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ABSTRACT Among various physiological signal acquisition methods for the study of the human brain,
EEG (Electroencephalography) is more effective. EEG provides a convenient, non-intrusive, and accurate
way of capturing brain signals in multiple channels at fine temporal resolution. We propose an ensem-
ble learning algorithm for automatically computing the most discriminative subset of EEG channels for
internal emotion recognition. Our method describes an EEG channel using kernel-based representations
computed from the training EEG recordings. For ensemble learning, we formulate a graph embedding
linear discriminant objective function using the kernel representations. The objective function is efficiently
solved via sparse non-negative principal component analysis and the final classifier is learned using the
sparse projection coefficients. Our algorithm is useful in reducing the amount of data while improving
computational efficiency and classification accuracy at the same time. The experiments on publicly available
EEG dataset demonstrate the superiority of the proposed algorithm over the compared methods.

INDEX TERMS Multiple channel EEG, emotion recognition, linear discriminant analysis, sparse PCA.

I. INTRODUCTION
Emotions are an important aspect of human communica-
tion and decision making [1]. For computer based analysis
of human emotions, different physiological signal measure-
ment methods such as Electromyography (EMG) [2], Elec-
trocardiography (ECG) [3], respiration rate, galvanic skin
response and Electroencephalography (EEG) [4] have been
used. Among these, EEG is more effective since it provides
convenient, non-intrusive and more accurate way of captur-
ing brain signals. Multiple channel EEG signals encapsulate
important emotional clues of human brain dynamics at finer
temporal resolution. Moreover, methods from the rich signal
processing literature can be readily applied to EEG brain
signals for the development of new approaches to effective
computing [5].

Emotion recognition from EEG signals has recently
attracted significant research attention [4], [7]–[10]. The rea-
sons include its wide scope applications and the latest devel-
opments in portable and low cost EEG devices (Fig.1).

The associate editor coordinating the review of this manuscript and
approving it for publication was Kathiravan Srinivasan.

FIGURE 1. Low cost multiple channel portable wireless EEG device from
Emotiv [6].

Internal emotion recognition systems have applications in
many diverse areas including human-computer interaction,
emotion understanding, brain-computer interface, and health-
care [11]–[13]. For example, the EEG signals can be used in
real-time to detect emotions and the mental states including
concentration levels. This information can be used as a feed-
back to activate different actions in technologically advanced
applications, e.g. to change a scene in a virtual reality envi-
ronment or refine lecture delivery in E-learning system. The
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FIGURE 2. Illustration of the proposed sparse channel ensemble learning framework. Each channel i of the input EEG recording Rj is represented

as statistical and frequency domain features denoted by cj
i . During training, SDEL algorithm computes a bag of basic kernels from different

channels and then automatically learns the best ensemble kernel from their sparse superposition. In the test stage, only the selected most
discriminative kernel representations are used to compute features for classification.

detection of emotional states is also important for clinical
applications especially for patients with disabilities who can-
not directly communicate. Moreover, the fundamental char-
acteristics of emotions can also help psychiatrists to study
psychological disorders such as anxiety and depression [14].

EEG based automatic emotion recognition [7], [15] is a
challenging pattern recognition problem because of the vague
boundaries and differences in individual signatures of emo-
tions. EEG data represents brain waves which are acquired
using electrodes placed on scalp according to a specific
standard such as the international 10-20 system [16]. The
acquired EEG data is captured in multiple channels cor-
responding to multiple electrodes. The rhythmic activity
in EEG signals is described in different frequency bands
such as delta (<4Hz), theta (4-7Hz), alpha (8-13Hz), beta
(14-30 Hz) and gamma (>30Hz). There are two important
steps in the design of an emotion recognition system: the
extraction of effective features characterized by discriminant
information represented by small compact values, and the
design of accurate learning algorithms for the classification of
these features. Different feature extraction and classification
exist in the literature for multiple channel EEG based emotion
recognition.

