are nearly parallel and also the force histories
are relative alike except for a small displacement in time. But from approximately t = ¢;, the
two events behave differently. For the first wave, the wetted length continues to increase at close
to the same rate as before until water exit starts to occur at the front end of the deck. For
the second wave, the local trough upstream of the local crest slows down the wetting process
for a short time before the local maximum hits the structure. This leads to a rapid increase of
the wetted length, and thereby a rapid increase in the added mass of the deck. The result is a
positive peak in the impact force in Figure 4.8, which is larger than the maximum force for the
first impact event. This force peak has a short duration and it acts locally in the region where
the second slam occurs. High slamming pressures which are critical for local structural damages
is the result. Hydroelasticity may be important for this type of impact. According to Haugen
(1999) the local dead-rise angle between the deck and the free surface at impact will be crucial
for the importance of hydroelasticity. The magnitude and the duration of the local slamming
force are dependent on the test condition. For longer waves the second slam may dominate more
than in the present example, and the global force peak due to water entry may be more or less
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Figure 4.9: Measurements of the wave elevation during the start up of the wavemaker.
T =1.11s and H =0.14m.

absorbed by the second force peak.

Once maximum wetting has occurred, the water exit phase is similar for the two different impact
events.

The significant difference in the wave impact process for the first wave hitting the deck and
the for following waves yields a practical consequence for the performance of the experiments.
The physical meaning of a single impact event is that a extreme wave reaches the deck, while
the other waves pass under the deck. In the numerical program, it is assumed that this wave
can be described by a regular wave. In the wave flume the wave field contains transient effects
due to the start up of the wavemaker. These transient effects will die out after a few oscilla-
tion and steady state will be reached. Figure 4.9 shows a typical measured wave elevation in
the middle of the tank with the model absent. The wave period is T = 1.11s and the wave
height is H = 0.14m. The measurements are triggered 4 seconds after the wavemaker is started,
and a transient phase can clearly be seen at the beginning of the time series. The wave am-
plitude is gradually increasing, and a large maximum occurs before steady state is reached at
a lower amplitude level. Theory for flap wavemakers is given by e.g. Dean and Dalrymple (1994)

It is clear from Figure 4.9, that if the model had been present in this case, the first wave
hitting the structure would not have been a regular wave, but a wave that contains transients.
To avoid transient effects in the impact measurements, the structure must be kept out of reach
of waves until steady state in the flume is reached. Since the strong influence on the impact
process from the preceding wave impact was not anticipated beforehand, the original experi-
mental rig was not designed with this in mind. Improvisations had to be made. The easiest and
least expensive way to get around this problem, was to manually keep the model out of reach
of the waves until steady state was reached, and then lower the model down in between two
wave crests without allowing water to reach the box during this translation. Even if the model
was not clamped to the flume structure, manual labor and large weight of the test rig itself
relative to the impact force ensured that the deck could be considered fixed also in this case. A
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limiting parameter when using this procedure is the wavelength. The lowest period used where
this scheme was successful was T' = 1.11s. For shorter waves, it was very difficult to lower the
model into position between two wave crests without disturbing the wave field. For testing in
shorter waves, a shorter model would have been necessary.

4.4 Error sources in the experiments

Errors in the experiments may arise from a number of sources, and some are more severe than
others. In this section some of the sources that may impose errors in the measurements will be
discussed. First, the ability of the beach to damp out the waves may be questioned. In reality,
a part of the amplitude of the incident wave will be refiected, and this will influence the wave
elevation as well as the fluid particle kinematics. No comprehensive study has been conducted
to determine the magnitude of the reflected wave from the beach, but since the model is situated
in the middle of the flume, problems connected to reflection will not arise until the first wave in
the wave train has traveled 1.5 times the length of the flume, namely 20.25m. The velocity of
the wave train is characterized by the group velocity, ¢;, which is the velocity in which the wave
energy is transmitted by. The group velocity is expressed as

lw 2kh
“=3% (1 * Siah kh) (4.1)

In deep water the group velocity simply becomes c, = %% Since the longest waves used in
the experiments propagate fastest they are most critical. For waves with T' = 1.43s the phase
velocity is ¢, = 1.22m/s. Thus, it takes 16.6s before the reflected amplitude reaches the position
of the model. By doing the measurement of the single impact case within the first 15 seconds
after the wavemaker is initiated, a reflected wave with a wavelength that corresponds to the
fundamental frequency, should not affect the results. The measurements are conducted in the
time window 10-15 seconds after the wavemaker is started. It is therefore believed that effects of
reflection are precluded. Transient effects due to the start-up of the wavemaker may introduce
waves of long wavelengths in the tank. A very long wave will propagate at a velocity equal
to v/gh = 3.17Tm/s and it will not be properly damped by the beach. However, based on the
measurements of the wave elevation, the amplitudes of such long waves, if present, are small.
When the fluid inside a tank is set in motion by some disturbance, such as by start-up of a
wavemaker, it will oscillate at the natural periods of the fluid motion. This longitudinal sloshing
in the tank is called seiching. To determine the seiching periods, T, the dispersion relation of
finite water depth is used, i.e.

T, = _x (4.2)

gtm;ch Enh

where k, = ZF and [ is the length of the tank. In the middle of the tank the first sloshing mode
will not influence the wave elevation, but the amplitude of the second mode has its maximum
amplitude in the middie of the tank. The corresponding sloshing period is T, = 4.28s. From
measurements of the free wave performed in the middle of the tank, it is difficult to detect a
slowly varying wave elevation at this period. This indicates that the sloshing amplitude is small.
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The control system of the wavemaker is designed to damp out such oscillations.

A second error source is transverse waves in tank. But as discussed in Section 4.2.2, the wave
periods in the experiments were chosen so that transverse waves should not be excited. Also
here, transient effects due to the start-up of the wavemaker may excite wavelengths that are
critical for generation of transverse waves. However, from visual inspection of free waves, no
cross waves were observed for the waves used in the experiments.

The wave gauges were carefully calibrated. But finite thickness of the wave gauge will in-
fluence the fluid flow locally, and thus give inaccurate measurements. The relative error will
depend on the diameter of the probe wires and the wave amplitude. The surface tension causes
the free surface to stick to any rigid surface that it intersects with. This effect causes, according
to Lader (2001), an uncertainty in the measurements of approximately 1mm for the given wave
gauge. Dirt on the electrodes may influence the surface tension effect, and the electrodes were
therefore regularly cleaned. More important than the accuracy of the wave gauges measure is the
wavemaker ability to give the correct wave according to the given input. The transfer function
for generation of the waves is made by the producer of the wavemaker and especially fitted for
the given flume and the water depth used in the experiments.

The wetted area measurements can be questioned. A possible error source is water sticking
to the rubber between the copper tapes after the wave has detached. This would lead to mea-
surements where dry areas are measured as wet. To prevent or minimize such errors, the rubber
membrane was regularly treated with a chemical that destroys the surface tension of the water.
Qualitative tests showed that water did not “stick” to the rubber membrane as the main bulk of
water had left the membrane. Air cushion effects may also affect the measurements of the wet-
ted length. From the visual observations no significant air cushions were observed for the single
impact events. For the multiple impact events, however, air cushions were clearly observed.
A quantitative test of the wetted length measurements was conducted during the experiments.
Pictures such as those shown in Figure 4.4, were taken at given time instants during the water
entry/ water exit process. The wetted lengths at these time instants were measured by studying
the photographs and compared with the measured wetted length. Good agreement was found
and this ensured confidence in the measurements.

The thickness of the bottom plate was chosen so that hydroelastic effects should be absent
in the experimental results. The eigenperiod of the force transducers were checked and found to
be much lower than the expected duration of the loading, but neither the wet or dry eigenperiods
of the bottom plate mounted onto the force transducers were measured. It was believed that they
were low. However, irregularities were noticed in the force histories that might originate from
structural oscillations. These are especially noticeable for the most violent impact events. The
magnitudes of these irregularities are much smaller than the dominating positive and negative
force peaks. If these oscillations in the force histories are caused by hydroelasticity, a remedy
would have been to weld longitudinal stiffeners on the upper side of the bottom plate. This
was not recommended since welding could have caused buckling of the bottom plate, which is
undesirable. Another un-attempted possibility could have been to glue the stiffeners onto the
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bottom plate. Due to negligible bending stiffness and small deformations, the rubber membrane
will not introduces any significant error in the force measurements.

4.5 Results and comparisons to the Wagner based method

Only experimental results for single impact events can be directly compared to numerical results
obtained by the Wagner based method. In this section, experimental results for single impact
events will be presented and compared to the theory. By requiring that the model is to be placed
into a fully developed wave field, a restriction for the wavelength arises. For each combination
of wave condition and initial deck clearance, several experiments should be performed to ensure
that reliable results are obtained. It was decided to study eleven different combinations of wave
periods, wave amplitudes and deck clearances. These are listed in Table 4.1, which contains ex-
perimental results for the maximum vertical force, Fmax, and the negative force peak, F,;,, as
well as the duration of the whole water entry/ water exit process, timp- The experimental results
presented are average values for all the successful experiments for each case. An experiment is
classified as successful based on two criteria. First, the model must be lowered into position
without disturbing the wave field before impact occurs at the front end. This can be checked by
studying at the recorded data for the wetted length. Second, no significant force peaks must be
induced by the initial contact between the transverse beams of the model and the steel frame of
the flume. Such peaks may easily be detected in the recorded force history. The model had to
be set down carefully, and foam rubber on the top of the flume was used to damp the impact.
This proved to work well, and the repeatability of the experiments was good.

Table 4.1 also gives corresponding numerical results for Fmax, Fyin, and timp computed by the
Wagner based method. In Table 4.3 the wetted lengths at time instants corresponding to Fmax
and Fpj, are listed for both experiments and theory. These are denoted as 2cmax and 2¢gyin,
respectively. Also values for the maximum wetting, Max(2c), are presented. The experimental
wetted length histories used are mean values of the three individual recordings.

Table 4.3 presents values for standard deviations for some measured quantities. The standard
deviations for Fmax are relative small compared to the force itself, usually less than 0.05Fmax.
Exceptions are for the most “gentle” impacts where Fmay itself is small. For instance, for case
no. 3, where T' = 1.11s, (, = 0.06m and 7j50 = 0.06m, oF,,,, = 0.158 Fnax. Also for Fy;, and
the wetted lengths, standard deviations are relatively small.

In the following, comparisons between experiments and theoretical results are discussed. Figures
4.10—4.13 show examples of comparisons for time histories for the wetted length and the total
vertical force acting on the bottom plate. For each case, two experimental realizations are shown
to illustrate the repeatability of the experiments. In the discussion it is convenient to separate
the cases that leads to “gentle” impacts and those which lead to more powerful slamming forces.
Figure 4.13 is an example of the first, while Figures 4.10- 4.12 are examples on the latter. The
cases listed in Table 4.1 were (, = 7440 are here considered to be “gentle”, i.e. case nos. 3, 7 and
11, while cases were {; > 7q40 yields more powerful impacts.
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Table 4.1: Comparisons between the experimental results and numerical results from the Wagner
based method for the mazimum force, Fmar and the minimum force Fp;, during the water
entry/ water ezit process. The total duration of the impact process timy is also compared. The
ezperimental values are mean values for all experiments for each case.

Impact condition Experimental results Wagner based method
Case T (& Tag0 Fmax Fhin timp Fmax Foin timp

no. | s [m] [m] (N] (N] [s] N] [N] [s]
1 111 0.05 0.04 29.3 -67.8 0.76 26.5 -82.0 0.60
2 1.11 0.06 0.04 49.1 -83.5 0.82 49.2 -133.0 0.66
3 1.11 0.06 0.06 7.1 -36.5 0.53 12.9 -41.1 0.49
4 111 0.07 0.06 31.7 -70.2 0.78 35.0 -100.3 0.58
5 1.25 0.05 0.04 37.0 -67.8 0.78 30.5 -90.7 0.61
6 1.25 0.06 0.04 65.2 -70.2 0.87 59.2 -84.5 0.66
7 1.25 0.06 0.06 11.2 -61.7 0.83 12.1 -36.6 0.47
8 1.25 0.07 0.06 41.0 -88.7 0.77 37.9 -110.9 0.56
9 143 0.05 0.038 53.0 -51.9 0.92 47.5 -52.7 0.64
10 143 0.06 0.038 97.5 -54.2 0.95 85.2 -45.2 0.69
11 143 0.06 0.06 14.5 -58.9 0.79 12.3 -45.0 0.45

Table 4.2: Comparisons between the experimental results and numerical results from the Wagner
based method for the wetted length. 2cmar is the wetted length when Fpeg occurs, and 2¢p,4y, is
the wetted length when Fp,;, occurs. Max(2c) is the largest wetting during the impact process.
The experimental values are mean values for all experiments for each case.

Impact condition Experimental results Wagner based method
Case T Ca Tag0 2cmax | 2cpin | Max(2c) 2cmax | 2cpin | Max(2c)
no. | [s] [m [m] [m] [m] [m] [m] [m] [m]
1 1.11 0.05 0.04 0.244 0.549 0.564 0.214 0.525 0.525
2 1.11 0.06 0.04 0.275 0.585 0.619 0.271 0.630 0.630
3 111 0.06 0.06 0.106 0.342 0.350 0.125 0.331 0.331
4 1.11 0.07 0.06 0.156 0.546 0.558 0.189 0.487 0.487
5 1.25 0.05 0.04 0.338 0.597 0.619 0.254 0.630 0.630
6 1.25 0.06 0.04 0.390 0.630 0.630 0.338 0.630 0.630
7 1.25 0.06 0.06 0.164 0.560 0.574 0.135 0.370 0.370
8 1.25 0.07 0.06 0.302 0.625 0.630 0.229 0.582 0.582
9 1.43 0.05 | 0.038 0.423 0.630 0.630 0.378 0.630 0.630
10 1.43 0.06 | 0.038 0.492 0.630 0.630 0.482 0.630 0.630
11 1.43 0.06 0.06 0.272 0.571 0.561 0.170 0.447 0.447

For the water entry phase, i.e. when the wetted area increases, it can be noted that results
by the Wagner based method correspond quite well with the measured results for the powerful
impacts. Both magnitude and duration of the positive force peak, are described in a satisfac-
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Table 4.3: Standard deviations for quantities measured in ezperiments.

Impact condition Standard deviations , o

Case | T Ca 7ago O Fnax O Fin 02¢max 026 min O Max(2¢)
o | [ | fml | m | N | N fm] ] | )
1 1.11 0.05 0.04 1.71 1.68 0.008 0.021 0.018
2 1.11 0.06 0.04 2.58 3.67 0.013 0.009 0.006
3 1.11 0.06 0.06 1.12 3.95 0.007 0.012 0.015
4 1.11 0.07 0.06 0.87 2.70 0.020 0.017 0.019
5 1.25 0.05 0.04 2.26 4.63 0.024 0.019 0.008
6 1.25 0.06 0.04 2.18 3.26 0.003 0.000 0.000
7 1.25 0.06 0.06 1.33 2.87 0.018 0.018 0.009
8 1.25 0.07 0.06 1.36 2.40 0.023 0.004 0.000
9 1.43 0.05 0.038 3.10 2.38 0.014 0.000 0.000
10 1.43 0.06 | 0.038 2.39 2.75 0.015 0.000 0.000
11 143 0.06 0.06 0.25 1.35 0.013 0.010 0.015

tory manner by the theory. Also for the wetted length, the Wagner based method corresponds
well with experiments. For the water exit phase the results are less satisfactory. Particularly
for short waves, results are poor. The maximum magnitude of the negative force, |Fpn| is
overestimated. For instance in case no. 2, which is shown in Figure 4.10, the calculated value
of |Fpin| is approximately 59% larger than the measured value. At the same time, the theory
underestimates the duration of the water exit, and thus the duration of the entire water impact
process. The intersection between the body and the incident wave is used to determine the
wetted length during water exit, but the discussion in Section 4.3.2 showed that the free surface
profile is very different from the incident wave. For all cases tested, water exit happens slower
than exit of the undisturbed wave, and this affects the force histories.

Figure 4.13 shows a “gentle” impact event, where the magnitude of the positive force peak
is relatively small. Nevertheless, |Fp,in| is in the same range of as for the impact conditions
discussed above, and also the measured duration of the impact process is similar. In this case,
the deck clearance is identical to half the wave height. This means that excess in the wave
elevation over the deck level is only due to the nonlinearities in the wave elevation. The impact
occurs close to the summit of the wave, where the vertical fluid velocities are small. Even if the
wetting process in the present case does not differ significantly from the cases discussed above,
the resulting maximum force is small. Since, the theoretical maximum wetting in Figure 4.13(a)
is less than the measured, the theoretical value for |Fy;,| becomes smaller than the measured
value.

For case no. 11, the theory underestimates the maximum force slightly, and the duration of
the positive force peak is also underestimated. For the two other cases where (, = 7,40, theo-
retical results for Fpax are larger than measured. No clear trend can be noted, but a couple
of important error sources for the water entry force can be outlined. First, when the initial
deck clearance is approximately equal to the half the wave height, higher order contributions
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Figure 4.10: Comparisons between ezperiments and the Wagner based method (WBM).
Case no. 2: T = 1.11m, {, = 0.06m and 1,50 = 0.04m.
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Figure 4.11: Comparisons between ezperiments and the Wagner based method (WBM).
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Figure 4.12: Comparisons between ezperiments and the Wagner based method (WBM).
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are crucial for the wave kinematics and thus for the wetted area. It can be questioned how
well Stokes’ second order theory describes the wave kinematics in the vicinity of the wave crest.
Perhaps “infinite” order wave theory would improve the results. But probably more important
is the accuracy of the deck clearance used in the experiments. In Section 3.7.3 is was shown that
a relatively small change in 7,50 might lead to a relatively large shift in the resulting impact
force. This is especially true when the deck clearance is close to the maximum wave elevation.
If impact happens close to the wave summit, a small change in 7,4 and a corresponding shift
in the position on the wave crest where impact occurs, will yield a significant change in the
impact velocity and force. The accuracy of 7,40 in the experiments is also questionable. It is
believed that inaccurate measurements for 7,40 partly can explain the relative large differences
between theory and experiments. For more powerful impacts, inaccurate values for 7,40 may
also partly explain discrepancies between theory and experiments for Fmax. But for these cases
the relative effect would be smaller. The reason why the theory underestimates |Fp,;,| for case
7 and case 11, is that the maximum wetted area is underestimated. This may also be related to
the discussion above.

