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Summary

In this thesis we propose and investigate a collision avoidance algorithm for under-
actuated marine vehicles, both in two and three dimensions. We also investigate
the stability properties of a path following algorithm for such vehicles, this too in
two and three dimensions.

The �rst part of this thesis establishes some mathematical preliminaries, and
provides a mathematical model of the vehicles in question. The underactuation of
the vehicles become apparent in the vehicle model in that a part of the vehicle's
velocity cannot be directly controlled, but is induced when the vehicle is maneu-
vering. Speci�cally, when a 2D vehicle turns, the momentum of the vehicle will
transform some of its forward speed to a sideways (sway) speed. A similar phe-
nomenon occurs when a 3D vehicle pitches, which will induce a heave speed along
the normal axis of the vehicle. This e�ect is important to consider both during
path following and during collision avoidance.

In the second part of the thesis we examine the integral line of sight (ILOS)
guidance law for straight-line path following. The guidance law imitates the way
an experienced helmsman steers a ship by aiming the vehicle a certain distance,
called the lookahead distance, ahead of it on the path. Integral e�ect is added to
compensate for an ocean current, which is modeled as a kinematic disturbance
uniform in time and space.

The ILOS guidance law has been in successful use for several years, for exam-
ple on the Hugin series of autonomous underwater vehicles (AUVs). In this thesis,
we will examine the stability properties of the guidance law, and give conditions
under which it can be shown to provide uniform semiglobal exponential stability
(USGES) of the closed-loop error dynamics. Furthermore, we propose a new variant
of the guidance law, where the lookahead distance is designed to increase with the
vehicle speed, and we provide USGES conditions for the speed dependence. This
design choice is motivated both by intuition and by practical considerations, and
will make the vehicle avoid overshoot and oscillations caused by slow convergence
or saturations in the underlying controllers. Finally, we will examine 3D path fol-
lowing, using the ILOS guidance law to steer both heading and pitch. We remove
a common assumption that the vehicle is neutrally buoyant in water, and provide
conditions of USGES in this scenario as well.

In the third part of the thesis, we focus on collision avoidance in two dimensions.
We propose a collision avoidance algorithm, the constant avoidance angle (CAA)
algorithm, which employs a novel mechanism for compensation of the obstacle's
velocity. The intuition behind the algorithm is simple; the vehicle measures the
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Summary

direction to the edges of the obstacle, and adds an avoidance angle to each of these
edges in the direction away from the obstacle. Thus, the algorithm creates two safe
directions, one on the port side of the obstacle, and one on the starboard side.

If the obstacle is moving, each of these edges are rotated to compensate for
the obstacle's velocity. The resulting directions are safe at a given vehicle speed,
which can thus be used as an input to the CAA algorithm. Unlike for algorithms
which specify both the direction and magnitude of the velocity required to avoid an
obstacle, the CAA algorithm thus provides �exibility in the design of the desired
speed trajectory.

We will show how this �exibility can be utilized by applying the algorithm
to a unicycle restricted to keep a constant speed, thus demonstrating how the
algorithm is suitable for vehicles with a limited speed envelope. This includes both
�xed-wing aircraft, which must avoid stalling, and many marine vehicles, which
may have a high acceleration cost, and which can lose controllability at low speeds.
In the unicycle case, we provide conditions under which safe avoidance of a moving
obstacle is guaranteed. Speci�cally, we derive an upper bound on the required yaw
rate during the maneuver, as well as a lower bound on the required distance from
the obstacle at which, at the latest, the vehicle must start the avoidance maneuver
in order to turn away safely.

We next apply the algorithm to an underactuated marine vehicle required to
keep a constant forward speed. The underactuated sway components of the vehicle
makes the vehicle's heading point in a di�erent direction than the vehicle's course
(i.e. the direction of the vehicle's velocity vector). Thus, even though the vehicle
points in a safe direction, it may still move towards a collision. We solve this by
the use of a course controller, where we employ a model of the underactuated
dynamics in order to steer the vehicle course. We provide conditions under which
safe avoidance is still guaranteed, and under which all the control signals in the
system remain well de�ned. We furthermore combine the collision avoidance law
both with a target reaching guidance law, and with a path following guidance law.
The results are veri�ed both in simulations and through full-scale experiments. In
the experiments, we also also demonstrate how multiple obstacles can be handled
by the algorithm.

In the fourth and �nal part of the thesis, we extend the CAA algorithm to 3D.
The vehicle now measures a three-dimensional cone to the outline of the obstacle,
and each ray of this cone is rotated an avoidance angle away from it, creating
an extended vision cone. Obstacle motion is compensated for by a transformation
of this vision cone, using the same technique as in two dimensions. The resulting
collection of rays constitute a compensated vision cone, where each ray is a provably
safe direction. As in the 2D case, the vehicle speed is used as an input to the
algorithm, and we �rst demonstrate this by applying the algorithm to a 3D vehicle
with nonholonomic constraints in sway and heave, and with a constant forward
speed. We utilize the �exibility o�ered by operating in 3D by choosing a safe
direction which seeks to move behind the obstacle, while minimizing the required
pitch and yaw rate. This enables us to build on the results from the analysis of
the 2D algorithm in deriving upper bounds on the required pitch and yaw rate
during the avoidance maneuver. Furthermore, we are able to limit the vehicle pitch
during the maneuver, thus showing how the algorithm can make the vehicle comply
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with operational constraints often present in practice. Finally, we derive conditions
under which a safe avoidance maneuver can be guaranteed.

The 3D CAA algorithm is applied to an underactuated underwater vehicle with
underactuation in sway and heave and with a constant desired forward speed. To
steer the vehicle's velocity direction, we propose a Flow frame controller, where
the Flow frame is de�ned as a frame aligned with the vehicle's velocity vector.
Through the use of this frame, we derive conditions on the controller and on the
CAA algorithm under which obstacle avoidance is ensured. The sway and heave
speeds are furthermore guaranteed to be bounded during the maneuver, and bounds
on the pitch of the vehicle's velocity vector are upheld. The results are veri�ed
through several simulations, as well as through full-scale experiments on the Hugin
autonomous underwater vehicle, and it is demonstrated how the algorithm can be
applied to a multi-obstacle scenario.
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Chapter 1

Introduction

Begin at the beginning, the King said gravely, and go on till you come
to the end: then stop.

� Lewis Carroll, Alice in Wonderland

Unmanned marine vehicles are often intended to operate with limited, delayed or
no human supervision. They are employed in tasks such as transportation, sea�oor
mapping, oceanographic surveying or ocean surveillance [9, 69], and the environ-
ment they operate in can be dynamic or unknown, with only incomplete or partially
erroneous a priori information available before the operation. An important func-
tion for such vehicles is the ability to react to the environment, for example to avoid
collisions with obstacles, or to counteract disturbances such as an ocean current
pushing the vehicle o� a desired path. In this thesis, we will propose a collision
avoidance algorithm, the constant avoidance angle (CAA) algorithm, which will
safely make a vehicle achieve a goal such as target reaching or path following, both
in 2D and 3D. In addition, we will examine the stability properties of a path fol-
lowing guidance law with disturbance rejection, the integral line of sight (ILOS)
guidance law.

Both the proposed collision avoidance algorithms and ILOS guidance guidance
law are reactive algorithms [94], which is to say that they react directly to sensor
input, without dependence on planning, and that the required sensor information
is restricted (i.e. they do not require a comprehensive world model). Such algo-
rithms are, in general, less computationally demanding than deliberate algorithms,
which do rely on planning, usually through a computational search. Hence, reactive
algorithms tend to be suitable as the primary steering algorithms for low-cost or
small vehicles with limited processing power. They can also be used together with
a deliberate algorithm in a hybrid architecture, where they can reduce the required
planning complexity. For example, if the vehicle is equipped with a path following
algorithm, the planner may only need to create plans with a limited (and perhaps
smooth) curvature, rather than create a sequence of rudder angles. Finally, reac-
tive algorithms can serve as backup algorithms for safety critical functions such as
collision avoidance, should the deliberate algorithm fail.

In this thesis, we will speci�cally consider collision avoidance and path follow-
ing for a class of vehicles known as underactuated marine vehicles. Many marine
vehicles belong to this class, and they can be modeled as vehicles equipped with
stern propellers generating forward (surge) thrust, steering rudders generating a
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control moment in yaw and, in the case of underwater vehicles, sternplanes gener-
ating a control moment in pitch. There is no control force in the upwards (heave)
or sideways (sway) directions, and hence there is an underactuation. Even though
some vehicles are equipped with thrusters providing control forces in sway or heave,
such thrusters lose e�ectiveness at maneuvering speeds [52], making these vehicles
underactuated in this regime. Thus, when considering algorithms for marine vehi-
cles operating at maneuvering speed, it is important to include the underactuated
dynamics in the design and analysis of the control system, as discussed by Pet-
tersen and Egeland [85]. While the sway and heave movement cannot be directly
controlled for such vehicles, they are induced during turning and pitching, and can
make the vehicle glide into an obstacle as it tries to turn away. It thus becomes
an especially important factor to consider in the design and analysis of collision
avoidance algorithms for such vehicles.

The algorithms we will propose and analyse in this thesis are at the guidance
level. Algorithms at this level provide heading, pitch and surge reference trajectories
to underlying controllers. Thus, guidance algorithms are of a modular nature, and
can be easily implemented on a wide variety of vehicles. We will exploit this fact
in our experiments.

Traditionally, guidance laws enable underactuated marine vehicles to achieve
goals such as target tracking, path following and trajectory tracking [17, 27, 35].
When a vehicle is engaged in target tracking, the goal is to make the vehicle reach
a (possibly moving) point in space. Path following is concerned with making the
vehicle converge to and follow a path, without any constraints as to where on the
path the vehicle should be at any given time. Trajectory tracking adds such a time
constraint, and the goal of the vehicle is to follow a time-dependent trajectory in
space. A review of algorithms for achieving such goals can be found in Ashra�uon
et al. [4]. In this thesis, we will treat collision avoidance as another guidance goal.

1.1 Path following

Precise path following is essential in operations such as inspection of submarine
pipelines, seabed mapping, and subsea photography. Guidance laws for path fol-
lowing are hence highly relevant for the research and development of autonomous
marine vehicles.

An early work in control of an underactuated marine vehicle is found in Pet-
tersen and Egeland [85], which uses input-output linearization and backstepping in
order to achieve set-point control of an underactuated marine vehicle. The results
are extended to trajectory following of a curved trajectory in Pettersen and Ni-
jmeijer [87], which motivated Indiveri et al. [48] and Indiveri et al. [49] to employ
a design methodology previously used by Aicardi et al. [2] on unicycles to make an
underactuated marine vehicle follow a straight-line path. The algorithm presented
by Do et al. [25] also uses linearization and backstepping, and is able to achieve
exponential convergence to a straight-line path.

The line of sight (LOS) family of guidance laws has proven well suited for
underactuated vehicles. The algorithm mimics the way an experienced helmsman
steers a ship by aiming towards a point that lies on the path ahead of the vessel.
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1.1. Path following

It was �rst analyzed by Pettersen and Lefeber [86], and has been used in several
papers [11, 15, 34, 36, 39, 67]. It is shown by Pettersen and Lefeber [86] that
the algorithm provides uniform global κ-exponential stability (i.e. uniform global
asymptotic stability (UGAS) and uniform local exponential stability (ULES) as
de�ned by Sørdalen and Egeland [101]) of the path error and the state errors of a
simple vehicle model in three degrees of freedom (3 DOF). More complete models
of the vehicles are analyzed by Børhaug and Pettersen [11] and Fredriksen and
Pettersen [39]. In Lekkas and Fossen [67], the LOS guidance scheme is applied to
a fully actuated vehicle following curved paths parametrized as monotone cubic
Hermite splines, and it is proven that the system is κ-exponentially stable. Finally,
Fossen and Pettersen [36] proves uniform semiglobal exponential stability (USGES)
of the LOS guidance when applied to an underactuated vehicle following straight-
line paths.

USGES is as close to uniform global exponential stability (UGES) as it is pos-
sible to get with LOS guidance laws, as there is a trigonometric saturation in the
kinematic representation when the vehicle surge speed is bounded [36]. Indeed, for
any path following law with an upper bound on the vehicle surge speed, vehicle
convergence to the path can never be faster than when moving straight towards
the path, and hence global exponential results are not achievable.

In enclosure-based LOS (ELOS), described in Fossen [35], the vehicle is directed
towards a point de�ned as one of the two intersection points between a circle cen-
tered on the vehicle and the desired path. This can be viewed as a lookahead-based
approach with an implicitly time-varying lookahead distance, where the lookahead
distance is dependent of the cross track error. A drawback with this method is
that the circle radius must always be greater than or equal to the cross track error,
in order to ensure that it intersects with the path. Several approaches have been
proposed to overcome this requirement. Among them are using a circle radius that
varies linearly with the cross track error, as in Moreira et al. [76], or exponentially
as in Khaled and Chalhoub [54]. Another approach is to use a switching scheme to
specify the circle radius. This is shown in Abdurahman et al. [1], where a constant
circle radius is used for low cross track errors, and a linearly varying radius is used
for large cross track errors.

To compensate for drift caused by environmental disturbances such as an ocean
current, integral action is added to the LOS guidance law in Børhaug et al. [13].
The resulting integral line of sight (ILOS) guidance law is proven to be globally
stable when the current is modeled on the kinematic level. By considering the
vehicle velocity measured relative to the water, this result is extended to global
κ-exponential stability in Caharija et al. [18], which also considers wind and wave
disturbances on the kinetic level. The ILOS guidance law is furthermore extended
to 3D in Caharija et al. [18], which employs a decoupled horizontal and vertical
guidance law to provide global κ-exponential convergence to a straight-line 3D path
in the presence of an ocean current with both vertical and horizontal components.

The integral term in the ILOS guidance law is modi�ed in Fossen et al. [37] to
achieve integral action using adaptive sideslip estimation, and USGES is achieved
for a closed-loop kinematic model of an underactuated marine vehicle following
straight-line paths. Although the vehicle dynamics are not included in the analysis,
the path error is numerically shown to be bounded when the vehicle is following
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paths consisting of straight line segments connected by circular turns (i.e. Dubins
paths [26]).

By appropriate design of the desired surge speed, a path following guidance law
can also be used for trajectory tracking or formation control. This is for example
the approach of Lekkas and Fossen [68], where the ILOS guidance law is used to
provide global κ-exponential path convergence, while a feedback linearizing surge
speed trajectory is used to provide GES convergence to a desired, moving particle
around the path. When the dynamics of the vehicle are included in the analysis,
it is proven that the system obtains global κ-exponential stability when following
straight-line paths.

Formation control can also be achieved by using the (I)LOS guidance law and
an appropriately designed surge speed trajectory. In Børhaug et al. [14], a group
of underactuated marine vehicles is kept in a formation following a straight-line
path. Each vehicle uses the LOS guidance law to converge to a desired cross-track
o�set to the path, while the desired surge speed trajectory makes the vehicles keep
a desired relative along-track distance. The formation is made to converge to a
desired, constant speed. Vehicle dynamics are considered, and it is proved that the
vehicles converge to the formation exponentially.

In Belleter and Pettersen [7] and Belleter and Pettersen [8], formation control
of underactuated marine vehicles in the presence of a constant and irrotational
ocean current is investigated. The algorithm presented uses the ILOS guidance
law to drive the vehicles to within a desired cross-track o�set to a straight-line
path, where the o�set is decided by the vehicle's position in the formation. The
vehicles are set to maintain a constant forward speed, but each vehicle has an
additional component to the desired forward speed in order to drive them to their
desired along-track positions in the formation. Thus, the vehicles have a time-
varying forward speed during the maneuver, until the speed settles at a steady
state value as the system reaches its equilibrium.

An important design parameter for (I)LOS guidance laws is the lookahead dis-
tance ∆. In Lekkas and Fossen [66], the speed dependency of the optimal lookahead
distance for a given vessel employing the LOS guidance law is investigated. It is
shown that the optimal ∆ increases with increasing surge speed of the vehicle. This
matches with intuition, as a longer lookahead distance will give smoother turns at
higher speed. In particular, it is to be expected that the overshoot of the system
will be reduced, even in the presence of slow heading controllers. Furthermore, this
also matches with how an experienced helmsman would steer a ship; the faster
the ship goes, the further ahead the helmsman will look. These results are utilized
in Flåten and Brekke [33], where an LOS guidance law with a speed-dependent
lookahead distance is used in combination with a time-varying desired surge speed
to achieve trajectory tracking of general curved paths. The analysis proves that
the control system provides locally exponential convergence to a straight-line path,
and ultimate boundedness for the path error when the path is curved.

The LOS path following law can be directly applied to a curved path, using a
path parametrization such as the Serret-Frenet frame, in e�ect making the vehicle
steer towards the path tangential. This is for example the approach used by Fossen
and Pettersen [36], although the stability analysis in the paper assumes straight-line
paths. Compensating for an ocean current is, however, more challenging when the
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path is curved, as the cross-track e�ect of the current then becomes time-varying
as the vehicle moves along the path. One solution to this problem is the use of
current observers, as is done by Moe et al. [75], Maghenem et al. [71], and Belleter
et al. [6].

1.2 Collision avoidance

The collision avoidance problem has been fairly well studied, particularly in 2D,
with surveys of existing algorithms given in [47, 59, 103, 104]. The various al-
gorithms are often sorted into two families [63]; reactive algorithms and motion
planning algorithms.

Motion planning methods often rely on optimization, for example as in model
predictive control (MPC) [23]. This can be computationally expensive, particularly
for vehicles with complex dynamics such as underactuated marine vehicles. How-
ever, in Johansen et al. [53], the computational complexity is signi�cantly reduced
by constraining the number of controls available to a small discrete set. Speci�cally,
the algorithm is allowed to give an o�set to the nominal desired course and speed.
For each pair of control inputs, the vehicle and obstacle trajectories are predicted
a certain amount of time ahead. A cost is computed for each pair based on the risk
of collision, adherence to the International regulations for preventing collisions at
sea (COLREGs) and deviation from the nominal control input, and the pair with
the lowest cost is chosen. After a short amount of time, the procedure is repeated
to account for the new system sate and new sensor inputs. This simulation-based
MPC avoids the use of computationally expensive optimization techniques, and
guarantees that a global optimal pair (among the discrete set of pairs available) is
chosen by using the brute force technique of evaluating them all. Furthermore, it
is possible to extend the cost function to include other criteria, such as costs for
switching between di�erent COLREGs scenarios used by Hagen et al. [42] in order
to avoid oscillations.

In Filotheou et al. [31], a distributed nonlinear MPC algorithm for a multi-
agent system is presented. The algorithm makes a set of general agents traverse
an environment with obstacles, such that each agent reaches a target position.
Throughout the maneuver, connectivity between the agents is maintained, and the
agents avoid collision with both each other and the obstacles. The algorithm works
for a very general class of agents with bounded inputs and disturbances, and it
includes a limited sensing range. Moving obstacles are, however, not considered,
nor is it clear what the computational costs are or if there always exists a feasible
solution.

In Gawron and Michaªek [40], a method for planning a smooth path to a target
in an environment cluttered with obstacles is presented. The path is surrounded
by an obstacle-free area, denoted a funnel. The vehicle is steered by a kinematic
guidance law, which is used to set references of underlying controllers. The path
is collision-free and feasible for the guidance law by construction, and the funnel
accounts for any perturbation caused by the underlying dynamics. The approach
thus shows robustness. The creation of the funnel can, however, be conservative,
and moving obstacles are not accounted for.
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For a double integrator with acceleration constraints, Ho�mann and Tomlin [46]
generate safe trajectories using an e�cient optimization algorithm. The vehicles
create avoid sets similar to truncated collision cones, described in Chakravarthy
and Ghose [21], and the collision avoidance maneuver is initiated if these sets touch.
The computational requirement of the algorithm is shown to be low, and safety is
guaranteed for two and three cooperating vehicles, and implied by simulations for
a general multi-vehicle scenario. Nonholonomic constraints and vehicle dynamics
are, however, not considered.

The dynamic window algorithm presented by Fox et al. [38] �nds safe control
inputs for vehicles with �rst-order nonholonomic constraints using a search among
achievable trajectories, and is thus closely related to MPC control. It is extended to
include the second-order nonholonomic constraints resulting from the underactua-
tion of marine vehicles in Eriksen et al. [28], which is further extended in Eriksen
et al. [29] to also include moving obstacles.

Motion planning algorithms can, particularly in 3D, become computationally
intractable for vehicles with limited processing power, as the general motion plan-
ning problem is shown to be NP-hard in Canny and Reif [19]. Furthermore, even
for vehicles capable of implementing motion planning, a safety critical function
such as collision avoidance requires a level of redundancy. This can be achieved by
having a computationally simpler, yet provably safe, algorithm as a backup. Thus,
there is a need for reactive algorithms.

The early work in Leitmann and Skowronski [65] presents avoidance control,
which is a general approach for the design and analysis collision avoidance algo-
rithms. Avoidance control employs a Lyapunov-like avoidance function to provide
su�cient conditions under which it is mathematically proved that the system state
trajectory never enters an undesired set. The technique can be used constructively,
in that the avoidance function can be used directly to design a feedback law that
avoids collisions. However, as it often the case with Lyapunov-like techniques, de-
termining the proper avoidance function is not trivial. Furthermore, the approach
is only used to prove safety, while liveness1 is unexplored.

The arti�cial potential �eld (APF) method described in Khatib [56], which
guides the vehicle using repulsive and attractive �elds, is intuitive and straightfor-
ward to implement even for complex environments. Furthermore, di�erent �elds
can be combined in order to achieve simultaneous goals like formation control and
obstacle avoidance [24, 83]. Stability issues is identi�ed with the algorithm in Ko-
ren and Borenstein [58]. These can be countered by extending the algorithm to the
polar domain as in the vector �eld histogram proposed by Borenstein and Koren
[10].

Nonholonomic constraints are included in the APF in both Chang et al. [22]
and Shimoda et al. [97]. In the former, a �gyroscopic force� is created by letting a
unicycle turn away from a detected obstacle, without changing the vehicle speed.
Thus, while an APF is employed to guide the vehicle towards a target, obstacle
avoidance is solved by an auxiliary function to the �eld. In Shimoda et al. [97], a
potential �eld is generated in a trajectory space of the vehicle curvature and forward

1Liveness is the property of not getting stuck in a deadlock, that is the vehicle will not reach
an equilibrium away from its goal.

6



1.2. Collision avoidance

speed. Thus, nonholonomic constraints and bounds on vehicle curvature can easily
be included in the �eld. The local minima associated with arti�cial potential �elds
are approached using a randomization technique, which is shown to alleviate these
problems in practice. These methods only consider static obstacles, though, and
there are no safety guarantees.

The algorithm presented by Yang et al. [121] makes a �xed-wing aircraft avoid
a single non-cooperating obstacle in three dimensions. The algorithm keeps a con-
stant bearing and elevation to the target, and thus approaches the target in an
equiangular spiral. The algorithm uses very limited sensor information, only the
relative heading of the obstacle is required, and it is thus suitable for vehicles with
limited sensing capabilities or computational power. The distances involved are,
however, assumed to be large enough to treat both the vehicle and the obstacle as
point masses, and there is no analysis of the resulting vehicle movement.

A variant of the arti�cial potential �eld is the navigation function, which was
�rst proposed in Rimon and Koditschek [89]. A navigation function is a potential
�eld which by construction does not have any local minima. This approach is
employed in in Rahmani et al. [88], where it is employed to make aircraft avoid
collisions with multiple obstacles, as well as achieve path following of a straight-
line path. While the navigation function is employed to ensure liveliness of the
algorithm, it is not analyzed, nor is vehicle dynamics considered.

In Roussos et al. [93], a reactive algorithm employing a dipolar navigation
function is used to make an aircraft-like vehicle avoid obstacles. The navigation
function is generated so that there is a single minimum at the target, and maxima
at the obstacles. The algorithm provably makes the vehicle reach the target position
while avoiding obstacles. However, there is an underlying assumption that the
vehicle is able to follow the integral curves. Furthermore, actuator constraints are
not included, nor is there any analysis on the behavior of the vehicle forward speed.
Speci�cally, it is not guaranteed that the forward speed is always positive.

The navigation function must often be tuned to the size of the working space,
and to the number of obstacles. It is not necessarily clear how to do such a tuning
automatically. This is the motivation behind the navigation vector �eld, proposed
by Panagou [80], where a class of vector functions is used to create a �eld �owing
around obstacles and towards a target. It is proven that a unicycle is almost globally
guaranteed to safely reach a target position without collision in a scenario with
multiple, static, circular obstacles. The approach is extended to multiple polygonal
obstacles by Hegde and Panagou [45], which create a navigation vector �eld �owing
around the polygons.

The navigation vector �eld approach is further extended to a multi-agent sce-
nario in Panagou [81]. Here, agents of two di�erent classes participate; cooperative
and uncooperative agents. The cooperative agents follow a navigation vector �eld
like the one presented in Panagou [80] to their respective goal con�gurations. Con-
�icts among cooperative agents are solved by adjusting the forward speed of the
vehicle. It is proven that all cooperative agents will reach their goals while avoid-
ing collisions and deadlocks. The case of two cooperative agents is investigated
in particular detail, while scenarios with more than two agents are covered more
brie�y. In particular, there is no explicit analysis of a scenario where three or more
agents are within each other's region of in�uence at once. For vehicles with a lim-
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ited speed envelope, such as �xed-wing aircraft, the approach of freely adjusting
the forward speed can be be problematic. In particular, the vehicle can be required
to stop completely or even move backwards, which is unfeasible for many vehicles.
Still, the methodology is very promising, and future research may show that the
approach is applicable also to vehicles with restrictions on the forward speed.

An avoidance-like control for unicycles is presented in Mastellone et al. [72],
where the vehicle can avoid static obstacles and cooperative agents, and a group
of vehicles can achieve formations and trajectory tracking. Trajectory tracking
is achieved by pointing the vehicles towards a moving virtual particle, and an
avoidance function is used to push the vehicle away from obstacles. The algorithm
is provably safe both for single vehicles and vehicles moving in formation along the
trajectory, but the analysis does not include dynamics or actuator constraints.

Another method related to arti�cial potential �elds and avoidance control is
the use of barrier functions. A barrier function is a concept used originally in
constrained optimization, as described in Nocedal and Wright [77, Chapter 17], and
is a function whose value goes to in�nity at a point or curve. A barrier function is
usually smooth, although the initial results using nonsmooth barrier functions in
Glotfelter et al. [41] are promising. In optimization, barrier functions are used to
keep the solutions away from forbidden domains during the search, and can hence
be applied to optimization-based control [3, 110]. It can also be used for reactive
control, as in Panagou et al. [82], where barrier functions are used on the individual
of a group to keep them within communication range from the leader, while avoiding
collisions with each other and static obstacles. The vehicles are proved to almost
surely reach their targets while maintaining safety and communication. Neither
vehicle dynamics, non-cooperating obstacles nor too crowded environments are
considered, however.

Representing the obstacle in the velocity space is the main idea behind the
velocity obstacle approach proposed by Fiorini and Shiller [32]. By choosing a
vehicle velocity outside of the set of velocity obstacles, algorithms implementing
velocity obstacles inherently include moving obstacles. An additional cost function
can be added to safe velocities in order to choose an optimal safe velocity in some
sense, for example to minimize the risk of the resulting maneuver as in Kim and
Oh [57]. It is furthermore shown by Owen and Montano [78] how optimization
techniques can be used to generate motion plans in the velocity space.

In the reciprocal velocity obstacle approach proposed by Van Den Berg et al.
[106], the vehicles choose a velocity which is the average of the current velocity and
a chosen velocity outside of the velocity obstacle. It is shown that the algorithm
can thus be successfully applied to a multi-agent scenario, but it is still prone to
reciprocal dances. The hybrid velocity obstacle de�ned by Snape et al. [100] seeks
to avoid this by de�ning that the a vehicle should preferably keep other vehicles
on its port side. The velocity obstacle associated with another agent is enlarged on
the wrong side, pushing the vehicles in the right direction. This method can also
be used to include tra�c rules such as COLREGs, as is done in Kuwata et al. [60].
Another reciprocal approach with velocity obstacles is presented by van den Berg
et al. [107], where the set of allowable velocities is evenly distributed between two
agents. The result has very little computational overhead, and both simulations and
experiments show successful avoidance and target reaching in very dense scenarios.
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1.2. Collision avoidance

The acceleration velocity obstacle presented by van den Berg et al. [108] includes
acceleration constraints by limiting the allowable velocities in the next step to
reachable velocities. The approach can be further extended to include unicycle-type
nonholonomic constraints, but becomes restrictive if the forward acceleration or
turning rate of the vehicle is limited. The complete vehicle dynamics are included in
the generalized velocity obstacle proposed by Wilkie et al. [120], which is extended
to reciprocal velocity obstacles in Bareiss and van den Berg [5]. The generalized
approaches represent the obstacles in the control input space which is not trivial
to compute, especially for vehicles with complex dynamics and shapes.

The velocity obstacle approach is elegantly extended to 3D in Jenie et al. [50]
and Jenie et al. [51]. Here, the 3D velocity space is divided into a set of discrete
planes, and the 2D velocity obstacle approach is applied to each plane. This is an in-
tuitive extension, but the problems pertaining to vehicle constraints and dynamics
in the velocity obstacle approach remain unaddressed.

In Lalish and Morgansen [61], the collision cone concept [21] is employed in a
distributed reactive algorithm for multiple vehicles. The algorithm provably makes
a set of cooperating vehicles remain collision free if they start in a con�ict free
state, and a decon�iction algorithm for reaching such a state is given. The al-
gorithm incorporates actuator constraints, and is suitable also for vehicles with
a limited speed envelope. However, while the results are strong, the dynamics of
the vehicles are not included, and the conditions for safe decon�iction can become
overly conservative in the case of passive obstacles.

The collision cone approach is extended to 3D in [20, 30, 62, 99]. The 3D collision
cone is analytically de�ned in Carbone et al. [20], which de�nes a safe maneuver
using either speed, pitch or yaw movement. In Fasano et al. [30], this work was
extended to include combinations of these maneuvers, reducing the control cost of
the overall maneuver. Possible non-cooperating obstacles are considered in Smith
et al. [99], which employs 3D collision cones in an air tra�c control problem,
however no analytical guarantees are provided.

The work in Lalish and Morgansen [62] extends the earlier work of Lalish and
Morgansen [61], and shows how a multi-agent system can be made to provably
reach and remain in a con�ict-free state. Both limited speed envelopes and acceler-
ation constraints are included, making the results very solid. Vehicle dynamics are,
however, not explicitly accounted for, which may be a problem for underactuated
vehicles.

The nonholonomic constraints of a unicycle vehicle is removed in the algo-
rithm presented by Rodríguez-Seda et al. [91] by using input-output linearization.
Inspired by Leitmann and Skowronski [65], a Lyapunov-like analysis is used to
rigorously prove that the algorithm achieves collision avoidance for vehicles with
bounded actuators. The input-output linearization will, however, introduce overly
restrictive bounds on the available controls when the maximum linear acceleration
and maximum angular acceleration of the vehicles di�er by a large extent. This is
for example the case of marine vehicles such as ships. The results of Rodríguez-
Seda et al. [91] are extended in Rodríguez-Seda et al. [92] to include the avoidance
of non-cooperating obstacles, albeit for double integrators rather than unicycles.

A similar approach to Rodríguez-Seda et al. [91] is proposed in Rodríguez-Seda
[90], which examines a multi-agent scenario of cooperating, circular agents modeled
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as unicycles with bounded turning rates and constant forward speed. Rather than
using feedback linearization, an auxiliary system is here created by considering
the center of the turning circle of each vehicle. Such a system can be viewed as a
double integrator, on which an avoidance control method can be applied. Steering
the center of the vehicle's turning circle is also the method of Pallottino et al. [79],
which ensures that a set of cooperating, circular unicycles avoid each other and
reach their targets by �rolling� on each other's turning circles.

The algorithm proposed by Moe and Pettersen [74] uses circular path following
to avoid moving obstacles, and the paper gives su�cient conditions for successful
avoidance. By using set-based theory to switch between path following mode and
collision avoidance mode, the algorithm is combined with the LOS guidance law
for following of straight-line path segments. It is not, however, clear how to extend
the algorithm to non-circular obstacles, nor is a minimum distance for when the
vehicle should start the collision avoidance maneuver provided.

A local, range-only-based collision avoidance algorithm for nonholonomic vehi-
cles is proposed in Matveev et al. [73], which considers moving obstacles of arbitrary
and time-varying shapes. The sensing requirements on a vehicle using the algorithm
is very limited, but the algorithm places heavy restrictions on the obstacle veloci-
ties.

The algorithm presented in Savkin and Wang [96] resembles the vector �eld
histogram of Borenstein and Koren [10], and uses sensor measurements directly to
obtain obstacle-free directions ahead of the vehicle. It is proved that the algorithm
makes a nonholonomic vehicle safely traverse a complex environment with multiple
moving obstacles. The algorithm does not, however, make use of the obstacle veloc-
ity, something which can give overly conservative restrictions to obstacle movement
in cases where obstacle velocity measurements are available.

Inspired by the way a squirrel will keep a constant avoidance angle to a tree
when circling it, as described in Lee [64], Teimoori and Savkin [105] propose an
algorithm which makes a unicycle with limited turning radius avoid static obstacles
of bounded curvature. The algorithm makes the vehicle keep a constant avoidance
angle to the obstacle, and it is then ensured that the vehicle will keep a minimum
distance to it. The algorithm is extended to include moving obstacles in Savkin and
Wang [95], where a time-varying compensation term is added to the avoidance angle
in order compensate for the obstacle velocity. This approach has the advantage that,
unlike for velocity obstacles, knowledge of the obstacle shape is not required for
implementation, only the vision cone to the obstacle. However, while the algorithm
provides safe heading references, it also imposes a strict requirement on the vehicle
speed trajectory during the avoidance maneuver. The �exibility to design the speed
trajectory of the vehicle independently is thus removed, which complicates the
implementation on underactuated vehicles and is a signi�cant drawback for vehicles
with a limited speed envelope. Furthermore, the vehicle dynamics is not considered,
and the speed requirement also leads to a singularity in the required yaw rate.

The constant avoidance angle algorithm is extended to 3D in Wang et al. [109].
Here, a plane is created containing the vehicle, the obstacle and the vehicle's ve-
locity vector. The vehicle will operate in this plane, employing the algorithm from
Savkin and Wang [95] in order to avoid the obstacle. While this is an intuitive
extension, it does not fully exploit the 3D structure of the system, and the issues
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of the 2D algorithm have not been addressed.
In Parts III and IV of this thesis, we will propose a constant avoidance algorithm

which enables the vehicle to maintain any desired forward speed, and we will show
how it can be used on vehicles required to keep a constant forward speed. Thus, the
singularity in Savkin and Wang [95] is removed, and the algorithm becomes suitable
for vehicles with speed restraints. We will extend the algorithm to 3D, and provide
an analysis which includes the complete dynamic model of an underactuated marine
vehicle.

1.3 Contributions

1.3.1 Path following

Part II of this thesis considers path following of underactuated marine vehicles in
2D and 3D. In Chapter 4 we consider the integral line of sight (ILOS) path following
guidance law proposed by Børhaug et al. [13], applied to an underactuated marine
vehicle with kinematics and dynamics modeled in 3 DOF. The vehicle is tasked with
following a straight-line path, and there is a kinematic disturbance from an ocean
current which is uniform in time and space. The algorithm is proved to provide
global κ-exponential convergence in Caharija et al. [18], and the main contribution
of this chapter is an extension of this result, motivated by the results of Fossen
and Pettersen [36], to prove that an underactuated marine vessel controlled by the
ILOS guidance law achieves the stronger stability results of USGES and UGAS.

USGES was previously thought to provide stronger convergence and robustness
properties than κ-exponential stability. Speci�cally, since the USGES property im-
plies that a su�ciently large region of attraction in which there is exponential
convergence can always be chosen, Khalil [55, Lemma 9.2] could suggest that it
should be possible to obtain robustness (uniform boundedness of the solutions) re-
gardless of the size of the perturbation. This is a stronger robustness property than
for κ-exponential stability, which according to Khalil [55, Lemma 9.3] requires the
perturbation to be small to ensure a uniformly bounded solution. The robustness
properties of a system achieving USGES was, however, examined more closely in
Pettersen [84], where it is proved that in the general case, the size of a perturba-
tion must still be small in order to ensure that the solution of the system remains
bounded. This is in particular shown to be the case for systems using LOS guidance
laws.

In Chapter 5 we investigate the e�ect of the vehicle speed on the path conver-
gence, with particular focus on vehicles where the convergence of the underlying
controllers are slow, which indeed they are for many real system. In this chapter,
we design the lookahead distance of the ILOS guidance law to increase linearly
with the desired surge speed. The vehicle will then make slower, smoother turns
at high speed, reducing overshoot. This is inspired both by the results of Lekkas
and Fossen [66], which showed that the optimal lookahead distance increased with
vehicle speed, and by practical considerations when implementing the algorithm
on FFI's Odin USV. Such a speed-dependent lookahead distance makes it possible
for the vehicle to converge to the desired path without overshoot for a broad range
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of speeds, without having to tune the guidance separately for low-speed tasks, such
as AUV following or seabed surveying, and high-speed tasks such as transit.

For the special case when the desired surge speed is constant, we provide con-
ditions under which the path following convergence remains USGES. While we in
Chapter 4 will employ the Comparison lemma [55, Lemma 3.4] to prove USGES of
the ILOS guidance law, we will in Chapter 5 demonstrate the use of the more con-
venient Lyapunov-su�cient conditions proposed by Pettersen [84]. Furthermore,
we show that the solutions of the system remain ultimately bounded when the
desired surge speed is time-varying. Unlike previous works, we do not look at a
speci�c function for forward speed. Rather, we let it be a general function, with no
required bound on the desired acceleration. Thus, the result can be used for any de-
sired surge speed trajectory, including but not limited to those used for trajectory
tracking in Flåten and Brekke [33] or formation control in Belleter and Pettersen
[7].

In Chapter 6 we look at path following in 3D, using the 3D ILOS guidance law
proposed by Caharija et al. [18] applied to an underactuated underwater vehicle
modeled in 5 DOF. Speci�cally, this chapter investigates the e�ect of positive or
negative buoyancy on an underactuated underwater vehicle controlled by an ILOS
guidance law. The 5 DOF kinematic and dynamic model used in Caharija et al.
[18], which includes kinematic disturbances from constant and irrotational ocean
currents, is extended to include e�ects caused by the lack of neutral buoyancy. The
main contribution of Chapter 6 is thus to extend the results of Chapters 4 and 5
to prove that the closed-loop cross track error dynamics are UGAS and USGES,
even when the vehicle is not neutrally buoyant.

1.3.2 Collision avoidance in 2D

The main contribution of Part III of the thesis is the design and analysis of the
constant avoidance angle (CAA) algorithm for collision avoidance of underactuated
marine vehicles operating in the horizontal plane. Chapter 7 gives a detailed de-
scription of the algorithm, which is a reactive algorithm building on the results of
Savkin and Wang [95]. The main idea behind the algorithm is to make the vehicle
maintain a constant avoidance angle between its velocity vector and the edge of the
obstacle. If the obstacle is moving, a compensation term is added to the avoidance
angle to ensure that the vehicle behavior with respect to the obstacle remains the
same. This compensation approach is closely related to the velocity obstacle algo-
rithm proposed by Fiorini and Shiller [32]. The main di�erence is that the CAA
algorithm does not require knowledge of the obstacle shape for implementation,
and that we provide an analytical expression for the velocity compensation for any
given vehicle speed.

The use of vehicle speed as an input rather than an output furthermore sepa-
rates the CAA algorithm from the algorithm proposed in Savkin and Wang [95].
The CAA algorithm proposed in this thesis is designed to provide safe heading
references for the current vehicle speed, and it is thus possible to steer the speed
independently. This feature provides �exibility and makes the approach suitable for
a wide range of vehicles, including vehicles with a limited speed envelope, high ac-
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celeration cost or underactuated speed components. All of these issues are relevant
for marine vehicles.

Another contribution of Chapter 7 is the introduction of an unsafe vision cone.
This is the set of all velocity directions which, at the current vehicle speed, can make
the vehicle come closer than the required safety distance to the obstacle. Thus, the
output of the algorithm is the outermost edges of this cone. The unsafe cone is
used to determine when the vehicle should start a collision avoidance maneuver,
and when the maneuver can safely be considered complete. Thus, we are able
to design smooth and intuitive transitions between collision avoidance mode and
nominal operations.

A preliminary analysis of the algorithm is performed in Section 7.3, where we
prove that if a vehicle follows the steering references from the CAA algorithm, it
is ensured that it will always stay at least a minimum safety distance away from
the obstacle. The safety distance is a function of the constant avoidance angle and
the radius of the obstacle. Thus, if the radius (or maximum curvature of a non-
circular obstacle) is known, the avoidance angle can be tuned to achieve a desired
minimum safety distance. Since the avoidance maneuver is based on circumventing
the obstacle, we require the vehicle to move faster than it. In this case, the safety
result will hold regardless of the obstacle behavior, and we do not require the
obstacle to be cooperating.

