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Abstract

The set of closed high-utility itemsets (CHUIs) concisely represents the exact utility of all itemsets. Yet, it
can be several orders of magnitude smaller than the set of all high-utility itemsets. Existing CHUI mining
algorithms assume that databases are static, making them very expensive in the case of incremental data,
since the whole dataset has to be processed for each batch of new transactions. To address this challenge, this
paper presents the first approach, called IncCHUI, that mines CHUIs efficiently from incremental databases.
In order to achieve this, we propose an incremental utility-list structure, which is built and updated with
only one database scan. Further, we apply effective pruning strategies to increase the speed of construction of
incremental utility-lists and eliminate candidates that are not updated. Finally, we suggest an efficient hash-
based approach to update or insert new closed sets that are found. Our extensive experimental evaluation
on both real-life and synthetic databases shows the efficiency, as well as the feasibility of our approach.
It significantly outperforms previously proposed methods, that are mainly run in batch mode, in terms of
speed, and it is scalable with respect to the number of transactions.
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1. Introduction

High Utility Itemset Mining (HUIM) is an extensively studied data mining task [1, 2], which extends
Frequent Itemset Mining (FIM) [3] by considering the case where items can appear more than once in each
transaction, and each item has a weight, e.g., unit profit. Therefore, HUIM can be used to discover itemsets
having a high-utility, e.g., high profit. An itemset is a High-Utility Itemset (HUI) if its utility (or the profit
that it yields in a database) is no less than a user-specified threshold. Recently, many efficient algorithms
have been proposed to mine high-utility itemsets in static and incremental transaction databases [2, 4, 5, 6].
However, a drawback of traditional HUIM algorithms is that the set of HUIs can be very large, which
depends on how the minimum utility parameter is specified by the user. In general, when a HUIM algorithm
generates more HUIs, its execution time and memory consumption also greatly increase. In addition, the
task of analyzing a large number of HUIs produced by a HUIM algorithm is difficult and time-consuming.

To address these issues, a compact and lossless representation of HUIs, named closed HUIs (CHUIs), was
proposed by Tseng et al. [7]. This representation is inspired by the concept of frequent closed patterns [8,
9, 10], which was originally introduced in FIM for the mining of non-redundant (minimal) association rules
to improve the performance in terms of memory usage and mining time [11, 12, 13]. In HUIM, an itemset
is said to be a CHUI if (1) its utility is no less than the minimum utility threshold, and (2) it has no
supersets that appear in the same transactions [7]. The set of CHUIs is interesting because it can be several
orders of magnitude smaller than the set of all HUIs, and it allows deriving all HUIs without re-scanning the
database. Moreover, the set of CHUIs also provides meaningful information to decision-makers since they
are the largest HUIs that are common to groups of customers [7]. For example, let X be a CHUI, and Y
be a non-CHUI, where X ⊃ Y , and u(X) > u(Y ). In market basket analysis, this means that no customer
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purchases Y without X. Thus, when a customer purchases Y, the retailer can recommend X − Y to the
customer to maximize the profit.

There are many efficient algorithms for mining CHUIs in the literature, such as CHUD (Closed+ High
Utility Itemset Discovery) [7], CHUI-Miner (Closed+ High Utility Itemset mining) [14], CLS-Miner [15], and
EFIM-Closed (EFficient high-utility Itemset Mining - Closed) [16]. However, common to these methods is
that they assume that databases are static. To the best of our knowledge, there does not exist any method
for maintaining CHUIs in dynamic databases. Meanwhile, in real-life applications such as online retail stores,
new customer transactions are generated and added to the database all the time. As a result, previously
found itemsets may be invalid, and new ones may appear. In this work, we address this need by introducing
the task of incremental mining CHUIs, and proposing an algorithm named IncCHUI (Incremental Closed
High-Utility Itemset miner), which introduces several ideas to efficiently maintain crucial information and
CHUIs in dynamic databases. Specifically, we make the following main contributions:

• We introduce an incremental utility-list structure by adapting the traditional utility-list to store crucial
information of all single items both in the original database and the added transactions. The mining
process for the updated database performs searching only on itemsets that have appeared in the inserted
transactions. We also introduce an efficient method to construct the incremental utility-lists of itemsets
by pruning non-updated itemsets early. Further, we introduce a method to efficiently maintain the
validity of these lists by restructuring it whenever a transaction is inserted. After each mining, we
merge the utility list section of the original database and that of the added transactions together to
form a single utility list. This list is, in turn, used to prepare for the next execution, with which the
database will be updated.

• We introduce a novel algorithm named IncCHUI to mine CHUIs efficiently from incremental databases
using the incremental utility-list structure. IncCHUI scans the original database or updated section
only once to construct the lists of single items. To store the CHUIs discovered so far, we use a hash table
called CHT. Next, for each CHUI P that is found when mining on the updated database, the algorithm
first checks whether this itemset is already in the CHT. If yes, this means that P was previously found
when applying the algorithm on the original database. In that case, we update its utility and support.
Otherwise, P is inserted in the table CHT, since it is a new CHUI.

• We perform extensive experiments to evaluate the efficiency of the proposed algorithm on both real-
life and synthetic databases which have various different characteristics. In these experiments, we
compare the performance of IncCHUI against the state-of-the-art algorithms for mining CHUIs in static
databases, run in batch mode. Interestingly, the results show that our algorithm is highly efficient, and
it outperforms these state-of-the-art algorithms in terms of speed. Also, while the compared algorithms
employ several complex pruning strategies and structures, our method does not.

The rest of this paper is organized as follows. In Section 2, we formally define the problem of incremental
mining CHUIs and introduce its preliminaries. In Section 3, we briefly present the related works including
HUIM from static and incremental databases, and the state-of-the-art methods for mining CHUIs in static
databases. In Section 4, we present the IncCHUI algorithm as well as its components. In Section 5, we
present and discuss the experimental results. Finally, in Section 6, we conclude our paper and outline the
future work.

2. Preliminaries and problem definition

This section presents preliminaries related to high-utility itemset mining, and defines the problem of
incremental closed high-utility itemset mining.

2.1. Problem definition

Let I ={i1, i2, . . . , im} be a set of m distinct items. Each item ij ∈ I is associated with a positive
number p(ij), called the external utility of ij . This number represents the relative importance of item ij to
the user (e.g., the unit profit of ij). Let D be a transaction database containing a set of nD transactions, D
= {T1, T2, . . . , TnD} such that Td ⊆ I(1 ≤ d ≤ nD), and each transaction Td has a unique identifier d called
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Tid (Transaction id). Moreover, given a transaction Td and an item ij , let q(ij , Td) be the internal utility
(e.g., the purchase quantity) of item ij in Td, which is a positive integer. The utility of item ij in transaction
Td is defined as the product of external and internal utilities of ij in Td, i.e., u(ij , Td) = q(ij , Td)× p(ij).

An itemset X is a set of k distinct items X = {i1, i2, . . . , ik}, where X ⊆ I. Then, X is a k -itemset,
and its length is k. From now on, for the sake of brevity, each itemset will be denoted by the concatenation
of its items. For example, the itemset {x, y, z} will be denoted as xyz. The union of two itemsets X and Y
will be denoted as XY or X∪Y.

Tid Transaction TU

O
ri

gi
n

al
d

b
D

T1 (a,1), (c,1), (d,1) 8
T2 (a,2), (c,6), (e,2), (g,5) 27
T3 (a,1), (b,2), (c,1), (d,6),(e,1),(f,5) 30
T4 (b,4), (c,3), (d,3), (e,1) 20
T5 (b,2), (c,2), (e,1), (g,2) 11

N

T6 (b,2), (d,5), (f,2) 16
T7 (a,1), (c,2), (d,1), (e,1) 12

. . .

Item a b c d e f g
External utility 5 2 1 2 3 1 1

Figure 1: Example of incremental transaction database with items’ quantities and profits.

Example 1. Fig. 1 shows an example a transaction database D, which at the beginning contains five
transactions (T1, T2, T3, T4, and T5). Then, one or more transactions are inserted into the original database
D, i.e., T6 and T7 are added. The added section is named N . In this example, the set of items is I = {a,
b, c, d, e, f, g}. The lower table presents external utilities (e.g., unit profits) of these items. The items
a, b, c, d, e, f, and g have external utilities of 5, 2, 1, 2, 3, 1, and 1, respectively. The itemset ac appears in
transactions T1, T2, and T3. The items a, c, e, and g respectively have purchase quantities of 2, 6, 2, and
5, in transaction T2. The utility of item a in transaction T1 is u(a, T1) = 1× 5 = 5. Similarly, the utility of
item c in transaction T1 is u(c, T1) = 1× 1 = 1.

Definition 1 (Utility of an itemset in a transaction). The utility of an itemset X in a transaction Td
(X ⊆ Td) is denoted as u(X,Td) and defined as u(X,Td) =

∑
i∈X u(i, Td).

For example, in the database of Fig. 1, u(ac, T1) = 1× 5 + 1× 1 = 6, and u(ac, T2) = 2× 5+ 6× 1 = 16.

Definition 2 (Transaction utility). The utility of a transaction Td is denoted as TU(Td), and is calculated
as TU(Td) = u(Td, Td).

For example, in the database of Fig. 1, TU(T1) = 8, TU(T2) = 27, TU(T3) = 30, TU(T4) = 20, and
TU(T5) = 11.

Definition 3 (Utility of an itemset). The utility of an itemset X in a database D is defined as u(X) =∑
X⊆Td∧Td∈D u(X,Td).

For the original database in Fig. 1, u(ac) = u(ac, T1) + u(ac, T2) + u(ac, T3) = 6 + 16 + 6 = 28. Let
minutil be a user-specified minimum utility threshold such that 0 < minutil. If the utility of an itemset X
is no less than minutil, u(X) > minutil, then X is said to be a high-utility itemset (HUI). Otherwise, X is
a low-utility itemset. The problem of HUIM concerns discovering all HUIs in a given transaction database.

Definition 4 (Support and Tid set of an itemset). The Tid set (transaction id set) of an itemset X is the
set of Tids of transactions containing X, and is denoted as TidSet(X). The support of an itemset X is
denoted as sup(X), and defined as sup(X) = |TidSet(X )|.
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Definition 5 (Closed high-utility itemset). An itemset X is a closed high-utility itemset (CHUI) if there
exists no proper superset Y ⊃ X in the database such that sup(X) = sup(Y ) and its utility u(X) ≥
minutil [7, 14].

Given a user-specified minimum utility threshold minutil, the task of closed high-utility itemset mining is
to discover all closed itemsets in the database having utilities that are no less than the minutil threshold [7,
14].

Example 2. Consider the original database of Fig. 1, and suppose that minutil is set to 30. The set of HUIs
is H = {bd :30, ace:31, bcd :34, bce:37, bde:36, bcde:40, and abcdef :30}, where the number beside each itemset
indicates its utility. Among those itemsets, the CHUIs are CH = {ace:31, bce:37, bcde:40, and abcdef :30}.