As a final remark, it can be said that the Wagner based method yields satisfactory results
for both the magnitude and duration of the water entry force. But the theory describes water
exit poorly. For two-dimensional flow, the largest absolute force may occur during water exit.
Experiments show that the simplified free surface condition ¢ = 0 and the von Karman type
of approach can not be used if water exit is to be described properly. Deformation of the free
surface upstream of the wetted body surface should then be taken into account.

4.6 Investigation of the importance of gravity

The comparisons between experiments and Wagner based method results, suggest that the role
of gravity is probably not negligible in the later stage of impact process. If this is the case, the
dynamic free surface condition, ¢ = 0, is no longer valid. This could explain why, in particular
during water exit, experimental and theoretical results deviate significantly. Definite conclu-
sions about the detected differences between experiments and theory require further studies.
The main objective of this section is to study the importance of gravity in the impact problem.
Implicitly, also a quality check of the force measurements is provided by this study. This is
done by studying a different problem. Experiments with the same equipment as described in
Section 4.2 are performed to determine the damping coefficient in heave of rectangular cylinders
oscillating in the free surface. The damping coefficient is not determined by performing forced
oscillations, but by relating it to experimental results for the wave excitation force as described
below. The experimental results are compared to experimental results found in the literature.
The importance of gravity for the water exit force is qualitatively studied by using the steady
state force on a thin plate located in the free surface to obtain an estimate for |Fiy;,|. This es-
timate is compared to the experiments for water impact and to the results obtained by the WBM.

Haskind (1962) derived relationships between the exciting forces and the far field velocity po-
tential in the case of forced oscillations in initially calm water. This means that the diffraction
problem has not to be solved directly and the exciting forces are simply related to the hydro-
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dynamic damping coefficients. Newman (1962) elaborated this further, and through Green’s
second identity he determined a simple formula for beam sea incident waves on an infinitely long
horizontal cylinder which submerged part is symmetric about the vertical axis. The formula
yields linear frequency domain results and it is valid for any frequency, but it assumes a body
without forward speed and that no current is present. Newman (1962) writes the exciting force
amplitude per unit length, |F;|, as

2 3
|F| = ¢ (%BS’”) , i=2,3,4 (4.3)
where B,(,2 D) is the two-dimensional damping coefficient for the i-th DOF.

Later, when estimates for |Fp;,| are found, the damping coefficients for thin plates are needed.
These are difficult to determine both numerically and experimentally. MacCamy (1961) dis-
cussed the case of heaving motion of two-dimensional cylinders with negligible draft. MacCamy
studied this problem by using an integral equation technique and obtained numerical results both
for the added mass and for the damping coeflicients as functions of the oscillation frequency.
Vugts (1968) presented experimental and theoretical results for forced oscillations of cylinders.
The theoretical results were based on linear theory. He reported good agreement between ex-
periments and theory for heaving of box shaped sections. The comparisons were performed for
3 different B/D ratios (2, 4, and 8), where B is the breadth of the section and D its draft.

The theoretical results for the three B/D ratios presented by Vugts (1968) are used to esti-

mate the damping coefficient for zero draft. This is done by extrapolation of Vugts’ results to

B
2g?

in the range [0.66,1.03]. In this frequency range the damping coeflicients computed by the two
approaches differ significantly. This is shown in Figure 4.14. The results from MacCamy (1961),
however, show reasonable agreement with the extrapolated curve. Though the results obtained
by extrapolation and MacCamy’s results overlap only in a relative narrow frequency band, they
both give results in the frequency range of interest.

D = 0. In the experiments presented in Chapter 4, the dimensionless frequency, w is varied

Experimental studies on the damping force acting on thin plates oscillating on the free sur-
face are impossible to perform since finite amplitudes are required. Therefore experiments have
been performed to study the damping coefficient of rectangular cylinders with shallow but finite
draft. The same experimental set-up as described in Section 4.2 was used. The design of the set-
up limits the minimum possible draft. As a quality check for the measurements, it would have
been ideal to reproduce the Vugts’ experiments, but the minimum B/D-ratio possible with the
given set-up is 16. This corresponds to D = 0.041m. A wave amplitude of 0.005m and frequency
values between w = 2.51 rad/s and w = 6.28rad/s were used in the tests. This corresponds to
dimensionless frequencies in the range of [0.457,1.372]. The exciting heave force was recorded
and damping estimates were obtained from Newman’s formula (4.3). The same experiments
were repeated for a draft of 0.0lm and of 0.03m, but for the latter case a wave amplitude of
0.015m was used. For these wave conditions the wave steepnesses are small and linear theory
can be applied.
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Figure 4.14: The damping coefficient in heave for a plate with zero draft oscillating in the free
surface.

In Figure 4.15 the experimental values of the damping coefficient are presented together with
the theoretical results by Vugts (1968) for finite drafts and by MacCamy (1961) for zero draft.
The approximation based on on extrapolation of Vugts’ results to D = 0 is included. Vugts’
results show that the dimensionless damping coefficient is nearly independent of the B/D-ratio

when w, /% < 0.2. For higher frequencies, the damping coefficient increases strongly with in-

creasing B/D. Due to the physical limitations of the experimental set-up and of the wave flume,
experiments were not performed for smaller dimensionless frequencies than 0.457. B = 0.656m
was fixed, so the dimensionless frequency could only be varied by changing w. The experimental
results show that the damping coefficient increases with increasing B/D-ratio. This is consis-
tent with the results by Vugts (1968). Also, the frequency dependency of the measurements
is as anticipated. For the lowest frequencies, the experimental damping coefficients in the case
of B/D = 65 are somewhat larger than the coefficients calculated by extrapolation. For the
highest frequencies, the measurements agree well with MacCamy’s computations.

A possible explanation for the deviation between the Wagner based method and the exper-
imental results for the water exit phase, can be that the equipment did not record the forces
correctly. While the deviations are relatively small for the positive force peak they are significant
for the negative force peak. The magnitude of the negative force is largest for the numerical re-
sults. If incorrect force measurements are the reason for this then too small negative forces were
measured, while the positive forces were approximately correctly measured. Now, by looking at
the experimental results for steady state condition, it was noted that the measured force on the
partly submerged rectangular cylinder was nearly sinusoidal without any noticeable difference
between the magnitudes of the minima and maxima. The force transducers were calibrated so
that the mean hydrostatic force was not accounted for in the measurements. This suggests that



4.6. INVESTIGATION OF THE IMPORTANCE OF GRAVITY 81

By [B
pBZ\/ 2g

0.7 ' . :
: MacCamy (1961) E—
06 Extrapolated, D=0 -~ |
) Vugts (1968), B/D =8 ——
= Vugts (1968), B/D =4 ——
osT ] . Vugts (1968), B/D =2  -weum 8
Exp., BID =16 .
o4r ! A Exp., B/D = 65/3 . -
a 2 & .z~ Exp,B/D=65 s
L
0.3 T s s | _ I |
I;/-‘—\\\-: L] ;
0.2 e E BT i |
. - \\\ !
., S
0.1 = g i '1‘. } “\ ) i ]
e, el
0 1 i ey i
0 0.5 1 1.5 2
B
“V2g

Figure 4.15: The damping coefficient in heave for a rectangular cylinder oscillating in the free
surface. Ezperimental values for small drafts. Results from MacCamy (1961) for a thin plate
and two different schemes for eztrapolating the results by Vugts (1968) to zero draft are shown.

incorrect measurements can probably not explain the large difference between the experimental
results and the results obtained from the Wagner based method.

Particularly for the smallest draft the measurements contain uncertainties. A small wave ampli-
tude had to be applied. This implies a small resulting force on the model. The force transducers
used were the same as those used for the water impact measurements, which gave much higher
forces. The accuracy of the force transducers for such small forces thus is questionable. Calibra-
tions with small weights indicated, however, that they are sensitive enough and give satisfactory
measurements for small loads. Another error source equally important for all B/D-ratios is
associated with the wavelengths used in the experiments. For the smallest frequencies the wave-
lengths were long compared to the dimensions of the flume. The beach at the end of the flume
is not designed to damp out such long waves. Reflection from the tank ends became noticeable
after a few oscillations, and this made it impossible to get long time series without reflected
waves affecting the force on the model. Accurate steady state force amplitudes were therefore
difficult to measure. In spite of this it may be concluded that the experiments gave fair results
for the exciting force and thus for the damping coefficient. This suggests that the measurements
of the water impact on the idealized platform deck are satisfactory.

Faltinsen (1983) studied the transient problem connected to the start-up of forced harmonic
heave oscillations of a semi-submerged circular cylinder on the free surface. The total hydro-
dynamic force acting on the cylinder was found by both a linear transient theory derived by
Faltinsen (1977) and a linear boundary element method. These two approaches gave almost
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Figure 4.16: Hydrodynamic force on circular cylinder (ezcluded linear restoring force) due to
forced heave motion 13 = 713, sinwt. Faltinsen (1983).

identical force histories. The transient part of the force was derived from the linear transient
theory. Figure 4.16 shows the hydrodynamic force acting on the cylinder at the start-up of the

oscillations for two different oscillation frequencies, w g = 1.0 and 1.5. a is the cylinder radius

and w is the circular oscillation frequency. The data are taken from Faltinsen (1983). The
transient part of the force dies out rapidly and it becomes small compared to the amplitude of
the hydrodynamic force after half of an oscillation period.

If a similar behavior can be assumed for a rectangular cylinder with small draft, the steady
state force amplitude may be used as a first approximation for |F iy |. In Table 4.4 results for
the steady state force amplitude, |F3(”)|, for a number of different wave frequencies and ampli-
tudes are presented. The same wave conditions as used in the experiments described in Section
4.3, are used here. The steady state hydrodynamic excitation force amplitude is found by ap-
plying Equation (4.3) and the damping coefficient is taken from MacCamy (1961). The breadth
of the cylinder used in the computations is equal to the maximum wetted length obtained by
using the Wagner based method. The hydrostatic and the Froude-Kriloff forces are added. The
total force is denoted |F7; |- These results are compared with the corresponding experimental
results. By using |F2. | as an approximation for the magnitude of the negative force peak,
values relatively close to the experimental results are obtained. In particular for small 7440,
where the maximum wetted lengths are large, the steady state approach seems to yield better
estimates than the Wagner based method. This suggests that the free surface condition ¢ = 0 is
not the proper one for water exit. It is believed that better estimates can be achieved if gravity is
included in the boundary value problem. For the longest wave period the Wagner based method
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Table 4.4: Comparisons between finding the magnitude of the minimum force by using a steady
state approach, |F 2. |, the Wagner based numerical method, |F WBM|, and the results from the

min min
ezperiments, |F’7;’;n| |F3| is found from Equation (4.3), and | minl 1 |F3*| plus the hydrostatic
force and the Froude-Kriloff force found from the Wagner based method.
Impact condition Max. magnitude of negative force
Case T Ca Tag0 IFSle |F1:181n| |F$M| |F]:;.xzrl>1 |
no. [s] [m (m] (N] (N] (N] (N]
1 111 0.05 0.04 86.3 60.5 82.0 67.8
2 111 0.06 0.04 120.2 68.1 133.0 83.5
3 1.11 0.06 0.06 70.9 57.4 41.1 31.7
4 1.11 0.07 0.06 113.5 76.4 100.3 74.9
5 1.25 0.05 0.04 104.9 75.9 90.7 67.8
6 1.25 0.06 0.04 125.8 74.9 84.5 70.2
7 1.25 0.06 0.06 82.7 69.8 36.6 61.7
8 1.25 0.07 0.06 134.4 94.5 110.9 89.8
9 1.43 0.05 0.038 96.0 66.8 52.7 51.9
10 1.43 0.06 0.038 1334 87.4 45.2 54.2
11 1.43 0.06 0.06 99.4 87.1 45.0 60.9

yields results closer to the experimental ones. However, also in this case the steady state results
remain relative close to the experimental results. Note that the steady state approach is crude
and it only meant to give an indication of the magnitude of |F ;| First, for the deck impact
problem the breadth of the waterline of the body varies strongly with time. This may explain
why the steady state results in Table 4.4 are better when 7440 is small. For small 77,49 the wetted
length is larger for a longer time than in the case of large values of 7,4. A second error source
is that Equation (4.3) is based on linear theory, while the incident waves in the experiments are
nonlinear.

For steady state results gravity is important. It is therefore believed that better theoretical
results for the force acting on the deck during water exit can be obtained by taking gravity
into account. Further, one can expect that more correct boundary conditions would yield better
predictions of the duration of the water exit phase, but they give a boundary value problem that
is not analytically solvable. Motivated by this, it was decided to develop a boundary element
method.
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CHAPTER 5

A boundary element method

5.1 Formulation of the boundary value problem

‘Wave impact underneath a platform deck is a strongly nonlinear phenomenon. The experiments
in Chapter 4 show large free surface deformations that cannot be described by linear theory.
Particularly during water exit the free surface is very different from the undisturbed incident
wave. By using a fully nonlinear boundary element method, Zhao and Faltinsen (1993) solved
the problem where an arbitrarily shaped two-dimensional section enters an initially calm free
surface. Zhao, Faltinsen, and Aarsnes (1996) showed that this methods provides estimates for
the pressure distribution along the body and for the free surface deformation that are in good
agreement with experiments performed. In the following a mathematical formulation of the
two-dimensional nonlinear free surface problem and a solution procedure of it will be outlined.

5.1.1 The boundary value problem

Consider an infinitely long horizontal cylinder with arbitrary cross-sectional shape located on the
free surface. The cylinder is assumed rigid and two-dimensional potential theory is assumed to
be valid. Hence, a velocity potential ® can be introduced. @ has to satisfy the two-dimensional
Laplace equation, V2® = 0, in the fluid domain. Boundary conditions are required to solve the
related problem. In particular by setting the pressure equal to the atmospheric pressure on the
free surface, ¢, a dynamic free surface condition in the form

2 2
2+l [(g—f) + (%‘3) ] +9(=0  onz=((n?) (5.1)

follows from Bernoulli’s equation. The (z, z)-coordinate system has its origin in the mean free
surface with the z-axis pointing upwards. A kinematic free surface condition must also be

85
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imposed. This condition states that fluid particles on the free surface remain on the free surface
and it can be written as

0% 8 (0%

E_E-F-(%az on z = ((z,1) (5.2)
Furthermore, the boundary condition
0%
I = Un on Sg (5.3)

requiring the body to be impermeable, must be satisfied on the instantaneous wetted body sur-
face, Sp. In (5.3) Uy is the body’s velocity normal to its own surface, thus for a fixed body
Un =0. % denotes the derivative along the normal unit vector n of Sp. n is defined to be
positive when pointing into the fluid domain. For finite water depths a similar condition must
be imposed on the bottom, but in this work the water depth is assumed to be sufficiently large
when compared to the wave length for the bottom condition to be omitted.

To solve this boundary value problem, initial conditions are also required.

5.1.2 Solution procedure

Inside fluid domain the velocity potential can be represented in terms of boundary integrals
through Green'’s second identity,

_ dlogr _ 89(£,m)

Here r = \/(z — £)2 + (z — n)?, (=, 2) is the field point where ® has to be evaluated and (£,7)
is a generic point along the boundary S = Sg + Sp + Sx- S is a control surface at z = %oo.
Sp and Sy are the instantaneous wetted body surface and the free surface, respectively.

If incident waves are present, the total velocity potential may be decomposed as ® = ¢; + ¢,
where ¢; represents the incident wave potential, and ¢ is the perturbation potential due to the
presence of the body. Similar, the free surface elevation can be written as ( = {f + {p. Here {p
is the free surface elevation associated to the disturbance caused by the body, and (; is the free
surface elevation of the incident waves. In the following part of this section it is assumed that
no incident waves are present, i.e. ¢; = 0 and (; = 0, and that the boundary value problem can
be solved as a transient problem. The BVP can then be solved as an initial value problem with
initial condition

=0 on z=0 (5.5)

S is taken to be sufficiently far from the body so that its contribution the integral in Equation
(5.4) is negligible. The equation then reduces to

_ dlogr _ 9¢(¢,m)
—27l'¢(.’1.'2, zvt) _S 4 (¢(§’ 77) 6n(§,n) - an(g, 77) lOg'I‘) dS(f,"l) (56)
F+58
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Far away from the body, |z| > z;(t), the dynamic free surface can be approximated by ¢ = 0 on
z = 0, z; being large compared to the cross-sectional dimensions of the body. Further, if infinite
water depth is assumed, the perturbation velocity potential at |z| > zs(t) can be described by
a sum of a vertical dipole and a multipole in the origin,

Az Axzz
= :1:2+Z2 ($2+22)2

¢ (5.7)

where A, (¢) is the dipole strength and A,(¢) is the multipole strength. It is assumed that the
z-axis goes through the center of the body. Expression (5.7) implies that the details of the body
shape, crucial for ¢ in the vicinity of Sp, become unimportant for the fluid flow far from the
body. The first and the second term in it, respectively account for dominating symmetric and
anti-symmetric disturbances caused by the body.