The algorithm is applied to a unicycle in Chapter 8, where we demonstrate that
the algorithm can be used on vehicles with a limited speed envelope by restricting
the vehicle to keep a constant forward speed. The unicycle furthermore has a lim-
ited turning rate. The unicycle model and constraints are used to derive conditions
under which it is mathematically guaranteed that a moving, non-cooperating ob-
stacle will be avoided. We will �nd both the distance to the obstacle at which the
vehicle, at the latest, must start to turn away, and an upper bound on the yaw rate
required on the unicycle during the maneuver. The results are validated through
simulations, which include a scenario with an obstacle of a more complex, concave
shape. The latter demonstrates, at least qualitatively, that the algorithm can be
used also on non-circular obstacles.

In Chapter 9, we include the underactuated sway dynamics of marine vehicles
steered with a rudder and propeller, but assume that the directly actuated surge
and heading remain perfectly controlled. The underactuated sway dynamics com-
plicates the analysis of the collision avoidance maneuver. First, the direction of
the vehicle's velocity is no longer equivalent to the orientation of the vehicle. In
nautical terms, the direction of the vehicle's velocity is called the vehicle course,
while the vehicle's horizontal orientation is called the vehicle heading. Since the
vehicle course is of main interest during a collision avoidance maneuver, we will
design a new course controller. We furthermore provide conditions under which
this controller is feasible, conditions which hold for most marine vehicles.

Secondly, even though the vehicle is still set to maintain a constant forward
speed, there is now an underactuated component to the vehicle's total speed as a
sway speed is induced when the vehicle turns. The time-varying speed is readily
handled by the CAA algorithm, which is modi�ed in this chapter to use the vehicle's
total speed rather than the forward speed when calculating the obstacle velocity
compensation angle. The analysis of the required turning rate in Chapter 8 is thus
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extended to include the time-varying speed, and conditions are derived under which
we are ensured that the required course rate is well de�ned and the induced sway is
bounded. These results are then included in the safety analysis, and used to derive
a new distance at which the obstacle must at the latest turn away in order to ensure
safety, as well as conditions on the course controller and avoidance angle in order
to ensure both safety and well-de�nedness of the maneuver, while also ensuring
that the induced sway speed is upper bounded. Again, these results are validated
through simulations which con�rms that an underactuated vehicle is able to avoid
collisions.

Chapter 10 �nalizes Part III, extending the vehicle model to a complete ma-
neuvering model as de�ned in Fossen [35], including both the underactuated sway
dynamics and the directly actuated yaw and surge dynamics. We ensure that the
vehicle is able to always follow the required surge and yaw rates by designing a
bump function which is employed during the discontinuous switch between nomi-
nal operation and collision avoidance mode. Thus, we are able to use the results of
Chapter 9 on a vehicle with a complete dynamic model.

In Chapters 8 and 9 the nominal goal of the vehicle is to reach a target position,
for which we use the pure pursuit guidance law described in Breivik and Fossen
[17]. In Chapter 10, the performance of the CAA algorithm in combination with the
LOS path following guidance law is analyzed. By proving that the vehicle is able
to safely reach its control objectives in both a target reaching and a path following
scenario, we demonstrate the modular nature of the algorithm. The results are
validated through both numerical simulations and through full-scale experiments
on the R/V Gunnerus.

The analysis of the algorithm considers a single moving obstacle of circular
shape. However, the algorithm can be used to avoid an obstacle of any shape with-
out any modi�cation, which we demonstrate in the simulation section. Furthermore,
while the analysis of dense multi-obstacle scenarios is beyond the scope of this the-
sis, we will provide a method for extending the algorithm to such scenarios. This
is demonstrated in the experimental section, where we validate the results through
the experiments on R/V Gunnerus.

1.3.3 Collision avoidance in 3D

In Part IV, the CAA algorithm is extended to 3D, enabling an underactuated
underwater vehicle to avoid a moving obstacle using limited sensor measurements.
Where the 2D algorithm provides two safe velocity directions, one to either side
of the obstacle, the 3D algorithm creates a continuum of such directions around
the obstacle in an extended 3D vision cone. For each ray, a compensation term is
added in order to compensated for the obstacle velocity using the same technique
as in 2D. Thus, a 3D unsafe cone valid for the current vehicle speed is created. This
procedure is described in Chapter 11, where a preliminary analysis proves that a
vehicle following any direction along this cone is able to keep at least a minimum
safety distance to a moving obstacle.

The continuum of safe directions provided by the algorithm o�ers �exibility.
This �exibility is utilized in Chapter 11 by making the algorithm choose a direction
going behind the obstacle, while also minimizing the required turning and pitching
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rate. Furthermore, the algorithm is able to make the vehicle adhere to limitations
in the allowed pitch, which is often a safety limitation of 3D vehicles.

The minimization of the required pitch and turning rate enables us to extend
the 2D results in Chapter 8 to 3D in Chapter 12. Speci�cally, we are able to derive
bounds on the maximum required turning and pitching rate during an avoidance
maneuver in order to enable a kinematically modeled vehicle with nonholonomic
constraints in sway and heave to avoid a moving obstacle. As in the 2D case, we do
not require that the obstacle is cooperating, and successful avoidance is shown even
when the obstacle is in pursuit of the vehicle. The results are proved analytically,
and the analysis shows how the avoidance angle can be tuned in order to ensure
that the maneuvering requirements of the collision avoidance maneuver do not
exceed the capabilities of the vehicle.

In Chapter 13 we extend the vehicle model to include the full 5 DOF dynamics of
an underactuated marine vehicle. This includes underactuation in sway and heave,
which cannot be directly controlled, but are induced when turning and pitching.
These underactuated degrees of freedom are included in the control system by the
design of a Flow frame controller, where the Flow frame is a reference frame where
the x-axis points along the direction of the vehicle's velocity vector. Thus, the Flow
frame controller is a 3D generalization of the 2D course controller.

Similarly to Chapter 10, the dynamics of the directly actuated pitch and yaw
rates are included by smoothing the desired rates during the discrete switch from
nominal operation when starting the collision avoidance maneuver, thus ensuring
that the actuated control signals of the system remain well de�ned also during the
switch.

Conditions under which an underactuated underwater vehicle is analytically
guaranteed to avoid a moving obstacle are provided in the main theorem of Chap-
ter 13. It is also shown how these conditions ensure that the induced sway and
heave speeds are upper bounded. These results are validated through several sim-
ulations, as well as through full-scale experiments on the Hugin AUV. The simu-
lations furthermore provide a qualitative demonstration of use of the algorithm in
a multi-obstacle scenario.

1.3.4 Publication list

This section presents a list of publications produced during, and relevant to, the
work in this thesis. The list contains both accepted and submitted publications.

Journal papers

M. S. Wiig, K. Y. Pettersen, and T. R. Krogstad. Collision Avoidance for Under-
actuated Marine Vehicles Using the Constant Avoidance Angle Algorithm. IEEE
Transactions on Control Systems Technology, 2019. Accepted, in press.

M. S. Wiig, K. Y. Pettersen, and T. R. Krogstad. A 3D Reactive Collision Avoid-
ance Algorithm for Underactuated Underwater Vehicles. Journal of Field Robotics,
2019. Submitted.
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Conference papers
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stability of integral line-of-sight guidance laws. In Proc. 10th IFAC Conference on
Manoeuvring and Control of Marine Craft, Copenhagen, Denmark, 2015.

M. S. Wiig, W. Caharija, T. R. Krogstad, and K. Y. Pettersen. Integral Line-
of-Sight Guidance of Underwater Vehicles Without Neutral Buoyancy. In Proc.
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Norway, 2016.

M. S. Wiig, K. Y. Pettersen, and T. R. Krogstad. A reactive collision avoidance
algorithm for vehicles with underactuated dynamics. In Proc. 56th IEEE Confe-
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M. S. Wiig, K. Y. Pettersen, and T. R. Krogstad. A 3D Reactive Collision Avoid-
ance Algorithm for Underactuated Vehicles. In Proc. 57th IEEE Conference on
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Publications not part of this thesis

B. O. H. Eriksen, M. Breivik, K. Y. Pettersen, and M. S. Wiig. A Modi�ed Dynamic
Window Algorithm for Horizontal Collision Avoidance for AUVs. In Proc. IEEE
Conference on Control Applications, Buenos Aires, Brazil, 2016.

1.4 Thesis outline

This thesis consists of 14 chapters:

Chapter 2 provides some mathematical preliminaries, and introduces some of
the notation used in this thesis.

Chapter 3 presents a mathematical maneuvering model of an underactuated ma-
rine vehicle in 3 DOF and 5 DOF. The dynamics are expressed both in terms of
velocities relative to the water, which are used in Part II, and in velocities relative
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to NED, which are used in Parts III and IV.

Chapter 4 analyses the stability properties of the ILOS guidance law applied
to an underactuated surface vehicle. It is proved that the guidance law achieves
the USGES stability property, and this is veri�ed in simulations.

Chapter 5 modi�es the ILOS guidance law to have a speed-dependent looka-
head distance. The path convergence is shown to be USGES when the desired
surge speed is constant, and the path error is shown to be ultimately bounded
when the speed is time-varying. The results are veri�ed both through simulations,
and through full-scale experiments on the Odin USV.

Chapter 6 analyses the stability properties of the 3D ILOS guidance law ap-
plied to an underactuated underwater vehicle. The analysis shows that the path
convergence is USGES, even if the vehicle is not neutrally buoyant. The results are
veri�ed in simulations.

Chapter 7 describes the CAA collision avoidance angle algorithm in 2D, and
provides a preliminary analysis where it is shown that as long as a vehicle is able
to follow the references from the algorithm, it is guaranteed to remain at least a
minimum safety distance away from the obstacle.

Chapter 8 applies the CAA algorithm to a unicycle-type vehicle which is re-
stricted to keep a constant forward speed. The vehicle is tasked with reaching a
target position, and encounters an obstacle on the way. An upper bound on the
required turning rate of the vehicle is given, and a minimum switching distance
from the obstacle at which the vehicle can start the avoidance maneuver and still
be safe is derived. These results are veri�ed in simulations.

Chapter 9 includes the underactuated dynamics of a marine vehicle steered with
a rudder and propeller into the vehicle model. The CAA algorithm is then set to
steer the vehicle course rather than the vehicle heading, which enables it to com-
pensate for the vehicle underactuation in sway. Conditions are derived under which
the vehicle is still guaranteed to avoid a moving obstacle while ensuring that the
induced sway speed is upper bounded. These results are veri�ed in simulations.

Chapter 10 applies the CAA algorithm to an underactuated marine surface vehi-
cle, which is modeled using a complete maneuvering model. It is shown how a bump
function can be used to avoid discontinuities in the reference signal for the directly
actuated yaw rate of the vehicle, ensuring that it can always be controlled with
exponential convergence. Conditions are given under which the vehicle is guaran-
teed to avoid a moving obstacle and continue with the nominal operation, both in
combination with a target reaching guidance law and with the LOS path following
guidance law. The results are veri�ed both through simulations, and through full-
scale experiments on the R/V Gunnerus.

Chapter 11 describes the CAA algorithm in 3D, including a 3D extended vi-
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sion cone and a compensation term added to each ray of the cone to compensate
for the obstacle velocity, creating a compensated vision cone. A preliminary anal-
ysis shows that if the vehicle's velocity direction always lies along the surface of
the compensated vision cone, then the vehicle is guaranteed to stay at least a min-
imum safety distance away from the obstacle. Furthermore, it is shown how a safe
direction can be chosen which makes the vehicle move behind the obstacle, mini-
mizes the required pitch and yaw rate, and ensures that the desired pitch is limited.

Chapter 12 applies the 3D CAA algorithm to a kinematic model of a vehicle
with nonholonomic constraints in sway and heave. The vehicle is restricted to keep
a constant forward speed, has a limited pitch and yaw rate, and is tasked with
reaching a target position. Furthermore, the vehicle is required to have a safety
limitation on the allowed pitch range. Upper bounds are derived on the required
yaw and pitch rate during the collision avoidance maneuver, and conditions are de-
rived under which the vehicle is guaranteed to avoid a moving obstacle and reach
the target, while also adhering to the pitch limitations.

Chapter 13 applies the 3D CAA algorithm to an underactuated underwater ve-
hicle modeled using a complete maneuvering model. The underactuated sway and
heave dynamics are compensated for by the design of a Flow frame controller,
which steers the direction of the vehicle's velocity vector in 3D, and conditions are
given on the vehicle's maneuvering capabilities under which this controller is always
feasible. The 3D CAA algorithm provides references to the Flow frame controller,
and conditions are provided under which collision avoidance is guaranteed while
the induced sway and heave motion are upper bounded. These results are veri�ed
both in simulations and in full-scale experiments on the Hugin AUV.

Chapter 14 gives some concluding remarks, and some thoughts on future paths
of research.

18



Part I

Preliminaries

19





Chapter 2

Mathematical Preliminaries

My spelling is wobbly. It's good spelling, but it Wobbles, and the words
get in the wrong places.

� A.A. Milne, Winnie-the-Pooh

In this chapter, we will provide some mathematical preliminaries to the work pre-
sented in this thesis. We will, speci�cally, present the mathematical notation of
the thesis in Section 2.1, as well as a list of the most important reference frames
in Section 2.2 and some utility functions in Section 2.3. Finally, we will present
stability de�nitions and theorems from the literature in Section 2.4.

2.1 Notation

We will here give an overview of the notation used in this thesis. The notation
employed is largely based on the notation in Fossen [35] and Khalil [55].

The space Rn is the Euclidean space of dimension n, while R+ is the set of all
non-negative real numbers. The p-norm of a vector u ∈ Rn is denoted ‖u‖p, for
p ∈ [1;∞]. When a norm is written without subscript, such as ‖u‖, the Euclidean
norm is implied. The ball Br ∈ Rn is a ball of radius r > 0, centered at origo,
Br , {x ∈ Rn | ‖x‖ ≤ r}.

A vector u represented in a reference frame n is denoted un. The position of a
reference frame b with respect to reference frame n is denoted pnb = [xnb , y

n
b , z

n
b ]T .

The velocity vector of frame b with respect to n, represented in n is denoted vnb/n,
where the superscript n signi�es that the velocity is represented in n, while the
subscript b/n signi�es that the vector holds the velocity of b with respect to n. The
rotation matrix used to rotate a vector from reference frame b to frame n is denoted
Rn
b , so that vn = Rn

b v
b. The angular velocity vector of frame b with respect to n,

represented in b, is denoted ωbb/n.

The Euler angles roll (φ), pitch (θ) and yaw (ψ) are used to decompose a rotation

21



2. Mathematical Preliminaries

into three principal rotations using the zyx-convention. The principal rotations are

Rx(φ) ,

1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)

 ,Ry(θ) ,

 c(θ) 0 s(θ)
0 1 0

−s(θ) 0 c(θ)

 ,
Rz(ψ) ,

c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

 .
(2.1)

For brevity, the trigonometric functions sin(·), cos(·) and tan(·) have been denoted
s(·), c(·) and t(·), respectively. This notation is used throughout the thesis. Com-
bining these principal rotations gives the rotation matrix

RRRzyx(φ, θ, ψ) , Rz(ψ)Ry(θ)Rx(φ). (2.2)

For convenience we also de�ne the matrix

RRRzy(θ, ψ) , Rz(ψ)Ry(θ), (2.3)

which we use in cases where the roll angle is not of interest or assumed to be zero.
To denote the roll, pitch and yaw of a reference frame b with respect to n we use

the notation φnb , θ
n
b and ψnb . Hence, the rotation from from b to n can be written

Rn
b = RRRzyx(φnb , θ

n
b , ψ

n
b ). (2.4)

2.2 Reference frames

Throughout this thesis there are various reference frames used to model the ve-
hicle and the obstacle, and to describe the collision avoidance and path following
algorithms. In Table 2.1, we list the most important reference frames, along with
a short summary of each.

2.3 Utility functions

To steer the vehicle in the direction of a vector u = [ux, uy, uz]
T , it is useful to

know the heading and pitch angle corresponding to the vector. To this end, we
de�ne the functions:

Ψ(u) = atan2(uy, ux), (2.5)

Θ(u) = − sin−1( uz
‖u‖ ). (2.6)

We also de�ne the angular distance ξ(u1,u2) between the vectors u1 and u2

as

ξ(u1,u2) ,
√

(Ψ(u2)−Ψ(u1))
2

+ (Θ(u2)−Θ(u1))
2
. (2.7)
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2.4. Stability de�nitions and theorems

Table 2.1: Reference frames

Frame Description

n The inertial North-East-Down (NED) reference frame.
b The Body reference frame, which is attached to and aligned

with the vehicle.
f The Flow reference frame, which is attached to the vehicle

and aligned with the vehicle's velocity vector.
nb A Body-�xed reference frame oriented along the NED

frame. This frame is used to represent positions relative
to the vehicle.

o The Obstacle reference frame, which is attached to the cen-
ter of the obstacle.

bbo A Body-�xed reference frame oriented such that its x-axis
points towards the obstacle.

2.4 Stability de�nitions and theorems

We will throughout this thesis apply the stability de�nitions presented in this
section. The stability de�nitions apply for a nonautonomous system

ẋ = f(t,x), (2.8)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x
on [0,∞) × D, where D ⊂ Rn is a domain which contains the origin x = 0. We
denote the initial condition as x0 , x(t0).

The class of functions in the next two de�nitions are used as comparison func-
tions when de�ning the di�erent stability properties:

De�nition 2.1. Khalil [55, De�nition 4.2]. A continuous function α : [0, a) →
[0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0. It is said
to belong to class K∞ if a =∞ and α(r)→∞ as r →∞.

De�nition 2.2. Khalil [55, De�nition 4.3]. A continuous function β : [0, a) ×
[0,∞) → [0,∞) is said to belong to class KL if, for each �xed s, the mapping
β(r, s) belongs to class K with respect to r and, for each �xed r, the mapping
β(r, s) is decreasing with respect to s and β(r, s)→ 0 as s→∞.

From Khalil [55] and Loria and Panteley [70] we then de�ne:

De�nition 2.3. Khalil [55, Lemma 4.5]. The equilibrium point x = 0 of (2.8) is

� uniformly stable (US) if and only if there exists a class K function α and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α (‖x0‖) , ∀t ≥ t0, ∀‖x0‖ < c. (2.9)
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� uniformly asymptotically stable (UAS) if and only if there exist a class KL
function β and a positive constant c, independent of t0, such that

‖x(t)‖ ≤ β(‖x0‖, t− t0), ∀t ≥ t0, ∀‖x0‖ < c. (2.10)

� uniformly globally asymptotically stable (UGAS) if and only if inequality
(2.10) is satis�ed for any initial state x(t0), i.e. c→∞.

De�nition 2.4. Loria and Panteley [70, De�nition 2.7]. The origin of system (2.8)
is said to be uniformly (locally) exponentially stable (ULES) if there exist constants
γ1, γ2 and r > 0 such that for all (t0,x0) ∈ {R+ ×Br},

‖x (t; t0,x0) ‖ ≤ γ1‖x0‖e−γ2(t−t0) ∀t ≥ t0. (2.11)

If for each r > 0 there exist γ1, γ2 such that condition (2.11) holds for all (t0,x0) ∈
{R+×Rn}, then the system is said to be uniformly semiglobally exponentially stable
(USGES).

Finally, the origin of system (2.8) is said to by uniformly globally exponentially
stable (UGES) if there exist γ1, γ2 such that (2.11) holds for all (t0,x0) ∈ {R+ ×
Rn}.

2.4.1 USGES stability

In Pettersen [84], a slightly di�erent de�nition of USGES is presented. We will
present this de�nition here for completeness, along with Lyapunov-su�cient con-
ditions for proving USGES of the the parametrized nonlinear time-varying system

ẋ = f(t,x,ρ), (2.12)

where t ∈ R+,x ∈ Rn and ρ ∈ P ⊂ Rm is a constant parameter.

De�nition 2.5. Pettersen [84, De�nition 1]. Let P ∈ Rm be a set of parameters.
The system (2.12) is USGES on P if, for any ∆ > 0, there exists a parameter
ρ∗(∆) ∈ P and positive constants k∆, λ∆, all independent of t0, such that ∀x0 ∈
B∆

‖x(t; t0,x0,ρ
∗)‖ ≤ k∆‖x0‖e−λ∆(t−t0). (2.13)

De�nition 2.5 is a special case of the USGES de�nition in De�nition 2.4. Specif-
ically, De�nition 2.5 explicitly shows the parameter dependency that may be part
of the USGES property. Hence, any system that satisfes De�nition 2.5 also satis�es
De�nition 2.4.

The next theorem provides Lyapunov-su�cient conditions under which the
equilibrium point x = 0 of system (2.12) is USGES.

Theorem 2.1. Pettersen [84, Theorem 5]. Consider the system given in (2.12).
If, for any ∆ > 0, there exist a parameter ρ∗(∆) ∈ P , a continuously di�erentiable
Lyapunov function V∆ : R+ ×B∆ → R+, and positive constants k1∆, k2∆, k3∆ and
a such that, ∀x ∈ B∆,

k1∆‖x‖a ≤ V∆(t,x) ≤ k2∆‖x‖a, (2.14)
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∂V∆

∂t
+
∂V∆

∂x
f(t,x,ρ∗) ≤ −k3∆‖x‖a, (2.15)

∀t ≥ t0 ≥ 0, then the origin of the system (2.12) is USGES on P .

If the system (2.12) is perturbed by a function g(t,x,ρ), which is locally Lip-
schitz in x and piecewise continuous in t for all ρ ∈ P , we obtain the system

ẋ = f(t,x,ρ) + g(t,x,ρ). (2.16)

We will employ the next lemma to investigate the boundedness of such a system
in Chapter 5.

Lemma 2.2. Pettersen [84, Lemma 12]. Assume that the conditions of Theo-
rem 2.1 are satis�ed, and that there exist a positive constant k4∆ and a constant
0 < c < 1 such that, ∀x ∈ B∆,∥∥∥∥∂V∆

x

∥∥∥∥ ≤ k4∆‖x‖a−1, (2.17)

‖g(t,x,ρ)‖ ≤ δ < k3∆

k4∆

(
k1∆

k2∆

) 1
a

∆c, (2.18)

∀t ≥ t0 ≥ 0. Then, ∀x ∈ B∆, there is a T > 0 such that the solution x(t; t0,x0,ρ
∗)

of the perturbed system (2.16) satis�es

‖x(t; t0,x0,ρ
∗)‖ ≤

(
k2∆

k1∆

) 1
a

‖x0‖e−
(1−c)k3∆
ak2∆

(t−t0)
(2.19)

∀t0 ≤ t ≤ t0 + T , and

‖x(t; t0,x0,ρ
∗)‖ ≤ k4∆

k3∆

(
k2∆

k1∆

) 1
a δ

c
∀t ≥ t0 + T. (2.20)

2.4.2 Cascaded systems

In Part II of this thesis we will employ cascaded systems theory to investigate
the stability properties of the control system. In this section, we will state results
pertaining to cascaded systems. We consider a nonlinear, time-varying system in
cascaded form:

ẋ1 = f1(t,x1) + g(t,x)x2, (2.21a)

ẋ2 = f2(t,x2), (2.21b)

where x1 ∈ Rn, x2 ∈ Rm, x = [xT1 ,x
T
2 ]T , and f1(t,x1) and f2(t,x2) are continu-

ously di�erentiable in their arguments. We can view this as a nominal system,

ẋ1 = f1(t,x1), (2.22)

being perturbed by the perturbing system (2.21b) through the perturbation term
g(t,x)x2. We make the following assumption on the nominal system:
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Assumption 2.1. The nominal system (2.22) is UGAS.

Theorem 2.3. Loria and Panteley [70, Theorem 2.1]. Let Assumption 2.1 hold
and suppose that the trajectories of (2.21b) are uniformly globally bounded. If more-
over, Assumptions 2.2-2.4 below are satis�ed, then the solutions x(t; t0,x0) of the
system (2.21) are uniformly globally bounded. If, furthermore, the origin of system
(2.21b) is UGAS, then so is the origin of the cascade (2.21).

Assumption 2.2. There exist constants c1, c2, η > 0 and a Lyapunov function
V (t,x1) for (2.22) such that V : R+ × Rn → R+ is positive de�nite, radially
unbounded, V̇ (t,x1) ≤ 0 and∥∥∥∥ ∂V∂x1

∥∥∥∥ ‖x1‖ ≤ c1V (t,x1) ∀‖x1‖ ≥ η, (2.23)∥∥∥∥ ∂V∂x1

∥∥∥∥ ≤ c2 ∀‖x1‖ ≤ η. (2.24)

Assumption 2.3. There exist two continuous functions θ1, θ2 : R+ → R+, such
that g(t,x) satis�es

‖g(t,x)‖ ≤ θ1(‖x2‖) + θ2(‖x2‖)‖x1‖. (2.25)

Assumption 2.4. There exists a class K function α(·) such that, for all t0 ≥ 0,
the trajectories of the system (2.21b) satisfy∫ ∞

t0

‖x2(t; t0,x2(t0))‖dt ≤ α(‖x2(t0)‖). (2.26)

The next proposition extends the results of Theorem 2.3 to USGES.

Proposition 2.1. Loria and Panteley [70, Proposition 2.3].If, in addition to the
assumptions in Theorem 2.3, the systems (2.21b) and (2.22) are USGES, then
the cascaded system (2.21) is USGES and UGAS. Moreover, if the subsystems are
UGES the cascade is UGES.
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Chapter 3

Modeling of Underactuated Marine

Vehicles

When you are a Bear of Very Little Brain, and you Think of Things,
you �nd sometimes that a Thing which seemed very Thingish inside you
is quite di�erent when it gets out into the open and has other people
looking at it.

� A.A. Milne, Winnie-the-Pooh

This chapter contains an introduction to the modeling of marine vehicles operating
at maneuvering speed. The modeling is based on Fossen [35], where more details
and a more in-depth derivation of the equations of motion can be found.

The same notation will be used for positions, velocities and generalized velocities
in 6 DOF, 5 DOF and 3 DOF, as the dimensionality of the vectors and matrices
will be consistent within each of the remaining chapters of the thesis, and will be
clear from the context.

3.1 Kinematics

To describe the vehicle kinematics, we will employ the inertial North-East-Down
(NED) reference frame n, and the Body frame b. The Body frame is attached to
the vehicle, and has its axes forward (surge), to starboard (sway) and towards the
keel (heave). The position of the vehicle in n is denoted pnb , [xnb , y

n
b , z

n
b ]T , while

the orientation is modeled using the Euler angles roll (φnb ), pitch (θnb ) and yaw
(ψnb ). The position and orientation of the vehicle is collected in the generalized
coordinates vector

ηnb ,


pnb
φnb
θnb
ψnb

 . (3.1)

The velocities of the vehicle are usually measured in b, and the vehicle dynamics
in Section 3.2 are modeled in b. The velocities in b are denoted

νbb/n ,

[
vbb/n
ωbb/n

]
, (3.2)
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3. Modeling of Underactuated Marine Vehicles

where vbb/n and ωbb/n are the linear and angular velocity vectors of b, respectively:

vbb/n ,

ubvb
wb

 , ωbb/n ,

pbqb
rb

 . (3.3)

The linear velocities are the surge speed ub, sway speed vb and heave speed wb,
while the angular velocities are the roll rate pb, pitch rate qb and yaw rate rb.

The linear velocity vector in n, vnb/n, is obtained using the rotation matrix

Rn
b , RRRzyx(φnb , θ

n
b , ψ

n
b ), where RRRzyx is de�ned in Chapter 2. Thus,

vnb/n = ṗnb = Rn
b v

b
b/n. (3.4)

To obtain the Euler angle rates, we use that

ωbb/n =

φ̇nb0
0

+Rx(φnb )T

 0

θ̇nb
0

+Rx(φnb )TRy(θnb )T

 0
0

ψ̇nb

 . (3.5)

Hence,

ωbb/n =

1 0 −s(θnb )
0 c(φnb ) c(θnb )s(φnb )
0 −s(φnb ) c(θnb )c(φnb )

φ̇nbθ̇nf
ψ̇nf

 := (T nb )
−1

φ̇nbθ̇nf
ψ̇nf

 (3.6)

and φ̇nbθ̇nf
ψ̇nf

 = T nb ω
b
b/n =

1 s(φnb )t(θnb ) c(φnb )t(θnb )
0 c(φnb ) −s(φnb )
0 s(φnb )/c(θnb ) c(φnb )/c(θnb )

ωbb/n. (3.7)

Note the well known Euler singularity when θnb = ±π/2, at which point ψ̇nb becomes
unde�ned.

The complete vehicle kinematics in 6 degrees of freedom (DOF) are:

η̇nb = Jnb ν
b
b/n =

[
Rn
b 03×3

03×3 T nb

]
νbb/n. (3.8)

3.1.1 3 DOF Kinematics

In this thesis, surface vehicles will be modeled in 3 DOF: surge, sway and yaw. The
vehicle will be assumed to be passively stabilized in roll, which is hence neglected.
This assumption is usually valid for maneuvering vehicles, both to prevent capsiz-
ing of the vessel and to avoid the energy consumption of active roll stabilization.
Movement in pitch and heave are assumed to be wave-induced disturbances, which
we also neglect in the model, as these are high-frequent disturbances which we do
not want the control system to respond to1. Thus, the kinematics in 3 DOF are:ẋnbẏnb

ψ̇nb

 =

c(ψnb ) −s(ψnb ) 0
s(ψnb ) c(ψnb ) 0

0 0 1

ubvb
rb

 . (3.9)

1In practical implementations of marine control systems, such disturbances are often �ltered
out using low-pass or wave �lters [35, 102].
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3.2. Dynamics

3.1.2 5 DOF Kinematics

For underwater vehicles, pitch and heave needs to be included in the model. Roll
is, however, still assumed to be passively stabilized. Hence, we model underwater
vehicles in 5 DOF. The rotation matrix from b to n is

Rn
b = RRRzy(θnb , ψ

n
b ) =

c(ψnb )c(θnb ) −s(ψnb ) c(ψnb )s(θnb )
s(ψnb )c(θnb ) c(ψnb ) s(ψnb )s(θnb )
−s(θnb ) 0 c(θnb )

 , (3.10)

while the angular transformation matrix in 5 DOF is

T nb =

[
1 0
0 1/c(θnb )

]
. (3.11)

The complete vehicle kinematics in 5 DOF are
ẋnb
ẏnb
żnb
θ̇nb
ψ̇nb

 =


c(ψnb )c(θnb ) −s(ψnb ) c(ψnb )s(θnb ) 0 0
s(ψnb )c(θnb ) c(ψnb ) s(ψnb )s(θnb ) 0 0
−s(θnb ) 0 c(θnb ) 0 0

0 0 0 1 0
0 0 0 0 1/c(θnb )



ub
vb
wb
qb
rb

 . (3.12)

3.2 Dynamics

The vehicles considered in this thesis are modeled using a maneuvering model as
described in Fossen [35]. This is a model which assumes that the vehicle keeps at
least a certain minimum surge speed, which depends on the vehicle but is typically
more than 1 m/s. When maneuvering at such speeds, it is possible to approximate
frequency-dependent added mass and damping components as constants, which
simpli�es the model.

The structure of the maneuvering model is

Mν̇bb/n +C(νbb/n)νbb/n +Dνbb/n + g(ηnb ) = Bf , (3.13)

whereM = MT > 0 is the mass and inertia matrix including hydrodynamic added
mass, while C contains Coriolis and centripetal terms, and D is the hydrodynamic
damping matrix. Throughout this thesis we will model the damping as linear, i.e.D
will contain only constant parameters. As noted in Caharija et al. [18], the passive
nature of any nonlinear damping forces should enhance the directional stability of
the vehicle.

Gravitational forces and moments are gathered in the gravity restoration vector
g. Control input from the vehicle actuators are contained in f , and converted to
control forces and moments through the actuator con�guration matrix B. In the
next two sections, we will describe this model in more detail for 3 and 5 DOF.

3.2.1 3 DOF Dynamics

In 3 DOF, we can neglect the e�ects of gravity, as we only consider movement in
surge, sway and yaw. By assuming that the vehicle is port-starboard symmetric,
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and that the origin of b lies along the centerline of the vehicle, we obtain the
following structure for M and D:

M =

m11 0 0
0 m22 m23

0 m23 m33

 , D =

d11 0 0
0 d22 d23

0 d32 d33

 (3.14)

The Coriolis and centripetal matrix C is obtained from M as described in Fossen
[35]:

C =

 0 0 −m22vb −m23rb
0 0 m11ub

m22vb +m23rb −m11ub 0

 , (3.15)

The control input vector is f = [Tu, Tr]
T , where Tu is the surge thrust and Tr

the rudder angle. The surge thrust is assumed to a�ect only the surge dynamics,
while the rudder angle can a�ect both the sway and yaw dynamics. The structure
of B thus becomes

B =

b11 0
0 b22

0 b33

 . (3.16)

The e�ect of the rudder on the underactuated sway dynamics through b22 com-
plicates the design and analysis of control systems on the vehicle. However, by
assuming that the origin of b lies in the pivot point of the vehicle, i.e. the point
around which the vehicle turns, this e�ect is removed since then

M−1Bf = [τu, 0, τr]
T . (3.17)

Here, τu is the control force in vehicle surge, while τr is the control moment in
vehicle yaw.

If the origin of b is not originally located in the pivot point of the ship, it is
always possible to perform a coordinate transform translate it there. This procedure
is described in Fossen [35].

The dynamics can be expressed in component form by solving for ν̇bb/n:

u̇b = Fu(ub, vb, rb) + τu, (3.18a)

v̇b = Xv(ub)rb + Yv(ub)vb, (3.18b)

ṙb = Fr(ub, vb, rb) + τr, (3.18c)

where

Fu(ub, vb, rb) ,
1

m11
(m22vb +m23rb)rb −

d11

m11
ub, (3.19)

Fr(ub, vb, rb) ,
m23d22 +m22(d32 + (m22 −m11)ub)

m22m33 −m2
23

vb

+
m23(d23 −m11ub)−m22(d33 +m23ub)

m22m33 −m2
23

rb,

(3.20)

Xv(ub) ,
m2

23 −m11m33

m22m33 −m2
23

ub +
d33m23 − d23m33

m22m33 −m2
23

, (3.21)
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and

Yv(ub) ,
(m22 −m11)m23

m22m33 −m2
23

ub −
d22m33 − d32m23

m22m33 −m2
23

, (3.22)

The surge (3.18a) and yaw (3.18c) dynamics are directly actuated through τu
and τr. Hence, the nonlinearities of Fu and Fr can be canceled using feedback
linearizing controllers. The sway dynamics (3.18b), however, are underactuated.
When turning at maneuvering speed, the inertia of the vehicle will make the vehi-
cle's velocity vector lag behind. Hence, a sway speed is induced, which is captured
by the X(ub)rb term. As the vehicle moves sideways through the water, it will en-
counter damping, which is captured by the Y (ub)vb term. Hence, it is reasonable to
assume that Y (ub) and X(ub) are negative. These assumptions will be formalized
as needed throughout the thesis.

3.2.2 5 DOF dynamics

When modeling the vehicle in 5 DOF, we include the pitch and heave dynamics,
as well as the e�ect from gravity. As in the 3 DOF case, we assume that the
vehicle is port-starboard symmetric, and that the origin of b is positioned along
the center-line of the vehicle. By making the additional assumptions that the vehicle
is symmetric also in the x− z plane, and that it has a large length to width ratio,
the structure of M and D are obtained as

MMM ,


m11 0 0 0 0

0 m22 0 0 m25

0 0 m33 m34 0
0 0 m34 m44 0
0 m25 0 0 m55

 ,DDD ,


d11 0 0 0 0
0 d22 0 0 d25

0 0 d33 d34 0
0 0 d43 d44 0
0 d25 0 0 d55

 . (3.23)

The Coriolis and centripetal matrix C is again obtained from M as described in
Fossen [35]:

CCC ,


0 0 0 m33wb +m34qb −m22vb −m25rb
0 0 0 0 m11ub
0 0 0 −m11ub 0

−m33wb −m34qb 0 m11ub 0 0
m22vb +m25rb −m11ub 0 0 0

 .
(3.24)

The vehicle is assumed to be neutrally buoyant, and we also assume that the
center of gravity CG is on the center-line of the vehicle, and that the center of
buoyancy is on the same z-axis in b as CG. The gravity restoration vector g can then
be constructed as g(ηnb ) , [0, 0, 0, BGzW sin(θnb ), 0]T , where BGz is the vertical
distance between CG and CB, and W is the vehicle weight.2

The control input vector fff , [Tu, Tq, Tr]
T contains surge thrust (Tu), pitch

rudder angle (Tq) and yaw rudder angle (Tr). These are converted to control forces

2In Chapter 6 we examine the e�ect on path following in the case where the vehicle is not
neutrally buoyant. Informally, the vehicle then has to use more surge thrust in order to counteract
the resultant buoyancy e�ects when following the path.
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and moments using the actuator con�guration matrixB. We assume that the surge
thrust does not a�ect the other degrees of freedom, and we only consider couplings
in sway-yaw and heave-pitch. The structure of B is then obtained as:

BBB ,


b11 0 0
0 0 b23

0 b32 0
0 b42 0
0 0 b53

 . (3.25)

By choosing the origin of b to lie in the pivot point of the vehicle, we ensure
that M−1Bf = [τu, 0, 0, τq, τr]

T , where τu, τq and τr are control signals in surge,
pitch and yaw, respectively. Speci�cally, τu is the control force in surge, and τq and
τr are the control moments in pitch and yaw. When expressed in component form,
the 5 DOF dynamics are

u̇b = Fu(ub, vb, wb, rb, qb) + τu, (3.26a)

v̇b = Xv(ub)rb + Yv(ub)vb, (3.26b)

ẇb = Xw(ub)qb + Yw(ub)wb + Zw sin(θnb ), (3.26c)

q̇b = Fq(θ
n
b , ub, wb, qb) + τq. (3.26d)

ṙb = Fr(ub, vb, rb) + τr. (3.26e)

The functions Fu, Xv, Yv, Xw, Yw, Zw, Fq and Fr contain hydrodynamic parame-
ters from M and D, and are de�ned as:

Fu ,
1

m11
[(m22vb +m25rb)rb − (m33wb +m34qb)qb − d11ub] (3.27)

Xv ,
m2

25 −m11m55

m22m55 −m2
25

ub +
d55m25 − d25m55

m22m55 −m2
25

, (3.28)

Yv ,
(m22 −m11)m25

m22m55 −m2
25

ub −
d22m55 − d52m25

m22m55 −m2
25

, (3.29)

Xw ,
−m2

34 −m11m44

m33m44 −m2
34

ub +
d44m34 − d34m44

m33m44 −m2
34

, (3.30)

Yw ,
(m11 −m33)m34

m33m44 −m2
34

ub −
d33m44 − d43m34

m33m44 −m2
34

, (3.31)

Zw ,
BGzWm34

m33m44 −m2
34

, (3.32)

Fq , −
BGzWm33

m33m44 −m2
34

sin(θnb ) +
m34d33 −m33(d43 − (m33 −m11)ub)

m33m44 −m2
34

wb

+
m34(d34 −m11ub)−m33(d44 −m34ub)

m33m44 −m2
34

qb,

(3.33)
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Fr ,
m25d22 −m22(d52 + (m22 −m11)ub)

m22m55 −m2
25

vb

+
m25(d25 +m11ub)−m22(d55 +m25ub)

m22m55 −m2
25

rb.

(3.34)

The surge (3.26a), pitch (3.26d) and yaw (3.26e) dynamics are directly actuated
through τu, τq and τr, while the sway (3.26b) and heave (3.26c) dynamics are
underactuated. Movement in heave is induced when pitching, in the same manner
as movement in sway as described in the previous section. However, in heave there
is an additional component, Zw sin(θnb ), which is due to a moment induced around
the center of buoyancy when the vehicle pitch is nonzero.

3.3 Ocean current and relative velocities

Part II of this thesis examines path following in the presence of ocean currents. In
this section we will show how a constant and irrotational current a�ects the vehicle
model.

The current is modeled at the kinematic level, with the current velocity con-
tained in the vector νnc/n:

νnc/n ,

VxVy
0

 (3DOF), νnc/n ,


Vx
Vy
Vz
0
0

 (5DOF). (3.35)

The kinematics of the vehicle can now be represented in terms of the vehicle's
velocity relative to water,

νbrb/n , νbb/n − ν
b
c/n, (3.36)

where νbc/n is the velocity vector of the ocean current in the body frame. Hence,

νbrb/n =

urbvrb
rb

 (3DOF), νbrb/n =


urb
vrb
wrb
qb
rb

 (5DOF). (3.37)

The kinematics of the vehicle when in the presence of an ocean current are expressed
as

η̇nb = Jnb ν
b
rb/n + νnc/n. (3.38)

It is shown in Fossen [35] that when the ocean current is constant and irrota-
tional, the vehicle dynamics can be expressed in terms of the relative velocities:

Mν̇brb/n +C(νbrb/n)νbrb/n +Dνbrb/n + g(ηnb ) = Bf . (3.39)

The system matrices in (3.39) are the same as the ones presented in Section 3.2.1
in 3 DOF, and Section 3.2.2 in 5 DOF.
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3.4 Assumptions summary

This section contains a summary of the assumptions made during the modeling,
listed for convenience. These assumptions generally hold for slender AUVs [35] and
are valid for many commercial AUVs.