Problem statement. Let there be a database D. A database DN is an update of database D if DN =
D ∪ N , where N is a non-empty set of inserted transactions. Let minutil, D and CH, respectively be a
user-specified minimum utility threshold, a database, and the set of CHUIs found in D. The problem of
incremental closed high utility itemset mining is to find CH′, which is the set of CHUIs in the updated
database DN , given minutil, D, and CH.

Example 3. Consider the original database D in Fig. 1, and minutil = 30. DN is the database D updated
by inserting transactions T6 = (b,2)(d,5)(f,2), and T7 = (a,1)(c,2)(d,1)(e,1). In the updated database DN ,
the CHUIs are CH′={ace:41, bce:37, bcde:40, abcdef :30, bdf :37, bd :44, ac:35, and ce:32}. In this example,
the task of incremental closed high-utility itemset mining is to find that utility (support as well) of the
previously found CHUI ace increases from 31 to 41, and four new CHUIs (bdf, bd, ac, and ce) existing in
DN without mining on DN from the beginning.

From this example, the previously found CHUIs (bce, bcde and abcdef ) in the original database remain
the same, while four new CHUIs are found as a result of the insertion of the new transactions T6 and T7.
Further, there exist a scenario where the utility and support of CHUIs in CH, such as with ace, are increased
when inserting new transactions. Based on this observation, we introduce the following property.

Property 1. Let be an itemset X ∈ CH appearing in D but not appearing in N , and DN = D∪N . Then,
the utility and support of X in DN are the same as in the original database D.

Proof. On the updated database DN = D ∪ N , the utility of itemset X is calculated by Definition 3 as
follows, u(X ) =

∑
X⊆Td∧Td∈DN u(X,Td) =

∑
X⊆Td∧Td∈D u(X,Td) +

∑
X⊆Td′∧Td′∈N

u(X,Td′).

Let TD be the set of transaction identifiers containing X in D, and let TN be the set of transac-
tion identifiers containing X in N . Let TDN be the set of transaction identifiers containing X in the
updated database DN . Hence, TDN = TD ∪ TN, and the support of X according to Definition 4 is
sup(X) = |TidSet(X)| = |TDN (X )| = |TD(X )| + |TN (X )|. Because X does not appear in N , then
u(X) =

∑
X⊆Td∧Td∈D u(X,Td), and sup(X) = |TD(X)|.

To design an efficient algorithm to find CH′, we should thus avoid exploring itemsets that do not appear
in N , thanks to Property 1.

In Frequent Itemset Mining (FIM), the downward closure property is employed for reducing the search
space. However, this property does not hold with the utility measure in HUIM. In other words, an itemset
may have a utility lower, equal or higher than the utility of its subsets. To restore this property, the
transaction-weighted utilization (TWU) measure was introduced as an upper-bound on the utility [17],
which is defined as follows.

Definition 6. The transaction-weighted utilization (TWU) [17] of an itemset X in a database D is denoted
as TWU(X), and defined as TWU(X) =

∑
Td∈D∧X⊆Td

TU(Td).

For example, the TU of transactions T1, T2, and T3 of the running example are respectively 8, 27, and
30. Hence, TWU(a) = TU(T1) + TU(T2) + TU(T3) = 8 + 27 + 30 = 65. The following property of the
TWU is commonly used to prune the search space in HUIM.

Property 2 (Pruning using the TWU [17]). Let there be an itemset X. If TWU(X) < minutil, then X
and its supersets are low-utility itemsets.
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Proof. The detail proof is provided in [17]. Intuitively, by Definition 6, TWU(X ) is the sum of transaction
utilities where X appears, TWU(X ) must be no less than the utility of X, u(X), and any of its supersets.
Hence, for any itemset X, if TWU(X ) is less than minutil, then X is a low-utility itemset as well as all its
supersets, and it should be pruned.

2.2. Utility-list structure

Many algorithms for mining high utility patterns use the aforementioned TWU measure (see Property 2)
to prune the search space [17, 4, 7, 18]. These algorithms are mainly executed in two phases. In the first
phase, they identify candidate high-utility patterns by calculating their TWUs. In the second phase, they
scan the database and compute the exact utility of all candidates to filter out any low-utility patterns.
The main drawback with using TWU is that TWU is a loose upper-bound, and thus numerous candidate
patterns need to be considered to find the final set of results. To address this issue, several algorithms that
mine high-utility patterns using a single phase have been proposed. They have been shown to be generally
more efficient than the two-phase counterparts. To achieve this, one-phase algorithms employ the utility-list
structure [19], and rely mainly on the concept of remaining utility to prune the search space.

Definition 7 (Utility-list [19]). Let � be a total order on items from I. The utility-list of an itemset X
in a database is denoted as ul(X). It contains a tuple of the form (tid, iutil, rutil) for each transaction Ttid
containing X (X ⊆ Ttid). The iutil element of a tuple corresponding to a transaction Ttid stores the utility
of X in Ttid. i.e., u(X,Ttid). The rutil element of a tuple stores the value

∑
i∈Ttid∧i�x∀x∈X u(i, Ttid), and it

is called the remaining utility.

Example 4. Consider the original database D in Fig. 1, the utility-list of item a is {(T1, 5, 3)(T2, 10, 17)(T3,
5, 25)}. The utility-list of item e is {(T2, 6, 5)(T3, 3, 5)(T4, 3, 0)}. The utility-list of itemset ae is {(T2, 16,
5),(T3, 8, 5)}.

As proposed in the HUI-Miner algorithm [19], the utility-list of any itemset can be obtained by intersecting
the utility-lists of some of its subsets. Further, one phase algorithms prune the search space by utilizing the
following property.

Property 3 (Pruning using the sum of iutil and rutil values [19]). Let there be an itemset X. Let the
extensions of X be the itemsets obtained by appending an item y to X such that y � i, ∀i ∈ X. If the
sum of iutil and rutil values in the utility-list of X is less than minutil, then X as well as all its transitive
extensions are low-utility.

Proof. Let Y be the extension of X, Y ⊃ X, then TidSet(Y ) ⊆ TidSet(X). Let Y/X denote the set of all the
items after X in Y . By Definition 1 we have u(Y ) =

∑
Td∈TidSet(Y ) u(Y, Td), where u(Y, Td) = u(X,Td) +

u((Y/X), Td) = u(X,Td) +
∑

y∈(Y/X) u(y, Td) ≤ u(X,Td) +
∑

y∈(Td−X) u(y, Td) = u(X,Td) + ru(X,Td).

Therefore, u(Y ) ≤
∑

Td∈TidSet(Y ) u(X,Td) + ru(X,Td) ≤
∑

Td∈TidSet(X) u(X,Td) + ru(X,Td).

3. Related work

In this section, we briefly review studies related to high-utility itemset mining, closed high-utility itemset
mining, and then we describe the differences between our method and the previous works.

3.1. Static high-utility itemset mining

The downward closure property in FIM does not hold with the utility measure in HUIM. Hence, to address
this issue, Liu et al. [17] introduced the transaction-weighted utilization (TWU) measure as an upper-bound
on the utility. Methods using TWU exploit the fact that TWU is anti-monotonic, making it suitable to
reduce the search space in mining High Utility Items (HUIs), while ensuring that no HUI is missed. The
basic assumption is that, if an itemset has a TWU lower than the minutil threshold, all its supersets can be
ignored. Nevertheless, although this property is useful for reducing the search space, a problem is that the
TWU is considered as a loose upper bound on the utility of itemsets. Hence, many more itemsets still need
to be considered by algorithms relying on TWU to extract the set of HUIs. This, in turn, can result in long
execution times and high memory usage.
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Many algorithms to mine high utility patterns, including [17, 4, 7, 18], have been developed using the
pruning strategy proposed by Liu et al. [17] to restrict the search space. Common to these methods are
that they all are executed in two phases, with the first phase being used to identify candidate high-utility
patterns, and the second phase to scan the database to compute the exact utility of all candidates, and filter
out the patterns with low utility. The main issue with these algorithms is the high number of candidates
that need to be considered to find the final set of results, due to a loose TWU upper bound as mentioned
above. To partly address the issue with the two-phase algorithms, several approaches have been proposed
to mine high-utility patterns in a single phase. Using a special utility-list structure [19] combined with
an effective pruning strategy, one-phase algorithms have generally been shown to be more efficient than
two-phase algorithms [20, 1, 21, 22, 2].

3.2. Dynamic high-utility itemsets mining

To cope with the challenges when working with dynamic databases, many methods have been introduced
to mine HUIs in incremental databases [23, 4, 24, 5, 25, 26, 27, 28]. Unlike batch algorithms, incremen-
tal HUIM algorithms incrementally update and output HUIs, thus reducing the cost of discovering HUIs
from scratch. These methods also extend the previous HUIM methods. Specifically, IUM [29] is the first
algorithm for mining high temporal utility patterns from incremental transaction database which is based
on the two-phase algorithm[17]. IHUP [4] proposed three tree structures (IHUPL-tree, IHUPTF-tree, and
IHUPTWU-tree) which were inspired from the FP-Growth algorithm [30] for incremental mining of HUIs when
transactions are added. Although IHUP avoids drawbacks of the generate-and-test approach used by IUM,
this method still needs expensive computational time to calculate actual HUIs from the set of candidates
since IHUP generates a large number of candidates. PRE-HUI [31] is based on the pre-large concept [32]
and the TWU model [17]. The pre-large concept is used to reduce the number of database scans that are
required to update the results when new transactions are inserted. The original database is only rescanned
when the number of inserted transactions is larger than the safety bound. However, PRE-HUI employs a
level-wise approach to mine updated HUIs, and it suffers the same limitation as the tree-based methods.
HUPID-Growth [5] introduced a new tree structure called HUPID-Tree, which is constructed through a
single database scan. It also proposes a restructuring method with a new data structure called TIList (Tail-
node Information List) to process incremental databases efficiently. In addition, HUPID-Growth introduces
a strategy to reduce the overestimated utilities in conditional trees during the mining process. However,
the performance of HUPID-Growth was not compared with its existing approaches such as IUM [29], and
PRE-HUI [31].