In multiple channel EEG recordings all EEG channels
may not be equally discriminative for the task of emotion

recognition. Therefore, methods considering all channels
equal in classifier learning suffer from redundancy in the
data. To reduce the amount of data, state-of-the-art methods
consider channel selection for improving emotion recognition
accuracy [17]. Inspired by the channel selection and sparse
coding [18]–[22] literature, in this paper, we propose a Sparse
Discriminative Ensemble Learning (SDEL) algorithm for
multiple channel EEG based emotion recognition (Fig. 2).
The SDEL learns a subset of the most discriminative channels
automatically from the available training EEG recordings in
a supervised setting. Our method is generic and is applicable
as a pre-processing step of any multiple channels EEG based
recognition system.

The main contributions of this paper are:
1) Given multiple channel EEG recordings which rep-

resent different classes of emotions, we efficiently
describe individual channels using Radial Basis Func-
tions (RBF) kernel representations.

2) Using our kernel representations of the training data,
we formulate a new ensemble learning method via a
supervised graph embedding linear discriminant anal-
ysis objective function.

3) We propose an efficient solution to the objective func-
tion using a sparse non-negative principal component
analysis algorithm to find themost dominant projection
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which minimizes the within-class scatter and maxi-
mizes the between-class scatter. The coefficients of the
projection vector are then used as the weights of the
individual channels in the final classifier learning.

4) We show that our proposed SDEL can be used
as a pre-processing method to improve the accu-
racy of different EEG based emotion recognition
algorithms.

The proposed SDEL is useful in significantly reducing the
amount of data for learning the final classifier while improv-
ing the efficiency and accuracy at the same time. Moreover,
our algorithm does not require expensive validation data to
learn the parameters. After learning an optimal composite of
channels and their relative importance, we input these to the
emotion classification system. We evaluate the effectiveness
of our proposed method on benchmark EEG dataset. The pro-
posed method improves the accuracy of emotion recognition
using multiple channel EEG recordings over the compared
algorithms.

II. RELATED WORK
We categorize EEG based emotion recognition literature into
biologically-inspired methods, wavelet based methods and
deep learning based methods. We also give detail review of
the feature and channel selection methods.

A. BIOLOGICALLY INSPIRED METHODS
Zhuang et al. [23] and Khosrowabadi et al. [24] introduced
biologically-inspired algorithms for emotion recognition.
Zhuang et al. [23] investigated empirical mode decom-
position to break up the EEG signals into intrinsic mode
functions (IMF). The IMF is multidimensional informa-
tion that is considered as features for emotion recognition.
Khosrowabadi et al. [24] employed a neural network (feed-
forward) with a shift memory register and spectral filtering
for human emotion recognition from EEG signals. Sreeshak-
thy and Preethi [25] selected different features using particle
swarm optimization. Their classification method was based
on the radial basis function networks.

B. WAVELET BASED METHODS
In the wavelet based methods, Fernández-Varela et al. [4]
decomposed EEG signals into corresponding frequency
bands and extracted several features. SVM is then used
to detect emotion states. Jenke et al. [15] considered a
set of multiple features of EEG signals. Murugappan [26]
used three wavelet functions to extract statistical fea-
tures and recognized emotions considering KNN classifier.
Jalilifard et al. [27] pre-processed the EEG signals by sta-
tionary wavelet transform and then computed the distribution
of power in time-frequency space. Then 46 features were
extracted and classified using SVM. Murugappan et al. [28]
used time-frequency analysis of wavelet transform and sur-
face Laplacian filtering with linear classifiers for emotion
recognition.

C. DEEP-LEARNING BASED METHODS
In the deep learning based methods, Mehmood et al. [29]
introduced deep learning ensemble method to select opti-
mal combination of features for emotion recognition.
Mohammad et al. [30] proposed long-short-term-memory
recurrent-neural networks and continuous conditional ran-
dom fields to detect and classify emotions. Gao et al. [31]
proposed a deep learning technique using restricted
Boltzmann machines. They simultaneously learned the fea-
tures and classifier from rawEEG signals.Weningeret al.[32]
performed multi-variate regression by deep recurrent-neural
networks to model longer-range context and capture
the time-varying emotional profile of musical pieces.
Tripathi et al. [33] proposed deep and convolutional neural
networks for emotion recognition from multi-channel EEG
signals. They extracted simple statistical features from each
channel and then trained deep neural network models for
emotion classification in two and three states. Similarly,
Song et al. [34] used dynamical graph convolutional neural
networks for feature learning from EEG signals.