Assumption 3.1. The vehicle model is expressed the Body frame b, which is
located on the center line of the vehicle. The distance from the center of gravity
(CG) to the origin of b is (xg, 0, 0), and hence CG is also on the center line.

Assumption 3.2. The center of buoyancy (CB) and CG is on the same vertical
axis in b.

Assumption 3.3. Any nonlinear damping parameters can be neglected, so that
only linear damping is considered.

Assumption 3.4. The vehicle is symmetric in the x − z plane and in the x − y
plane. Furthermore, the length-to-width ratio of the vehicle is large.

Assumption 3.5. The vehicle is passively stable in roll, and roll motion can hence
be neglected.

Assumption 3.6. The vehicle is neutrally buoyant.

Assumption 3.7. The control input in surge does not a�ect the other degrees
of freedom. Furthermore, only couplings in sway-yaw and heave-pitch need to be
considered.

Assumption 3.8. The ocean current is constant and irrotational.
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Chapter 4

Integral Line of Sight Path Following

for Surface Vehicles

The road goes ever on and on.

� J.R.R. Tolkien, The Hobbit

In this chapter, we will examine the straight-line path following problem for un-
deractuated surface vehicles, or for underwater vehicles operating in the horizontal
plane. To this end, we will apply the integral line of sight (ILOS) guidance law pro-
posed by Børhaug et al. [13]. This guidance law makes the vehicle converge to and
follow a straight-line path even when disturbed by a constant and irrotational cur-
rent. The guidance law has been extensively analyzed, and was shown to achieve
κ-exponential stability in Caharija et al. [18]. This was achieved by formulating
the kinematics and dynamics of the vehicle using relative velocities, as described
in Section 3.3.

In Fossen and Pettersen [36], the comparison lemma in Khalil [55, Lemma 3.4]
was applied in order to provide conditions under which the line of sight (LOS)
guidance law, without integral e�ect, provided uniform semiglobal exponential sta-
bility (USGES) of the origin of the error dynamics. This is the strongest stability
result achievable by path following guidance laws, due to a saturation bounding
the system gain when the vehicle is far away from the path and the surge speed
is bounded. Informally, a vehicle with bounded forward speed will not be able to
converge faster to a path than when moving straight towards it, giving an approx-
imately linear convergence rate when the distance to the path is large.

We will in this chapter apply the comparison lemma to a surface vehicle guided
by the ILOS guidance law in order to �nd control parameters providing USGES
in the presence of an unknown ocean current uniform in time and space. Thus,
the results presented here build on the results of Caharija et al. [18], using the
technique of Fossen et al. [37].

The remainder of this chapter is organized as follows. Section 4.1 gives a descrip-
tion of the vehicle model in 3-DOF, and states the control objective. Section 4.2
describes the ILOS guidance law and the surge and speed controllers that are an-
alyzed in this chapter. A stability analysis of the closed-loop kinematic system is
presented in Section 4.3, while the stability of the complete closed-loop kinematic
and dynamic system is analyzed in Section 4.4. The analyzes show both systems to
be USGES, which is the main result of this chapter. Simulations that demonstrate
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4. Integral Line of Sight Path Following for Surface Vehicles

the exponential stability of the system are shown in Section 4.5, before the chapter
is concluded in Section 4.6.

The work presented in this chapter is based on Wiig et al. [111].

4.1 System description

4.1.1 System model

The vehicle is modeled in 3 DOF using the relative velocity model presented in
Section 3.3. The vehicle is operating in the presence of an ocean current, which we
assume to be constant, irrotational and bounded:

Assumption 4.1. The ocean current νnc/n , [Vx, Vy, 0]T is assumed to be constant,
irrotational and bounded. Hence, there exists a constant Vmax ≥ 0 such that Vmax ≥√
V 2
x + V 2

y .

Thus, the vehicle kinematics and dynamics in component form are

ẋnb = urb cos(ψnb )− vrb sin(ψ) + Vx, (4.1a)

ẏnb = urb sin(ψnb ) + vrb cos(ψ) + Vy, (4.1b)

ψ̇nb = rb, (4.1c)

u̇rb = Fu(urb, vrb, rb) + τu, (4.1d)

v̇rb = Xv(urb)rb + Yv(urb)vrb, (4.1e)

ṙb = Fr(urb, vrb, rb) + τr. (4.1f)

The functions Fu, Fr, Xv and Yv are de�ned in Section 3.2.1, and restated in
Appendix 4.A for convenience.

To ensure that the system is nominally stable in sway, we make the following
assumption:

Assumption 4.2. The function Yv satis�es

Yv(urb) < 0, ∀urb > 0. (4.2)

This is justi�ed by noticing that Yv(urb) ≥ 0 implies that the system is un-
damped or nominally unstable in sway, which is not the case for commercial vessels
by design.

4.1.2 Control objective

The objective of the control system is to make the vehicle modeled by (4.1) converge
to and follow a straight-line path. This objective should be met in the presence of
an unknown, constant and irrotational current while keeping a constant relative
surge speed urd > 0. To simplify the analysis, without any loss of generality, the
desired path P lies along the x-axis of the n frame:

P , {(x, y) ∈ R2 : y = 0}. (4.3)
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4.2. Control system

The objectives of the control system are formalized as

lim
t→∞

ynb (t) = 0, (4.4a)

lim
t→∞

ψnb (t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (4.4b)

lim
t→∞

urb(t) = urd, (4.4c)

where ψss is a constant yaw angle required to keep the underactuated vessel at
the path in the presence of current. Note that, even though the vessel will sideslip
along the path, the drift angle with respect to the water �ow will converge to zero
due to port-starboard symmetry. The following assumption ensures that the vessel
is able to follow the path for any direction of the ocean current:

Assumption 4.3. The propulsion system is capable of achieving a relative surge
speed urd such that urd > Vmax.

4.2 Control system

This section presents a control system for solving the path following problem pre-
sented in Section 4.1.2.

4.2.1 The ILOS guidance law

The desired heading ψnd is given by the ILOS guidance law introduced in Børhaug
et al. [13]:

ψnd , − tan−1(
ynb + σynint

∆
), (4.5a)

ẏnint ,
∆ynb

(ynb + σynint)
2 + ∆2

. (4.5b)

The lookahead distance ∆ and the integral gain σ are constant, positive design
parameters.

An illustration of the ILOS guidance law is shown in Figure 4.1. The intuition
behind the law is to mimic the way an experienced helmsman steers a vehicle by
aiming the vehicle towards a point lying a lookahead distance ∆ meters ahead of
it on the path. Thus, if the vehicle is far away from the path, it will move on an
almost perpendicular trajectory towards it. As the vehicle gets closer to the path,
it will steer on a more parallel course, ensuring a that the turn onto the path is
not too sharp.

An integral e�ect is added to counter the ocean current. Without this e�ect,
any ocean current acting in the transversal direction of the desired path would
push the vessel away from the path and thus create a steady state error. With the
integral e�ect, the vehicle aims towards a virtual path paralell to the desired path.
A nonzero desired heading is thus created even when the cross-track error is zero,
and the vehicle is able to sideslip along the desired path P. By design, the integral
term growth rate (4.5b) will decrease for large cross-track errors ynb , reducing the
risk of wind-up e�ects.
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Figure 4.1: Geometry of the ILOS guidance law.

4.2.2 Surge and yaw controllers

Surge and yaw are controlled using the following feedback linearizing controllers
like the ones described in Børhaug et al. [14]:

τu = −Fu(urb, vrb, rb) + u̇rd − ku(urb − urd), (4.6a)

τr = −Fr(urb, vrb, rb) + ψ̈nd − kψ(ψnb − ψnd )− kr(rb − ψ̇nd ), (4.6b)

where ku, kψ and kr are constant, positive gains.

4.3 Closed-loop kinematic stability

This section analyzes the stability properties of the closed-loop kinematic system
by assuming zero sway speed, vrb = 0, perfectly controlled surge, urb = urd, and
perfectly controlled heading ψnb = ψnd . Substituting (4.5a) into (4.1b) then gives
the following expression for the ynb kinematics:

ẏnint =
∆ynb

(ynb + σynint)
2 + ∆2

, (4.7a)

ẏnb = −urd
ynb + σynint√

(ynb + σynint)
2 + ∆2

+ Vy. (4.7b)

The equilibrium point of (4.7) is at the point

ynint = yeq
int ,

∆

σ

Vy√
u2
rd − V 2

y

, (4.8a)

ynb = 0. (4.8b)

Note that the saturation introduced by the sinusoidal function of the ynb dy-
namics in (4.1b) makes the system gain in (4.7) decrease with the magnitude of
the cross-track error. Hence, GES cannot be achieved.
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Theorem 4.1. If Assumptions 4.1 and 4.3 hold and the gain σ satis�es

0 < σ < urd − Vmax (4.9)

then the ILOS guidance law (4.5) applied to the cross-track error dynamics (4.7)
renders the equilibrium point (4.8) USGES.

Proof. The proof follows along the lines of Caharija et al. [18], while also making
use of the comparison lemma in Khalil [55, Lemma 3.4] along the lines of the
analysis in Fossen and Pettersen [36].

A change of variables is introduced to obtain a system with the equilibrium
point at the origin:

e1 , ynint − y
eq
int, (4.10a)

e2 , y + σe1. (4.10b)

The dynamics of the new system are:

ė1 = −∆σe1

l(e2)
+

∆e2

l(e2)
, (4.11a)

ė2 = −∆σ2e1

l(e2)
+ Vyf(e2)−

[
urd
√
l(e2)− σ∆

] e2

l(e2)
, (4.11b)

where l(e2) is de�ned as

l(e2) , (e2 + σyeq
int)

2 + ∆2, (4.12)

and f(e2) is de�ned as

f(e2) , 1−
√

(σyeq
int)

2 + ∆2√
l(e2)

. (4.13)

The following bound holds for f(e2) and will be used in the analysis:

|f(e2)| ≤ |e2|√
l(e2)

(4.14)

Consider the Lyapunov function candidate

V =
σ2

2
e2

1 +
1

2
e2

2 =
1

2
eTPe, (4.15)

where e , [e1, e2]T and P , diag{σ2, 1} > 0. The time-derivative of V is

V̇ = −
[
urd
√
l(e2)− σ∆

] e2
2

l(e2)

− ∆σ3e2
1

l(e2)
+ Vyf(e2),

(4.16)
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which can be shown to satisfy

V̇ ≤ − 1

l(e2)
eTQe, (4.17)

where Q is de�ned as

Q , diag{σ3,∆(urd − Vmax − σ)}. (4.18)

Under the assumption that σ satis�es (13), Q > 0 and hence V̇ ≤ 0. By [55,
Theorem 4.8], this implies that the equilibrium e = 0 is uniformly stable.

The term σyeq
int in (4.12) can be bounded using (4.8) and Assumption 4.1 to

σyeq
int =

∆V y√
u2
rd − V 2

y

≤ ∆Vmax√
u2
rd − V 2

max

:= κ. (4.19)

Hence

V̇ ≤ − 1

(e2 + κ)2 + ∆2
eTQe. (4.20)

Furthermore, for each r > 0 and |e2| ≤ r we have

1

(e2 + κ)2 + ∆2
≥ 1

(r + κ)2 + ∆2
:= c(r). (4.21)

Consequently,

V̇ ≤ −c(r)eTQe ≤ −2c(r)
qmin

pmax
V, ∀||e(t)|| ≤ r, (4.22)

where pmax = max{σ2, 1} and qmin = min{σ3,∆(urd − Vmax − σ)}.
The inequality in (4.22) is valid for all trajectories generated by the initial

conditions e(t0) since the system is uniformly stable. The comparison lemma [55,
Lemma 3.4] can then be invoked by noticing that the linear system

ż = −2
qmin

pmax
c(r)z (4.23)

has the solution
z(t) = e−2

qmin
pmax

c(r)(t−t0)z(t0). (4.24)

This implies that for v(t) = V (t, e(t)),

v(t) ≤ e−2
qmin
pmax

c(r)(t−t0)v(t0). (4.25)

It follows that

||e(t)|| ≤
√
pmax

pmin
e−

qmin
pmax

c(r)(t−t0)||e(t0)||, (4.26)

where pmin , min{σ2, 1}. This holds for all t ≥ t0, ||e(t)|| ≤ r and any r > 0, and
it shows the equilibrium point e = 0 to be USGES as de�ned in De�nition 2.4.
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4.4 Stability of the closed-loop kinematics and dynamics

In this section we analyze the stability properties of the complete vessel kinematics
and dynamics with the ILOS guidance law (4.5) in a cascaded con�guration with
the surge and yaw controllers (4.6). Speci�cally, we provide conditions under which
the resulting equilibrium point of the closed-loop system is proved to be USGES.
In the following, the notation Xvd = Xv(urd) and Yvd = Yv(urd) is used for brevity.

4.4.1 Cascaded system description

The error signals in surge, sway and yaw are collected in ζ , [ũrb, ψ̃
n
b , r̃b]

T , where

ũrb , urb − urd, ψ̃nb = ψnb − ψnd and r̃b , rb − ψ̇nd . The dynamics of ζ are obtained
by combining the system equations (4.1c), (4.1d) and (4.1f) with the control laws
in surge (4.6a) and yaw (4.6b):

ζ̇ =

−ku 0 0
0 0 1
0 −kψ −kr

 ζ , Σζ. (4.27)

The ynb − vrb subsystem is then obtained from (4.1b), (4.1e) and (4.5b):

ẏnint =
∆ynb

(ynb + σynint)
2 + ∆2

, (4.28a)

ẏnb = (ũrb + urd) sin(ψ̃nb + ψnd ) + vrb cos(ψ̃nb + ψnd ) + Vy, (4.28b)

v̇rb = Xv(ũrb + urd)(rb + ψ̇nd ) + Yv(ũrb + urd)vrb. (4.28c)

The equilibrium point of (4.28) on the manifold ζ = 0 is

ynint = yeq
int ,

∆

σ

Vy√
u2
rd − V 2

y

, (4.29a)

ynb = 0, (4.29b)

vrb = 0. (4.29c)

A change of variables is introduced to obtain a system with the equilibrium
point at the origin:

e1 , ynint − y
eq
int, (4.30a)

e2 , ynb + σe1, (4.30b)

e3 , vrb. (4.30c)

After factorizing with respect to ζ, the interconnected dynamics of (4.27) and
(4.28) can be expressed in cascade form as

˙̂e = A(e2)ê+B(e2) +H(e2, e3, ψ
n
d , ζ)ζ, (4.31a)

ζ̇ = Σζ, (4.31b)
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where ê , [e1, e2, e3]T ,

A ,


− σ∆
l(e2)

∆
l(e2) 0

− σ2∆
l(e2) − urd√

l(e2)
+ σ∆

l(e2)
∆√
l(e2)

σ2∆2Xvd
l(e2)2

(
urd∆Xvd
l(e2)3/2 − σ∆2Xvd

l(e2)2

) (
Y urd − ∆2Xvd

l(e2)3/2

)
 , (4.32)

and

B(e2) ,

 0
Vy

−∆XvdVy
l(e2)

 f(e2). (4.33)

The interconnection matrix H contains all the terms vanishing at ζ = 0 and is
given by

H(e2, e3, ψ
n
d , ζ) ,

 0 0
1 0

−∆Xv(ũrb+urd)
l(e2) 1

[hTe2
hTe3

]
, (4.34)

where he2 and he3 are given in Appendix 4.A. The function f(e2) is as de�ned in
(4.13).

4.4.2 Stability of the nominal system

The nominal system of the cascade in (4.31) is

˙̂e = A(e2)ê+B(e2). (4.35)

Lemma 4.2. If Assumptions 4.1 to 4.3 hold and the lookahead distance ∆ and
the integral gain σ satisfy

∆ >
|Xvd|
|Yvd|

[
5

4

urd + Vmax + σ

urd − Vmax − σ
+ 1

]
, (4.36)

0 < σ < urd − Vmax, (4.37)

then the equilibrium point of (4.35) is USGES.

Proof. The proof follows along the lines of Caharija et al. [18], while making use
of the comparison lemma [55, Lemma 3.4] along the lines of the analysis in Fossen
and Pettersen [36].

Consider the Lyapunov function candidate:

W , 1
2σ

2e2
1 + 1

2e
2
2 + 1

2µe
2
3, µ > 0. (4.38)
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The time-derivative of W is

Ẇ = − σ
3∆

l(e2)
e2

1 +
[
σ∆− urd

√
l(e2)

] e2
2

l(e2)

+
∆√
l(e2)

e2e3 + Vyf(e2)e2 − µ
∆XvdVy
l(e2)

f(e2)e3

− µ
[

∆2Xvd

(l(e2))3/2
− Yvd

]
e2

3

+ µ

[
urd∆Xvd

l(e2)
− σ∆2Xvd

(l(e2))3/2

]
e2e3√
l(e2)

+
µσ2∆2Xvd

(l(e2))2
e1e3

(4.39)

Using Assumptions 4.1 and 4.2, and the bound on f(e2) in (4.14), the following
bound can be found for Ẇ :

Ẇ ≤ − σ
3∆

l(e2)
e2

1 −
∆(urd − Vmax − σ)

l(e2)
e2

2 +
∆e2e3√
l(e2)

+
µσ2|Xvd|

∆

e1e3√
l(e2)

+ µ
|Xvd|

∆ (urd + Vmax + σ)√
l(e2)

e2e3

− µ
(
|Yvd| −

|Xvd|
∆

)
e2

3

(4.40)

This bound can be rearranged as

Ẇ ≤ −L1(ê13)− L2(ê23), (4.41)

where ê13 , [e1, e3]T and ê23 , [e2, e3]T . L1 is de�ned as

L1 =
1

l(e2)
êT13Q1ê

T
13, (4.42)

where Q1 is

Q1 ,

 σ3∆ −µσ
2
√
l(e2)|Xvd|
2∆

−µσ
2
√
l(e2)|Xvd|
2∆ µηl(e2)

(
|Yvd| − |Xvd|∆

) (4.43)

and 0 < η < 1. L2 is de�ned as

L2 ,
∆

l(e2)
êT23Q2ê23, (4.44)

where Q2 is

Q2 ,

[
β −α

√
l(e2)

−α
√
l(e2) l(e2)α(2α−1)

β

]
. (4.45)

Here, β , urd − Vmax − σ and α is given by

α , (1− η)
(urd − Vmax − σ)(∆|Yvd| − |Xvd|)

|Xvd|(urd + Vmax + σ)
. (4.46)
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The parameter µ is chosen as

µ ,
∆2(2α− 1)

|Xvd|(urd + Vmax + σ)
. (4.47)

If Q1 and Q2 are positive de�nite, then Ẇ is negative de�nite and the system
(4.35) is uniformly stable. Q1 is positive de�nite if

∆ >
|Xvd|
|Yvd|

, (4.48)

µ <
4η∆2 (∆|Yvd| − |Xvd|)

σ|Xvd|2
. (4.49)

(4.48) is met as long as (4.36) holds. It can be shown that η ≥ 1/5 is a su�cient
condition for µ to satisfy (4.49). Thus, without loss of generality, η is set to 1/5,
and positive de�niteness of Q1 is ensured.
Q2 is positive de�nite if β > 0 and α > 1. Assumption 4.3 and condition (4.37)

ensure that β > 0, while conditions (4.36) and (4.37) ensure that α > 1. With
positive de�nite Q1 and Q2 it follows that Ẇ < 0. Since W > 0, we can use Khalil
[55, Theorem 4.8] to show that the equilibrium ê = 0 is uniformly stable.

The Lyapunov function candidate W from (4.38) is split into

W = W1(ê13) +W2(ê23), (4.50)

where

W1 , 1
2 ê

T
13P1ê13, (4.51)

W2 , 1
2 ê

T
23P2ê23, (4.52)

P1 = diag
{
σ, 1

2µ
}
> 0 and P2 = diag

{
1, 1

2µ
}
> 0. Hence, using (4.42) and (4.44),

Ẇ1 ≤
−2

l(e2)

q1,min

p1,max
W1, (4.53)

Ẇ2 ≤
−2∆

l(e2)

q2,min

p2,max
W2. (4.54)

where qi,min , λmin(Qi), pi,max , λmax(Pi), i ∈ {1, 2}. Applying the bound (4.21)
on l(e2) in (4.53) and (4.54) leads to

Ẇ1 ≤ −2c(r)
q1,min

p1max
W1, ∀||ê(t)|| ≤ r, (4.55)

Ẇ2 ≤ −2∆c(r)
q2,min

p2max
W2, ∀||ê(t)|| ≤ r. (4.56)

Similarly to the derivation of (4.26), it is then possible to invoke the comparison
lemma, which implies that for w1(t) = W1(t, ê(t)) and w2(t) = W2(t, ê(t)),

w1 ≤ e
−2(

q1,min
p1,max

)c(r)(t−t0)
w1(t0), (4.57)
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w2 ≤ e
−2(

q2,min
p2,max

)∆c(r)(t−t0)
w2(t0). (4.58)

Consequently, for w(t) = W (t, ê(t)),

w ≤ e−2ρc(r)(t−t0)w(t0) (4.59)

where

ρ = min

{
q1,min

p1,max
,

∆q2,min

p2,max

}
. (4.60)

Therefore, with pmax , max(σ2, 1, µ) and pmin , min(σ2, 1, µ),

||ê(t)|| ≤
√
pmax

pmin
e−ρc(r)(t−t0)||ê(t0)||. (4.61)

Hence, the equilibrium point ê = 0 is USGES as de�ned in De�nition 2.4.

4.4.3 Stability property of the closed-loop system

Theorem 4.3. If Assumptions 4.1 to 4.3 hold and the lookahead distance ∆ and
the integral gain σ satisfy

∆ >
|Xvd|
|Yvd|

[
5

4

urd + Vmax + σ

urd − Vmax − σ
+ 1

]
, (4.62)

0 < σ < urd − Vmax, (4.63)

then the controllers (4.6a) and (4.6b), where the desired heading ψnd is given by
(4.5), guarantee achievement of the control objectives (4.4). Control objective (4.4b)
is ful�lled with

ψss = − tan−1(Vy/
√
u2
rd − V 2

y ). (4.64)

Furthermore, the equilibrium point of the error dynamics (4.31) is USGES and
UGAS.

Proof. The system (4.31) is a cascaded system, consisting of a linear system (4.31b)
which perturbs the dynamics (4.31a) through the interconnection matrix H. The
interconnection matrix H can be shown to satisfy ‖H‖ ≤ θ1(‖ζ‖)(|y| + |yint| +
|vrb|) + θ2(‖ζ‖), where θ1(·) and θ2(·) are some continuous non-negative functions.

The perturbing system (4.31b), described in detail in (4.27), is a linear, time-
invariant system. Furthermore, since the gains kurd , kψ, kr and the term d11/m11

are all strictly positive, the system matrix Σ is Hurwitz and the origin ζ = 0 is
UGES. Note, however, that any set of controllers providing USGES (or UGES)
of the surge and yaw error dynamics will give the same result. This is due to
the modular properties of the cascaded systems control theory that is used in the
analysis.

The nominal system is USGES by Lemma 4.2. Hence all the conditions of
Proposition 2.1 are satis�ed, guaranteeing USGES and UGAS of the origin of
(4.31).

Finally, ψss can be shown to satisfy (4.64) by inserting the equilibrium values
(4.29) into the ILOS control law (4.5a).
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Figure 4.2: Position and heading of the vehicle during the simulation. The time
interval 0 - 180 s is considered in the �gure.

4.5 Simulations

This section presents results from numerical simulations of the ILOS guidance law
applied to an underactuated AUV. The AUV is modeled in 3 DOF and tasked
to follow a horizontal path along the x-axis. The desired relative surge speed is
urd = 1 m/s. The current is set to νnc/n = [0.1 m/s, 0.3 m/s, 0 rad/s]. The ocean

current intensity is ||νnc/n|| = 0.3261 m/s, which ful�lls Assumptions 4.1 and 4.3.

It can be veri�ed that Assumption 4.2 is satis�ed with Yvd = −0.91 s−1, and that
(4.36) and (4.62) are satis�ed with |Xvd| = 0.20. The ILOS lookahead distance
and integral gain are ∆ = 10 m and σ =0.2 m, which satisfy (4.62)-(4.63). The
surge and yaw controllers (4.6a)-(4.6b) are implemented with ku = 0.5, kψ = 1 and
kr = 2. The initial position of the vehicle is 25 m east of the path and the initial
direction is parallel to the path, pnb (t0) = [0 m, 25 m, 0 rad] and the initial velocity
is zero.

In Figure 4.2 the position and heading of the vehicle in are shown. The vehicle
maintains a constant sideslip angle after converging to the path to counteract
the current. Relative sway velocity vrb, and hence the drift angle with respect
to the water �ow, stabilizes at zero. Figure 4.3 shows how the cross-track error
converges to zero. The cross-track error increases in the beginning, while the vehicle
is accelerating and turning to counter the current, and there is an overshoot due to
the integral e�ect. Figure 4.4 shows the natural logarithm of the Euclidean norm of
the error variables in (4.31), where êtot , [êT ζT ]T . Notice that ln(||êtot||) is upper
bounded by a straight, descending line, corresponding to a bounding exponential
function of the form γ1e−γ2(t−t0)||êtot(t0)||, for positive constants γ1 and γ2. Hence,
for these initial conditions, exponential convergence of the system is veri�ed.

The vehicle heading can be di�cult to measure in practice. Magnetic compasses,
for example, are prone to errors due to disturbances in the surrounding magnetic
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Figure 4.3: The cross-track error ynb of the vehicle.
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Figure 4.4: The natural logarithm of ||êtot||.

�eld. Gyrocompasses, which estimate true north based on the rotation of the earth,
need a long settling time, especially when used in the high north. It is therefore
of interest to investigate the performance of the guidance law in the presence of
measurement errors in heading. While analysis of the robustness properties of the
system is beyond the scope of this thesis, Figures 4.5 and 4.6 show the vehicle
trajectory and cross track error when the system is simulated with a signi�cant
heading measurement error of 25 degrees. The vehicle still converges to the path,
due to the integral e�ect in the guidance law, however the overshoot is larger and
the convergence time slower.

4.6 Conclusions

In this chapter, we have investigated the stability properties of an underactuated
marine vessel controlled by an ILOS guidance law. The system has been proved
to be USGES, which is a stronger stability property than κ-exponential stability
which has been proven in the literature before. The underactuated marine vehicle
has been modeled in 3 DOF using relative velocities, and the results are applicable
both for surface vessels and for underwater vehicles moving in a horizontal plane.
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Figure 4.5: Position and heading of the vehicle during the simulation with a heading
measurement error of 25 degrees.

0 100 200 300 400
Time [s]

-10

0

10

20

30

C
ro

ss
-t

ra
ck

 e
rr

or
 [

m
]

Cross-track error

Figure 4.6: The cross-track error ynb during the simulation with a heading measure-
ment error of 25 degrees.

As an example of the latter, an AUV has been simulated in an ocean environment
containing constant and irrotational currents, demonstrating exponential stability.
The simulation also included runs with a signi�cant error in the heading measure-
ment, which showed that the vehicle was still able to converge to and follow the
path.

4.A Functional expressions

The functions Fu, Fr, Xv and Yv are de�ned in Section 3.2.1, and are included here
for convenience:

Fu(ub, vb, rb) ,
1

m11
(m22vb +m23rb)rb −

d11

m11
ub, (4.65)
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4.A. Functional expressions

Fr(ub, vb, rb) ,
m23d22 +m22(d32 + (m22 −m11)ub)

m22m33 −m2
23

vb

+
m23(d23 −m11ub)−m22(d33 +m23ub)

m22m33 −m2
23

rb,

(4.66)

Xv(ub) ,
m2

23 −m11m33

m22m33 −m2
23

ub +
d33m23 − d23m33

m22m33 −m2
23

, (4.67)

Yv(ub) ,
(m22 −m11)m23

m22m33 −m2
23

ub −
d22m33 − d32m23

m22m33 −m2
23

, (4.68)

The function he2 is de�ned as he2 , [he21, he22, he23]T , where

he21 = sin(ψ̃nb + ψnd ), (4.69a)

he23 = 0, (4.69b)

he22 = urd

[
sin(ψ̃nb )

ψ̃nb
cos(ψnd ) +

cos(ψ̃nb )− 1

ψ̃nb
sin(ψnd )

]

+ e3

[
cos(ψ̃nb )− 1

ψ̃nb
cos(ψnd )− sin(ψ̃nb )

ψ̃nb
sin(ψnd )

]
.

(4.69c)

The function he3 is de�ned as he3 , [he31, he32, he33]T , where

he31 =
Xv(ũrb + urd)−Xvd

ũrb
γ(e2, e3) + e3

Yv(ũrb + urd)− Yvd
ũrb

, (4.70a)

he32 = 0, (4.70b)

he33 = Xv(ũrb + urd). (4.70c)

The limits of he22 for ψ̃nb → 0 and he31 as ũrb → 0 exist and are �nite. The
expression γ(e2, e3) used in he31 is de�ned as

γ(e2, e3) ,
∆urd(e2 + σyeq

int)−∆2e3

l(e2)3/2
− σ∆2

l(e2)2
ynb −

∆Vy
l(e2)

(4.71)
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Chapter 5

ILOS Guidance with a

Speed-dependent Lookahead

Distance

What is the airspeed velocity of an unladen swallow?

� Monthy Python, Monty Python and the Holy Grail

In this chapter we consider a single vessel, with kinematics and dynamics modeled
in 3 DOF. The vessel should follow a straight-line path in the presence of an ocean
current that is uniform in time and space, and to this end we employ an ILOS
guidance scheme. However, unlike in the previous chapter, we allow the lookahead
distance to increase linearly with the desired surge speed urd, thus making the
vehicle make slower, smoother turns at high speed, reducing overshoot. It is thus
possible to make the vehicle converge to the desired path without overshoot for a
broad range of values of urd, without having to tune the guidance law each time
urd changes. When urd is constant, we give conditions under which the system
achieves USGES.

If the vehicle speed changes along the path, the heading required to compensate
for the current will not be constant, and there will not be an equilibrium point of
the system unless the desired surge speed settles at a constant value. This is the
case during the transient phase of the formation control algorithm presented in
Belleter and Pettersen [7] and Belleter and Pettersen [8], where the vehicle heading
is steered by the ILOS guidance law, and exponential convergence of the system
was proved.

We will in this chapter show that the solutions of the system remain ultimately
bounded when urd is time-varying. Unlike previous works, we do not look at a
speci�c function for urd. Rather, we let urd be a general function, with no required
bound on the size of the time derivative of urd. Thus, the result can be used for
any desired surge trajectory, including but not limited to those used for trajectory
tracking in Flåten and Brekke [33] or formation control in Belleter and Pettersen
[7].

The remainder of this chapter is organized as follows. Section 5.1 gives a math-
ematical description of the system involved, while the control system is presented
in Section 5.2 and the resulting error dynamics are derived in Section 5.3. In Sec-
tion 5.4 we show that the system achieves USGES when urd is constant, while we
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in Section 5.5 show that the solutions of the system are ultimately bounded when
urd is time-varying. The guidance law is applied to a simulated underwater vehicle
operation in the horizontal plane in Section 5.6, and experiments on an unmanned
surface vehicle are described in Section 5.7. Finally, some concluding remarks are
given in Section 5.8.

The work presented in this chapter is based on Wiig et al. [117].

5.1 System description

5.1.1 System model

As in the previous chapter, we will model the vehicle in 3 DOF using the relative
velocities. Recall that the model is:

ẋnb = urb cos(ψnb )− vrb sin(ψ) + Vx, (5.1a)

ẏnb = urb sin(ψnb ) + vrb cos(ψ) + Vy, (5.1b)

ψ̇nb = rb, (5.1c)

u̇rb = Fu(urb, vrb, rb) + τu, (5.1d)

v̇rb = Xv(urb)rb + Yv(urb)vrb, (5.1e)

ṙb = Fr(urb, vrb, rb) + τr. (5.1f)

The functions Fu, Fr, Xv and Yv are de�ned in Section 3.2.1, and restated in
Appendix 5.A for convenience. The ocean current is again assumed to be bounded
and uniform in space and time:

Assumption 5.1. The ocean current νnc/n , [Vx, Vy, 0]T is assumed to be bounded
and uniform in space and time. Hence, there exists a constant Vmax ≥ 0 such that

Vmax ≥
√
V 2
x + V 2

y .

5.1.2 Desired surge speed

The desired surge speed, urd, can be time-varying, and satis�es the following as-
sumptions:

Assumption 5.2. The desired surge speed is bounded by urd ∈ [umin, umax], where
umin and umax are positive constants and umin > Vmax.

Assumption 5.3. The time derivative of urd, u̇rd, is piecewise continuous in t and
bounded.

In order to analyze the e�ect of the time-varying part of urd, we divide urd into
a constant and a time-varying component:

urd(t) = uc + ut(t), (5.2)

such that u̇c = 0 and u̇t = u̇rd.
The following assumption is made on Yv(urb):
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Figure 5.1: The current compensation angle ψss for a large (left) and small (right)
vehicle velocity.

Assumption 5.4. The function Yv(urb) satis�es

Yv(urb) ≤ −Yvmin < 0, ∀urb ∈ [umin, umax]. (5.3)

Remark 5.1. The negativity of Yv(urb) is justi�ed by noticing that Yv(urb) > 0
would imply that the system is undamped or nominally unstable in sway, which is
generally not the case by the mechanical design of the vehicle.

Furthermore, the function Xv(urb) is a linear function in urb as seen in (5.49),
hence it is bounded by

|Xv(urb)| ≤ Xvmax, ∀urb ∈ [umin, umax]. (5.4)

5.1.3 Control objectives

The control objectives are to make a vehicle modeled by (5.1) converge to a straight-
line path in the presence of the unknown ocean current νnc/n, while maintaining

the desired relative surge speed urd(t).
The formalized control objectives, with the desired path P aligned with the

x-axis of n, are

lim
t→∞

ynb (t) = 0, (5.5a)

lim
t→∞

ψnb (t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (5.5b)

lim
t→∞

urb(t) = urd(t), (5.5c)

where ψss is a constant yaw angle required to keep the underactuated vessel at
the path in the presence of current. This angle will depend on the cross-track
component of the ocean current, as well as on the magnitude of the vehicle velocity.
For large vehicle velocities with respect to the path transversal ocean current, the
current compensation angle will be small, and vice versa. This is illustrated in
Figure 5.1.
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Figure 5.2: The lookahead distance increases linearly with speed.

5.2 Control system

In this section we present an ILOS guidance scheme, along with the surge and
yaw control laws, for solving the path following control problem presented in the
previous section.

5.2.1 The ILOS guidance law

The desired heading ψnd is given by an ILOS guidance law:

ψnd , − tan−1(
ynb + σynint

k∆urd
), , (5.6a)

ẏnint ,
k∆urdy

n
b

(ynb + σynint)
2 + (k∆urd)2

. (5.6b)

The lookahead gain k∆ > 0 and the integral gain σ > 0 are constant design
parameters.

Unlike the guidance law presented in Børhaug et al. [13] and used in the previous
chapter, this guidance law is designed to depend on the desired relative surge speed,
urd, such that the lookahead distance is given as ∆(urd) , k∆urd.

1 By looking
farther ahead for large urd, the required maneuvering capabilities of the vehicle at
high speed are reduced. Thus, the guidance law keeps the behavior of approaching
the path perpendicularly when far away, while also making the vehicle approach
the path more gently as it gets closer, and to reduce the demands on the yaw
controller and actuators. The guidance law is illustrated in Figure 5.2.

1We use the desired relative surge speed urd, rather than the measured relative surge speed
urb, to decrease the coupling between the vehicle surge dynamics and the guidance law.

56



5.3. Error dynamics

5.2.2 Surge and yaw controllers

The surge and yaw controllers are as in Section 4.2.2, restated here for convenience:

τu = −Fu(urb, vrb, rb) + u̇rd − ku(urb − urd), (5.7a)

τr = −Fr(urb, vrb, rb) + ψ̈nd − kψ(ψnb − ψnd )− kr(rb − ψ̇nd ), (5.7b)

where ku, kψ and kr are constant, positive gains.

5.3 Error dynamics

In this section we describe the error dynamics around the equilibrium point ob-
tained when the desired surge speed is constant. For brevity, we will use the nota-
tion Xvd = Xv(urd) and Yvd = Yv(urd) in the remainder of the chapter.

5.3.1 Actuated dynamics

The error signals of the actuated variables surge, yaw and yaw rate are collected in
ζ , [ũrb, ψ̃

n
b , r̃b]

T , where ũrb , urb − urd, ψ̃nb = ψnb − ψnd and r̃b , rb − ψ̇nd . When
the control laws in surge (5.7a) and yaw (5.7b) are applied to the system (5.1c),
(5.1d) and (5.1f), the error dynamics of ζ becomes:

ζ̇ =

−ku 0 0
0 0 1
0 −kψ −kr

 ζ , Σζ. (5.8)

Since the gains ku, kψ and kr are all strictly positive, Σ is Hurwitz and the origin,
ζ = 0, is UGES.

5.3.2 Underactuated dynamics

The underactuated ynb − vrb dynamics are obtained from (5.1b), (5.1e) and (5.6b):

ẏnint =
∆ynb

(ynb + σynint)
2 + ∆2

, (5.9a)

ẏnb = (ũrb + urd) sin(ψ̃nb + ψnd ) + vrb cos(ψ̃nb + ψnd ) + Vy, (5.9b)

v̇rb = Xv(ũrb + urd)(rb + ψ̇nd ) + Yv(ũrb + urd)vrb. (5.9c)

The heading required to compensate for the current varies with urd, as discussed
in Section 5.1.3. The heading compensation angle ψss is found by the integration
(5.9a) of the cross track error. Hence, if there is a change in urd, the vehicle will
diverge slightly from the path in order to �nd a new compensation angle. It follows
that if the desired surge speed varies over time, i.e. when u̇rd 6= 0, there is is no
equilibrium point of (5.9). However, in the case when urd is constant, we obtain
from (5.2) that urd = uc. There is then an equilibrium point of (5.9) on the manifold
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ζ = 0, which is

ynint = yeq
int ,

∆

σ

Vy√
u2
rd − V 2

y

, (5.10a)

ynb = 0, (5.10b)

vrb = 0. (5.10c)

The error dynamics around this point is obtained by performing a change of
variables:

e1 , ynint − y
eq
int, (5.11a)

e2 , ynb + σe1, (5.11b)

e3 , vrb. (5.11c)

Factorizing with respect to ζ, allows us to express the interconnected dynamics of
(5.8) and (5.9) in cascaded form:

ė = A(e2)e+B(e2) +G(e2) +H(e2, e3, ψ
n
d , ζ)ζ, (5.12a)

ζ̇ = Σζ, (5.12b)

where e , [e1, e2, e3]T , A is

A ,


− σk∆

l(e2)
k∆

l(e2) 0

−σ
2k∆

l(e2) − urd√
l(e2)

+ σk∆

l(e2)
k∆√
l(e2)

σ2k2
∆Xvd

l(e2)2

(
urdk∆Xvd
l(e2)3/2 −

σk2
∆Xvd
l(e2)2

) (
Y urd − k2

∆Xvd
l(e2)3/2

)
 , (5.13)

while

B ,

 0
Vyf(e2)

−k∆urdXvdVy
l(e2) f(e2)

 . (5.14)

The function l(e2) is de�ned as

l(e2) , (e2 + σyeq
int)

2 + ∆2, (5.15)

and f(e2) is de�ned as

f(e2) , 1−
√

(σyeq
int)

2 + (k∆urd)2√
l(e2)

. (5.16)

Note that f(e2) is bounded by:

|f(e2)| ≤ |e2|√
l(e2)

. (5.17)
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The terms that vanish when ζ = 0 are collected in H:

H ,

 0 0
1 0

−k∆urdX(ũr+urd)
l(e2) 1

[hTe2
hTe3

]
, (5.18)

where he2 and he3 are given in Appendix 5.A. The vector G contains the terms
that vanish when u̇rd = u̇t = 0 and ut = 0:

G ,


0

− σyeq
int√
l(e2)

ut

Xvdk∆

l(e2)

[(
(ut+2uc)σy

eq
int√

l(e2)
− Vy

)
ut + (σyeq

int + e2)u̇rd

]
 . (5.19)

5.4 Constant desired surge speed

This section analyzes the stability properties of the system when urd is constant,
which means that urd = uc, ut = 0 and u̇rd = 0. We use the analysis to �nd
analytical bounds on the ILOS parameters k∆ and σ, ensuring USGES of the
equilibrium point of the closed-loop error dynamics. The analysis in this section is
mostly equivalent to the analysis in Section 4.4. However, in order to prove USGES
of the origin of the error dynamics, we will show that the Lyapunov su�cient
conditions provided in Pettersen [84] are satis�ed. Thus, we show how the recent
results in Pettersen [84] can be utilized as an alternative to direct application of
the comparison lemma.