As with HUIM methods, list-based methods without candidate generation have been proposed to mine
HUIs from incremental databases. HUI-list-INS [33, 34] is the first algorithm of this category which is
based on HUI-Miner algorithm [19]. It computes a TWU ascending order and constructs a global utility-list
data structure based on this information through two database scans. Then, it mines high utility patterns
from the global utility-lists without generating candidates. HUI-list-INS also employed the estimated utility
co-occurrence structure [1] to speed up the incremental mining process. The experimental results showed
that HUI-list-INS outperforms the previous methods. However, there is still room for improvement in the
one-phase HUI-list-INS algorithm, such as developing more efficient pruning strategies. EIHI [24] reduces
search space by reducing the number of local utility lists generated in the mining process. Moreover, it uses
a trie-based structure named HUI-trie to insert and maintain information of HUIs, and to prune the search
space during the updating process of utility-lists. However, this method requires additional operations such
as creating new utility lists for new data, merging these lists into the utility-lists of the original database,
and maintaining the rank order of single items according to the original database to maintain the HUI-trie.
Moreover, inserting HUIs into the HUI-trie can be costly because the order of single items changes when
new transactions are added, meanwhile the number of HUIs is large. Recently, a list-based method named
LIHUP [26] was introduced which builds and updates its global lists by scanning the database only one time,
meanwhile HUI-list-INS and EIHI require two database scans. However, LIHUP prunes the candidates by
the remaining utility upper-bound [19], which is still loose and costly. And the experimental results have
shown that LIHUP outperforms the tree-based methods, IHUP [4] and HUPID [5].

The most recent algorithm for incremental mining HUIs is PIHUP [27], which adopts the pre-large concept
and improves the PRE-HUI algorithm. PIHUP introduces a new data structure called pattern tree. This
tree is constructed by using mined large and pre-large patterns, where each node stores its actual utility
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au and TWU values. The updated pattern tree is derived by using large, pre-large patterns stored in the
pattern tree and the newly inserted data. PIHUP needs only one scan, and as a result, outperforms the
PRE-HUI algorithm. However, this method still remains a candidate generation-and-test method, which can
produce many useless candidates.

Hong et al. [35] introduced the concept of high average-utility itemset (HAUI), a concept that is slightly
different from the traditional HUIM. Here, the average-utility of an itemset is calculated as the sum of
item utilities divided by the length of itemset. Hence, the number of mined HAUIs is fewer than the
number of HUIs under the same threshold. The problem of mining HAUIs from static and incremental
databases has been studied extensively, and several efficient methods for addressing this problem have been
proposed [25, 36].

In recent years, several algorithms have been proposed to mine HUIs in data streams, that are based on
different assumptions with incremental HUIs mining. These algorithms assume that data arrive continuously
at a very fast rate, with the amount of data being unknown or unbounded, and that it is impossible to store
all the data permanently. The representative algorithms for mining HUIs in data streams include MHUI-
BIT [37], MHUI-TID [37], SHU-Grow [38], and SHUPM [39]. MHUI-BIT and MHUI-TID are Apriori-based
algorithms. They employ a level-wise generate-candidate-and-test approach to explore the search space of
itemsets. The drawbacks of such an approach is that it requires to both perform numerous database scans
and maintain a large number of candidates. SHU-Grow addresses this issue by employing a pattern growth
approach. It utilizes the reducing global estimated utilities and reducing local estimated utilities techniques
to decrease the overestimated utilities of itemsets. Moreover, SHU-Grow introduces a SHU-Tree structure
to maintain information about the data and HUIs. Experimental results have shown that SHU-Grow out-
performs the existing methods. However, SHU-GROW still requires a large amount of time to compute the
actual utilities of candidate patterns in the second phase. Therefore, Yun et al. [39] recently proposed a new
algorithm, called SHUPM, which does not generate candidate patterns. SHUPM [39] introduces a new list
structure named SHUP-List to maintain the information of recent batches with a strategy that allows to
efficiently update the remaining utilities in these lists. It also employs a new pruning technique to reduce
the search space. Based on the results reported in [39], SHUPM is efficient in terms of runtime, memory
usage, and scalability.

3.3. Static closed high-utility itemsets mining

As presented above, high utility itemset mining (HUIM) has been a major research, and many works
have studied different areas of high utility mining [19, 20, 1, 21, 22, 2, 40]. However, the main drawback
with HUIM is that the result sets of HUIs return by HUIM algorithms are often very large, which makes
the process of analyzing these result sets a challenging task. To address this issue, many methods have
been proposed to mine more concise, representative subsets of closed HUIs [7, 14, 16, 15]. These methods
incorporate techniques from closed FIM with techniques used in HUIM in order to reduce the search space
effectively, while ensuring that no CHUIs are missed. Closed+ High Utility itemset Discovery (CHUD) [7]
is the first algorithm for mining CHUIs. It is a two-phase and a depth-first search algorithm that extends
the DCI Closed algorithm [10], which is one of the fastest algorithms to mine frequent closed itemsets in a
transaction database. Further, it adopts a data structure called transaction utility table (TU-Table) [17] to
store the transaction utilities of all transactions. The TU-Table allows to efficiently compute the estimated
utility of any itemset X, using its Tid set, without scanning the database. In addition, CHUD utilizes several
efficient strategies to reduce the search space. Nevertheless, because CHUD is two-phase algorithm, it inherits
the limitations of two-phase algorithms, in terms of performance degradation and memory consumption.

More recent algorithms have focused on mining CHUIs more efficiently as a one-phase approach [14,
16, 15]. An example of these algorithms is CHUI-Miner [14], which is also the first one-phase algorithm
for mining of CHUIs. CHUI-Miner integrates techniques from closed itemset mining [11, 10] to discover
closed patterns only. It utilizes a list structure called Efficient Utility list (EU-List) to store information
about the utility of itemsets and adopts a divide-and-conquer approach to mine CHUIs without producing
candidates. CHUI-Miner only prunes the search space using the aforementioned TWU measure [17] and the
remaining utility upper-bounds [19]. Another approach is the EFIM-Closed (Closed EFficient high-utility
Itemset Mining) algorithm [16], which is based on the constraint that all operations for each itemset in
the search space should be performed in linear time and space. To achieve this, the algorithm proposed
several efficient strategies to discover CHUIs, and effective techniques to reduce the cost of database scans.
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Moreover, EFIM-Closed employs two upper-bounds on the utility of itemsets named sub-tree utility and
local utility to effectively prune the search space. Although, EFIM-Closed is a highly efficient algorithm, it
employs an expensive database sort operation to identify duplicate transactions, which, in turn, may degrade
its performance when mining on large databases. Finally, CLS-Miner [15] was introduced to mine CHUIs
more efficiently. Unlike Closed+ High Utility itemset Discovery (CHUD), it is a one-phase algorithm relying
on the utility-list structure to discover CHUIs. From this perspective, CLS-Miner is similar to CHUI-Miner,
but there are some key differences. First, CLS-Miner applies search space pruning strategies, which are
different from those of the CHUI-Miner. An important feature is that CLS-Miner’s strategies can prune
itemsets in the search space before their utility-lists are fully constructed, and thus greatly reduce the cost of
mining CHUIs. Second, CLS-Miner introduces an efficient pre-check containing method to quickly determine
if an itemset is a subset of another itemset. The authors used this method to optimize the operations of
closure computations and subsumption checks typically performed by closed pattern mining algorithms. It
is, however, important to note that these two operations are performed repeatedly in closed pattern mining
algorithms. Hence, this pre-check method considerably reduces the time for discovering CHUIs of CLS-Miner.

3.4. Differences from previous works

Although closed high utility itemset mining has many applications, and the existing methods [7, 14, 16, 15]
are efficient to mine CHUIs, they mainly assume that databases are static. There are several algorithms
designed for maintaining HUIs in dynamic databases [4, 24, 33, 5, 26]. However, to the best of our knowl-
edge, there does not exist any method for mining CHUIs in incrementally generated datasets. Meanwhile,
databases are continuously growing in size in various real-life applications, and thus existing methods for
static databases may no longer be suitable for processing or extracting useful information. That is, they do
not perform well on dynamic databases. Motivated by this, in this work we introduce a new method for
mining CHUIs from incremental databases in the literature.

The core novel ideas are the incremental utility-list structure and the maintenance mechanisms. Although
using utility-list structure in an incremental way has been utilized in several existing methods, e.g., [33, 34,
26], our method is more advance and is different from these methods in several ways. First, the HUI-list-INS
algorithm [33, 34] employs the traditional utility list structure, builds the utility lists of single item separately
(DB.UL, the utility lists of the original database D, and db.UL, the utility lists of added transactions d). In
contrast, with our utility-list structure, a utility-list has two parts, one part for the original database and
another part for the added section. More importantly, our utility-list is built with only one database scan
and remains valid whenever transactions are added; whereas, HUI-list-INS has to scan database two times
to build its lists. Before the mining process, HUI-list-INS merges the utility lists with respect to the original
database and the added section of the same single item. However, the two parts of our list are concatenated
to form a single utility-list for the updated database after the mining process is finished, to prepare the
algorithm for the next execution where new transactions are added. Second, LIHUP algorithm [26] is quite
similar to the HUI-list-INS algorithm, but it only needs one database scan, and its list remains valid with new
transactions being added. From this perspective, it is similar to our IncCHUI approach. However, LIHUP
performs mining process like the previous approach, HUI-Miner[19], by using its utility lists, and does not
apply any advanced pruning strategies. Third, in this work, we introduce a fast incremental utility-list
construction procedure, while both HUI-list-INS and LIHUP use the old utility-list construction method,
which is costly. Fourth, HUI-list-INS and LIHUP perform searching of HUIs in the whole database, while
our method employs the utility-list part of the updated section to allow early pruning. This is because
we can avoid exploring the itemsets that do not appear in the inserted transactions. Fifth and finally, we
introduce an efficient hash-based approach to update or insert new CHUIs that are found during the mining
process. Our approach is more efficient than the method that EIHI [24] employs, which requires maintaining
the rank order of single items according to the original database to maintain the HUI-trie. Besides, inserting
HUIs into the HUI-trie is costly because the order of single items changes when new transactions are added,
whereas the number of HUIs is very large.

4. The IncCHUI method

The proposed IncCHUI algorithm is a single-phase approach that utilizes the incremental utility-list
structure to mine CHUIs in incremental databases. IncCHUI is executed in three distinct stages. In the first
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stage, it reads the original database or the newly added transactions, initializes the global lists of single items
and closed hash table CHT if needed, then it sets up a total order on items. In stage 2, it sorts the global
list according to the updated total order of items specified in the first stage, then performs a procedure to
update this list to make it valid. In the third stage, a recursive search procedure is executed to efficiently
mine CHUIs. The result CHUIs are stored in the closed table properly with its maintenance rule. The overall
mining process of the proposed algorithm is shown in Fig. 2, meanwhile its components and structures are
presented in detail in the following subsections.

Add

Original database New transactions Result CHUIs 

(CHT)

Global lists of single items

Construct

Update
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- On updated single items
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Figure 2: Overall process of the proposed method.

4.1. Incremental utility-list structure

To store crucial information of itemsets in the original database, as well as in the added transactions, we
employ the traditional utility-list structure [19] in an incremental way. Its definition and properties are as
follows.