D. FEATURE AND CHANNEL SELECTION METHODS
We categorize channel combination and selection techniques
into filtering, embedded and hybrid methods. The filtering
methods exploit an evaluation criterion based on some dis-
tance and/or information metric to assess a subset of chan-
nels generated using a search algorithm. In the embedded
methods, a few discriminative channels are selected based
on selection criterion in conjunction with classifier learn-
ing objective function. The hybrid methods combine differ-
ent techniques to take their collective advantages and avoid
pre-specification of stopping criteria.

1) FILTERING METHODS
In the filtering methods, Al-Ani and Mesbah [35] used a
simple search technique using different classifiers such as
SVM and Extreme Learning Machines to identify the best
performing channels and feature in a two stage processes.
Ackermann et al. [36] used a filtering technique to select
and combine discriminative channels and classify a set of
emotions. Masood et al. [37] introduced a variant of common
spatial pattern algorithm to select least number of EEG chan-
nels. They identified the spatial filter weights using complete
set of channels and selected channels based on the maximal
filter weights.

2) EMBEDDED METHODS
In the embedded methods, Zheng [38] extended the conven-
tional canonical correlation analysis algorithm to model the
linear correlation between class labels and the corresponding
EEG feature vectors. They used group feature selection to
simultaneously cope with both automatic channel selection
and emotion recognition. Ansari-Asl et al. [39] proposed
synchronization likelihood (SL) in multivariate data sets for
channel selection.
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3) HYBRID METHODS
In the hybrid methods, Mehmood et al. [29] selected and
combined EEG channels using a balanced one-way ANOVA
(analysis of variance) which were then classified using sup-
port vector machine, k-nearest neighbor and linear discrim-
inant analysis. Zhang et al. [40] used the Relief algorithm
combined with SVM to select features for emotion recog-
nition. Polat and Güneş [41] used fast Fourier transform
based features and decision trees to select and combine
EEG channels.

The proposed Sparse Discriminative Ensemble Learn-
ing (SDEL) algorithm falls in the embedded category and
automatically learns the most discriminative subset of chan-
nels in a supervised framework without the use of validation
set. As SDEL uses a linear discriminant analysis based crite-
rion, it is more appropriate for classification oriented ensem-
ble learning. Moreover, SDEL is more efficient compared
to the methods which involve more expensive sequential
backward/forward evaluation/selection strategies.

III. LEARNING A SPARSE DISCRIMINATIVE
COMBINATION OF EEG CHANNELS
We present a Sparse Discriminative Ensemble Learn-
ing (SDEL) algorithm for multiple channel EEG based emo-
tion recognition. Considering supervised setting, our SDEL
algorithm learns a subset of the most discriminative channels
automatically from the available training EEG recordings.
In this section, we present kernel based representation of
channels, objective function, optimization, and kernel support
vector machine based classification.

A. KERNEL BASED REPRESENTATION OF CHANNELS
Let Rj = [cj1, c

j
2, . . . , c

j
l] ∈ Rd×l , is the data matrix of

the j-th EEG recording containing l channels as its columns,
where cjm ∈ Rd denotes the m-th channel described with a d
dimensional feature representation. In this work, l and d are
same across all EEG recordings. Let G = {R1,R2, . . .Rg}

be the training EEG signal recordings belonging to c different
classes with labels Y = {y1, y2, . . . , yg}.
A straightforward approach is to use each channel individ-

ually for learning l different classification models and then
combine their scores at the decision level. However, learn-
ing l classifiers is time and resource inefficient. Moreover,
finding the best combination parameters requires expensive
validation data which is also not available most of the times.
In contrast, we propose a more effective way to encode the
discriminative ability of the same channel of different EEG
recording via kernel representations. Our method works on
the available training data and does not use any validation set
for parameter tuning. Specifically, using the Gaussian radial
basis function, we define l kernel matrices {K1,K2, . . . ,Kl}

such that a kernel matrix Km ∈ Rg×g is defined by:

Km(i, j) = km(Ri,Rj) = exp
(−d2(cim, cjm)

σ 2

)
(1)

where d(cim, c
j
m) is a distance measure (usually Euclidean

distance) between channels cim and cjm and σ is the kernel
parameter.

We next formulate the problem of discriminative channel
selection as a sparse multiple kernel learning problem over
the kernel matrices. Our kernel based approach can efficiently
handle the high dimensionality of EEG recordings. More-
over, an optimal subset of kernels (and thus channels) will
be learned automatically according to their discriminative
ability.

B. OBJECTIVE FUNCTION
We approach the kernel learning for channel selection prob-
lem by formulating it as graph embedding linear discriminant
analysis objective function using the training kernel represen-
tations. Furthermore, to select only a few channels having
the highest discriminative power, we embed sparsity in the
formulation. We define g tensor matrices {31,32, . . . ,3g},
where 3i = [K1(i),K2(i), . . . ,Kl(i)] ∈ Rg×l and K(i)
is the i-th column of K. Next, we want to perform dis-
criminant analysis on these tensors. In doing so, the sample
coefficients of each tensor will be learned in a discriminative
manner and thus can be used to linearly combine channels
for improved recognition accuracy. To formulate our problem
using graph embedding discriminant analysis, we can repre-
sent the itra-class scatter (ζw) and the inter-class scatter (ζ b)
using:

ζw =

g∑
i,j=1

zij(3i −3j)>(3i −3j), (2)

ζ b =

g∑
i,j=1

źij(3i −3j)>(3i −3j). (3)

with zij =

{
1/nk if (3i,3j) ∈ ck ,
0 otherwise,

, źij = 1/g and nk

represents the total training EEG recordings in class ck having
label yk . The objective function is then defined as:

ψ∗ = argmax
‖ψ‖2=1

ψ>(ζ b − ζw)ψ (4)

In the above objective function, maximization of the scatter
difference is introduced. Therefore, the optimal solution ψ∗

will be able to minimize ζw (intra-class scatter) and maxi-
mize ζ b (inter-class scatter). We further impose sparsity in
the objective function for sparse channel selection and are
interested in only the most dominant projection direction.
Thus, our objective function becomes:

ψ∗ = argmax
ψ∈Slk

ψ>(ζ b − ζw)ψ (5)

where Sls = {ψ ∈ Rl
: ‖ψ‖2 = 1, ‖ψ‖0 ≤ s,ψ ≥ 0}, for the

desired sparsity s ∈ [l].
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C. OPTIMIZATION
We solve the objective function in Eq. 5 by the Non-negative
Sparse Principal Component Analysis (NNSPCA) algorithm
of Asteris et al. [42]. The detail of the algorithm for find-
ing the most dominant non-negative sparse principal compo-
nent (PC) is given below.

Let M = ζ b − ζw be our PSD matrix, s be the desired
sparsity level, and r ∈ [l] be the accuracy parameter. The
NNSPCA algorithm computes a non-negative, s-sparse, unit
norm vector ψd approximating the nonnegative, s-sparse PC
of M using the following algorithm.