5.4.1 Stability of the nominal system

When u̇rd = ut = 0 we have that G = 0 as seen from (5.19). The nominal system
of the cascade in (5.12) is then given by

ė = A(e2)e+B(e2). (5.20)

Lemma 5.1. If Assumptions 5.1 to 5.2 hold, u̇rd = 0, and the lookahead distance
gain k∆ and the integral gain σ satisfy

k∆ >
|Xvmax|
|Yvmin|umin

[
5

4

umax + Vmax + σ

umin − Vmax − σ
+ 1

]
, (5.21)

0 < σ < umin − Vmax, (5.22)

then the equilibrium point of (5.20) is USGES.

Proof. The proof is equivalent to the proof of Lemma 4.2 until equation (5.34), at
which point we will make use of the results in Pettersen [84] to prove USGES.

Consider the Lyapunov function candidate (LFC):

V , 1
2σ

2e2
1 + 1

2e
2
2 + 1

2µe
2
3, µ > 0. (5.23)
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Using Assumption 5.1 to 5.4, and equations (5.4) and (5.17), the following bound
can be found for V̇ :

V̇ ≤ − 1

l(e2)
(L1(e13) + L2(e23)) , (5.24)

Where e13 , [|e1|, |e3|]T and e23 , [|e2|, |e3|]T . L1 is

L1 , eT13Q1e
T
13, (5.25)

where Q1 is

Q1 ,

 k∆σ
3umin − 1

2

µσ2
√
l(e2)|Xvmax|
k∆umin

− 1
2

µσ2
√
l(e2)|Xvmax|
k∆umin

µηl(e2)
(
|Yvmin| − |Xvmax|

k∆umin

)
 , (5.26)

and 0 < η < 1. L2 is de�ned as

L2 , k∆umine
T
23Q2e23, (5.27)

where Q2 is

Q2 ,

[
β −α

√
l(e2)

−α
√
l(e2) l(e2)α(2α−1)

β

]
. (5.28)

Here, β , umin − Vmax − σ and α is given by

α , (1− η)
(umin − Vmax − σ)(k∆umin|Yvmin| − |Xvmax|)

|Xvmax|(umax + Vmax + σ)
. (5.29)

The parameter µ is chosen as

µ ,
(k∆umin)2(2α− 1)

|Xvmax|(umax + Vmax + σ)
. (5.30)

If Q1 and Q2 are positive de�nite, then V̇ is negative de�nite. Positive de�nite-
ness of Q1 is ensured when

k∆ >
|Xvmax|
|Yvmin|umin

, (5.31)

µ <
4ηk2

∆umin (k∆umin|Yvmin| − |Xvmax|)
σ|Xvmax|2

. (5.32)

Condition (5.31) is met as long as (5.21) holds. It can be shown that η ≥ 1/5 is a
su�cient condition for µ to satisfy (5.32). Thus, without loss of generality, η is set
to 1/5, and positive de�niteness of Q1 is ensured.

Positive de�niteness of Q2 is ensured if β > 0 and α > 1. Assumption 5.2 and
(5.22) ensure that β > 0, while conditions (5.21) and (5.22) ensure that α > 1.

Let Q be the symmetric 3× 3 matrix de�ned from L1(e13) and L2(e23) so that

eTQe = L1(e13) + L2(e23). (5.33)
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5.5. Time-varying desired surge speed

Since both Q1 and Q2 are positive de�nite, so is Q. Hence, the following bound
holds:

V̇ ≤ − 1

l(e2)
qmin||e||2, (5.34)

where qmin , λmin(Q), the minimum eigenvalue of Q. In any ball

Br , {|e2| < r} , r > 0 (5.35)

the function l(e2) is upper bounded as

l(e2) ≤ (r + σyeq
int)

2 + (k∆urd)
2 := c(r). (5.36)

Hence, for any r > 0

V̇ ≤ −qmin

c(r)
||e||2 (5.37)

Thus, the conditions of Theorem 2.1 is ful�lled with k1 = 1
2 min{σ2, 1, µ},

k2 = 1
2 max{σ2, 1, µ} and k3 = qmin

c(r) . Hence, the equilibrium point e = 0 is USGES

as de�ned in De�nition 2.4.

5.4.2 Stability property of the closed-loop system

Theorem 5.2. If Assumptions 5.1 to 5.2 hold, u̇rd = 0, and the lookahead dis-
tance gain k∆ and the integral gain σ satisfy

k∆ >
|Xvmax|
|Yvmin|umin

[
5

4

umax + Vmax + σ

umin − Vmax − σ
+ 1

]
, (5.38)

0 < σ < umin − Vmax, (5.39)

then the controllers (5.7a) and (5.7b), where ψd is given by (5.6), guarantee achieve-
ment of the control objectives (5.5). Furthermore, the equilibrium point of the error
dynamics (5.12) is USGES and UGAS.

Proof. The proof is equivalent to the proof of Theorem 4.3. The system (5.12)
is a cascaded system, where (5.12b) perturbs the dynamics (5.12a) through the
interconnection matrix H. The interconnection matrix H can be shown to satisfy
‖H‖ ≤ θ1(‖ζ‖)(|ynb | + |ynint| + |vrb|) + θ2(‖ζ‖), where θ1(·) and θ2(·) are some
continuous non-negative functions. The perturbing system is UGES as shown in
Section 5.3.1, and the nominal system is USGES by Lemma 5.1. Hence all the
conditions of Proposition 2.1 are satis�ed, guaranteeing USGES and UGAS of the
origin of (5.12).

5.5 Time-varying desired surge speed

In this section we allow urd to vary with time: u̇rd 6= 0 and ut 6= 0. As noted
in Section 5.3.2, there is no equilibrium point of the system in this case. However,
inspired by the approach in Belleter and Pettersen [7], we will treat the time-varying
ut component of urd as a disturbance. It can then be proved that the solutions of
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5. ILOS Guidance with a Speed-dependent Lookahead Distance

the system remain bounded around the equilibrium point obtained in (5.10). To
this end we will apply Lemma 2.2.

We will use the following constants:

k1 , 1
2 min{σ2, 1, µ}, (5.40a)

k2 , 1
2 max{σ2, 1, µ}, (5.40b)

k3 ,
qmin

c(r)
, (5.40c)

k4 , 2k2, (5.40d)

where k1 to k3 are obtained from the proof of Lemma 5.1.

5.5.1 Boundedness of the nominal system

Since u̇rd 6= 0, the nominal system of the cascade (5.12) becomes:

ė = A(e2)e+B(e2) +G(e2). (5.41)

Lemma 5.3. Assume that the conditions of Theorem 5.2 are satis�ed, with the
exception that u̇rd 6= 0. Then there exists a positive constant δ, a constant c ∈ (0, 1)
and a time T ≥ 0, such that the solutions of (5.41) satisfy

||e(t)|| ≤
√
k2

k1
||e(t0)||e−

(1−c)k3
2∗k2

(t−t0) (5.42)

∀t0 ≤ t ≤ t0 + T , and

||e(t)|| ≤ k4

k3

√
k2

k1

δ

c
∀t ≥ t0 + T. (5.43)

Proof. The partial derivative of (5.23) with respect to e is bounded by∥∥∥∥∂V∂e
∥∥∥∥ ≤ max{σ2, 1, µ} ‖e‖ . (5.44)

Hence, condition (2.17) of Lemma 2.2 is satis�ed with k4 = max{σ2, 1, µ} = 2k2

and a = 2. It remains to show that ‖G‖ is bounded for large ‖e‖. We do this by
noticing that the denominators in G are strictly positive functions of higher order
of e2 than the numerators. Hence, it is always possible to choose an rb > 0 large
enough so that in a ball Brb , {|e2| < rb}, we have that

‖G‖ ≤ δ < k3

k4

√
k1

k2
rbc, (5.45)

for some δ > 0 and c ∈ (0, 1). Hence, the conditions of Lemma 2.2 are satis�ed, and
the solutions of (5.41) are uniformly globally bounded by (5.42) and (5.43).

Notice that the solutions of (5.43) are bounded regardless of the maximum
magnitude of u̇rd.
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5.5.2 Boundedness of the complete system

Finally, we will show that the complete cascade (5.12) is uniformly bounded as
well.

Theorem 5.4. Assume that the conditions of Theorem 5.2 are satis�ed, with
the exception that u̇rd 6= 0. Then the solutions of the cascaded system (5.12) are
uniformly bounded.

Proof. We de�ne the constant δ̄ as the bound on ||e(t)|| in (5.43):

δ̄ ,
k4

k3

√
k2

k1

δ

c
. (5.46)

It follows from (5.42) that the ball Bδ̄ is UGAS. Furthermore, the interconnection
matrix H can be shown to satisfy ‖H‖ ≤ θ3(‖ζ‖)(|ynb | + |ynint| + |vrb|) + θ4(‖ζ‖),
where θ3(·) and θ4(·) are some continuous non-negative functions. The perturbing
system (5.12b) is UGES as shown in Section 5.3.1. Hence all the conditions of
Proposition 2.1 are satis�ed, which implies that the set Bδ̄ ∪ {0} is UGAS. This
also implies that the solutions of the complete cascade (5.12) are uniformly globally
bounded, which concludes the proof.

5.6 Simulations

In this section we present the results from numerical simulations of a system where
the ILOS guidance law with speed-dependent lookahead distance (5.6) is applied
to an underactuated AUV operating in the horizontal plane. The path is aligned
with the x-axis, and the AUV is modeled in 3 DOF as in (5.1).

The desired relative surge speeds are in the range urd ∈ [1.5, 2.5] m/s. The
current is set to νnc/n = [0 m/s, 0.4 m/s, 0 rad/s], which ful�lls Assumptions 5.1

and 5.2. It can be veri�ed that Assumption 5.4 is satis�ed with Ymin = 1.01 s−1,
and that Xvmax = 1.84 s−1. The integral gain is σ = 0.3 m/s, which satis�es (5.39).
From these parameters, a lower limit on k∆ is found from (5.38) as k∆ = 7.34 s.
The surge controller gain is set to ku = 0.5, while the heading controller gains
are kψ = 0.025 and kr = 0.1. The heading controller gains ensure that resulting
yaw dynamics of the vehicle are quite slow, thus simulating the e�ect of low-speed
actuators.

In the �rst simulation scenario, we look at the e�ect of increasing k∆. The
desired relative surge speed is kept constant at urd = 2.5 m/s, while k∆ goes from
8 s to 14 s in steps of 2 s. The initial position of the vehicle is 50 m away from
the path, pointing straight towards the path with the initial relative surge speed
set to ur = urd. The cross track error for the di�erent values of k∆ are shown in
Figure 5.3. It can be seen that for lower values of k∆ there is an overshoot, which
disappears for k∆ = 12 s. The system remains exponentially stable for all values of
k∆, which veri�es Theorem 5.2.

In the next simulation we use a �xed k∆ = 12 s, but vary the desired relative
surge speed from 1.5 m/s to 2.5 m/s in steps of 0.5 m/s. For each run, the vehicle
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Figure 5.3: The cross-track error ynb for increasing values of k∆ with urd = 2.5 m/s.
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Figure 5.4: The cross-track error ynb for increasing values of urd with k∆ = 12 s.
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Figure 5.5: The cross-track error ynb for increasing values of urd with constant
lookahead distance ∆ = 30 m.

initial position is set to 20urd m away from the path, with the initial relative surge
speed set to urb(t0) = urd. Thus, the vehicle will use approximately the same
amount of time to reach the path, making the results easier to compare. The cross
track error of the three runs are displayed in Figure 5.4, and it can be seen that in
each case the vehicle converges to the path without any overshoot.

Figure 5.5 shows the result from a scenario where the lookahead distance was
kept constant at k∆urd = 30 m. It can be seen that the convergence times when
urd = 2.0 m and urd = 1.5 m are signi�cantly slower compared to the convergence
times in Figure 5.4.

In the last scenario, we simulate a case with time-varying urd. Here urd = uc+ut,
where uc = 2.0 m/s and ut is a sine wave with amplitude 0.5 m and period 60 s.
From Figure 5.6, it is clear that the cross-track error converges to a bounded set
around ynb = 0. Thus, the simulation veri�es Lemma 5.3 for this particular case.
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Figure 5.6: The cross-track error ynb for a time-varying urd.

Figure 5.7: The Odin USV.

5.7 Experimental results

In this section we present the results from experiments at sea. The experiments
where carried out on the Odin unmanned surface vehicle (USV), which is depicted
in Figure 5.7. The vehicle developed by FFI and Kongsberg Maritime, is 11 m
long and 3.5 m wide, and is propelled by a dual waterjet system. At maneuvering
speeds, the vehicle is underactuated. The ILOS guidance law was implemented with
k∆ varying from 6 s to 12 s, and integral gain σ = 0.02 m/s. The vehicle heading is
controlled by a PD controller, which has been tuned to provide asymptotic stability
of the heading.

The USV was tasked to follow a square pattern at di�erent forward velocities.
The waypoint switching distance was set to 9urd m. Thus, the initial conditions for
each line was similar to the initial conditions used in the simulations in Section 5.6,
with the vehicle approaching the line at a perpendicular angle with initial o�set
increasing with desired surge speed.

Figure 5.9 displays the cross-track error for two lines with urd = 6 m/s and
k∆ = 6 s and 12 s. In both cases, the cross-track error converges towards zero,
however the overshoot is slightly larger for k∆ = 6 s.

Figure 5.10 shows the cross-track error during four lines with urd increasing
from 4 m/s to 10 m/s with a lookahead gain of k∆ = 6 s. In each case, the cross-
track error reaches 0 m after approximately 11 s. We see that the overshoot increases
slightly with increasing speed. A larger value of k∆ would likely decrease this e�ect,
as would a larger waypoint switching distance.
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Figure 5.8: The vehicle position relative to the starting position during a run with
urd = 6 m/s. The size of the vehicle has been increased in the �gure.
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Figure 5.9: The cross-track error for k∆ = 6 s and 12 s with urd = 2.5 m/s.

0 10 20 30 40 50 60

Time [s]

-20

-10

0

10

20

30

40

50

C
ro

ss
-t

ra
ck

 e
rr

or
 [

m
]

u
rd

 = 4 m/s

u
rd

 = 6 m/s

u
rd

 = 8 m/s

u
rd

 = 10 m/s

Figure 5.10: The cross-track error for increasing values of urd with k∆ = 6 s
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5.8 Conclusions

In this chapter we have investigated an ILOS guidance law where the lookahead
distance increases linearly with the desired surge speed urd. The work is motivated
by the need to keep the maneuvering demands on a vehicle within acceptable
limits, even when the surge speed is large. This is of particular importance if the
dynamics of the vehicle yaw controller and actuators are slow with respect to the
surge speed, in which case a small lookahead distance can lead to overshoots and
oscillatory behavior.

Both the case when urd is constant along the path and the case where urd is
time-varying have been explored. For a constant urd, we have derived a lower bound
on the lookahead gain and an upper bound on the ILOS integral gain in order to
guarantee USGES of the system. In the case of a time-varying urd, we have proved
that the solutions of the system remain bounded for bounded urd. This holds for
general urd trajectories, with the only assumption that the trajectories are lower
bounded above the level of the maximum ocean current, so that the vehicle is able
to move forward even when it is heading directly against the ocean currents.

The stability and boundedness results have been veri�ed in simulations of an
underwater vehicle with slow yaw dynamics, moving in the horizontal plane. In
particular, the simulations show how increasing the lookahead distance linearly
with urd results in convergence to the desired path without overshoot for several
values of urd. This is achieved without having to tune the guidance law each time
urd changes. A simulation with a time-varying urd has also been presented, demon-
strating that the cross-track error remains bounded in this case.

The ILOS guidance law with speed-dependent lookahead distance has also been
implemented on the Odin USV, which has been used for experimental veri�cation of
the stability properties. We have shown that by increasing the lookahead distance
linearly with urd the increase in overshoot at higher speeds are limited, and that
the vehicle converges to the path for high and low values of urd.

5.A Functional expressions

The functions Fu, Fr, Xv and Yv are de�ned in Section 3.2.1, and are included here
for convenience:

Fu(ub, vb, rb) ,
1

m11
(m22vb +m23rb)rb −

d11

m11
ub, (5.47)

Fr(ub, vb, rb) ,
m23d22 +m22(d32 + (m22 −m11)ub)

m22m33 −m2
23

vb

+
m23(d23 −m11ub)−m22(d33 +m23ub)

m22m33 −m2
23

rb,

(5.48)

Xv(ub) ,
m2

23 −m11m33

m22m33 −m2
23

ub +
d33m23 − d23m33

m22m33 −m2
23

, (5.49)

Yv(ub) ,
(m22 −m11)m23

m22m33 −m2
23

ub −
d22m33 − d32m23

m22m33 −m2
23

, (5.50)

67



5. ILOS Guidance with a Speed-dependent Lookahead Distance

The function he2 is de�ned as he2 , [he21, he22, he23]T , where

he21 = sin(ψ̃nb + ψnd ), (5.51a)

he23 = 0, (5.51b)

he22 = urd

[
sin(ψ̃nb )

ψ̃nb
cos(ψnd ) +

cos(ψ̃nb )− 1

ψ̃nb
sin(ψnd )

]

+ e3

[
cos(ψ̃nb )− 1

ψ̃nb
cos(ψnd )− sin(ψ̃nb )

ψ̃nb
sin(ψnd )

]
.

(5.51c)

The function he3 is de�ned as he3 , [he31, he32, he33]T , where

he31 =
Xv(ũrb + urd)−Xvd

ũrb
γ(e2, e3) + e3

Yv(ũrb + urd)− Yvd
ũrb

, (5.52a)

he32 = 0, (5.52b)

he33 = Xv(ũrb + urd). (5.52c)

The limits of he22 for ψ̃nb → 0 and he31 as ũrb → 0 exist and are �nite. The
expression γ(e2, e3) used in he31 is de�ned as

γ(e2, e3) ,
∆urd(e2 + σyeq

int)−∆2e3

l(e2)3/2
− σ∆2

l(e2)2
ynb −

∆Vy
l(e2)

(5.53)
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Chapter 6

Path Following for Underwater

Vehicles Without Neutral Buoyancy

I'm not fat, I'm big boned!

� Eric Cartman, South Park

In this chapter, we examine a 3D ILOS path following guidance law for underwater
vehicles with a constant desired relative surge speed. Speci�cally, we will show that
the USGES results of Chapters 4 and 5 can be extended to 3D. Moreover, we will
examine the case when the vehicle is not neutrally buoyant. This is often the case in
practice, as the water density changes with salinity, temperature and depth. Thus,
even if the vehicle is initially perfectly ballasted, the buoyancy can change during
an operation.

We will show that conditions under which the control system achieve USGES
are a little bit stricter when the vehicle is not neutrally buoyant, when compared to
the results of Caharija et al. [18], which showed κ-exponential stability for neutrally
buoyant underwater vehicles.

This chapter is organized as follows: Section 6.1 gives a description of the ve-
hicle model in 5 DOF, and states the control objective. Section 6.2 describes the
ILOS guidance law and the surge, pitch and yaw controllers. The stability of the
closed-loop system is analyzed in Section 6.3. Simulations demonstrating exponen-
tial stability are shown in Section 6.4, and some concluding remarks are given in
Section 6.5.

The work presented in this chapter is based on Wiig et al. [112].

6.1 System description

The vehicle is modeled in 5 DOF using the relative velocities model presented in
Section 3.3. However, we will not assume that the vehicle is neutrally buoyant.
Rather, we will assume that there is a constant, known di�erence between the
vehicle weight W and buoyancy B. Hence, we will in this chapter replace Assump-
tion 3.6 with the following, relaxed assumption:

Assumption 6.1. The di�erence between the vehicle weight W and buoyancy B,
de�ned as WE = W −B, is assumed known and constant.
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The vehicle will operate in the presence of an ocean current, which we assume
to be bounded and uniform in time and space:

Assumption 6.2. The ocean current νnc/n , [Vx, Vy, Vz, 0, 0]T is assumed to be
constant, irrotational and bounded. Hence, there exists a constant Vmax ≥ 0 such

that Vmax ≥
√
V 2
x + V 2

y + V 2
z .

Recall then, from Chapter 3, that the structure of the vehicle model is on the
form

η̇nb = Jnb ν
b
rb/n + νnc/n, (6.1a)

Mν̇brb/n +C(νbrb/n)νbrb/n +Dνbrb/n + g(ηnb ) = Bf , (6.1b)

where

ηnb ,


xnb
ynb
xnb
θnb
ψnb

 (6.2)

and

νbrb/n =


urb
vrb
wrb
qb
rb

 . (6.3)

The system matrices are described in Section 3.3, with the exception of the gravity
restoration vector g(ηnb ), which by Assumption 6.1 is modeled as

g(ηnb ) ,


WE sin(θnb )

0
−WE cos(θnb )

(BGzW +WEzb) sin(θnb )
0

 . (6.4)

Compared to the gravity restoration vector in Section 3.3, the vector g(η) includes
additional forces in surge and heave resulting from WE , as well as an addition to
the moment in pitch.

The 5 DOF model in (6.1) represented in component form is:

ẋnb = urbc(ψ
n
b )c(θnb )− vrbs(ψnb ) + wrbc(ψ

n
b )s(θnb ) + Vx, (6.5a)

ẏnb = urbs(ψ
n
b )c(θnb ) + vrbc(ψ

n
b ) + wrbs(ψ

n
b )s(θnb ) + Vy, (6.5b)

żnb = −urbs(θnb ) + wrbc(θ
n
b ) + Vz, (6.5c)

θ̇nb = q, (6.5d)

ψ̇nb = r/c(θnb ), (6.5e)

u̇rb = Fu(urb, vrb, wrb, rb, qb) + τu, (6.5f)
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v̇rb = Xv(urb)rb + Yv(urb)vrb, (6.5g)

ẇrb = Xw(urb)qb + Yw(urb)wrb + Zwss(θ
n
b ) + Zwcc(θ

n
b ), (6.5h)

q̇b = F q(θ
n
b , urb, wrb, qb) + τq. (6.5i)

ṙb = Fr(urb, vrb, rb) + τr. (6.5j)

The terms Xv, Yv, Xw, Yw, and Fr are de�ned Section 3.2.2 and restated in Ap-
pendix 6.A for convenience. The lack of neutral buoyancy a�ects u̇rb, ẇrb and q̇b
through Fu, Zws, Zwc and F q, which are de�ned in Appendix 6.A. To ensure that
the system is nominally stable in both sway and heave, we make the following
assumption on Yv and Yw:

Assumption 6.3. For all urb > 0, the functions Yv(urb) and Yw(urb) satisfy

Yv(urb) < 0, (6.6)

Yw(urb) < 0. (6.7)

This assumption holds for most AUVs.

6.1.1 Control objective

The objective of the control system is to make the vehicle modeled by (6.1) converge
to and follow a straight-line path.

Assumption 6.4. The desired path P is horizontal.

Remark 6.1. A non-horizontal path will result in an additional bounded constant
disturbance due to gravity, which the control system presented in this chapter
compensates for.

The path should be followed in the presence of an unknown, constant and
irrotational current while keeping a constant relative surge speed urd > 0. Without
any loss of generality, the path is assumed to be aligned with the x-axis of the
inertial frame n, so that P , {(x, y, z) ∈ R3 : y = 0, z = 0}. The objectives of the
control system are formalized as

lim
t→∞

ynb (t) = 0, (6.8a)

lim
t→∞

ψnb (t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (6.8b)

lim
t→∞

znb (t) = 0, (6.8c)

lim
t→∞

θnb (t) = θss, θss ∈
(
−π

2
,
π

2

)
, (6.8d)

lim
t→∞

urb(t) = urd, (6.8e)

where ψss and θss is a constant yaw and heading angle required to keep the un-
deractuated vessel at the path, compensating for a constant and irrotational ocean
current, as well as for WE .

The following assumption ensures that the vessel is able to follow the path for
any direction of the ocean current:
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Assumption 6.5. The desired relative surge speed urd is such that

urd > max

{
Vmax +

5

2

|Zws|+ 0.5|Zwc|
|Yw(urd)|

, 2Vmax + 2
|Zws|+ 0.5|Zwc|
|Yw(urd)|

}
. (6.9)

Note that Assumption 6.5 is stricter than the assumption on urd in Caharija
et al. [18]. This is due to the presence of WE in Zws and Zwc. This bound will
follow from the analysis in Section 6.3.

6.2 Control system

This section presents a control system for the path following problem presented in
Section 6.1.1.

6.2.1 The ILOS guidance law

The desired pitch θnd and heading ψ
n
d are given by the ILOS guidance law introduced

in Caharija et al. [18]:

θnd , tan−1

(
znb + σzz

n
int

∆z

)
, ∆z > 0, σz > 0, (6.10a)

żnint ,
∆zz

n
b

(znb + σzznint)
2 + ∆2

z

, (6.10b)

ψnd , − tan−1

(
ynb + σyy

n
int

∆y

)
, ∆y > 0, σy > 0, (6.10c)

ẏnint ,
∆yy

n
b

(ynb + σyynint)
2 + ∆2

y

. (6.10d)

The lookahead distances ∆z and ∆y, and the integral gains σz and σy are constant
design parameters. The auxiliary integral states znint and ynint creates a nonzero
desired heading and pitch even when the vehicle is on the path, making the vehicle
counteract disturbances. The integral term growth rates (6.10b) and (6.10d) are
designed to decrease for large cross-track errors znb and ynb , reducing the risk of
wind-up e�ects.

6.2.2 Surge, pitch and yaw controllers

Surge, pitch and yaw are controlled using feedback linearizing controllers like the
ones used in Caharija et al. [18], but with added integral e�ect in surge:

τu =− Fu(urb, vrb, wrb, θ
n
b , rb, qb)− ku(urb − urd)− kui

∫ t

t0

(urb − urd), (6.11a)

τq =− F q(θnb , urb, wrb, wb) + θ̈nd − kθ(θ − θnd )− kq(qb − θ̇nd ), (6.11b)

τr =− Fr(urb, vrb, rb)− qb sin(θnb )ψ̇nb

+ cos(θnb )
[
ψ̈nd − kψ(ψnb − ψnd )− kr(ψ̇nb − ψ̇nd )

]
.

(6.11c)
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The control gains ku, kui, kθ, kq, kψ and kr are constant and positive, and t0
denotes the starting time. The integral term in the control law for τu has been
added for robustness to modeling errors in the terms canceled out by Fu, e.g. the
buoyancy error termWE . Since the references for pitch and yaw are set by an outer
control loop which includes integral term (namely (6.10a) and (6.10c)), no integral
terms are added to τq and τr.

6.3 Stability of the closed-loop system

This section analyzes the stability properties of the complete vessel kinematics and
dynamics when the vehicle is controlled by the control system presented in the
previous section. The terms Xwd = Xw(urd), Ywd = Ywd(urd), Xvd = Xv(urd) and
Yvd = Yv(urd) are used for brevity. Furthermore, the constants Γmax and Γinf and
the functions Γ(ξ) and ρ(σz) are de�ned as:

Γ(ξ) , urd
1√
ξ2 + 1

− Zwsξ + Zwc
Ywd

ξ

ξ2 + 1
, (6.12)

Γinf ,
1√
5
urd −

4

5

|Zws|+ 0.5|Zwc|
|Ywd|

, Γmax , urd, (6.13)

ρ(σz) ,
urd − Vmax − σz

urd − Vmax − σz − 5
2
|Zws|+0.5|Zwc|

|Ywd|

. (6.14)

The constant ξ is de�ned in Section 6.3.1, where it is shown that Γinf < Γ(ξ) ≤
Γmax.

Theorem 6.1. If Assumptions 6.1 to 6.5 hold and the lookahead distances ∆y

and ∆z satisfy

∆y >
|Xvd|
|Yvd|

[
5

4

Γmax + Vmax + σy
Γinf − Vmax − σy

+ 1

]
, (6.15)

∆z >
|Xwd|
|Ywd|

ρ(σz)

[
5

4

urd + Vmax + σz
urd − Vmax − σz

+ 1

]
, (6.16)

and the integral gains σy and σz satisfy

0 < σy < Γinf − Vmax, (6.17)

0 < σz < urd − Vmax −
5

2

|Zws|+ 0.5|Zwc|
|Ywd|

, (6.18)

then the controllers (6.11a) - (6.11c) and guidance laws (6.10) guarantee achieve-
ment of the control objectives (6.8). The control objectives (6.8b) and (6.8d) are

ful�lled with ψss = − tan−1(Vy/
√

Γ(ξ)2 − V 2
y ) and θss = tan−1(ξ), respectively

Furthermore, the equilibrium point of the error dynamics is USGES and UGAS.

Remark 6.2. The Zwc term in the bound on urd, ∆y, ∆z, σy and σz is the result
of the vehicle not being neutrally buoyant, as can be seen in the de�nition of Zwc
(6.50).
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6.3.1 Proof of Theorem 6.1

The error signals of the actuated dynamics are collected in

ζ ,



unint

ũrb
θ̃nb
q̃b
ψ̃nb
˙̃
ψnb


,



∫ t
t0

(ũrb)

urb − urd
θnb − θnd
qb − θ̇nd
ψnb − ψnd
ψ̇nb − ψ̇nd

 . (6.19)

The closed-loop dynamics of ζ are obtained by combining the system equations
(6.5d), (6.5e), (6.5f), (6.5i) and (6.5j) with the control laws in surge (6.11a), pitch
(6.11b) and yaw (6.11c):

ζ̇ =


0 1 0 0 0 0
−kui −ku 0 0 0 0

0 0 0 1 0 0
0 0 −kθ −kq 0 0
0 0 0 0 0 1
0 0 0 0 −kψ −kr

 ζ , Σζ. (6.20)

The znb − wrb subsystem is obtained from (6.5c), (6.5h) and (6.10b):

żnint =
∆zz

n
b

(znb + σzznint)
2 + ∆2

z

, (6.21a)

żnb = −urb sin(θ̃nb + θnd ) + wrb cos(θ̃nb + θnd ) + Vz, (6.21b)

ẇrb = Xw(ũrb + urd)(q̃b + θ̇nd ) + Yw(ũrb + urd)wrb

+ Zws sin(θ̃nb + θnd ) + Zwc cos(θ̃nb + θnd ).
(6.21c)

Note that the buoyancy terms Zws and Zwc show up in the underactuated heave
dynamics (6.21c).

The calculation of the equilibrium point of (6.21) on the manifold ζ = 0 gives
the equations

ξ
√
ξ2 + 1 =

Vz
urd

(ξ2 + 1)− Zwsξ + Zwc
urdYwd

, (6.22a)

weq
rb = urdξ − Vz

√
ξ2 + 1, (6.22b)

where ξ , σzz
eq
int/∆z, and z

eq
int and w

eq
rb is the value of z

n
int and wrb at equilibrium.

Using the technique of Caharija et al. [18, Lemma IV.1] it can be shown that
there exists at least one real solution for (6.22). Since the equilibrium point is later
proven to be UGAS and USGES, the solution is unique. Furthermore, Assump-
tion 6.5 can be used to give the following bound:∣∣∣∣ Vzurd (ξ2 + 1)− Zwsξ + Zwc

urdYwd

∣∣∣∣ < 1

2

(
ξ2 + 3 + |ξ|

)
(6.23)
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6.3. Stability of the closed-loop system

Inserting (6.22a) into (6.23) and solving for ξsup > |ξ| > 0 gives ξsup ≈ 2. Hence,
Γinf < Γ(ξ) ≤ Γmax holds, where Γ(ξ) is de�ned in (6.12), and Γinf and Γmax in
(6.13).

A change of variables is introduced to obtain a system with the equilibrium
point at the origin:

ez1 , znint − z
eq
int, ez2 , znb + σzez1, ez3 , wrb − weq

rb . (6.24)

After factorizing with respect to ζ, the interconnected dynamics of (6.20) and
(6.21) can be expressed in cascade form as

ėz = Az(ez)ez +Bz(ez) +Hz(z
n
b , z

n
int, θ

n
d , wrb, ζ)ζ, (6.25a)

ζ̇ = Σζ, (6.25b)

where ez , [ez1, ez2, ez3]T ,

Az ,


− σz∆z

lz(ez2)
∆z

lz(ez2) 0

− σ2
z∆z

lz(ez2) − urd√
lz(ez2)

+ σz∆z

lz(ez2)
∆z√
lz(ez2)

−σ
2
z∆2

zXwd
lz(ez2)2

(
−urd∆zXwd
lz(ez2)3/2 +

σz∆2
zXwd

lz(ez2)2 + Zws√
lz(ez2)

) (
Ywd +

∆2
zXwd

lz(ez2)3/2

)
 ,

(6.26)
while

Bz ,

 0
Vzf(ez2)

∆zXwdVzf(ez2)
lz(ez2) − Zwsξ+Zwc√

ξ2+1
f(ez2)

 (6.27)

The interconnection matrix Hz contains all the terms vanishing at ζ = 0 and is
given by

Hz ,

 0 0
1 0

∆z(Xw(ũ+urd)−Xwd)
lz(ez2) 1

[hTz
hTw

]
, (6.28)

where hz and hw are given in Appendix 6.A. The term lz(ez2) is de�ned as

lz(ez2) , (ez2 + σzz
eq
int)

2 + ∆2
z, (6.29)

and f(ez2) is de�ned as

f(ez2) , 1−
√

(σzz
eq
int)

2 + ∆2
z√

lz(ez2)
. (6.30)

Note that f(ez2) is bounded by

|f(ez2)| ≤ |ez2|√
lz(ez2)

. (6.31)

The nominal system of the cascade in (6.25) is

ėz = Az(ez)ez +Bz(ez). (6.32)

75



6. Path Following for Underwater Vehicles Without Neutral Buoyancy

Lemma 6.2. Under the conditions of Theorem 6.1, the equilibrium point of the
system (6.32) is UGAS and USGES.

Proof. The proof of Lemma 6.2 is given in Appendix 6.B

Lemma 6.3. Under the conditions of Theorem 6.1, the equilibrium point of the
complete system (6.25) is UGAS and USGES.

Proof. The system (6.25) is a cascaded system, consisting of a linear system (6.25b)
which perturbs the dynamics (6.25a) through the interconnection matrix Hz. The
matrix Hz can be shown to satisfy ||Hz|| ≤ δ1(||ζ||)(|znb |+ |znint|+ |wrb|) + δ2(||ζ||),
where δ1(·) and δ2(·) are some continuous non-negative functions.

The perturbing system (6.25b) is a linear, time-invariant system. Furthermore,
since the gains ku, kui, kψ, kr are all strictly positive, the system matrix Σ is
Hurwitz and the origin ζ = 0 is UGES. Note, however, that due to the modular
properties of cascaded systems theory, any set of controllers providing USGES (or
UGES) in surge, pitch and yaw will give the same result.

The nominal system is USGES by Lemma 6.2. Hence all the conditions of
Proposition 2.1 are satis�ed, guaranteeing USGES and UGAS of the equilibrium
point (ez, ζ) = (0,0) of (6.25).

By Lemma 6.3, the control objectives (6.8c)-(6.8e) are achieved with exponen-

tial convergence properties and steady state pitch angle θss = tan−1
(
σzz

eq
int

∆z

)
. Let

χ = [eTz , ζ
T ] be a vector containing the exponentially converging error variables

from (6.25). The complete vehicle kinematics and dynamics form another cascaded
system, where (6.25) perturbs the ynb − vrb subsystem, which is obtained from
(6.5b), (6.5g) and (6.10d):

ẏnint =
∆yy

n
b

(ynb + σyynint)
2 + ∆2

y

, (6.33a)

ẏnb = urb sin(ψ̃nb + ψnd ) cos(θ̃nb + θnd ) + vrb cos(ψ̃nb + ψnd )

+ wrb sin(ψ̃nb + ψnd ) sin(θ̃nb + θnd ) + Vy,
(6.33b)

v̇rb = Xv(ũrb + urd)(
˙̃
ψnb + ψ̇nd ) cos(θ̃nb + θnd ) + Yv(ũrb + urd)vrb. (6.33c)

The equilibrium point of (6.33) on the manifold χ = 0 is given by

ynint = yeq
int ,

∆y

σy

Vy√
Γ(ξ)2 − V 2

y

, (6.34a)

ynb = 0, (6.34b)

vrb = 0. (6.34c)

where Γ(ξ) is de�ned in (6.12). A change of variables is introduced to obtain a
system with the equilibrium point at the origin:

ey1 , ynint − y
eq
int, ey2 , ynb + σyey1, ey3 , vrb. (6.35)
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6.3. Stability of the closed-loop system

After factorizing with respect to χ and substituting (6.10c) and (6.10a) for ψnd
and θnd , the system in cascaded form becomes

ėy = Ayey +By +Hy(ynb , y
n
int, θ

n
d , ψ

n
d , vrb,χ)χ, (6.36a)

χ̇ =

[
Az Hz

0 ζ

]
χ+

[
Bz

0

]
(6.36b)

where ey , [ey1, ey2, ey3]T ,

Ay ,


− σy∆y

ly(ey2)
∆y

ly(ey2) 0

− σ2
y∆y

ly(ey2) − Γ(ξ)√
ly(ey2)

+
σy∆y

ly(ey2)
∆y√
ly(ey2)

1√
ξ2+1

σ2
y∆2

yXvd
ly(ey2)2

1√
ξ2+1

(
Γ(ξ)∆yXvd
ly(ey2)3/2 −

σy∆2
yXvd

ly(ey2)2

) (
Yvd −

∆2
yXvd

ly(ey2)3/2
√
ξ2+1

)


(6.37)
while

By(ey2) ,

 0
Vyg(ey2)

− 1√
ξ2+1

∆yXvdVy
ly(ey2) g(ey2)

 . (6.38)

The interconnection matrix Hy contains all the terms vanishing at χ = 0 and is
given by

Hy ,

 0 0
1 0

−∆y(Xv(ũrb+urd)−Xvd) cos(θ̃nb +θnd )
ly(ey2) 1

[hTy
hTv

]
, (6.39)

where hy and hv are given in Appendix 6.A. The term ly(ey2) is de�ned as

ly(ey2) , (ey2 + σyy
eq
int)

2 + ∆2
y, (6.40)

and g(ey2) is de�ned as

g(ey2) , 1−

√
(σyy

eq
int)

2 + ∆2
y√

ly(ey2)
, (6.41)

which is bounded by

|g(ey2)| ≤ |ey2|√
ly(ey2)

. (6.42)

Lemma 6.4. Under the conditions of Theorem 6.1, the origin of the system (6.36)
is UGAS and USGES.

Proof. Consider the nominal system

ėy = Ay(ey2) +By(ey2). (6.43)

This system is similar to the system (6.32), with the exception of the unknown
constants ξ and Γ(ξ). However, since Γ(ξ) is bounded in (6.13), it is possible to
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6. Path Following for Underwater Vehicles Without Neutral Buoyancy

apply Lemma 6.2 to conclude UGAS and USGES of the origin of (6.43). The
origin of the perturbing system (6.36b) is shown in Lemma 6.3 to be UGAS and
USGES as well. Finally, the interconnection matrix Hy can be shown to satisfy
||Hy|| ≤ δ3(||χ||)(|ynb | + |ynint| + |vrb|) + δ4(||χ||), where δ3(·) and δ4(·) are some
continuous non-negative functions. Hence all the conditions of Proposition 2.1 are
satis�ed, guaranteeing USGES and UGAS of the equilibrium point (ey,χ) = (0,0)
of (6.36).

By Lemma 6.4, the control objectives (6.8a) and (6.8b) are achieved with expo-

nential convergence properties and ψss = tan−1(Vy/
√

Γ(ξ)2 − V 2
y ). Hence, all the

control objectives are met and the proof of Theorem 6.1 is concluded.

6.4 Simulations

This section presents results from numerical simulations of the ILOS guidance
law applied to an underactuated AUV modeled in 5 DOF. The AUV is tasked
to follow a horizontal path along the x-axis. The desired relative surge speed
is urd =2 m/s. The current is νnc/n = [0.1 m/s, 0.3 m/s, 0.3 m/s, 0, 0]. The terms

|Xvd| = |Xwd| = 1.59 s−1 and |Yvd| = |Ywd| = 1.10 s−1. The weight of the AUV is
1380 kg, which is 30 kg too heavy to be neutrally buoyant. This gives Zws = 0.08
and Zwc = 0.14. The ILOS lookahead distances and integral gains are ∆y =
∆z = 10 m and σy = σz =0.2 m/s. The surge, yaw and pitch controllers (6.11a)-
(6.11c) are implemented with ku = 0.5, kui = 0.01, kψ = kθ = 1 and kr = kq = 3.
It can be con�rmed that the conditions of Theorem 6.1 are met. The initial posi-
tion of the vehicle is 25 m east of and 25 m below the path, the initial direction is
parallel to the path and the initial velocity is zero.