Definition 8 (Incremental Utility-list Structure). Let � be a total order on items from I. Let TD be the
set of transaction identifiers in the original database D, and let TN be the set of transaction identifiers in a
non empty set of transactions N , which is appended to the original database to obtain the updated database
DN , TDN = TD ∪ TN. The incremental utility-list of an itemset X in the database DN is denoted as
iUL(X ), and it includes two traditional utility-lists storing information about X with respect to the original
database D and the updated section N , namely ulD and ulN . Formally,

iUL(X ).ulD =
⋃

X∈TDtid
(tid ; u(X ,TDtid);

∑
i∈X∧x�i u(i ,TDtid)), and

iUL(X ).ulN =
⋃

X∈TNtid′
(tid ′; u(X ,TNtid′);

∑
i∈X∧x�i u(i ,TNtid′)).

Based on this definition, we have the following property to specify utility of one itemset regarding its
incremental utility-list.

Property 4 (Sum of iutil values). Let there be an itemset X. The utility of X, u(X), on the up-
dated database DN is equal to the sum of all the iutil values in its incremental utility-list iUL(X ), i.e.,
u(X ) =

∑
iUL(X )ulD.iutil +

∑
iUL(X )ulN .iutil . If the sum is higher than or equal to the minutil thresh-

old, it follows that X is a HUI. Otherwise, X is a low-utility itemset.

Example 5. Consider the example database presented in Fig. 1. The original database contains 5 transac-
tions (T1, . . . , T5), then transactions T6 and T7 are added. The total order of items according to the ascending
order of TWU values is g � f � a � b � d � e � c. Fig. 3 depicts the incremental utility-lists of single
items for the example, where white parts represent tuples of the ulD lists (the original transactions), and
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grey parts represent tuples of the ulN lists (the added transactions). In this figure, the utility-list of added
transactions of g is empty (iUL(g).ulN = NULL), because the added transactions T5 and T6 do not contain
item g. From this example, we introduce the following property to prune itemsets that are not in the added
section.

g

Tid iutil rutil

2 5 22

5 2 9

f

Tid iutil rutil

3 5 25

6 2 14

a

Tid iutil rutil

1 5 3

2 10 12

3 5 20

7 5 7

b

Tid iutil rutil

3 10 10

4 8 12

5 4 5

6 4 10

d

Tid iutil rutil

1 2 1

3 6 4

4 6 6

6 10 0

7 2 5

e

Tid iutil rutil

2 6 6

3 3 1

4 3 3

5 3 2

7 3 2

c

Tid iutil rutil

1 1 0

2 6 0

3 1 0

4 3 0

5 2 0

7 2 0

Figure 3: Incremental utility-lists of single items for the example database.

Property 5. For any itemset X, if the utility-list of X in N , iUL(X ).ulN , is empty, then the itemset X and
all its extensions do not need to be explored.

This property is directly obtained from Property 1. Furthermore, from Property 3 [19], we have the
following property to prune low-utility itemsets employing the increment utility-list structure.

Property 6 (Pruning using the increment utility-list). Let � be a total order on items from I. Let there
be any itemset X, and the extensions of X be the itemsets obtained by appending an item y to X such that
y � i, ∀i ∈ X. If the sum of iutil and rutil values in iUL(X ).ulD plus the sum of iutil and rutil values in
iUL(X ).ulN is less than minutil, then X as well as all its transitive extensions are low-utility.

The incremental utility-list of any itemset xy can be obtained by intersecting the incremental utility-lists
of its subsets iUL(x ) and iUL(y) without scanning the database. The basic procedure for intersecting utility-
lists was proposed in the HUI-Miner algorithm [19], and can be performed in linear time. This procedure
is useful for constructing utility-lists, and it can be applied directly to utility-lists stored in the incremental
utility-list structure. However, to construct the incremental utility-list of xy, we first intersect the utility-lists
of x and y on updated section, iUL(x ).ulN and iUL(y).ulN , then we intersect the utility-lists of x and y
on the original section, iUL(x ).ulD and iUL(y).ulD. Property 5 means that if the result of intersecting on
the updated section is empty, then we avoid performing further intersection, and return a NULL result list.
In conclusion, Property 5 enables early pruning, making it possible to provide a fast incremental utility-list
construction procedure, as presented in Algorithm 1.

4.2. Maintenance mechanisms

In this section, we present in detail the maintenance mechanisms of the proposed method including how
to maintain the incremental utility-lists of the global single items and the set of closed itemsets found so far.

4.2.1. Construction and update of the global list

To store crucial information of single items on both D and N , we use the proposed incremental utility-list
structure presented in Section 4.1. First, we construct a global data structure consisting of a set of incre-
mental utility-lists, named global list, where each list stores information of one single item in the incremental
database. However, different from the previous method by Liu and Qu [19], we scan the database only one
time, and the rutil values are initialized as zero. When finished reading the transactions, we recalculate the
rutil values after a global total order of single items is specified. The intuition behind these tasks is based
on the following property.

Property 7. The iutil values in ulD and ulN of incremental utility-lists of items are not changed if the total
order of items changed. However, the rutil values in these lists calculated based on the previous total order
on items from I are invalid when inserting new transactions. Therefore, the rutil should be recomputed
according to the change of the new total order.
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Algorithm 1 Construct increment utility-list

Input: The increment utility-list of itemset Px, iUL(Px ), and the increment utility-list of itemset Py,
iUL(Py).
Output: The increment utility-list for new itemset Pxy, iUL(Pxy).

1: iUL(Pxy) = NULL
2: for each (tuple exn ∈ iUL(Px ).ulN ) do
3: Search tuple eyn ∈ iUL(Py).ulN such that eyn.tid = exn.tid
4: if eyn is not NULL then
5: exyn ←− (exn.tid; exn.iutil + eyn.iutil; eyn.rutil)
6: iUL(Pxy).ulN ←− iUL(Pxy).ulN ∪ exyn
7: end if
8: end for
9: if (iUL(Pxy).ulN is empty) then

10: return NULL // by Property 5
11: end if
12: for each (tuple exd ∈ iUL(Px ).ulD) do
13: Search tuple eyd ∈ iUL(Py).ulD such that eyd.tid = exd.tid
14: if eyd is not NULL then
15: exyd ←− (exd.tid; exd.iutil + eyd.iutil; eyd.rutil)
16: iUL(Pxy).ulD ←− iUL(Pxy).ulD ∪ exyd
17: end if
18: end for
19: return iUL(Pxy)

Proof. We can easily prove this property by referring to the definition of traditional utility-list [19] in
Definition 7. Let � be a total order on items from I, i.e., the ascending order of TWU values. According to
Definition 7, utilities of items in the transaction stay the same even if the total order � is changed. This is
because the utility of each item is a multiplication of its purchase quantity (internal utility) and its profit
(external utility) in a database, where the purchase quantity and profit are fixed values and do not depend on
the total order. Meanwhile, each rutil value of an item in a tuple (tid ∈ TDN , iutil ∈ R, rutil ∈ R) is the sum
of utilities of subsequent items after the item in a transaction. However, a set of subsequent items regarding
the item is changed when the total order � is updated. In addition, the total order � of items varies when
adding a non empty set of transactions N to D, as the TWU values of single items may increase.

Table 1: TWU values w.r.t the original database.

Item a b c d e f g
TWU 65 61 96 58 88 30 38

Table 2: TWU values w.r.t the incremental database.

Item a b c d e f g
TWU 77 77 108 86 100 46 38

Example 6. The original database D in Fig. 1 contains 5 transactions T1, . . . , T5. The TWU values of single
items in I are showed in Table 1. Hence, the total order of single items according to the ascending order of
TWU values is f � g � d � b � a � e � c, and the global list of D is depicted in Fig. 4. After that, section N
containing transactions T6 = (b,2)(d,5)(f,2), and T7 = (a,1)(c,2)(d,1)(e,1) is added to the original database.
This makes the TWU values of single items change, for example TWU(f ) increases from 30 to 46. The TWU
values of single items are updated and presented in Table 2. Therefore, the previous total order of single
items is no longer valid for the whole incremental database DN , and changes to g � f � a � b � d � e � c.
Thus, the utility-lists of single items for the original database are not valid, and should be recalculated
properly according to the new total order.

What can be derived from this example is that after adding a set of non empty transactions N to the
original database D, we update the TWU information of items. The proposed algorithm utilizes the updated
TWU to set up a new total order � on items from I, i.e., TWU values ascending order. We then rearrange
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f

Tid iutil rutil

3 5 25

g

Tid iutil rutil

2 5 22

5 2 9

d

Tid iutil rutil

1 2 6

3 6 19

4 6 14

b

Tid iutil rutil

3 10 9

4 8 6

5 4 5

a

Tid iutil rutil

1 5 1

2 10 12

3 5 4

e

Tid iutil rutil

2 6 6

3 3 1

4 3 3

5 3 2

c

Tid iutil rutil

1 1 0

2 6 0

3 1 0

4 3 0

5 2 0

Figure 4: Incremental utility-lists of single items for the original database.

the global list according to this updated total order of items in I. After that, we traverse all incremental
utility-lists in the global list starting from the one of item having the largest TWU value and updates the
rutil values accordingly. We first update the rutil values of ulN , then that of ulD. While traversing, we
use a temporary array to store and compute the sum of iutil values having the same tid ∈ TDN, the array
index is the tid and the value store at each array entry is increased by that current iutil value. In other
words, each array value stores the remaining utility of the corresponding transaction at current step. Before
increasing this sum value, we assign the previous sum value to the rutil value of the tuple. When finishing
the traversal, the temporary array will be deleted to save memory. Algorithm 2 shows the pseudocode of this
restructure procedure. Note that, the global list for the original database is constructed when we consider
performing the first time with D contains no transaction and adding transactions in N . Finally, at the end
of mining process, for each increment utility-list of single items in the global list, the utility-list part in N ,
ulN , is concatenated to that in D, ulD, to form a single utility-list for the updated database DN . This is to
prepare the algorithm for the next execution where the database DN will be updated.

Algorithm 2 Procedure Update Global List

Input: A set of increment utility-lists, GUL.

1: Initialize array RuA containing rutil values of items with its elements are zero
2: for each list iUL(i′) ∈ GUL while traversing from bottom to top do
3: for each tuple e of iUL(i′) do
4: e.rutil = RuA[e.tid ]
5: RuA[e.tid ] = RuA[e.tid ] + e.iutil
6: end for
7: end for
8: delete RuA

Example 7. Consider the global list of original database presented in Fig. 4. Table 2 presents the updated
TWU values of single items when transactions T6 and T7 are added, and the new total order is g � f � a �
b � d � e � c. Fig. 5 depicts the rearranged global list presenting in Fig. 4 according to this new total order,
where the rutil values of the tuples for the added section are zero, and the rutil values of the tuples for the
original section may be invalid according to the new total order and need recalculating. Then we traverse
this global list and recalculate the rutil values as follows. Firstly, the traversal starts from the increment
utility-list of item c, since TWU(c) is the largest, its rutil values are set to zero. The iutil values of this item
are assigned to entries of the temporary array RuA with indexes are the transaction identifiers, i.e., RuA[1]
= u(c, T1) = 1, RuA[2] = u(c, T2) = 6, etc. Fig. 5 also shows the results of this step. We next traverse the
list of item e, which has five tuples with the Tids are 2, 3, 4, 5, and 7. The rutil values in the tuples of
the list are assigned to the stored sums in RuA at the corresponding index in Tids, which respectively are
6, 1, 3, 2, and 2. In addition, the stored values increases by the iutil values in these tuples, i.e., RuA[2] =
RuA[2] + u(e, T2) = 6 + 6 = 12. Fig. 6 is the processing result for the incremental utility-lists of items c
and e. Fig. 7 is the result after updating the lists of items c, e, and d. We apply the similar traversing and
updating process for the remaining lists, and the final result is depicted in Fig. 3.
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RuA = 1 6 1 3 2 0 2

Figure 5: The reordered global list of Fig. 4 according to the new total order.
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Figure 6: Update process for the list of e according to the new total order.
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Figure 7: Update process for the list of d according to the new total order.