First, the rank-r approximation of M denoted by Mr is
computed. Mr can be computed as the best rank-r approx-
imation of M by zeroing out the l − r trailing eigenvalues
of M, that is, Mr =

∑r
i αiviv

>
i ; where αi is the i

th largest
eigenvalue of M with the corresponding eigenvector vi.
Secondly, a set of O(lr ) candidate supports denoted by Sr

is computed. However, enumerating the
(l
s

)
possible supports

for s-sparse vectors in Rl is computationally very expensive.
Therefore, a spannogram algorithm [42] is used to efficiently
compute a collection Sr of support sets with cardinality |Sr | ≤
2r
(l+1
r

)
. This has been shown to provably contain the support

of the non-negative, s-sparse principal component ofMr [42].
Next, a set of candidate solutions denoted by9r is computed.
Specifically, for each candidate support set I ∈ Sr , a candi-
date solution ψ supported only in I is computed by solving:

argmax
‖ψ‖2=1,ψ≥0,supp(ψ)⊆I

ψ>Mrψ (6)

We adopt the method of Asteris et al. [42] for solving the con-
strained quadratic maximization problem in Eq. 6. The best
candidate solution in 9r is selected which is the candidate
that maximizes the quadratic objective function in (6). This
solution is our required coefficient vector ψ ∈ Rl which
encodes information about the selected subset of channels
and their relative strengths. In other words, the coefficients in
ψ corresponds to the importance of the individual channels.
The selected subset of channels together with ψ can now be
used as input to an EEG emotion recognition algorithmwhere
they can be exploited in combination to achieve improved
accuracy at lower cost than using full set of channels.

D. KERNEL SUPPORT VECTOR MACHINE (SVM) BASED
CLASSIFICATION
Each channel kernel computed via Eq. (1) is symmetric and
can also be made semi-positive definite by adding to its diag-
onal a small positive constant. These valid kernels can then be
used with a kernel based learning algorithm for classification.
Furthermore, according to the Reproducing Kernel Hilbert
Space (RKHS) theory [43], a linear superposition of valid
kernels is a new valid kernel. Therefore, we can compute a
new unified kernel using the kernel function:

k(Ri,Rj) =
l∑

m=1

ψ(m)km(Ri,Rj), (7)

where ψ is our learned sparse coefficient vector.

Support Vector Machine (SVM) is classical supervised
learning method for two class classification problems in the
Euclidean spance [44].We adopt its kernel version by embed-
ding the channel representation into the RKHS space [43].

Recall our training EEG signal recordings G =

{R1,R2, . . .Rg} belonging to c different classes with labels
Y = {y1, y2, . . . , yg} where Rj ∈ Rd×l is the data matix
of an EEG recording containing channel features in its
columns. For two class problems yi ∈ {−1,+1}. SVM
finds a maximum-margin hyperplane that optimally sepa-
rates examples having yi = −1 from the examples having
yi = +1. The parameters w, b of the optimal hyperplane
are computed by solving the following soft-margin SVM
optimization problem [44]:

minimize
w,b,η

1
2
‖w‖2 + C

g∑
i=1

ηi

subject to yi
(
wT fi + b

)
≥ 1− ηi, i = 1, . . . , g

ηi ≥ 0, i = 1, . . . ,m. (8)

wherew, b denote the parameters of the hyperplane, paramter
η is used to accommodate the non separable cases and C is
the penalty parameter [44]. fi ∈ Rg is the feature vector of Ri
computed in the high dimensional RKHS space by using our
unified kernel function of Eq. (7) as

fi = k(G,Ri) (9)

The following dual of the above convex problem is
obtained using the Lagrangian duality [44]:

minimize
β

1
2

∑
i,j

βiβjyiyjk(Ri,Rj)−
∑
i

βi

subject to 0 ≤ βi ≤ C, i = 1, . . . ,m∑
βiyi = 0 (10)

This is a quadratic programming problem and is solved for
optimal β∗. The parameter of the hyperplane is then given
in terms of β∗, as wopt =

∑
i βiyifi. After finding wopt ,

the intercept term b is calculated from the primal form.
Given a test EEG recording Rt , we first compute its kernel

domain feature representation ft using Eq. 9, then using the
learned SVM hyperplane, the label is predicted as:

yt = sign

(
wT
opt ft + b

‖w∗‖

)
(11)

where function sign returns the sign of its argument.