Figures 6.1 and 6.2 show the track of the AUV in the x − z and x − y plane,
respectively. The vehicle maintains a constant sideslip and pitch angle after con-
verging to the path, counteracting the current and vehicle weight. The relative
sway velocity vrb stabilizes at zero, while the relative heave velocity wrb, shown in
Figure 6.3, stabilizes at 0.14 m/s due to the error in buoyancy. Figure 6.4 shows how
the cross-track errors ynb and znb converge to zero. Figure 6.5 shows the natural loga-
rithm of the Euclidean norm of the error variables in (6.36), where etot , [eTy ,χ

T ]T .
Like in Chapter 4, this term is upper bounded by a straight, descending line, cor-
responding to a bounding exponential function. Hence, for these initial conditions
and parameters, exponential convergence of the system is veri�ed.

In many scenarios, the di�erence between vehicle weight and buoyancy, WE ,
will not be readily available. To investigate robustness with respect to WE , the
vehicle has been simulated with the negative buoyancy unknown to the controllers.
Figure 6.6 shows the resulting x−z track of the vehicle, which is still able to follow
the path, albeit with slightly slower convergence.
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Figure 6.1: Position and pitch of the vehicle in the x−z plane during the simulation.
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Figure 6.2: Position and pitch of the vehicle in the x−y plane during the simulation.
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Figure 6.3: The relative heave velocity wrb during the simulation.
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Figure 6.4: The cross-track errors ynb and znb of the vehicle.
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Figure 6.5: The natural logarithm of ||etot||.

0 50 100 150 200
x [m]

-50

0

50

z 
[m

]

Figure 6.6: Position and pitch of the vehicle in the x−z plane whenWE is unknown
to the controllers.
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6.5 Conclusions

In this chapter the stability properties of an underactuated underwater vehicle con-
trolled by an ILOS guidance law have been investigated. Cascaded system analysis
has been used to prove that the 5 DOF closed-loop error dynamics are USGES,
and this property was shown to hold also when the vehicle is not neutrally buoy-
ant, which is often the case in practice. Speci�cally, we have provided conditions
on the lookahead distance, integral gain and on the constant desired surge speed
in order to guarantee USGES. These conditions are stricter due to the presence of
the positive or negative buoyancy term. In particular, the lookahead distance must
be larger, the integral gain lower and the desired relative surge speed faster than
if the vehicle were perfectly ballasted, which matches with intuition.

A negatively buoyant AUV modeled in 5 DOF has been simulated in an ocean
environment containing constant and irrotational current, demonstrating exponen-
tial stability of the closed-loop error system. It is also demonstrated that the vehi-
cle is able to follow the path, even when the negative buoyancy is unknown, which
shows robustness of the system.

6.A Functional expressions

The terms Xv, Yv, Xw, Yw, and Fr are de�ned Section 3.2.2 and restated here for
convenience.

Xv ,
m2

25 −m11m55

m22m55 −m2
25

ub +
d55m25 − d25m55

m22m55 −m2
25

, (6.44)

Yv ,
(m22 −m11)m25

m22m55 −m2
25

ub −
d22m55 − d52m25

m22m55 −m2
25

, (6.45)

Xw ,
−m2

34 −m11m44

m33m44 −m2
34

ub +
d44m34 − d34m44

m33m44 −m2
34

, (6.46)

Yw ,
(m11 −m33)m34

m33m44 −m2
34

ub −
d33m44 − d43m34

m33m44 −m2
34

, (6.47)

Fr ,
m25d22 −m22(d52 + (m22 −m11)ub)

m22m55 −m2
25

vb

+
m25(d25 +m11ub)−m22(d55 +m25ub)

m22m55 −m2
25

rb.

(6.48)

The lack of neutral buoyancy is present in the terms Zws, Zwc, Fu and F q,
which are de�ned as

Zws ,
(BGzW + zbWE)m34

m33m44 −m2
34

, (6.49)

Zwc ,
WEm44

m33m44 −m2
34

, (6.50)
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Fu ,
1

m11
[(m22vb +m25rb)rb − (m33wb +m34qb)qb − d11ub

−WE sin(θnb )]

(6.51)

F q , −
(BGzW + zbWE)m33

m33m44 −m2
34

sin(θnb ) +
WEm34

m33m44 −m2
34

cos(θnb )

+
m34d33 −m33(d43 − (m33 −m11)ub)

m33m44 −m2
34

wb

+
m34(d34 −m11ub)−m33(d44 −m34ub)

m33m44 −m2
34

qb.

(6.52)

The vectors hhhz , [{hzi}]T and hhhw , [{hwi}]T , i = 1..6, are de�ned as

hz2 = − sin(θ̃nb + θnd ) (6.53)

hz3 = −urd

[
sin(θ̃nb )

θ̃nb
cos(θnd ) +

cos(θ̃nb )− 1

θ̃nb
sin(θnd )

]

+ wrb

[
cos(θ̃nb )− 1

θ̃nb
cos(θnd )− sin(θ̃nb )

θ̃nb
sin(θnd )

]
,

(6.54)

hz1 = hz4 = hz5 = hz6 = 0, (6.55)

hw2 =
Xw(ũrb + urd)−Xwd

ũrb
γw(znint, z

n
b , wrb)

+
Yw(ũrb + urd)− Ywd

ũrb
wrb

(6.56)

hw3 = Zws

[
sin(θ̃nb )

θ̃nb
cos(θnd ) +

cos(θ̃nb )− 1

θ̃nb
sin(θnd )

]
(6.57)

hw4 = Xw(ũrb + urd), (6.58)

hw1 = hw5 = hw6 = 0. (6.59)

The vector hhhy , [{hyi}]T , i = 1..9 is de�ned as

hy2 =
urd
ez2

[
∆z√
lz(ez2)

− 1√
ξ2 + 1

]

− Zwsξ

ez2Ywd
√
ξ2 + 1

[
ez2 + σzz

eq
int√

lz(ez2)
− ξ√

ξ2 + 1

]
,

(6.60)

hy3 = sin(θnb ) sin(ψnb ), (6.61)

hy4 = cos(θnb ) sin(ψnb ), (6.62)

hy6 = urd sin(ψnd )

[
cos(θ̃nb )− 1

θ̃nb
cos(θnd )− sin(θ̃nb )

θ̃nb
sin(θnd )

]

− Zwsξ sin(ψnd )

Ywd
√
ξ2 + 1

[
sin(θ̃nb )

θ̃nb
cos(θnd ) +

cos(θ̃nb )− 1

θ̃nb
sin(θnd )

] (6.63)
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hy8 =

[
urd cos(θ̃nb + θnd )− Zwsξ

Ywd
√
ξ2 + 1

sin(θ̃nb + θnd )

]

·

[
sin(ψ̃nb )

ψ̃nb
cos(ψnd ) +

cos(ψ̃nb )− 1

ψ̃nb
sin(ψnd )

]

+ vrb

[
cos(ψ̃nb )− 1

ψ̃nb
cos(ψnd )− sin(ψ̃nb )

ψ̃nb
sin(ψnd )

] (6.64)

hy1 = hy4 = hy7 = hy9 = 0. (6.65)

The terms in hhhv , [{hvi}]T , i = 1..9 are de�ned as

hv2 =
Xvd

ez2

[
∆z√
lz(ez2)

− 1

ξ2 + 1

]
γv(y

n
int, y

n
b , vrb), (6.66)

hv5 =
Xv(ũrb + urd)−Xvd

ũrb
cos(θ̃nb + θnd )γv(y

n
int, y

n
b , vrb)

+ vrb
Yv(ũrb + urd)− Yvd

ũrb

(6.67)

hv6 =

[
cos(θ̃nb )− 1

θ̃nb
cos(θnd )− sin(θ̃nb )

θ̃nb
sin(θnd )

]
·Xvdγv(y

n
int, y

n
b , vrb),

(6.68)

hv9 = Xv(ũrb + urd) cos(θ̃nb + θnd ), (6.69)

hv1 = hv3 = hv4 = hv7 = hv8 = 0. (6.70)

6.B Proof of Lemma 6.2

The proof follows along the lines of Caharija et al. [18], while making use of The-
orem 2.1 to show that the conditions of Lemma 6.2 are su�cient for USGES.

Consider the Lyapunov function candidate:

V , 1
2σ

2
ze

2
z1 + 1

2e
2
z2 + 1

2µe
2
z3, µ > 0. (6.71)

Using (6.31) and Assumptions 6.2 and 6.3, the following bound can be found for
V̇ :

V̇ ≤ −W1(ez13)−W2(ez23), (6.72)

where ez13 , [|ez1|, |ez3|]T and ez23 , [|ez2|, |ez3|]T .
The function W1 is de�ned as

W1 =
1

lz(ez2)
eTz13Q1e

T
z13, (6.73)

where Q1 is

Q1 ,

 σ3
z∆z −µσ

2
z

√
lz(ez2)|Xwd|
2∆z

−µσ
2
z

√
l(e2)|Xwd|
2∆z

µηlz(ez2)
(
|Ywd| − |Xwd|∆z

)
 (6.74)
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and 0 < η < 1. W2 is de�ned as

W2 ,
∆z

lz(ez2)
eTz23Q2ez23, (6.75)

where Q2 is

Q2 ,

[
β −α

√
lz(ez2)

−α
√
lz(ez2) lz(ez2)α(2α−1)

β

]
. (6.76)

Here, β , urd − Vmax − σz and α is given by

α , (1− η)
(urd − Vmax − σz)(∆z|Ywd| − |Xwd|)

|Xwd|(urd + Vmax + σz + ∆z
2|Zws|+|Zwc|
|Xwd| )

. (6.77)

The parameter µ is chosen as

µ ,
2α− 1

|Xwd|
∆2
z

(urd + Vmax + σz) + 2|Zws|+|Zwc|
∆z

. (6.78)

If Q1 and Q2 are positive de�nite, then V̇ is negative de�nite. Q1 is positive
de�nite if

∆z >
|Xwd|
|Ywd|

, (6.79)

µ <
4η∆2

z (∆z|Ywd| − |Xwd|)
σz|Xwd|2

. (6.80)

(6.79) is met as long as (6.16) holds. It can be shown that η ≥ 1/5 is a su�cient
condition for µ to satisfy (6.80). Thus, without loss of generality, η is set to 1/5,
and positive de�niteness of Q1 is ensured.
Q2 is positive de�nite if β > 0 and α > 1. Assumption 6.5 and (6.18) ensure

that β > 0, while conditions (6.16) and (6.18) ensure that α > 1. Note that the
presence of the buoyancy term Zwc in Q2 in�uences the requirements on urd in
Assumption 6.5, ∆z in (6.16), and σz in (6.18).

Let Q be the symmetric 3 × 3 matrix de�ned from W1(ez13) and W2(ez23) so
that

eTzQez = W1(ez13) +W2(ez23). (6.81)

Since both Q1 and Q2 are positive de�nite, so is Q. Hence, the following bound
holds:

V̇ ≤ − 1

l(e2)
qmin||ez||2, (6.82)

where qmin , λmin(Q), the minimum eigenvalue of Q.
The function 1/lz(ez2) can be bounded by bounding σzz

eq
int using (6.22a):

σzz
eq
int =

ξ

∆z
<
ξsup
∆z

:= κ, (6.83)

84



6.B. Proof of Lemma 6.2

where ξsup is the upper bound of ξ from Section 6.3.1. In any ball

Br , {|ez2| < r} , r > 0 (6.84)

the function lz(ez2) is upper bounded as

lz(ez2) ≤ (r + κ)2 + ∆2
z := c(r). (6.85)

Hence, for any r > 0

V̇ ≤ −qmin

c(r)
||ez||2 (6.86)

Thus, the conditions of Theorem 2.1 is ful�lled with k1 = 1
2 min{σ2

z , 1,
µ}, k2 = 1

2 max{σ2
z , 1, µ} and k3 = qmin

c(r) . Hence, the equilibrium point ez = 0 is

USGES as de�ned in De�nition 2.5.
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Part III

Collision Avoidance in 2D
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Chapter 7

The CAA Algorithm in 2D

If this goes badly and I make a crater, I want it named after me!

� Iain M. Banks, Against a Dark Background

Part III of this thesis focuses on the constant avoidance angle (CAA) algorithm
in 2 dimensions. In this chapter, we will present the CAA algorithm itself, along
with a preliminary analysis. In Chapters 8-10 we will provide an analysis of the
algorithm when applied to systems of increasing complexity.

The algorithm will make the vehicle avoid an obstacle by steering the vehicle
so that the its velocity vector keeps a constant avoidance angle to the obstacle. In
the case of a moving obstacle, a compensation term will be added to the avoidance
angle in order to ensure that the vehicle behavior with respect to the obstacle
remains the same. The compensation angle is calculated using the current vehicle
speed as input, which provides �exibility both when designing the desired speed
trajectory, and when implementing the algorithm on vehicles with a limited speed
envelope.

The vehicle will be in one of two modes during the operation. In nominal guid-
ance mode, the vehicle will follow a guidance law in order to reach a nominal goal,
such as target reaching or path following. In collision avoidance mode, the vehi-
cle will follow the heading references from the CAA algorithm. In order to switch
between these two modes, we will introduce an unsafe vision cone. If the obstacle
is too close and the desired velocity direction from the nominal guidance law is
within this cone, the vehicle will enter collision avoidance mode. If the desired di-
rection from guidance comes outside this cone, nominal guidance is resumed. The
switching criterion is described in detail in this chapter, while example guidance
laws will be speci�ed in Chapters 8-10.

Finally, we will in this chapter provide a preliminary analysis of the CAA al-
gorithm. We will prove that a vehicle following the references of the algorithm is
ensured to safely avoid a moving obstacle, even though the obstacle may not be
cooperating.

In Part II, we considered the e�ect of ocean current on the vehicle during path
following. When looking at collision avoidance, however, we limit the scope to omit
such disturbances, focusing on the behavior of the vehicle under ideal conditions.1

Similarly, while we are concerned with keeping the measurement requirements of

1Note, that the kinematic disturbance used to model the current in Part II is inherently
handled when using course control as described in Chapters 9 and 10.
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7. The CAA Algorithm in 2D

the algorithm as low as possible, the area of obstacle detection and tracking is not
included.

In Section 7.1 of this chapter we describe the mathematical model of the ob-
stacle, as well as the obstacle measurements required by the algorithm. Section 7.2
de�nes the algorithm, including the rule for choosing when to enter and leave
collision avoidance mode and wether to take a port or starboard maneuver. In
Section 7.3, we perform a preliminary analysis of the algorithm, proving that a
vehicle that has turned soon enough and is able to follow the references from the
collision avoidance law will perform a safe collision avoidance maneuver. Finally, in
Section 7.4, we conclude this chapter with an overview of the remainder of Part III

The work presented in this chapter is based on Wiig et al. [114], Wiig et al.
[113] and Wiig et al. [119].

7.1 Obstacle model

In this section we will describe the obstacle model, as well as the obstacle mea-
surements required to implement the collision avoidance algorithm described in
Section 7.2.

The obstacle is modeled as a moving circular domain Do with radius Ro, and
we de�ne the obstacle frame o to be attached to the center of the domain. Since it
can be di�cult to estimate the dynamic parameters of the obstacle, it is modeled
as a unicycle-type vehicle:

ẋno = uo cos(ψno ), (7.1a)

ẏno = uo sin(ψno ), (7.1b)

ψ̇no = ro, (7.1c)

u̇o = ao, (7.1d)

where xno and yno are the Cartesian coordinates of the obstacle, uo and ao are the
forward speed and acceleration, and ψno and ro are the obstacle heading and yaw
rate, respectively. The obstacle's position is denoted pno , [xno , y

n
o ]T , while the

obstacle's velocity is denoted vno/n , ṗno .
The proposed collision avoidance algorithm can also be applied to non-circular

obstacles. An analysis of such scenarios is beyond the scope of this thesis, but
successful avoidance of noncircular obstacles are demonstrated in simulations in
Chapters 8-10.

To ensure that the vehicle is able to circumvent the obstacle, we need to assume
that the obstacle speed is less than the vehicle surge speed:

Assumption 7.1. The obstacle forward speed uo satis�es uo ∈ [0, uomax], where
uomax < ub.

We also assume that the obstacle has a bounded acceleration and yaw rate:

Assumption 7.2. The obstacle forward acceleration ao and yaw rate ro are
bounded by

ao ∈ [−aomax, aomax] , (7.2)
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Figure 7.1: The vision cone Vo from the vehicle to the obstacle.

ro ∈ [−romax, romax] , (7.3)

where aomax ≥ 0 and romax ≥ 0 are constant parameters.

If Assumptions 7.1 and 7.2 do not hold, it is in general impossible to guarantee
obstacle avoidance without assuming that the obstacle is cooperating. However, by
choosing to move behind a moving obstacle, it will in practice still be possible to
execute a successful avoidance maneuver. Analysis of such scenarios is beyond the
scope of this thesis.

7.1.1 Required obstacle measurements

In order to decide when to start an avoidance maneuver, the vehicle must be able
to sense the distance dob , ‖pnb − pno‖ to the obstacle. To obtain a safe course, the
vehicle must furthermore be able to sense the vision cone Vo to the obstacle, as
illustrated in Figure 7.1. Speci�cally, the angles ψnVo1 and ψnVo2 to the edges of the
Vo are required. Finally, the vehicle must know the obstacle velocity vno/n in order
to compensate for it.

The obstacle distance dob and the vision cone can be readily obtained from
sensors such as a lidar, radar or sonar. If the sensor has Doppler capabilites, the
obstacle velocity is available as well. Otherwise, the obstacle velocity can be ob-
tained by using a tracking algorithm.

7.2 Algorithm de�nition

In this section we will describe the proposed CAA algorithm for collision avoidance.
We de�ne that the control system will be either in nominal guidance mode, where it
follows a nominal guidance law, like the integral line of sight guidance law described
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7. The CAA Algorithm in 2D

in Part II, or in collision avoidance mode2. The control system will enter collision
avoidance mode if the vehicle comes at risk of colliding with an obstacle, according
to a criterion we will de�ne in Section 7.2.2. The CAA algorithm will then make the
vehicle circumvent the obstacle by steering the vehicle outside of the vision cone
Vo de�ned in Section 7.1.1. Speci�cally, by maintaining a constant avoidance angle
αo to the vision cone, it is ensured that the vehicle will not come within a speci�ed
minimum distance of the obstacle. If the obstacle is moving, a compensation term
is added to the avoidance angle.

The desired heading during collision avoidance, including the compensation for
the obstacle velocity, is described in detail in Section 7.2.1 below. The rules for
entering and leaving collision avoidance mode are given in Section 7.2.2, while
�nally an example rule for deciding if the vehicle should move to the port or
starboard side of the obstacle is given in Section 7.2.3.

7.2.1 Safe heading references

To create heading references that will safely avoid the obstacle, the CAA algorithm
extends the vision cone Vo by ±αo to either side. Thus, an extended vision cone Ve
is created, as shown in Figure 7.2. The heading angles of the extended vision cone
edges are denoted ψnVe1 and ψnVe2. Two velocity vectors, vnVe1 and vnVe2, are de�ned
along the edges of the Ve:

vnVej , uαo
[
cos(ψnVej), sin(ψnVej)

]
, j = {1, 2}, (7.4)

where the length of the vectors, uαo > 0, will be de�ned later.
If the obstacle is moving, each edge of the extended vision cone will be rotated

around the origin of b in order to compensate for the obstacle velocity. Thus, in a
reference frame aligned with n but moving with the obstacle, the course references
of the CAA algorithm will follow vnVej . The rotated edges de�ne a new, compensated
vision cone Vc, which is illustrated in Figure 7.3. Two velocity vectors are de�ned
along the edges of Vc as

vndcaj , v
n
Vej + vno/n, j = {1, 2}. (7.5)

The velocity vectors vndcaj will keep the constant avoidance angle αo to the obstacle,
and will hence be used as candidates for the desired vehicle velocity in collision
avoidance mode. Therefore, their lengths are set to the current vehicle speed Ub =√
u2
b + v2

b , where ub is the vehicle surge speed and vb is the vehicle's sway speed as
described in Section 3.1.

||vndcaj || , Ub. (7.6)

2When the vehicle is in collision avoidance mode, the integral e�ect of the ILOS guidance law
should be disabled during the avoidance maneuver. As we do not investigate collision avoidance
in the presence of current in this thesis, we will only examine the performance of the algorithm in
combination with line-of-sight guidance without integral e�ect, as well as a simple target reaching
algorithm described in the subsequent chapters.
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Figure 7.2: The extended vision cone Ve from the vehicle to the obstacle.
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Figure 7.3: The desired velocity vector candidates vndca1 and vndca2, which de�ne
the sides of the compensated vision cone Vc.
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The compensation angle γcaj is found using the sine rule on the triangle de�ned
by vnVej , v

n
o/n and vndcaj :

γcaj = sin−1

(
‖vno/n‖ sin(γvoj)

Ub

)
, j = {1, 2}. (7.7)

where ‖vno/n‖ = uo as seen in (7.1). The angle γvoj is found geometrically as

γvoj = π − (ψno − ψnVej), j = {1, 2}. (7.8)

The two candidate heading angles in collision avoidance mode are then de�ned as

ψndcaj , ψnVej + γcaj , j = {1, 2}. (7.9)

Section 7.2.3 provides a rule for choosing between these two candidates.
The de�nition of the obstacle velocity compensation angle uses the current

vehicle speed. Thus, the de�nition of the collision avoidance heading angles (7.9)
provides safe vehicle headings at any vehicle speed, as long as (7.7) is well de�ned,
which is ensured by Assumption 7.1. In this way, the vehicle speed is used as an
input rather than an output of the algorithm, which provides �exibility in designing
the vehicle speed trajectory. We will exploit this �exibility both to include a strict
requirement of a constant vehicle forward speed in Chapters 8-10, and by including
the underactuated sway component of the vehicle speed in Chapters 9 and 10.

7.2.2 Switching rule

The compensated vision cone Vc is used to de�ne a set of unsafe directions. Thus,
we de�ne that the control system enters collision avoidance mode at a time t1 if the
vehicle is too close to the obstacle while the desired heading given by the guidance
law, denoted ψndg, is within Vc:

ψndg(t1) ∈ Vc(t1), (7.10a)

dob(t1) ≤ dswitch, (7.10b)

where dswitch > dsafe is a constant design parameter.
Nominal guidance towards the target will resume at a time t2 when ψndg(t2)

moves outside Vc(t2),
ψndg(t2) /∈ Vc(t2). (7.11)

To avoid making the vehicle heading cross Vc when approaching ψndg, we require
that ψndg is on the same side of Vc as the vehicle course when exiting collision
avoidance:

j = 1 : ψndg(t2)− ψndca1(t2) ≤ 0,

j = 2 : ψndg(t2)− ψndca2(t2) ≥ 0.
(7.12)

The angular di�erence is mapped to the interval(
ψndg(t2)− ψndcaj(t2)

)
∈ (−π, π], j = {1, 2}, (7.13)
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Figure 7.4: Illustration of the switching rule. The vehicle (orange) encounters an
obstacle (red circle). The compensated vision cone Vc is drawn in a transparent
red, the obstacle velocity is shown as a red arrow and the desired heading provided
by the guidance law is shown as a blue arrow.

which ensures that the vehicle makes the shortest turn towards the desired course.
The switching rule is illustrated in an overtaking scenario in Figure 7.4. In

Figure 7.4(a), the vehicle comes too close to an obstacle on collision course and
enters collision avoidance. In Figure 7.4(b), the desired course from guidance is
outside the vision cone, but the vehicle has to cross Vc to reach it. Hence, the
control system remains in collision avoidance mode. In Figure 7.4(c), the desired
heading from guidance is safe, and the control system enters nominal guidance
mode.

7.2.3 Turning direction

The proposed CAA algorithm (7.9) provides two candidate headings for safe ma-
neuvering, resulting in either a clockwise or counterclockwise collision avoidance
maneuver. Both of the candidates are safe, which provides �exibility to consider
di�erent scenario preferences or tra�c rules. In this thesis, we will as use a conser-
vative approach, where we make the vehicle move behind the obstacle. Speci�cally,
at a time t1 at which the control system enters collision avoidance, the turning
parameter j is chosen according to:

j = arg max
j=1,2

|ψno (t1)− ψndcaj(t1)|, dob(t1) = dswitch. (7.14)

The di�erence between the obstacle heading and ψndcaj are mapped to the inter-
val (−π, π]. If the obstacle is closer than dswitch when the vehicle enters collision
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avoidance mode, the vehicle will make the shortest turn towards a safe direction,

j = arg min
j=1,2

|ψnb (t1)− ψndcaj(t1)|, dob(t1) < dswitch. (7.15)

Once a turning direction has been chosen, it is kept throughout the collision avoid-
ance maneuver in order to avoid chattering due to measurement noise.

Remark 7.1. An alternative approach is to choose the turning direction to comply
with the International regulations for preventing collisions at sea (COLREGs), as
in Kuwata et al. [60] and Moe and Pettersen [74]. The vehicle would then turn to
starboard when the obstacle comes from starboard, when the obstacle comes head
on, or if the vehicle overtakes the obstacle from behind. If the obstacle approaches
from the port side, the vehicle would not yield, i.e. the control system would not
enter collision avoidance mode.

7.2.4 Multiple obstacles

The proposed CAA algorithm can be extended to multiple obstacles. While a thor-
ough analysis of a multiobstacle scenario is beyond the scope of this thesis, we
will in this section present a rule for using the CAA algorithm to safely navigate
clusters of obstacles.

We create a compensated vision cone for each obstacle closer to the vehicle than
dswitch. If any of these cones overlap, they are merged into a single cone. When the
control system enters collision avoidance mode, there might thus be more than one
obstacle in the current unsafe cone. The closest obstacle is then used to choose the
turning direction according to (7.14).

If a new obstacle joins the cone currently used for avoidance during the ma-
neuver, the cone is extended to include the new obstacle. The vehicle will keep the
turning direction, and will follow the corresponding edge of the new vision cone.

Examples of multiobstacle scenarios are presented in the experimental results
in Chapter 10.

7.3 Algorithm analysis

We will here present a preliminary analysis of the CAA algorithm, proving that
a vehicle following the heading references de�ned in (7.9) will always maintain at
least a minimum distance to the obstacle. We will prove this for a static obstacle
in Lemma 7.1, before including obstacle motion in Lemma 7.2.

Lemma 7.1. Consider a static obstacle, and let the avoidance angle be in the
interval αo ∈ (0, π2 ). Furthermore, let a vehicle maintain the velocity vnVej (7.4)
for j = 1 or j = 2, for t ≥ t1 and with a positive speed uαo = Ub > 0. Then, if
dob(t1) ≥ 0, the vehicle will converge to a circle C with center at the obstacle center
and radius Rc = Ro

cos(αo) . Furthermore, if the vehicle starts outside C, then

dob(t) ≥ dmin ,
Ro

cos(αo)
−Ro, ∀t ∈ [t1, t2], (7.16)
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Figure 7.5: Decomposition of the angle ψndca2.

where t2 > t1 is the time when the vehicle exits collision avoidance in accordance
with the switching rule in (7.11) and (7.12).

Proof. When maintaining the velocity vnVej , the vehicle will keep a constant avoid-
ance angle αo to one of the tangents from the vehicle to the obstacle, as shown in
Figure 7.2. The time derivative of dob can then be found geometrically as

ḋob = −uαo cos(γt + αo), (7.17)

where γt is the angle from the line connecting the vehicle and the center of the
obstacle to the tangent line as seen in Figure 7.5:

γt , sin−1

(
Ro

Ro + dob

)
, dob ≥ 0. (7.18)

When dob > dmin, we obtain γt + α0 <
π
2 , which gives ḋob < 0. Similarly, when

dob < dmin, ḋob > 0. Finally, when dob = dmin, ḋob = 0. Hence, the vehicle will
converge to C, and if dob(t1) > dmin then dob(t) ≥ dmin ∀t ≥ t0.

The proof of Lemma 7.1 is illustrated in Figure 7.6, which shows the output of
the CAA law as a vector �eld. The arrows of the �eld show the direction of vnVe1,
i.e. when the turning direction j = 1. The �eld can be seen to converge to the black
circle C around the red obstacle. The dotted black line shows an integral curve of
the �eld, which converges to C in an equiangular spiral.

It follows from Lemma 7.1 that if the avoidance angle αo is chosen to satisfy

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
, π/2

)
, dsafe > 0, (7.19)
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Figure 7.6: A vector �eld showing the output from the CAA algorithm when the
turning direction j = 1 as a vector �eld. The red circle is the obstacle, the black
circle represents dmin and the dotted black line shows an example integral curve of
the �eld.

then, under the conditions that the obstacle is static, the vehicle starts outside C
and keeps the velocity vnVej (7.4),

dob(t) ≥ dsafe ∀t ≥ t0. (7.20)

Thus, if knowledge of the obstacle curvature is available, it is possible to design the
avoidance angle in order to assure that the vehicle will keep at least a minimum
safety distance dsafe from the obstacle during the maneuver. The next lemma shows
that this also applies for a moving obstacle.

Lemma 7.2. Consider an obstacle moving with a time-varying velocity satisfying
Assumption 7.1. Let the avoidance angle satisfy (7.19), and let a vehicle maintain
the velocity vndcaj (7.5), where ‖vndcaj‖ = Ub and the heading of vndcaj is de�ned in
(7.9) for j = 1 or j = 2 and t ≥ t1. Then, if dob(t1) ≥ dsafe,

dob(t) ≥ dsafe ∀t ∈ [t1, t2], (7.21)

where t2 > t1 is the time when the vehicle exits collision avoidance in accordance
with the switching rule in (7.11) and (7.12).

Proof. Consider a coordinate frame no which is attached to the obstacle and aligned
with the n frame. Thus, the frame no has the velocity v

n
no/n

= vno/n. In this frame,
the obstacle is static and the vehicle velocity is

vnob/no = vnb/n − v
n
o/n = vnVej , (7.22)
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where ‖vnVej‖ = uαo (7.4). From Figure 7.3, it can be seen that uαo achieves mini-
mum when γvoj = 0, for which

uαomin = Ub − uo. (7.23)

Since uo < Ub by Assumption 7.1, uαomin > 0. Lemma 7.1 and the bound (7.19)
can then be applied, and it follows that the vehicle will remain at least a minimum
safety distance away from the obstacle:

dob(t) ≥ dsafe ∀t ∈ [t1, t2]. (7.24)

7.4 Overview of Part III

In this chapter, we have presented the constant avoidance angle algorithm in 2D,
and performed a preliminary analysis of the algorithm. Speci�cally, Lemma 7.1
guarantees that if the vehicle is able to start the collision avoidance maneuver soon
enough to be able to turn away from the obstacle before reducing the obstacle
distance to below dsafe, and if the vehicle is able to follow the desired heading
(7.9) from the collision avoidance law, then it will maintain a greater distance than
dsafe throughout the maneuver. Since the vehicle moves faster than the obstacle,
it will eventually have circumvented it. Hence, for a well-de�ned nominal guidance
law, it is ensured that the vehicle will eventually exit collision avoidance mode
and proceed with its nominal operation. The transfer from collision avoidance to
nominal guidance will be formally analyzed in the remaining chapters of Part III.

To determine the minimum switching distance we can require of the vehicle, we
need to look at how fast the vehicle is able to turn, and how close to the obstacle the
vehicle will get while turning. Similarly, knowledge of the maneuvering capabilities
of the vehicle is required in order to ensure that the vehicle is able to follow the
references from the collision avoidance law, and that these references remain well
de�ned throughout the maneuver. In the next chapter, we will investigate the
performance of the algorithm when applied to a unicycle, where only kinematics
are considered. We will then, in Chapter 9, include the underactuated dynamics of
a marine vehicle steered by a rudder and propeller, before we in Chapter 10 include
the full 3 DOF maneuvering model of an underactuated marine vehicle.
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Chapter 8

The CAA Algorithm for Unicycles

Now, that's what I call a close encounter.

� Will Smith, Independence Day

The CAA algorithm presented in the previous chapter will in this chapter be applied
to a unicycle, which we will model at the kinematic level. The unicycle has a limited
turning rate and is required to keep a constant forward speed. The unicycle model
and constraints are used to derive conditions under which it is mathematically
guaranteed that a moving, non-cooperating obstacle will be avoided. We will �nd
both the distance to the obstacle at which the vehicle, at the latest, must start to
turn away, and an upper bound on the yaw rate required of the unicycle during
the maneuver. The results are validated through simulations, including a scenario
with an obstacle of a more complex, concave shape.

The remainder of this chapter is organized as follows. Section 8.1 describes the
vehicle model and the control objective of the system. Section 8.2 states the head-
ing controller and the target reaching guidance law employed when the vehicle is
not in collision avoidance mode. Section 8.3 reiterates the CAA collision avoidance
algorithm, before the conditions under which collision avoidance can be mathemat-
ically proved is derived in Section 8.4. The analysis is supported by simulations in
Section 8.5. Finally, concluding remarks are given in Section 8.6.

The work presented in this chapter is based on Wiig et al. [114].

8.1 System description

The vehicle is modeled as a kinematic unicycle-type vehicle. Hence, we use the
model described in Section 3.1.1, with the sway speed set to zero:

ẋnb = ub cos(ψ), (8.1a)

ẏnb = ub sin(ψ), (8.1b)

ψ̇nb = rb, (8.1c)

Assumption 8.1. The vehicle forward speed ub > 0 is constant.

Assumption 8.2. The heading rate rb is directly controlled, and bounded by

rb ∈ [−rmax, rmax], (8.2)

where rmax > 0 is a constant parameter.
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8. The CAA Algorithm for Unicycles

8.1.1 Obstacle model

Recall from Section 7.1 that the obstacle is modeled as a unicycle-type, circular
vehicle of radius Ro:

ẋno = uo cos(ψno ), (8.3a)

ẏno = uo sin(ψno ), (8.3b)

ψ̇no = ro, (8.3c)

u̇o = ao, (8.3d)

where the obstacle yaw rate and acceleration are limited:

Assumption 8.3. The obstacle forward acceleration ao and course rate ro are
bounded by

ao ∈ [−aomax, aomax] , (8.4)

ro ∈ [−romax, romax] , (8.5)

where aomax ≥ 0 and romax ≥ 0 are constant parameters.

As in Chapter 7, we assume that the obstacle speed is upper bounded by the
vehicle speed:

Assumption 8.4. The obstacle forward speed uo satis�es uo ∈ [0, uomax], where
uomax < ub.

8.1.2 Control objective

Let pnt , [xnt , y
n
t ]T be a target position in the NED frame n. The objective of the

control system and collision avoidance algorithm is to make the vehicle come within
an acceptance distance da ≥ ub/rmax of the target position pnt at some unspeci�ed
time tf ∈ [0,∞), i.e.

||pnbt (tf )|| ≤ da, (8.6)

where pnbt = pnt −pnb is the target position in a frame nb, which is �xed to b aligned
with NED. This goal should be achieved while keeping at least a minimum safety
distance dsafe to the obstacle, i.e. the distance dob between the vehicle and the
obstacle should satisfy:

dob(t) ≥ dsafe > 0 ∀t ∈ [t0, tf ]. (8.7)

8.2 Control system

The control system has two modes; guidance mode and collision avoidance mode. In
guidance mode, the guidance law given in Section 8.2.2 will make the vehicle move
straight towards the target. If the obstacle comes within range and the desired
heading from the guidance law is unsafe, the control system will enter collision
avoidance mode, and start to follow the references from the collision avoidance
law. The de�nition of the heading references in collision avoidance mode, as well
as the switching rule, is given in Section 7.2.
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8.3. The CAA algorithm

8.2.1 Heading controller

To make the vehicle reach the target heading as fast as possible, it is made to turn
towards the desired heading ψnd at the maximum turning rate:

rb(ψ
n
d ) ,


0 ψ̃nb = 0

rmax ψ̃nb ∈ (−π, 0)

−rmax ψ̃nb ∈ (0, π].

(8.8)

The heading error variable ψ̃nb , ψnb − ψnd is chosen to belong to the interval

ψ̃nb ∈ (−π, π], to ensure that the vehicle always makes the shortest turn towards
ψnd .

8.2.2 Guidance law

When the control system is in guidance mode, the heading is guided by a pure
pursuit guidance law [16, 44]. This is a target reaching guidance law which we will
employ to make the vehicle reach the target position pnt . To reach the target as
soon as possible, we set the desired course to point towards the target position:

ψndg , Ψ(pnbt ) = atan2 (ynt − ynb , xnt − xnb ) , (8.9)

where ψndg ∈ [0, 2π) is the desired heading and the function Ψ is de�ned in (2.5).

8.3 The CAA algorithm

The CAA algorithm de�ned in Section 7.2 is summarized here for convenience.
The geometry of the algorithm is shown in Figure 8.1. Recall that the two heading
reference candidates during collision avoidance are

ψndcaj , ψnVej + γcaj , j = {1, 2}, (8.10)

where ψnVej is the heading of edge j of the extended vision cone and γcaj is the
compensation angle for the obstacle velocity:

γcaj = sin−1

(
uo sin(γvoj)

Ub

)
, j = {1, 2}, (8.11)

where the angle γvoj is

γvoj = π − (ψno − ψnVej), j = {1, 2}. (8.12)

The vehicle will enter collision avoidance mode if the desired heading from the
nominal guidance law is within Vc when the vehicle is too close to the obstacle:

ψndg(t1) ∈ Vc(t1), (8.13a)

dob(t1) ≤ dswitch, dswitch > dsafe. (8.13b)
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Figure 8.1: Geometry of the CAA algorithm.

Nominal guidance towards the target will resume at a time t2 when ψndg(t2) moves
outside Vc(t2), in such a way that the vehicle course will not cross Vc,

j = 1 : ψndg(t2)− ψndca1(t2) ≤ 0,

j = 2 : ψndg(t2)− ψndca2(t2) ≥ 0.
(8.14)

The turning parameter j is chosen to make the vehicle seek to move behind the
obstacle:

j = arg max
j=1,2

|ψno (t1)− ψndcaj(t1)|, dob(t1) = dswitch. (8.15)

However, if the obstacle is closer than dswitch when the vehicle enters collision
avoidance mode, the vehicle will make the shortest turn towards a safe direction:

j = arg min
j=1,2

|ψnb (t1)− ψndcaj(t1)|, dob(t1) < dswitch. (8.16)

8.4 Analysis

This section presents a mathematical analysis of the closed-loop control system.
This includes the case when the control system is in nominal guidance mode, where
the desired heading ψnd in (8.8) is given by the pure pursuit guidance law in (8.9),
and the case when the control system is in collision avoidance mode, when ψnd
is given by the collision avoidance law (8.10). The switching between these two
modes, which we de�ned in Section 7.2.2, is also included.

Speci�cally, Lemma 8.1 gives a bound on the angular velocity of ψndcaj given by
(8.10) when avoiding a moving obstacle. This lemma is used along with Lemma 7.2
in the proof of Theorem 8.2, which states that the control objectives (8.6) and (8.7)
are met for a vehicle (8.1) controlled by the controller (8.8), guidance law (8.9) and
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collision avoidance law (8.10), in the presence of an obstacle with time-varying
velocity.

To ensure that the vehicle is able to follow ψndcaj , it is required that rmax ≥
|ψ̇ndcaj | during the collision avoidance maneuver. The following lemma gives a bound

on |ψ̇ndcaj | that holds both for static and dynamic obstacles:

Lemma 8.1. Consider a vehicle described by (8.1), and an obstacle modeled by
(7.1). If Assumptions 8.4, 8.3 and 8.1 hold, and ψndcaj is given by (8.10), ψ̇ndcaj is
bounded by

|ψ̇ndcaj | < ψ̇ndcasup ,
aomax√
u2
b − u2

omax

+
uomax

ub
romax +

(ub + uomax)
2

ub
√

(Ro + dsafe)2 −R2
o

.

(8.17)

Proof. Without loss of generality, j = 2 in the following analysis. Furthermore, the
dependency on time will be omitted in the notation. Equation (8.10) gives

ψ̇ndca2 = ψ̇nVe2 + γ̇ca2 (8.18)

Figure 8.1 shows that ψnVe2 = γo + γt + αo, and hence

ψ̇nVe2 = γ̇o + γ̇t. (8.19)

The angular velocity of γo can be found geometrically as

γ̇o =
1

Ro + dob
(uo sin(ψno − γo)− ub sin(ψnb − γo)) . (8.20)

The tangent angle γt is

γt = sin−1(
Ro

Ro + dob
), (8.21)

which gives

γ̇t = −ḋob
Ro

(Ro + dob)
√

(Ro + dob)2 −R2
o

. (8.22)

The time derivative ḋob of dob is found geometrically as

ḋob = uo cos(ψno − γo)− ub cos(ψnb − γo). (8.23)

Combining (8.20) - (8.23), applying Assumption 8.4 to bound the obstacle speed
and Assumption 8.1 to bound the vehicle speed, and then maximizing with respect
to ψnb and ψno give the following bound:

|ψ̇nVe2| = |γ̇o + γ̇t| ≤
ub + uomax√

(Ro + dsafe)2 −R2
o

. (8.24)

The time derivative of γ̇ca is found by using (8.11),

γ̇ca2 =
u̇o sin(γvo2) + uo cos(γvo2)γ̇vo2√

u2
b − u2

o sin2(γvo2)
, (8.25)
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where γ̇vo2 is found from γvo2 = π − (ψno − ψnVe2) (8.12) as

γ̇vo2 = −ro + ψ̇nVe2. (8.26)

We now use Assumptions 8.1, 8.4 and 8.3 to bound the vehicle speed and the
obstacle speed, acceleration and heading rate in the expression for γ̇ca2, which
gives

|γ̇ca2| <
aomax√
u2
b − u2

omax

+
uomax

ub
romax +

uomax

ub
|ψ̇nVe2|. (8.27)

Inserting (8.24) and (8.27) into (8.18) gives

|ψ̇ndca2| <
aomax√
u2
b − u2

omax

+
uomax

ub
romax +

(ub + uomax)
2

ub
√

(Ro + dsafe)2 −R2
o

=: ψ̇ndcasup,

(8.28)

which concludes the proof.

