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Problem Description
This assignment is given by the Department of Engineering Cybernetics in cooperation with
National Oilwell Varco (NOV).

Stick-slip oscillations are severe, self-sustained and periodic torque fluctuations of the drill string
torque. They are driven by nonlinear downhole friction and characterized by large bit speed
variations. Stick-slip oscillations are recognized as being a major source of problems, such as
fatigue failures, excessive bit wear and poor drilling rate. This problem can be addressed by
implementing a nonlinear model predictive controller (NMPC). NMPC is a model-based controller
which uses an internal model of the process to be controlled to find an optimal input vector. The
NMPC s main strength is that it handles constraints both on inputs, states and outputs.

The topic regarding stick-slip and NOV s stick-slip prevention system, SoftSpeed, has been treated
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That work was mainly a literature study and the intention was to get familiar with SoftSpeed and to
find its weaknesses and strengths and compare it with other available stick-slip prevention
systems. This master thesis can be regarded as a continuation of the project.

The main tasks for this master thesis are:
- Verification and validation of the drill string model using operational data from NOV
- Nonlinear model reduction of the drill string model for the purpose of using it in an NMPC
- Develop an NMPC for the purpose of curing stick-slip in drill strings
- Implement the NMPC in MATLAB and illustrate the performance using simulation
- Compare the NMPC with the stick-slip prevention system, SoftSpeed by NOV
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Abstract 
 
The main focus of this thesis is aspects in the development of a system for prevention of stick-
slip oscillations in drill strings that are used for drilling oil wells. Stick-slip is mainly caused 
by elasticity of the drill string and changing frictional forces at the bit; static frictional forces 
are higher than the kinetic frictional forces which make the bit act in a manner where it sticks 
and then slips, called stick-slip. Stick-slip leads to excessive bit wear, premature tool failures 
and a poor rate of penetration. A model predictive controller (MPC) should be a suitable 
remedy for this problem; MPC has gained great success in constrained control problems 
where tight control is needed.  
 
Friction is a highly nonlinear phenomenon and for that reason is it obvious that a nonlinear 
model is preferred to be used in the MPC to get prime control. Obviously it is of great 
importance that the internal model used in the MPC is of a certain quality, and as National 
Oilwell Varco (NOV) has developed a nonlinear drill string model in Simulink, it will be 
useful to check over this model. This model was therefore verified with a code-to-code 
comparison and validated using logging data provided from NOV. 
 
As the model describing the dynamics of the drill string is somewhat large, a nonlinear model 
reduction is needed due to the computational complexity of solving a nonlinear model 
predictive control problem. This nonlinear model reduction is based on the technique of 
balancing the empirical Gramians, a method that has proven to be successful for a variety of 
systems.  
  
A nonlinear drill string model has been reduced and implemented to a nonlinear model 
predictive controller (NMPC) and simulated for different scenarios; all proven that NMPC is 
able to cope with the stick-slip problem. Comparisons have been made with a linear MPC and 
an existing stick-slip prevention system, SoftSpeed, developed by National Oilwell Varco. 
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1 Introduction 
 
Most of this chapter is taken from the report in the subject TTK4530 - Control Engineering, 
Specialization Project by Johannessen & Myrvold (2009).  
 
There has for the past 50 years been conducted extensive research on the subject of torsional 
vibrations on drill strings used by the oil industry. These torsional vibrations are an important 
cause for deteriorated drill string performance. They can lead to premature failure of bits, 
motors and other expensive components used in drilling operations.  
 
One of the main reasons for torsional vibrations is the stick-slip phenomenon. The 
phenomenon is characterized by stick-phases, where the rotation comes to a complete stop, 
and slip-phases where the angular velocity of the bit increase up to three times its nominal 
value. This undesirable motion of the bit will not only lead to unwanted wear, but also 
significantly reduce the rate of penetration (ROP), which is an important consideration 
financially associated with drilling operations. 
 

 
Figure 1.1: Offshore oil rig 
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1.1 Stick-Slip 
Stick-slip is a phenomenon that can appear when two surfaces are sliding in contact with each 
other, and the surfaces are alternating between sticking and sliding. This will result in a 
change in the force of friction since the static friction is usually larger than the kinetic friction. 
As an example it can be considered an object lying on a flat surface. If a force is applied to the 
object that is large enough to overcome the static friction, the reduction to the kinetic friction 
can cause a sudden jump in the velocity from standstill. If there are some elasticity between 
the source of the force and the point where the friction acts, the system can at a specific 
frequency alternate between sticking and slipping.  
 
The stick-slip phenomenon is present in many different settings in our everyday life; some of 
them will be presented here. 
 
Violin  
When a violin player makes beautiful music it is stick-slip vibration that make the violin sing. 
The friction between the bow and the string causes stick-slip to occur. With the higher static 
friction the string “sticks” to the bow and the bow drags the string with it until the energy in 
the string is large enough and the string “slips”; it brakes free from the bow and slides past it 
with low kinetic friction. When the string has lost its energy it sticks to the bow again and the 
cycle continues. When the violinist changes the tone of the instrument, he moves his finger 
back and forth along the violin neck while pressing the string against the neck, which will 
change the effective length of the string. This manoeuvre forces the stick-slip to occur at 
different frequencies, and by performing these string-length-variations the right way, the 
violin will make beautiful music. Also the speed of the bow will have effect on the stick-slip 
frequency, so in a simplified manner it can be seen as the violinist has two degrees of freedom 
to manipulate the sound from the violin. 
 

 
Figure 1.2: A famous Norwegian violin player utilizing the stick-slip phenomenon 



 3

 
Panulirus argus 
The phenomenon of stick-slip is also present in the nature, and the spiny lobster (Panulirus 
argus) can be such an example (Patek, 2001). The lobster takes advantage of the stick-slip 
phenomenon to produce a loud, abrasive sound to scare off predators. By rubbing a plectrum 
(a basal extension on the antenna of soft elastic tissue) over microscopic shingles on a file 
(located below its eyes), the lobster can produce high frequency sounds using the stick-slip 
mechanism. The energy is stored in the soft, elastic tissue of the plectrum during the stick-
phase, and then being released during the slip-phase; a sound pulse is then generated 
whenever the two surfaces slip. The spiny lobster can effectively scare off predators by using 
the stick-slip mechanism during the moult cycle when their exoskeleton is soft. 
 

 
Figure 1.3: The spiny lobster 
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Tectonic earthquakes 
Another situation in nature where the stick-slip vibrations can be remarkable is when 
earthquakes occur. The hard outer shell of the Earth is currently broken into eight major, and 
many minor plates. A tectonic earthquake is caused by a sudden release of energy in the 
Earth’s crust that creates seismic waves. The energy is released as a result of a sudden 
slippage along the boundary between two plates. As the plates have asperities along their 
boundaries, they will tend to stick or lock up to each other as they move. The continued 
relative motion between the plates will lead to increasing stress and a force is built up as the 
plates deform elastically. When the force is sufficient to make the plates break free, the stored 
energy is released as seismic waves that cause the ground to vibrate. The plates will 
eventually stick and lock up again in a stick-slip behaviour and yet more earthquakes will 
happen as time goes by. 
 

 
Figure 1.4: Stick-slip can cause great damage when generating earthquakes 
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1.2 Stick-slip in drilling operations 
The stick-slip phenomenon is also a challenge when drilling for oil and gas reservoirs. For the 
exploration of oil and gas, wells are drilled, which connects the reservoir to the earth’s 
surface. In this case the main problem appears in the friction force between the drilling bit and 
the rock it is drilling through; there will be a large friction at the diamond cutters on the bit 
that shear the rock. As stated earlier, stick-slip could appear if there are some elasticity 
between the source of the force and the point where the friction acts. In this situation it will be 
the top drive at the drilling rig that applies torque to the string, and large friction forces 
emerge at the bit. As the string length increases, up to several thousand meters, the elasticity 
of the string will eventually result in stick-slip occurrence. 
 
Not only the bit, but also the string itself can induce stick-slip. The string will to some extent 
be in contact with the well, even though the well diameter is larger than the diameter of the 
string. There are mainly two reasons why this contact occur; with long drill strings the string 
will to some degree obtain a buckled shape down the well (e.g. caused by centrifugal forces 
and unbalance in the string), and in the latter years it has also become more and more 
common to drill sloped wells. If the contact force between string and well get large enough, 
stick-slip can occur anywhere along the string. 
 
To fully understand the stick-slip phenomenon when drilling oil and gas wells, a description 
of how to consider the drilling arrangement is addressed in the next section. 
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1.3 Drilling assembly 
In a simple consideration of the drilling assembly it consists of a top drive, rotary table, drill 
string, drill collar and drill bit. A sketch of this can be seen in Figure 1.5. 
 

 
Figure 1.5: Drilling assembly 

 
The top drive is usually a large electric motor that can revolve at an approximately steady 
rotation speed, regardless of what is happening down the well. The drill string is a relatively 
slender pipe that connects the top drive to the drill collar. Typically the pipe can have an outer 
diameter of 127 mm (5”), a wall thickness of 9 mm and can be many km long. In fact the 
string consists of many pipes that are linked together with treaded connections, where each 
pipe usually is about 9 m long. To get a picture of how long and slender the drill string can be, 
it could be considered a drill string that has a diameter of 1 mm. If a 5” bore string is 5000 m, 
the 1 mm string would be about 40 m long, assuming the same proportions. 
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The lower part of the drill string, the collar and the bit, are often called the Bottom Hole 
Assembly (BHA). This part could typically have an outer diameter of 5” – 10” and an inner 
diameter of 2.5” – 3”. This part is often considered as torsional rigid in simulations. The bit at 
the end of the BHA is a rock cutting tool and it is here the borehole is created. Modern bits 
that are used today, so-called PDC bits (Polycrystalline Diamond Compact), consists of a steel 
body with artificial diamond cutters that shear the rock.  
 
The drill string will also act as a transport channel for mud that is being pumped from the 
drilling rig down to the drill bit and then pumped through nozzles in it. The mud’s purposes is 
to lubricate the bit and to remove the cutting material from the borehole; when the mud flows 
back up again it will bring the rock particles to the surface. The mud is pumped through the 
string with high pressure and sometimes the mud flow is also used to run a mud motor placed 
near the bit which will add extra torque and speed to the bit. 
 
At the upper end the drill string is connected to a hook which pulls the string upwards. 
Because of this hook, most of the drill string is in a constant tension, except for the BHA 
which will be partly compressed. The tension of the drill string is used to prevent the weight 
on bit (WOB) becoming too large, and reduces the string’s chance of buckling down the well. 
Since the BHA is compressed, stabilizers are used to reduce buckling, see Figure 1.5. The 
stabilizers are short sections which nearly has the same diameter as the drill bit. 
 
Then back to the stick-slip problem associated with drilling operations. The problem has been 
known for several decades and a large number of papers and articles have addressed the stick-
slip problem, like for example Kyllingstad & Halsey (1988), Dufeyte & Henneuse (1991), 
Brett (1992), Sananikone, Kamoshima & White (1992), Robnett, Hood, Heisig & Macpherson 
(1999), Baumgart (2000), Challamel, Sellami & Gossuin (2000), Leine, van Campen & 
Keultjes (2002), Khulief, Al-Sulaiman & Bashmal (2007). 
 
With drill strings that exceed a length of about 2000 m the stick-slip problem starts to become 
significant. In such cases, when starting from standstill, the top drive will have to rotate many 
times before enough torque is applied to the bit so it can overcome the static friction between 
the bit and rock. When the bit slips and starts to rotate, it will get a high acceleration. Often 
the angular velocity of the bit can reach up to three times the velocity of the top drive before 
the bit speed reduces again and reaches the stick-situation. Then the top drive will ‘spin up’ 
the string again until the bit slips, and so it goes on. As mentioned above the string and BHA 
can be considered as a torsion spring with a dynamic viscous friction component in addition 
to the static friction. 
 

1.4 Problems related to stick-slip 
The existence of stick-slip when performing oil well drilling can cause problems, such as 
excessive bit wear, premature tool failures and poor rate of penetration. The problems are 
closely related to the high peak speeds occurring during the slip-phase. The high rotation 
speeds in turn lead to extreme accelerations and forces, both in axial and lateral directions. In 
some extreme slip-phases the separated pipes that the drill string consists of can be 
unscrewed, or the string can simply break. If this happens the well can be lost, and the work 
will then be set back for several weeks. 
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1.5 Background 
Stick-slip oscillations when drilling oil wells has been a known problem for the last decades 
and there has been conducted a serious amount of research on the matter. There have been 
different approaches to solve the problem with stick-slip oscillations; indeed many of the 
methods have different drawbacks. 
 
Oil history 
Oil has been used by the mankind for thousands of years and the first oil wells were drilled in 
China in 347 BC using bits attached to bamboo poles. The extracted oil was burned to 
evaporate brine and produce salt. After that, no considerable development in the oil industry 
was done for the next 2000 years, until the first modern commercial oil well was drilled on 
the Aspheron Peninsula northeast of Baku, Asia in 1848. Then the rest of the world followed 
and soon there was drilled for oil onshore throughout the world. 
 
The first offshore oil well was drilled around 1897 in Summerland, California. The idea of 
drilling offshore came when the early oilmen noticed that the wells that were close to the 
ocean were the most productive ones.  Instead of just drilling wells on the beach, H. L. 
Williams came up with the idea of building a wharf and erect a drill rig on it. The well was 
drilled about 90 m into the Pacific Ocean and proved to be a good oil producer. 
 
It was not before the end of World War 2 that the first real offshore oil wells were drilled out 
of sight from land. In 1947 the Kerr-McGee Corporation drilled the first well from a fixed 
platform almost 18 km off the Louisiana shore. This led to a boom in the offshore oil drilling 
industry and soon many offshore oil fields were in production. 
 
Since the first oil well was drilled in China there has been a huge development in both the 
production and the usage of oil and gas. As the years has went by the technology has evolved, 
and the demand for higher effectiveness in the production has got more important. 
 

1.6 Stick-slip prevention 
Because of the problems related to stick-slip, many methods and systems have been proposed 
through the years to eliminate, or anyhow reduce the problem. Drilling operators have made 
their own methods by for instance reducing the weight on bit, or changing the speed of the top 
drive. These uncontrolled operator activities will cure the stick-slip problem, but often it will 
result in a poor drilling rate. More intelligent systems have therefore been made to prevent 
stick-slip, still maintaining a good drilling rate. Some of these systems are presented in the 
following. 
 
Torque feedback 
One of the first methods that were presented used torque feedback from the applied string 
torque (Halsey, Kyllingstad & Kylling, 1988). With a torque feedback, the stick-slip 
oscillations can be prevented by allowing the rotary table speed to respond to dynamic torque 
variations. Since the torque is used as feedback in the control loop, a compromise between 
two contradictory requirements is bound to happen; the control loop needs to maintain the 
speed set point while also maintaining a constant torque. To prevent stick-slip oscillations the 
speed is adjusted so the torsional waves are dampened at the rotary table instead of being 
reflected back to the drill string. A drawback with this method is that it needs a good 
measurement of the string torque, which in practice can be very hard to get.  
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Soft Torque Rotary System 
Shell Research was aware of the problems with the measurement of the drill string torque and 
focused their research on improving the torque feedback in the 1990s. They saw two major 
drawbacks with the torque feedback; the measurement of drill string torque, and the control 
algorithm which was based on zero reflection of the torsional waves. By using the motor 
current they computed the drill string torque, and used this in the feedback loop. By tuning the 
controller (which could be considered as an active damper), the system dampens stick-slip 
oscillations in an effective manner. This will make the system behave as a tuned damper, 
similar to the passive dampers which often are used to avoid wind-induced oscillations in 
power-transmission lines. This system was called Soft Torque Rotary System (STRS) and 
field testing has shown that the system dampens stick-slip oscillations effectively, and that 
ROP is increased and downhole equipment failures are reduced. The system has been 
commercially available for many years and is used on different locations around the world. 
 