By applying Equation (5.7) it is possible to integrate analytically the Sr contribution to the
integral in Equation (5.6) for values of |z| > z,(¢). In particular, by setting n = 0 in Equation
(5.6), the integral from z; to oo can be written as

I(.’L‘,Z) =Il+12

— 2 2
=A1{$1°g oD 2~ @ -2) +z]
b

z Io
T2+ 22 J Tp

+ z—25-7 [sgn(z)g — tan™! (zb_z—a:)] }

1 1 T
+ Az{m—g log /(zp - 2)? + 22 — 5— (log(zb) + fl?_b)

72 + 22

T @Ay [212 log(zs) — 5(2” ~ =) log ((zs ~ 2)? + zz)]

g g (257)]

where I; and I, are the contributions associated with the dipole and the multipole, respectively.
Similarly, the integral from —oo to —z; of Equation (5.6) can be expressed as

J(z,2) = I}(—z,2) — I)(—z,2) (5.9)

Differently, the integral along the free surface inside |z| < z,(t) and the instantaneously wetted
body surface, Sg, has to be evaluated numerically. In the numerical solution, an integral equa-
tion based on Equation (5.6) is set up for each time instant by letting (z, z) approach points
on S. The free surface, Sp, inside |z| < z, and Sp are divided into N straight line segments.
¢ and %% are assumed to be constant on each segment. On the body %% is known from the
body boundary condition given by Equation (5.3) while ¢ is unknown. At the free surface %% is
unknown while ¢ is known from the free surface condition given by Equation (5.1). When the
known quantities are inserted into the Fredholm integral equation, and the equation is imposed
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at the midpoint of each segment, a set of N linear equations is obtained. These are not sufficient
to solve the problem. When the dipole and multipole strengths, A; () and A,(t), are included,
the total number of unknowns is N + 2. Two additional equations are necessary and can be
obtained by requiring continuity of the velocity potential at £ = *z,(¢). A system of linear
equations with number of equations equal to the number of unknowns is now obtained. This
can be solved by a standard procedure.

By using the kinematic and dynamic free surface conditions, respectively, the position of Sg
and the velocity potential on this surface can be integrated in time. The motion of the free sur-
face is determined by integrating the fluid velocity on Sp. The dynamic free surface condition
can be rewritten on Lagrangian form as

%‘f - % [(Z_ﬁ)z + (%)21 — g on z = ((z,1) (5.10)

where 2 denotes the substantial derivative. The %ti term in Equation (5.1) has been rewritten
by applying gt = %té + (V¢ V) ¢. An algorithm for integrating ¢ and ¢ will be discussed in
more detail later.

5.1.3 The pressure distribution and the force action on the body

Once the velocity potential on the body is known, the pressure can be obtained from Bernoulli’s

equation
2 2
P—po= —pgt—¢ - %p [(g—i) + (g—f) ] - pgz (5.11)

where z is the submergence. The first two terms on the right hand side may be denoted as
hydrodynamic pressure, while the latter represents hydrostatic pressure. However, since all the
terms have to be considered together, it is strictly speaking only when ¢ = 0 that the last term
is the hydrostatic pressure. In the numerical evaluation of the %f term, Zhao et al. (1996)
introduce a generalization of the substantial derivative. They use
!

%f=%‘f+U-V¢ (5.12)
%I% being the change of ¢ with time when the midpoint of an element of the discretization is
followed, and U is the velocity of the midpoint. The total force on the body can be determined by
integrating the pressure over the wetted body surface. Alternatively, the force may be calculated
by imposing conservation of fluid momentum. In this case this can be expressed as

F= pgi / ¢n dS + /pg(n dS + fpgzn ds (5.13)
Sp+SF Sr S

This equation was derived by Faltinsen (1977) and it represents a special case for transient
problems. For a steady state problem, an integral along a far field control surface S, must be
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included when the force on the body is evaluated.

The objective of the development of a boundary element method is to make available a nonlin-
ear method for solving water impact on a platform deck in a consistent manner. Nonlinear free
surface problems are difficult to solve. The mathematical difficulty arises essentially from the
need to satisfy the dynamic free surface condition on the exact free surface. The free surface is a
priori unknown and in this case highly time dependent. It was therefore decided to develop the
numerical method in a stepwise manner, where each step can be validated by results available
in literature. In the following sections a boundary element method for transient problems is
described. Firstly, a linearized version is developed and validated. Then a fully nonlinear code
for forced oscillations in initially calm fluid is developed. Comparisons to experiments performed
by Tasai and Koterayama (1976) are used for validation. Finally, a nonlinear method for solving
water impact underneath is presented in Chapter 6.

5.2 A linear boundary element method

As a first step a linear code has been built up. This is an important building brick in making
the fully nonlinear code. Validation of the linearized version permits one to easily check for
possible errors in the algorithm, before the nonlinearities complicates the solution procedure.
When the problem is linearized, the free surface conditions in Equations (5.1) and (5.2) and the
body boundary condition (5.3) are satisfied on the mean boundaries and simplified as

a_¢=

5 = 9 onz=0 (5.14)
9 _ & -
% = Bt onz=0 (5.15)
09 5
6_71, = Un on SB (516)

where Sp is the mean wetted body surface. This implies that the boundary is known and fixed
in time, thus the discretization of this surface can be made once for all. If long time series
are required it may be efficient to increase the number of elements along the free surface and
thereby increase the value of z;(t) with time. This allows for using few free surface elements
at the beginning of the simulation when ¢ and ¢ approaches zero quickly as the distance |z|
from the body increases. Later, when a larger part of the free surface needs to be discretized,
new elements may be added. In this work, a constant number of segments and a constant z, is
used for each simulation. The free surface is discretized so that small segments are used close
to the body, where the velocity potential and the free surface elevation vary strongly with the
spatial coordinates, while larger elements are used far away from the body. On the body small
elements are used near sharp corners and near the body/ free surface intersections. A second
order Runge-Kutta scheme is used to integrate the solution in time. Below, some problems
studied by the using linear boundary element method are discussed.
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Figure 5.1: Hydrodynamic force on circular cylinder (excluded linear restoring force) for forced
heave motion, 3 = 13, sin(wt) during start-up of oscillations. Comparisons between the linear
boundary element method and the linear transient theory by Faltinsen (1977).

5.2.1 Start-up of forced heave oscillations
A semi-submerged circular cylinder undergoing forced heave oscillations is considered. Before

the steady state condition is reached, the hydrodynamic force on the cylinder contains a transient
part associated with the start-up of the oscillations. The transient problem is solved as an initial



5.2. A LINEAR BOUNDARY ELEMENT METHOD 91

value problem with ¢ = 0 and { = 0 on 2z = 0 as initial conditions. Faltinsen (1977) derived
a linear transient theory and Faltinsen (1983) documented excellent agreement for the force
acting on the body computed by the transient theory and by a linear boundary element method
applied to this problem. Similar comparisons are performed here. Figure 5.1 shows comparisons

for four different dimensionless frequencies w g, where w is the oscillation frequency and a is

the cylinder radius. The linear boundary element method agrees well with the linear transient
theory by Faltinsen (1977). An exception is the beginning of the simulation for the lowest
frequency (see Figure 5.1(a)). In this region the results from the present method deviate some
from the linear transient theory.

5.2.2 Added mass and damping of cylinders oscillating on the free
surface

If longer simulations are performed and the amplitude and the frequency of the oscillations are
kept constant, the hydrodynamic force acting on the body will eventually reach steady state.
The part of the force in phase with the acceleration of the body is defined as the added mass
force, while the part in phase with the velocity can be identified as hydrodynamic damping force.
If the body is given a forced harmonic oscillation in i-direction, 7;, a hydrodynamic steady state
force in j-direction is originated. In the linear problem this force can be written as

F; = —Ajii; — By (6.17)

where Aj;; and Bj; are defined as the added mass and the hydrodynamic damping coefficient,
respectively. Added mass and damping coefficients may easily be evaluated from the force his-
tory. Faltinsen (1990) presents results for the added mass and damping coefficients as functions
of oscillation frequency for heave and sway motion for the case of a semi-submerged circular
cylinder. Forced heave is a symmetric problem for a symmetric body. This means that the
velocity potential and the free surface elevation are symmetric about the yz-plane. A, (see Eq.
(5.7)) vanishes for symmetric problems. Similarly, forced sway is an anti-symmetric problem,
i.e. the velocity potential and the free surface elevation are anti-symmetric about the yz-plane,
thus A; = 0. For a symmetric body, symmetry and anti-symmetry conditions can be used,
and the elements of the discretized boundaries with z > 0 can be reflected about the z-axis to
represent the body and the free surface for £ < 0. This reduces the number of unknowns in
the numerical solution and consequently the computation time. Figure 5.2 presents comparisons
between results obtained by the present method and results given by Faltinsen (1990) for the
added mass and the damping coefficients in heave and sway for a circular cylinder. The results
compare well for all the frequencies used in comparisons.

Vugts (1968) presents linear results for added mass and damping coefficients for rectangular
cylinders oscillating on the free surface. Results are reported for different B/D-ratios, namely 2,
4 and 8. Here B is the breadth of the section and D is the mean draft. Figure (5.3) shows com-
parisons between the present method and the theoretical results by Vugts (1968). Vugts obtains
his solution by following the method by Ursell (1949). Results for added mass and damping
coefficients obtained by the present boundary element method compare well with linear results
in Vugts (1968) for all three B/D-ratios. A wide range of frequencies is tested.
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Figure 5.2: Two-dimensional added mass and damping in heave and sway for a circular cylinder
with azis in the mean free surface. Infinite water depth. Comparisons between the linear BEM
and results given by Faltinsen (1990). (As3 =added mass in heave, Bss =damping in heave,
Ay =added mass in sway, By; =damping in sway, A = 0.5ma?, w =circular frequency of
oscillation.)

5.2.3 Excitation loads due to regular incident waves

Incident waves yields forces and moments acting on the body. Given linear waves and steady
state conditions, the linear dynamic rigid body motions and the loads on the body oscillate
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Figure 5.3: Two-dimensional added mass and damping in heave for a rectangular cylinder
oscillating on the free surface, for different B/D-ratios. Where B is the breadth of the cylinder
and D is the draft. Infinite water depth. Comparisons between the linear BEM and results given
by Vugts (1968). (Az3 =added mass in heave, B3y =damping in heave, w =circular frequency of
oscillation.)

harmonically with a frequency equal to the wave frequency. In this case it is convenient to split
the total problem into two sub-problems (e.g. Faltinsen (1990)):

i) The diffraction problem: The body is fixed in its mean position, and the wave loads
acting on the body are calculated. In this case the hydrodynamic loads are denoted wave
excitation loads. They are composed of Froude-Kriloff and diffraction forces and moments.

ii) The radiation problem: The body is forced to oscillate with the wave frequency in any
rigid body motion mode. There are no incident waves present. The hydrodynamic loads
are in this case denoted as the added mass and damping forces and moments, as described
by Equation (5.17), and the restoring forces and moments.

In linear theory the forces associated with each of these sub-problems may be superposed to
give the total hydrodynamic forces. Similarly, for irregular waves, the results for each wave
component can be linearly superposed.

The radiation problem has been solved for a considerable number of cases, while the wave ex-
citation problem has not yet been considered. Vugts (1968) reports results for two-dimensional
horizontal and vertical hydrodynamic excitation forces for a semi-submerged circular cylinder
exposed to regular incident waves. If the body is kept fixed, the linear body boundary condition
becomes

8 __on '
% = an on SB (518)



94 CHAPTER 5. A BOUNDARY ELEMENT METHOD

! T Vagts (1068
! P L;se':r(BIEM) . 2
, ! 151
08| -
_Faq _Faq_
2pgala | 2pgadal |
04 bt
02—
0 I i {
0 02 04 06 08— 1 12 14 18
w.le
g
(a) Horizontal excitation force (b) Vertical excitation force

Figure 5.4: Two-dimensional horizontal and vertical excitation force on a semi-submerged cir-
cular cylinder due to linear incident waves with amplitude {, and oscillation frequency w. Fy,
and F3, are amplitudes of the sway and heave excitation forces, respectively. a is the cylinder
radius. Comparisons between linear BEM results and results by Vugts (1968).

The linear diffraction and Froude-Kriloff loads may be calculated by direct pressure integration
as

Fp= —/(p—po)pn dS=p %n ds (5.19)
SB SB
and
Fr=p %‘iin ds | (5.20)

Sp
respectively. The total excitation load is Fexc = Fp + Fy.

The incident velocity potential ¢; is given in Equation (3.5), and by inserting this one into
Equation (5.18) the body boundary condition

0¢ _

F —Cuwer? cos(kz — wi)ng — (wer? sin(kz — wt)ng (5.21)

is obtained. n, and n3 are respectively the horizontal and vertical component of the normal unit
vector n of Sg. If the body is symmetric about the yz-plane, the problem can be divided into
a symmetric and an anti-symmetric problem which can be solved separately. The symmetric
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problem yields vertical excitation only and the anti-symmetric problem yields horizontal exci-
tation only. Comparisons to results by Vugts (1968) have been performed. Vugts reports linear
results for horizontal and vertical hydrodynamic excitation force on a fixed semi-submerged cir-
cular cylinder due to regular incident waves. The results are based on Equation (4.3), assuming
the damping coefficient known. In the present boundary element method, the hydrodynamic
excitation force is evaluated by using Equations (5.19) and (5.20). The results for horizontal
and vertical excitation forces are presented in Figure 5.4.

As a concluding remark on the linear boundary element method one can say that it yields
good results for several test cases. It predicts well the transient phase during the start-up of
forced heave oscillation. Further, by simulating forced oscillations until steady state condition
is reached, accurate estimates of the added mass and the hydrodynamic damping coefficients
can be obtained. This is shown for both symmetric and anti-symmetric problems. Finally, the
calculations show that the method gives good estimates for the excitation force on a fixed body
subjected to linear incident waves.

5.3 Fully nonlinear boundary element method for forced
oscillations

Once a reliable linear time-domain boundary element method has been established and validated,
the next natural step is to solve the problem related to forced oscillations without incident waves
by using a fully nonlinear method. This requires two important extensions to the linear method
described above. Firstly, the nonlinear terms in the free surface conditions have to be included,
and secondly, the boundary conditions have to be satisfied on the exact boundaries. The latter
extension requires particular care to ensure stable solutions. Furthermore, an integration scheme
able to give accurate estimates of the free surface elevation and of the velocity potential on Sp
at the next time step must be applied.

5.3.1 Time integration scheme

In this work an integration algorithm similar to the one described by Zhao and Faltinsen (1993)
is used. This algorithm ensures good mass conservation even when the free surface curvature
becomes large. The time integration of the free surface is outlined in Figure 5.5.

Let OP(i,j) be the coordinates of endpoints of segments at time instant j, and let SP(i,j) be
the coordinates of the free surface point midway between endpoints OP(i, j) and OP(: + 1, j).
The surface points are introduced to enable one to get better predictions of the free surface
elevation and thus better mass conservation. The value of SP(i,j) is a priori unknown while
OP(i,j) is known. A first estimate for SP(i, ) is found by fitting a second order polynomial
through OP(i — 1,3), OP(i,j) and OP(¢ + 1, ) and letting SP(i, j) be situated halfway be-
tween OP(,7) and OP(i + 1,5) along the second order curve. Similarly, a second estimate is
found by constructing a second order polynomial based on the endpoints OP(%,5), OP(i +1,7)
and OP(i+2, 7). The final estimate of SP(, §) is chosen to be the average of the two estimates.
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Figure 5.5: Definitions of points used in the description and motion of the free surface in the
nonlinear boundary element method. OP(i,j) are the endpoint of the segments at time instant
J, and SP(i,7) are the free surface points.

The fluid velocity at SP(i, j) can be evaluated through its normal component to S, ‘—;—f, which
is taken to be the solution of the boundary value problem at the midpoint of the straight line
segment between OP(4,j) and OP(i + 1,5), and its tangential component to Sr, %f, which
can be estimated by differentiating the velocity potential along the free surface. The fluid ve-
locity vector is denoted as V. Instead of tracking the midpoints of the straight line segments
where the boundary value problem is solved, the evolution of the free surface points SP(3, j)
is followed. This is done to minimize the error in conservation of mass. The time stepping is
performed in two steps. In the first step an intermediate new position SP(i,j + 1)}y at time
instant 7+ 1 is found based on the velocity V at SP(i, j). The change in position then becomes
VAt;, where At; is the time increment ¢;;; —¢;. Similarly, an intermediate value of the velocity
potential ¢ is found from the dynamic free surface condition when inserting the velocities and
the free surface elevation found at SP(z, 7). Based on the free surface points SP(i — 2, j+ 1) int,
SP(i— 1,5+ 1)int, SP(i,7 + 1)ips and SP(i+ 1,5 + 1)int, OP(3,j + 1) it is found. This is
done in the same manner as described above, by fitting two second order polynomials through
the points. Two estimates for OP(i,j + 1) ;¢ are then found by letting OP(3, j + 1);pt be sit-
uated half way between SP(i — 1,7 + 1)jy¢ and SP(4,j + 1)y along the second order curves.
OP(i, j+1) int is chosen to be the average value of the two estimates. In the second step, straight
line segments between OP (%, j +1)ipt and OP(i+1, j+1) iy are constructed, and the boundary
value problem at the intermediate position of the free surface is solved. The fluid velocities V4
on the intermediate free surface can then be evaluated at SP(7,j + 1)int-

The final position of the free surface points SP(i,j + 1) is calculated by using the average
velocity at SP(i,j) and SP(i,5 4+ 1) jpt, Vavg = 0.5(V + Vp¢). This implies that the displace-
ment from SP(i, j) to SP(i,j+1) is V aygAt;. New free surface segments are found in the same
way as for the intermediate position. The velocity potential on the final position is calculated
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Figure 5.6: The mean submerged cross-section of the Lewis formed cylinder used in the com-
parisons to the experiments by Tasai and Koterayama (1976).

using V avg and the mean surface elevation during the time increment At;.

The body/ free surface intersection points are determined by extrapolating the free surface
on to the body surface. On each side a linear function is constructed using the two surface
points closest to the body, and the contact point is determined as this function’s intersection
with the body surface.