Remark 8.1. The bound (8.17) on |ψ̇ndcaj(t)| agrees with intuition. In particular,
note that the bound increases as the maximum forward velocity uomax, acceleration
aomax and turning rate romax of the obstacle increase. Furthermore, with larger
maximum vehicle velocity, the contributions from the obstacle acceleration and
turning rate on the required vehicle turning rate becomes less signi�cant.

Before we state the main theorem, we need to make the following assumption
to ensure that the target is outside the circle of convergence around the obstacle:

Assumption 8.5. The distance dot from an obstacle to the target position pnt
satis�es

dot(t) >
Ro

cos(αo)
−Ro ∀t ≥ t0. (8.29)

Remark 8.2. Vehicle safety is guaranteed even if this assumption is not met,
however it is then not ensured that the target will be reached.

In addition, the vehicle should be able to start safely:

Assumption 8.6. The initial distance between the vehicle and the obstacle sat-
is�es

dob(t0) > dswitch. (8.30)

Finally, we assume that the obstacles are sparsely spaced, so that the vehicle
can consider one obstacle at a time:

Assumption 8.7. The distance between any two obstacles are always at least
2dswitch.

The main theorem of this chapter is now ready to be stated.
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Theorem 8.2. If Assumptions 8.1-8.7 hold, the avoidance angle satis�es

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
,
π

2

)
, (8.31)

the maximum vehicle turning rate satis�es

rmax ≥ ψ̇ndcasup, (8.32)

and the switching distance satis�es

dswitch ≥
2ub + πuomax

rmax
+ dsafe, (8.33)

then a vehicle described by (8.1), controlled by the controller (8.8), guidance law
(8.9) and collision avoidance law (8.10), will maneuver among obstacles described
by (7.1) while ensuring that

dob(t) ≥ dsafe > 0, ∀t ≥ t0. (8.34)

Furthermore, if there is just one obstacle, then there is a time tf > t0 at which the
vehicle will arrive at the target position pnt .

Proof. The proof follows along the lines of the proof used in Savkin and Wang [95],
which argues that as long as the vehicle is able to follow the desired heading refer-
ence from the collision avoidance algorithm, it will successfully avoid the obstacle.
To achieve this we use the bound on ψ̇ndcaj from Lemma 8.1, thus extending the
analysis to the algorithm presented in Chapter 7, while avoiding a singularity that
occurred in the proof used in Savkin and Wang [95]. Furthermore, the proof uses
the new switching criterion presented in Section 8.3, as well as the bound on the
switching distance dswitch from (8.33).

The switching distance dswitch given in (8.33) ensures that the vehicle is able to
turn 180 ◦ before the obstacle can be within distance dsafe of the vehicle's turning
circle. There is then a time t1 when dob(t1) >= dsafe and ψnb (t1) = ψndca(t1). Ap-

plying Lemma 8.1 gives |ψ̇ndcaj(t)| < ψ̇ndcasup. Hence rmax ≥ |ψ̇ndcaj(t)| ∀t > t0, and
the vehicle is able to follow (8.10),

ψnb (t) = ψndca(t),∀t ∈ [t1, t2], (8.35)

where t2 is the time when the vehicle will exit collision avoidance mode.
The conditions of Lemma 7.2 are now satis�ed, and it is guaranteed that

dob(t) ≥ dsafe ∀t ∈ [t1, t2], (8.36)

which satis�es control objective (8.7).
Since the vehicle circles around the obstacle, Assumption 8.5 ensures that there

will be a time t2 when the line of sight to the target pnt will be outside of the
compensated and unsafe vision cone Vc. The vehicle will then exit collision avoid-
ance mode and proceed towards the target. It follows from Lemma 7.1 that any
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8. The CAA Algorithm for Unicycles

direction outside of the cone Vc ensures that dob > dsafe, and hence the direction
towards pnt is safe.

The obstacle may turn so that the line of sight to pnt comes within Vc before
dob > dswitch, making the vehicle enter collision avoidance mode again. However,
since vndca1 and vndca2 are �rst order di�erentiable with angular velocity less than

ψ̇ndcasup, and ψ
n
dca is then chosen to be the closest of vndca1 and vndca2 by (8.16), the

vehicle is immediately able to follow ψndca to avoid the obstacle again.
Finally, since ub > uomax, the vehicle will eventually be able to escape the

obstacle and reach the target. This satis�es control objective (8.6) and concludes
the proof.

8.5 Simulations

This section presents numerical simulations of three scenarios using the CAA al-
gorithm. The �rst two scenarios contain a circular obstacle of radius Ro = 3 m.
The third scenario demonstrates the use of the CA algorithm on a convex obstacle.
The vehicle speed in all scenarios is set to ub = 1 m/s and the maximum vehicle
turning rate is set to rmax = 1 rad/s. The safety distance is set to dsafe = 1 m, and
the constant avoidance angle was set using (8.31) to aomin = 0.72 rad.

The speed of the circular obstacle is set to uo = uomax = 0.7 m/s, while
the maximum obstacle acceleration and turning rate are set to aomax = 0 and
romax = 0.15 rad/s. The switching distance was set using these parameters to
dswitch = 5.2 m, which satis�es (8.33). By Lemma 8.1, ψ̇ndcasup = 0.98 s−1 for the

circular obstacle, and thus rmax > ψ̇ndcasup, satisfying (8.32).
In the �rst scenario, shown in Figure 8.2, the vehicle and the obstacle are

initially on a head-on collision course where the obstacle moves along a straight
trajectory towards the vehicle. At time t1 = 6.96 s the distance to the obstacle
satis�es dob(t1) = dswitch, and the vehicle enters collision avoidance mode. Since
the vehicle and the obstacle meets head on, the choice of direction parameter j
becomes random. In this particular case j = 2 and the vehicle turns to the right.

Figure 8.3 shows that |ψ̇ndca2| < ψ̇ndcasup during the simulation. Hence, since

ψ̇ndcasup < rmax, the vehicle is able to perfectly follow ψndca2 after a transition period,

which agrees with rmax ≥ ψ̇ndcasup. The obstacle distance remains greater than dsafe,
as seen in the top half of Figure 8.3. The simulation thus supports the theoretical
results given by Theorem 8.2. At time 13.68 s, the line of sight to the target is
outside of the cone Vc(t), and the vehicle enters guidance mode. The vehicle then
proceeds towards the target in accordance with the pure pursuit guidance law (8.9).

In the second scenario, shown in Figure 8.4, the obstacle approaches the vehicle
along a circular trajectory from the left. The turning rate of the obstacle is set to
ro = romax = 0.15 rad/s. The vehicle enters CA mode at time 5.49 s, and moves
behind the obstacle in accordance with (8.15).

Figure 8.5 shows that, like in the �rst scenario, |ψ̇ndca1| < ψ̇ndcasup and dob(t) ≥
dsafe during the simulation. Thus, the second simulation also supports the results
given in Theorem 8.2.

The third scenario, shown in Figure 8.6, contains a concave obstacle moving
straight towards the vehicle with speed uo = uomax = 0.5 m/s. The obstacle consists
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Figure 8.2: The �rst scenario, where the vehicle meets an obstacle head on. The
vehicle is the orange polygon, with pnb (t) at the nose tip. The obstacle is the solid
red circle. The vehicle and obstacle trajectories are the dashed blue and red line,
respectively. The dotted magenta circle shows dsafe, while Vc is shown as a semi-
opaque red sector with radius dswitch. The target is marked by an 'X', while the
heading from the nominal guidance law, ψndg, is drawn as a blue arrow.
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Figure 8.3: Distance between the vehicle and the obstacle in the �rst scenario(top),
and the angular velocity of ψndca2 (bottom), which was used during the collision
avoidance maneuver.
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Figure 8.4: The second scenario, where the obstacle is moving in a clockwise circle
starting to the left of the vehicle.
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Figure 8.5: Distance between the vehicle and the obstacle in the second sce-
nario(top), and the angular velocity of ψndca1 (bottom), which was used during
the collision avoidance maneuver.

110



8.5. Simulations

-20 -10 0 10 20

y [m]

0

10

20

30

40

x 
[m

]

time = 22.02 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x 
[m

]

time = 35 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x 
[m

]

time = 50.17 s

-20 -10 0 10 20

y [m]

0

10

20

30

40

x 
[m

]

time = 65 s

Figure 8.6: The third scenario, with a concave obstacle moving straight towards
the vehicle
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Figure 8.7: Distance between the vehicle and the obstacle when avoiding a convex
obstacle.

of two connected arms with circles of radius 3 m at the extremities. The circle radius
was used as input to (8.31) to obtain a minimum avoidance angle of αo = 0.72 rad,
while (8.33) gives a minimum switching distance of dswitch = 4.57 m, both of which
where used in the simulation. At time 22.02 s the obstacle comes within switching
distance. The vehicle travels along the edge of the obstacle until time 50.17 s,
when the direction to the target becomes safe and the vehicle continues towards
it. Figure 8.7 shows that d(t) ≥ dsafe during the simulation.
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8.6 Conclusions

In this chapter, we have applied the CAA algorithm presented in Chapter 7 to a
kinematically modeled unicycle with limited turning rate. In order to demonstrate
the applicability of the algorithm to vehicles with a limited speed envelope, and to
accentuate the advantage of using the vehicle speed as an input to, rather than an
output from, the algorithm, we have allowed the unicycle to maintain a constant
speed.

Under these conditions, we have applied the results of the algorithm analysis
in the previous chapter to derive conditions under which the vehicle is guaranteed
to avoid a moving obstacle. Speci�cally, we have derived a lower bound on the
switching distance in order to ensure that the vehicle is able to turn away from
the obstacle in time. Additionally, we have derived a lower bound on the safety
distance the vehicle must keep from the obstacle. If the safety distance is below
this bound, the aggressive maneuvering required to circumvent the obstacle may
make the required yaw rate exceed the limits of the vehicle. These theoretical
results have been validated through simulations.

The lower bound on the safety distance was used to �nd a lower bound on the
constant avoidance angle the vehicle will keep to the obstacle during the maneu-
ver. Hence, if we know the minimum radius of the obstacles the vehicle is likely
to encounter in a scenario, the CAA algorithm can be tuned appropriately. If the
obstacles are not circular, it is possible to use the minimum curvature of the obsta-
cles in the same manner to derive the avoidance angle. An analysis of maneuvers
around such obstacles is, however, beyond the scope of this thesis.

The bounds on the avoidance parameters depend on the maneuverability of
both the vehicle and the obstacle. In e�ect, the faster and more maneuverable the
obstacle is with respect to the vehicle, the larger safety distance, avoidance angle
and switching distance are required; a result which matches with intuition.

While the unicycle scenario presented in this chapter is valuable in and of itself,
it can also be seen as a �rst step in applying the CAA algorithm to a vehicle modeled
using the full dynamic 3 DOF maneuvering model described in Section 3.2.1. In the
next chapter, we will augment the unicycle model with the underactuated dynamics
of a marine vehicle, including the sideways sway movement induced by turning.
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Chapter 9

Including the Underactuated

Dynamics in the CAA Algorithm

Never mind maneuvers, always go at them.

� Patrick O'Brian, Master and Commander

While we in the previous chapter applied the CAA algorithm to a kinematically
modeled unicycle, we will in this chapter extend the vehicle model to include the
underactuated dynamics of marine vehicles steered by a rudder and a propeller.
Speci�cally, the vehicle will have an underactuation in the sideways (sway) speed,
which is induced when the vehicle turns. Thus, the vehicle course, which is the
direction of the vehicle's velocity vector, and the vehicle heading will not be the
same. We will modify the control system to steer the vehicle course, and will thus
show how conditions can still be found under which the CAA algorithm is guaran-
teed to make the vehicle avoid a moving obstacle. In doing so, we will in particular
examine the e�ect of the underactuation on the vehicle's total speed, which will
contain a component which is now time-varying.

We will start this chapter by giving a description of the underactuated vehicle
model in Section 9.1, and of the course controller and nominal guidance law in
Section 9.2. The CAA collision avoidance algorithm is summarized in Section 9.3,
and the performance of the system is analysed mathematically in Section 9.4. The
results are validated in the simulations section, Section 9.5, before the chapter is
concluded in Section 9.6.

The work presented in this chapter is based on Wiig et al. [113].

9.1 System description

9.1.1 Vehicle model

In this chapter we will consider a marine vehicle moving in 3 DOF. We model
the vehicle using the maneuvering model described in Section 3.2.1. However, we
assume that the directly actuated dynamics in surge ub and yaw rate rb are perfectly
controlled and hence can be neglected. These dynamics are included in the next
chapter.
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Assumption 9.1. The surge speed ub and yaw rate rb are perfectly controlled,
and can thus be considered as virtual control inputs. Furthermore, ub is positive
and constant.

The vehicle model then becomes:

ẋnb = ub cos(ψnb )− vb sin(ψnb ), (9.1a)

ẏnb = ub sin(ψnb ) + vb cos(ψnb ), (9.1b)

ψ̇nb = rb, (9.1c)

v̇b = Xv(ub)rb + Yv(ub)vb. (9.1d)

The terms Xv and Yv are linear in ub, and are de�ned in Section 3.2.1 and restated
in Appendix 9.A for convenience. Since ub is assumed to be constant, so are the
Xv and Yv terms. Hence, we will for brevity in this chapter employ the notation
Xv = Xv(ub) and Yv = Yv(ub). We ensure that the vehicle is nominally stable in
sway with the following assumption:

Assumption 9.2. The Yv term satis�es Yv < 0.

The direction of the vehicle's velocity vector is of main interest to us when
steering the vehicle to avoid an obstacle. We call this direction the vehicle course,
which we denote ψnf , where the frame f is called the Flow frame, as de�ned in
Fossen [35]. The Flow frame is obtained by rotating the b frame around the z-axis.
The angle between f and b is called the sideslip angle, which can be found from vb
and ub:

βb , ψnf − ψnb = atan2(vb, ub). (9.2)

In order to control the direction of the vehicle's velocity vector, we will control
the vehicle course instead of its heading ψnb . To this end, we express the model
using the �ow frame:

ẋnb = Ub cos(ψnf ), (9.3a)

ẏnb = Ub sin(ψnf ), (9.3b)

ψ̇nf = rf , (9.3c)

v̇b =
U2
b

Xvub + U2
b

(Xvrf + Yvvb) , (9.3d)

where Ub ,
√
u2
b + v2

b and the course rate rf is found as

rf ,

(
Xvub + U2

b

)
rf + Yvubvb

U2
b

. (9.4)

The following assumption is required to ensure that (9.3d) is well de�ned [12]:

Assumption 9.3. The Xv term satis�es Xv + ub > 0.
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9.1. System description

As long as Assumption 9.3 is satis�ed, the denominator of (9.3d) is bounded
by

Xvub + U2
b ≥ aub, a > 0. (9.5)

Hence, the expression for v̇b in (9.3d) is nonsingular. Furthermore, it is then ensured
that in the nominal case, when vb = 0, a change in the heading ψnb will always result
in a change in the course ψnf .

Remark 9.1. Assumption 9.3 imposes a restriction on the mechanical design on
the vehicle, namely that as the vehicle turns, at least some of its momentum is
kept in the forward direction. This is satis�ed for most marine vehicles.

9.1.2 Obstacle model

Recall from Section 7.1 that the obstacle is modeled as a unicycle-type, circular
vehicle of radius Ro:

ẋno = uo cos(ψno ), (9.6a)

ẏno = uo sin(ψno ), (9.6b)

ψ̇no = ro, (9.6c)

u̇o = ao, (9.6d)

where the obstacle yaw rate and acceleration are limited:

Assumption 9.4. The obstacle forward acceleration ao and course rate ro are
bounded by

ao ∈ [−aomax, aomax] , (9.7)

ro ∈ [−romax, romax] , (9.8)

where aomax ≥ 0 and romax ≥ 0 are constant parameters.

As in Chapter 7, we assume that the obstacle speed is upper bounded by the
vehicle forward speed. However, the mathematical analysis in Section 9.4 will show
that if the maneuvering capabilities of the vehicle are poor, the obstacle speed must
be restricted further:

Assumption 9.5. The obstacle forward speed uo satis�es uo ∈ [0, uomax], where

uomax <

{
2
√
−X2

v −Xvub −ub < Xv ≤ −ub2
ub −ub2 < Xv.

(9.9)

9.1.3 Control objective

The control system and the collision avoidance algorithm should make the vehicle
come within an acceptance distance da > 0 within a target position pnt = [xnt , y

n
t ]T

while keeping a minimum safety distance, dsafe, to the obstacle,

dob(t) ≥ dsafe > 0 ∀t ≥ t0. (9.10)
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9. Including the Underactuated Dynamics in the CAA Algorithm

Furthermore, the sway velocity of the vehicle is required to be bounded,

|vb(t)| < vsup ∀t ≥ t0 (9.11)

where vsup > 0 is a constant design parameter.

Assumption 9.6. The initial sway speed satis�es |vb(t0)| < vsup.

9.2 Control system

The control system has two modes, guidance mode and collision avoidance mode,
which are switched between according to a rule given in Section 9.3. The desired
course during guidance mode is given by a pure pursuit guidance law described in
Section 9.2.2, while in collision avoidance mode it is given by the CAA collision
avoidance algorithm, which we describe in Section 9.3.

9.2.1 Course controller

To obtain exponential course convergence, the desired course reference ψnfd is
tracked using the controller

rf = ψ̇nfd − kψψ̃nf , (9.12)

where kψ is a positive control gain. The course error ψ̃nf , ψnf −ψnd is de�ned to lie

in the interval ψ̃nf ∈ (−π, π], to ensure that the vehicle always makes the shortest
turn towards ψnd . From (9.3c) it is clear that (9.12) provides exponential stability of
the course error dynamics. We �nd the corresponding yaw rate by inserting (9.12)
into (9.4):

rb =
U2
b rf − Yvubvb
Xvub + U2

b

, (9.13)

which is ensured to be well de�ned by Assumption 9.3.

9.2.2 Guidance law

When the control system is in guidance mode, the course reference is given by a
pure pursuit guidance law [16, 44], which will steer the vehicle towards the target
position pnt by directing the vehicle course straight towards the target:

ψndg , Ψ(pnbt ) = atan2 (ynt − ynb , xnt − xnb ) , (9.14)

where ψndg ∈ [0, 2π) is the course reference and the function Ψ is de�ned in (2.5).

9.3 The CAA algorithm

The CAA algorithm will be used to provide course references when the control
system is in collision avoidance mode. While the algorithm is de�ned in Section 7.2,
it is summarized here for convenience.
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Figure 9.1: Geometry of the CAA algorithm.

The geometry of the algorithm is shown in Figure 9.1. Recall that the two
heading reference candidates during collision avoidance is

ψndcaj , ψnVej + γcaj , j = {1, 2}, (9.15)

where ψnVej is the heading of edge j of the extended vision cone and γcaj is the
compensation angle for the obstacle velocity:

γcaj = sin−1

(
uo sin(γvoj)

Ub

)
, j = {1, 2}. (9.16)

The angle γvoj is found geometrically as

γvoj = π − (ψno − ψnVej), j = {1, 2}. (9.17)

The vehicle will enter collision avoidance mode if the desired heading from the
nominal guidance law is within Vc when the vehicle is too close to the obstacle:

ψndg(t1) ∈ Vc(t1), (9.18a)

dob(t1) ≤ dswitch, dswitch > dsafe. (9.18b)

Nominal guidance towards the target will resume at a time t2 when ψndg(t2)
moves outside Vc(t2), in such a way that the vehicle course will not cross Vc,

j = 1 : ψndg(t2)− ψndca1(t2) ≤ 0,

j = 2 : ψndg(t2)− ψndca2(t2) ≥ 0.
(9.19)

The turning parameter j is chosen to make the vehicle seek to move behind the
obstacle:

j = arg max
j=1,2

|ψno (t1)− ψndcaj(t1)|, dob(t1) = dswitch. (9.20)
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9. Including the Underactuated Dynamics in the CAA Algorithm

If the obstacle is closer than dswitch when the vehicle enters collision avoidance
mode, the vehicle will make the shortest turn towards a safe direction:

j = arg min
j=1,2

|ψnf (t1)− ψndcaj(t1)|, dob(t1) < dswitch. (9.21)

9.4 Analysis

This section presents a mathematical analysis of the vehicle (9.3) when the collision
avoidance law in Section 9.3 is used in combination with the course controller and
guidance law in Section 9.2. Speci�cally, we derive conditions on the course control
gain kψ, the safety distance dsafe and the switching distance dswitch which ensure
that a circular obstacle moving with a time-varying velocity can be safely avoided.

When the course rate rf 6= 0, a sway motion vb is induced by (9.3d). To prevent
the vehicle from being driven into the obstacle by the sway motion, we need to
bound vb, which is done in the next two lemmas.

Lemma 9.1. Consider a vehicle modeled by (9.3). Suppose that the course rate
rf is dependent on the sway motion vb in such a way that for vb = vsup,

|rf (±vsup)| < |Yv|
|Xv|

vsup. (9.22)

Then, if |vb(t0)| < vsup, the solutions of vb are bounded by

|vb(t)| < vsup ∀t ≥ t0. (9.23)

Proof. Consider the Lyapunov function

V = 1
2v

2. (9.24)

The time derivative of V along the solutions of (9.3d) is

V̇ =
U2
b

U2
b +Xvub

(
Xvvbrf + Yvv

2
b

)
. (9.25)

When Assumption 9.2 holds, (9.25) is bounded by

V̇ ≤ U2
b

U2
b +Xvub

(
|Xv||vb||rf (vb)| − |Yv|v2

b

)
. (9.26)

Let the set ΩV be de�ned as

ΩV , {vb ∈ R | V ≤ 1
2v

2
sup}, (9.27)

which is a level set of V with vb = vsup on the boundary. Equation (9.22) ensures

that V̇ ≤ 0 on the boundary of ΩV . It follows that any solution of vb starting in
the set ΩV cannot leave it. Hence, if |vb(t0)| ≤ vsup, then |vb(t)| ≤ vsup ∀t ≥ t0.
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9.4. Analysis

We will use the sway bound vsup as a design parameter, which we can use to
set how aggressive the collision avoidance maneuver should be. A large vsup implies
a large turning rate and an aggressive maneuver, while a small vsup implies a less
aggressive maneuver. Before stating the next lemma, we de�ne the following term
for conciseness:

Fψ ,|Yv|vsup

 1

|Xv|
− 2

vsupuomax√
U2
bsup − u2

omax

(
Xvub + U2

bsup

)


− romax
uomax

ub
− aomax√

u2
b − u2

omax

,

(9.28)

where Ubsup ,
√
u2
b + v2

sup.

Remark 9.2. Since Ubsup increases with increasing vsup, it is always possible to
choose a vsup large enough to ensure a positive value of Fψ.

We also introduce the design parameter λψ ∈ (0, 1), which is used to prioritize
between the control gain kψ and the safety distance dsafe. A high value of λψ will
give priority to a high kψ, while a low value of λψ prioritizes a low dsafe.

Lemma 9.2. Consider a vehicle modeled by (9.3), controlled by the course con-
troller (9.12) - (9.13), with a desired course given by the collision avoidance law
(9.15). Let λψ ∈ (0, 1), and assume that the distance between the vehicle and the
obstacle satis�es dob(t) > dsafe ∀t ≥ t0. If Assumptions 9.1-9.4 hold, the course
control gain kψ satis�es

kψ ≤
λψ
π
Fψ, (9.29)

the safety distance dsafe satis�es

dsafe ≥
(Ubsup + uomax)

2

Ubsup

1

(1− λψ)Fψ
, (9.30)

and the initial sway speed satis�es |vb(t0)| ≤ vsup, then

|vb(t)| ≤ vsup ∀t ≥ t0 (9.31)

Proof. We prove Lemma 9.2 by �nding an upper bound on rf for a given vsup.
Lemma 9.1 is then applied by inserting the upper bound into (9.22), and solving
for kψ and dsafe to obtain (9.29) and (9.30).

Recall from Chapter 8 that the time derivative of ψndcaj is

ψ̇ndcaj = ψ̇nVej + γ̇caj (9.32)

where ψnVej is the heading to edge j of the extended vision cone Ve, and γcaj is the
compensation angle for the obstacle's velocity. The time derivative of ψnVej is found
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9. Including the Underactuated Dynamics in the CAA Algorithm

as in the same manner as in Chapter 8 as

ψ̇nVej =
Ub sin(γo − ψnf )− uo sin(γo − ψno )

Ro + dob

∓Ro
Ub cos(γo − ψnf )− uo cos(γo − ψnf )

(Ro + dob)
√
dob (2Ro + dob)

.

(9.33)

The time derivative of γcaj is found from (9.16) as

γ̇caj =
uo

(
sin(γvoj)

(
u̇o
uo
− U̇b

Ub

)
+ cos(γvoj)

(
ψ̇nVej − ψ̇

n
o

))
√
U2
b − u2

o sin2(γvoj)
, (9.34)

where

U̇b = Ubvb
Xvrf + Yvvb
Xvub + U2

b

, (9.35)

and γo is the angle between the x-axis and the vehicle-obstacle line, as shown in
Figure 9.1.

Note that ψ̇ndcaj depends on rf . Hence, when inserting (9.32) into the course
control law (9.12), we need to solve for rf in order to ensure that it is well de�ned.
The resulting expression for rf is of the form

rf =
Grn
Grd

, (9.36)

where

Grn , ψ̇nVej +
uo

(
sin(γvoj)

(
u̇o
uo
− Yvv

2
b

U2
b+Xvub

)
+ cos(γvoj)

(
ψ̇nVej − ψ̇

n
o

))
√
U2
b − u2

o sin2(γvoj)
− kψψ̃nf ,

(9.37)
and

Grd , 1 +
uo sin(γvoj)vbXv

(U2
b +Xvub)

√
U2
b − u2

o sin2(γvoj)
. (9.38)

Assumptions 9.3 and 9.5 ensure that (9.38) is well de�ned. In order for rf to
be well de�ned, it is required that Grd 6= 0. Since Grd(uo = 0) = 1, this can be
ensured by requiring that Grd is lower bounded by a positive value. Minimizing
with respect to γvoj gives a lower bound of (9.38) as

Grd > 1− uomax|vb||Xv|
(U2

b +Xvub)
√
U2
b − u2

omax

:= Grdinf . (9.39)

Minimizing (9.39) with respect to vb and solving for uomax gives the following
bound on uomax to ensure that Grd > 0 for all uo ∈ [0, uomax]:

uomax <

{
2
√
−X2

v −Xvub −ub < Xv ≤ −ub2
ub −ub2 < Xv.

(9.40)
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9.4. Analysis

Assumption 9.5 ensures that (9.40) is satis�ed.
When dob ≥ dsafe, a bound on |Grn| can be found by using Assumption 9.2,

which states that Yv is negative, Assumption 9.4, which bounds the heading rate
and acceleration of the obstacle, and Assumption 9.5, which bounds the obstacle
speed:

|Grn| <
v2

sup|Yv|uomax√
U2
bsup − u2

omax

(
X + U2

bsup

) + romax
uomax

ub

+
aomax√
u2
b − u2

omax

+
(Ubsup + uomax)

2

dsafeUbsup
+ kψπ := Grnsup.

(9.41)

Equations (9.39) and (9.41) are even in vsup, hence

|rf (±vsup)| < Grnsup

Grdinf
. (9.42)

Inserting (9.42) into (9.22) bounds dsafe and kψ to:

(Ubsup + uomax)
2

dsafeUbsup
+ kψπ ≤ Fψ, (9.43)

where Fψ is given in (9.28). The design parameter λψ can be used to rewrite (9.43)
as

(Ubsup + uomax)
2

dsafeUbsup
+ kψπ ≤ λψFψ + (1− λψ)Fψ. (9.44)

Hence, conditions (9.29) and (9.30) ensure that (9.43), and thus (9.22), is satis-
�ed. Lemma 9.1 then applies, and it follows that if |vb(t0)| < vsup, then |vb(t)| <
vsup ∀t > t0.

In the next lemma, we will derive a bound on the minimum required switching
distance dswitch. In this lemma we will employ the sine integral function Si, which
is de�ned as

Si(τ) =

∫ τ

0

sin(τ̂)

τ̂
dτ̂ . (9.45)

Lemma 9.3. Consider a vehicle modeled by (9.3), controlled by (9.12) - (9.13).
Let the vehicle enter collision avoidance mode at time t1, with d(t1) = dswitch.
Let Assumptions 9.1 and 9.5 hold, the vehicle speed satisfy Ub < Ubsup, and the
switching distance satisfy

dswitch ≥ uomaxtε + dsafe + dturn, (9.46)

where

tε , −
ln(ε/π)

kψ
, ε ∈ (0, π/2] (9.47)

is an upper bound on the time it takes for the vehicle to converge to within ε rad
of ψndcaj, and

dturn ,
Ubsup

kψ
Si(

π

2
). (9.48)
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dturn

dsafe

uomaxtε
dswitch

Figure 9.2: Illustration of the minimum switching distance.

is the maximum distance covered in the initial longitudinal direction of the vehicle
when making a π/2 turn. Then, the vehicle is able to converge to within ε rad of
ψndcaj before the obstacle can be within dsafe of the vehicle.

Proof. We will prove Lemma 9.3 by showing that the distance traveled by the
vehicle and the obstacle towards each other while the vehicle is turning is not
enough to make the vehicle come within dsafe of the obstacle. The idea behind the
proof is illustrated in Figure 9.2.

Without loss of generality, let xno (t1) > xnb (t1). Consider a worst case scenario
where Ro →∞, so that the obstacle tangents are ψnVoj = ±π/2, j = {1, 2}, and let
the vehicle and obstacle move at maximum speed towards each other: Ub → Ubsup,
ψnf (t1) = 0, uo = uomax and ψno (t1) = π. The worst case behavior of the obstacle is
then to continue moving at maximum speed and course ψno (t ≥ t1) = π.

As the vehicle enters collision avoidance mode, it starts to turn towards ψndcaj .
The course error dynamics, obtained by inserting the course controller (9.12) into
(9.3c), are

˙̃
ψnf = −kψψ̃nf , (9.49)

which has the solution
ψ̃nf (t) = ψ̃nf (t0)e−kψ(t−t0). (9.50)

From the de�nition of ψ̃nf , the initial condition is bounded by |ψ̃nf (t0)| ≤ π, and

hence ψ̃nf (t) = ψ̃nf (t0)e−kψ(t−t0). It follows that the convergence time of the course

error to |ψ̃nf | ≤ ε, where ε ∈ (0, π/2], is bounded by

t− t0 ≤ −
ln(ε/π)

kψ
:= tε. (9.51)
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9.4. Analysis

Hence, the distance covered by the obstacle towards the vehicle is upper bounded
by uomaxtε.

The distance traveled by the vehicle in the x direction before it has turned ±π/2
rad is upper bounded by the distance traveled when making a π/2 turn. This can
be found by solving (9.3a) when inserting ψ̃nf (t) = −π2 e

−kψt:∫ ∞
0

Ubsup cos(ψ̃nf +
π

2
)dt

=

∫ ∞
0

Ubsup cos(
π

2
− π

2
e−kψt)dt =

Ubsup

kψ
Si(

π

2
).

(9.52)

It follows that if (9.46) holds, then the distance from the obstacle to the vehicle
trajectory will not be less than dsafe before the vehicle course has converged to
within ε rad of ψndcaj , and this also holds for the distance dob from the obstacle to
the vehicle.

Before we state the main theorem of this chapter, we assume that the target
position is outside the circle of convergence around the obstacle:

Assumption 9.7. The distance dot(t) from an obstacle to the target position pnt
satis�es

dot(t) ≥
Ro

cos(αo)
−Ro ∀t ≥ t0. (9.53)

In addition, the vehicle must be able to start safely:

Assumption 9.8.

dob(t0) > dswitch. (9.54)

Finally, we assume that if there are more than one obstacle, they are far enough
apart to make it possible to consider them one by one:

Assumption 9.9. The distance between any two obstacles are always at least
2dswitch.

We are now ready to state the main theorem:

Theorem 9.4. Let Assumptions 9.1-9.9 hold, the avoidance angle satisfy

α0 ∈
[
cos−1

(
Ro

Ro + dsafe

)
+ ε,

π

2

)
(9.55)

and the switching distance satisfy

dswitch ≥ uomaxtε + dsafe + dturn. (9.56)

Furthermore, let the course control gain kψ and safety distance dsafe satisfy the
conditions of Lemma 9.2:

kψ ≤
λψ
π
Fψ, (9.57)
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dsafe ≥
(Ubsup + uomax)

2

Ubsup

1

(1− λψ)Fψ
, (9.58)

for λψ ∈ (0, 1), and let the target reaching acceptance distance satisfy

da >
Ubsup|Xv|

|Yv|vsup − |Xv|kψπ
. (9.59)

Then, a vehicle described by (9.1), controlled by the yaw rate and course controller
(9.12) - (9.13), the guidance law (9.14) and the collision avoidance law (9.15) will
maneuver among obstacles described by (9.6) while ensuring that.

dob(t) ≥ dsafe > 0 ∀t ≥ t0. (9.60)

Furthermore, if there is just one obstacle, then there is a time tf > t0 at which the
vehicle will arrive at the target position pnt .

Proof. An upper bound on the required turning rate of the pure pursuit guidance
law (9.14) can be found geometrically as:

|ψ̇ndg| <
Ubsup

da
(9.61)

Inserting (9.61) into the course controller (9.12) gives the following maximum
course rate when the system is in nominal guidance mode:

|rf | <
Ubsup

da
+ kψπ. (9.62)

From Lemma 9.1 it then follows that if

da >
Ubsup|Xv|

|Yv|vsup − |Xv|kψπ
, (9.63)

and |vb(t0)| < vsup, then |vb(t)| < vsup until a time t1 when the vehicle enters
collision avoidance mode. It then follows from Lemma 9.2 that vb is bounded by

|vb(t)| < vsup ∀t ∈ [t0, tf ]. (9.64)

Hence, the vehicle speed is bounded by Ub < Ubsup. Let the distance to the obstacle
be reduced to dswitch at a time t1, making the vehicle enter collision avoidance mode
as described in Section 7.2.2. Lemma 9.3 then ensures that there is a time t2 > t1
when d(t2) >= dsafe and ψnf (t2) − ψndca(t2) ≤ ε. Since ψ̃nf = 0 is an exponentially
stable equilibrium, it is then assured that

ψnf (t)− ψndca(t) ≤ ε, ∀t ∈ [t2, t3], (9.65)

where t3 is the time when the vehicle will exit collision avoidance mode. Condition
(9.55) can then be used along with Lemma 7.2 to ensure that

dob(t) ≥ dsafe ∀t ∈ [t2, t3]. (9.66)
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Since the vehicle circles around the obstacle, there will be a time t3 > t2 when
the line of sight to the target pnt will be outside of Vc, and hence have a larger
avoidance angle than αo to Vo. The vehicle will then exit collision avoidance mode
and proceed towards the target.

A nearby obstacle may turn so that ψndg comes within Vc at a time when
dob < dswitch, making the vehicle enter collision avoidance mode when (9.56) is
not satis�ed. However, since vndca1 and vndca2 are �rst order di�erentiable, and ψndca

is then chosen to be the closest of vndca1 and vndca2 by (9.20), the vehicle is imme-
diately able to follow ψndca to avoid the obstacle again.

Finally, since ub > uomax, the vehicle will eventually escape the obstacle, and
thus reach the target. The control objectives in Section 9.1.3 are thus met, which
concludes the proof.

9.5 Simulations

In this section we present numerical simulations of an underactuated marine vehicle
using the CAA collision avoidance algorithm. The simulated vehicle is a Hugin
autonomous underwater vehicle [43] operating in a horizontal plane. The vehicle
surge speed is set to ub = 2 m/s, and the maximum allowable sway speed is set to
vsup = 4 m/s. It can be veri�ed that Assumption 9.2 is satis�ed with Yv = −1.10,
and that Assumption 9.3 is satis�ed with Xv = −1.59.

The �rst scenario contains a circular obstacle with radius Ro = 10 m. The
maximum obstacle speed is uomax = 1.35 m/s, which satis�es Assumption 9.1. The
obstacle keeps the maximum speed, and hence does not accelerate. The maximum
turning rate is set to romax = 0.25 rad/s. The course control gain kψ is set to 0.37,
and the safety distance is set to dsafe = 10 m, which satis�es the conditions of
Lemma 9.2 with λψ = 0.6. The convergence parameter ε is set to ε = 0.1 rad. A
lower bound on the avoidance angle is then given by (9.55) as αo = 1.15 rad, while
a minimum switching distance is given by (9.56) as dswitch = 39.1 m, both of which
are used in the simulation.

The vehicle and obstacle behavior in the �rst scenario is illustrated in Fig-
ure 9.3. The obstacle starts in front of the vehicle on a head on collision course,
and is set to turn with the maximum turning rate towards the vehicle in order
to pursue it. At time 7.73 s the vehicle reaches the switching distance dswitch from
the obstacle, and enters collision avoidance mode in accordance with the switching
rule in Section 9.3. Since the obstacle and vehicle is on a head on collision course,
the choice of turning direction given in (9.20) becomes random. In this case, the
vehicle makes a starboard turn.

Figure 9.4 shows that dob > dsafe, even though the obstacle is in pursuit of
the vehicle. Furthermore, the vehicle sway vb is well within the designated vsup,
suggesting that the requirements on dsafe and kψ are conservative. Hence, the sim-
ulation supports the theoretical results given by Theorem 9.4. At time 70.03 s, the
direction from the vehicle to the target comes outside the compensated vision cone
Vc, and following (9.19) the vehicle exits collision avoidance mode and enters guid-
ance mode. It then proceeds towards the target using the pure pursuit guidance
law (9.14).
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Figure 9.3: The �rst scenario, with a circular obstacle in pursuit of the vehicle.
The vehicle is shown in orange, while the obstacle is a solid red circle. The vehicle
and obstacle trajectories are a dashed blue and a dashed red line, respectively. A
dashed magenta circle shows dsafe, while Vc is shown as a semi-opaque red sector
with radius dswitch. The target position is marked by an 'X', while the desired
heading from guidance is marked as a blue arrow. For clarity, the size of the vehicle
has been exaggerated in the �gure.
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Figure 9.4: Obstacle distance and vehicle sway in the second scenario.
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Figure 9.5: The third scenario, where the obstacle has the shape of a ship.

The mathematical analysis in Section 9.4 only applies to circular obstacles.
However, the proposed collision avoidance algorithm may also be applied to obsta-
cles of a more general shape. This is demonstrated in the second scenario, where
the obstacle has the shape of a ship that is 70 m long and 10 m wide. The simulation
parameters are the same as in the �rst simulation. Figure 9.5 shows the behavior of
system during the simulation, where the obstacle moves along a straight line from
left to right, crossing in front of the vehicle.

Figure 9.6 shows that dob > dsafe and vb < vsup during the maneuver. Note,
however, that the analysis in Section 9.4 only applies for circular obstacles, or for
obstacles modeled as a circular domain covering it. In this case, the covering domain
would be quite large compared to the obstacle. Hence, the simulation demonstrates
that a circular obstacle shape is a conservative requirement.

9.6 Conclusions

In this chapter, we have applied the CAA collision avoidance algorithm presented
in Chapter 7 on a vehicle with underactuated dynamics. Speci�cally, we have exam-
ined a vehicle which is underactuated in sway, an underactuation seen for example
in marine vehicles steered by a rudder and a propeller.

When such a vehicle turns, a sway speed is induced. Typically, the sway motion
induced when the vehicle turns away from an obstacle will make the vehicle glide
towards the obstacle. In e�ect, the vehicle course will thus bring the vehicle closer
to the obstacle than the vehicle heading would imply. We have addressed this issue
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Figure 9.6: Obstacle distance and vehicle sway in the third scenario.

by implementing a course controller, and by letting the CAA algorithm steer the
vehicle course rather than the vehicle heading.

A marine vehicle often has limited forward acceleration and a limited surge
speed envelope in which it retains controllability of the vehicle heading. To show
that the algorithm is applicable to such marine vehicles, we have restricted the
surge speed to always remain constant. The underactuated sway component of the
vehicle velocity adds a time-varying component to the total speed of the vehicle.
Since the CAA algorithm uses the vehicle speed as an input, this component is
inherently accounted for by the algorithm. However, in order to derive a minimum
safe switching distance, we have derived conditions under which the sway movement
remains bounded during the maneuver. Under these conditions, it is furthermore
ensured that the output from the course controller is well de�ned.