PID-control 
A simple method for curing stick-slip was presented by Pavone and Desplans (1994). By 
doing thorough analyzes of data obtained by TRAFOR, a Measurement While Drilling 
(MWD) system operated by the Institut Français du Pétrole, they found that by using stability 
analysis they could avoid stick-slip. From analyzes they derived parameters for a PID-
controller to control the rotary table speed that cured stick-slip, but the damping was very low 
so the drilling had to stand high vibrations. Exactly how they derived the PID-parameters is 
not explained. It seems that their main focus was on using the data they got from TRAFOR 
and from this derive a good model of the drill string that describe stick-slip instead of finding 
an effective way to suppress stick-slip oscillations. 
 
H∞-control  
In 1998 Serrarens, van de Molengraft and van den Steen proposed a H∞-control method to 
suppress stick-slip oscillations on a contemplated system. H∞-control has been a widely used 
solution in controlling vibration problems, such as in cutting processes where it is used to 
suppress machine tool chatter. The H∞-controller suppressed the stick-slip oscillations in spite 
of the controller being linear and time-invariant; the friction at the bit is indeed strongly 
nonlinear. There have only been performed experiments with the H∞-controller on a semi-real 
process, and as far as the authors of this thesis know the controller has not been used on a real 
process. But the results from the experiments gave a promising perspective that the solution 
could be developed further and be implemented on a real process. The H∞-controller also has 
robust qualities which are desirable. 
 
D-OSKIL 
Another method to suppress stick-slip oscillations is to use the weight on bit as an additional 
control variable. This method, called Drilling OScillation KILler (D-OSKIL), was introduced 
by Canudas-de-Wit et al. (2005). A sustainable reason for the stick-slip oscillations are the 
friction torque produced by the contact between the rock cutting tool and the rock. It is needed 
to keep the value of the WOB large to get a good ROP, but as the WOB increases it will 
enhance the possibility of stick-slip to occur. From this it is obvious that introducing a control 
strategy that manipulates the WOB is a smart way to go to find an optimal compromise 
between WOB and ROP. When stick-slip oscillations occur, the WOB is decreased by 
manipulating the force from the hook lifting the drill string at the rig, e.g. the drill string is 
pulled upwards to reduce the WOB. Simulations have shown that this is an effective method 
for suppressing stick-slip oscillations. Another interesting fact with the control law that D-
OSKIL uses is that the resulting feedback system has been proven to be globally 
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asymptotically stable. A formal stability analysis is provided by Corchero, Canudas-de-Wit 
and Rubio (2006), something that is not often seen in the rest of the methods proposed. 
 
Active vibration damper 
An active vibration damper (AVD) was presented by Cobern and Wassell in 2005. The aim of 
the method is to reduce drill string vibration, which will lead to a reduction in stick-slip 
oscillations. The AVD is mounted between the drill string and the BHA, having a structure 
that is similar to a shock sub consisting of a spring-fluid damper. Instead of using hydraulic 
oil in the damper, a magnetorheological fluid (MRF) is used which allows the viscous 
properties of the fluid to be changed. By varying the viscosity of the fluid, the damping 
coefficient of the AVD can be manipulated. Because of the fluid’s properties, its viscosity can 
be changed when it is influenced by electromagnetic fields. Measurements of the relative 
motion of the bit and drill string are taken in real-time during the drilling operation and from 
this the damping properties are continuously modified. Results from drilling tests have been 
very promising, and has shown that by varying the damping coefficient, vibration and 
variation of WOB can be reduced. It is not only in drilling the magnetorheological fluid 
abilities are utilized, it is also used in earthquake protection systems for buildings and bridges, 
and sophisticated adaptive automotive suspensions, like the one found in the Ferrari 599 GTB 
Fiorano.  
 

 
Figure 1.6: Ferrari 599 GTB Fiorano 

 
Modelling error compensation 
In 2008 Puebla and Alvarez-Ramirez introduced a control approach based on modelling error 
compensation to suppress stick-slip. Since uncertainty always exists when modelling friction 
components, the suggested feedback control scheme should deal with uncertainties in the 
friction model and drill string parameters. The drill string is modelled as a simple torsional 
pendulum driven by an electric motor. The model comprises damped inertias which are 
mechanically coupled by an elastic shaft that can be viewed as a spring/damper. By 
introducing modelling error functions, two different control schemes are given, cascade 
control and decentralized control. The cascade control scheme uses a single control input, the 
electrical properties of the motor, and a full state feedback. The states that are used in the 
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feedback are the relative position between coupled inertias and the angular velocity of the 
inertias. The decentralized control scheme on the other hand uses two inputs, the electrical 
properties of the motor and WOB. Rotary table oscillations are regulated with the motor, 
whereas BHA oscillations are regulated with the WOB. The same full state feedback is also 
used in the decentralized scheme. Numerical simulations have shown that the method gives 
satisfying suppression of stick-slip oscillations with uncertainties in the control design and 
changes in model parameters, but a commercially available system based on this method is 
not available as far as the authors of this thesis know. 
 
SoftSpeed 
National Oilwell Varco has developed their own stick-slip prevention system called 
SoftSpeed, which they presented in 2009 (Kyllingstad & Nessjøen, 2009). The system is 
basically a PI-controller with an acceleration feedback controlling the speed of the drive, 
which is tuned so that it dampens torsional oscillations in the drill string, and by this cures 
stick-slip. More theory and advantages of the use of such acceleration feedbacks can be 
studied in the dissertation by Lindegaard (2003). The more advanced part of this system is the 
online tuning of the PI-controller. When SoftSpeed is in use on a real system, there are several 
algorithms that execute to keep the controller tuned. One algorithm calculates the stick-slip 
period and another algorithm uses this as a basis for tuning the controller. More on how these 
algorithms work, and the controller setup, can be found in the report by Johannessen & 
Myrvold (2009).  
 

1.7 Motivation 
Stick-slip oscillations in drill strings are a well studied topic, and a number of methods have 
been suggested through the years to eliminate the problem. As the technology in the oil 
industry has developed, the complexity in drilling oil wells has expanded. New technology 
has made it possible to drill deeper and deeper wells which demand that the stick-slip 
prevention system has to provide high performance. The authors of this thesis have studied 
several of the existing methods, but none of these utilizes optimal control. It was therefore of 
great interest to study this control strategy more closely using the well known Model 
Predictive Controller (MPC). Since the friction forces acting on the bit are of a highly 
nonlinear manner, a nonlinear MPC (NMPC) was preferable to use. 
 
When NMPC should be used for this purpose, which requires a model of the process that 
should be possible to run in real-time, it also turns up some other very interesting areas that 
have to be investigated. 
 
The drill string model provided by NOV is made from physical considerations and had not 
earlier been verified and validated (V&V). But it will in fact be very important to know if the 
model is correct before it can be used in an NMPC. 
 
A good model describing the drill string will very quick become large and demand large 
computational power. To overcome this problem the model will have to be reduced to some 
extent by applying a technique for nonlinear model reduction. Model reduction techniques 
show promising results for implementation in MPC; the computational load is reduced 
significantly.   
 
Besides safety is efficiency, the ROP, one of the most important factors when it comes to the 
drilling of oil wells. An MPC can be the answer to maintain a high efficiency, and therefore it 
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is of great interest to investigate the possibility of using MPC in a stick-slip prevention 
system.   

1.8 Contributions 
The contributions of this thesis are divided in four main parts as shown below: 
 
Verification and Validation 
In Chapter 2 is a V&V experiment conducted on the drill string model. The verification is 
done using code-to-code comparison and validation using operational data provided by NOV.  
 
Model reduction 
Chapter 3 is dedicated to model reduction of a drill string model. Both the theory for a linear 
and a nonlinear method are presented with complimentary examples. Finally the nonlinear 
method is used on a complete drill string setup.  
 
Model predictive control 
Chapter 4 provides an introduction to model predictive control. The theory for both the linear 
and nonlinear case is presented. 
 
Chapter 5 deals with the NMPC problem for a rotating drill string and the MATLAB 
implementation of the controller. 
 
Chapter 6 contains the various simulations of the NMPC, together with simulations of a linear 
MPC and NOV’s stick-slip prevention system, SoftSpeed. 
 
Discussion and conclusion part 
Chapter 7 gives summarizing discussions on the different results obtained in the work. 
 
Chapter 8 concludes the work done in this thesis giving concluding remarks, contributions 
provided by the work and some suggestions for further work.  
 

1.9 Source code 
A ZIP-file is attached electronically which contains the source code that has been used in this 
thesis. All implementations are done in MATLAB/Simulink and an overview over the 
different files, with a brief description of what they do, can be found in Appendix B. 
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2 Verification and validation 
 
One of the tasks of this master thesis has been to undertake a model verification and 
validation experiment of the Simulink drill string model created by NOV. The use of models 
to simulate physical events and engineering systems are increasingly being used in problem 
solving and has a great importance in making critical decisions. To fully rely on the model 
and its results, some kind of quality assurance is needed; there is no use for a model if the 
results it produces are wrong. How to cope with this topic is addressed through model 
verification and validation. 
 
One of the first to address verification of computer simulation models where Naylor & Finger 
(1967). They proposed a three stage process of verification concerning verification in 
economics which relates to the verification of computer models of industrial systems. The 
three stages proposed where rationalism, empiricism and positive economics.  
 
In V&V is verification often defined as “ensuring that the computer program of the 
computerized model and its implementation is correct” (Schlesinger et al., 1979) while 
validation is defined as “substantiate that a computerized model within its domain of 
applicability possesses a satisfactory range of accuracy consistent with the intended 
application of the model”. 
 
V&V serve different purposes as shown below; 
 
Verification is concerned with building the model right; 

- Is the model programmed correctly? 
- Are the algorithms implemented properly? 
- Does model contain errors or bugs? 
- Are the input parameters and logical structure of the model correctly represented? 

 
Validation is concerned with building the right model; 

- Is the model an accurate representation of the real system? 
- Does the model meet its intended requirements in terms of the methods employed 

and the results obtained? 
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A graphical representation of V&V, called the Sargent Circle, was developed by the Society 
for Computer Simulations and can be seen in Figure 2.1. This graphical representation gives a 
simple view of the activities taking place in V&V; the modelling and simulation activities are 
connected through dashed lines and the assessment activities are connected through the solid 
lines. 
  

 
Figure 2.1: A graphical representation of V&V, the Sargent circle 

 
Reality of interest represents the physical system or process, i.e. the particular problem being 
studied. This could range from a small unit to a complete system. 
 
The mathematical model is composed of all mathematical modelling data and mathematical 
equations that describe the system of interest, typically in the form of partial differential 
equations (PDEs). There are different ways of producing the mathematical model; it can be 
produced by modern system identification methods or it can be based on the more classical 
methods using conservation of mass, momentum and energy. 
 
The computer model is an implementation of the mathematical model as an operational 
computer program. In modern terminology is the computerized model referred to as the 
computer model or code. It is usually in the form of numerical discretizations, algorithms, 
convergence criteria and miscellaneous parameters associated with numerical approximations. 
 
A modelling process is necessary to represent the reality of interest as a mathematical model, 
termed modelling in Figure 2.1. The correctness of the modelling is assessed by the 
confirmation.  
 
The mathematical model is implemented as a computer model through software 
implementation. Verification is done to identify and remove errors in the implementation 
process. 
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The outcome of the simulation of the computer model is compared with experimental data, 
the validation. Validation is an ongoing activity as experiments are improved and parameter 
ranges extended.  
 

2.1 The use of V&V 
Since V&V has different purposes are also different methods used; verification is an activity 
which mostly takes place under the implementation of the model, while validation is a more 
ongoing activity as there eventually will be more data available to improve the validity of the 
model. 
 
Verification 
Verification is often split up into two parts, code verification and calculation verification. The 
purpose of the code verification is as the name implies to confirm that the software is working 
as intended without bugs. To accomplish code verification, software quality assurance (SQA) 
procedures are used. This is performed by the code developer and ensures that the code is 
implemented correctly. SQA has a focus on the code as a software product and is only 
concerned whether it is reliable from the perspective of computer science. Methods for SQA 
are typically configuration management, static and dynamic testing. 
 
Calculation verification deals with the accuracy of the numerical simulations and should if 
possible give an estimation of the numerical errors induced by the model. Therefore it is also 
referred to as numerical error estimation because the primary goal is to estimate the numerical 
accuracy of a given solution, typically for nonlinear PDEs with discontinuities and 
singularities. In calculation verification can errors like insufficient convergence tolerance, 
insufficient spatial or temporal discretization, incorrect input options and finite precision 
arithmetic be identified and removed. 
 
A popular way of performing calculation verification is to do a code-to-code comparison. 
This is done by comparing the results obtained from two different codes solving the same 
problem. It should be mentioned that there is no guarantee that either of them are correct even 
if they give the same solution, they could incorporate the same error, e.g. if it is an error in the 
paper they are based on. This method should therefore be used with great care and only when 
there is insufficient verification evidence from other sources. 
 
Validation 
Validation is done to determine how accurate a model represents the real system. This is done 
by comparing computational results with experimental data. An important issue here is to 
appropriately design and execute validation experiments that allow for precise and conclusive 
comparisons between the computational results and the experimental data. This means that the 
validation experiments have to produce high-quality data for the purpose of assessing the 
accuracy of a model prediction. In other words, “the code is the customer”. Validation tests 
are performed on the real system to obtain experimental data that can be used in the validation 
experiments. It is important that initial conditions, boundary conditions and input parameters 
are prescribed accurately for the validation test; this will have to be taken into consideration 
when performing the validation experiments. 
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There are three aspects that should be taken into consideration when performing a validation 
experiment: 
 

1. Use the code and define the expected results from the validation experiment 
2. Design a specific validation experiment by using the code in a predictive sense 
3. Develop a well-thought-out plan for analyzing the computational and experimental 

results  
 
Figure 2.2 shows the validation process as given in the article by Oberkampf & Trucano 
(2002). The computational results of the modelling and simulation process are compared with 
the experimental data; a validation experiment. 
 

 
Figure 2.2: Validation process 

 

2.2 V&V of drill string model 
In this section the theory behind V&V is used on NOV’s drill string model to verify and 
validate it. It should be noticed that the MATLAB/Simulink files used for V&V purposes are 
not included in the ZIP-file because the data provided by NOV is under settlement. 
 
Verification: 
The model of the drill string consists of mathematical equations which are based on the 
conservation of momentum. The equations have been implemented into Simulink, which is 
MathWorks’ tool for modelling, simulation and analyzing. Implementation of the equations 
was done by NOV and verification was also performed; the Simulink model has been used in 
several simulations and runs without any bugs or problems. 
 