4.2.2. Maintaining the set of closed high-utility itemsets found so far

In this subsection, we first describe a property and then how the algorithm maintains the set of CHUIs
when transactions are added.

Property 8. If itemset X is a CHUI in D before the addition of transactions in N , then X remains a CHUI
after transactions in N are added to the original database D.

Proof. Let Y be a superset of X, i.e., ∀Y,X ⊂ Y , the support of X is thus greater than the support of Y, and
the utility of X is no less than the minutil threshold because X is a closed high-utility itemset. If X /∈ N ,
then the support and the utility of X are not changed by Property 1, hence X is still a CHUI after adding
transactions in N to the original database D. Otherwise, if X ∈ N , then the support and the utility of X
calculated by Definition 3 will increase as a result of adding transactions in N . In this case, the support of
X still exceeds the support of its superset Y, and its utility is greater than the minutil threshold. Therefore,
X remains a CHUI affter transactions in N are added to the original database D.
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From Property 8, it can be derived that the set of closed high-utility itemsets CH′ found in the updated
database DN is always a superset of the set of closed high-utility itemsets CH found in the original database
D. Moreover, the utilities of itemsets in CH may only increase or stay the same in CH′ as a result of the
insertion of the new transactions, as well as its support. It is thus important to have a mechanism for storing
itemsets in CH that be able to quickly update their utility and support later, when adding transactions.
Hence, we store the closed itemsets found so far in a hash table, called the closed table CHT. The key of
the hash table element is the actual itemset, and the value is its utility and support. Whenever a CHUI is
found during the mining process on the added part, we first check whether it already was in the closed table
CHT. If yes, we update its utility and support. Otherwise, it is a new one and it is put into the closed table
CHT. When the algorithm terminates, all the CHUIs found so far are in the closed table CHT. If requested
by a user, the algorithm returns this set of result CHUIs.

4.3. The IncCHUI algorithm

Algorithm 3 shows the details of our algorithm. The main steps of IncCHUI are the followings. First,
IncCHUI initializes the global list GUL and the closed table CHT if it is the first time. The proposed
algorithm scans each transaction T in the original database D or the new inserted N only one time to build
the corresponding global increment utility-lists GUL (lines 3-11). For each item i ∈ T , if there does not exist
its list in the global list GUL, the algorithm creates its list. Then, the algorithm adds a tuple regarding the
transaction T to the list of item i (lines 8-9), where its rutil is zero, as well as calculates the TWU value
of single item i. After reading all the transactions, IncCHUI establishes a total order � on items, which
is the order of ascending TWU values (line 14). Second, IncCHUI sorts the global list GUL according to
the total order � (line 15). Then, it calls the Update Global List procedure (Algorithm 2) to adjust all the
rutil values of items (line 16). Third, if there is a mining request from the user, the Search-CHUI procedure
(Algorithm 4) is performed on the set of potential single items (items appearing in added transactions and
having TWU no less than minutil) to recursively search for closed high utility itemsets (line 19). Then,
IncCHUI outputs the result in CHT (line 20). Forth and finally, IncCHUI merges the utility-lists in N into
utility-lists in D of the increment utility-list of single items to form a single utility-list for DN , preparing for
the next execution where we add transactions to the database DN (lines 21-24).

As for searching of CHUIs, Algorithm 4 presents the details of our Search-CHUI procedure. This proce-
dure takes the current itemset to be extended P, the two sets of items PreSet(P) and PostSet(P) as input
parameters. The procedure computes all the closed high utility itemsets that strictly contain P by analyzing
all the valid closed itemsets that are obtained by extending P with the items in its PostSet. The main steps
of the Search-CHUI procedure are the followings. For each item x of PostSet(P), the procedure creates an
itemset Px = P ∪ x, and builds its increment utility-list iUL(Px ) using Algorithm 1 (lines 2-3). If the sum
of the iutil and rutil values in this list is no less than minutil, then the extensions of Px will be explored (line
4). Before exploring these extensions, the procedure IsSubsumedCheck(Px, PreSet(P)) is called to check
whether Px is included in previously found closed itemsets. If yes, then the supersets of Px do not need to
be explored (line 5). Otherwise, the search procedure tries to merge Px with each item y ∈ PostSet(P), such
that y � x to form a larger itemset Pxy. The postSetInner variable is initialized to an empty set (line 6).
Before constructing the utility-list of Pxy, the algorithm checks if item y appears in added section N (line
8). If this is true, then the procedure checks if y belongs to the closure of Px. If this condition is satisfied,
the increment utility-list of Pxy is constructed (line 13). Next, if the sum of the iutil and rutil values in the
iUL(Pxy) is less than minutil, then this means that Pxy and its extensions are low utility itemsets. Hence,
the search procedure stops adding items to Pxy to not generate its extensions (lines 14-16). Otherwise, y is
added to postSetInner (line 18). If Pxy is, on the other hand, a potential CHUI and its utility is no less than
minutil, the next step is to check whether Pxy has been discovered before in the closed table CHT. If this
is the case, then the algorithm updates its utility and support. Otherwise, the algorithm puts it into CHT
(lines 21-27). The Search-CHUI procedure is then recursively called to continue exploring the search space
with Pxy and its two corresponding sets (line 29). Lastly, the item x is added to PreSet(P) (line 30). When
the Search-CHUI algorithm terminates, all the CHUIs in the database have been obtained and enumerated.

The third stage is the most expensive stage. However, IncCHUI inherits the efficient search space brows-
ing and closure computation techniques of DCI CLOSED algorithm [10], which is, as already mentioned,
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Algorithm 3 IncCHUI

Input: The original database D, an incremented transaction data N , and the minutil threshold.
Output: A complete set of closed high-utility itemsets.

1: Global variables: a global set of increment utility-list GUL, a closed high-utility itemset table CHT
2: Initialize GUL ←− ∅, CHT ←− ∅ for the first time
3: for each transaction T ∈ D or N {only scan one time} do
4: for each item i ∈ T do
5: if GUL.iUL(i) = NULL then
6: Create iUL(i) in GUL
7: end if
8: Create a tuple for T in GUL.iUL(i) accordingly D or N
9: Set iutil and rutil of the tuple to u(i,T) and zero

10: Update TWU(i)
11: end for
12: end for
13: Let I be the list of single items
14: Let � be the ascending order of TWU values on items in I
15: Sort the increment utility-lists in GUL according to �
16: Call Update Global List(GUL) // Algorithm 2
17: if user request mining then
18: Let I∗ be the list of items being updated and having TWU values no less than minutil// by Proper-

ties 1-2
19: Call Search-CHUI (∅, ∅, the increment utility-list of items ∈ I∗) //Algorithm 4
20: Output result itemsets in CHT
21: for each iUL ∈ GUL do
22: Merge iUL.ulN to iUL.ulD
23: iUL.ulN = NULL
24: end for
25: end if

one of the fastest algorithms for mining frequent closed itemsets, along with the proposed techniques pre-
sented above. It is here important to note that state-of-the-art algorithms, such as CHUI-Miner [14] and
CLS-Miner [15], also adopt the techniques of DCI CLOSED. Nevertheless, in contrast to DCI CLOSED, In-
cCHUI prunes candidates that are not in the inserted transactions (Property 5), or low-utility (Property 6).
Moreover, IncCHUI computes closure of itemsets directly. Hence, it avoids calculating the utility lists of
low-utility or non-closed itemsets.

Proof of correctness and completness. First, using the PostSet set guarantees that the complete set
of potential closed itemsets will be obtained, meanwhile using the PreSet set guarantees that all duplicate
closed itemsets will be pruned by the procedure IsSubsumedCheck. For this reason, the Search-CHUI
procedure can be said to be correct and complete in terms of finding closed itemsets and eliminating all
non-closed itemsets [10]. Second, IncCHUI employs the incremental utility-list structure to maintain crucial
information of items on both original database and updated section. Since Property 4 is correct with respect
to calculating the utility of itemsets, IncCHUI can correctly calculate the utility of itemsets and identify
only the high-utility itemsets. It is here important to note that the Update Global List procedure guarantees
that the global list of itemsets is always valid, also when new transactions are inserted. Third and finally,
the basic pruning strategies used in the proposed algorithm are Properties 5, and 6. These properties have
been proven earlier to be correct with respect to prune only not-updated and low-utility candidates. In
conclusion, we can conclude that the proposed IncCHUI algorithm is correct and complete for incremental
mining all closed high-utility itemsets.

Example 8. This example shows how IncCHUI works in the incremented database DN of Fig. 1. At the
beginning, the original database D contains five transactions, and the global list is constructed as shown
in Fig. 4. Suppose that minutil is 30. According to Example 2, the set of CHUIs in D is CH = {ace:31,
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Algorithm 4 Search-CHUI

Input : An itemset P, a set of pre-extensions of P (PreSet(P)), and a set of post-extensions of P
(PostSet(P)).

1: for each item x ∈ PostSet(P) do
2: Px←− P ∪ x
3: Construct iUL(Px ) // Algorithm 1
4: if iUL(Px ) is not NULL and Px is potential high-utility {by Property 6} then
5: if IsSubsumedCheck(Px, PreSet(P)) = False then
6: postSetInner ←− ∅
7: for each itemset y ∈ PostSet(P) and y � x do
8: if iUL(y).ulN is NULL then
9: Continue //by Property 5

10: end if
11: if TidSet(Px ) ⊆ TidSet(y) then
12: Pxy ←− Px ∪ y
13: Construct iUL(Pxy) //Algorithm 1
14: if iUL(Pxy) = NULL or Pxy is low-utility then
15: Break
16: end if
17: else
18: postSetInner ←− postSetInner ∪ y
19: end if
20: end for
21: if Pxy is high-utility then
22: if Pxy ∈ CHT then
23: Update the support and utility of Pxy
24: else
25: Put Pxy into CHT
26: end if
27: end if
28: PreSet(Pxy)←− PreSet(P), PostSet(Pxy) ←− postSetInner
29: Call Search-CHUI(Pxy, PreSet(Pxy), PostSet(Pxy))
30: PreSet(P)←− PreSet(P) ∪ x
31: end if
32: end if
33: end for

Function IsSubsumedCheck(Y, PreSet(Y ))

34: for each (item J ∈ PreSet(Y)) do
35: if (TidSet(Y ) ⊆ TidSet(J )) then
36: return True
37: end if
38: end for
39: return False

bce:37, bcde:40, and abcdef :30}. Then, section N containing transactions T6 and T7 is added. IncCHUI
performs the following steps to discover the set of CHUIs CH′ in the DN database, where the closed table
CHT contains itemsets ace, bce, bcde, and abcdef, and the global list of single items is depicted in Fig. 4.