IV. FEATURE EXTRACTION FOR EEG SIGNAL
REPRESENTATION
We extract multiple statistical and frequency domain features
from each channel of the EEG recording to represent it com-
pactly as d dimensional feature vector. Given a EEG signal c
havingN samples, we compute different features as described
next.
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A. STATISTICAL FEATURES OF RAW SIGNALS
For statistical feature extraction, we first divide a given N
sample EEG channel, into t segments. For each segment
we compute its statistical mean, median, maximum, mini-
mum, standard deviation, variance, range, skewness, kurtosis,
Petrosian Fractal Dimension [45], [46], Fisher Information
Ratio [45], [47] and entropy values. We also compute these
feature values using all N samples of a channel. Finally,
we concatenate these simple features to obtain the final sta-
tistical feature representation of a channel.

B. FREQUENCY DOMAIN FEATURES
To make the feature representation robust, we further extract
multiple features by first transforming the signal to frequency
domain and then extracting the following basic features.

1) STFT BASED FEATURES
We compute Power Spectral Density (PSD) and Differential
Entropy (DE) [48] features using Short Time Fourier Trans-
form (STFT) with a 1-s-long window and no overlapping
in four frequency bands theta (4-7Hz), alpha (8-13Hz), beta
(14-30Hz) and gamma (31-45Hz). Although, these features
can be computed for the individual segments but we only
consider computing them for the whole channel.

2) DISCRETE COSINE TRANSFORM FEATURES
The Discrete Cosine Transform (DCT) [49] expresses a dis-
crete signal as a linear combination of mutually uncorrelated
cosine basis functions. The advantage of DCT is that only
a few transform coefficients optimally represent the signal
information in a compact manner. Moreover, the DCT coef-
ficients are real numbers and thus are efficient to process for
feature representation. From the input signal, DCT computes
the energy spectrum by:

F(u) =
N−1∑
n=0

c(n)cos
[
π

N
(n+

1
2
)u
]

u = 0, . . . ,N − 1 (12)

After computing the DCT, we select only a few low fre-
quency DCT coefficient for feature representation. We com-
pute DCT features for both the individual segments as well as
for the whole channel. The final representation is obtained by
concatenating the selected DCT coefficients of the segments
with those of the whole channel.

3) SPECTROGRAM BASED FEATURES
Wefirst divide the given input channel into multiple segments
of equal length. Next, we compute STFT of each segment
using the equation:

STFT = c(n)(m,w) =
inf∑

N=− inf

c(n)w(n− m) exp−jwn (13)

where c(n) denotes the data segment and w(n) is the window
function. To compute the feature vector, we find the local
maxima in each segment. The harmonic relationships of the

detected maxima are then grouped together to form a feature
vector. In order to determine the harmonic relations of the
spectra peaks, each detected peak is assumed to be the fun-
damental in turns. After finding the harmonic of the current
fundamental from the remaining peaks, the amplitudes of
the strong harmonic set can be seen as the harmonic feature
vector set. In order to minimize the influence of propagation
distance, the feature vector is normalized by the magnitude
of the highest harmonics. Finally the feature vectors from
each segment are statistically averaged to form a spectrogram
based feature vector.

V. EXPERIMENTS AND RESULTS
We perform extensive experiments on publicly available
dataset using extensively in emotion recognition research.We
also compare the performance of the proposed SDEL
with other methods available in the literature. Furthermore,
we experimentally evaluate the proposed SDEL by applying
it as a pre-processing stage of different Emotion recognition
algorithms and comparing the accuracy gain.

A. DATASET DESCRIPTION
DEAP [8] is a benchmark dataset widely used in the EEG
based emotion recognition research. DEAP dataset contains
EEG and peripheral physiological signals of 32 participants
while they watched 40 examples of one-minute duration
music videos. 32 active electrodes (channels) were used to
record the EEG signals. The electrodes were placed on the
head scalp by following the 10-20 international standard.
Another 8 channels comprising the peripheral physiological
signals including the skin temperature, blood volume pres-
sure, galvanic skin response, respiration rate, electromyo-
gram and electrooculogram (horizontal and vertical) were
also recorded.