A verification procedure done in this thesis is a code-to-code comparison. Mathematical 
equations of the drill string were derived using conservation of momentum and implemented 
in the MATLAB Editor as a script. The results when the models were simulated in Simulink 
or as a script were practically the same, a good indicator that the implementations of the 
mathematical equations are correct. There are some deviations because in the script model is 
not all the decimals of the constants included and a different solver is used. Simulations when 
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an input step from 10 to 15 rad/sec is applied to both the Simulink model and the model 
implemented in a script, can be viewed in Figure 2.3. 
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Figure 2.3: Simulation of Simulink model and script model 

 
Validation: 
Two sets of operational data were provided from NOV to undertake validation of the drill 
string model. The data were unfortunately not captured in a validation experiment; the data is 
just logs from a drilling operation.  
 
One set were from an installation and commissioning of SoftSpeed which only consisted of 
data from the top of the string, i.e. top drive speed and torque. This will not be sufficient for 
the purpose of validation; the model has the top drive speed as input and bit speed as output 
and this logging series were not applicable for this purpose and were therefore rejected. 
 
The other set also included data from the bit, i.e. the bit speed. This data was captured using 
NOV’s drilling research tool DRT 2.0. This tool is placed at the end of the BHA and is 
capable of logging at very fast rates for a short time period (20-120 seconds). It should be 
kept in mind that the operational data provided was not from an appropriately designed and 
executed experiment, which makes the validation procedure limited. There were also used a 
mud motor at the bottom of the string which made large sections of the log useless. 
Fortunately the mud motor torque was included in the log so it was possible to pick out the 
sections where the mud motor was inoperative. 
 
The well that the operational data originates from is somewhat sloped as it can be seen in the 
sketch in Figure 2.4. The slopes will lead to contact between the drill string and the walls of 
the well which makes the system more complicated. To get a proper validation of a model 



 18

using data from a sloped well it would be necessary with measurements of the speed at 
several sections of the drill string. 
 

 
Figure 2.4: Slope of the well where logging was performed 

 
The group considered two different possibilities for conducting the validation experiment; 
either use the operational data to develop a model using system identification or use the 
operational data as input on the Simulink model and compare the output from the model with 
the output in the log. The two methods are shown below. 
 
System identification 
One way to conduct a model validation is to adapt a model from logged data, and compare 
this model’s dynamics with the dynamics of the model to be validated. To do this a system 
identification experiment using the logging data provided by NOV was performed using 
MathWorks’ System Identification Toolbox 7.3.1. There was found an appropriate part from 
the log where the mud motor torque was zero and some perturbations were done. The log did 
unfortunately not contain any situations with stick-slip. As the dynamics that let stick-slip 
occur is included in the model created by NOV, it is necessary that a model created by system 
identification also contains this dynamics. It would be hard to believe that a model produced 
from this data should be a good model to simulate the stick-slip phenomenon. 
 
Different methods from the toolbox were tested, and the best fit was achieved when using 
nonlinear ARX. There is also a choice on how many regressors that should be used; this was 
set to 50 both for inputs and outputs. This gave a 52.05 % fit, and the plot showing the output 
in the log and the output from the ARX model applying the same input is showed in Figure 
2.5 (it should be noticed that rpm is the speed unit in the treatment of this system 
identification in distinction to the rest of the thesis where rad/sec is used). 



 19

 

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

15

20

25

30

35

40

45

Time [sec]


 [

rp
m

]

 

 

Output from nonlinear ARX model

Output from log

 
Figure 2.5: Comparison of model and logged output 

 
As Figure 2.5 shows the output from the model follows the real output relatively good when 
large perturbations occurs. With smaller perturbations the model does not track the logged 
output to the same degree. 
 
To compare the ARX model with the drill string model created by NOV, a step response was 
applied to both models. The slope of the well (Figure 2.4) was applied to the NOV model and 
is therefore expected to be similar to the ARX model. A constant input of 100 rpm was 
applied until the input steps to 120 rpm after 30 seconds. The plot of the models’ responses is 
shown in Figure 2.6. 
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Figure 2.6: Comparison of NOV and ARX model 

 
As Figure 2.6 shows, the ARX model does not contain dynamic information that let stick-slip 
occur, which is not a big surprise. To get an ARX model with this dynamics it is probably 
necessary that the data used in the system identification includes stick-slip, which was not the 
case with the operational data provided by NOV. 
 
Direct comparison 
Here the second possibility is tested using the operational data as input to NOV’s Simulink 
model and comparing the output from the model with the output in the log. If the Simulink 
model is a good representation of a drill string, the bit speed will behave in a similar manner 
to the bit speed from the log. 
 
All the initial conditions and input parameters that were available were implemented into the 
Simulink model and the top drive speed from the operational data was used as input. The 
output, the bit speed, was compared with the actual bit speed from the operational data. Both 
the input and the two outputs can be viewed in Figure 2.7. As the figure clearly shows are the 
outputs not exactly identical, but they behave in a similar manner. The bit speed of the NOV 
model has a more oscillating behaviour than the logged bit speed. There can be several 
reasons for this; e.g. there were not given any information about the physical measures of the 
drill string. String diameter, string wall thickness, length of BHA, weight on bit, steel density, 
etc. were not given and therefore such things were assumed to some reasonable standard 
values. Such parameters would of course influence the response of the string. By considering 
the plots in Figure 2.7 it seems like the drill string were the logging is taken is stiffer than the 
drill string in the NOV model.  
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Figure 2.7: Simulations with operational data 

 
There is too much uncertainty in this validation experiments to give a conclusion whether the 
NOV model is a good or poor approximation of a drill string. To do this there will be 
necessary with a planned experiment to gather data where the purpose is to use those data for 
validation. Complete information about the actual drill string and more measurements is also 
needed.    
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3 Model reduction 
 
Modelling of dynamic systems is one of the most important issues when design, analysis and 
implementation of control systems are performed. Traditionally this type of modelling has 
been used as a representation of the real system, and quite simple PID-controllers have been 
designed from simulations of this model. In such design methods the computational time is 
less important; for example if the simulation takes 5 seconds or 2 minutes is in most cases 
irrelevant.  
 
As modern computers are becoming faster and faster, it has been more usual to make use of a 
mathematical model of the process that is to be controlled, as a part of the controller, so-called 
model-based controllers. The model of the process that is included in the controller, often 
called internal model, is then processed in real-time. Therefore the internal model has to be of 
a somewhat low dimension to reduce the computational time, or else it will not be suitable for 
real-time applications. 
 
Lately there has been established theory behind the algorithms used in model-based 
controllers that has proven why they work, and the algorithms are also proved to be stable. 
This has also led to a gain in usage of such types of controllers. Complex models still demand 
high computational requirements that make them unsuited for implementation in a model-
based controller. One approach to solve this problem is by applying a model reduction 
technique and use the reduced model in the controller. 
 

 
Figure 3.1: A reduced model of a somewhat complex system 

 



 24

Model reduction techniques will reduce the system, but still maintain the original system’s 
most important input-output behaviour. Different methods have been suggested throughout 
the years, such as balanced truncation (Moore, 1981) and balanced residualization for linear 
systems (Fernando & Nicholson, 1982) and proper orthogonal decomposition (Karhunen, 
1946; Loève, 1946) and balancing of empirical Gramians for nonlinear systems (Hahn & 
Edgar, 2002). 
 
Balanced truncation is only suitable for linear systems and is based on a transformation of the 
original system. The transformed system is somewhat balanced; the states that are highly 
influenced by the input has also a great influence on the output. To do this the controllability 
and observability Gramians have to be found. A reduced model is obtained by simply truncate 
the states that have a small influence on the dynamics. 
 
Balanced residualization is similar to balanced truncation, but it is based on the idea that 
derivates of the states with small influence on the dynamics can be approximated to zero 
while the rest of the system is retained. As for the balanced truncation are the less important 
states found through balancing and transformation of the Gramians. 
 
Proper orthogonal decomposition, or Karhunen-Loève expansion, is a widely used method 
when it comes to model reduction; it has been used in fluid dynamics, compressible flow, 
aerodynamics and optimal control. One of the reasons for its broad usage is that it handles 
both linear and nonlinear systems. The method constructs a low-dimensional approximation 
in a reduced space. Snapshots (samples of trajectories) are taken either from experimental or 
simulation data. The proper orthogonal decomposition is then found by minimizing the error 
between the original snapshots and their representation in the reduced space. More about the 
proper orthogonal decomposition and the diversity of use of this method can be found in the 
articles by Kirby & Sirovich (1990), Glavaški & Marsden (1998), Rowley & Marsden (2000), 
Glegg & Devenport (2001), Krysl, Lall, & Marsden (2001), Azeez & Vakakis (2001) and 
Kerschen, Golinval, Vakakis, & Bergman (2005). 
 
The method of balancing the empirical Gramians is similar to balanced truncation of linear 
systems. The main difference is how the Gramians are found; with a linear system can the 
Gramians be derived directly from the system equations, while they has to be found empiric 
based on experimental or simulation data for a nonlinear system.     
 
In this thesis a model of a drill string has been reduced for the purpose of implementing it into 
a model predictive controller. This was done by the use of the method by balancing the 
empirical Gramians. This method is closely related to the method of balanced truncation used 
on linear systems, so the linear method will be explained first.   
 
There were mainly two reasons why the method of balancing the empirical Gramians were 
chosen; it is a relatively new method it will be interesting to get familiar with and there where 
several good papers describing the method including complimentary examples. Another 
advantage of the method is that it only requires linear matrix computations which make it 
suitable for implementation. The principle around Gramians is also relatively easy to 
comprehend which makes this method suitable in an educational environment. 
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3.1 Balanced truncation for linear systems 
The idea behind this method is to find a reduced model that still contains the most important 
dynamics found in the original system. The reduction is done by removing some of the states 
to achieve a lower order model. Since the goal is to retain the dynamics as much as possible, 
it will be necessary to find the states that have the largest contribution to the system’s input-
output behaviour. To do this job the method finds a state space representation with an equal 
number of states in addition to the Hankel singular values connected to each of these states, 
and the states are sorted in a descent way according to the singular values (balancing). These 
values are then used to decide which states that can be eliminated and which that needs to be 
retained (truncation). 
 
In this section the balanced truncation method will be used to reduce a linear, time invariant 
system. First the theory will be explained, and then the theory will be applied to an example. 
Consider a linear system represented as a state space model of the standard form given by 
equation (3.1). 
 

x Ax Bu

y Cx

 



          (3.1) 

where 
 x is the state vector 
 A is the system matrix 
 u is the input vector 

B is the input matrix 
y is the measurement vector 
C is the measurement matrix 

 
To reduce such systems with this method one could follow the step-by-step procedure 
described below: 
 

1. Compute Gramians using the original system equations 
2. Compute balancing transformation 
3. Balance Gramians and system 
4. Determine size of reduced-order model 
5. Define equations for the reduced-order model 

 
In the following the theory behind the different steps will be derived. 
 
Compute Gramians using the original system equations 
In control theory it is well known that the Gramian matrices can be used to determine whether 
a system is controllable and/or observable. The controllability Gramian WC and observability 
Gramian WO are defined by equation (3.2) and (3.3). 
 

0

TAt T A t
CW e BB e dt



          (3.2) 

 

0

TA t T At
OW e C Ce dt



          (3.3) 
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To decide if a system is controllable and/or observable using WC and WO one have to 
determine if the Gramians are positive definite, i.e. 
 

 if WC > 0 the pair (A,B) is state controllable 
 if WO > 0 the pair (A,C) is state observable 

 
As stated by Skogestad & Postlethwaite (2005), the linear Gramians can also be found as the 
unique positive semi definite solutions of the Lyapunov equations defined in (3.4) and (3.5) 
 

T T
C CAW W A BB            (3.4) 

 
T T

O OA W W A C C            (3.5) 

 
The singular values of the controllability Gramian WC can be used as a measure of how much 
energy that has to be applied to the system in order to move the corresponding state, and the 
singular values of the observability Gramian WO is in distinction a measure of the energy that 
is produced by the corresponding state.  
 
In the recent years there are introduced new areas in control theory where the Gramian 
matrices are utilized. One of these employments is to use them when working with different 
model reduction techniques, and in this thesis they will be used in the method of balanced 
truncation.  
 
Compute balancing transformation 
The balanced realization is by Skogestad & Postlethwaite (2005) defined as an asymptotically 
stable minimal realization in which the controllability and observability Gramians are equal 
and diagonal. This means that the balanced Gramian is given as showed in equation (3.6). 
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n
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 
 
 




   


    (3.6) 

where 
 1 2 ... 0n        

 
The σi’s are called the Hankel singular values. When the Gramians are found using equation 
(3.4) and (3.5), they will almost certainly not be diagonal and equal, and it will be necessary 
to compute the balancing transformation T. 
 
The calculation of T and T-1 is described by Phillips, Daniel & Silveira (2003), and the 
following steps needs to be conducted in order to find those matrices: 
 

 Compute Cholesky factors  and T T
C C C O O OW L L W L L   

 Compute the singular value decomposition (SVD) of the Cholesky product 
T
O CU V L L   where is diagonal positive and U, V have orthonormal columns 
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 Compute the balancing transformations T and T-1 from the following formulas: 
1/2 1 1/2 and T T

C OT L V T U L       

 
Balance Gramians and system 
The transformed Gramians will then be given by equations (3.7) and (3.8) 
 

T
C CW TW T           (3.7) 

 
1 1( )T

O OW T W T           (3.8) 

 
The state vector for the balanced system will be given by 
 
 x Tx            (3.9) 
 
and the balanced system will be given by 
 

 
1 1x T ATx T Bu Ax Bu

y CTx Cx

    

 


                (3.10) 

 
As one could notice from equation (3.10), the only symbols that are not noted with a bar are 
the system input u and measurement y; this means that all system matrices and states are 
changed. This is one of the disadvantages with this balanced representation of the system, all 
the states has lost their physical meaning.  
 
Determine size of reduced-order model 
When the Gramians are balanced they will be equal, and are often defined as Σ (as shown in 
equation (3.6)). The Hankel singular values along the diagonal gives a suggestion of how the 
states will influence the system; changes in the control signal will affect the state with the 
largest singular value, and the output will also be most sensitive to changes in this state. This 
relation can be utilized to determine how many states that can be removed but still maintain 
the most important dynamics of the original system. An often used approach is to keep the i 
first states, where σi is the first Hankel singular value that is at least one order of magnitude 
larger than σi+1.  
 
Define equations for the reduced-order model 
To find the equations for a reduced-order model originally consisting of n states, the balanced 
model should be partitioned as shown in equation (3.11) 
 

 
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1 2
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x

     
      

     
 

  
 




                (3.11) 

where  

1x   is a vector representing the i first states 

2x   is a vector representing the states from i+1 to n 
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The truncated model will then be given by 
 

 1 11 1 1

1 1

x A x B u

y C x

 




                  (3.12) 

 
Example 3.1: Linear string model with 6 states 
In this example a drill string model consisting of 3 string elements will be considered. The 
model is developed as a mass-spring-damper-system, the same that is done in the Simulink 
model created by NOV. First the state space model needs to be derived; the system can be 
considered as a motor with several loads and elastic connections between the loads. This is 
illustrated in Figure 3.2 with n loads. 
 