To derive these conditions we have used the upper bound on the sway movement
as a design parameter. This bound has then been used to �nd a course control gain
and a minimum safety distance. A small safety distance will make the vehicle ma-
neuver aggressively as it circumvents the obstacle, while a large course control gain
will make the vehicle turn away from the obstacle when entering collision avoid-
ance too sharp. We have shown how these parameters can be balanced against each
other, and have thus provided su�cient conditions in order to guarantee collision
avoidance.

The theoretical results have been validated by simulations showing successful
avoidance of both a circular obstacle in pursuit of the vehicle, and a ship-shaped
obstacle crossing in front of the vehicle. The simulations imply that the theoret-
ical conditions for collision avoidance are quite conservative; the sway movement
remained well below the designed limit throughout the maneuver.

In the next chapter, we will apply the CAA algorithm to a vehicle modeled using
a full 3 DOF maneuvering model, including dynamics in the directly actuated surge
and yaw variables.
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9.A Functional expressions

The functions Xv and Yv are de�ned in Chapter 3, and reiterated here for conve-
nience:

Xv(ub) ,
m2

23 −m11m33

m22m33 −m2
23

ub +
d33m23 − d23m33

m22m33 −m2
23

, (9.67)

Yv(ub) ,
(m22 −m11)m23

m22m33 −m2
23

ub −
d22m33 − d32m23

m22m33 −m2
23

, (9.68)

129





Chapter 10

The CAA algorithm for

underactuated surface vehicles

Helge Ingstad, drei! (Helge Ingstad, turn!)

� Resigned crewman of the tanker T/S Sola, moments before colli-
sion with the frigate KNM Helge Ingstad, November 8, 2018

In this chapter, we will implement the CAA algorithm on a marine vehicle modeled
using a complete 3 DOF kinematic and dynamic model. We will build on the results
of the previous chapter, and will extend the control system to include controllers
in the directly actuated surge and yaw variables.

When the vehicle enters collision avoidance mode, there is a discontinuity in
the desired yaw rate. We will remove this discontinuity using a simple, linear bump
function, and we will show how this function can be incorporated in the analysis.
Furthermore, we will augment the course controller to include a saturation, which
gives better control of the turning rate of the vehicle. Thus, the conditions under
which collision avoidance is guaranteed will be less conservative than in Chap-
ter 9. We will, however, show how simulations and experiments still imply some
conservativeness of the conditions.

While we in Chapters 8 and 9 focused on target reaching as the nominal control
objective, we will in this chapter also examine the behavior of the algorithm in
combination with the line of sight path following guidance law. By proving that
the vehicle is able to safely reach its control objectives in both a target reaching and
a path following scenario, we will demonstrate the modular nature of the algorithm.
The results are validated through both numerical simulations and through full-scale
experiments on the R/V Gunnerus, where we also include scenarios with multiple
obstacles.

The remainder of this chapter is organized as follows: The vehicle, obstacle
and control objectives are described in Section 10.1. The CAA collision avoidance
algorithm is summarized in Section 10.2, while the target reaching and path fol-
lowing guidance laws are given in Section 10.3. The controller used to follow the
course references from these algorithms is presented in Section 10.4, which includes
the smoothing function ensuring that the resulting yaw rate reference trajectory
is feasible. The surge and yaw rate controllers are presented in Section 10.5. A
mathematical analysis of the system is provided in Section 10.6, which gives condi-
tions of provable safe maneuvering. The results are validated through simulations
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10. The CAA algorithm for underactuated surface vehicles

in Section 10.7 and experiments in Section 10.8, before some concluding remarks
are given in Section 10.9.

The work presented in this chapter is based on Wiig et al. [119].

10.1 System description

The vehicle is modeled using a full 3 DOF model as described in Section 3.2.1.
Recall that the vehicle kinematics and dynamics, expressed in component form,
are

ẋnb = ub cos(ψnb )− vb sin(ψnb ), (10.1a)

ẏnb = ub sin(ψnb ) + vb cos(ψnb ), (10.1b)

ψ̇nb = rb, (10.1c)

u̇b = Fu(ub, vb, rb) + τu, (10.1d)

v̇b = Xv(ub)rb + Yv(ub)vb, (10.1e)

ṙb = Fr(ub, vb, rb) + τr. (10.1f)

The functions Fu(vb, rb), Xv(ub), Yv(ub) and Fr(ub, vb, rb) contain mass and damp-
ing parameters. The functions are de�ned in Section 3.2.1, and restated in Appendix
10.A for convenience.

Since the vehicle dynamics in (10.1) are described using a maneuvering model,
we assume that the vehicle operates at maneuvering speed:

Assumption 10.1. The vehicle surge speed ub satis�es ub ≥ ubmin, where ubmin >
0 is a constant parameter.

To ensure that the vehicle is nominally stable in sway (10.1e), we make the
following assumption on Yv(ub):

Assumption 10.2. The function Yv(ub) satis�es

Yv(ub) < 0,∀ ub > ubmin. (10.2)

If Assumption 10.2 does not hold, then a small disturbance in sway would lead
to a steadily increasing sway motion, which is not the case for commercial vessels
by design.

10.1.1 The Flow frame

The vehicle velocity in the Body frame b, vbb/n , [ub, vb]
T , contains a forward and

a sideways velocity component. For collision avoidance purposes, we are interested
in the magnitude and direction of vbb/n, rather than the forward speed and heading
of the vehicle. Like in the previous chapter, we can express this through the Flow
frame f , which is a body-�xed frame rotated so that its x-axis is aligned with the
�ow of water around the vehicle as de�ned in Fossen [35]. The rotation from b to
f is a rotation of the sideslip angle βb around the z-axis, where βb , atan2(vb, ub).
Hence, the vehicle kinematics can be expressed as

ẋnb = Ub cos(ψnf ), (10.3a)
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ẏnb = Ub sin(ψnf ), (10.3b)

ψ̇nf = rf , (10.3c)

where ψnf , ψnb + β is termed the vehicle course and Ub ,
√
u2
b + v2

b . The course
rate rf is found by taking the time derivative of βb and inserting for v̇b (10.1e):

rf , ψ̇nf =

(
Xv(ub)ub + U2

b

)
rb + Yv(ub)ubvb − u̇bvb
U2
b

. (10.4)

The expression for v̇b as a function of rf is found as

v̇b =
U2
b (Xv(ub)rf + Yv(ub)vb)

Xv(ub)ub + U2
b

+
Xv(ub)vbu̇b
Xv(ub) + U2

b

. (10.5)

In order for (10.5) to be well de�ned, the following assumption needs to be met
[12]:

Assumption 10.3. The function Xv(ub) satis�es

Xv(ub) + ub > 0 ∀ ub > ubmin. (10.6)

Remark 10.1. This assumption ensures that a change in the vehicle heading ψnb
will always result in a change in the vehicle course in the nominal case when u̇b = 0
and vb = 0. This is the case for most marine vehicles by design.

10.1.2 Control objective

The nominal control objective in this chapter is either target reaching or path
following. When the system is in target reaching mode, then the control system
should make the vehicle come withing an acceptance distance da > 0 within a
target position pnt = [xnt , y

n
t ]T .

When the system is in path following mode, the control system should make
the vehicle converge to and follow a straight-line path. To simplify the analysis,
without any loss of generality, the desired path P lies along the x-axis of the n
frame:

P , {(x, y) ∈ R2 : y = 0}. (10.7)

Both of these objectives should be met while keeping a minimum safety distance,
dsafe, to the obstacle,

dob(t) ≥ dsafe > 0 ∀t ≥ t0. (10.8)

Furthermore, these control objectives should be met while maintaining a desired
surge speed ubd ≥ ubmin, which we set to be constant.

10.1.3 Obstacle model

As in the previous chapters, we model the obstacle as a unicycle-type, circular
vehicle of radius Ro:

ẋno = uo cos(ψno ), (10.9a)
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10. The CAA algorithm for underactuated surface vehicles

ẏno = uo sin(ψno ), (10.9b)

ψ̇no = ro, (10.9c)

u̇o = ao, (10.9d)

where the obstacle yaw rate and acceleration are limited:

Assumption 10.4. The obstacle forward acceleration ao and yaw rate ro are
bounded by

ao ∈ [−aomax, aomax] , (10.10)

ro ∈ [−romax, romax] , (10.11)

where aomax ≥ 0 and romax ≥ 0 are constant parameters.

In this chapter we also need to assume that the obstacle yaw rate and acceler-
ation are continuous:

Assumption 10.5. The obstacle forward acceleration ao(t) and yaw rate ro(t) are
continuous signals.

The obstacle speed is assumed to be upper bounded by the desired vehicle
surge speed. As in Chapter 9, the obstacle speed will be further restricted if the
maneuvering capabilites of the vehicle are poor:

Assumption 10.6. The obstacle forward speed uo satis�es uo ∈ [0, uomax], where

uomax <

{
2
√
−X2

vd −Xvdubd −ub < Xvd ≤ −ubd2
ubd −ubd2 < Xvd,

(10.12)

where Xvd , Xv(ubd).

10.2 The CAA algorithm

The CAA algorithm de�ned in Section 7.2 will be used to provide course references
when the control system is in collision avoidance mode. As in the previous chapters,
we will summarize the algorithm here for convenience.

The geometry of the algorithm is shown in Figure 10.1. Recall that the two
heading reference candidates during collision avoidance is

ψndcaj , ψnVej + γcaj , j = {1, 2}, (10.13)

where ψnVej is the heading of edge j of the extended vision cone and γcaj is the
compensation angle for the obstacle velocity:

γcaj = sin−1

(
uo sin(γvoj)

Ub

)
, j = {1, 2}. (10.14)

The angle γvoj is found geometrically in Figure 10.1 as

γvoj = π − (ψno − ψnVej), j = {1, 2}. (10.15)
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Figure 10.1: Geometry of the CAA algorithm.

The vehicle will enter collision avoidance mode if the desired heading from the
nominal guidance law is within Vc when the vehicle is too close to the obstacle:

ψndg(t1) ∈ Vc(t1), (10.16a)

dob(t1) ≤ dswitch, dswitch > dsafe. (10.16b)

Nominal guidance towards the target will resume at a time t2 when ψndg(t2)
moves outside Vc(t2), in such a way that the vehicle course will not cross Vc,

j = 1 : ψndg(t2)− ψndca1(t2) ≤ 0,

j = 2 : ψndg(t2)− ψndca2(t2) ≥ 0.
(10.17)

The turning parameter j is chosen to make the vehicle seek to move behind the
obstacle:

j = arg max
j=1,2

|ψno (t1)− ψndcaj(t1)|, dob(t1) = dswitch. (10.18)

If the obstacle is closer than dswitch when the vehicle enters collision avoidance
mode, the vehicle will make the shortest turn towards a safe direction:

j = arg min
j=1,2

|ψnf (t1)− ψndcaj(t1)|, dob(t1) < dswitch. (10.19)

10.3 Nominal guidance laws

When the control system is not in collision avoidance mode, it is in nominal guid-
ance mode. In this mode, the vehicle course is steered by a guidance law in order to
ful�ll the goals of the current scenario. The modular nature of the control system
makes it possible to implement a wide array of guidance laws, and in this chapter
we will present two examples. The �rst guidance law is for target reaching, which
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we will achieve using the pure pursuit guidance law also used in Chapters 8 and 9.
The second guidance law is a line of sight (LOS) guidance law for path following
of straight-line paths.

10.3.1 Pure pursuit guidance

The pure pursuit guidance law [16, 44] is a target reaching guidance law which
we will employ when we wish to make the vehicle reach a static target position
pnt , [xnt , y

n
t ]. To reach the target as soon as possible, we set the desired course to

point towards the target position:

ψnpp , Ψ(pnbt ) = atan2(ynt − ynb , xnt − xnb ), (10.20)

where ψnpp is the desired course during pure pursuit guidance and the function Ψ
is de�ned in (2.5).

Remark 10.2. If the target was not static, a velocity compensation term like the
one computed in (10.14) could be used to compensate for the target velocity. The
resulting course reference would then make the vehicle reach a (slower moving)
target.

10.3.2 Line of sight guidance

In Chapters 4 and 5 we examined the integral line of sight (ILOS) path following
law for underactuated surface vehicles in the presence of ocean currents. In this
chapter, as the guidance law will provide course rather than heading references,
we will assume that the e�ect of the ocean current us negligible, and remove the
integral e�ect. LOS guidance without integral e�ect has been analyzed in Fossen
and Pettersen [36], where it was proved that it provided uniform semiglobal expo-
nential path convergence when applied to an underactuated marine vehicle as the
one modeled in (10.1).

The guidance law is illustrated in Figure 10.2. The idea is to mimic the way an
experienced helmsman steers a vehicle by aiming the vehicle course towards a point
ahead of it on the path. Speci�cally, the target point lies a lookahead distance ∆
meters ahead of the vehicle along the path, where ∆ is a positive control parameter.

The LOS guidance law steers the vehicle almost straight towards the path when
far away, and more parallel to the path as the vehicle gets closer. Thus, the vehicle
makes a smooth turn onto the path.

In order to follow the path P (10.7), the LOS guidance law is de�ned as:

ψnlos , atan2(−ynb ,∆), (10.21)

where ψnlos is the desired course during LOS guidance.

10.4 Course controller

In this section we will present the course controller used to follow the references
from either the CAA guidance law or from a nominal guidance law. The course
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Figure 10.2: Illustration of the LOS guidance law steering the orange vehicle onto
the path P, which is drawn as a solid black line.

controller gives references to the yaw rate controller presented in Section 10.5, and
is implemented as a proportional controller. To limit the turning rate, and hence
the induced sway motion, the proportional e�ect is saturated. The controller is
de�ned as:

rfd , ψ̇nfd − sat(kψψ̃
n
f , σψ), (10.22)

where rfd is the desired course rate signal, the course error is denoted ψ̃nf ,
ψnfd − ψnf ∈ (−π, π], the control gain kψ is a positive design parameter, and ψnfd is
the course reference from either one of the nominal guidance laws presented in Sec-
tion 10.3, or from the CAA collision avoidance law in Section 10.2. The saturation
function sat is de�ned as

sat(a, b) ,


b, a > b,

a, a ∈ [−b, b],
−b, a < −b.

(10.23)

The saturation parameter σψ > 0 is a constant design parameter. In order to ensure

that the saturation is in e�ect on an error in the interval ψ̃nf ∈ (−π, π], we make
the following assumption on σψ:

Assumption 10.7.

σψ ≤ kψπ. (10.24)

Remark 10.3. If Assumption 10.7 is not met, the saturation will not have any
e�ect and can be removed.

A yaw rate reference signal r̄bd is then created by solving (10.4) for rb:

r̄bd ,
U2
b rfd − Yv(ub)ubvb + u̇bvb

Xv(ub)ub + U2
b

. (10.25)

This signal is ensured to be well de�ned by Assumption 10.3. Note that, when the
control system switches mode, there is a discontinuity in r̄bd. To avoid this, we will
in the next section introduce a bump function to ensure that the yaw rate signal
is always continuous.
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10.4.1 Yaw rate bump function

To avoid discontinuities in the desired yaw rate, and thus ensuring that the yaw
rate controller in Section 10.5 is always able to follow the yaw rate reference, we
introduce a linear bump function bump(tb):

bump(tb) =


1, tb ≥ Tb,
tb
Tb
, 0 < tb < Tb,

0, tb ≤ 0,

(10.26)

where the bump time Tb is a positive constant.
As long as the yaw rate signal r̄bd from (10.25) is smooth, rbd = r̄bd. However,

if there is a jump in r̄bd at time t1, we apply the bump function:

rbd(t) = rbd(t1) [1− bump(t− t1)] + r̄bd(t)bump(t− t1). (10.27)

This ensures that when t ≥ t1 + Tb, rbd(t) = r̄bd(t). If, at a time t2 ∈ (t1, t1 +
Tb), rbd(t2) = r̄bd(t2), use of the smoothing function is stopped until the next
discontinuity in r̄bd.

Remark 10.4. The value of Tb is a tuning parameter, which can be chosen to
make the desired course rate comply with actuator constraints.

10.5 Surge and yaw rate controllers

The surge (10.1d) and yaw rate (10.1f) are controlled using the feedback linearizing
controllers introduced in Section 4.2.2:

τu = −Fu(ub, vb, rb) + u̇bd − ku(ũb), (10.28a)

τr = −Fu(ub, vb, rb) + ṙbd − kr(r̃b), (10.28b)

where ku > 0 and kr > 0 are constant control gains, and ũb , ub − ubd and
r̃b , rb − rbd.

Inserting these controllers into (10.1d) and (10.1f) gives the following error
dynamics:

˙̃ub = −kuũb, (10.29a)

˙̃rb = −kr r̃b. (10.29b)

The error dynamics are linear, and globally exponentially stable at the origin.
Hence, as long as rbd and ubd are continuous signals, a vehicle described by (10.1)
will be able to follow them as long as the following assumption is met:

Assumption 10.8. At time t0, the system has operated long enough for the surge
and yaw rate to converge, i.e. ũb(t0) = 0 and r̃b(t0) = 0.

Remark 10.5. To ful�ll this assumption, the vehicle needs to be properly ini-
tialized before control is handed over to the automatic collision avoidance system,
which is reasonable.
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Remark 10.6. We have assumed that the vehicle is able to follow the surge speed
reference during the maneuver. However, if there is a perturbation in the vehicle
surge, the CAA algorithm will compensate the desired course according to the
actual surge speed, as seen in (10.14). Thus, the output from the algorithm remains
safe.

10.6 Analysis

This section contains a mathematical analysis of the system when in collision avoid-
ance mode. For this section, we make the following assumption:

Assumption 10.9. The distance between any two obstacles are always at least
2dswitch.

This assumption ensures that the vehicle will only have to avoid one obstacle
at a time. We will throughout this section use the notation Xvd = Xv(ubd) and
Yvd = Yv(ubd).

10.6.1 Upper bound on the vehicle sway

During the collision avoidance maneuver, the switching distance and the required
course rate of the vehicle will depend on the vehicle's total speed Ub =

√
u2
b + v2

b .
To �nd an upper bound on the Ub, we need to �nd an upper bound on the sway
movement vb. This is done in the following lemma.

Lemma 10.1. Let the vehicle be modeled by (3.26), and let Assumptions 10.2-
10.8 hold. Suppose that rfd depends on the vehicle sway speed vb, and that for
vsup > 0,

|rfd(vsup)| < |Yvd|
|Xvd|

vsup. (10.30)

Finally, let vb(t0) < vsup. Then,

vb(t) < vsup ∀t ≥ t0. (10.31)

Proof. When Assumption 10.8 holds, Lemma 10.1 is equivalent to Lemma 9.1 in
the previous chapter.

We will treat vsup as a design parameter. This parameter is in the next section
used to �nd bounds on the minimum safety distance dsafe and on the course con-
trol proportional saturation σψ, and can be used to adjust the aggressiveness of
the collision avoidance maneuver to satisfy both scenario preferences and actuator
constraints.
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10.6.2 Bounds on safety distance and course control saturation

Before stating the next lemma, we recall the following term from Chapter 9:

Fψ ,|Yvd|vsup

 1

|Xvd|
− 2

vsupuomax√
U2
bsup − u2

omax

(
Xvdubd + U2

bsup

)


− romax
uomax

ub
− aomax√

u2
b − u2

omax

,

(10.32)

where Ubsup ,
√
u2
bd + v2

sup.

We also introduce the design parameter λψ ∈ (0, 1), which is used to prioritize
between the course control proportional saturation σψ and the safety distance dsafe.
A high value of λψ will give priority to a high σψ, which will enable the vehicle
to turn faster, while a low value of λψ prioritizes a low dsafe, which will require a
higher turning rate as the vehicle will maneuver closer to the obstacle.

Lemma 10.2. Consider a vehicle modeled by (10.1). Let the vehicle be governed
by the surge and yaw rate controllers (10.28) and the course controller (10.22). Let
the control system enter collision avoidance mode at time t1, and let the course
then be guided by the CAA algorithm (10.13). Furthermore, assume that the ve-
hicle course satis�es ψnf (t2) = ψndca(t2) at some time t2 ≥ t1 + tb. Finally, let
λψ ∈ (0, 1), and assume that the distance between the vehicle and the obstacle
satis�es dob(t) > dsafe ∀t ≥ t1. If Assumptions 10.1-10.9 hold, the course control
proportional saturation σψ satis�es

σψ ≤ λψFψ, (10.33)

the safety distance dsafe satis�es

dsafe ≥
(Ubsup + uomax)

2

Ubsup

1

(1− λψ)Fψ
, (10.34)

and the sway speed satis�es |vb(t0)| < vsup, then

|vb(t)| < vsup ∀t ≥ t0. (10.35)

Proof. When Assumption 10.8 holds, we can use the proof of Lemma 9.2 to show
that

(Ubsup + uomax)
2

dsafeUbsup
+ σψ ≤ Fψ, (10.36)

where Fψ is given in (10.32). The design parameter λψ can be used to rewrite
(10.36) as

(Ubsup + uomax)
2

dsafeUbsup
+ σψ ≤ λψFψ + (1− λψ)Fψ. (10.37)

Hence, conditions (10.33) and (10.34) ensure that (10.36) is satis�ed. It follows that
Condition (10.30) of Lemma 10.1 then also applies, and hence if |vb(t0)| < vsup,
then |vb(t)| < vsup ∀t ≥ t0.
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Remark 10.7. Lemma 10.2 and Lemma 9.2 are mostly equivalent. However, in
Lemma 10.2 we use the saturation in the course controller to arrive at less conser-
vative bounds than in Lemma 9.2.

10.6.3 Minimum switching distance

We will now provide a lower bound on the switching distance in order to ensure
that the vehicle course angle is within ε radians of the desired course from the CAA
algorithm before the obstacle can get too close to the vehicle.

Lemma 10.3. Let a vehicle be modeled by (10.1), and let it be controlled by
the feedback linearizing controllers (10.28) and the course controller (10.22). At a
time t1 ≥ t0, let the control system enter collision avoidance mode according to
the switching rule (10.16), and let the vehicle course then be set by the collision
avoidance law (10.13). Furthermore, let Assumptions 10.1-10.6 be satis�ed, the
vehicle speed satisfy Ub < Ubsup, and the switching distance satisfy

dswitch ≥ uotε + dsafe + dturn + dTb
, (10.38)

where

tε , Tb +

(
π

σψ
− 1

kψ

)
− ln(kψε/σψ)

kψ
, ε ∈ (0,

π

2
] (10.39)

is the maximum amount of time the course controller (10.22) will use to make the
vehicle converge to within ε rad of ψndca, and

dturn ,
Ubsup

min(σψ, kψ
π
2 )

(10.40)

upper bounds the distance traveled by the vehicle in the ψnf (t1) direction when mak-
ing a complete π rad turn. The distance dTb

is

dTb
, UbsupTb. (10.41)

Then, the vehicle is able to converge to within ε rad of ψndca before the obstacle can
come within the distance dsafe.

Proof. The main idea behind the proof is to show that the distance traveled by
the obstacle during the convergence time tε is not enough to reduce the distance
between the obstacle and the vehicle trajectory as it turns away from the obstacle
to less than dsafe. This is illustrated in Figure 10.3.

We consider a worst case scenario with an obstacle of in�nite size, Ro → ∞.
The obstacle tangent angle is then γt = π/2. Furthermore, the vehicle and the
obstacle move at maximum speed, i.e. Ub(t1) = Ubsup and uo(t1) = uomax. We
assume, without loss of generality, that the obstacle is ahead of the vehicle on the
x-axis of the NED frame, xno (t1) − xnb (t1) = dswitch, while y

n
o (t1) = xno (t1) = 0,

and that they move straight towards each other, ψnf (t1) = 0 and ψno (t1) = π. The
worst case behavior of the obstacle is then to continue moving straight towards the
vehicle at maximum speed, uo(t > t1) = uomax and ψno (t > t1) = π.
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dturn

dsafe

Uomaxtε

dTb

dswitch

Figure 10.3: Illustration of the minimum required switching distance.

At time t1, when the control system enters collision avoidance mode, the vehicle
starts to make a turn towards ψndca. There will then be a jump in the desired yaw
rate from the course controller, and the yaw rate smoothing (10.27) will commence.
The smoothing is complete at time t1 + Tb. Since ψ̃

n
f ∈ (−π, π], the maximum

course error at time t = t1 + Tb is π radians. The convergence time from |ψ̃nf | = π

to |ψ̃nf | = σψ/kψ is found from (10.22) to be π/σψ − 1/kψ, which is ensured to be
positive from Assumption 10.7. From this point, the course converges exponentially,

and hence the convergence time from |ψ̃nf | = σψ/kψ to |ψ̃nf | < ε is
ln(kψε/σψ)

kψ
.

It follows that the total time from t1 until |ψ̃nf | ≤ ε is tε as de�ned in (10.39).
During this time, the obstacle will, at worst, have traversed uomaxtε towards the
vehicle.

During the smoothing interval t ∈ (t1, t1 + Tb], the distance covered by the
vehicle towards the obstacle is upper bounded by dTb

. During the �rst π/2 radians
of the following turn, the vehicle will move towards the obstacle. We see from
geometry that the compensated vision cone Vc will then expand. Hence, ψndca will
move away from ψnf during this part of the turn, and the turning rate of the vehicle

can be lower bounded by setting ψ̇nfd = 0 in the course controller. In a worst case
scenario, the vehicle has to turn completely around. Assumption 10.7 then ensures
that the vehicle will move at most dturn towards the obstacle when turning.

Hence, if condition (10.38) holds, then the distance between the obstacle and
the vehicle trajectory will not be reduced to less than dsafe before the vehicle course
has converged to within ε rad of ψndca. It follows that the distance to the obstacle
is more than dsafe, which concludes the proof.

We are now ready to state the main theorems of the chapter, namely safe
maneuvering both in a target reaching and in a path following scenario. Before we
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state these theorems, we need to assume that the vehicle starts safely:

Assumption 10.10.

dob(t0) > dswitch. (10.42)

Remark 10.8. Like Assumption 10.8, this assumption corresponds to assuming
that the vehicle is safely initialized before control is handed over to the automatic
collision avoidance system.

Due to the smoothing time Tb of the yaw rate reference signal, we also need at
least one of the following assumptions to hold:

Assumption 10.11. The obstacle will not actively turn towards the vehicle when
dob ≤ dswitch.

or

Assumption 10.12. The smoothing time Tb is small enough to be neglected, i.e.

(uomax + Ubsup)Tb � dsafe. (10.43)

Remark 10.9. These assumptions require the obstacle to at least not be actively
seeking a collision with the vehicle if the vehicle dynamics make Tb large. Such
behavior is for example in accordance with the COLREGs, which both states that
a vehicle should behave predictably in a collision avoidance scenario, and that if
one vehicle has signi�cantly better maneuverability than the other, then the most
maneuverable one should yield. At one extreme, we could consider an oil tanker
which use a very long time to initate a turn, and thus would rely an Assump-
tion 10.11, while on the other extreme we could consider a small speed boat, where
Assumption 10.12 can safely be made.

10.6.4 Safe target reaching

In this section, we will provide conditions to ensure that the CAA collision avoid-
ance algorithm (10.13) in combination with the pure pursuit guidance law (10.20)
enables the vehicle to safely maneuver to the target. In order to do this, we must as-
sume that the distance from the target to the obstacle is greater than the minimum
obstacle distance:

Assumption 10.13. The distance dot(t) from the target to the obstacle satis�es

dot(t) >
Ro

cos(αo)
−Ro ∀t ≥ t0. (10.44)

Theorem 10.4. Let Assumptions 10.1-10.10 and 10.13 hold, and let either As-
sumption 10.11 or Assumption 10.12 hold as well. Let the avoidance angle satisfy

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
+ ε,

π

2

)
(10.45)
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and the switching distance satisfy

dswitch ≥ uomaxtε + dsafe + dturn + dTb
, (10.46)

where tε, dturn and dTb
are de�ned in Lemma 10.3. Furthermore, let the course

control proportional saturation level σψ and the safety distance dsafe satisfy the
conditions of Lemma 10.2:

σψ ≤ λψFψ, (10.47)

dsafe ≥
(Ubsup + uomax)

2

Ubsup

1

(1− λψ)Fψ
. (10.48)

Finally, let the initial vehicle sway speed satisfy |vb(t0)| < vsup and the target
reaching acceptance distance satisfy

da >
Ubsup|Xvd|

|Yvd|vsup − |Xvd|σψ
. (10.49)

Then, a vehicle described by (10.1), controlled by the surge and yaw rate controllers
(10.28), the course controller (10.22), the pure pursuit guidance law (10.20) and
the CAA collision avoidance law (10.13) will maneuver among obstacles described
by (10.9) while ensuring that

dob(t) ≥ dsafe > 0 ∀t ≥ t0. (10.50)

Furthermore, if there is just one obstacle, then there is a time tf > t0 at which

|pnbt | = |pnt − pnb | ≤ da. (10.51)

Proof. An upper bound on the required turning rate of the pure pursuit guidance
law (10.20) can be found geometrically as:

|ψ̇npp| <
Ubsup

da
(10.52)

When we insert (10.52) into the course controller (10.22) we get a maximum course
rate of

|rfpp| <
Ubsup

da
+ σψ. (10.53)

From Lemma 10.1 it then follows that if

da >
Ubsup|Xv|

|Yv|vsup − |Xv|σψ
, (10.54)

and |vb(t0)| < vsup, then |vb(t)| < vsup until a time t1 when the vehicle enters
collision avoidance mode. It then follows from Lemma 10.2 that vb is bounded by

|vb(t)| < vsup ∀t ∈ [t0, tf ]. (10.55)
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Hence, the vehicle speed is bounded by Ub < Ubsup. Denote the time when (10.16)
is ful�lled by t1 ≥ t0. At this time, the control system enters collision avoidance
mode. Lemma 10.3 then ensures that there is a time t2 > t1 when d(t1) >= dsafe

and ψnf (t2) − ψndca(t2) ≤ ε. Since the yaw rate reference signal rbd is smooth by

(10.27), the vehicle course has a locally exponentially stable equilibrium at ψ̃nf = 0
when the course controller (10.22) is employed. Hence, it is ensured that

ψnf (t)− ψndca(t) ≤ ε, ∀t ∈ [t2, t3], (10.56)

where t3 is the time when the control system will exit collision avoidance mode.
Hence, Lemma 7.2 ensures that

dob(t) ≥ dsafe ∀t ∈ [t2, t3], (10.57)

which satis�es condition (10.50).
Since the vehicle circles the obstacle, there will be a time t3 when the direction

to the target will be outside of Vc. The vehicle will then exit collision avoidance
mode and proceed towards the target.

10.6.5 Safe path following

In this section, we will provide conditions to ensure that the CAA collision avoid-
ance algorithm (10.13) in combination with the line of sight guidance law (10.21)
enables the vehicle to safely maneuver around an obstacle and reach the path. In
this Section we will assume that there is just one obstacle.

Theorem 10.5. Let Assumptions 10.1-10.8, 10.10 and 10.13 hold, and let either
Assumption 10.11 or Assumption 10.12 hold as well. Let the avoidance angle satisfy

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
+ ε,

π

2

)
(10.58)

and the switching distance satisfy

dswitch ≥ uomaxtε + dsafe + dturn + dTb
, (10.59)

where tε, dturn and dTb
are de�ned in Lemma 10.3. Furthermore, let the course

control proportional saturation level σψ and the safety distance dsafe satisfy the
conditions of Lemma 10.2:

σψ ≤ λψFψ, (10.60)

dsafe ≥
(Ubsup + uomax)

2

Ubsup

1

(1− λψ)Fψ
. (10.61)

Finally, let the initial vehicle sway speed satisfy |vb(t0)| < vsup and the lookahead
distance ∆ satisfy

∆ ≥ Ubsup|Xvd|
(|Yvd|vsup − |Xvd|σψ)

. (10.62)
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Then, a vehicle described by (10.1), controlled by the surge and yaw rate controllers
(10.28), the course controller (10.22), the line of sight guidance law (10.21) and
the CAA collision avoidance law (10.13) will converge to and follow a path P given
by (10.7) until it encounters an obstacle modeled by (10.9). The obstacle will be
safely avoided, and the vehicle will converge to the path again after the collision
avoidance maneuver. Furthermore, it is ensured that

dob(t) ≥ dsafe > 0 ∀t ≥ t0. (10.63)

Proof. The required turning rate of the LOS guidance law is found as

ψ̇nlos = − ∆ẏnb
∆2 + ynb

2 , (10.64)

which is bounded as

|ψ̇nlos| ≤
Ubsup

∆
. (10.65)

Inserting (10.65) into the course controller (10.22) gives a maximum desired course
rate of

|rf los| ≤
Ubsup

∆
+ σψ. (10.66)

Applying Lemma 10.1 on (10.66) gives that if

∆ ≥ Ubsup|Xvd|
(|Xvd|vsup − |Xvd|σψ)

, (10.67)

and |vb(t0)| < vsup, then |vb(t)| < vsup until a time t2 when the vehicle enters
collision avoidance mode. Along with Lemma 10.2, we then obtain that

|vb(t)| < vsup ∀t ∈ [t0, tf ]. (10.68)

The rest of the proof is equivalent to the proof of Theorem 10.4.

10.7 Simulation results

In this section we present numerical simulations of an underactuated marine vehicle
using the proposed collision avoidance algorithm. The simulated vehicle is a Hugin
AUV [43] operating in a horizontal plane. The desired vehicle surge speed is set
to ubd = 2 m/s, and the maximum allowable sway speed is set to vsup = 2 m/s.
It can be veri�ed that Assumption 10.2 is satis�ed with Yvd = −1.10, and that
Assumption 10.3 is satis�ed with Xvd = −1.59. The initial sway velocity was zero
in all simulations, while ub(t0) = 2 m/s and ψnb (t0) = 0 rad.

In the three �rst scenarios the vehicle encounters an obstacle head on, from the
starboard side and from the port side, respectively. These scenarios all contain a
circular obstacle with radius Ro = 15 m. The obstacle speed is uo = 1 m/s, which
satis�es Assumption 10.6, and the obstacle does not turn or accelerate. The course
control proportional saturation level σψ is set to 0.17 rad/s, and the safety distance
is set to dsafe = 10 m, which satis�es the conditions of Lemma 10.2 with λψ = 0.25.
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Figure 10.4: The vehicle meets an obstacle head on in the �rst scenario. The vehicle
is shown in orange, while the obstacle is a solid red circle. A dashed magenta circle
shows dsafe, while Vc is shown as a semi-opaque red sector of radius dswitch. The
target position is marked by an 'X', and the blue arrow denotes ψnpp. The size of
the vehicle has been exaggerated for clarity.

The course control gain kψ is set to 0.4 s−1, satisfying (10.24), while the convergence
parameter ε is set to ε = 0.05 rad. The switching distance dswitch is set to 60 m,
while αo is set to 0.97 rad, satisfying (10.34) and (10.45).

The �rst scenario is illustrated in Figure 10.4. The vehicle steers towards a
target position using the pure pursuit guidance law (10.20). The obstacle starts in
front of the vehicle on a head on collision course. At time 8.35 s the vehicle reaches
the switching distance dswitch from the obstacle, and enters collision avoidance
mode in accordance with the switching rule (10.16). Since the vehicle and the
obstacle are on a head on collision course, the choice of turning direction (10.18)
becomes random. In this case, the vehicle makes a port turn. The vehicle maneuvers
safely around the vehicle until time 42.85 s, when the direction towards the target
comes outside of the unsafe cone. The vehicle then proceeds towards the target in
accordance with Theorem 10.4.

In the second scenario, which is shown in Figure 10.5, the obstacle crosses from
starboard. The pure pursuit guidance law is again employed to take the vehicle
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Figure 10.5: The second scenario, where the obstacle crosses from starboard.

towards the target position. When the control system enters collision avoidance
mode at time 1.44 s, the vehicle turns starboard to maneuver behind the obstacle.
At time 43.58 s, the direction to the target is safe and the vehicle proceeds towards
it.

The collision avoidance algorithm in combination with the LOS guidance law
(10.21) is demonstrated in the third scenario, which is shown in Figure 10.6. The
obstacle now crosses in front of the vehicle from the port side, while the vehicle
follows a straight-line path along the xn-axis. At time 6.47 s the desired course
from the LOS guidance law, ψnlos, comes within Vc, and the control system enters
collision avoidance mode. The vehicle maneuvers safely behind the obstacle, until
ψnlos becomes safe again. At this point, the vehicle converges to the path as stated
in Theorem 10.5.

The obstacle distance during the three scenarios is shown in Figure 10.7, where
it can be seen that the distance is always above the safety distance dsafe. In Fig-
ure 10.8, the sway velocity of the vehicle during the three scenarios are shown. The
magnitude of the vehicle sway increases as the vehicle turns, but remains well be-
low the limit of 2 m/s. Hence, the simulations validate the results of Theorems 10.4
and 10.5.

While the analysis in Section 10.6 assumes that the obstacle is circular, the
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Figure 10.6: The third scenario, where the obstacle crosses from port and the vehicle
follows a straight-line path marked by the dotted black line. The blue arrow here
denotes ψnlos.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

0

10

20

30

40

50

60

70

80

90

100

D
is

ta
nc

e 
[m

]

Head on
From starboard
From port
Safety distance

Figure 10.7: The distance from the vehicle to the obstacle during the three scenar-
ios.
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Figure 10.8: The vehicle sway during the three scenarios.

CAA collision avoidance algorithm can be applied to obstacles of any shape. This
is demonstrated in the fourth scenario, shown in Figure 10.9, where the obstacle
has the shape of a ship that is 70 m long and 10 m wide. The ship approaches the
vehicle from the north east, and again the vehicle moves safely behind the obstacle
in order to avoid it.

10.8 Experimental results

The CAA algorithm has been implemented into the control system of the research
vessel R/V Gunnerus as part of an experimental setup. The R/V Gunnerus, a re-
search vessel owned and operated by the Norwegian University of Science and Tech-
nology (NTNU), is a 31.25 m long vehicle steered by two azimuth thrusters. The
control system is a Kongsberg Maritime K-Pos DP-11 system. Further details on
the R/V Gunnerus can be found in Skjetne et al. [98]. The CAA collision avoidance
algorithm (Section 10.2) and the LOS path following guidance law (Section 10.3.2)
were implemented at the guidance level of the K-Pos DP-11 system. Our algo-
rithm thus provided heading references to an underlying heading controller, which
included smoothing and control allocation. The details of the heading controller
was not available to us, but the modular nature of both the CAA and LOS al-
gorithm still made it possible to implement and tune the algorithms. We received
measurements of all vehicle states, and added a simple low-pass �lter to the surge
and sway measurements in order to �lter out the e�ect of waves. The heading con-
troller allowed us to set a maximum turning rate, which was set to 90 ◦/s. The
speed controller was not available in this experimental mode, and the thrust level
was set to a constant, providing a forward speed of about 4 m/s.

The experiments were conducted in the Trondheim fjord. The vehicle was set to
follow straight-line path segments. Along the path, the vehicle encountered virtual
obstacles in several di�erent scenarios. One scenario is shown in Figure 10.10,
where the vehicle encountered two obstacles with a radius of 100 m. The obstacles
moved with a speed of 2 m/s; one straight towards the vehicle slightly on its port
side, and one approaching from starboard. The avoidance angle was set to 1.1 rad,
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Figure 10.9: The fourth scenario, where the obstacle is ship shaped.

and the safety distance to 120.4 m. At 15:07:30, the �rst obstacle came within
a switching distance, and the vehicle turned starboard to avoid it according to
the switching rule presented in Section 10.2. At 15:10:30, the second obstacle came
within switching distance, and the vision cone to this obstacle was merged with the
vision cone to the �rst. The vehicle adjusted its course to also avoid this obstacle.
At 15:17:00, both obstacles had been successfully avoided and the vehicle returned
to path following.

In another scenario, shown in Figure 10.11, the vehicle encountered a convoy of
�ve obstacles moving straight towards it at a speed of 2 m/s. Again, the obstacle
radius was set to 100 m, while the avoidance angle was set to 0.9 rad, the safety
distance to 60.9 m and the switching distance to 800 m. The �rst obstacle was en-
countered at 11:20:00, and the vehicle entered collision avoidance mode and turned
starboard. As the vehicle moved along the convoy, it encountered the obstacles
one by one and adjusted its course to avoid them. As described in Section 7.2.4,
the turning direction was kept constant (in this case j = 1), thus avoiding that
the vehicle tried to cross the convoy during the maneuver. The vehicle successfully
avoided all �ve obstacles, and returned to path following.
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Figure 10.10: Experimental run with two obstacles. The size of the vehicle is exag-
gerated in the picture for clarity.
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Figure 10.11: Experimental run with �ve obstacles.
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10.9 Conclusions

We have in this chapter applied the CAA algorithm to a vehicle modeled using a 3
DOF maneuvering model of a marine craft. Speci�cally, we have added controllers
to the directly actuated surge and yaw dynamics, and have shown how a smoothing
of the yaw rate reference signal enables the system to handle the discontinuities
that arise when entering and leaving collision avoidance mode. By augmenting the
analysis to consider also the time required for the yaw rate controller to converge,
we have thus extended the results of the previous chapter to include a complete
dynamic vehicle model.