In our experiments, we use the pre-processed version of
DEAP EEG data (Table 1). The pre-processing consists of
downsampling to 128Hz, EOG removal and bandpass filter-
ing (4.0-45.0Hz). This version is widely used to test classifi-
cation and regression algorithms in the literature. The data
is provided as 40 × 40 × 8064 dimensional Matlab and
Python arrays representing (trial×channel×data) for each of
the 32 subjects. Similarly the labels are also provided as 40×4
arrays representing trial×label (valence, arousal, dominance,
liking). The labels are continuous values in the range 1.0-9.0.
We make the labels discrete using the Emotion model as
discussed next.

TABLE 1. Details of the DEAP pre-processed dataset.
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B. EMOTION RECOGNITION SETTINGS
Emotions represent mental and physiological states of human
beings in terms of diverse types of thoughts, feelings and
behaviors. A number of theories in cognition, psychology
and neuroscience exist for the study and analysis of human
emotions. However, it is challenging to determine how are
emotions defined and differentiated [50].

In literature, there are two models for the theoretical
emotion representation. These are called discrete emotion
model (DEM) [51] and the bi-dimensional emotion model
(BEM) [52]. In the DEM, a variety of emotions includ-
ing fear, anger, happiness, sadness,surprise and disgust are
defined as basic human emotions [51]. The BEM model
embodies different emotional states on a multidimensional
scale represented by arousal and valence basis. The BEM
model is mostly used in the emotion recognition literature
due to simplicity and generality. The BEM model cate-
gorizes emotions into four groups in the valence arousal
space: low arousal/low valence (LALV), low arousal/high
valence (LAHV), high arousal/low valence (HALV) and high
arousal/high valence (HAHV). In our emotion recognition
experiments, we used the BEM model which is based on
the valence arousal classification. In the DEAP dataset each
dimension is represented by values in the range 1 to 9. For
two class classification, the labels are decided using the rating
value less than 5 and greater than 5. Similarly, for four class
classification the valence arousal space can be divided into
four quadrants (LALV, HALV, LAHV and HAHV) according
to the ratings.

C. EXPERIMENTAL SETUP
We use the leave-one-subject-out strategy for evaluating our
proposed algorithm. This is done by training the model
on 31 subjects and testing on the remaining one subject.
The experiment is repeated 32 times with different training
and testing data configurations and the average accuracy
is reported. For computing the base kernel representations,
the best value for parameter σ in (Eq. 1) is found automati-
cally from only the available training kernels by employing
the binary search method of Lin et al. [53]. We set the param-
eter C of SVM to a small value of 100. The target sparsity
value s in NNSPCA algorithm is experimentally set in the
range {1, 3, 5, 7, 9}.

VI. RESULTS
A. PERFORMANCE OF INDIVIDUAL CHANNELS
We first evaluate the accuracy of individual channels for
emotion recognition in two class (valance, arousal) clas-
sification problem. We use our proposed feature extrac-
tion methods to represent each channel and then use SVM
classifier for individual channels. The average accuracy
achieved by each channel in 32 experiments are shown
in Fig. 3. It can be observed that some of the chan-
nels have low accuracy due to their limited discrimination
ability.

In the next experiment, we evaluate the accuracy of using
multiple channels to learn individual classifiers and then inte-
grate their performances at decision level. We use different
classifier combination strategies such as sum based score
fusion, majority voting [54] and kernel averaging. For this
purpose, we train one K-NN classifier per channel using
the proposed feature representations. We then combine the
results at score level using sum rule of score fusion. We set
K = 3 in these experiments. Next, we learn one SVM
classifier per channel and fuse their results the decision level
using majority voting scheme. Similarly, the performance of
channel level fusion by concatenating feature representation
of all the channels and learn the resulting feature vector for
classification. Finally, we compare the results of the proposed
method with the performance of a kernel SVM with an
average kernel of all the channels. Table 2 summarizes the
results of these experiments. The proposed SDEL algorithm
performs better than the simple classifier combination strate-
gies due its discriminative channel selection and combination.
Moreover, we only train one classifier (K-SVM) for all the
channels in an efficient manner.