 
Figure 3.2: String model consisting of n elements 
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The model with 3 string elements will be given by the following equations: 
 

1 1 1 2 1

2 2 2 3 2

3 3 3 3( )b

j T T
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  
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                  (3.13) 
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   

   

   

   

 
 
 

                 (3.14) 

 
where 
 

is the angle of the top drive

is the angle of joint 

is the stiffness coefficient for string section 

is the internal damping coefficient for string section 

is the friction coefficient for 

td

i

i

i

b

i

k i

d i




 the bit

is the wall friction coefficient for the string sections

is the torque from string section  to 1

is the inertia for string section 
i

i

T i i

j i




 

 
If (3.13) and (3.14) are combined the model will become 
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 
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b

d k d k
j

d k d k
j

d k
j

         

         

       

        

        

     

     

     

   

            (3.15) 

 
To use standard notation for the states and input in (3.15), the definitions below are applied:  
 

1 1 2 2 3 3

1 4 1 2 5 2 3 6
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,  ,  td
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x x x

x x x
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     



  



    
  


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Inserting those definitions into (3.15) will give 
 

 

 

 

 

1 1 1 1 4 2 1 2 2 5 1
1

2 2 1 2 2 5 3 2 3 3 6 2
2

3 3 2 3 3 6 3
3

1
( ) ( )

1
( ) ( )

1
( ) ( )b

x d u x k x d x x k x x
j

x d x x k x d x x k x x
j

x d x x k x x
j





 

      

      

    







             (3.16) 

 
To get a square system matrix the definitions of x4, x5 and x6 above need to be included to the 
state space model. If they are differentiated, they can be expressed as shown in (3.17). 
 

4 1 1

5 1 2 1 2

6 2 3 2 3

tdx u x

x x x

x x x

 

 

 

   

   

   

 
 
 

                  (3.17) 

 
If (3.16) and (3.17) are merged and reformulated the state space model can be written as 
shown in (3.18). 
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j j j

x x u

x x x
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



 
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      

    

  
 

 









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             (3.18) 

 
It is desirable to use the standard matrix formulation as in (3.1) with bit speed x3 as 
measurement, and state vector defined by  
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The system matrices will be given by 
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 0 0 1 0 0 0C  . 

 
To be able to perform simulations, it will be necessary with numerical values for the different 
constants. In this simple approach it will be assumed that the two upper elements is the drill 
string and the lower part is the BHA. As the BHA has larger diameter than the drill string, the 
values are in this example assumed to be as follows: 
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With these values the system matrices will be: 
 

0.3 0.1 0 0.2 0.2 0

0.1 0.4 0.2 0 0.2 2
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Now the system can be reduced by using the theory derived at the earlier in this section. 
 
Compute Gramians using the original system equations 
The controllability Gramian is found using (3.4) 
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               
       
       

        
 
This will give 36 unknown and 36 equations, which means that it can be found a unique 
solution for the controllability Gramian. Since the Gramians are symmetric matrices, it will 
only be necessary to calculate the diagonal elements and the elements above or below the 
diagonal; the values can then be inserted directly to the opposite part of the matrix. So for an 
nxn Gramian it will be necessary to solve 0.5(n2+n) equations; in this example the number of 
equations will be 21. In the same way (3.5) can be used to find the observability Gramian. 
After some algebra, the Gramians are found to be 
 

 

0.1832 0.0294 0.0134 0.5000 0.2648 0.0249

0.0294 0.0239 0.0232 0.2352 0.2648 0.0255

0.0134 0.0232 0.0242 0.2102 0.2643 0.0255

0.5000 0.2352 0.2102 3.5220 2.4734 0.2316

0.2648 0.2648 0.2643 2.4734 2.9777 0.2872

0.0249 0.0255 0.025
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Compute balancing transformation 
As seen above, the controllability and observability Gramians are not diagonal and equal (as 
expected) so the balancing transformation needs to be computed. The step-by-step procedure 
described earlier is used to find Σ, T and T-1, and they are given by 
 

 

0.5326 0 0 0 0 0
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-0.3106 0.7341 -1.3344 -0.1199 0.1155 0.0252

-0.2045 -0.1316 -0.0522 0.1518 0.0939 -0.0366
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Balance Gramians and system 
The transformed Gramians will now be given by Σ and the state vector x can be found using 
equation (3.9), and in this case the new state vector is given by 
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The transformed system matrices ,   and A B C  are found by using equation (3.10), and will be 
given by  
 

 

-0.0354 -0.0917 0.0306 -0.0131 -0.0010 -0.0163

0.0917 -0.2795 0.6149 -0.0975 -0.0068 -0.1162

0.0306 -0.6149 -0.0853 0.0641 0.0052 0.0846

-0.0131 0.0975 0.0641 -0.2817 -1.3908 -1.1090

0.0010 -0.0068 -0.0052 1.3908 -0.0016 -0.038
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Since this only will be another state space representation of the original system, step 
responses and simulations will be equal ( ( ) ( )eig A eig A ). It was performed different 
simulations just to confirm this, and one of these plots is found in Figure 3.3. Here both 
systems’ outputs are steady at 7 rad/sec before a step to 10 rad/sec is applied to the input after 
20 seconds. As the figure shows the responses are almost identical; the small deviation 
(almost impossible to see in the plot) between them is because the numbers in the transformed 
system matrices are rounded off to four decimals. 
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Figure 3.3: Comparison of original and transformed system 

 
Determine size of reduced-order model 
As seen from Σ, there is about one order of magnitude between Hankel singular value 1 and 2. 
From the approach presented earlier in this section, this means that if the system is reduced to 
1 state, the most important dynamics of the system will still be maintained. The 3rd singular 
value has the same order of magnitude as the 2nd, but the 4th is again one lower than the 3rd.  
 
To compare with different sizes of the reduced model it was from these considerations 
conducted simulation with the 11A  matrix as a scalar (see equation (3.11)), 2x2 and 4x4 with 

the corresponding 1'sB  and 1'sC . The simulations were done with the input signal 
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The simulations are compared in Figure 3.4. 
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Figure 3.4: Comparison of bit speed with different sizes of truncated models 

 
As seen in Figure 3.4, already with 11A as a scalar, the dominating time constant and most 

important dynamics are taken care of. There will indeed be a small error stationary, both with 

11A as a scalar and as a 2x2 matrix. When 11A  is extended to a 4x4 matrix this error will in fact 

disappear.  
 
Define equations for the reduced-order model 
Since there are dealt with model reduction with the purpose of using the reduced models in an 
MPC it is not required that the model is perfect; it will be mechanisms included in the MPC 
that will take care of this uncertainty. 
 



 37

So in this example the scalar model will give sufficient information to be used in an MPC; 
consequently the truncated model will be given by 
 

1 11 1 1 1

1 1 1

0.0354 0.1941

0.1941

x A x B u x u

y C x x

    

  


 

 
 

3.2 Balancing of empirical Gramians for nonlinear systems 
Most systems exhibits some kind of nonlinear behaviour and it can in many cases be 
sufficient to linearize this and still get a satisfactory model to be used in a model-based 
controller, but in many cases will this be insufficient and give a unsatisfactory performance. A 
model-based controller that is growing in popularity is nonlinear model predictive control. 
Many complex models require too much computational time and therefore have to undergo 
some kind of reduction to be used in NMPC. 
 
When working with nonlinear systems the balancing routines for linear systems are 
insufficient. The method that will be presented here for reducing nonlinear systems has the 
same framework as the balanced truncation method for linear systems; the main difference is 
how the Gramians are calculated. Hahn & Edgar (2002) has shown some interesting results 
using this method and the possibilities it gives.  
 
As for all control problems stability of the system is of great concern and it is therefore 
natural to consider the following; will the reduced model be stable if the original system is 
stable? There does not exist a definite answer to this today as far as the authors of this thesis 
know. There is no guarantee that stabilizing states are included in the reduced model, but in 
general will the method give stable reductions. There are however some cases where the 
reduced models can become unstable. Instability can occur in cases where 
 

 the original model is highly nonlinear 
 the reduced model is operated in a region that is larger than the region used when 

constructing the empirical Gramians 
 the model is reduced too much which can result in a reduced model where some of the 

stabilizing behaviour are cut off 
 
Instead of using the ordinary Gramians, is the empirical Gramians used as defined by Lall et 
al. (1999). As in the previous section will the theory of the method be presented first, and then 
some examples will follow. Consider a nonlinear system given by equation (3.19) 
 

  
      
    

,x t f x t u t

y t h x t






                  (3.19) 

where 
 x is the state vector 
 u is the input vector 

y is the measurement vector 
f, h are nonlinear functions 
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As for the case with a linear system, can this system be reduced following almost the same 
step-by-step procedure as described below: 
 

1. Compute Gramians using experimental or simulation data 
2. Compute balancing transformation 
3. Balance Gramians and system 
4. Determine size of reduced-order model 
5. Define equations for the reduced-order model 

 
Compute Gramians using experimental or simulation data 
 
The following sets have to be defined to compute the empirical Gramians: 
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







   
ent excitation/perturbation sizes for each direction

 number of inputs controllabilty  or number of states observabilityn 

 

where 
T is a set containing r orthogonal nxn matrices; the matrices for perturbation/excitation 
directions.  

 
M is a set containing s positive constants where s represents the number of different 
perturbation/excitation sizes for each direction. 

 
E is a set containing n unit vectors. 

 
Definition 3.1 
Let Tp, Ep, and M be given sets as described above, where p is the number of inputs. The 
empirical controllability Gramian is defined by equation (3.20). 
 

  2
1 1 1 0

1pr s
ilm

C
l m i m

W t dt
rsc



  

                    (3.20) 

where 
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 



e system

 
 



 39

Definition 3.2 
Let Tn, En, and M be given sets as described above, where n is the number of states. The 
empirical observability Gramian is defined by equation (3.21). 
 

  2
1 1 0

1r s
lm T

O l l
l m m

W T t T dt
rsc



 

                    (3.21) 

where 
  
 

         
 

 

0 0

0 0

 is given by 

and  is the output of the nonlinear system corresponding to the initial condition 

given by 0  and y  refers to the output measureme

lm n n lm ilm ilm jlm jlm
ij

ilm
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m l i
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y t

x c T e x

     

 



nt corresponding to 

the steady state of the system

 

 
 
As opposed to the Gramians for the linear case, the empirical Gramians for the nonlinear case 
is somewhat more complicated. As seen from definition 3.1 and 3.2 they will be based on 
information from the system, either from experimental or simulation data. An important issue 
regarding the empirical Gramians are that the data has to be collected within the region of 
operation for the process to capture the nonlinear behaviour of the process within that region.  
 
For non control-affine systems the covariance matrices are used instead of the empirical 
Gramians (Hahn & Edgar, 2002); the difference being that the covariance matrices can be 
computed for different input types and therefore are more applicable to systems that are not 
control affine. For simplicity are both referred to as empirical Gramians in this thesis; they are 
both used as a description of the input-output behaviour. 
 
A question arising is how to choose r and s and the constants c1,...,cs. There is not an exact 
science for choosing these values; they have to be chosen for the specific system and the 
specific operating region. This is usually done with a trial-and-error method. 
 
It is shown by Lall et al. (1999) that both the empirical controllability Gramian and 
observability Gramian reduce to linear Gramians for linear systems. 
 
As for the linear case, the singular values of the controllability Gramian WC can be used as a 
measure of how much energy that has to be applied to the system in order to move the 
corresponding state, and the singular values of the observability Gramian WO is in distinction 
a measure of the energy that is produced by the corresponding state.  
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Compute balancing transformation 
The balancing transformation are computed in the same way as for the linear case, see section 
3.1. 
  
Balance Gramians and system 
The transformed Gramians will as for the linear case be given by 
 

T
C CW TW T           (3.7) 

 
1 1( )T

O OW T W T           (3.8) 

 
and the state vector for the balanced system will be given by 
 
 x Tx            (3.9) 
 
The transformed system is then given by 
 

 
    
  

1

1

,x Tf T x t u t

y h T x t










                 (3.22) 

 
Determine size of reduced-order model 
The size of the reduced-order model is determined in the same way as for the linear case; by 
looking at the Hankel singular values of the balanced Gramian, see section 3.1. 
 
Define equations for the reduced-order model 
The equations for the reduced-order model are found using the following equation 
 

      
   
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0ss

x t PTf T x t u t

x t x

y t h T x t













                           (3.23) 

where  

 0 is a projection matrix which has the rank of the original system 

where  is the identity matrix with the same rank as the reduced system

P I

I


  

 
This will lead to the following reduced model 

 

      
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1
1

1
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








                 (3.24)
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The method described in this chapter was implemented in MATLAB, see Appendix B for 
information about the codes. It should be noticed that before computing the empirical 
Gramians and balancing, the system of interest is scaled. This is done because a state 
changing by orders of magnitude can be more important than a state that hardly changes, even 
if the steady state value of it has a smaller absolute value. For a general nonlinear system 
given by (3.19) where xss and uss represent the steady state values of x and u is two quantities 
introduced; 
 

 
 

x ss

u ss

T diag x

T diag u




 

 
The scaled system is then given by 
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In the following example a small system is treated to see how the model is reduced using 
balancing of the empirical Gramians. 
 
Example 3.2: Theoretical example with two states 
In this theoretical example a small two-state system is treated. This is done just for simplicity, 
so it should be possible to do the calculations explicit to get a complete review of the theory. 
 
Consider the system given by equation (3.25). 
 

 

1 1 2 1

2
2 1 2

1

x x x x u

x x x

y x

   

 



                   (3.25) 

 
This system has one scalar input and one scalar output, in addition to the two states. This is 
just a theoretical example (no physical meaning) with the purpose of showing how the method 
of balancing the empirical Gramians works and what the reduced system will look like.  
 
The system can be proven to be asymptotically stable by considering the following storage 
function 
 

  
2 2
1 2

2 2

x x
V x                      (3.26) 

 
As stated in Khalil (2002) is a system on the form in (3.19) said to be passive if  

 

   , ,T n pV
u y V f x u x u

x


    


    
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And strictly passive if 
 
   for some positive definite function Tu y V x    

 
By using the storage function in (3.26) is it clear that 
 
   2 2 2 2 2 2 2 2

1 1 2 2 1 2 1 1 1 2 2 1 1 2 1 2= TV x x x x x x x x x u x x x x u x x u y x x                 

 
The system is passive and also strictly passive. This can be used to say something about the 
stability properties of the system on the form (3.19). The origin of  ,0x f x  is 

asymptotically stable if the system is strictly passive; which it is in this example. A proof of 
this can be found in Appendix A.    
 
Compute Gramians using experimental or simulation data 
When the empirical Gramians are computed from definition 3.1 and 3.2 they result in  
 

 

0.2345 0.3287

0.3287 0.8737

0.1571 0.0182

0.0182 0.0084
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 
  
 

 
   

 

 
As already mentioned it is important to find the empirical Gramians for the region of 
operation for where the process is to be controlled. For this specific example the system was 
implemented in Simulink where steady state values for input and states were found. 
Definition 3.1 and 3.2 were used with two directions (up/down) and only one small excitation 
size; i.e. impulse up/down.  
 