Step 1. IncCHUI scans the two added transactions one time, then restructures the global list. The result
global list of single items for the DN is shown in Fig. 3.

Step 2. The list of single promising items is I∗ = {f, a, b, d, e, c}. Item g is eliminated since it is not in the
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added transactions (by the proposed Property 1).

Step 3. The Search-CHUI procedure begins its recursive search for CHUIs first using item f, with parameters
PostSet = {a, b, d, e, c}, and PreSet is still empty. This procedure finds CHUIs that are supersets of
f by trying to append items from PostSet to f. Extensions of f are potential CHUIs since the sum
iutil and rutil values of f is (5 + 22 + 2 + 9) = 38 (Fig. 3), which is no less than minutil = 30,
and f is not subsumed by any items because the PreSet is empty. Hence, items from PostSet are
appended to f to generate the closure of f. Before adding, pruning conditions are checked. Item a
is first considered adding to generate itemset fa. iUL(a).ulN is not empty, but TidSet(f )= {3, 6} *
TidSet(a)={1, 2, 3, 7}. Therefore, a is put into temporary variable postSetInner, which will be used
in the inner recursive call later. The algorithm considers appending b to f to create the itemset fb.
Its incremental utility-list is constructed by Algorithm 1, and iUL(fb) = {(T3, 15, 15), (T6, 6, 10)}.
This itemset fb is not pruned, and it is a potential HUIs by Property 4, since (15 + 15 + 6 + 10) =
46 > minutil = 30. IncCHUI next considers appending d, e, c to fb in the same way. This results
in the closed high utility itemset fbd, having the utility-list iUL(fbd) = {(T3, 21, 9), (T6, 16, 0)}. fbd
is a new CHUI, because its utility (which is 37) is bigger than minutil, and fbd is not in the closed
table CHT. IncCHUI puts fbd into the CHT. On the other hands, items e and c are inserted to
postSetInner since TidSet(fb) * TidSet(e), and TidSet(fb) * TidSet(c).

Next, the search procedure enters the inner recursive to search for CHUIs which are supersets of fbd
by extending it with a, e, and c (in PostSet(fbd)= postSetInner), and its preset is empty. However,
when adding a to fbd in order to form itemset fbda, iUL(fbda) = NULL calculated by Algorithm 1,
since iUL(fbda).ulN = ∅. Therefore, fbda is pruned early by our Property 5. Similarly, fbde and fbdc
are also pruned early. The inner recursively search finishes without finding any CHUIs. Finally, f is
added to the set PreSet, and the loop with item f ends.

Step 4. IncCHUI searches for CHUIs starting with item a. This process is similar to Step 3, with PreSet
= {f } and PostSet = {b, d, e, c}. And IncCHUI finds two closed itemsets, the first is itemset
ac with iUL(ac) = {(T1, 6, 2), (T2, 16, 6), (T3, 6, 19), (T7, 7, 5)}, and the second is itemset ace with
iUL(ace) = {(T2, 22, 0), (T3, 9, 16), (T7, 10, 2)}. ac is the new one and IncCHUI puts it into the CHT,
while ace exists in the CHT, IncCHUI thus updates its utility and support to 41 and 3, respectively.

Step 5. The remaining items are processed in the same way. Finally, the set of closed high utility itemsets in
DN is CH′={ace:41, bce:37, bcde:40, abcdef :30, bdf :37, bd :44, ac:35, and ce:32}, where the number
besides each itemset indicates its utility. At the end, IncCHUI concatenates the lists in N into D of
the global list preparing for the next update.

4.4. Complexity analysis

In this section, we analyse the complexity of our method IncCHUI by first considering its two required
key operations: global data structure construction/update, and pattern searching. Then, we discuss the
worst-case complexity of IncCHUI, and compare with the complexity of the state-of-the-art CHUI-Miner,
CLS-Miner, and EFIM-Closed algorithms.

1. Global data structure construction/update. Let nD and nN be the number of transactions in the
original database D and the added part N , respectively. Let w be the average transaction length, and
m be the number of distinct items. The time required to read all the transactions in the original or the
added section is O(nD×w) or O(nN ×w), respectively. Building the initial incremental utility-list, and
calculating the TWU of single items are performed within this reading step. Sorting the TWU values
or the utility-list of single items requires O(mlog(m)), in terms of time. Update Global List procedure
takes O(m×w) time. Hence, the time complexity of this phase is O(nD ×w+ 2mlog(m) +m×w) or
O(nN ×w+ 2mlog(m) +m×w), which respectively is roughly O((nD +m)×w) or O((nN +m)×w),
since the sort is only performed once time.

2. Pattern searching. This is the major operation performed by IncCHUI to discovery all CHUIs by
recursively applying the Search-CHUI procedure. The complexity of this procedure is proportional
to the number of times that the IsSubsumedCheck procedure is called, which is proportional to the
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number of itemsets in the search space that are not pruned by the algorithm. In the worst case, no
itemsets are pruned by the pruning properties, and the added transactions involve all items. Then
the algorithm must consider 2m − 1 itemsets in the search space. Thus, the worst-case complexity is
O(2m − 1).

In conclusion, the overall worst case time complexity of the proposed algorithm IncCHUI (Algorithm 3)
is O(2m − 1), which is the same as CHUI-Miner [14] and CLS-Miner [15]. The time complexity of IncCHUI
is roughly linear with the number of patterns that it visits in the search space. EFIM-Closed [16] is, on the
other hand, different from InCHUI because of the following EFIM-Closed operations: (1) sorting transaction
database inO(nwlog(nw)), where n = nD+nN , (2) for each primary itemset α encountered during the depth-
first search, EFIM-Closed performs database projection, transaction merging, backward/forward extension
checking and upper-bound calculation. These three tasks are each carried out in O(nw). Thus, the time
complexity of EFIM-Closed is also proportional with the number of itemsets in the search space.

Remark. The number of patterns in the search space is determined by the effectiveness of the pruning
strategies that the algorithms employ. The search space is also much smaller than 2m− 1 itemsets since not
all items co-occur in a database, or the added transactions may not involve all single items. Furthermore,
IncCHUI is designed in a way such that it only needs to scan the database once. In contrast, the other
algorithms scan the database twice and they must re-scan the whole database each time transactions are
inserted, since they run in batch mode. This would be time consuming, especially if the database is large.
In the experimental evaluation in the next section, we demonstrate that IncCHUI is more efficient than
CHUI-Miner [14], CLS-Miner [15], and EFIM-Closed [16] algorithms.

5. Performance study

This section presents an extensive experimental evaluation to assess the efficiency of IncCHUI algorithm,
including its performance when varying (i) minutil value, (ii) the number of transactions added (insertion
rate), and (iii) databases’ size (scalability tests). Because IncCHUI is the first algorithm for incremental
mining CHUIs, the only way to evaluate its performance against the state-of-the-art algorithms for mining
CHUIs is to compare it with the algorithms used in static databases and run in batch mode, which are CHUI-
Miner [14], CLS-Miner [15], and EFIM-Closed [16]. CHUI-Miner and CLS-Miner employ the traditional
utility-list structure, with the same exploring technique as the IncCHUI algorithm; whereas EFIM-Closed
utilizes the database projection and transaction merging techniques.

5.1. Experiment setup

All the algorithms were implemented in Java, where CHUI-Miner1 and EFIM-Closed2 were obtained
from the authors’ pages. We carried out the experiments on a computer equipped with a 64 bit Core i5 2.4
GHz Intel Processor, 4GB of main memory, and running Windows 7 as operating system. We performed
experiments on both real-life and synthetic datasets having various characteristics. Table 3 presents char-
acteristics of these datasets, where #Trans, #Items, and #Avg indicate the number of transactions, the
number of distinct items and the average transaction length, respectively. The Connect, Mushroom and
Retail datasets were obtained from the FIMI Repository3. The Foodmart dataset is the Microsoft FoodMart
2000 database4, and ChainStore5 was obtained from the NUMineBench software distribution. OnlineRe-
tail6 is a recently transactional dataset which contains all the transactions occurring between 01/12/2010
and 09/12/2011 from a UK-based and registered non-store online retail. The company mainly sells unique
all-occasion gifts. Lastly, T10I4D100K is a synthetic dataset generated using the IBM Quest dataset gener-
ator [41].

1http://bigdatalab.cs.nctu.edu.tw/software.php
2http://www.philippe-fournier-viger.com/spmf
3http://fimi.cs.helsinki.fi/data
4http://bigdatalab.cs.nctu.edu.tw/software.php
5http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
6http://archive.ics.uci.edu/ml/datasets/online+retail
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We selected these datasets because they include both dense, sparse, and large datasets, and thus represent
well the main types of data seen in real-life applications. These datasets are also the most common used
benchmark datasets in the high utility pattern mining literature. All datasets except Foodmart, OnlineRetail,
and ChainStore do not include internal (purchase quantity) and external (profit unit) utility values. Thus,
for these datasets, the internal and external utilities have been respectively generated randomly in the [1, 5]
and [1, 10] intervals using a log-normal distribution, as in previous works [14, 16, 15].

Table 3: Details of the datasets.

Dataset #Trans #Items #Avg

Chainstore 1,112,949 46,086 7.3
Connect 67,557 129 43.0
Foodmart 4141 1559 4.4
Mushroom 8124 119 23.0
OnlineRetail 541,909 2603 4.37
Retail 88,162 16,470 10.3
T10I4D100K 100,000 870 10.1

5.2. Influence of the minutil threshold

We first performed experiment to evaluate the proposed algorithm under various minutil threshold values
with a fixed number of inserted transactions (equivalently is the insertion ratio). Since these datasets have
different number of transactions, and choosing a wide range of insertion ratios may provide a broader view
on the performance of the algorithms, we adopted several insertion ratio values. In particular, the insertion
ratio on Chainstore, Connect, Retail, and OnlineRetail is 10%, while for Foodmart and Mushroom it is 5%,
and on the remaining synthetic dataset it is 1%. For example, the dataset T10I4D100K contains 100,000
transactions, and its insertion ratio is set as 1%. Hence, the compared algorithms are applied begin at the
first 1000 transactions, increasing in increments of 100,000 × 1% = 1000 transactions, to the whole dataset.
In other words, the compared algorithms are applied 100 times on this dataset, where the input data size
gradually increase from 1000 to 100,000 transactions with the step size is 1000 transactions. We ran all
the compared algorithms on each of the datasets while gradually decreasing the minutil threshold, until
a clear winner was observed. The execution times include the total time for reading the input database,
discovering the patterns, and writing results to an output file. For each dataset, we also recorded the peak
memory consumed by the algorithms when processing each incremented data part. For example, with the
T10I4D100K dataset and the insertion rate equals to 1% presented above, we record the peak memory
usages of the algorithms on 100 times running. Then we select and report the maximum values among those
memory usages. Fig. 8 presents the accumulated run time comparison, while Table 4 compares the maximum
memory consumption.