5.3.2 Validation of the nonlinear boundary element method

The fully nonlinear method has been validated by comparisons to experiments for forced heave
motion of a Lewis form cylinder with —g— =2and o= 3‘% = 0.989, in initially calm water. The
experiments were performed by Tasai and Koterayama (1976). Here B and D are the breadth at
the waterline and the draft of the cylinder, respectively. A is the mean submerged cross-sectional
area. The cross-section of the cylinder is illustrated in Figure 5.6. Steady state results from the

nonlinear simulations are considered.

When a two-dimensional body performs heaving oscillations with a finite heave amplitude 73,
and circular frequency w, the hydrodynamic force on the body contains higher order components.
The first three harmonics of the hydrodynamic force have been considered in the comparisons.
The different harmonics are extracted from the total force history. The first harmonic of the
force oscillates with the oscillation frequency w, and the oscillation frequencies of the second and
third harmonics are 2w and 3w, respectively. Experiments were performed for three different
heave amplitudes, € = 73, /(B/2), namely ¢ = 0.222, 0.444 and 0.666, and for each amplitude 7
different oscillation frequencies were applied.

Figure (5.7) presents comparisons for the added mass force and damping force evaluated from
the first harmonic of the total force. The whole lines are theoretical linear results given by Tasai
and Koterayama (1976). These results are validated by the linear boundary element method
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Figure 5.7: Added mass and damping coefficients in heave for Lewis form cylinder (B/D =2
and A/(BD) = 0.989) for different heave amplitudes. Comparisons between numerical results
using a fully nonlinear boundary element method and ezperimental results by Tasai and Koter-
ayama (1976).

given above. For the smallest amplitudes the experimental and the numerical results for the
added mass coefficient compare well, while the deviations are larger for the largest amplitude.
However, the added mass coefficients are relatively close to the linear results for all amplitudes
and frequencies. The experimental values for the damping coefficient are larger than the nu-
merical ones. For the smallest amplitude the deviations are small, while they increase with
both amplitude and frequency. It is believed that the deviations are mainly related to viscous
damping. While viscosity is not accounted for in the theory, vortex shedding at bilges in the
experiments may give a significant contribution to the damping. Note that if a perturbation the-
ory is applied, the first harmonic force also gets contribution from 3rd order, 5th order and so on.

Tasai and Koterayama (1976) define a first harmonic heave force that includes added mass,
damping and restoring terms on the form

FM = g, [(Assw? — pgA) sinwt — Byyw coswi]

(5.22)
= Fé;) sin(wt + ;)

where ¢, is the phase difference between the heaving motion and the first harmonic of the force,

and Fé;) is the amplitude of the force. Figure (5.8) shows comparisons between numerical and

experimental results for the dimensionless first harmonic of the heave force F) and for ;. The
(1)

dimensionless first harmonic force is defined as F(“) = p—:-‘g;’;. The whole lines in the Figure (5.8)

are linear results. The results for F(“) are actually added mass and damping forces presented
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Figure 5.8: Dimensionless first harmonic force amplitude and phase angle (in degrees). Com-
parisons between numerical results from the nonlinear boundary element method and ezperimental
results by Tasai and Koterayama (1976).

in a different manner. Since the added mass results are quite similar, the difference between
numerical and experimental results is mainly due to the viscous damping. Thus, the nonlinear
numerical results are closer to the linear results than the experiments. The minimum value for
the linear force occurs when the added mass and restoring terms cancel each other out. In this
region damping dominates F(l) and the relative difference between theory and experiments is
therefore largest here. The same tendency can be observed for the phase angle, §;.

Figure 5.9 presents comparisons for the amplitude of the second harmonic of the force, Fa(f),

oscillating with frequency 2w, and the amplitude of the third harmonic of the force, F: 3(:), 0s-
cillating with frequency 3w. The dimensionless second harmonic force amplitude is defined as

Fw) = —%)— (3) is normalized by the amplitude of the first harmonic, F3(a) The experimental
values for the d1mens1onless second harmonic show a scatter, while the theoretical values follow
the same trend for all three amplitudes. Particularly for high oscillation frequencies, the non-
linear boundary element method gives higher second harmonic force than the measured ones.
Tasai and Koterayama (1976) also report that calculated values for the second order force on a
semi-submerged circular cylinder, based on the second order perturbation method by Lee (1968),
are larger than their experimental values. According to Ohkusu (1999), a possible explanation
for this is that waves propagating along the model axis, i.e. in transverse tank direction, were
observed during the experiments. These waves will reduce the energy of the outgoing waves.
The transverse waves were most noticeable for high amplitudes and high frequencies. However,
experiments and theory for F3a show best agreement for the highest amplitude. In general, it
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Figure 5.9: Added mass and damping coefficients in heave for Lewis form cylinder (B/D = 2
and A/(BD) = 0.989) for different heave amplitudes. Comparisons between numerical results

using a fully nonlinear boundary element method and ezperimental results by Tasai and Koter-
ayama (1976).

seems to be fair agreement between experiments and theory.

For the third harmonic part of the force, experimental and numerical results agree well for
small oscillation frequencies. As the frequency increases, the results deviate, and the experi-
mental results for the third harmonic are in some cases larger and in some cases smaller than
the theoretical values. In the frequency range “’Tf% = [1.0, 1.5] and for the largest amplitudes,

(3)
Figure 5.9(b) shows much larger numerical values of %}f{; than of the experimental ones. This is
3a

mainly caused by differences in F:g) in the region where damping dominates the first harmonic
(see Figure 5.8(a)), rather than small experimental values for the third harmonic. As for the
damping coefficient, the experimental third harmonic part of the force gets contributions from
viscous effects. Viscous effects may be discussed by using empirical drag formulae. The vertical
viscous force per unit length can be written as
1 —

F3, = ‘2‘PCDB{"73|773 (5.23)
where 73 = 73, sinwt. Generally, the drag coefficient Cp is a function of 73,, w and ¢, but by
assuming that Cp is time independent, expansion of Fj, into a Fourier series leads to a viscous
force on the form

1
Py =3 pCpBuw?ni, <i coswt + ——cos3uwt + ... ) (5.24)

3w 167



5.8. FULLY NONLINEAR BOUNDARY ELEMENT METHOD FOR FORCED OSCILLATIONS 101

Since the damping coefficient Bsj is related to the part of the force oscillating with frequency w,
the first term in Equation (5.24) should be adopted when finding the viscous damping coefficient
Bg). Hence, assuming that the empirical drag formula (5.23) to be valid, the viscous damping
coeflicient becomes

v 4
B = —pBCpwra (5.25)

and a dimensionless viscous damping coefficient can be written as

2 CDBG
g T3 Da

(v) = Baa
33 pA

(5.26)

Similarly, the viscous contribution to the third harmonic part of the force is given by the second
term in Equation (5.24):

4
FY = mpCpngnga (5.27)
The empirical viscous force does not contribute to the force oscillating with frequency 2w.

Cp in the previous expressions is an unknown. Keulegan and Carpenter (1958) investigated
the drag force acting on bodies in unsteady flow. They obtained the drag coefficient Cp and the
inertia coefficient Cjps by measuring the hydrodynamic force on submerged cylinders and plates
in standing waves. They concluded that the important parameter for determining Cp and Cys
was the period parameter U,T/D. Here U, is the amplitude of the sinusoidal velocity, T is the
oscillation period and D is the dimension of the cylinder or of the plate perpendicularly to the
flow. This parameter is denoted as the Keulega.n-Ca.rpenter number, KC. In the present case,

the Keulegan-Carpenter number becomes: KC = “"’—‘};L = emr, which means that the KC num-

ber ranges from 0.7 to 2.1. Cp is strongly dependent on K'C in this regime. Also, the Reynolds
number, Rn = %, can be very important for the drag coefficient. v is the kinematic viscosity
coefficient. Sarpkaya and Isaacson (1981) show how the drag coefficient varies with both KC
and Rn for circular cylinders. The Reynolds number is not important if the separation points
are well defined, such as at sharp corners, i.e. Cp is not sensitive to Rn for rectangular cylinders.
The given Lewis form shaped cylinder is close to rectangular and separation will occur at the
bilges. In this context it is therefore assumed that Rn is unimportant for Cp. There is a strong
effect of the bilge radius, r, on the drag coefficients. Increasing the bilge radius means decreas-
ing the drag coefficient. For the Lewis form shaped cylinder % = 0.22. By using the results
in Fig. 7.11 in Faltinsen (1990), one can argue that Cp =~ 0.6 for KC = 10 for this cylinder.
No data is given for lower KC numbers. Faltinsen and Sortland (1987) present experimental
results and theoretical results from a single vortex method for the drag coefficient of a cylinder
when KC 2 3. The cylinder has Z = 0.22 and £ = 2.7. Extrapolation of these results to lower
KC numbers yields Cp =~ 0.25, CD =~ 0.4 and CD = 0.55 for KC numbers equal to 0.7, 1.4 and
2.1, respectively. Note that for KCj,. = ™3¢ < 2 separation will not occur at the bilges. In
the present case KCj,. > 3. Tasai and Koterayama (1976) have calculated the damping based
on measurements of the amplitude of the outgoing waves. The measured damping was larger
than the calculated ones. They postulated that the difference was caused by the viscous force.
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Figure 5.10: Dimensionless damping and third harmonic part of the force normalized by the
first harmonic force. The damping coefficient and the first order force are modified by including
viscous damping from Equation (5.25), while the third harmonic is modified by including viscous
term where the amplitude is given in Equation (5.27). Cp = 0.6. F.-™ and FC™ are modified
amplitudes for the first and the third harmonic part of the force, respectively. Ezperiments from
Tasai and Koterayama (1976).

Based on this they determined the drag coefficient. They suggested to use Cp = 0.6 for all
amplitudes and frequencies. The viscous damping coefficient given in Equation (5.26) may be
added to the damping coefficient found by the nonlinear boundary element method. Similarly
the third harmonic of the viscous force may be added to the third harmonic part of the force
calculated by potential theory. Figure (5.10) shows comparison between the experiments by
Tasai and Koterayama (1976) and the results found by using the nonlinear boundary element
method and adding the viscous force, for the damping coefficient and the third harmonic part
of the force. Cp = 0.6 is used.

The damping coefficient matches better with the experimental value when the viscous damping
is added. The numerical values now are larger than the experimental values. This indicates that
the viscous damping is overestimated. The use of a drag coefficient equal to 0.6 for all cases can
be the reason. The results for Cp = 0.6 from Tasai and Koterayama (1976) show a scatter, but
with a mean value close to 0.6. The suggested drag coefficients from extrapolation of the results
by Faltinsen and Sortland (1987) would have given better agreement.



CHAPTER 6

A nonlinear boundary element method
applied to deck impact

6.1 Introduction

In Section 5.3 a fully nonlinear boundary element method for solving forced oscillations was
outlined. No incident waves were present, and the exact boundary conditions were satisfied on
the exact boundaries. In this chapter this methodology will be extended to solve water impact
underneath a platform deck due to regular incident waves.

A common method for solving nonlinear free surface problems when incident waves are present,
is to use Green’s second identity to establish an integral equation for the total velocity potential.
In order to generate incident waves, a disturbance must be imposed on an upstream far field
control surface. This can be handled by two different approaches: The upstream boundary itself
can act like a physical wavemaker so that the motion of the impermeable upstream boundary
generates the waves (see e.g. Buchner and Cozijn (1997)), or by specifying both & and g—‘,‘: along
the vertical upstream boundary (see e.g. Greco et al. (2000)). Finite water depth is required
if the former approach is applied. The motion of the “wavemaker” and the specified quantities
on the upstream control surface must be chosen so that the desired waves are generated. On
the downstream far field boundary, a numerical beach is required to damp out the disturbances.
Residuary effects may be removed by using a damping layer technique close to the downstream
barrier (see e.g. Israeli and Orszag (1989)).

A different approach is chosen in this work. Analogously to the Wagner based method, the
incident wave velocity potential and elevation are described a priori, and the perturbation ve-
locity potential due to the presence of the body is solved. The latter approach is chosen for two
reasons. First, the method described and validated in Section 5.3 may be extended to handle
water impact due to specified incident waves without too many difficulties. Second and more
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important, if the incident waves are generated by the upstream boundary, the fluid flow con-
tains transients similar to those generated by the start-up of a physical wavemaker. If impact
due to regular incident waves is to be studied, long simulations without the body present may
be necessary before steady state is reached. Differently, when the incident waves are specified
beforehand, the simulation of the impact event can begin immediately.

6.2 Solution procedure

6.2.1 The boundary value problem and the solution technique

Two-dimensional potential theory is assumed. Hence, the two-dimensional Laplace equation
becomes the governing equation in the fluid domain. The two-dimensional flow assumption was
discussed in Section 3.2. The coordinate system used in the calculations has its origin in the
mean free surface with the vertical axis pointing upwards through the center line of the body.
The incident waves propagate in the direction of the positive z-axis, and their velocity potential
¢; is assumed known and in this work described by Stokes’ second order theory. In principle,
the incident waves can be expanded to any finite order, e.g. by the procedure presented by
Bryant (1983). When using Stokes second order theory, simple formulae for ¢; and (; are given
a priori. The perturbation velocity potential due to wave impact, ¢, is unknown and has to be
determined. A dynamic free surface condition on the “exact” free surface { must be derived.
The exact dynamic free surface condition can be written according to a Lagrangian description
as

Do

o —|V<I>|2 —g¢ on z=¢( (6.1)

where ® is the total velocity potential and ( is the exact free surface. Now, assuming that
® = ¢+ ¢y and { = {p + {1, where ¢ and (p are the velocity potential and the surface elevation
associated with the disturbance, respectively, Equation (6.1) can now be rewritten as

— T F IV¢>I2 |V¢I|2 +V¢-Vér—gp—g¢r on z=¢( (6.2)

The incident waves satisfy Equation (6.1) with ® = ¢ on z = (;. By Taylor expansion of the
free surface condition for ¢y from 2 = {; to z = {p + (1, the condition can be written as

D¢y

a: - 90+ 0(kG)® o z=¢ (63)

z=(y

2|V¢1|

Finally, the dynamic free surface condition for the perturbation potential ¢ is obtained by
subtracting Equation (6.3) from Equation (6.2) and neglecting terms of O(k(,)?, giving

D_¢—-|v¢| +V¢-Vér—glp om z=( (6:4)

Consistently with second order theory, terms involving ¢; are found by using Taylor expansion
correct to the order O(k(,)?.
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In the Wagner based method, only the wetted part of the bottom plate was taken into ac-
count in the boundary value problem. Further, the spatial variation in the impact velocity
was approximated by a linear function. Here, the exact body boundary condition according to
Stokes’ second order theory, is utilized, i.e.

g—i = —%% = %nl + %%n;; on Sp (6.5)
where Sp is the instantaneous wetted area. As for the free surface condition, Taylor expansion
correctly to second order about z = 0 is used to find %%’- and %? on the body. Infinite water
depth is assumed which implies that the bottom disturbance is negligible.

As usual in the mixed Eulerian-Lagrangian method for free surface flows, the problem is di-
vided into two steps solved in sequence. These steps are described in Chapter 5 and in e.g.
Faltinsen (1977). In the first step, the kinetic problem for the perturbation velocity potential is
solved, with the specified mixed Dirichlet-Neumann boundary conditions. In the second step,
the free surface conditions are integrated in time to update the geometry and the value of the
perturbation velocity potential on the free surface.

The kinetic problem for ¢ is solved through Green’s second identity. Equation (5.6) is sat-
isfied on the midpoints of straight line elements. ¢ and %ﬂg are set to be constant over each
segment. In Chapter 5, forced oscillations were solved using a fully nonlinear boundary element
method. The problem was solved as a transient initial value problem. The velocity potential
far away was represented by a dipole and a multipole in the origin. No incident waves were
present, which means that the free surface elevation far away from the body was zero. Thus, the
contribution due to Fredholm integral equation from the far field free surface could be evaluated
analytically. The same procedure is used here, and it is assumed that a dipole and a multipole
located in the origin represent the velocity potential on the form
Az Az

¢= 2+ 22 (224 22)°
for £ < z; and for £ > zg. |zL| and |zg| are large compared to the dimensions of the body.
These regions are denoted as the far field. Different from before, approximations must now be
performed. The analytical expressions require that ¢ = 0 in the far field, but in the present case
¢ = (; far away from the body. No analytical solution when integrating along ( = (; seems
to be possible. Also, the far field solution should give ¢ = 0 on the free surface, but Equation
(6.6) yields ¢ = 0 on z = 0. Despite these aspects, for simplicity, it is assumed that ¢ = 0 and
Equation (6.6) are valid in the far field, and that the analytical expressions may be used. This
does not matter since the relative difference in the distance from the body to z = (; and z =0
for a given value of z in the far field is negligible. This is analogous with moving the distribution
of singularities on the exact body surface to a dipole and a multipole in the origin.

, (6.6)

Figure 6.1 shows a sketch of the boundary value problem of interest.

The kinematic problem is solved by a time integration scheme similar to the one described
in Section 5.3.1. This scheme is therefore not discussed further here, one must however note
that in this case ¢; also contributes to the velocities on the free surface.
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Figure 6.1: The boundary value problem. Sg and Sr for z; < z < zg are discretized by straight
line segments. The problem is solved applying Greens’ second identity. For x < xp and T > zpg,
the perturbation velocity potential in the fluid is described by Equation (6.6). This yields ¢ =0
on z=0.

6.2.2 Upstream body/ free surface intersection

An important challenge is represented by the description of the flow around the front corner
when the upstream body/ free surface intersection point moves from the front of the deck to the
bottom plate. The upstream intersection point is denoted as I'yp. Initially the impact causes a
pile-up of water and a thin jet upstream of the body. Iyp rises up along the front plate. After
some time, gravity will pull it downwards again. Eventually Iyp reaches the corner between the
front and the bottom plate. Until this time instant, the intersection is found by extrapolation,
as described in Section 5.3.1.