TABLE 2. Average classification accuracy (%) in 2-class classification
setting.

B. COMPARISON WITH OTHER METHODS
we also compare the results of the proposed algorithm
with other recent EEG based emotion recognition algo-
rithms. These algorithms include the Bayesian classifier
based method [55], the DEAP method [8], Ontology based
method [56], Segment Level Decision Fusion (SLDF) [57],
Sparsity constrained differential evolution (SCDE) based
channel selection [58] and Empirical Mode Decomposition
(EMD) [58]. Table 3 summarizes our comparison with the
existing method on DEAP dataset. Due to the discriminative
kernel learning, the proposed algorithm has outperformed the
existing methods in the two class classification experiments.
The Ontology based method [56], SCDE [58] and EMD [59]
methods have better accuracy for the Arousal class. However
these methods only use the data of 8 or 20 subjects in their
experiments while we use the data of all 32 subjects.

C. SDEL AS A PREPROCESSING STAGE FOR
DISCRIMINATIVE CHANNEL SELECTION
One application of our proposed algorithm is discriminative
channel selection. We evaluate this capability using our algo-
rithm as a preprocessing stage to improve a current deep
learning based EEG emotion recognition algorithm presented
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FIGURE 3. Average accuracy of individual channels in DEAP dataset using SVM classifier for two class emotion classification.

TABLE 3. Average classification accuracy (%) in 2-class classification
setting.

TABLE 4. Average classification accuracy (%) in 2-class classification
setting. The proposed algorithm improves the accuracy by using only the
most discriminative channels.

by Tripathi et al. [33]. They trained different models of deep
and convolutional neural networks on DEAP dataset and
reported excellent results on emotion recognition for both
two class valence, arousal (low, high) as well as three class
valence, arousal (high, normal, low) classification. In our
experiments, we first identify the most discriminative chan-
nels using our SDEL algorithm (cannels having non-zero
weights). Next, we use only our selected channels to train
the best performing deep model of [33] and then record the
accuracy. We use the same features along with our features to
represent each channel as done in [33]. Table 4 and Table 5
summarize the results of using the proposed SDEL with the
deep learning based methods. Our algorithm uses less than

TABLE 5. Average classification accuracy (%) in 3-class classification
setting. The proposed algorithm improves the accuracy by using only the
most discriminative channels.

40 channels on the average and has increased the accuracy
of the deep models. This is due to the high quality and more
discriminative selected channels which help learning better
supervised deep models and reduce over-fitting.

VII. COMPUTATIONAL TIME
The overall computational time of the proposed method
include the time for computing the feature representations,
the kernel representations, the scatter matrices and the time
taken by the NNSPCA algorithm. During the training stage
these operations are performed off-line. As shown in [42],
the complexity of the NNSPCA is near-linear time. The test
execution time of the proposed algorithm is fast because fea-
tures and kernel representations of only the selected channels
needs to be computed. Specifically, on Intel Corei7 3.8GHz
CPUwith 32GBRAM andMATLAB implementation, on the
DEAP dataset, the time taken for computing the features and
kernels in the training stage was more than 1500 seconds
while the time forNNSPCAwas 0.1 seconds. The testing time
for classifying one EEG data matrix Rj was 2.01 seconds.

VIII. CONCLUSION
We proposed an ensemble learning algorithm for automatic
EEG channel selection and combination for the application
of emotion classification. We represented channels using
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kernels and formulated ensemble learning as graph embed-
ding linear discriminant analysis objective function which
was solved using a sparse non-negative principal component
analysis algorithm. Due to sparse learning, only the most
discriminative channels were included in the final ensemble.
Experiments on standard EEG datasets for emotion recogni-
tion verified that the proposed method significantly improves
the performance of emotion recognition.
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