Compute balancing transformation 
As expected are the controllability and observability Gramians not diagonal and equal, so the 
transformation matrix that balances the system has to be computed. Σ, T and T-1 will be given 
by 
 

0.1701 0

0 0.0576

 
   

 
 

 
0.9189 0.0499

0.4834 0.3724
T

 
   

 

 

1 1.1708 0.1568

1.5197 2.8890
T   

  
 
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Balance Gramians and system 
The next step will be to balance the system using equation (3.22), but first some calculations 
need to be done. 
  

 1 21

1 2

1.1708 0.1568

1.5197 2.8890

x x
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x x
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
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

  2
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The balanced system is then given by 
 

    1 1

2
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Determine size of reduced-order model 
Since there are only two states in the original system, is the only possibility to reduce it to one 
state. As seen from Σ is the singular value related to the 2nd state one order of magnitude 
smaller than for the 1st state. This indicates that the 2nd state will contribute significantly less 
to the input-output behaviour of the system. A system with only one state should therefore be 
able to describe the system’s input-output behaviour appropriately.  
 
Define equations for the reduced-order model 
When reducing the system to one state the projection matrix P will be given by 

 
1 0

0 0
P

 
  
 

 

 
The truncated model will then be given by 

 

 1 2 2
1 1 2 1 2 1( ), ( ) 1.6984 0.417 3.51 0.9189x PTf T x t u t x x x x x u        
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2x  is still left in the truncated system equation, and it can be seen from (3.23) that the steady 

state value of 2x  will be needed. This steady state value was found from simulation of the 

balanced system, and was found to be 
 

2 2 0.1482ssx x    

 
Inserting this into the system equation will give 
 
 2

1 1 11.6984 0.48 0.00916 0.9189x x x u      

 
The measurement will be given by 
 

  1
1 2 11.1708 0.1568 1.1708 0.02324y h T x x x x      

 
The response for the full-order model and the reduced-order with a 10% change in the input 
can be seen in Figure 3.5. As seen in the figure, some of the dynamics are lost, and there is 
also an error in the steady state value. This is to be expected, a reduction from two to only one 
state is a significant reduction and some of the dynamics will be lost. 
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Figure 3.5: Comparison of full-order and reduced-order theoretical example 
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Example 3.3: String model with 6 states and nonlinear friction component at bit 
In this example will the same string model that was used in Example 3.1 be examined, but this 
time with a nonlinear friction component representing the friction at the bit. The system is 
represented by the following equations 
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where 

3 0 3 3
32 22 2

3 0 13 0

is representing the nonlinear friction component at the bit and is given by
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where 

0

1

is the friction coeffcient

is the force vector

is the contact radius vector

is the transistion speed for the string

is the transistion speed for the well

is the linear damping vector

is the start f

N

r

D

p






riction parameter

 

 
Tb is the same friction term that is used in NOV’s model, but for simplicity it is only added to 
the last element of the string, i.e. the bit. In NOV’s model it is added to every element of the 
string, but only with large influence to the parts of the string which are bent and likely to 
come in contact with the walls of the well. In this example is a vertical string considered, so 
the only significant contribution to the friction will be from the bit. 
  
The parameters for the string is the same as in Example 3.1, while the parameters for the 
nonlinear bit friction were chosen somewhat randomly and from the data in the Simulink 
model provided by NOV. 
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The empirical Gramians were computed and balanced which give the following singular 
values of the balanced Gramian 
 

 

451.63 0 0 0 0 0

0 6.1344 0 0 0 0

0 0 2.2381 0 0 0

0 0 0 0.1886 0 0

0 0 0 0 0.1544 0

0 0 0 0 0 0.1121
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 
 
 
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 
 
 
 

 

 
From Σ it is clear that the 1st state of the balanced system has the largest contribution to the 
input-output behaviour. Then the 2nd and 3rd state will have somewhat equal contribution, but 
less than the 1st state since they are two orders of magnitude smaller than the 1st state. The 4th, 
5th and 6th state will have the smallest contribution to the input-output behaviour; they are at 
least one order of magnitude smaller than the previous states. A reduced system with only 
three states should therefore give a satisfactory description of the system input-output 
behaviour.  
 
Another solution to the problem could be to linearize the system around an operating point. 
The linear system will require less computational power, but it will in some cases nevertheless 
not be sufficient to characterize the original systems input-output behaviour needed for tight 
control. The string model used in this example was linearized around its operating point, 0.8 
rad/sec, to be able to compare it with the nonlinear reduction. Simulations of the full-order 
system, the reduced system and the linearized system can be viewed in Figure 3.6. As the 
figure clearly shows the reduced system is a better representation of the full-order system than 
the linearized system. The full-order system has an inverse response which also the reduced-
order model includes, whilst the linearized has a lack of this dynamics; making it a poorer 
representation of the original system. The nonlinearity causing the inverse response is lost in 
the linearized system. The reduced-order model gives in general a better description of the 
original system’s dynamics than the linearized one, making it more suitable for 
implementation in model-based controllers.  
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Figure 3.6: Comparison of bit speed for full-order system, reduced-order system, and 

linearized system 
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3.3 Full scale model reduction 
In this section a full scale model representing a drill string with a length of 1200 m will be 
reduced. The equations for this model will have the same setup as the equations used in 
Example 3.1 and Example 3.3, and with an element length of 28 m it will result in 86 
differential equations. For simplicity is the nonlinear friction term only added to the bit, the 
friction from the wall is next to nothing since the well used here is vertical.  
 
As already mentioned will the system be represented by 86 equations, where 43 of them will 
describe the acceleration of the 43 different elements while the remaining 43 will describe the 
velocity difference between elements connected to each other. Equation (3.27) shows how the 
system will be represented. 

 
 
 
 
 
 
 
 
 
 
 
 

           (3.27) 
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where 

 0

1

is the friction coeffcient

is the force vector

is the contact radius vector

is the transistion speed for the string

is the transistion speed for the well

is the linear damping vector

is the start f

N

r

D

p







riction parameter

 

 
Values for the different constants are taken from the Simulink model provided by NOV; a 
1200 m vertical string was implemented which gave the constants needed. The different 
values represent the same as they would on a physical string. 
 
The empirical Gramians were computed and balanced with the method already described in 
the previous section. An important matter that has to be considered is the values used when 
computing the empirical Gramians, i.e. the simulation data. As already explained is the 
empirical Gramians found in the area of operation, so it is important that this area is the same 
as the one the reduced system is supposed to operate in. For this system 10 rad/sec was 
chosen as steady state of the speed (x1-x43) and input u. Different values were used for the 
steps/impulses where the series of 0.1, 0.5 and 1 rad/sec gave the best result. There does not 
exist a clear method for choosing this data as far as the authors of this thesis know; trial-and-
error is usually the approach. 
 
The following singular values of the balanced empirical Gramian was then found 
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As seen from the singular values it is clear that the first states of the balanced system have the 
largest contribution to the input-output behaviour. A reduced model with between 4-10 states 
should therefore be sufficient to describe this system.  
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Figure 3.7 shows a comparison between different reduced models with a change in the input 
from 10 to 15 rad/sec. A reduced model with only one state is clearly not sufficient to 
describe the full-order system’s dynamics. With 4 states are most of the dynamics captured, 
but there is a deviation of approximately 4 from the full-order steady state value. This bias 
gets smaller and smaller as the number of states increases and with 10 states is the bias 
completely gone. With 4 states there are also an inverse response which neither the full-order 
system nor the system with 10 states has. One should notice that with 10 states there is a 
second frequency coming into play, this is not seen with 4 states. One can therefore argue 
over which would give the best result when implemented in a controller; having only 4 states 
will reduce the computational complexity dramatically and will therefore be the preferred 
choice. The bias should not be a problem; integral action is easily implemented in model 
predictive controllers.  
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Figure 3.7: Comparison of bit speed between different reduced-order models 
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As mentioned earlier is the region of operation an important issue when the empirical 
Gramians are computed. The empirical Gramians were therefore computed with different 
steps with different magnitudes. Figure 3.8 and 3.9 shows the response of the reduced-order 
model with 4 states compared to the full-order system.  
 
In Figure 3.8 the input is 5 rad/sec. With this input both the full-order model and the reduced-
order model will give stick-slip. The reduced-order model is a good description of the full-
order model; it captures the stick-slip phenomenon as it was intended to do. The oscillations 
are however amplified, but this should not be a problem.  
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Figure 3.8: Both full-order model and reduced-order model exhibiting the stick-slip 

phenomenon 
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In Figure 3.9 there is a large step in the input; it goes from 10 to 25 rad/sec. The reduced-
order model gives also in this region of operation a good description of the full-order system. 
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Figure 3.9: Comparison between full-order model and reduced-order model with a large step 

in the input 
 
 
It is clear from the figures above that the reduced-order model with only 4 states works well 
in different regions of operation, and is capable to demonstrate the stick-slip phenomenon. 
This reduced-order model will be used in Chapter 5 were it will be implemented into an 
NMPC. 
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4 MPC 
 
Model predictive control is one of the advanced control methods that has gained foothold in 
modern industrial control engineering. There are many reasons for this success, and the main 
reasons are listed as follows by Maciejowski (2002); 
 

1. It handles multivariable control naturally 
2. It can take count of actuator limitations 
3. It allows operation closer to constraints (compared with conventional control), which 

frequently leads to more profitable operation. Remarkably short pay-back periods 
have been reported. 

4. Control update rates are relatively low in these applications, so that there is plenty of 
time for the necessary on-line computations. 

 
The authors of this thesis believe that item 2 and 3 in the list above are the most significant 
due to the results NOV desire from this study of the MPC strategy. 
 
MPC has been in use in industrial control since the 1980s and it was in the first years 
principally applied to chemical plants. A reason for this is that chemical plants are generally 
slow with large time delays. The technology did also arise in the process industry and has 
therefore been somewhat tied to this industry, a tie that currently is being broken down. MPC 
is being applied to many other segments of control engineering nowadays, such as control of 
vehicles, aircrafts and in robotics. 
 

 
Figure 4.1: Model predictive control is gaining a broader usage; such as in aeroplanes 
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MPC makes use of a dynamic model of the process to predict the process responses due to the 
applied inputs. There must be defined an objective function, and from the predicted process 
responses the MPC utilize a numerical minimization algorithm that will calculate the optimal 
process input that minimizes this objective function. This optimization is performed each time 
step with the same horizon and with updated measurements/estimates of states and 
disturbances. At each time step the first computed value of the optimal input trajectory is 
applied to the process. The optimization algorithm will also take the system’s constraints into 
account, and compute the input trajectory without violating them. All these aspects will be 
described more closely in this chapter. 
 

4.1 Receding horizon concept 
As mentioned earlier, the optimization is performed with the same horizon at each time step. 
This concept is often called receding horizon, corresponding to the behaviour of the Earth’s 
horizon; as one go one step towards the horizon, it will recede and still be the same distance 
away. This means that when the optimization is done at current time step k, the objective 
function will be penalized by the algorithm up to time k + Hp where Hp is the prediction 
horizon. This concept is illustrated in Figure 4.2, and for simplicity is the SISO (single input – 
single output) case considered here. The set point trajectory is denoted by s(t) (in some cases 
can the set point also be a fixed value), and this is the trajectory that the measured process 
output y(t) in the ideal case should follow. The reference trajectory, represented by r(t|k) in 
the figure, defines the desired trajectory for the process output to follow to return to s(t). The 
notation r(t|k) shows that it depends on the process condition at time k, and will be calculated 
at every time step. The starting point for the reference trajectory will always be the process 
output y(t) at time k. It will not always be best to choose the reference trajectory to be a 
straight line from y(k) to s(k+1), but rather let it converge to s(t) within a number of time 
steps. A common approach is to let it converge exponentially with a time constant just about 
the process’ time constant. 
 
The predicted process output ˆ( | )y t k is determined from the model, where the optimal input 
trajectory ˆ( | )u k i k will be applied (i = {0,1,…,Hp-1}). Also here the hat-notation implies 
that the input trajectory is the best estimate at time k, which means that the prediction can be 
changed in the following time steps. 
 

 
Figure 4.2: The receding horizon concept 
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4.2 Objective function 
When the optimization is executed will the intention be to minimize the objective function. 
The objective function can be formulated in many different ways, depending on the 
optimization method. The most common formulations are the linear programming (LP) and 
quadratic programming (QP) based methods. The advantage of the LP method is that both 
objective function and constraints are linear, which means that the computational time is low 
and convergence to a global minimum is always guaranteed. The QP method is still 
considered to give better performance in general, and therefore will this method be dealt with 
in this thesis. 
 
In distinction to LP, will the objective function in a QP formulation be quadratic, but the 
constraints will still be linear. Before the objective function is defined, two other frequently 
used horizons will be presented. Because there always will be a delay when the input is 
changed until the process responds, a reasonable approach is to wait some time before the 
deviation between the reference trajectory and process output is penalized. This time to wait 
will be represented by the window parameter Hw, and the objective function “window” will be 
the time horizon from Hw to Hp. It is also common to define a control horizon Hu. In many 
situation will Hu = Hp, but in some cases, e.g. when it is desirable to reduce computational 
time, it will be natural to set Hu < Hp. With these assumptions in mind the objective function 
can be defined as follows. 
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where Q and R are weight matrices. The norms used in equation (4.1) are short notation for 

the quadratic terms, and are defined by
2 T

Y
x x Yx . The weight matrices are tuning 

parameters which can be adjusted to give the MPC satisfactory performance; this will be 
treated in more detail in section 4.9. 
 

4.3 Constraints 
Closely related to MPC is the Linear Quadratic Regulator (LQR). This controller also 
minimizes a quadratic objective function, and penalizes the input and state deviations for each 
sample step. In distinction to MPC, the LQR will not handle the system’s constraints when 
calculating the next system input; so one could simply say that MPC is a constrained LQR. 
 
In practice a system’s constraints can be divided in two parts, equipment constraints and 
constraints that the process is wanted to operate within to for example ensure a specific 
quality of the product. Examples of equipment constraints could be 
 

- actuator constraints like fully open/closed valve, a motors min/max speed, an 
actuator’s slew rate etc. 

- state constraints like empty/full tank, a pipe’s maximum allowed pressure, a drill 
string’s max torque etc. 

 
and typical operating constraints could be 
 

- to keep the controlled variables within certain limits 
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- to keep the mixture of two or more liquids within a certain composition 
- to let the controlled variables follow a set point trajectory 

 
A mathematical representation of the inequality constraints could be 
 

 
min max

min max

min max

( )

( )

( )

y y k y

u u k u

u u k u

 
    

 
        (4.2) 

 
where 
 ymin/ ymax are vectors containing the controlled variables’ min/max values 
 y(k)  is a vector containing the state values at time step k 
 Δumin/Δumax are vectors containing the actuators min/max slew rates 
 Δu(k)  is a vector containing the actuator’s applied slew rates at time step k 
 umin/umax are vectors containing the actuators min/max values 
 u(k)  is a vector containing the actuators input signal at time step k 
 
It should not be hard to realize that the equipment constraints mentioned above are not 
possible to violate under any conditions; because of this fact such constraints are called hard 
constraints. The operating constraints are possible, but not desirable to violate. In some cases, 
for example if health and safety are in danger, it would be necessary to violate these 
constraints and they are therefore called soft constraints. If the process operates close to the 
constraints, a large disturbance can move the controlled variables outside the feasible area. 
Also if the internal model has become incorrect due to changes in the process dynamics the 
MPC will give wrong predictions and can possibly result in constraint violation. It will be 
important that the MPC handles these infeasible situations, because it can give serious 
consequences if the algorithm just stops. There are many ways to deal with such scenarios; 
one could just use the previous feasible input or use a feedback controller until a feasible 
solution is achieved.  A more intelligent approach would be to implement soft constraints in 
the algorithm. 
 