Figure 6.2 shows snapshots of the process when the flow turns the corner and Iyp moves to
the bottom plate. For clarity the free surface profile has been indicated by white lines. In the
first picture Iup moves with a negative vertical velocity along the front plate. As it reaches the
corner, it turns around to the bottom plate before it propagates downstream towards the aft
end. In the third picture (bottom left picture) Iyp has just turned the corner. Locally the free
surface is characterized by overturning and high curvature. After a short period of time, the
overturning breaks down into foam and spray and the curvature of the free surface decreases.
This can also be noted from Figure 4.4. Since the phase when Iyp turns the corner and overturn-
ing occurs has short duration, this can be handled in a simplified manner and this simplification
is used in the numerical solution. When Iyp reaches the corner, it is kept fixed at the corner
until the angle between the bottom plate and the first free surface element « is greater than
Cfree- When @ > e the intersection point is once more free to move. This is indicated in
the sketches in Figure 6.3. The value of agee has to be properly chosen. If a g is too small
Iyp tends to move too quickly when let free to move, and as a consequence the solution may
break down. ag.ee = 7 seems to yield stable solutions. For the phase where Iyp is kept fixed
numerical instabilities / errors occur, but when it is set free to move stability is re-gained. If small
free surface elements are used locally the transition phase has short duration in the numerical
solution, and the solution is not sensitive to the choice of @ gee. This will be discussed later.
When Iyp is set free the extrapolation scheme described in Section 5.3.1 is used to determine
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Figure 6.2: Snapshots from the experiments of the flow around the front corner of the model.

I,p fixed

Figure 6.3: The numerical procedure for moving the upstream body/ free surface intersection
point around the front corner of the platform deck. In the left figure, the intersection point is
kept fized. In the right figure, @ > @ free and I yp can move freely.

its position.

The way this phase is handled in the numerical solution is crude, and it was implemented
as a first approximation for the flow around the front corner. It does not describe details in the
flow such as the initial overturning of the free surface. But this does not seem to affect the rest
of the water exit process significantly. Alternative approaches may be applied. For instance, a
Kutta condition, stating that the flow leaves the front end tangentially can be imposed. In this
case a new vertical free surface element at the intersection has be added. This is sketched in
Figure 6.4(a). This procedure would probably ensure overturning of the free surface, but new
problems may arise when tracking Iyp when it moves downstream. It is believed that a vortex is
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Figure 6.4: Alternative ways of handling the flow around the front corner of the deck.

formed as the fluid flows around the corner, which locally influences the free surface profile. This
is not taken into account in the present method. A possible way to handle this is to include a
vortex sheet in the boundary element method, analogously to Faltinsen and Pettersen (1987). A
vortex sheet is indicated in Figure 6.4(b). However, when including a vortex sheet the solution
procedure becomes too complicated relative to the improvement it gives for the estimates of the
variables of interest. Therefore, it was considered to be more important to describe the flow at
the aft end corner properly than to include the vortex sheet in the solution.

6.2.3 Downstream body/ free surface intersection point

An accurate estimate of the downstream body/ free surface intersection point, here denoted as
I 4own> 18 crucial for obtaining reliable results for the impact load. During the water entry phase,
i.e. when I, propagates downstream along the bottom plate of the deck, I,y is found
by extrapolation of the free surface onto the body. This yields a time history for the wetted
area that compares well with both experiments and the Wagner based method. As mentioned
previously, when I3, reaches the aft end corner of the deck the fluid flow leaves the deck
tangentially. This can also be noted from snapshots in Figure 6.5. The pictures show a zoom
up of the aft end of the body and of the local free surface. The free surface is indicated by
white lines and its intersection with the body is located at the aft corner of the deck. As long
as the aft end of the bottom plate is wetted, the free surface at I,y is horizontal for the
horizontal deck. For a deck with an inclination, the free surface is also believed to leave the
body tangentially. The boundary value problem that is depicted in Figure 6.1 can not describe
this, and an additional physical condition must be imposed. In the case of steady lifting flow
around an airfoil, the well-known Kutta condition is used to determine the circulation uniquely.
The equivalent to a Kutta condition for the present problem is obtained by requiring ¢ to be
continuous and the flow horizontal at Ijqyy. This condition will hereafter be denoted as the
Kutta condition.

The boundary value problem shown in Figure 6.1, yields a set of N+2 linear equations for
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Figure 6.5: The fluid flow at the aft end of the deck. The flow leaves the deck tangentially.

N+2 unknowns, where the Fredholm integral equation (5.6) is satisfied on the midpoints of N
body and free surface elements. However, since an additional condition stating continuous ¢
at Jgown is formulated, Fredholm'’s integral equation cannot be satisfied at more than N — 1
midpoints. It was decided to replace the body boundary condition at midpoint N1 + 1 (see
Figure 6.6(a)) with the Kutta condition. The Kutta condition is written as

SN1+1 SN142
(1 - —————— N1t ————— N2
SN1+2 = SN1-1 SN142 — SN1-1 (6 7)

s SN1—
= (1 - $> on1+ —Ll—fﬁm-l

SN1 = SN1-1 SN1 — SN1-1

¢; being the perturbation velocity potential at midpoint ¢ and s; is a curvilinear distance along
the body and the free surface, so that s; is the distance from I3,y to midpoint . Note that
¢N1+1 and @142 are unknowns, while ¢y, and ¢y,_; are known quantities. This procedure is
analogous to the one used by Faltinsen and Pettersen (1987) at the separation point for flow
around blunt bodies.

When the numerical downstream body/ free surface intersection reaches the aft end of the
deck, a new horizontal free surface element is introduced at Ijgyy. The size of this element
after one time step is determined by the total horizontal fluid velocity U, at Ijoyy SO that
the length equals U;At. The element is allowed to grow until it has the same length as the
neighboring free surface element. Thereafter the element size is kept fixed. The dynamic free
surface condition is used to step the value of ¢n;. Since the midpoint gets zero vertical velocity,
gﬁ = —%%’- is used on element number N1.

In the phase described above, Ijoyy is kept fixed at the aft end corner of the deck. In the
experiments it was noted that the downstream contact point started to propagate upstream
during the final stage of the water exit phase. In the same manner as for Iyp, a criterion must
be formulated when I 4o, is to set to move freely again. In the present method this is done by
monitoring the motion of element number N1 — 1. I 4,y is allowed to move freely when the
slope of element number N1 —1 and the total vertical velocity of the corresponding midpoint are
both negative (see Figure 6.6(b)). In this context a challenge is represented by the evaluation of
I 4own When it propagates upstream. As a first approximation it was attempted to determine the
contact point in the same manner as it was found during water entry, i.e. by extrapolation. This
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Figure 6.6: Zoom up of body surface and free surface near the downstream body/ free surface
intersection point, I gounm. The solid circles symbolize the midpoint of the elements where Fredholm
integral equation is satisfied, and the vertical lines are element endpoints. s; is the curvilinear
distance from I goum to midpoint i.

failed. When using this approach, the contact point propagates too quickly and consequently
the numerical solution breaks down. A better approach must be developed.

Photos and video of the water exit phase were studied. Figure 6.7 shows four snapshots of
the fluid at the aft end of the model during the final stage of the impact process. At this stage,
the downstream intersection point propagates upstream. Due to the resolution of the pictures,
for clarity the free surface is indicated by black lines. It can be noted that the free surface in the
vicinity of I jouy is nearly horizontal. Based on this observation, it was decided to prolong the
use of the Kutta condition in Equation (6.7) with a horizontal free surface near the intersection
also during this final stage, but with I j,p free to move. The velocity of the intersection point
is set to be

U]dmn = =—+4+ = at Idown (6.8)

This provides a stable solution that makes it possible to simulate water exit almost until the
deck becomes completely dry. Numerical instability may occur near the end of the water exit
process. This may be caused by very small elements on the body compared to the near free
surface elements. Therefore the simulations are stopped before the final exit. However, in this
phase the force on the deck is small.

6.3 Pressure and force calculations

The main goal of these calculations is to determine the pressure and the resulting force acting
on the platform deck. As mentioned in the sections concerning the Wagner based method,
total force on the body may be computed by using two alternative approaches, direct pressure
integration or conservation of fluid momentum. These approaches are discussed below.
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Figure 6.7: Free surface profile near the aft body/ free surface intersection during as Igoun
propagates upstream during the water exit phase.

6.3.1 Direct pressure integration

The total pressure on the body is found by letting the total velocity potential ® satisfy Bernoulli’s
equation, ¢.e.

02 1
P=po=—Pg ~ 5,0|V<I>|2 —pgz on Sp (6.9)

z being the vertical distance from the mean free surface. In Section 5.1.3 it was shown that the
%—‘f term can be rewritten using a generalization of the substantial derivative. It is here assumed
that the body is fixed. The pressure on an element midpoint can therefore be expressed as

P—PpPo=—p

DO 90 1 (00
M™os 2

2
ot +pU E) - pgz on Sp (6.10)

where DL'; yields the change with time when the midpoint of an element with velocity is followed,

and % is the spatial derivative along the body surface. Since the body is fixed, the midpoint gets
zero normal velocity. Note that ‘9—: = 0 from the body boundary condition. To use Equation
(6.10) the value of the total velocity potential at the midpoints of the body elements must be
available. The perturbation velocity potential is known from the solution of the boundary value
problem, while the known incident wave potential can be added to give ®. The value of ¢;
on the body is found by Taylor expansion about z = 0. Terms of O(k(,)® are neglected. It is

assumed that the z-coordinates of the element midpoints are of O((,).

The procedure outlined above leads to an inconsistency. This arises when computing the velocity

squared term in Equation (6.10). Due to the Taylor expansion %—f contains terms from ¢; that

are of O(k(,)?, thus (%%)2 contains terms of higher order in k(,. This is not consistent with
second order theory. To avoid this, one can rewrite Bernoulli’s equation by applying ® = ¢+ ¢;.
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The pressure can then be written on the form

__ D¢ D¢ o¢ O0¢r 3¢ 0¢1
P=Po==Pqy ~ Py +pU‘""6 + pUsm Bs  Pos Bs
1 |86\ (8¢ 1 | (8¢: o1
@ @ [8)()]
(D¢ D 96 . 06\ 040 (6.11)
__p(Dt+D )+U”"(a +E) P35 s

- %p [(g_‘f) + (%) ] — pgz on Sp

where terms associated with ¢; are taken correctly to O(k¢,)?. The body boundary condition
gg = _%an_ is applied.

Once the pressure distribution on the body is determined, the resulting force on the platform
deck can be evaluated. In the present case, only the vertical force component is considered. This
can be written as

F3 = —B/ (p - po)n3d.5' (612)
Sp

The vertical force has been computed both by using Equation (6.10) and by using (6.11) for
the pressure. The alternative approaches do not give noticeable differences in the resulting
force. This indicates that higher order pressure contribution from ¢; that arise from the velocity
squared term in Bernoulli’s equation, is significantly smaller than the leading order contribution.

6.3.2 Conservation of fluid momentum

Faltinsen (1977) derived a formula for the force on a body by imposing conservation of fluid
momentum in a control fluid volume containing the body. For the present case the vertical force
can be expressed as

d d
Fi=ps / bimsdS+pe / dnsdS

Sr+SB SFr+Se
+0 [ gmaas+p [ gonsds+p [ gensds (6.13)
Sp SF SB

01041 04100 0¢0¢; 04 0¢
+p/[6z 6n+62 6n+62 on Bzan] ds

Sr being the instantaneous free surface inside z;, < = < zgr and S, being vertical control sur-
faces ranging from z = —0co to 2 = 0 at £ = z;, and at £ = zg. On Su, ¢ is given by Equation
(6.6) and the contribution from Sy is evaluated analytically. Terms involving ¢; and {; on
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Figure 6.8: Direct pressure integration versus conservation of fluid momentum.

Sy and Sp are also solved analytically, while the contributions from the other terms are found
by numerical integration. The derivation and the full expression for Fj are given in Appendix E.

A good check for the accuracy of the numerical code can be obtained by comparing force calcula-
tions based on direct pressure integration and by conservation of momentum. In principle, these
two approaches yield the same force given that the numerical code solves the boundary value
problem correctly. In Figure 6.8(a) a typical comparison is presented. The impact condition in
this case is T' = 1.43s, (;, = 0.06m and 7,50 = 0.06m. The corresponding time history for the
wetted length and comparisons with experiments are given below in Figure 6.24. Initially the
alternative force calculations compare very well. This suggests that the integration of the sur-
face elevation and of the velocity potential on the free surface are properly done. Furthermore,
it suggests that the body/ free surface intersection points are well predicted. In addition, this
indicates that the derivations for both the pressure distribution and the force expression based
on conservation of momentum are correct and that the integration algorithms for the numeri-
cal evaluation of the force are satisfactory. During the final part of the water impact process,
however, the two force estimates diverge. This implies that the solution of the boundary value
problem at this stage has become inaccurate. In general, the force calculated by conservation
of momentum is less negative than the integrated pressure and it also becomes positive dur-
ing the final water exit stage. The force determined from direct pressure integration remains
negative during the entire water exit process. This is similar to what is observed in the experi-
ments. The vertical force approaches zero as the wetted area approaches zero for both methods.

In Figure 6.8(b) some of the contributions to the total force from conservation of momentum are
given. Those are the contributions from {p and from ¢ on the body and the free surface. Sy and
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Figure 6.9: A skeich of the ezact and the undisturbed wave profile during the final stage of the
water exit process.

S} denote the upstream and the downstream free surface, respectively. By studying these force
contributions it is difficult to determine the origin of the inaccuracies. From the experiments it
is known that the free surface becomes highly deformed at the final part of the water exit phase,
and the validity of the Kutta condition in this case becomes questionable. It is believed that
the description of especially the downstream free surface is not good enough at this stage.

A different error source is associated with the theoretical modeling of the problem. The to-
tal velocity potential is divided into a perturbation velocity potential and the incident velocity
potential. This leads to the body boundary condition given in Equation (6.5), where %‘-;f on
Sp is found by Taylor expansion about the mean free surface. Strictly speaking, this condi-
tion is only valid on the part of the body surface that intersects with the incident wave. By
imposing Equation (6.5) on the entire wetted body surface continuity of fluid mass is violated.
This leads to unphysical flows which will affect the force calculations. In the case of a wedge of
fluid impacting on a rigid impermeable wall, one can easily see that %n“i = 0 outside the wedge’s
intersection with the wall is required for conservation of fluid mass. A similar argument can be
used for the present case, but one can also argue that even though ¢y is not defined on the body
outside its intersection with (;, it will affect the fluid flow also in this region and %%‘- has to taken
into account in the boundary condition. Even though it is especially severe during the water
exit phase for the present problem, this dilemma will also occur for other nonlinear problems
when using the body boundary condition in Equation (6.5). In Figure 6.9 a sketch of the wave
profile during the final part of the impact process and the undisturbed wave is presented. The
exact free surface is very different from the incident wave described by ¢;. The body boundary
condition used may not be accurate enough at this stage of the process. If the total velocity
potential determined, the exact body boundary condition %ﬂq—’ = 0 is satisfied at each time step,
and this specific problem does not occur.

These error sources need to be studied more carefully. Luckily the total force is small in the
region where the inaccuracies occur. Since the resulting force obtained by direct pressure inte-
gration resembles the experiments more, this one is used in the following.
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6.3.3 Three-dimensional effects

For the Wagner based method three-dimensional effects were accounted for by including a cor-
rection factor, J(x), for the added mass of the wetted deck area. The correction was taken from
Blagovenshchensky (1962). This correction is strictly valid only when the high-frequency limit
free surface condition ¢ = 0 is applied. However, as a first approximation, a similar correction for
the three-dimensional effects may be incorporated in the present case. In particular, a correction
factor Jo(x) may be defined as

3D
_ F{Whu
Jao(k) = 2D) (6.14)
Fswam

The subscript W BM in Equation (6.14) indicates that the impact force is calculated in the same
manner as in the Wagner based method, where ¢ = 0 on z = 0 is assumed valid. The wetted area
used when evaluating Equation (6.14), however, is found from the boundary element method.
Fa(ﬁﬁg u is the total vertical force from the simplified force calculations when three-dimensional

effects are taken into account, while Fa(,2v1v?1)9 u is the total vertical force from the simplified force
calculations without three-dimensional correction. Applying this the vertical force on the deck
can be written as

F&P) = J,(k)Fs (6.15)

where Fj is taken from Equation (6.12) or from Equation (6.13).

6.4 Results and comparisons with experiments

6.4.1 Convergence tests

Convergence tests for the numerical program have been performed to examine the sensitivity
of the computed results to different parameters. The latter parameters were varied one by one.
First, convergence with respect to the time increment was investigated. The initial spatial grid
was kept constant and the time increment At was varied. For each simulation At was kept
constant during the entire simulation. The resulting force on the deck should converge as the
time step is reduced. This is also the case. Figure 6.10 shows an example on a convergence test
where the time increment is gradually decreased. At is the time increment normalized by the
wave period. Np is the number of body elements and Ny is the number free surface elements.
An equal number of free surface elements are used upstream and downstream of the instanta-
neous wetted surface of the body. For a given discretization a limit exists for the maximum time
increment that is applicable. If the time step is larger than this value the numerical solution
will break down. In this case the surface points close to the body move too much within the
time increment and thereby cause difficulties when finding the intersection points. When the
time step is decreased this problem is avoided. Note that the results presented in Figure 6.10,
are not necessarily optimized with respect to the other parameters.