In Fig. 8, we can see that CHUI-Miner has the largest time consumption on all datasets except Connect,
where EFIM-Closed consumes the largest time when the minutil value is smallest on this dataset. On the real
datasets, InCHUI is the fastest, and there is a big gap between the execution times when the minutil value is
small. In particular, on the Connect dataset, EFIM-Closed is faster than the remaining algorithms when the
minutil value is large, however, it requires a big increasing amount of execution time when the minutil value
is small. CLS-Miner is slightly slower than the proposed method. On the synthetic dataset T10I4D100K,
IncCHUI is faster than both CHUI-Miner and CLS-Miner. It is also faster than EFIM-Closed when minutil
value is larger than 300K. Furthermore, the run time of our method is almost the same when decreasing
minutil threshold value on Foodmart, Mushroom, OnlineRetail, and T10I4D100K datasets. The reason can
be explained as follows. Although CHUI-Miner, CLS-Miner and our algorithm, IncCHUI, employ similar
utility-list structures, both CHUI-Miner and CLS-Miner use the traditional utility-list [19] requiring to scan
the database two times to construct utility-lists of single items. This also applies to EFIM-Closed, even
though it applies different techniques to reduce the cost of database scans [16]. As discussed in Section 3,
these techniques require an expensive database sort operation to identify duplicate transactions, which would,
in turn, degrade its performance on large datasets. In contrast, IncCHUI only scans the database one time.
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Further, recall that the algorithms used in our comparative study were performed in batch mode. Hence, it
is necessary to re-scan the database each time transactions are inserted into the original database. This, in
itself, contributes to performance degradation. Moreover, the way the three previous algorithms build their
required structures leads to mining on the incremental database from scratch, which is inefficient. On the
other hand, IncCHUI efficiently maintains the incremental utility-lists of single items and the results found
so far, and only performs searching on the updated data part. Overall, when varying the minutil value, our
method is up to 24, 13, 4 times faster than CHUI-Miner, CLS-Miner, and EFIM-Closed, respectively.
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Figure 8: Accumulated runtime comparison when varying utility threshold.

Table 4 compares the peak memory usages of the four algorithms when the minutil threshold is set to the
smallest values used in the previous experiment. The minimum usage values are typeset boldface. All the
memory measurements were done using the standard Java API. As can be observed in the table, the memory
consumption of the algorithms varies a lot. Our proposed method requires the least memory on five out of
seven datasets. EFIM-Closed is more memory efficient on Foodmart dataset than the other algorithms, since
this algorithm generates projected databases that are often very small in size, due to transaction merging,
especially on small, short transaction datasets. CLS-Miner, on the other hand, needs to store other structures
in memory for its pruning strategies, such as the Estimated Utility Co-occurrence Structure and the coverage
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of items. Hence, it consumes more memory than the other algorithms, especially on the ChainStore dataset.

Table 4: Comparison of maximum memory consumption (MB) when varying utility threshold.

Dataset CHUI-Miner CLS-Miner EFIM-Closed IncCHUI
Chainstore 987.62 1949.00 677.21 851.33
Connect 368.57 768.4 702.38 355.82
Foodmart 156.5 207.23 21.78 59.7
Mushroom 279.48 260.36 200.40 39.12
OnlineRetail 780.26 661.10 653.48 442.66
Retail 704.63 719.23 594.04 141.81
T10I4D100K 712.38 637.35 316.42 61.96

To verify whether the IncCHUI algorithm obtains all the CHUIs, we kept record of the mining results
produced by the four algorithms. All the algorithms gave the same results with respect to the same minimum
utility threshold values and the same transactions. Moreover, we compared the number of CHUIs with the
number of HUIs obtained by our previous method [2]. Tables 5 and 6 show the results at different minimum
utility threshold and database size on the Mushroom and Foodmart datasets, respectively. In these tables,
using the representation of CHUI produces a huge reduction in the number of result patterns, especially
when the minutil threshold value is small.

Table 5: Number of extracted patterns on Mushroom.

Database
size (%)

Minimum utility threshold

10K 20K 30K 40K 50K

#HUIs #CHUIs #HUIs #CHUIs #HUIs #CHUIs #HUIs #CHUIs #HUIs #CHUIs

20 22390646 7996 3805495 2916 930745 1623 399437 807 147963 598
40 83178297 20527 21473415 9595 8646214 5487 4230218 3563 2336987 2447
60 141184897 37676 40017244 20777 17181448 13422 8818875 9668 5178501 7233
80 175259635 60088 48512583 34407 20349622 22773 10481875 16047 5983649 12038
100 229433266 78018 63423965 45891 26268454 30736 13327479 22034 7502602 16617

Table 6: Number of extracted patterns on Foodmart.

Database
size (%)

Minimum utility threshold

1K 1.5K 2K 2.5K 3K

#HUIs #CHUIs #HUIs #CHUIs #HUIs #CHUIs #HUIs #CHUIs #HUIs #CHUIs

20 40715 1642 33735 1319 25405 1028 17533 781 11095 583
40 88711 2970 76940 2630 62016 2200 47174 1821 34270 1471
60 125866 4105 108646 3756 86649 3279 64700 2791 45763 2306
80 182380 5280 159870 4883 130318 4294 100392 3691 74066 3099
100 219012 6454 191173 5986 154670 5273 117592 4552 85034 3804

5.3. Influence of the insertion ratio

We further performed experiments to evaluate the efficiency of the proposed IncCHUI algorithm when
varying the number of transactions inserted (insertion ratio), while the minutil threshold values are fixed.
Specifically, the minutil values were set to 2000K, 12000K, 1K, 20K, 400K, 10K, and 300K on Chainstore,
Connect, Foodmart, Mushroom, OnlineRetail, Retail, and T10I4D100K, respectively. We ran all the com-
pared algorithms on each of the datasets while gradually decreasing/increasing the insertion rate until a
clear winner was observed.
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Fig. 9 shows the accumulated runtime comparison for this evaluation. In this figure, we can observe
that the proposed algorithm IncCHUI outperforms the other algorithms under various insertion ratios.
The execution time of IncCHUI almost is constant when varying the number of added transactions on
the Foodmart, OnlineRetail, Retail, and T10I4D100K datasets. On the remaining datasets, the execution
time of IncCHUI increases slowly when decreasing insertion ratio. Meanwhile, the execution times of other
compared algorithms largely change when the insertion ratio is smaller since they were run in batch mode.
CHUI-Miner has the largest time consumption on all the datasets. On the synthetic dataset T10I4D100K,
the execution time of IncCHUI is almost constant and more stable than that of EFIM-Closed. The three
baseline algorithms have almost the same performance on Connect dataset, but IncCHUI is better than all
three algorithms on this dataset. In general, when varying the number of inserted transactions, our method
is up to 145, 117, 10 times faster than CHUI-Miner, CLS-Miner, and EFIM-Closed, respectively.
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Figure 9: Accumulated runtime comparison when varying insertion rate.

In Table 7, we compare the maximum memory usages of the four algorithms when insertion ratio was
set to the smallest values used in this experiment. Again, the minimum usage values are typeset boldface.
In this table, we can see that the memory consumptions of the algorithms vary depending on the dataset
used. As before, the proposed method requires the least memory on all the datasets, except Foodmart
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Table 7: Comparison of maximum memory consumption (MB) when varying insertion rate.

Dataset CHUI-Miner CLS-Miner EFIM-Closed IncCHUI
Chainstore 945.68 1225.50 651.84 848.00
Connect 372.03 695.54 693.44 354.74
Foodmart 173.72 261.04 21.79 59.70
Mushroom 291.10 260.36 227.91 35.90
OnlineRetail 781.89 657.90 649.25 555.16
Retail 704.85 719.23 643.87 142.78
T10I4D100K 710.67 634.98 656.32 61.96

and Chainstore. For the same reason as mentioned before, EFIM-Closed is much more memory efficient on
Foodmart dataset than the remaining algorithms. CHUI-Miner, CLS-Miner, and IncCHUI are single phase
and employ utility-list structure to store crucial information, but CLS-Miner needs to store other structures
in memory for its pruning strategies. IncCHUI only maintains the set of closed itemsets found so far, and
the global incremental utility-lists of single items.

5.4. Scalability tests

In the final set of experiments, we performed scalability tests in order to verify that the running time
and memory consumption of our method do not grow exponentially. In addition, we study the impact of
changes when increasing the number of transactions. We first use 20% of transactions in a database as the
original database, then the incremental sections are added and processed. We executed the algorithms from
the related work by employing the lowest minutil values as used in the previous experiments.
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Figure 10: Scalability tests.

Fig. 10 shows the result of this evaluation. We note that the runtime for IncCHUI is the time to process
each incremented part. Meanwhile, the run times for the remaining algorithms are the accumulated execution
times, because these algorithms work with static databases and are run in batch mode. In this figure, we
can see that the four algorithms require more execution time when the database size become larger, of which
IncCHUI has the best scalability performance. The runtime performance of CHUI-Miner is the worst and
it is much slower than the others. The reason is that CHUI-Miner only employs the basics overestimations
(TWU and remain utility) without any other pruning strategies and complex structures, in contrast to
CLS-Miner and EFIM-Closed. Moreover, since the related algorithms are run in batch mode and scan the
database two times, this could contribute to the performance degradation.

In terms of memory usage, our experiments show (see Fig. 10) that the memory consumption of IncCHUI
as function of the database size is almost constant on Chainstore and Mushroom, and increases linearly on

23



the OnlineRetail dataset. In general, for all the algorithms, the trend in memory consumption varies greatly
depending on the dataset used, the structures employed by the algorithms, and the total number of generated
candidates during the mining process. For example, Chainstore is a sparse and large dataset. On this dataset,
CLS-Miner consumes more memory since it needs to store the structures for its pruning strategies, such as
the coverage of items and the Estimated Utility Co-occurrence Structure. Note, however, that CLS-miner’s
runtime on this dataset is quite low. On the dense dataset Mushroom, the memory consumption of CLS-
Miner is quite low, as a result of the effectiveness of its coverage pruning strategy. Nevertheless, IncCHUI
has the overall least memory consumption on this dataset.