When softening the constraints the algorithm allows the constraints to be violated, but only if 
it is necessary and the violations should be held to a minimum. One way of softening the 
constraints are by adding new variables to the objective function, called slack variables. If the 
constraints are violated the slack variables will be non-zero, but they will be very heavily 
penalized by the objective function so the optimizer has a strong incentive of keeping the 
slack variables zero if possible. As some of the constraints are hard constraints, those cannot 
be violated and the corresponding slack variables are always zero. One method for softening 
the constraints is described as follows by Maciejowski (2002). 
 
First consider a standard QP problem of the form 
 

 
1

min
2

T T


      

 
subject to 
 
     
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This will not handle a situation where the constraints are violated. When slack variables ε are 
introduced, the QP formulation can be modified to 
 

2

,

1
min

2
T T

 
         

 
subject to 
 

 
0

  

  


 

where 

  
is a non-negative vector with the same dimention as  

elements corresponding with hard constraints are always zero

is a non-negative scalar

 


 

 

4.4 Prediction 
One of the key-components of the MPC is the prediction of the future values of the controlled 
variables. This is done using measurements or estimates of the current state and the assumed 
future inputs.  
 
Assume that all states are measured and that nothing is known about any disturbances or 
measurement noise. Then the prediction of the states is found by iterating the model given by 
(4.3) 
 

1k k k

k k
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y Cx
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          (4.3) 

where  

 

is the state vector

is the input vector

is the output vector

x

u

y
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This will lead to the following: 
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It is clear that the first two terms are based on the past, while the last term is based on the 
future. There are seldom that no disturbances act on a system. An output disturbance can 
easily be added to the predictions, even without a measurement of it, by just taking the 
difference between the measured and the estimated output. If not all the states are measured, 
which typically is the case, an observer or another estimation scheme have to estimate the full 
state vector. This is usually possible to do, but there can be different approaches. Different 
methods for estimating the full state vector, including methods for nonlinear systems, are 
given further investigation in section 4.7.   
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4.5 Complete formulation 
In the previous sections the different aspects regarding the model predictive controller has 
been shown, such as the objective function, constraints, predictions etc. In this section will 
they be put together to see how the complete MPC problem can be formulated.   
 
Consider the linear time invariant state space-space model as given by (4.3). The MPC 
problem is then formulated as the following 
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4.6 Control hierarchy 
If one should consider the MPC in a control hierarchy, it has traditionally been placed in a 
layer above the regulatory control layer (where the single loop PI(D) controllers are found), 
and the MPC calculates the set points for this lower layer. In such setup it will be the 
regulatory level that stabilizes the process and gives the control inputs applied to the actuators 
(valve servos, drives, etc.). The reader is referred to the article by Skogestad (2004) for more 
information about control structure design. The main reason why it has been done this way is 
because after the introduction of MPC, there did not exist any proofs showing that it would 
stabilize the process. The operating companies did not rely 100% on the MPC, and by doing it 
this way the process was still stable (although not optimal), even if the MPC for some reason 
was not operational. There are in the latter days been established a satisfactory stability theory 
for the MPC, but there is quite rarely seen applications where the MPC outputs are applied 
directly to the actuators. The reason for this practice could maybe be just due to traditional 
aspects; Maciejowski (2002) supposes a future trend where the regulatory control level is 
removed and the MPC output are applied directly to the actuators. Figure 4.3 shows a 
traditional setup for a control hierarchy, mostly used in large processes.  
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Figure 4.3: Control hierarchy as proposed by Skogestad (2004) 
 
In this thesis will the MPC output be used directly to control the top drive speed of the drill 
string, which is rather unconventional, but it is of large interest to see how an MPC can deal 
with the stick-slip phenomenon. The output of the MPC will go directly to the top drive and 
the controlled variable will be the bit speed. Figure 4.4 shows a traditional drill string with 
input u and output y. In Chapter 5 will the complete problem formulation for this case be 
derived. 
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Figure 4.4: Drill string with input u and output y 

 

4.7 Estimation 
In MPC is the predicted values of the controlled variables computed using the current states 
and assumed future inputs. It is rather unrealistic that a measurement for every state is 
available, so the unmeasured states have to be estimated. There are different strategies for 
estimating the states; which method that gives the best results depends on the system. If the 
system is linear there exists rather simple strategies; a Kalman filter usually gives satisfactory 
results. If the system is nonlinear the story will be somewhat different. Two estimators based 
on the Kalman filter that have shown good results are the Extended Kalman Filter (EKF) and 
the Unscented Kalman Filter (UKF), where the UKF seems to be the best to handle systems 
with high nonlinearity. Since the interest of this thesis is a highly nonlinear system only the 
UKF will be given further attention.   
 
Unscented Kalman Filter 
The first thing that catches ones eye when the UKF is considered is the strange name; an 
unscented Kalman filter? This needs some further comments. Scented are used about things 
with a smell or an odour, and have in principle nothing to do with state estimation problems. 
UKF was developed by the Robotics Research Group at University of Oxford and it was also 
members of this group that gave the method its name. The method was first called the New 
Filter, but due to the ambiguous nature of the name it was decided that a new and better name 
was needed. After a democratic vote amongst the group the name was chosen to be Unscented 
Kalman Filter, exactly why that name was chosen is somewhat unclear. There has been 
speculated that the name was chosen to imply that EKF stinks, but this is just speculations. 
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This funny anecdote is taken from the PowerPoint presentation Pekka Jänis used at a 
Postgraduate Seminar on Signal Processing in 2007 at the Helsinki University of Technology. 
The question about the origin of the name still remains a riddle for the authors of this thesis.  
 
As apposed to the EKF which uses Taylor series linearization, is statistical linearization used 
in the UKF. A nonlinear function of a random variable is linearized through a linear 
regression between n points drawn from the prior distribution of the random variable. The 
state distribution is specified with a minimal set of chosen sample points which captures the 
true mean and covariance for the variable. When there are at least 2n+1 sampling points are 
the approximations accurate to the 3rd order (Taylor series expansion) for Gaussian inputs and 
at least to the 2nd order for non-Gaussian inputs. This is an advantage over the EKF which 
only achieves 1st order accuracy. The algorithm presented here is based on the one in the 
article written by Wan & van der Merwe (2000).  
 
Algorithm 4.1: Unscented Kalman Filter 
 
Consider the nonlinear system given by: 
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The algorithm is initialized with: 
 

 

 
  

  

0 0

0 0 0 0 0

0 0

0

0 0 0 0 0

ˆ

ˆ ˆ

ˆ ˆ 0 0

0 0

ˆ ˆ 0 0

0 0

T

Ta a T

Ta a a a a
w

v

x E x

E x x x x

x E x x

E x x x x



     

       
 
          
  

      (4.6) 
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The Sigma points are calculated: 
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Time update: 
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where Wi are weights that are calculated by:  
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where 
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The measurements are updated by: 
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where 
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There can be a challenge to estimate the states of a reduced model. When using reduced 
nonlinear models the states will loose their physical meaning. The only variables that make 
sense are the system’s input and output; the rest has just some value that cannot be related to 
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anything physical. This will of course be a condition that makes state estimation harder since 
it will be difficult to say whether the observer gives good state estimates or not. 
 
Integral action 
Another motivation for utilizing estimation in MPC is the implementation of integral action. 
The main reason for steady state error is due to model errors. In practice it will be impossible 
to get a model perfectly matching the real process, and the process dynamics will also change 
by time. To achieve offset-free regulation it will therefore be necessary to apply such integral 
action. It is shown by Pannocchia & Rawlings (2003) that this can be done by adding 
integrating disturbances to the process model. They prove in their article that a number of 
integrating disturbances equal to the number of measured variables are shown to be sufficient 
to guarantee zero offset in the controlled variables. 
 

4.8 Stability 
A challenge with MPC has been stability and in the latter days has there been established a 
great amount of theory on this subject. Predictive control with the receding horizon idea is a 
feedback control policy. Feedback can be dangerous in the sense that the resulting closed loop 
could become unstable, but feedback is needed to effectively reduce the effects of unexpected 
and immeasurable disturbances and to reduce the effects of the uncertainties of the system. In 
this section will different strategies that guarantee nominal stability be investigated, with the 
assumption that the model is perfect. 
 
Terminal constraints 
By adding a terminal constraint will the state be forced to take a particular value at the end of 
the prediction horizon, for example drive the state to the origin. This can easily be proved 
using a Lyapunov function (Keerthi & Gilbert, 1988). Some assumptions are made, such that 
the optimization problem has a solution at every step and that the global optimum can be 
found at every step. With constraints can this be difficult, and sometimes even infeasible. 
 
Terminal cost 
A strategy that often is used together with the terminal constraint is a terminal cost. The 
terminal cost is added to the objective function and will penalize the non-zero states at the end 
of the prediction. This will make the optimization drive the states to zero. 
 
Infinite horizons 
Making the horizons infinite will guarantee stability for the closed loop because the optimal 
trajectory will not change. When the process is stable is the control problem with infinite 
horizons solved by reparameterization of the control problem to a finite number of 
parameters. Then the optimization can be performed over a finite-dimensional space. When 
the process is unstable the problem is not so trivial. The process is divided into two parts, one 
stable and one unstable. On the stable part is still an infinite horizon used. A terminal equality 
constraint is used on the unstable modes; this makes the unstable modes go to zero at the end 
of the control horizon. This extra constraint will be imposed to the optimization problem and 
there can be problems with infeasibility. 
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4.9 Tuning 
As for conventional controllers is tuning an important issue to get an optimal performance of 
the MPC. There is no point in spending time and effort on deriving an MPC if it is put in use 
with somewhat random parameters. Remember that one of the major reasons for choosing an 
MPC is get optimal control close to constraints. There are several different parameters that 
can be chosen in an MPC, and in this section will the most important be explained; how they 
can be found and how they influence the system and the performance. 
 
Weight matrices Q and R 
The weight matrices Q and R are important parameters for the closed loop performance of the 
controlled system. Tuning Q and R are similar to the LQR-case, and they are often chosen as 
diagonal matrices. If Q is increased relative to R there will be a more aggressive closed loop 
behaviour as the MPC tries to reduce the tracking error. On the other hand if R is increased 
relative to Q the control activity will be reduced as the MPC tries to reduce the change in u. 
The task of finding the correct values for Q and R and the ratio between them is another story; 
there is no straightforward method for choosing them. The desired closed loop response and 
knowledge about the process can be a basis for choosing the parameters, but in the end is 
trial-and-error by closed loop simulation the way to ensure optimal performance. 
 
Prediction horizon Hp  
Affecting both closed loop performance and computational load makes the prediction horizon 
one of the most important parameter in MPC tuning. Large Hp will give a more complex 
optimization problem which will clearly affect the computational load as the number of free 
variables increase. One would think that a larger Hp would increase the optimality of the MPC 
as this will make the closed loop behaviour closer to the infinite horizon controller, but this is 
not always the case (Di Palma & Magni, 2007). Another issue for not choosing a too long 
prediction horizon is mismatch between process and model; effects from model uncertainties 
tends to enhance if the prediction horizon is too long. 
 
Control horizon Hu 

The control horizon will as the prediction horizon affect both closed loop performance and 
computational load. The prediction horizon and control horizon are closely related as seen in 
the objective function (4.1); choosing one of them will inflict the other. An important issue 
when choosing both Hp and Hu are the process time delays. It is important that Hp is larger 
than the time delay and that Hp+ Hu are larger than the time delay to force the controller to 
consider the full effect of each move. Consider the following example: 
 
Example 4.1: Time delays 
 
Hp = 10 
Hu = 6 

Delay = 5 
 
Six different control moves has to be calculated, but the 6th control move will not have any 
impact within the prediction horizon since the delay is 5. This makes the 6th control move 
indeterminate (this situation is illustrated in Figure 4.5); it just increases the computational 
load. This could easily be avoided if Hp had been larger or Hu smaller. 
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Figure 4.5: The effect of time delays 

 
As this simple example shows time delays are an important issue when choosing the horizons. 
There are some rules of thumb for choosing the horizons, but in the end they have to be 
chosen individually for the specific process.  
 
 
The “window” parameter Hw 
The choice of Hw will influence the closed loop performance; if it is chosen too low will this 
lead to a deviation between the reference trajectory and process output which again will result 
in a reduction of the controller performance. As already mentioned there can be different time 
delays, so there is no point in penalizing the deviation between the reference trajectory and 
process output before the input has any chance on affecting the output.    
 
Reference trajectory r(k+i)  
Closed loop aggresivity will also be influenced by the reference trajectory; a slower reference 
trajectory will lead to a less aggressive closed loop behaviour. The reference trajectory has to 
be chosen in consideration with the desired closed loop response. 
 

4.10 NMPC 
In all physical systems there exist nonlinearities to some extent. Only in simple mechanical 
systems and simple electrical circuits consisting of passive components, the system’s 
behaviour will be close to linear over a substantial region of operation. In such applications a 
linear representation of the system can be used, even if some of the operating conditions are 
changed. In reality will systems to be controlled usually be complex systems with significant 
nonlinear behaviour, whether it is a large chemical process, transportation systems, social 
models, or whatever it should be. When dealing with these kinds of strongly nonlinear 
processes, an MPC based on a linear model will give large limitations on the controller’s 
performance. 
 
An intuitive solution to the issue mentioned above is to use a nonlinear internal model in the 
MPC; NMPC. Of course it involves some challenges to use nonlinear models, unless there 
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should not be any reasons to use linear models. In this chapter some of these challenges are 
discussed, and methods describing how one can overcome these problems are considered. 
 
Challenges  
When an MPC is running in real-time, one of the main problems using a nonlinear model is 
that it will be hard, or sometimes impossible, to say something about the computational time 
each optimization step will take to complete and even if the optimization ever will terminate. 
It will be a firm requirement that the MPC has its next output signal ready for every sample 
step, especially when the output is applied directly to the actuators (see section 4.6 about 
Control hierarchy); this will actually be the case when the MPC output is used directly as 
control signal to the top drive of a drill string. 
 
Another drawback when convexity of the optimization problem is lost is that the problem no 
longer has one optimal solution, but can have many local optimums in addition to the global 
optimum which is preferred to find. If the optimization algorithm converges to a solution, one 
cannot say if the solution is the global optimum or not; the algorithm can as well converge to 
a local solution. 
 
Similar to the linear case, NMPC will need the full state vector for every sampling. Usually it 
will not be the case that all states are measured directly, so it will be necessary to use a state 
estimator. For the nonlinear case usually the Extended Kalman Filter (EKF) has been used as 
state estimator, but more recently the Unscented Kalman Filter (UKF) has gained popularity 
(find more about this in section 4.7 about Estimation).  
 