The size of the elements on the free surface are limited by the time step. But given a small
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Figure 6.10: Convergence with respect to time increment. T = 1.25s, (; = 0.05m, 7540 = 0.04m,
Np=60 and Np=200. At is the time increment normalized by the wave period.

time step, the results should converge when the element size is reduced. Figure 6.11 shows an
example of the sensitivity of the results when the size of the elements on free surface is varied.
Imin is the length of the shortest free surface element normalized by the wavelength. Also in
this case the results converge as the elements size is reduced. Initially the results are not very
sensitive to the element length. The water entry phase is relative well predicted even when the
largest free surface elements are applied. Differently, the water exit phase is sensitive to the ele-
ment length. Several reasons may exists for this and a few is mentioned. Large elements in the
upstream region of the body may lead to inaccuracies in the time instant when Iyp reaches the
front end corner of the deck and in the local description of the free surface profile. In addition,
the flow around the front corner do not happen as smoothly as for shorter elements. Therefore,
small elements should be used close to the body on the upstream side. At present a weakness
exists in the computer program. If too small elements are used the solution breaks down even
if the time increment is reduced. This occurs because the jet formed at the front plate becomes
very thin and thus I'yp goes towards infinity. A procedure similar to the one described by Zhao
and Faltinsen (1993) for water entry of a wedge represents a possible remedy for this. Zhao
and Faltinsen (1993) cut the jet when the angle between the body and the free surface at the
contact point becomes small and satisfy the integral equation on the cut. This yields a stable
solution. In this work case water exit is also considered, and cutting the jet may therefore not
be preferable. In practice, this limitation does not seem to be a problem. The results converge
with respect to element size before this becomes a problem.

It is also important that the free surface elements near I 4,5, are small. Particularly for water
exit. Large elements can not describe the details in the wave elevation and in the velocity po-
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Figure 6.11: Convergence with respect to element size on the free surface. T = 1.25s, {, =
0.05m, 7440 = 0.04m, Npg=70 and Np=180. Time increment At = 0.0012. 1., is the length of
the surface element nezt to the body on the upstream upstream side normalized by the wavelength.
Here the size of the element next to the body on the downstream side is equal to 1.3 min.

tential on the free surface behind the body, which are important both for the time instant when
I jown is set free and for its velocity when it propagates upstream. The most difficult part to
simulate is the final stage of the water exit process. At this phase high accuracy is needed to get
reliable results since the sensitivity to the element lengths on the free surface is large. However,
as discussed in Section 6.3.2, the accuracy of the calculations is questionable at this stage in the
simulation.

The free surface elements are increased by a constant factor away from the body. It is not
shown here, but given that the free surface is long enough, the results are not very sensitive to
this factor. For the calculations in this section, the element size is increased by 2.5% as their
distance from the body increases, so that Iy, = 1.025ly,-1 etc. , where Iy, is length of
element number N; — 2 and so forth (see Figure 6.6).

In addition to the convergence in terms of the size of the free surface elements, also conver-
gence with respect to Np should be investigated. By doing this, the importance of the length of
the discretized free surface is evaluated. Recall that the far field velocity potential is described
by Equation (6.6) and that the free surface condition ¢ = 0 on z = 0 is assumed. Figure 6.12(a)
shows an example of a convergence test with respect to the length of Sp. Np is gradually in-
creased. Initially the length of the free surface is not particularly important, but during the final
stage of the water exit process the results depends a little on the length of the free surface. The
results converge as the length of free surface is increased.
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Figure 6.12: Convergence with respect to number of elements. T = 1.43s, (; = 0.05m, 7,90 =
0.04m. Time increment At = 0.001. In Figure 6.12(a) Ng = 80 and in Figure 6.12(b) N = 100.

A convergence test with respect to the number of elements used on the body Np is shown
in Figure 6.12(b). The maximum force is weakly dependent on the element density on the body,
but the results converge as Np is increased. The ripples in the force in Figure 6.12 at ¢ = 0.22s
are caused by the introduction of the new horizontal free surface element at the aft end of the
deck, while the ripples at ¢ = 0.56s occur when I j,,q is set free to move upstream. These are
numerical instabilities.

Finally, the sensitivity of the results with respect to age is checked. The results are shown in
Figure 6.13. a:ge is varied between 5 and %. For afee > {5, the resulting time series becomes
almost independent from g, Some differences can be noted right after Iup is set free to
move, otherwise the solution is relatively unaffected by the value of agee. For the smallest
value of o/free used in the simulation a big difference in the results compared with other values
can be noted. A significant force peak can be observed in Figure 6.13(b) as the water leaves the
upstream edge of deck. The reason for this force peak can be explained by studying the corre-
sponding wetted length history shown in Figure 6.13(a). As the upstream intersection point is
set to move freely for the smallest & gee, Jup Propagates rapidly downstream before its velocity
stabilizes. This rapid change in wetted area causes the large force peak. In general agee = 15
seems to yield good results.

The numerical results converge well for the parameters tested. The results are most sensitive to
the size of the free surface elements. However, the program can not handle the jet formed on the
front side of the deck if the free surface elements become too small. As small as possible elements
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Figure 6.13: Sensitivity with respect to at what angle o g, the upstream body/free surface
intersection point is set free to move. T = 1.25s, {, = 0.06m, 7,50 = 0.0dm. Time increment
At = 0.0012, Ng = 70 and N = 180.

should be applied on the free surface, and this implies a large number of free surface elements.
The time step is linked to the size of the free surface elements, which yields a limitation on the
maximum size of the time step applicable. The results converge when At is reduced. Small time
steps should be used. Large Nr and small At results in time consuming calculations, and this
must be taken into consideration when performing simulations. In general the final part of the
water exit phase is the most difficult part to solve properly, but in this phase the resulting force
is small.

6.4.2 Comparisons to experiments

Once the convergence of the nonlinear boundary element method is ensured, the corresponding
results can be compared to the experiments described in Chapter 4. Results for the maximum
vertical force on the deck Fmax and for the largest vertical negative force F,;;, are given in
Table 6.1. In Figures 6.14-6.24 comparisons for the wetted length and force histories are pre-
sented. In addition to the values obtained from the experiments and from the present method,
the results obtained by the Wagner based method are included in the comparisons. To illustrate
the repeatability of the experiments, two experimental realizations are included in the figures
for each impact case.

The values both for Fmax and F;; computed by the present method, compare in general
well with the mean experimental results. In particular the estimates for F,;, are significant-
ly improved compared to the results obtained with the Wagner based method. Although the
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Table 6.1: Comparisons between the experimental results and numerical results from the Wagner
based method and the nonlinear BEM for the mazimum force, Fmaz and the minimum force Fy, iy,
during the water entry/ water exit process.

Impact condition Experiments BEM WBM
Case T Ca Tago Fmax Fin Fmax Fhin Fmax Fhin
no. [s] [m [m] N] [N [s] (N] (N] [s]
1 1.11 0.05 0.04 29.3 -67.8 30.6 -76.1 26.5 -82.0
2 1.11 0.06 0.04 49.1 -83.5 55.1 -83.2 49.0 -133.0
3 111 0.06 0.06 7.1 -36.5 9.2 -45.9 12.9 -41.1
4 111 0.07 0.06 31.7 -70.2 35.1 -77.4 35.0 -100.3
5 1.25 0.05 0.04 37.0 -67.8 38.6 -68.9 30.5 -90.7
6 1.25 0.06 0.04 65.2 -70.2 68.8 -72.2 59.2 -84.5
7 1.25 0.06 0.06 11.2 -61.7 10.2 -60.8 12.1 -36.6
8 1.25 0.07 0.06 41.0 -88.7 413 -94.8 37.9 -110.9
9 143 0.05 | 0.038 53.0 -51.9 57.5 -55.7 475 -52.7
10 1.43 0.06 | 0.038 97.5 -54.2 99.6 -50.6 85.2 -45.2
11 1.43 0.06 0.06 14.5 -58.9 12.7 -58.7 12.3 -45.0

Wagner based method gives satisfactory results for both the magnitude and the duration of the
positive water entry force peak, it yields poor estimates for the water exit phase. While the
Wagner based method overestimates the magnitude of the negative force peak, the nonlinear
boundary element method provides satisfactory results for Fy;,. A major weakness of the WB-
M is that water exit is solved by a von Karman type approach. This significantly underestimates
the duration of the water exit phase, and the estimate of the total force impulse acting on the
platform deck during the water impact event becomes unreliable. From Figures 6.14-6.24 it
can be noted that especially for water exit the present method is superior to the Wagner based
method. The duration of the water impact process is well predicted for most of the impact cases
tested, and also the numerical and experimental force histories compare well for the entire water
entry/ water exit process.

From the results presented it seems that the boundary element method describes powerful im-
pacts better than gentle impacts, where 7,40 is close to the maximum wave elevation. Several
reasons can cause this. The impact is highly dependent on the initial deck clearance and accurate
measurements of 7,40 in the experiments are crucial for the resulting force on the deck. This
is particularly important for gentle impacts. Futhermore, Stoke’s second order theory may not
provide good enough description of the kinematics in the vicinity of the wave crest. The steepest
wave used in the experiments is characterized by T = 1.11s and H = 0.14m, which correponds
to a steepness H/A = 0.073. From Figure 3.1 one can see that the second order theory describes
the free surface elevation satisfactorily for this wave. If the third order is included for T = 1.11s
and {, = 0.07m, the amplitude of the second and of the third harmonics of the wave elevation
for a deep water Stoke’s wave, become 0.0080m and 0.0013m, respectively. Even for this wave
that is relative steep, third order wave elevation is small.



6.4. RESULTS AND COMPARISONS WITH EXPERIMENTS 121

Wetted length [m] Vertical force [N]
0.7 T T T T - T v 40 T
| P | BEM —
O WBM — 200
L Experiment— 4
05+ 0
04} 20}
03| 40
02 | 60
0.1 -80
0 100 —_—
0 0 0.1 02 0.3 0.4 0.5 06 07 08
Time [s]
(a) Wetted length. (b) Vertical impact force.

Figure 6.14: Comparisons between experiments results and numerical results.
Case no. 1: T = 1.11s, {, = 0.05m and 7,50 = 0.04m.

As a final remark, it can be said that the present method yields good results for water im-
pact underneath a platform deck due to regular incident waves. Particularly for the water exit
phase, major enhancements are made compared to the Wagner based method. This was the
objective when starting out with the boundary element approach.




122 CHAPTER 6. A NONLINEAR BOUNDARY ELEMENT METHOD APPLIED TO DECK IMPACT

Wetted length [m] Vertical force [N]

07 — —— 8 ——
BEM — o
0 A\ N 1 N
i 40 N
VAR wl/ N\
05 -  Experiment— 7
/ ) 0 T
04 / —- 1 ol
03} *
/ °
0.2 1 80
/ 100
0.1
/ -120
0 i -140 . :
0 0.1 02 03 04 05 08 0 0.1 02 03 04 05 06 07 08

Time [s] . Time [s]

(a) Wetted length. (b) Vertical impact force.

Figure 6.15: Comparisons between ezperiments results and numerical results.
Case no. 2: T = 1.11s, {, = 0.06m and 1,40 = 0.04m.
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Figure 6.16: Comparisons between experiments results and numerical results.

Case no. 8: T =1.11s, (; = 0.06m and 7,50 = 0.06m.
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Figure 6.17: Comparisons between experiments results and numerical results.
Case no. 4: T =1.11s, {, = 0.07m and 190 = 0.06m.
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Figure 6.18: Comparisons between ezperiments results and numerical results.
Case no. 5: T = 1.25s, {, = 0.05m and 1440 = 0.04m.
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Figure 6.19: Comparisons between experiments results and numerical results.
Case no. 6: T =1.25s, (, = 0.06m and 1,40 = 0.04m.
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Figure 6.20: Comparisons between ezperiments results and numerical results.
Case no. 7: T = 1.25s, {, = 0.06m and 1,90 = 0.06m.
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Figure 6.21: Comparisons between ezperiments results and numerical results.
Case no. 8: T =1.25s, {, = 0.07m and 1,40 = 0.06m.
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Figure 6.22: Comparisons between ezperiments results and numerical results.
Case no. 9: T = 1.43s, {; = 0.05m and 7,50 = 0.038m.
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Figure 6.23: Comparisons between ezperiments results and numerical results.
Case no. 10: T = 1.43s, {, = 0.06m and 7,4 = 0.038m.
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Figure 6.24: Comparisons between ezperiments results and numerical results.
Case no. 11: T =1.43s, {, = 0.06m and 140 = 0.06m.



CHAPTER 7

Conclusions and recommendations for
further research

7.1 Summary and conclusions

The main objective with this thesis has been to study the phenomenon of water impact under-
neath the deck of fixed or floating offshore platforms due to propagating waves. The emphasis
has been on the impact loads. Two theoretical methods based on two-dimensional potential
theory have been developed, namely a Wagner based method (WBM) and a nonlinear boundary
element method (BEM). At present, the latter is only applicable for fixed platform decks. A ra-
tional procedure for accounting for three-dimensional effects is suggested. Second order Stokes’
theory is applied to describe the incident waves, but other theories may be applied.

The Wagner based method is a generalization of the impact theory by Wagner (1932). By
neglecting gravity and assuming a linear spatial distribution of the relative impact velocity, the
resulting boundary value problem is solved analytically for each time step. A numerical scheme
for stepping the wetted deck area in time is presented. During water exit a von Karman type
approach is applied to determine the wetted area of the deck.

In the boundary element method gravity is included in the boundary value problem, and exact
impact velocity is considered. The incident wave velocity potential is assumed known, and a
boundary value problem for perturbation velocity potential caused by the impact, is defined.
The boundary value problem is solved for each time step by applying Green’s second identity.
The exact boundary conditions are exerted on the exact boundaries. A Kutta condition is in-
troduced as the fluid flow reaches the downstream end of the deck.

To validate the theories, experiments have been carried out in a wave flume. The experiments

were performed in two-dimensional flow condition with a fixed horizontal deck at different ver-
tical levels above the mean free surface. The vertical force on the deck and the wetting of the
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deck were the primary parameters measured. Only regular propagating waves were used in the
experiments.

In general, the water entry/ water exit process due an incident wave yields a force history
where the structure experience a positive slamming dominated force (upward directed) during
the initial water entry phase, followed by a negative force as the wave becomes detached from the
deck. The force in the latter phase is dominated by a negative added mass force due to negative
vertical fluid particle accelerations in the wave crest. In addition, the Froude-Kriloff pressure
and buoyancy contribute to the total force. The positive force peak, Fax, is highly dependent
on the impact condition. The force increases both with the wave amplitude and the wave period,
but it is especially sensitive to the initial deck clearance. Both experiments and theory show
that a small increase in the deck height may result in a considerable increase in Fmax. This is
mainly due to that first impact will occur further downstream from the crest, and the impact
velocity will thus be greater. Also the buoyant force will increase slightly. The magnitude of
the negative force peak, |Fynin|, is less dependent on the impact condition. The peak occurs
when the wetting of the deck is at its maximum. Given that the maximum wetting is the same,
| Frin| is not much affected by a small change in the deck clearance. Except from the most vio-
lent impact events studied in the experiments, | Fpyiy| is greater than Fmax for two-dimensional
flow condition. Thus, the water exit phase is important for global effects. The initial impact
yields the highest average pressures, and is thus critical for local structural response in the deck.
The relative reduction of the magnitude of the negative force due to three-dimensional effects is
larger that the relative reduction of the positive force.

In both of the theoretical methods, the deck is assumed to be rigid. Initial studies of the
importance of hydroelasticity were performed. The structural design of the lower deck of an
existing floater was considered. A number of stiffened plated areas exposed to impact loads were
studied by hydroelastic beam theory. For a given design wave, the local structural responses
were found to behave quasi-static. Global structural response has not been studied.

Comparisons between experiments and theory have been performed for a number of impact
conditions. The Wagner based method describes the water entry phase well. Both the mag-
nitude and the duration of the positive force peak are well predicted. Also the wetted area
calculated by the WBM, corresponds well with the experiments. However, the computations for
the water exit phase are less satisfactory. Results for short waves are particularly poor. The
WBM overestimates | Fpi, | and it underestimates the duration of the water exit, and thus the
duration of the entire water impact process. This method uses a von Karman type of approach
to describe water exit, but the experiments showed that the free surface becomes strongly de-
formed during this final stage.

In nonlinear boundary element method, the impact induced vertical force on the deck is cal-
culated by imposing conservation of fluid momentum and by using direct pressure integration.
These alternative force calculations yield similar force histories except during the final stage of
water exit, where they diverge. This is caused by errors in the numerical solution and in the
theoretical formulation of the boundary value problem. The force at this stage is small. The
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BEM yields results that compare well with experiments for both the water entry and the water
exit phase. Especially for the water exit phase the results are improved by the present method
relative to the Wagner based method. More work is required in order to solve the final water
exit consistently.

7.2 Suggestions for further work

At present time, the nonlinear boundary element method is only applicable for bottom-mounted
platforms. However, water impact on deck is also important for floaters, and the BEM should
therefore be generalized to include platform motions. This requires a procedure in which the im-
pact induced rigid body responses are solved. Comparisons between direct pressure integration
and force calculations using conservation of momentum, show that errors are introduced in the
BEM towards the end of the water exit phase. The origin of these errors and possible methods
to remove these errors need to be studied further.

The discussion in Section 3.2.3 showed that second order Stokes theory provides a good ap-
proximation for the exact waves for moderate wave steepnesses. For steep waves, however, a
higher order theory for the incident waves is needed for accurate predictions of the wave eleva-
tion and the wave kinematics. These are crucial parameters for the impact loads. Therefore,
“infinite” order waves based on e.g. Bryant (1983) should be implemented in the WBM and in
the BEM. Further, the possibility of imposing irregular incident waves should be included. Also
in this case a nonlinear theory is needed. For irregular waves impact does not necessarily occur
at the front end of the deck.

It has been demonstrated in this thesis that problems arise when solving the impact prob-
lem for the perturbation velocity potential. In future development is should be considered to
solve the boundary value problem for the total potential instead.