To summarize, IncCHUI shows the best scalability with respect to the sizes of the input databases
compared to the other algorithms in our study. Also, the maximum memory used by IncCHUI for the
complete mining process is small and reasonable. Finally, our evaluation confirms that both the runtime and
the memory consumption of IncCHUI did not grow exponentially with the increased number of transactions.

6. Conclusion

In this work, we introduced a new approach, called IncCHUI, to efficiently discover and maintain closed
high-utility itemsets (CHUIs) in incremental databases. To address the challenges with the dynamic nature
of such databases, we developed a new algorithm applying several new important features. First, we proposed
an incremental utility-list structure to store crucial information in itemsets. An important aspect of this list
structure is that it is built and restructured by scanning the database only once, instead of scanning the whole
database two times as other list-based methods do. Second, we suggested a new technique to mine updated
items, and prune itemsets that are not present in the updated databases. Third, for efficiency, we proposed
a method based on a hash table to maintain CHUIs. To evaluate our approach, we performed extensive
experiments on both real-life and synthetic datasets, and compared it with the state-of-the-art methods.
This evaluation confirmed the feasibility and efficiency of our method, which were achieved without the need
to implement complicated pruning strategies or complex data structures.

Our future work includes studying more pruning strategies, and mining high-utility patterns in dynamic
databases, with which old transactions normally become less important than newer ones, or have to be
removed.

Acknowledgements

The basic ideas of this work were developed during the five months T-L. Dam spent as an ERCIM fellow
at the Norwegian University of Science and Technology (NTNU), in 2017. This work was partly funded by
the Norwegian Research Council through the ExiBiDa project, and the NTNU through the MUSED project.

References

[1] P. Fournier-Viger, J. C.-W. Lin, Q.-H. Duong, T.-L. Dam, FHM+: Faster High-Utility Itemset Mining Using Length
Upper-Bound Reduction, in: Trends in Applied Knowledge-Based Systems and Data Science, Springer International
Publishing, 2016, pp. 115–127.

[2] Q.-H. Duong, P. Fournier-Viger, H. Ramampiaro, K. Nørv̊ag, T.-L. Dam, Efficient high utility itemset mining using
buffered utility-lists, Applied Intelligence 48 (2018) 1859–1877.

[3] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, VLDB (1994) 487–499.

[4] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, Y. K. Lee, Efficient tree structures for high utility pattern mining in incremental
databases, IEEE Transactions on Knowledge and Data Engineering 21 (2009) 1708–1721.

[5] U. Yun, H. Ryang, Incremental high utility pattern mining with static and dynamic databases, Applied Intelligence 42
(2015) 323–352.

[6] A. Y. Peng, Y. S. Koh, P. Riddle, mHUIMiner: A fast high utility itemset mining algorithm for sparse datasets, in:
Proceedings of PAKDD’2017, 2017, pp. 196–207.

[7] V. S. Tseng, C. W. Wu, P. Fournier-Viger, P. S. Yu, Efficient algorithms for mining the concise and lossless representation
of high utility itemsets, IEEE Transactions on Knowledge and Data Engineering 27 (2015) 726–739.

24



[8] G. Grahne, J. Zhu, Fast algorithms for frequent itemset mining using FP-trees, IEEE Transactions on Knowledge and
Data Engineering 17 (2005) 1347–1362.

[9] M. J. Zaki, C.-J. Hsiao, Efficient algorithms for mining closed itemsets and their lattice structure, IEEE Transactions on
Knowledge and Data Engineering 17 (2005) 462–478.

[10] C. Lucchese, S. Orlando, R. Perego, Fast and memory efficient mining of frequent closed itemsets, IEEE Transactions on
Knowledge and Data Engineering 18 (2006) 21–36.

[11] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Efficient mining of association rules using closed itemset lattices, Information
Systems 24 (1999) 25 – 46.

[12] T. Le, B. Vo, An N-list-based algorithm for mining frequent closed patterns, Expert Systems with Applications 42 (2015)
6648 – 6657.

[13] L. T. T. Nguyen, T. Trinh, N. T. Nguyen, B. Vo, A method for mining top-rank-k frequent closed itemsets, Journal of
Intelligent and Fuzzy Systems 32 (2017) 1297–1305.

[14] C. W. Wu, P. Fournier-Viger, J. Y. Gu, V. S. Tseng, Mining closed+ high utility itemsets without candidate generation,
in: 2015 Conference on Technologies and Applications of Artificial Intelligence (TAAI), 2015, pp. 187–194.

[15] T.-L. Dam, K. Li, P. Fournier-Viger, Q.-H. Duong, CLS-Miner: efficient and effective closed high-utility itemset mining,
Frontiers of Computer Science (2018) 1–25.

[16] P. Fournier-Viger, S. Zida, J. C.-W. Lin, C.-W. Wu, V. S. Tseng, EFIM-Closed: Fast and memory efficient discovery of
closed high-utility itemsets, in: Proceedings of Machine Learning and Data Mining in Pattern Recognition (MLDM) 2016,
2016.

[17] Y. Liu, W.-k. Liao, A. Choudhary, A two-phase algorithm for fast discovery of high utility itemsets, in: Advances in
Knowledge Discovery and Data Mining, 2005, pp. 689–695.

[18] V. S. Tseng, C.-W. Wu, P. Fournier-Viger, S. Y. Philip, Efficient algorithms for mining top-k high utility itemsets, IEEE
Transactions on Knowledge and Data Engineering 28 (2016) 54–67.

[19] M. Liu, J. Qu, Mining high utility itemsets without candidate generation, in: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, 2012, pp. 55–64.

[20] V. Tseng, B.-E. Shie, C.-W. Wu, P. Yu, Efficient algorithms for mining high utility itemsets from transactional databases,
IEEE Transactions on Knowledge and Data Engineering 25 (2013) 1772–1786.

[21] Q.-H. Duong, B. Liao, P. Fournier-Viger, T.-L. Dam, An efficient algorithm for mining the top-k high utility itemsets,
using novel threshold raising and pruning strategies, Knowledge-Based Systems 104 (2016) 106–122.

[22] T.-L. Dam, K. Li, P. Fournier-Viger, Q.-H. Duong, An efficient algorithm for mining top-k on-shelf high utility itemsets,
Knowledge and Information Systems 52 (2017) 621–655.

[23] C. Ahmed, S. Tanbeer, B. S. Jeong, Y. K. Lee, Efficient tree structures for high utility pattern mining in incremental
databases, IEEE Transactions on Knowledge and Data Engineering 21 (2009) 1708–1721.

[24] P. Fournier-Viger, J. C.-W. Lin, T. Gueniche, P. Barhate, Efficient incremental high utility itemset mining, in: Proceedings
of the ASE BigData & Social Informatics 2015, 2015, pp. 53:1–53:6.

[25] D. Kim, U. Yun, Efficient algorithm for mining high average-utility itemsets in incremental transaction databases, Applied
Intelligence 47 (2017) 114–131.

[26] U. Yun, H. Ryang, G. Lee, H. Fujita, An efficient algorithm for mining high utility patterns from incremental databases
with one database scan, Knowledge-Based Systems 124 (2017) 188 – 206.

[27] J. Lee, U. Yun, G. Lee, E. Yoon, Efficient incremental high utility pattern mining based on pre-large concept, Engineering
Applications of Artificial Intelligence 72 (2018) 111 – 123.

[28] G. Wensheng, L. J. ChunWei, F. Philippe, C. HanChieh, H. TzungPei, F. Hamido, A survey of incremental highutility
itemset mining, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8 (2018) e1242.

[29] J.-S. Yeh, C.-Y. Chang, Y.-T. Wang, Efficient algorithms for incremental utility mining, in: Proceedings of the 2nd
International Conference on Ubiquitous Information Management and Communication, ICUIMC ’08, 2008, pp. 212–217.

[30] J. W. Han, J. Pei, Y. W. Yin, Mining frequent patterns without candidate generation: A frequent-pattern tree approach,
Data Mining and Knowledge Discovery 8 (2004) 53–87.

[31] C.-W. Lin, T.-P. Hong, G.-C. Lan, J.-W. Wong, W.-Y. Lin, Incrementally mining high utility patterns based on pre-large
concept, Applied Intelligence 40 (2014) 343–357.

25



[32] T.-P. Hong, C.-Y. Wang, Y.-H. Tao, A new incremental data mining algorithm using pre-large itemsets, Intelligent Data
Analysis 5 (2001) 111–129.

[33] J. C.-W. Lin, W. Gan, T.-P. Hong, J.-S. Pan, Incrementally updating high-utility itemsets with transaction insertion, in:
X. Luo, J. X. Yu, Z. Li (Eds.), Proceedings of Advanced Data Mining and Applications, 2014, pp. 44–56.

[34] J. C.-W. Lin, W. Gan, T.-P. Hong, B. Zhang, An incremental high-utility mining algorithm with transaction insertion,
The Scientific World Journal 2015 (2015).

[35] T.-P. Hong, C.-H. Lee, S.-L. Wang, Effective utility mining with the measure of average utility, Expert Systems with
Applications 38 (2011) 8259 – 8265.

[36] U. Yun, D. Kim, Mining of high average-utility itemsets using novel list structure and pruning strategy, Future Generation
Computer Systems 68 (2017) 346 – 360.

[37] H.-F. Li, H.-Y. Huang, S.-Y. Lee, Fast and memory efficient mining of high-utility itemsets from data streams: with and
without negative item profits, Knowledge and Information Systems 28 (2011) 495–522.

[38] H. Ryang, U. Yun, High utility pattern mining over data streams with sliding window technique, Expert Systems with
Applications 57 (2016) 214 – 231.

[39] U. Yun, D. Kim, E. Yoon, H. Fujita, Damped window based high average utility pattern mining over data streams,
Knowledge-Based Systems 144 (2018) 188–205.

[40] Q.-H. Duong, H. Ramampiaro, K. Nørv̊ag, P. Fournier-Viger, T.-L. Dam, High utility drift detection in quantitative data
streams, Knowledge-Based Systems (2018).

[41] R. Agrawal, R. Srikant, Quest Synthetic Data Generator. Available at, (<http://www.almaden.ibm.com/cs/quest/

syndata.html>), 1994.

26

(<http://www.almaden.ibm.com/cs/quest/syndata.html>)
(<http://www.almaden.ibm.com/cs/quest/syndata.html>)

	Introduction
	Preliminaries and problem definition
	Problem definition
	Utility-list structure

	Related work
	Static high-utility itemset mining
	Dynamic high-utility itemsets mining
	Static closed high-utility itemsets mining
	Differences from previous works

	The IncCHUI method
	Incremental utility-list structure
	Maintenance mechanisms
	Construction and update of the global list
	Maintaining the set of closed high-utility itemsets found so far

	The IncCHUI algorithm 
	Complexity analysis

	Performance study
	Experiment setup
	Influence of the minutil threshold
	Influence of the insertion ratio
	Scalability tests

	Conclusion