SQP 
There are developed several methods for solving optimization problems using nonlinear 
internal models, and one of the most effective method so far is an algorithm generating steps 
by solving quadratic sub-problems (Nocedal & Wright, 2006). This method is called 
Sequential Quadratic Programming (SQP) and this method will be used in this thesis. In all 
iterations of the SQP method there will be made a quadratic approximation to the objective 
function and linear approximations to the nonlinear constraints, namely the method will make 
an approximation to a standard QP problem. Many variations of the method are available, but 
the basic idea of SQP is presented as follows by Maciejowski (2002): 
 
Suppose that a general constrained optimization problem of the form showed in (4.15) is to be 
solved. 
 

 min ( ) : ( ) 0, ( ) 0k i k j k
x

V x H x x         (4.15) 

where 

 
 
 

( ) 0  are sets of nonlinear equality constraints

( ) 0  are sets of nonlinear inequality constraints

i

j

H  

  
 

 
The SQP algorithm makes a quadratic approximation qk(d) to the objective function V(xk): 
 

 21
( ) ( , ) ( )

2
T T

k xx k k kq d d L x d V x d    
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where 
 ( , ) ( ) ( ) ( )       is the Lagrangiani i i i

i i

L x V x H x x        

 
The next iterate xk+1 is given by 
 
 1k k kx x d    

 
where dk is found by solving the QP problem which results from minimizing qk(d) subject to 
local linear approximations of the constraints, given by 
 

   min ( ) : ( ) ( ) 0, ( ) ( ) 0T T
k i k i k j k i k

d
q d H x H x d x x d      

 
Since this is just a sketch of how an SQP algorithm works, nothing about how to find the 
Lagrangian multipliers λk or the Hessian matrix 2 ( , )xx k kL x  are described. This will in fact 

vary from algorithm to algorithm, and in this thesis is MATLAB’s SQP solver fmincon used 
in the NMPC. fmincon uses the well known BFGS method, which is considered as the most 
popular quasi-Newton method (Nocedal & Wright, 2006) for solving nonlinear optimization 
problems. The method is named from its discoverers Broyden, Fletcher, Goldfarb and 
Shannon. 
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5 NMPC for drill string 
 
The theory presented in the previous chapter will now be used to control a rotating drill string.  
 
Consider the nonlinear system given by 
 

    
  

,x f x t u t

y h x t






            (5.1) 

where 
x is the state vector 

 u is the input (top drive speed, ωtd) 
y is the measurement (bit speed, ωbit) 
f, h are nonlinear functions 

 
The nonlinear system here is in reduced form, consisting of only 4 states, whereas the original 
system consists of 86 states. The system under investigation is the same as in Chapter 3, a 
1200 m drill string with a highly nonlinear component representing the friction at the bit.  
 
There are different sets of constraints acting on this system, where the torque alterations are 
believed to be the most critical one. The equipment constraints acting on the system is 
maximum top drive speed and top drive slew rate (which will influence the torque 
alterations). The constraints defined for this system are all linear and will be  
 

 
 

   
,max

,max

0

1

td td

td td td

k

k k

 

  

 

   
 

 
There were not found data about slew rate on a real top drive, but ,maxtd is here supposed to 

be 1 rad/sec per second.  
 
The objective of the controller is to keep the bit speed constant at set point and to keep the 
rate of penetration as high as possible. A suitable objective function is then given by 
 

            
1

2 2

0

1
p u

w

H H

bit r td td
i H i

V k Q k i k i R k i k i   


 

           

 
The NMPC was implemented in MATLAB using fmincon as the SQP solver. There were 
some difficulties implementing the last term in the objective function, Δu, so this was not 
included. This would anyway have little influence on the value of the objective function since 
most weight would be on keeping a constant set point, and because the constraints on Δu will 
be active most of the time when stick-slip occurs. Information about the complete codes for 
the controller can be found in Appendix B. 
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6 Simulations of the NMPC and comparisons  
 
The NMPC developed in the previous chapter is simulated to see how the controller copes 
with the stick-slip phenomenon when a reduced model of the system is used. The NMPC will 
also be compared with a linear MPC and NOV’s patented stick-slip prevention system, 
SoftSpeed. First are the different controllers tuned, thereafter simulated and lastly a 
comparison is made between the three.   
 

6.1 NMPC 
The NMPC implemented in MATLAB is simulated to see how it performs on a rotating drill 
string. First the controller is tuned, and then the controller is simulated when set point changes 
are applied to verify its performance.  
 
Tuning 
There are several parameters that influence the response of an NMPC as presented in Chapter 
4. In this section different parameters will be under investigation, the motivation being to find 
the optimal set, and keeping the computational complexity as low as possible.  
 
Since only the set point changes were implemented (R=0) in the objective function is the 
value of the weight matrix Q irrelevant. It just has to be non-zero. 
 
The most important parameters in this perspective are the horizons. Long horizons will 
increase the computational complexity, but if the horizons are too low will the NMPC not be 
able to cure the stick-slip oscillations. As already discussed in Chapter 4, there is no fixed rule 
for finding the horizons, but a rule of thumb is to choose the prediction horizon 4-10 times 
larger than the systems largest time constant. 
 
The following figures show plots with different horizons. The prediction horizon and control 
horizon are equal within the different simulations, but the length of them changes from 
simulation to simulation, as does also the period between each time a new input value is 
computed, hc. In all the simulations there are at the beginning a constant input of 7 rad/sec, 
which gives stick-slip with a period of about 1.5 seconds. The NMPC is turned on after 
approximately 10 seconds.  
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In Figure 6.1 are the prediction and control horizons 4.5 seconds and hc=1.5 seconds, which 
enables the NMPC to cure stick-slip without any problems. The input is stable after 7-8 
seconds, while the output is stable after 11-12 seconds.  
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Figure 6.1: Prediction and control horizon 4.5 seconds, hc = 1.5 seconds 
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Figure 6.2 shows the simulation where the prediction and control horizons are 6 seconds and 
hc=2 seconds. The output settles faster and the maximum value of the output is lower than in 
the previous plot. Also the input settles faster, but is on the other hand much more erratic than 
the previous plot.  
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Figure 6.2: Prediction and control horizon 6 seconds, hc = 2 seconds 
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In Figure 6.3 are the prediction and control horizons still 6 seconds, but the input now 
changes six times (hc=1) over the prediction horizon instead of three which has been the case 
for the previous simulations (all the slices have the same length). The input is somewhat more 
aggressive and peaks up to around 9.2 rad/sec. This gives a lower maximum value of the 
output, but it is slower than the others and the output is somewhat fluctuating.   
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Figure 6.3: Prediction and control horizon 6 seconds, hc = 1 second 
 
The different simulations show that a prediction and control horizon of 4.5 to 6 seconds gives 
a satisfactory cure of the stick-slip problem. One should keep in mind that the simulations 
shown here is when stick-slip has occurred because there is applied a constant input before the 
NMPC is activated; in the real world would the NMPC run all time and hopefully preventing 
stick-slip from ever occurring. 
 
Simulations 
As mentioned above, the usual case would not be to control the bit speed from stick-slip and 
then to settle at set point; these simulations were conducted mostly to prove that the controller 
is able to cure stick-slip if it for some reason should appear. In normal operation will the 
controller be active all the time and the bit speed will be kept around set point. Therefore it 
will be natural to look at how the controller performs when set point changes are applied. In 
the following simulations the bit speed will be controlled to a constant value before a set point 
change occurs. In the following simulations are the prediction and control horizon 4.5 seconds 
and hc = 1.5 seconds. 
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Figure 6.4: Set point change at 2 seconds from 7 to 10 rad/sec 
 

0 2 4 6 8 10 12
8

10

12

14

16

18

 

 

0 2 4 6 8 10 12

10

11

12

13

Time [sec]


 [

ra
d/

se
c]

 

 

Bit speed (y)

Top drive speed (u)

 
Figure 6.5: Set point change at 2 seconds from 10 to 15 rad/sec 

 
In the previous simulations are both the internal model of the NMPC and the process the 
same, i.e. the reduced model with 4 states. This is done since the NMPC needs all the states in 
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the prediction and have to get the states from the simulation of the reduced model. There is no 
physical meaning of the states of the reduced-order model, so the states from the full-order 
system with 86 states can only be used with an estimator which estimates the 4 states of the 
reduced-order model from the measurement vector of the full-order system. This was not 
implemented in this thesis, but could be done with for example an Unscented Kalman Filter; 
an algorithm for doing this is proposed in Chapter 4. For this reason is the full-order system 
only controlled open loop by applying the same input as for the closed loop case with 4 states. 
In Figure 6.6 is the original system exhibiting stick-slip; the input is first held constant at 7 
rad/sec before the NMPC is turned on after 10 seconds. Stick-slip is clearly not cured; it just 
gets a higher frequency and amplitude. This is because of the error in the reduced model; to 
keep the bit speed constant at 7 rad/sec for the reduced model the input is 8 rad/sec (Figure 
6.1). Because of this error and model uncertainties, the NMPC is not able to cure stick-slip for 
the original system in open loop. Stick-slip is indeed cured for one period after the NMPC is 
turned on, but the stick-slip behaviour resumes when the input settles again. 
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Figure 6.6: Open loop of the original system with 86 states with stick-slip 
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In Figure 6.7 a set point change from 10 to 12 rad/sec is applied after 100 seconds. Both the 
closed loop with the reduced-order model and the open loop with the full-order model become 
stable; the closed loop faster than the open loop. Because of the error in the reduced-model 
does not both models stabilize at the same value. With closed loop and integral action the 
original system would have a faster response and no steady-state error. It should still be 
noticed that the contour of the first period after the set point change is applied is very similar 
on both, indicating that the models behave quite similar. 
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Figure 6.7: Set point change from 10 rad/sec to 12 rad/sec for closed loop and open loop 

 
Remarks 
Below there are mentioned some issues regarding this NMPC which need some further 
comments.  
 
Δu is not included in the objective function; by including it would the changes in u be 
penalized. One can argue if it necessary to include it in the objective function, the most 
important thing is the ROP which is kept high if the bit speed is constant at the set point. 
Rapid changes in the input are already taken care of through the constraints so it should not be 
a problem.  
 
The drill string used in the NMPC is modelled so that the speed from the top drive is the 
input, while the bit speed is the output. Therefore there are no constraints on the torque 
directly which could be desirable. The input constraints will indeed in an indirectly manner 
represent constraints on the torque; constraining the speed and the speed change will constrain 
the torque. 
 
In the implementation there are no constraints on the output (the speed of the drill bit). This 
could be desirable, for instance constrain the output to ±20% of the set point. This would of 
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course make the optimization problem harder to solve. Constraints on the output would 
prevent high speeds and accelerations, which can be potentially harmful for the drill string.  
 
As the different plots shows there is an error between the steady state input and output. This is 
of course not the case for a true system; the speed at the bit will be the same as the speed at 
the top drive. The reason for the error is that the reduced-order model with 4 states has a 
deviation as clearly shown in Figure 3.7 in Chapter 3. This should of course be no problem for 
the NMPC; integral action is easily implemented.  
 
It could also be interesting to see how the unconstrained NMPC performs. In Figure 6.8 there 
is showed a plot where the input first is 10 rad/sec and the unconstrained NMPC with set 
point 15 rad/sec is turned on after 5 seconds. The stick-slip will here be cured very quickly 
and the output will settle at steady state in “no time”. Here the input (top drive speed) drops 
from 10 rad/sec to about 2 rad/sec in one sampling (0.2 seconds). This case will of course not 
be realistic, but still it is interesting to see the significance of the top drive’s slew rate and the 
importance of implementing constraints in the controller.  
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Figure 6.8: Unconstrained NMPC 

     

6.2 Linear MPC 
In this section is a linear MPC used to control the drill string, which will be of great interest to 
compare with the NMPC. The linear internal model will only be correct in a certain operating 
point, and in principle should the linear MPC operate best around this point in distinction to 
the nonlinear model which is supposed to be a good approach over a larger range of operation. 
To make the implementation as simple as possible there was used a standard MPC toolbox 
and linearization tool in Simulink. 
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Linearization 
First a linear model of the drill string to use as the internal model in the MPC had to be found. 
The nonlinear model of the string was therefore linearized using the tool Simulink Control 
Design 3.0. This tool makes the linearization simple; one just has to define input and output 
points in the Simulink diagram and then start the design manager. This is an intuitively tool to 
use with a graphical user interface. The operating point was set to 7 rad/sec, and there was 
found a full-order model with 86 states. There was also found a reduced-order linear model 
with 4 states like for the NMPC; this was done using the MATLAB-function reduce. All plots 
were taken with both the model with 86 states and 4 states but the plot were nearly the same 
which implies that the main dynamics are included in the reduced-order model with 4 states; 
therefore all plots included in this thesis is with the reduced-order model. 
 
MPC tuning 
The MPC was made with the Model Predictive Control Toolbox 3.1.1 in Simulink. To make 
the simulations as reasonable as possible the constraints and sampling period were set equal to 
the NMPC (see section 6.1 for details). The objective function was also in this controller set 
to only penalize output deviation, which means that the weight tuning will lose its 
significance. There is indeed a slightly different way to tune this controller compared to the 
NMPC. There will not be possible to change the period between each time the input should 
change in the MPC toolbox, but a new output has to be to be calculated with the same 
frequency as the prediction of the output. There is indeed a choice of how many control 
moves to apply, which had great impact on control performance. After the last input is 
computed the input will be kept constant for the rest of the prediction horizon. 
 
Quite surprisingly the prediction horizon did not influence the control performance notably; 
the output had best performance and was nearly the same with prediction horizon in the range 
from 5 to 20 seconds. Because of this the prediction horizon was set to 10 seconds and only 
the control horizon was changed in the rest of the tuning. 
 
In the following simulations the linear MPC is used to control the drill string model created 
by NOV. This will not be exactly the same model as the one used with the NMPC. If one 
should be able to use the NMPC to control the full-order model it will be necessary to 
implement a state estimator which is not done here. If one compares Figure 6.1 and 6.9, the 
stick-slip behaviour with a constant input of 7 rad/sec will be slightly different; the stick time 
is longer with the reduced model. But the stick-slip frequency and bit speed amplitude are 
nearly the same, so it will still make good sense to compare the controllers’ performance. 
Figure 6.9, 6.10 and 6.11 show the plots from the tuning. A constant input of 7 rad/sec is 
applied until the MPC is activated after 10 seconds.  
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Figure 6.9: Control horizon = 1 
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Figure 6.10: Control horizon = 2 
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Figure 6.11: Control horizon = 3 

 
As the plots illustrate is the best performance achieved with control horizon = 1. The 
performance reduces as the control horizon is extended, and when it is set to 3 time steps the 
MPC will not even cure stick-slip. When the input looks more like a sawtooth wave, it is 
because of the active constraint on Δu. 
 
Simulations 
To compare this controller’s performance with the NMPC the same set point changes are 
applied. The controller has the same parameters as in Figure 6.9. These plots are found in 
Figure 6.12 and 6.13. 
 



 82

0 5 10 15 20 25 30 35 40 45 50
6

8

10

12

14

 

 

0 5 10 15 20 25 30 35 40 45 50
6

8

10

12

Time [sec]


 [

ra
d/

se
c]

 

 

Bit speed (y)

Top drive speed (u)

 
Figure 6.12: Set point change at 20 seconds from 7 to 10 rad/sec 
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Figure 6.13: Set point change at 20 seconds from 10 to 15 rad/sec 
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6.3 SoftSpeed 
NOV’s patented stick-slip prevention system SoftSpeed will in this section be simulated with 
the same scenarios as the NMPC and linear MPC. Then it will be easy to see which of the 
systems that performs best. 
 