The loads computed should be used to assess the structural response caused by the impact.
In co-operation with Norwegian Marine Technology Research Institute (MARINTEK), some ef-
forts have been made to make these loads available to the nonlinear structural program USFOS
(see USFOS (1999)). A model for calculation of structural response in platforms exposed to
wave-in-deck loads has been implemented in the USFOS code. The pressure distribution history
on the deck computed by the WBM or the BEM is used as input to USFOS. The interface
file format used is the GLVIEW “vitf” format (see ViewTech (1999)). No comprehensive case
studies of the structural response caused by water impact underneath platform deck have been
performed. But this could give new insight of the importance of the impact induced loads. This
could also become a useful tool when designing new platforms.
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APPENDIX A

Importance of hydroelasticity

The structural design of the lower deck of a typical semi-submersible is studied. The character-
istics of the stiffened plates between transverse and longitudinal bulkheads varies over the deck
area. Six typical stiffened plate sections are chosen for this study. By using beam theory, it is
checked whether the structural response due to wave impact is influenced by hydroelastic effects
or if the response may be considered to be quasi-static. The bulkheads are considered infinitely
stiff and the simple beams are used to analyze the stiffened plates between bulkheads. This is
shown in Figure A.1 Some structural characteristics of the six different beams considered, are
given in Table A.1. L is the longitudinal length of the beam and b is the breadth of the flange,
and thus the spacing between the stiffeners . EI is the bending stiffness so that E is the Young’s
modulus and [ is the area moment of inertia of the beam cross section divided by b. Seventy
per cent of the flange breadth is used when calculating I. p is the fluid density and M, is the
structural mass per unit length of a longitudinal stiffener together with the flange divided by b.

The highest wet natural period Ty, is computed assuming that the beam is simply support-
ed at both ends. This eigen period corresponds to the beam’s first oscillation mode. These
are found by interpolating the results given by Faltinsen et al. (1997). In reality, the beams
will have a certain spring stiffness at their supports, and Faltinsen et al. (1997) show that Ty,
decreases when this spring stiffness is increased.

Intuitively, for dynamic effects to be important, the loading of the plate and thus the wet-
ting, should happen rapidly compared to the eigen period. Bergan et al. (1986) consider the
dynamic effect from impulse loading of an one degree of freedom oscillator. Different load his-
tories are considered. If the duration of the force impulse is longer then 0.5T,,, where T, is the
natural period, they denote this as a long impulse. They claim that the maximum response is
close to the quasi-static response for long impulses, if the load is slowly increasing. If the same
conclusions are valid for the impact load on the beam, it can be said that, given that the eigen
period is small compared to the duration of the loading, ¢;, the structural response is close to the
quasi-static one. The duration of the wetting can be associated with the duration of the loading.
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Longitudinal
bulkhead

A 1
Longitudinal

stiffener

Figure A.1: Stiffened plate between bulkheads, and the representative beam used in the beam
theory.

A realistic wave condition is chosen. Regular waves with wave height H = 23.8m and wave
period T' = 15.0s are assumed. This is the design wave at the Ekofisk field, Broughton and Horn
(1987), and the initial deck clearance of the Ekofisk 4/2C platform 7,40 = 13.49m is assumed.
The duration of the impulse is solved by the Wagner based method described in Chapter 3.
Results for t;/7,,; under these assumptions are presented in Table A.1. From these results it
can be concluded that the wetting yields what Bergan et al. (1986) refer to as a long impulse on
the stiffened plates. This should indicate that the structural response will be close to quasi-static.

Haugen (1999) studied the importance of hydroelasticity for stiffened plates impacting the fluid
at different non-zero angles 8 and relative normal velocity V. She studied this both numerical-
ly by using beam theory and experimentally, and she presents results for a dimensionless stress
amplitude at the middle of the beam are plotted as a function of a dimensionless time parameter

EI/pL?tan 8/|Vg|. This showed that for a dimensionless spring stiffness gﬂE—’; = 1.825 at the

beam’s supports, hydroelasticity is important only for \/EI/pL?tan3/|Vg| < 0.3. Otherwise
the response behaves quasi-static. This can be given a physical interpretation. The highest wet
natural period of the beam is according to the hydroelastic beam theory by Faltinsen (1997)
approximately proportional to (pL®/EI)3. The wetting time of a rigid wedge is according to
Wagner theory proportional to L tan §/Vg. This means that the dimensionless time parameter
is proportional to the ratio between the wetting time and the highest natural period of the
beam. Here the value of this dimensionless time parameter is checked for the six beams at
different impact conditions. The same incident wave as above is assumed, further the deck is
assumed to be fixed. The impact velocity and the angle between the wave profile and the deck
at impact A for 5 different initial air gaps are found using Stokes second order theory. From this
VEI/pL?tan B/|Vg| can be computed. The results are given in Table A.2.

If the conclusions given in Haugen (1999) also is valid here, it can be concluded that hydroela-
sicity is not important for the wave impact problem studied in this work. This is also supported
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Table A.1: Length of impulse t; due to impact relative to highest natural period T,,;. t, is found
by using the Wagner based method. wy, is the lowest natural frequency of the beam when it is
simply supported at its ends. The Young’s modulus for steel is used, E = 210 - 10N/ m?.

Beam L b 1 Mo Toay/esE | Ta | A&
no. [m] (m] [m?] (-] (-] [s] (-]

1 40 | 064 | 477-10°5 | 0029 | 1462 | 0139 | 0832

2 40 | 080 | 467-10° | 0028 | 1464 | 0140 | 0826

3 32 | 064 | 477.10° | 0056 | 1420 | 0082 | 1159

4 32 | 08 | 56110 | 0059 | 1416 | 0076 | 1.250

5 24 | 080 | 964-10°° | 0064 | 1408 | 0028 | 2.580

6 40 | 08 | 688-10° | 0035 | 1453 | 0117 | 0.989

Table A.2: Results for dimensionless time parameter for different impact conditions. T = 15.0s
and H = 23.8m are assumed for the wave, and the water depth is set to h = 70m.

Impact condition \/f% El%

Tago (] | Vr [m/s] | tanB || Beam 1 | Beam 2 | Beam 3 | Beam 4 | Beam 5 | Beam 6
12.0 3.72 0.180 0.540 0.591 0.834 0.905 1.830 0.718
12.5 3.31 0.160 0.540 0.591 0.835 0.906 1.832 0.719
13.0 2.80 0.136 0.541 0.592 0.836 0.907 1.835 0.720
13.5 2.13 0.104 0.543 0.594 0.839 0.910 1.841 0.722
14.0 1.04 0.051 0.549 0.601 0.847 0.920 1.861 0.730

by Faltinsen (1999). He studied the importance of hydroelasticity based on orthotropic plate
theory and concluded that hydroelasticity is important for \/EI/pL?tan8/|Vg| < 0.25.
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APPENDIX B

Exciting loads used in the Wagner
based method

In this appendix, the full expressions for the exciting loads used in the Wagner based method
are derived. These are exciting forces and moments in surge, heave and pitch due to both the
impact pressure and the incident pressure. For the surge and heave the forces due to the impact
pressure are given in Equations (3.35) and (3.36), while the Froude-Kriloff and hydrostatic forces
are only given as an integral. In the local (z, z)-coordinate system, the incident pressure on the
bottom plate can be written as

(p = po)1(Zo, 20 = 72, t) =pCa (9 + (Tago + 13 — (T + ZF — 0)775)‘”2)
x cos (k(z + Zp +c—m) — wit) (B.1)
~ P9(Tago + 13 — (T + Zr — ¢)ns)

while the pressure on the front plate can be expressed as

L L
(p — po)r(zo = -3 +m,20 =2+ 7,t) = pla (9 + (2 + (Nago + 13 + 5715))“’2)
X COS (k(-—% +m) - wt) (B.2)

L
- Py (Z + Nago + 73 + 5%)
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By integrating the incident wave pressure over the wetted area and by applying that

dzo = —nadz, the incident wave forces in surge and heave are obtained as
Ep+2ctm =7 L
n .
Fex=28 [ -mileotdn-GmB [ (- pla =700
EF+m 0
= [p(ag {sin (k{ZF + 2¢+ m) — wt) — sin (k(Zp +m) — wt)}

2
W . . . .
+ __PCk (Nago + 13 + mns) {sin (k(Zr + 2c+ m) — wt) — sin (k(Zr +m) — wt)}

pCaw 75
Tk
pCaw 5

{cos (k(ZF + 2¢ + m) — wt) — cos (k(Zr +m) — wit)}

{k(ZF + 2c+ m1) cos (k(EF + 2¢ +m) — wt) — k(Zr + m) cos (k(ZF + m) — wi)}

— pg(Nago + M3)c + 2pgns (¢ — cir)

- mBG [(pca (9+nw?®) cos ¥ — pgnz)

2
x (Ca cos ¥ + %ka cos 2¥ — 77,) + %p (Caw?® cos T — g) ((a cos ¥ + %ka cos 20 — n,,)

(B.3)
and
Zp+2c+m
Frxk=B / (p — po)1(zo, t)dzo
Zptm

=B [MT"Q {sin (k(ZF + 2¢ + m) — wt) — sin (k(Zr +m) — wit)}

2
b B b o ) i (b + 2+ ) — ) — sim (B + ) — )}
PCa’:’ s {cos (k(Zr + 2¢+ m) — wt) — cos (k(ZF +m) — wt)}
- % {k(Zr + 2c+ m) cos (k(Ep + 2¢ +m) — wt) — k(Fp +m) cos (k(Zr +m) — wt)}

— pg(Tago + m3)c + 2pgns (¢ — cri:p)]
(B.4)

respectlvely Here G = 1 when (/(-% + M,t) > Tago + 73 + 575 and zero otherwise, ¥ =
k(—-— 4+ m) — wt, and 7, = Ngo + M3 + 27)5 The excitation forces in surge and heave then
becomes:

F = —p7chn1 (J(H)C-F §J(H)C> Vo — §p7rc2BJ(n)Von1 + Fl,pK (B5)
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and
F3 = —prwcBng (J(n)é+ %J(n)c) Vo— %pwczBJ(n)Vona + F3rx (B.6)

Similar, the pitch moment can be found by integration of the pressure times the moment arm
over the wetted area. The pitch moment due to the Froude-Kriloff pressure can be found as

Zp+2c+m Cr—7: I
Fsrx =—-B / (zo — m)(p — po)1(zo,t)dzo + GB / (z—zg)p—p1)(E= —E,z,t)dz
Zr+m 0
B | pCa - -
= n—1F31 + — [ﬁzﬁ(cos (k(zp + 2c+m) — wt) — cos (k(Zp + m) — wt))
ng N3 k
+ %((fl‘?p + 2c+m1) sin (k(Ep + 2¢ + M) — wt) — (Ep + m) sin (k(ZF +m) — wt))
2
+ _pCa;U (Nago + 113 + mms){ cos (k(ZF + 2¢+ 1) — wt) — cos (k(Er +m) — wt) )
2
ol
+ 2 g+ 715+ )
x ((&r +2c+ m) sin (k(Zr + 2c+ m) — wt) — (Ep + m) sin (k(Zr +m) — wt))
2
- PC(;L‘&((:EF + 2¢ +m)2sin (k(Zp + 2c+m) —wt) — (Zr + m)*sin (k(Zr +m) — wt) )
2pCaw? . - . .
+ L’:E(sm(k(zp +2c+m) — wt) — sin (k(Zp +m) — wt))
2pCawns . - . -
- %((xp + 2¢ + 1) cos (k(Zp + 2¢ +m) — wt) — (Er +m) cos (k(Er +m) — wt))

- 1 - -
= 2pg(Nago + 13 + m7s) (S + c(Er +m)) + P95 (8 +2c+m)* — (Er +m)?) ]

— GBzg (pca (9 + nw®) cos ¥ — pgnz) (Ca cos ¥ + %(fk cos2¥ — n,,)

2
+ %p (Gw?cos T — g) (Ca cos ¥ + %ka cos2¥ — nz) ]

1 1 :
+GB|3 (pCa (9 +n:w?) cos ¥ — pgnz) (Ca cos ¥ + 5(ok cos 20 — ﬂz)

3
+ lp (Caw? cos ¥ — g) ((a cos ¥ + lc,fk cos 2¥ — 71:) ]
3 2
(B.7)

2g is the z-coordinate of the center of gravity. In addition, the pitch moment will get a con-
tribution from the water impact pressure. It was shown in Chapter 2, that even though the
impact pressure from the outer solution is singular at |z| = ¢, the integrated force is finite. The
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same is the case for the pitch moment, and thus only the outer pressure is considered. The pitch
moment due to the impact can be written as

c

Fop=—B ] (2 + &5 + &) (Pouter — Po) (@, £)d2

% (B.8)
(Zr+c)c® + 1%04]

- (2 T o(=i+3)é + Tvide+ T
= pB[7rVocc(zF+c)+2Vb( c+a)c2+4V1c ¢+ 6 5t

2 0t

where (Pouter — Po) is given in Equation (2.24). The total exciting pitch moment can be written
as

Fs=Frxk+ Fsp (B.9)

Note that even if the Viz-term in the impact velocity, due to anti-symmetry, does not contribute
to the force on the deck, it contributes to the pitch moment.



APPENDIX C

Water impact on a floating platform

In section 3.5 a procedure for solving water impact underneath a fixed horizontal deck using
the Wagner based method was outlined. Here a solution procedure for the more general case
of a impact underneath the deck of a floater is suggested. The problem can be split into sub-
problems: estimation of the time instant of impact, evaluation of the relative impact velocity
and prediction of the impact loads and of the resulting rigid body responses. Below, these
sub-problems are discussed and a numerical scheme for the time integration of the problem is
outlined. A case study using this procedure is presented in Baarholm et al. (2001).

C.1 Time instant for first impact

Before impact occurs, the platform only experiences wave induced motions. If linear theory
is assumed for the wave induced rigid body motions, the platform oscillates in six degrees of
freedom with frequency equal to the wave frequency w, and the transfer functions for the motion
can be used to simulate the total platform motion. The complex transfer function Hy,¢(w)
contains information about both the motion amplitude and the phase difference between the
motion and the incident wave. This can be expressed as

TNia = CI a

VR E @)Y + {S(Hocw))}?| and 6 = tan™ (%g%) 1)

where 7);, is the motion amplitude of the i-th degree of freedom and 6; is the corresponding phase
angle. R(-) and S(-) denote the real and the imaginary part, respectively. The motion is then
defined as

Tiw = Tig cOS{wt — §;) i=1,...,6 (C.2)

The transfer functions for the platform motion must be solved a priori by a wave-body interac-
tion computer program.
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e Instantaneous position
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Figure C.1: Air gap at upstream end of deck before impact occurs. The platform ezperience
wave induced motions only.

In the case of long-crested head sea and a submerged body volume with lateral symmetry only
three modes are excited. These are surge, heave and pitch. This is assumed in the following
discussion. To find the time instant when first impact occurs, the instantaneous air gap 7,,(Z, t)
must be simulated. The fluid reaches first the deck level at the upstream end of the deck, i.e.
at T = —%, where L is the length of the deck. The time instant of impact, t can be found from

L
Tago + 73a COS(wto — 03) + 5 e cos{wty — b5)

— {, cos (k [—g — 714 COS(wto — 01)] - wto) (C.3)

- %(fk cos (2 (k [—g — Tha cos(wty — 01)] - wto)) =0

by using e.g. a Newton-Raphson scheme.

C.2 Impact induced motion

Once the wave has reached the deck, the fluid impact will induce forces and moments on the
deck. For head sea, the impact will induce surge, heave and pitch loads as shown in Equations
(3.35), (3.36) and (3.38). These loads lead to additional rigid body responses for the platform
which must be taken into account when solving the boundary value problem.

First, assume that the impact loads Fy, F3 and F5 are known. These loads are associated
with the high frequency limit assumption. It is assumed that the total motion of the platform
can be written as n = 1,, + 77, where 7),, is the wave induced motion and 7, is the impact, or
slamming induced motion. Here regular waves and linear response are assumed, and n,, is given
by (C.2). The impact induced motion can be written as

7y = [Mes Mo ss] (C4)
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Similarly, the rigid body velocity and acceleration are divided into
n="1,+1n, and %=1, +1, (C.5)

The wave induced rigid body responses are here calculated from the transfer functions, while
the slamming induced rigid body responses are found by solving the equation of motion

(M + A)7j, + Ba, + Cn, = Fexc (C.6)
where
M inertia matrix of the platform
A added mass matrix of the platform
B damping matrix of the platform
C restoring matrix of the platform

Fexc excitation force vector due to impact

Asumptotic values for the added mass and the damping coefficients for w — oo for the sub-
merged volume must be evaluated beforehand by using e.g. WAMIT (see e.g. Newman and
Sclavounos (1988) and WAMIT (2000)). In addition the added masses due to wetted part of the
deck have to be found. Ag‘;’) for the wetted deck is given by Equation (2.48), while the added
mass in pitch may be approximated

AL = (Fp + o) AD (C.7)

If the platform is freely floating the restoring forces follow from the hydrostatic equilibrium.
For a moored platform additional restoring forces exist, but mooring lines have a small effect
for wave induced motions, Faltinsen (1990). The excitation vector contains the impact induced
loads acting on the deck,

Fexc = [P, Fs, F5]" . (C.8)

C.3 The relative impact velocity

To solve the equation of motion the excitation vector due to the impact must first be determined.
The force expressions in Section 3.4 are based on the assumption that the relative impact veloc-
ity has a linear spatial distribution across the wetted length of the deck. While only the wave
kinematics contributes in the fixed deck situation, for a floater also the rigid body responses
contribute to the relative impact velocity. The assumption of linearly distributed impact ve-
locity from the wave kinematics is a simplification, differently the contribution from rigid body
responses can be exactly described by a linear function.

Assume that n = n,, + 7,, c(t) and Zr are known. The “exact” relative velocity between
the fluid and the deck can be written as

VR,e:act(za t) = Caw (1 + k(nago + N3 — (jF +c+ 3)715))
x |sin(k(z+Zr+c+m)—wt)+nscos(k(z+Zr+c+m) — wi) (C.9

— [(7s = (&F + &)ms = (&F + O)7is) + (1 + 2ams) 1) + 2735
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where z¢ is the vertical distance from the deck to the center of gravity of the body. To obtain
an impact velocity that has a linear variation along the wetted length, approximations must be
performed. If the approximation denoted as alternative 2 in Section 3.2.4 is used, the relative
impact velocity becomes Vg(z,t) = Vp(t) + Vi(t)z, where

%(t) = Caw (1 + k(nago + N3 — (';i:F + 0)715))
X [sin (k(Er+c+m)—wt)+nscos{k(Er+c+m)— wt)] (C.10)
— [(71s = (Ep + &)ms — (&F + O)7is) + (11 + 2ams) 5]
and
Vi(t) = %{(aw (1 + k(nago + 13 — (ZF + 2¢)15))

X [sin (k (ZF + 2c+m) — wt) +ns cos (k (Zr +2c+m) - wt)] (C.11)

- Gw(1+ k(”?ﬂgO + 13 — (Zr + ¢)ns))

X [sin(k(:i:p+c+171) —wt) +nscos(k(Zr +c+m) —wt)]}+775

Once Vi(z, t) is established, the BVP can be solved and the excitation vector can be determined.
Vo(t) is determined by numerical differentiation.

C.4 Time integration scheme for the platform motion

In this context the motion and the impact loads are jointly dependent, which means that the rigid
body responses and the excitation must be solved simultaneously. The wave induced motions are
known from the complex transfer functions, but the impact induced motion must be determined
from the equation of motion. Equation (C.6) can be rewritten, giving an expression for the
impact induced accelerations in the form

il = (M+ A7) (Fige — B} - Cnpl) (C.12)

where the superscript j denote time step so that #7+! = ¢/ + At/. Note that A is time dependent
since it contains the time dependent added mass of the wetted deck in addition to the added
mass of the submerged volume.

The time integration of Equation (C.12) requires initial conditions. These are
ny(to) =n% = [0,0,0]” and ),(to) =7} = [0,0,0]", (C.13)

where 1, is the time instant when impact first occur. t; is determined from Equation (C.3).
The velocities and displacements in the coupled equation system in (C.12) with the given initial
conditions may be integrated in time by the standard fourth order Runge-Kutta scheme as
outlined in Bergan et al. (1986).



APPENDIX D

Calibrations

All the force transducers were carefully calibrated before they where mounted on to the experi-
mental set up. Each individual force transducer was tested in a test rig, where they were loaded
with accurately measure weights. The zero point was set and the output voltage was measured
for different loading levels. The loading of the transducers ranged from approximately 98.1N to
490.5N. Each of the measurements was repeated three times and the average value was chosen,
but the deviation between the individual recordings was negligible.

Figure D.1 shows calibration curves for the three force transducers used in the experiments.
The hollow squares give the value at the measurement points, while the whole lines are linear
regression curves fitted to the measurements. This indicates that the output voltage as function
of the loading is nearly perfectly linear throughout the whole calibration range. Positive force
in Figure D.1 is stretching of the transducer, while negative force represents compression. For
compression the weights are simply put on top of the transducer, but for stretching a hook was
mounted to the upper end of the the transducers and weights were placed on a tray which was
hung over a pulley system and connected to the hook. In the latter case, the zero force point
was set such as the weight of the tray and the wire did not contribute to the measured voltage.

The effect of skewed loading was also checked. 11kg was loaded onto the transducers in three
different configurations, as depicted in Figure D.2, and the output voltage was recorded. The
results are given in Table D.1. They show that for transducers nos. 5610 and 5820 the skewness
of the load has no recorded effect on the measured vertical force. For transducer no. 5608,
however, the skewness has effect on the output voltage. It is believed that the transducer in
position 3 in Figure 4.2 will be in greatest danger of experiencing skewed loading. Based on this
it was decided to use transducer no. 5608 in position 1 and transducers nos. 5610 and 5820 in
position 2 and 3, respectively.
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Figure D.1: Calibration curves for the three force transducers used in the ezperiments.

Table D.1: Output voltage [mV] for the load cases depicted in Figure D.2 for the three force
transducers used in the water impact ezperiments.

Load case No. 5608 No. 5610 No. 5820
1 284 233 226
2 294 233 226
3 289 233 226

The force transducers were also calibrated regularly during the experimental program. This
was done without removing the transducers from the model by placing a set of different weights
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Figure D.2: Calibration of force transducer with and without skewed loading.

inside the model and measure the output voltage. Even though this is a less accurate procedure
than the one described above, it seemed to be accurate enough to confirm that the transducer
characteristics did not change during the experiments. However, the zero points were set before
every run, since these might drift slightly. A second test that was applied regularly was to give
the model a set of known submergences with no waves present, and check that the measured
force equaled the analytical hydrostatic force. This procedure can of course not check the indi-
vidual force transducers separately, but it can confirm whether the total vertical force measured
is correct or not.
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APPENDIX E

Exciting force by conservation of fluid
momentum

Faltinsen (1977) derived a formula for the force on a body based on conservation of momentum
in the fluid. This can be written as

F= p% / ®ndS+p / gzndS+p/ (V‘Dg—: - %|V<I>|2n) ds (E.1)

Sp+Sp Sr+Sp Seo

Here Sp and Sr are the body surface and the free surface, respectively, and S, is a control
surface in the far field so that Sg, Sr and S, make a closed fluid domain. For a transient
problem the contribution from S, can be neglected. However, with incident waves present,
contributions from the far field control surface must be taken into account. It is assumed that
the total velocity potential can be split into a incident wave potential ¢; and a perturbation
potential ¢ due to the presence of the body, so that ® = ¢; + ¢. Similarly, the total wave
elevation is written as ( = {; + (p. Infinite water depth is assumed, and the far field control
surface is written as S, = Sz, + S¥, so that St and S are vertical surfaces at g and zj,
respectively. The computational domain is shown in Figure E.1. zp and z; are here assumed
to be constants. The vertical force on the body may then be written as

d d
Fy=pg / binsdS + p f éna dS

Sr+SB Sr+Sp

+P/QCI"3 dS+P/QCDn3 dS+p/gzn3 ds (E.2)
Sp Sr SB
061061 06106 D901 0908
+p/ [E%-F 0z 8n+ 0z On + Bzan] ds
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Figure E.1: The computational domain used when calculating the force on the body by conserva-
tion of fluid momentum. Infinite water depth is assumed i.e. S and St continue downward so
that z — —o0o. The normal vector points into the fluid domain that is enclosed by the surfaces.
The integration direction is indicated by arrows along So, Sr and Sp.

In the following, the different terms in Equation (E.2) will be discussed separately. It is assumed
that the incident waves are described by second order Stokes theory. Start out by considering
the first integral in Equation (E.2). This can be split into a contribution from the free surface
and a contribution from the body surface. By Taylor expansion about the mean free surface the
incident velocity potential on the free surface can be written as

¢I(za z= C) t) = ¢I($707 t) + C%I(z%ﬂ)’t) + O(kCa)3
~ %2 sin(kz — wt) + %wa sin(2(kz — wt))

+ (plawsin(kz — wt)

‘When integrating over the free surface the relation n3 dS = — dz is utilized:
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zp
d d
Il=pa/¢mads —p—/mdm 5 [ords
TA

ng]a dt [cos(kzp — wt) — cos(kzy — wt) + cos(kzp — wt) — cos(kz 4 — wt)]
+ pz%c E [cos(2(kzp — wt)) — cos(2(kzy — wt)) + cos(2(kzr — wt)) — cos(2(kz 4 — wt))]
+ p(awa / (psin(kz — wt)nz dS
Sr
pgca

== [sin(kzp — wt) — sin(kz;, — wt) + sin(kzg — wt) — sin(kz4 — wt)]

—pcag [sin(2(kzp — wt)) — sin(2(kz 4 — wt))]

4 Pgle nga [dz,q

i sin(kzs — wt) — dzr sin(kzp — wt)]

dt
1 dza W _d_-’L'F_ . _
+§pC,, [ i sin(2(kz4 — wt)) & sin(2(kzp wt))]
+ p{aw%/([, sin(kz — wt)nzdS

(E.4)

where z1, zr, £4 and zg are defined in Figure E.3. The last term in Equation (E.4) must be
solved numerically, and also %’E and d”t are found from the numerical solution. Similarly,
the incident wave potential on the body can be found by Taylor expansion and the contribution
from ¢; on Sp becomes

d
Iy = pa/(p]n;; ds
5B
a1
=-rg (C“‘q sin(kz — wt) + Nagolew sin(kz — wt)) dz
t w (E.5)

zF

= (pcé'g + pnagocag) [sin(kz4 — wt) - sin(kzp — wt)]

(PCa.q + pCaUang) [% sin(kz s — wt) — d_gip_ sin{kzr — wt)]

The contribution to force from the second integral in Equation (E.2) must be solved numerically.

L=pl / ¢nsdS (E.6)
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Further, the force gets contributions from the wave elevation. The contribution from the incident
wave can be determined analytically as

L= p/QCms ds
Sr
zE

= _p/ [gg, cos(kz — wt) + %g{f cos(2(kz — wt))] dz

TL
TR

- p/ [g(,, cos(kz — wt) + %g(f cos(2(kx — wt))] dz
zA
__PgCa . . :
== [sin(kzp — wt) — sin(kzp — wt) + sin(kzg — wt) — sin(kzg — wt)]
- ipg(f [sin(2(kzF — wt)) — sin(2(kzp — wt)) + sin(2(kzr — wt)) — sin(2(kz 4 — wt))]
(E.7)
while the contribution from {p must be solved numerically and can be written as
Ii=p / g¢pnsdS (E.8)

Sr
The contribution from the body, given that the deck height is fixed at z = 7,40, simply becomes

TA

Is=p / gzn3dS=—p / g2dz = —pgnego(z4 — zF) (E9)

Sp zF

Next, the contribution from the far field vertical control surfaces must be evaluated. Note that
2 =2 onS; and £ =—2 on S%. Further, dS = dz on S and dS = —dz on S, This
is also indicated in Figure E.1. The four different terms in the integral over S in Equation
(E.2), will be treated separately. Start out with the integral containing ¢; only, and only terms

to second order in (, are kept. On S_ this becomes

0
-V VL. RS W
L=p 5 D dS=p B2 02 lomey dz = 4pCag sin(2(kzy — wt)) (E.10)
5= —o0
while the contribution from S is
861 06 f 0p: 06 !
= GOrO9r 4o — _ aLhid <l = —Zp(2gsi -
L=p 52 Bz ds P | 5 8z . dz 4p(agsm(2(k:c3 wt)) (E.11)

s —o0
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Further, the contribution from S, due to the term containing ¢ only, is evaluated. Recall that
the perturbation velocity potential in the far field is described by a dipole and a multipole in
the origin:

Az Aszz
$2 + 22 (.'1:2 + 22)2

¢= (E.12)

where A; and A, are the dipole and multipole strengths, respectively. The contribution from
55, i.e. at £ = z, can be written as

0 0
d¢ 8¢ 9 / 2rr2 — 2xp 23
oeoe — pA LELZ 7 &TLZ
Is 0z 8z o=z, dz=p4 (z2 + 22)4 dz
0 0
3 — 1023 22 + 5z 2t 3zp2z — 1023 2% 4 3z.2° (E.13)
— pA A L L dz — AZ L
s | B = ot L + 228

1 1
= —gPAITL’ + ppAser’
and similarly the contribution from S}, i.e. at £ = zp becomes

[ 060
fho=-p afa:

—00

1 _ 1 —
dz = ZpAlxz® — EpAng“r’ (E.14)

T=TpR 6

Finally, the contributions from the coupling terms between ¢ and ¢; on S, must be evaluated.
The first coupling term gives the following contribution:

9¢10¢ 94109 %3_4’
2z =P | a5t [ 55,48
Seo Sx st
0 56,06 o 06,06 (E.15)
_ ek _ gerre -
- 0z 0z lz=<, 0z Oz lz=zpg dz=hy+ho

—o0 —o0
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where
9 ekz 5 9 ekz
Illz AI/WdZ—2AIIL‘L/-(z%—+Z2—)2dZ
—00 —00
0 0
A / ze” dz — 44,72 / —Zeki—dz (owsin(kzp — wt)
W RGETIL ML @ [ g

= pluwsin(kzp — wt) X {A1 [I 1L| (ci(k|zL|) sin(k|zL|) — si(k|zg|) cos(kzL))
—2A12% [ﬁ{ ci(k|zr|) — si(k|zr|) cos(kzL) — k|zL|(ci(kl|zL|) cos(kzL)
+ ikl sin(klau) }] — 4a] - 5o = blaa) (cilkizs) sin(blz.)

— si(klas]) cos(kzz)) )| - 4dazd | — —— (sin(kleL]) - klz| cos(kzr)) ci(klz)
|

8|.’L‘L

. . 1
— (cos(kzL) — klzg|sin(k|z.])) si(k|z.]) — E] }
= { <(A1k - lArzk:") cos(kzr) + A2£Sin(k$[,)) ci(k|zg))
2 TL
1, ,) . k . Ag .
= ((Alk + = Ak ) sin(kzp) — Ap— cos(k:z:L)) si(k|zL]) + —2} x pluwsin(kzp — wt)
2 zL L

(E.16)

and
0

kz
I”z{‘*“/zﬂ d”“‘“/m

—00
0

zekz 9 zekz .
+ A, Wdz + 4A,7% mz_)adz plawsin(kzp — wt)

—00

= —{ ((Alk - %A;,kz) cos(kzr) + AZ:—R sin(kxn)) ci(kzr)

- ((Alk - lAgkz) sin(kzg) + szi cos(ka:R)) si(kzr) + —AT} x puwsin(kzg — wt)
2 TR TR
(E.17)

Here ci(-) and si(-) are the cosine integral function and sine integral function, respectively.
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Similarly, the second coupling term’s contribution to the vertical force on the body becomes

gﬂ% 3dS = /6_(}5% 3dS+p /a—d’%ng,dS

S
(E.18)

[ 09061 [ 06061
0z 0T lz=z; 0z Oz

—co —00

dz = ]is 4‘1&4

Tz=Tp

where

0 0

fiz= 2A:1:/ zet* dz+Az/ et dz
B R e P @+ 22)e

—c0 -0
0

ZZekz
— 441 / Wdz}l’(aw cos(kzp — wt) (E.19)

—00

= pluwsin(kzp — wt)

X { (Alk - %A2k2> sin(kzy) ci(|kzL]) + (Alk - %A2k2> cos(kzr) si(|k:z:1,|)}

and

0 0
zekz ekz
Iy =<2A ———dz— A ——gd
8 { o | et 2””’*4 @2
7, -

0
z2ekz
+ 4Ayzp / (1731'*'—22)3dz }PCuw cos(kzp — wt) (E.20)

—00

= —p(uwsin(kzp — wt)

X { (Alk — %A2k2) sin(kzg) ci(kzg) — (Alk - %A2k2) cos(kzg) si(sz)}

When calculating [;; and I3 one must keep in mind that z; < 0, and caution must be used
when evaluating the integrals. The absolute value |zz| must be used in ci and si. It is further
used that |z;| = —z and that sin(k|zL]) = — sin(kz.) and cos(k|zr|) = cos(kzyL).

All contributions to the vertical force given in Equation (E.2) are now evaluated and the vertical
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force per unit width can now be determined from

14
F3 = Z IJ
= P!]Ca( + TIago) [sin(kzq — wt) — sin(kzr — wt)]
- Zp(fg [sin(2(kz4 — wt)) — sin(2(kzr — wt)))
+ %p{fw [% sin(2(kzs — wt)) — ddt sin(2(kzr — wt))]
— pCaTlago [% sin(kz4 — wt) — % sin(kzr — wt)]

/(D(asm (kz — wt)n3d5+pdt / ¢m3dS+p/g(DdS

SF+SB SF

= pgNago(Ta — TF) + EpAl (=5 - 3°) - l—opAﬁ(xE - z7°)

+ { [ (A1 - %A2k2> (cos(kzp) + sin(kz)) + A2£ sin(k:cL)] ci(k|zr|)

- [ (A1 + lA2k2) sin(kzy) + (Al - lA2Is:2) cos(kzr) + A2£ cos(k:z:L)] si(klzr|) + A—:}
2 2 A Ty

x plawsin(kzy — wt)

_ { [ (A1 - %Azkz) (cos(kzr) + sin(k:vR))] (ci(kzr) + si(kzr)) + A—f}
Tr
x plyw sin(kzg — wt)
(E.21)
Gradshteyn and Ryzhik (1994) define ci(kz) and si(kz) as
. = e v (kz)¥
ci(kz) = |y +log(kz) + Z( 1) CHenT (E.22)
and
si(kz) = [-— + Zl (=1)it ﬁ@:ﬁ] (E.23)

where v = 0.57721 56649 ... is Euler's constant. However, these alternating series expansions
are difficult to make converge for large kz values. Abramowitz and Stegun (1964) give rational
approximations for ci(kz) and si(kz) that are valid for 1 < kz < 00 as

ci(kz) = f(kz)sin(kz) — g(kz) cos(kz) (E.24)
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and

si(kz) = — f(kz) cos(kz) — g(kz) sin(kz) (E.25)
where
1 ((kx)® + a1 (kz)® + ax(kz)* + as(kz)? + a

flke) =22 ( (5 15, (62 + balke)™ + (b2 T b:) + 1(ka) (E.26)

and

1 (k)8 + c1(kz)® + ca(kz)* + cs(kz)? + ¢

9(k2) = e ((kx)s ¥ di(k2)® + d:(kz)4 n di(k:z:)’ ¥ dl) + ea(ka) (E27)

These approximations are used in the numerical calculation of the cosine and sine integral
functions, and the error is given as |e;(kz)| < 5-1077 and |ex(kz)| < 3 - 10”7 according to
Abramowitz and Stegun (1964). The coefficients are given as

a; = 38.027264
as = 265.187033
a3 = 335.677320
as = 38.102495

b; = 40.021433
b, = 322.624911
bs = 570.236280
by = 157.105423

¢ = 42.242855
cp = 302.757865
c3 = 352.018498
cy = 21.821899

48.196927
482.485984
1114.978885
449.690326

S8 e e

B

LI
oo

To find the total vertical force on a deck of with finite width, the force from Equation (E.21)
must be multiplied by the deck width, B.
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