Simulations  
Similar to the simulations with the linear MPC it is the full-order drill string model that is 
controlled with SoftSpeed.  
 
In the Simulink model of SoftSpeed one has to define the stick-slip period before the 
simulation is started; it was here set to 1.5 seconds. One also have to define the well 
geometry, which in this situation is a straight well of 1200 m, and from this the SoftSpeed 
controller will be tuned automatically. Because of this no tuning had to be conducted on the 
SoftSpeed controller, but the same scenario with stick-slip and a constant input of 7 rad/sec is 
plotted to be able to compare the different systems’ performance. This plot is found in Figure 
6.14 where SoftSpeed is turned on after 10 seconds. 
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Figure 6.14: SoftSpeed 

 
There were also conducted simulations with the same set point changes as for the previous 
controllers. These are found in Figure 6.15 and 6.16. 
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Figure 6.15: Set point change at 10 seconds from 7 to 10 rad/sec 
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Figure 6.16: Set point change at 10 seconds from 10 to 15 rad/sec  
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6.4 Comparison 
The stick-slip problem has now been addressed with three different solutions; NMPC, MPC 
and SoftSpeed. In this section a comparison of the systems are done. 
 
Stick-slip 
The three different solutions are all capable of curing stick-slip, but there are some differences 
in the performance. The NMPC is the fastest to reach set point; it takes only about 10 seconds 
(Figure 6.1) before it is stable. SoftSpeed is somewhat slower than the NMPC; it takes 
approximately 10-15 seconds before it is stable (Figure 6.14). The slowest of the three to cure 
stick-slip is the linear MPC; it takes 15-20 seconds before it is stable (Figure 6.9).  
 
Step response 
As already mentioned stick-slip should never occur with these prevention systems active, so 
set point changes are a more realistic approach to determine the performance of the different 
solutions. Two set point changes were applied to the controllers, 7 to 10 rad/sec and 10 to 15 
rad/sec. Before the steps were applied all inputs were steady state at set point. Their 
performances are compared below. 
 
When a step from 7 to 10 rad/sec is applied 

 the NMPC settles to 10 rad/sec after ~6 seconds (Figure 6.4) 
 the linear MPC settles to 10 rad/sec after ~20 seconds (Figure 6.12) 
 SoftSpeed settles to 10 rad/sec after ~80 seconds (Figure 6.15) 

 
When a step from 10 to 15 rad/sec is applied 

 the NMPC settles to 15 rad/sec after ~6 seconds (Figure 6.5) 
 the linear MPC settles to 15 rad/sec after ~25 seconds (Figure 6.13) 
 SoftSpeed settles to 15 rad/sec after ~70 seconds (Figure 6.16) 

 
As for the case when curing stick-slip, the NMPC is also the fastest to settle at its new set 
point. In contradictory to the case when curing stick-slip is the linear MPC faster than 
SoftSpeed when it comes to set point changes. It should be noticed that a set point change 
from 10 to 15 rad/sec uses more time to settle than from 7 to 10 rad/sec for the linear MPC. 
With the NMPC is the time it takes about the same. A reason for this is that the linear internal 
model used in the MPC is linearized around 7 rad/sec, making the performance lower at other 
areas of operation. The SoftSpeed has a very oscillating response and uses much more time to 
settle after set point changes than the NMPC and the linear MPC.  
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7 Discussions 
 
In this chapter the results from the main topics of this thesis are discussed briefly. Because the 
results and simulations are discussed successively as they appear in the text, this chapter can 
be regarded as a summarizing discussion.  
 

7.1 Verification and validation 
In Chapter 2 the verification and validation of NOV’s drill string model was conducted. 
 
Verification 
It was performed a code-to-code comparison of the Simulink model provided from NOV and 
a model implemented as a MATLAB script. Simulations showed that both models comprised 
the same dynamics, only small deviations were present, which probably are caused by 
numerical inaccuracy.  
 
Validation 
A validation experiment was also undertaken using operational logging data provided by 
NOV. Such validation experiment shall preferably be done using logging data produced with 
the only purpose of using it for validation. The logging data was unfortunately not of this 
quality, which made the validation somewhat limited. The well where the logging came from 
had also a complicated slope and only measurements from the top and bottom; with non-
straight wells the drill string’s dynamics will be more complicated and it will be necessary to 
have several measurements along the string to get a good validation. 
 
The logging data were used in a system identification experiment to find a model describing 
the logged drill string’s behaviour. The intention with this was to be able to compare this 
model with the model from NOV. Since the logging data did not contain any situations where 
stick-slip appeared, the model from the system identification lacks much of the information 
included in the model from NOV, which made them hard to compare. 
 
Simulations were also conducted when using the input from the log as input to the model and 
the model’s output was compared with the logged output. The output (bit speed) from the 
model was more oscillating than the real drill bit, but it is hard to state if the model is a good 
or bad representation of a drill string from this observation, not knowing anything about what 
happens with the rest of the drill string. 
 

7.2 Model reduction 
Model reduction is treated in Chapter 3. The main intention was to reduce a large drill string 
model to a smaller nonlinear model fitted for use in an NMPC. Nonlinear model reduction is 
quite heavy theoretically, but the method used is closely related to a linear method which is 
described first. The chapter contains several examples to see how the reduced models perform 
compared to the original models. From the simulations it can be stated that the most important 
dynamics will still be present in a reduced model if the states with least contribution to the 
original model’s input-output behaviour is removed.  
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7.3 MPC 
Simulations of MPC to control the drill string are addressed in Chapter 6. Since the bit friction 
is highly nonlinear it was chosen to use an NMPC. The performance of this controller was 
compared with how a linear MPC and NOV’s patented system SoftSpeed performed. All the 
methods are able to cure stick-slip if the controllers are tuned properly, but a more realistic 
scenario is when a set point change is applied. In this situation the NPMC performs best; it 
makes the output settle faster to the new set point and gives the least aggressive response. It 
should be brought to mind that in the NMPC is the model and the process the same i.e. the 
reduced model. In real life would this not be the case. The NMPC should however perform 
well when used on a real system, but this would require an estimator and integral action in the 
NMPC.  
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8 Conclusion 
 
In this thesis the main focus has been on developing a system to use for controlling a drill 
string that should be able to cure stick-slip at the bit. Different interesting topics have been 
investigated under the development, such as verification and validation, model reduction and 
model predictive control. The work has been demanding and rewarding; demanding in the 
sense that several of the topics are topics which the authors were not familiar with and had to 
gain knowledge about. This again has been a reward; the topics have been interesting to study 
and are an important part of cybernetics. Model reduction techniques are very useful and the 
authors of this thesis believe that the topic will become more and more important as model-
based controllers are gaining popularity. Other rewards has been that the authors has 
developed a better understanding for already known topics, such as predictive control, and 
have become fairly good in implementing the problems into source code; both should come in 
hand when dealing with other control problems later in life. Since topics new to the authors of 
this thesis have been investigated during the work, much time has been spent on 
understanding the theory thourough.    
  

8.1 Concluding remarks 
The outcome from the verification part showed good results; a code-to-code comparison 
indicated that the model is implemented properly. When the model was to be validated using 
the provided operational logging data it was hard to say if the model is a good representation 
of a drill string or not. The data had not the quality needed to carry out the validation 
properly. 
 
The nonlinear model reduction technique used in this thesis showed promising results in the 
simulations performed in Chapter 3. When models were reduced quite heavy, still the main 
dynamics were present. Some reductions gave in fact a bias compared to the original model, 
but this can be disregarded since integral action in the controller will eliminate this problem. 
 
From the simulations performed in Chapter 6, the NMPC gives best responses compared to 
the other controllers when set point changes are applied. The main drawback with the NMPC 
compared to the other solutions is that it is impossible to say anything about computational 
time for the optimization. These optimizations have to be performed at every time step and 
needs to be completed faster than the controller’s sampling time; this will have great 
importance especially since the NMPC’s control signal is applied directly to the actuator (top 
drive). How long it will take also varies depending on the system’s region of operation. When 
the simulations were performed, it was noticed a large deviation in the time the SQP solver 
used to complete the individual optimizations. 
 
In this thesis only a 1200 m vertical well is under consideration. When drilling oil wells 
would not this always be the case; the well can be much longer and contain slopes. This 
would of course affect the model and it will most likely not be possible to get a good reduced 
model with as few as 4 states to represent the system. Slopes would add friction forces acting 
between the walls and the drill string, not only the bit, and therefore cause more nonlinearity. 
A reduced model consisting of even more states would consequently contribute to more 
computational complexity for solving the optimizations in the NMPC. With a 1200 m vertical 
well is the stick-slip problem rather small, but the work done in this thesis shows some 
promising results for further research and development. With the use of an NMPC as stick-
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slip prevention system, it should be possible to maintain an optimal ROP.  The nonlinear 
method used in this thesis is shown to be versatile and can be applied to all kinds of nonlinear 
systems. 
 
The main conclusions in this thesis can from the statements above be summarized as follows: 

 
 The results from the verification and validation of the drill string model demonstrate 

the importance of having good logging data to be able to conduct the validation 
properly. 

 By using the selected method for nonlinear model reduction, models with satisfactory 
dynamics for use in an NMPC were achieved. 

 The development of the NMPC was successful and gave promising results; it cures 
stick-slip efficiently and settled faster than the other systems when set point changes 
were applied. Before such controller is applied to a real drilling rig it would in fact be 
necessary to test if the controller is able to run real-time (this could for example be 
done in a hardware-in-the-loop setup, see Section 8.3).  

 

8.2 Contributions provided by this thesis 
Nonlinear model reduction is applicable in many different cybernetic problems. Since nearly 
all real systems that are to be controlled behave nonlinear, a nonlinear representation will 
represent the dynamics better than a linear model and will be preferable in many situations. 
To make the model easier to handle it will be useful to have a method for nonlinear model 
reduction. This topic is not treated in any subjects at the Department of Engineering 
Cybernetics, and by the authors of this thesis are this area understood to be quite unknown at 
the department in general. Hopefully this thesis will contribute to more knowledge about this 
interesting and appropriate topic, and that it will be included in relevant subjects or generate 
ideas to future thesis and projects. 
 
The authors of this thesis have not found other places where a model predictive controller has 
been used to control a drill string’s top drive. Furthermore is the practice of applying an 
MPC’s control signal directly to the actuator in general not frequently seen in control systems 
used in the real world. This thesis can in this setting be regarded as an important contribution 
for making the control engineering industry familiar with this extended way of utilizing model 
predictive control in the future. 
 

8.3 Suggestions for further work  
One of the most important limitations of the results in this thesis is that the NMPC is not used 
to control the full scale drill string model. In the simulations the NMPC controls the reduced 
model, which is exactly the same model as the NMPC’s internal model. To be able to use it to 
control the full model it will be necessary to estimate the states in the reduced model based on 
measurements from the full model. There exist rather simple strategies for doing this if the 
model is linear; then a common approach is to use a Kalman filter. If the model is nonlinear 
the situation will be somewhat more complex. The more recent UKF has shown good results 
when dealing with nonlinear models. 
 
When oil and gas well drilling are performed, the well geometry changes gradually. Also the 
drill string dynamics will then be changed depending on how the slope of the well is. The 
NMPC presented in this thesis is designed for operating with just one specific well geometry. 
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If it should be used on a real drilling rig there is not implemented a mechanism that can take 
care of updating the internal model as the system’s dynamics changes. There could be several 
ways to do this. If the complete well geometry is known before the drilling starts, could both a 
complete and parts of the string be modelled and reduced in advance. Then there could be a 
mechanism that changes the internal model as the well changes. The NMPC’s tuning 
parameters will also have to be updated as the system and model change. Such auto tuning is 
neither implemented. 
 
As mentioned in section 8.1, before the NMPC is applied to a real drilling rig, it would be 
necessary to test if the controller is able to run real-time. Even if the NMPC’s performance 
seems to be good in the simulations performed in this thesis, the controller will be useless if it 
is not able to run real-time. A cost efficient tool for such tests can be to run Hardware-In-the-
Loop (HIL) simulations. NOV is already in possession of a HIL setup used when developing 
their stick-slip prevention system SoftSpeed. A paper about this system (Kyllingstad & 
Nessjøen, 2010) was presented at the SPE/IADC Drilling Conference and Exhibition held in 
New Orleans in 2010, and details about this system can be studied there. 
 
The nonlinear model reduction is based on empirical Gramians which are computed using 
experimental or simulation data. There can be difficult to select the correct data to get a good 
reduced model. A method for doing this should be of great interest; in this thesis is a trial-and-
error approach used. An effective method for choosing data would be preferred if the method 
should be used in the industry and gain popularity in control societies. 
 
From the discussions above the following suggestions for further work arises: 
 

 Create an UKF to estimate the states in the reduced internal model of the NMPC. 
 Implement an adaptive mechanism that adapts the NMPC’s internal model and 

parameters. 
 Conduct HIL simulations to verify the NMPC’s real-time performance. 
 Develop a method for selection of simulation/experimental data when performing 

nonlinear model reduction. 
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A Proof of asymptotic stability of strictly passive 
 system 
 
In Chapter 3, Example 3.2 is the system shown to be strictly passive. Here is the proof of 
asymptotic stability of strictly passive system as given in Khalil (2002). 
 
Consider a system given by 
 
              
             (A.1) 
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B MATLAB/Simulink files 
 
When submission of this thesis was done in DAIM, MATLAB/Simulink files were attached 
electronically as a ZIP-file. In this appendix these files are listed and a description of each file 
is given. 
 
Linear mod.red 
Stringdata.m: Contains data needed to run drill string model. 
SetupLinearizing.mdl: Simulink setup to use when linearizing drill string with Simulink 
Control Design. 
LinearizedStringmodel.mat: Contains full scale linear model. 
LinModRed.m: Calls the MATLAB routine for linear model reduction. 
workspace.mat: Contains the full scale and reduced linear models. 
 
Nonlinear mod.red 
nonlinear_model_reduction.m: Routine for the complete reduction. 
simulations.m: Routine for simulating the reduced and original system. 
drillstring.m: The ODE function for the original scaled system. 
drillstring_reduced.m: The ODE function for the reduced scaled system. 
control_gramian.m: Routine for computing the controllability gramian. 
observ_gramian.m: Routine for computing the observability gramian. 
balancing.m: Routine for computing the transformation matrix that balances the system. 
 
Linear MPC 
Stringdata.m: Contains data needed to run drill string model. 
LinMPC.mdl: Simulink setup with MPC and drill string. 
MPCdesign4.mat: MPC with 4-state internal model. 
MPCdesign86.mat: MPC with 86-state internal model. 
plotting.m: Routine for plotting input and output. 
 
NMPC 
nmpc.m: Contains the nonlinear model predictive controller. 
objfun.m: Contains the objective function which is minimized to get the optimal input.  
samplehold.m: Contains the routine for  
drillstring.m: The ODE function for the full-order model. 
drillstring_reduced.m: The ODE function for the scaled reduced-order model. 
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