The CAA algorithm is designed to be modular, in order to facilitate implemen-
tation both on vehicles with di�erent nominal guidance controllers, and vehicles
with di�erent and possibly unknown low-level controllers. We have demonstrated
the former by analyzing the algorithm both in combination with with the pure
pursuit target reaching algorithm employed in Chapters 8 and 9, and with a line
of sight path following law related to the one examined in Part II. In both cases,
conditions have been found under which the vehicle is guaranteed to be safe, and
under which the control objectives will be reached while keeping a limited sway
movement.

Modularity with respect to the underlying controllers has been veri�ed using
full-scale experiments aboard the R/V Gunnerus. We have thus shown that the
algorithm can be used on marine vessels with widely di�erent characteristics and
maneuvering capabilities. Furthermore, the experimental results indicate that the
algorithm is robust to noise such as wave disturbances, as well as to operating
on a vessel where the details of the low-level controllers and vehicle model are
not available. Both the simulations and the experiments show that the vehicle
keeps well away from the obstacle, which suggest that the conditions derived in
Theorems 10.4 and 10.5 are conservative.

Finally, while the analyses in Part III of this thesis have assumed sparse sce-
narios with circular obstacles that can be avoided one at a time, we have shown
in the simulations and the experiments both that the algorithm can be applied to
obstacles of di�erent shapes, and how to extend the algorithm to a multi-obstacle
scenario. However, a thorough analysis of such scenarios, which would include ex-
tending the algorithm to several, cooperative agents, remains a topic of future
work.

This chapter is the �nal chapter in which we examine the CAA algorithm in
2D. It is thus a conclusion of Part III of the thesis. In Part IV, we will extend
the algorithm to 3D, which provides more �exibility when choosing a safe velocity
direction, but at the cost of a higher complexity in the design and the analysis of
the control system.

10.A Functional expressions

The functions Fu, Fr, Xv and Yv are de�ned in Section 3.2.1, and reiterated here
for convenience:

Fu(ub, vb, rb) ,
1

m11
(m22vb +m23rb)rb −

d11

m11
ub, (10.69)
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Fr(ub, vb, rb) ,
m23d22 +m22(d32 + (m22 −m11)ub)

m22m33 −m2
23

vb

+
m23(d23 −m11ub)−m22(d33 +m23ub)

m22m33 −m2
23

rb,

(10.70)

Xv(ub) ,
m2

23 −m11m33

m22m33 −m2
23

ub +
d33m23 − d23m33

m22m33 −m2
23

, (10.71)

Yv(ub) ,
(m22 −m11)m23

m22m33 −m2
23

ub −
d22m33 − d32m23

m22m33 −m2
23

. (10.72)
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Chapter 11

The CAA algorithm in 3D

That's no moon, it's a space station!

� Obi-Wan Kenobi, Star Wars episode IV - A New Hope

In Part IV of this thesis we will extend the CAA algorithm presented in Part III
to 3 dimensions. In this chapter we give a detailed description of the algorithm.
The main idea behind the algorithm is to create a 3D extended vision cone around
the obstacle. Each ray of the vision cone keeps a constant avoidance angle to the
obstacle, and it is thus ensured that a vehicle following one of these rays will
maintain at least a minimum safety distance to the obstacle during a collision
avoidance maneuver.

If the obstacle is moving, the extended vision cone is transformed to compensate
for the obstacle motion, creating a compensated vision cone. Any direction along
this cone is proven to be safe, and the algorithm thus o�ers the opportunity to
exploit the �exibility of operating in 3D space when choosing among the rays.
We will show this �exibility can be utilized by making the vehicle move behind a
moving obstacle, while also minimizing the desired pitch and yaw rate. The pitch
of the desired velocity direction can furthermore be bounded in order to make the
vehicle comply to constraints on the allowable pitch angle. For safety reasons, such
constraints are often present vehicles operating in 3D.

In Section 11.1 of this chapter we will provide the obstacle model used in Part IV
of this thesis. In Section 11.2, we will provide a description of the algorithm, in-
cluding a method to choose which among the rays of the compensated vision cone
the vehicle should follow. A preliminary analysis of the algorithm is given in Sec-
tion 11.3, and some concluding remarks and an overview of the remainder of Part IV
is provided in Section 11.4.

The work presented in this chapter is based on Wiig et al. [115], Wiig et al.
[116] and Wiig et al. [118].

11.1 Obstacle model

This section contains a mathematical description of the obstacle, as well as a de-
scription of the sensor measurements required to implement the 3D CAA algorithm
described in Section 11.2.

The obstacle is modeled in 5 DOF as a sphere with radius Ro, with the obstacle
frame o at the center. The position and orientation of o with respect to the NED
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11. The CAA algorithm in 3D

frame is represented by ηno , [pno , θ
n
o , ψ

n
o ]T , where pno , [xno , y

n
o , z

n
o ]T . The obstacle

speed is uo, and the obstacle's angular velocity is ωoo/n , [qo, ro]
T , where qo and ro

are the pitch and yaw rate of the obstacle, respectively. Thus, the obstacle model
is

η̇no = J(ηno )νoo/n, (11.1a)

u̇o = ao, (11.1b)

where νoo/n , [uo, 0, 0, qo, ro]
T , ao is the obstacle's acceleration and the transfor-

mation matrix J(ηno ) is

J(ηno ) ,

[
RRRzy(θno , ψ

n
o ) 0

0 Tn
o (θno )

]
, (11.2)

where T no (θno ) = diag{1, 1/ cos(θno )}. We furthermore denote the obstacle's linear
velocity in n as vno/n , ṗno . Since the dynamic parameters of the obstacle can be
di�cult to estimate, we do not include them in the model. However, we assume
that the obstacle's acceleration and angular velocity are bounded:

Assumption 11.1. The obstacle acceleration ao and angular velocity are bounded
by

ao ∈ [−aomax, aomax] , (11.3a)

‖ωoo/n‖ ∈ [−ωomax, ωomax] , (11.3b)

where aomax ≥ 0 and ωomax ≥ 0 are constant parameters.

Remark 11.1. The algorithm can also be applied to non-spherical obstacles. How-
ever, an analysis containing such obstacles is beyond the scope of this thesis.

To ensure that the vehicle is able to circumvent the obstacle, we need to assume
that the obstacle speed is less than the desired vehicle surge speed:

Assumption 11.2. The obstacle forward speed uo satis�es uo ∈ [0, uomax], where
uomax < ubd.

11.1.1 Required obstacle measurements

We require that the vehicle is able to measure the distance dob , ‖pnb −pno‖ to the
obstacle, as well as the angles to the edge of the obstacle. These angles de�ne a
three-dimensional vision cone Vo, which is illustrated in Figure 11.1. For underwater
vehicles, sensors such as sonars can give both dob and Vo.

In addition, we require that the vehicle is able to sense the obstacle velocity,
vno/n, which can either be measured directly using a sensor with Doppler e�ects, or
indirectly using a tracking algorithm.
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Figure 11.1: A sample of rays (dotted black) creating the vision cone from the
vehicle (yellow) to the obstacle (red).

11.2 Algorithm de�nition

In this section we will present the CAA algorithm in 3D. The algorithm consists
of three compontents; the creation of a motion compensated vision cone Vc (Sec-
tion 11.2.1), choosing a direction among the rays of Vc, and a rule for entering and
leaving collision avoidance mode (Section 11.2.3). In addition, we provide a brief
description in Section 11.2.4 of how to extend the algorithm to handle multiple
obstacles.

11.2.1 The motion compensated vision cone

To get a cone from the vehicle to the obstacle where each ray has an avoidance
angle αo ∈ [0, π/2) to the obstacle, the vision cone Vo is extended to a cone Ve
as illustrated in Figure 11.2. In the case of a spherical obstacle, an analytical
expression for the apex angle of Vo is 2γa, where

γa , sin−1

(
Ro

Ro + dob

)
, (11.4)

while the apex angle of Ve can be found as γe , 2(γa + αo).

Remark 11.2. If the obstacle is not spherical, each ray of the vision cone Vo is
rotated αo radians in the direction normal to the obstacle surface to obtain Ve.

In the case of a static obstacle, any directions along Ve will maintain the avoid-
ance angle αo to the obstacle, and thus avoid it. If the obstacle is moving, we will
perform a transformation of Ve in order to compensate for the obstacle movement.
This transformation ensures that when the resulting cone is observed through a
non-rotating coordinate frame moving with the obstacle, each ray will still keep
the constant avoidance angle to the obstacle edge.
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Figure 11.2: The vision cone Vo (black) and the extended vision cone Ve (dotted
magenta).

To compensate a ray ρ for the obstacle velocity, we will �nd a frame Fρ which
is such that the xFρ -axis points along ρ, while the obstacle velocity lies in the
xFρ-yFρ -plane. We start by de�ning an intermediate frame A where the xA-axis is
coincident with the xFρ -axis. We will then �nd a rotation from the A frame to the
Fρ frame.

The A frame is obtained in two steps. First we do a rotation from the nb frame
to the bbo frame, which is a Body-�xed frame with the x-axis pointing from the
vehicle to the obstacle: RRRbbonb , RRRzy (Θ(pnbo ),Ψ(pnbo ))

T
. The functions Θ and Ψ are

used to �nd the pitch and heading of a vector, and are de�ned in Chapter 2. We
then do a rotation from the bbo frame to the A frame using a rotation of φ radians
around the xbbo -axis, followed by a rotation of γe radians around the resulting z-
axis, RRRAbbo , Rz(γe)

TRx(φ)T . The angle φ thus becomes a parameter which can
uniquely identify each ray of the vision cone.

The obstacle velocity in the A frame is vAo = RRRAnbv
n
o/n. To obtain the frame Fρ,

we will rotate the A frame around the xA-axis until v
Fρ
o lies in the xFρ -yFρ -plane.

The required rotation angle can be geometrically found as φ̂ , atan2
(
vAoz,v

A
oy

)
.

Hence, RRR
Fρ
A = Rx(φ̂), and

vFρo = RRRFρnbv
n
o/n = RRR

Fρ
A RRR

A
bbo
RRRbbonb v

n
o/n. (11.5)

We are now ready to perform the motion compensation. We de�ne a velocity

vector v
Fρ
ρ along ρ. We seek a vector

vFρcaρ , v
Fρ
ρ + vFρo , (11.6)

i.e. we compensate the vector v
Fρ
ρ for the obstacle velocity, as illustrated in Fig-

ure 11.3. The vector v
Fρ
caρ is a possible desired velocity from the collision avoidance

algorithm. Hence, we would like to specify its magnitude, in particular we require

that ‖vFρcaρ‖ = Ub, where Ub is the vehicle's speed. We do this by �nding the angle
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Figure 11.3: A plane containing both the ray ρ, the obstacle velocity vector vno/n
and the resulting candidate for desired velocity in collision avoidance mode, vncaρ.

γca between v
Fρ
ρ and v

Fρ
caρ, which is given by

γca(φ) , sin−1

(
(v
Fρ
o )T ū

Fρ
ρ

Ub

)
, (11.7)

where ū
Fρ
ρ is a unit vector orthogonal to v

Fρ
ρ as shown in Figure 11.3. The expres-

sion for γca is ensured to be well de�ned by Assumption 11.2. The vector v
Fρ
caρ is

thus given by
vFρcaρ , Ub[cos(γca), sin(γca), 0]T , (11.8)

while
vncaρ =

(
RRRFρnb

)T
vFρcaρ. (11.9)

The velocity direction required to follow a motion compensation ray is given by
the heading and pitch of the ray:

ψnρ (φ) , Ψ(vncaρ(φ)), (11.10a)

θnρ (φ) , Θ(vncaρ(φ)), (11.10b)

where the functions Ψ(·) and Θ(·) are de�ned in (2.5) and (2.6), respectively. The
collection of motion compensated rays composes the motion compensated vision
cone Vc, which is shown in Figure 11.4. The desired heading and pitch angle in
collision avoidance are chosen by minimizing a cost function C(φ). Thus, if

φca , arg min
φ
C(φ), (11.11)
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Figure 11.4: The extended vision cone Ve (dotted magenta) is compensated for the
velocity of the obstacle (black arrow) to create the compensated vision cone Vc
(solid green).

we obtain the desired heading and pitch angle in collision avoidance as

〈θndca, ψ
n
dca〉 ,

〈
θnρ (φca), ψnρ (φca)

〉
. (11.12)

Equation (11.12) forms the core of the collision avoidance law presented in
part IV of this thesis. Even though there are several steps leading up to this ex-
pression, they are straightforward to implement and based on measurements that
are readily available on most platforms. We will now provide an example for the
cost function C(φ).

11.2.2 Choosing a safe direction

When the vehicle enters collision avoidance mode, any direction along Vc is a safe
candidate for collision avoidance. This provides �exibility, and a ray can for example
be chosen to minimize the angular distance to a safe direction, or to satisfy some
external rules of the road. We will here make the vehicle move behind the obstacle,
which we do by maximizing the angular distance from the obstacle's velocity vector
to the chosen ray. This is done if the vehicle enters collision avoidance when dob =
dswitch. If the vehicle enters collision avoidance when the obstacle is closer than
dswitch, it will move to the closest safe direction. Upon entering collision avoidance
mode, we thus seek to minimize the cost function Center, de�ned as

Center ,


−
√(

θno − θnρ
)2

+
(
ψno − ψnρ

)2
, dob = dswitch√(

θnb − θnρ
)2

+
(
ψnb − ψnρ

)2
, dob < dswitch.

(11.13)
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Figure 11.5: The cost function Cθ when θmin = −0.2, θmax = 0.4 and λ = 50.

In Chapters 12 and 13, we will require that the desired pitch is in the interval
θnd ∈ [θmin, θmax]. In order to achieve this, we add the following cost function:

Cθ , 2π
(
1 + tanh(λ[θmin − θnρ ])

)
+ 2π

(
1 + tanh(λ[θnρ − θmax])

)
, (11.14)

where λ > 0 is a design parameter used to set the slope of Cθ. The smoothness
of Cθ ensures the smoothness of θ̇ndca during the collision avoidance maneuver. An
example Cθ is shown in Figure 11.5, where θmin = −0.2, θmax = 0.4 and λ = 50.

When the control system is already in collision avoidance mode, we will avoid
discontinuities in θndca and ψndca by minimizing the change in desired heading and
pitch when choosing a ray:

Cin ,
√

(θndca − θndca1)2 + (ψndca − ψndca1)2, (11.15)

where θndca1 and ψndca1 is the desired pitch and heading during the previous opti-
mization. Thus, if the system enters collision avoidance mode at a time t1, the cost
function C becomes

C ,

{
Center + Cθ, t = t1,

Cin + Cθ, t > t1.
(11.16)

11.2.3 Switching rule

We de�ne that the vehicle enters collision avoidance mode at a time t1 if the
distance dob(t1) to the obstacle is less than or equal to a chosen distance dswitch, and
the desired velocity vector vndg(t1) from nominal guidance is within the extended
vision cone Ve(t1):

vndg(t1) ∈ Ve(t1), (11.17a)

dob(t1) ≤ dswitch > dsafe. (11.17b)

Nominal guidance towards the target will resume at a time t2 when vndg(t2) moves
outside Ve(t2):

vndg(t2) /∈ Ve(t2). (11.18)
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11. The CAA algorithm in 3D

11.2.4 Multiple obstacles

The CAA algorithm can be extended to multi-obstacle scenarios. In such scenarios,
there will be multiple vision cones, which may be overlapping. The overlapping
cones will be merged, so that only the outermost rays of the cones are considered.
Then, a safe ray can be chosen in the same manner as for a single obstacle scenario.

If the vehicle encounters a new obstacle while already in collision avoidance
mode, we need to ensure that the safe direction chosen by the algorithm when the
new obstacle is included does not make the vehicle maneuver across the vision cone
of any of the previous obstacles. We achieve this by making the vehicle maintain a
constant horizontal turning direction, like in the 2D case in Chapter 7. Thus, if the
vehicle starts an avoidance maneuver by going around the obstacles in a clockwise
fashion, it will continue to do so until the avoidance maneuver is completed.

While the detailed analysis of a multi-obstacle scenario is beyond the scope of
this thesis, we have included simulations with multiple obstacles in Chapter 13 to
demonstrate the applicability to such scenarios.

11.3 Algorithm analysis

In this section we will prove that a vehicle which is always moving along the surface
of Vc will remain at a safe distance from the obstacle. We start by proving this for
a static obstacle, before extending the result to moving obstacles.

Lemma 11.1. If the obstacle is static, the vehicle's velocity vector maintains an
avoidance angle αo to the obstacle for t ≥ t1, the initial obstacle distance satis�es
dob(t1) ≥ dsafe and αo satis�es

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
, π/2

)
, dsafe > 0, (11.19)

then dob(t) ≥ dsafe for all t ∈ [t1, t2], where t2 > t1 is the time when the vehicle
exits collision avoidance in accordance with the switching rule in (11.18).

Proof. When the angle between vision cone from the vehicle to the obstacle and
the vehicles's velocity vector is αo, the distance dob between the vehicle and the
obstacle evolves as:

ḋob = −Ub cos(γa(t) + αo). (11.20)

Equation (11.20) has an equilibrium point at γa(t) = π/2− αo. Recall from (11.4)
that

γa , sin−1

(
Ro

Ro + dob

)
. (11.21)

Hence, we obtain that γa(t) = π/2− αo when

dob(t) = dmin ,
Ro

cos(αo)
−Ro. (11.22)

Furthermore, when dob(t) < dmin, ḋob(t) > 0, while when dob(t) > dmin, ḋob(t) < 0.
It follows that if dsafe = dmin, dob(t1) ≥ dsafe, and the avoidance angle satis�es
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(11.19), then a vehicle maintaining the avoidance angle αo will not get closer than
dsafe to the obstacle.

Thus, if knowledge of the obstacle curvature is available, it is possible to design
the avoidance angle in order to assure that the vehicle will keep at least a minimum
safety distance dsafe from the obstacle during the maneuver. The next lemma shows
that this also applies for a moving obstacle.

Lemma 11.2. Consider an obstacle moving with a time-varying velocity satis-
fying Assumption 11.2. Let the avoidance angle satisfy (11.19), and let a vehicle
maintain a velocity vncaρ (11.9) along the motion compensated vision cone Vc. Then,
if dob(t1) ≥ dsafe,

dob(t) ≥ dsafe ∀t ∈ [t1, t2], (11.23)

where t2 > t1 is the time when the vehicle exits collision avoidance in accordance
with the switching rule in (11.18).

Proof. Consider a coordinate frame no which is attached to the obstacle and aligned
with the n frame. Thus, the frame no has the velocity v

n
no/n

= vno/n. In this frame,
the obstacle is static and the vehicle velocity is vnρ , i.e. the vehicle moves along the
extended vision cone Ve shown in Figure 11.2, keeping the avoidance angle αo to
the obstacle. The speed if the vehicle in no lies in the interval

‖vnob/no‖ = ‖vnb/n − v
n
o/n‖ ∈ [Ub − uo, Ub + uo]. (11.24)

By Assumption 11.2, the velocity ‖vnob/no‖ > 0. Hence, we can apply Lemma 11.1 to

ensure that the vehicle will remain at least a minimum safety distance away from
the obstacle during the avoidance maneuver.

11.4 Overview of Part IV

In this chapter, we have presented the CAA algorithm in 3D. The algorithm extends
the algorithm presented in Part III by creating an extended vision cone around the
obstacle, where each ray of the cone keeps an avoidance angle αo to the obstacle.
A preliminary analysis in Lemma 11.1 has shown that a vehicle maintaining a
velocity along the extended vision cone is guaranteed to remain at least a minimum
safety distance away from the obstacle. The extended vision cone is transformed to
compensate for obstacle motion, and we proved in Lemma 11.2 that if the vehicle
maintains a velocity along this compensated vision cone, it is able to maintain a
safe distance to a moving obstacle.

In the remainder of Part IV we will apply the 3D CAA algorithm to a kine-
matically modeled vehicle with nonholonomic constraints (Chapter 12), and to an
underactuated marine vehicle modeled in 5 DOF (Chapter 13). In each of these
chapters, we will provide conditions on the switching distance, the avoidance angle
and on the underlying controllers under which it is ensured that the vehicle will
initiate the avoidance maneuver early enough, that it is able to follow the yaw and
pitch references from the CAA algorithm, and that all the signals in the control
system remain well de�ned.
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Chapter 12

The CAA Algorithm for 3D

Kinematic Vehicles

Mellow greetings. What seems to be your boggle?

� Boggle guard, Demolition Man

In this chapter, we will apply the 3D CAA algorithm presented in Chapter 11 to a
kinematically modeled vehicle with nonholonomic constraints in sway and heave.
The vehicle is restricted to keep a constant forward speed, and has limited pitch
and yaw rates. Furthermore, we will impose restrictions on the vehicle pitch, which
is a common safety restriction on both underwater vehicles and �xed-wing aircraft.
Thus, the vehicle model we employ in this chapter can be used to describe a wide
array of vehicles moving in 3D.

The vehicle will be tasked with reaching a target position, for which we will
employ a 3D pure pursuit target reaching law [17] as the nominal guidance law.
If an obstacle is encountered on the way, the vehicle will enter collision avoidance
mode and employ the CAA algorithm in order to avoid the obstacle. From the
previous chapter, we know that if the vehicle is able to follow the heading and
pitch reference of the algorithm, it is ensured to maintain at least a minimum
safety distance to the obstacle.

In this chapter, we will derive a minimum switching distance which ensures
that the vehicle will reach the desired velocity direction from the CAA algorithm
before the obstacle can get too close. This distance is dependent on both the
vehicle's and the obstacle's maneuvering capabilities. Furthermore, we will derive
bounds on the required pitch and yaw rate during the maneuver. These bounds are
dependent on the minimum safety distance, and thus on the constant avoidance
angle, and hence the algorithm can be tuned in order to ensure that the vehicle is
able to follow the control references from the collision avoidance algorithm. These
theoretical results are validated through numerous simulations involving both static
and moving obstacles.

The remainder of this chapter is organized as follows. In Section 12.1 we describe
the model of the vehicle and obstacle, while the 3D CAA algorithm is summarized
in Section 12.2. The nominal guidance law and the underlying controllers are de-
scribed in Section 12.3, and the collision avoidance algorithm is formally analyzed
in Section 12.4. The simulations are presented in Section 12.5, before some con-
cluding remarks are given in Section 12.6.
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The work presented in this chapter is based on Wiig et al. [115], Wiig et al.
[116] and Wiig et al. [118].

12.1 System description

12.1.1 Vehicle model

The vehicle is modeled on the kinematic level as in Section 3.1.2, using the Euler
angles pitch (θnb ) and yaw (ψnb ) to describe the rotation from the body frame b to
the NED frame n. The vehicle model is then given by the following equations:

ṗnb = Rn
b (θnb , ψ

n
b )vbb/n =

c(ψnb )c(θnb ) −s(ψnb ) c(ψnb )s(θnb )
s(ψnb )c(θnb ) c(ψnb ) s(ψnb )s(θnb )
−s(θnb ) 0 c(θnb )

vbb/n, (12.1a)

θ̇nb = qb, (12.1b)

ψ̇nb =
rb

cos(θnb )
, (12.1c)

where pnb is the vehicle position in the NED frame, vbb/n = [ub, 0, 0]T is the vehicle

velocity in the body frame. Note that the last two elements of vbb/n, i.e. the sway
and heave speeds, are zero due to the nonholonomic constraints on the vehicle.

As the vehicle is modeled only on the kinematic level in the chapter, we assume
that the pitch and yaw rate are directly actuated. Furthermore, we assume that
they are bounded:

Assumption 12.1. The angular velocities in yaw, rb, and pitch, qb, are assumed
to be directly controlled. The angular velocities are furthermore bounded by

rb ∈ [−rmax, rmax], (12.2a)

qb ∈ [−qmax, qmax], (12.2b)

where rmax > 0 and qmax > 0 are constant vehicle parameters.

We also assume that the directly controlled forward speed is kept constant
throughout the maneuver:

Assumption 12.2. The vehicle surge speed ub is directly controlled and constant.

To avoid a singularity in the heading rate in (12.1c), we impose a bound on the
initial pitch:

Assumption 12.3. The initial pitch satis�es

θnb (t0) ∈ [θmin, θmax], (12.3)

where θmin ∈ (−π/2, 0) and θmax ∈ (0, π/2) are constant design parameters.
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Remark 12.1. It is common to impose limits on the maximum and minimum
pitch angle of vehicles such as AUVs and many �xed-wing aircraft. For AUVs, such
limits can increase the vehicle safety by ensuring that it does not move too fast
towards the sea �oor or the surface. Similarly, aircraft with such limits avoid going
too fast towards the ground, and can also avoid stalling scenarios.

Remark 12.2. Note that the pitch limits do not include zero, in order to ensure
that the vehicle is able to move both up and down.

The collision avoidance algorithm presented in the previous chapter is designed
to ensure that the pitch limits are not violated, and we will also design the control
system in Section 12.3 to ensure that the pitch will not exceed these limits.

12.1.2 Obstacle model

Recall from Section 11.1 that the obstacle is modeled as a moving sphere with
radius Ro:

η̇no = J(ηno )νoo/n, (12.4a)

u̇o = ao, (12.4b)

where ηno , [pno , θ
n
o , ψ

n
o ]T and νoo/n , [uo, 0, 0, qo, ro]

T . The obstacle's angular ve-
locity and acceleration is assumed to be bounded:

Assumption 12.4. The obstacle acceleration ao and angular velocity ωoo/n are
bounded by

ao ∈ [−aomax, aomax] , (12.5a)

‖ωoo/n‖ ∈ [−ωomax, ωomax] , (12.5b)

where aomax ≥ 0 and ωomax ≥ 0 are constant parameters.

Furthermore, in order to enable the vehicle to circumvent the obstacle, and to
ensure that the motion compensation in the CAA algorithm is well de�ned, we
assume that the vehicle is able to move faster than the obstacle:

Assumption 12.5. The obstacle speed uo lies in the interval uo ∈ [0, uomax],
where uomax < ub.

12.1.3 Control objectives

Let pnt be a target position in the NED frame. The objective of the control system
and the collision avoidance algorithm is to make the vehicle come within an ac-
ceptance distance da ≥ ub/rmax of the target position pnt at some unspeci�ed time
tf ∈ [t0,∞), i.e.

‖pnbt (tf )‖ ≤ da, (12.6)

where pnbt = pnt − pnb is the target position in the body-�xed NED frame nb. This
goal should be achieved while keeping at least a minimum safety distance dsafe
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to the obstacle, i.e. the distance dob between the vehicle and the obstacle should
satisfy:

dob(t) ≥ dsafe > 0 ∀t ∈ [t0, tf ]. (12.7)

To accommodate the pitch limitations often encountered in practice as discussed
in Remark 12.1, the control system should bound the vehicle pitch:

θnb (t) ∈ [θmin, θmax] ∀t ∈ [t0, tf ]. (12.8)

12.2 The CAA algorithm in 3D

The 3D CAA algorithm is de�ned in Section 11.2 and summarized here for conve-
nience.

The algorithm creates an extended vision cone Ve from the vehicle to the ob-
stacle, where the apex angle of the vision cone is γe , 2(γa + αo), and

γa , sin−1

(
Ro

Ro + dob

)
. (12.9)

The vision cone is transformed to compensate for the obstacle speed uo. For
each ray ρ of Ve, we �nd a frame Fρ which is such that the xFρ -axis points along ρ,
while the obstacle velocity lies in the xFρ -yFρ -plane. We �rst �nd an intermediate
frame A where the xA-axis is coincident with the xFρ -axis:

RRRAnb , Rz(γe)
TRx(φ)TRRRzy (Θ(pnbo ),Ψ(pnbo ))

T
, (12.10)

where the pnbo = pno − pnb and the angle φ ∈ [0, 2π) is a parameter uniquely
identifying each ray of the vision cone.

To obtain the frame Fρ, we will rotate the A frame around the xA-axis until v
Fρ
o

lies in the xFρ -yFρ-plane. The required rotation angle can be geometrically found

as φ̂ , atan2
(
vAoz,v

A
oy

)
. Hence, RRR

Fρ
A = Rx(φ̂), and

vFρo = RRRFρnbv
n
o/n = RRR

Fρ
A RRR

A
nb
vno/n. (12.11)

We de�ne a velocity vector v
Fρ
ρ along ρ, and seek a vector

vFρcaρ , v
Fρ
ρ + vFρo , (12.12)

illustrated in Figure 12.1. To ensure that ‖vFρcaρ‖ = ub, we �nd the compensation

angle γca between v
Fρ
ρ and v

Fρ
caρ as

γca(φ) , sin−1

(
(v
Fρ
o )T ū

Fρ
ρ

ub

)
, (12.13)

where ū
Fρ
ρ is a unit vector orthogonal to v

Fρ
ρ as shown in Figure 12.1. The vector

v
Fρ
caρ is thus

vFρcaρ , ub[cos(γca), sin(γca), 0]T , (12.14)
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Figure 12.1: A plane containing both the ray ρ, the obstacle velocity vector vno/n
and the resulting candidate for desired velocity in collision avoidance mode, vncaρ.
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Figure 12.2: The extended vision cone Ve (magenta) and the compensated vision
cone Vc (green).

while
vncaρ =

(
RRRFρnb

)T
vFρcaρ. (12.15)

The collection of motion compensated rays compose a compensated vision cone
Vc, shown in Figure 12.2 The velocity direction required to follow a motion com-
pensated ray is

ψnρ (φ) , Ψ(vncaρ(φ)), (12.16a)
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θnρ (φ) , Θ(vncaρ(φ)). (12.16b)

To obtain the desired heading and pitch angle in collision avoidance we de�ne the
parameter φca as

φca , arg min
φ
C(φ). (12.17)

The cost function C is de�ned as

C ,

{
Center + Cθ t = t1

Cin + Cθ t > t1,
(12.18)

where t1 is the time when the vehicle enters collision avoidance mode. The function
Center will make the vehicle move behind the obstacle as it enters collision avoidance
mode, the function Cθ ensures that the desired pitch from the algorithm remains
within the bounds in (12.3), and the function Cin minimizes the required pitch and
yaw rate during the collision avoidance maneuver. These components of the cost
function C are de�ned as

Center ,


−
√(

θno − θnρ
)2

+
(
ψno − ψnρ

)2
, dob = dswitch√(

θnb − θnρ
)2

+
(
ψnb − ψnρ

)2
, dob < dswitch,

(12.19)

Cθ , 2π
(
1 + tanh(λ[θmin − θnρ ])

)
+ 2π

(
1 + tanh(λ[θnρ − θmax])

)
, (12.20)

Cin ,
√

(θndca − θndca1)2 + (ψndca − ψndca1)2, (12.21)

where θndca1 and ψndca1 is the desired pitch and heading during the previous opti-
mization, and λ > 0 is a design parameter used used to set the slope of Cθ.

Thus, we obtain the desired pitch and heading in collision avoidance mode as

〈θndca, ψ
n
dca〉 ,

〈
θnρ (φca), ψnρ (φca)

〉
. (12.22)

The vehicle will enter collision avoidance mode at a time t1 when

vndg(t1) ∈ Ve(t1), (12.23a)

dob(t1) ≤ dswitch > dsafe, (12.23b)

where vndg is the desired velocity vector from the guidance law, which is described
in Section 12.3.2, and dswitch is a chosen switching distance. The vehicle will leave
collision avoidance mode and enter nominal guidance mode at a time t2 when

vndg(t2) /∈ Ve(t2). (12.24)

12.3 Control system

The control system can be either in guidance mode, where it drives the vehicle
towards the target using the guidance law given in Section 12.3.2, or in collision
avoidance mode where it actively avoids an obstacle as described in the previous
section. In this section we describe the low-level control laws and the nominal
guidance law.
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12.3.1 Heading and pitch control

We want the vehicle to reach the desired heading ψnd and pitch θnd as fast as possible.
Hence, we make it turn at the maximum rate towards the desired direction:

rb(ψ
n
d ) ,


0 ψ̃nb = 0,

rmax ψ̃nb ∈ (−π, 0),

−rmax ψ̃nb ∈ (0, π].

(12.25a)

qb(θ
n
d ) ,


0 θ̃nb = 0,

qmax θ̃nb ∈ (−π, 0),

−qmax θ̃nb ∈ (0, π].

(12.25b)

The heading error variable ψ̃nb , ψnb −ψnd and the pitch error variable θ̃nb , θnb −θnd
are chosen to belong to the interval ψ̃nb , θ̃

n
b ∈ (−π, π]. This ensures that the vehicle

always makes the shortest possible turn towards ψnd and θnd . The desired heading
ψnd and pitch θnd are given in Section 12.3.2 when the control system is in guidance
mode, and in Section 12.2 when the control system is in collision avoidance mode.

12.3.2 Guidance law

When the control system is in guidance mode, we choose to use a 3D pure pursuit
guidance law [16] for the desired heading and pitch. The desired heading is thus
chosen as:

ψndg , Ψ(pnbt ), (12.26)

where ψndg ∈ [0, 2π) is the desired heading in guidance mode.
The desired pitch is saturated to ensure that control objective (12.8) is met:

θndg =


θmax Θ(pnbt ) > θmax,

Θ(pnbt ) Θ(pnbt ) ∈ [θmin, θmax],

θmin Θ(pnbt ) < θmin,

(12.27)

where θndg ∈ [θmin, θmax] is the desired pitch. If Θ(pnbt ) /∈ [θmin, θmax], the guidance
law will drive the vehicle towards the target at maximum or minimum pitch, and
then make the vehicle circle up or down until ||pnbt (tf )|| ≤ da, and control objective
(12.6) is met.

The desired velocity vector in guidance mode, vndg, is then found from (12.26)
and (12.27) as:

vndg , RRRzy(θndg, ψ
n
dg)v

n
b/n, (12.28)

where vnb/n = [ub, 0, 0]T as in Section 12.1.1.

12.4 Analysis

In this section we give an analysis of the collision avoidance algorithm described
in Section 12.2, applied to the vehicle described by the model (12.1). The vehicle
model is in closed-loop con�guration with the heading and pitch controllers (12.25).
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The vehicle is nominally moving towards a target position pnt using the guidance
law for heading (12.26) and pitch (12.27). When the vehicle encounters an obstacle,
it switches into collision avoidance mode using the switching criterion in (12.23),
and follows the heading and pitch reference given by (12.22) to avoid the obstacle.

12.4.1 Reqired pitch and yaw rate

Recall from Lemma 11.2 in the previous chapter that if the avoidance angle αo is
chosen such that

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
, π/2

)
, dsafe > 0, (12.29)

the initial distance to the obstacle satis�es dob(t0) ≥ dsafe, and the vehicle follows
the satis�es the control references (12.22) from the CAA algorithm, then the ob-
stacle distance will always be at least dsafe. To ensure that the vehicle is able to
follow θndca and ψndca, we require that

|θ̇ndca| ≤ qmax, (12.30a)

|ψ̇ndca| ≤ rmax. (12.30b)

Since the use of the cost function (12.18) minimizes θ̇ndca and ψ̇ndca when the system
is in collision avoidance mode, the required control e�ort in each DOF will maximize
for either a purely vertical or a purely horizontal maneuver. Thus, we will examine
such maneuvers in the next two lemmas, in order to �nd bounds on |θ̇ndca| and |ψ̇ndca|
as a function of dsafe. We start by looking at a pure vertical maneuver, where we
temporarily omit the pitch limitations of the vehicle in order to enable it to go
around the obstacle. We do this by setting the partial cost function Cθ to zero in
the next lemma.

Lemma 12.1. Consider a vehicle and an obstacle moving in the same vertical
plane, and let the obstacle be modeled by (12.4). If Assumptions 12.2, 12.4 and 12.5
hold, the vehicle follows the pitch reference from (12.22) for t ≥ t1, the distance to
the obstacle satis�es

dob(t1) ≥ dsafe, (12.31)

and the partial cost function Cθ = 0, then θ̇ndca is bounded by

|θ̇ndca| < θ̇ndcasup ,
aomax√
u2
b − u2

omax

+
uomax

ub
ωomax +

(ub + uomax)
2

ub
√

(Ro + dsafe)2 −R2
o

.

(12.32)

Proof. With out loss of generality, let the vehicle maneuver above the obstacle, and
we allow the pitch angles of the vehicle and the obstacle to lie in the interval (−π, π].
Thus, the vehicle and the obstacle can move towards each other while keeping the
same heading. The vehicle-obstacle geometry is illustrated in Figure 12.3, where it
can be seen that

θ̇ndca = θ̇nαo + γ̇ca, (12.33)
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Figure 12.3: Geometry of a collision avoidance maneuver in the vertical plane.

and that θnαo can be further decomposed as

θnαo = γo + γa + αo. (12.34)

Hence, since αo is constant by de�nition,

θ̇nαo = γ̇o + γ̇a. (12.35)

The angular velocity of γo can be found geometrically as

γ̇o =
(uo sin(θno − γo)− ub sin(θnb − γo))

Ro + dob
. (12.36)

Recall that angle γa is found in (12.9) as

γa = sin−1

(
Ro

Ro + dob

)
, (12.37)

which gives

γ̇a = −ḋob
Ro

(Ro + dob)
√

(Ro + dob)2 −R2
o

. (12.38)

where
ḋob = uo cos(θno − γo)− ub cos(θnb − γo). (12.39)

Combining (12.36) - (12.39) gives

θ̇nαo =
ub sin(γo − θnb )− uo sin(γo − θnb )

Ro + dob
−Ro

ub cos(γo − θnb )− uo cos(γo − θno )

(Ro + dob)
√

(Ro + dsafe)2 −R2
o

.

(12.40)
By applying Assumptions 12.5 to bound the obstacle speed and Assumption 12.2
to bound the vehicle speed, and then maximizing with respect to ψnb and ψno , we
obtain the following bound:

|θ̇nαo | ≤
ub + uomax√

(Ro + dsafe)2 −R2
o

. (12.41)
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Figure 12.4: An alternative expression for γca can be found using the sine rule on
this triangle.

When both the vehicle and the obstacle moves in the same vertical plane, the

dot product (v
Fρ
o )T ū

Fρ
ρ can be rewritten as uo sin(γvo), where

γvo , π −
(
θno − θnαo

)
, (12.42)

The expression (12.13) for γca can then be rewritten as

γca = sin−1

(
uo sin(γvo)

ub

)
, (12.43)

where we in e�ect have used the sine rule on the triangle shown in Figure 12.4.
Assumption 12.5 ensures that (12.43) is well de�ned. We use (12.43) to �nd

γ̇ca =
uo cos(γvo)

(
θ̇nαo − qo

)
+ sin(γvo)ao√

u2
b − u2

o sin2(γvo)
. (12.44)

We now use Assumptions 12.5 and 12.4 to bound the obstacle speed, acceleration
and pitch rate in the expression for γ̇ca, which gives

|γ̇ca| <
aomax√
u2
b − u2

omax

+
uomax

ub
ωomax +

uomax

ub
|θ̇nαo |. (12.45)

Combining (12.41) and (12.45) gives

|θ̇ndca| < θ̇ndcasup ,
aomax√
u2
b − u2

omax

+
uomax

ub
ωomax +

(ub + uomax)
2

ub
√

(Ro + dsafe)2 −R2
o

.

(12.46)

which concludes the proof.
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In the next lemma, we �nd an equivalent bound for the required yaw rate during
a horizontal maneuver.

Lemma 12.2. Consider a vehicle and an obstacle moving in the same horizontal
plane, and let the obstacle be modeled by (12.4). If Assumptions 12.2, 12.4 and 12.5
hold, the vehicle follows the heading reference from (12.22) for t ≥ t1, the distance
to the obstacle satis�es

dob(t1) ≥ dsafe, (12.47)

then ψ̇ndca is bounded by

|ψ̇ndca| < ψ̇ndcasup ,
aomax√
u2
b − u2

omax

+
uomax

ub
ωomax +

(ub + uomax)
2

ubdsafe
. (12.48)

Proof. The proof of Lemma 12.2 is equivalent to the proof of Lemma 12.1, however
we also maximize the expression with respect to Ro, in e�ect setting Ro = 0 in
the bound. This follows from the vehicle pitch limitations; if we consider a limiting
scenario where the vehicle is not allowed to pitch and encounters an obstacle which
is slightly below it, the radius of the vehicle's horizontal turn will be less than
Ro + dsafe, and the required turning rate is hence maximized when Ro = 0.

12.4.2 Switching distance

In this section we will derive a minimum safety distance guaranteeing that the
vehicle is able to turn around before the obstacle distance is reduced to less than
dsafe.

Lemma 12.3. Consider a vehicle modeled by (12.1) and an obstacle modeled
by (12.4), and let the vehicle be controlled by the heading and pitch controllers
(12.25). At a time t1 ≥ t2 let the control system enter collision avoidance mode
according to the switching rule in (12.23), and let the vehicle then be guided by
the collision avoidance law (12.22). Furthermore, let Assumptions 12.1-12.5 be
satis�ed. Finally, let the switching distance satisfy

dswitch ≥ uomaxtturn + dturn + dsafe, (12.49)

where

tturn , max

{
θmax − θmin

qmax
,
π

rmax

}
. (12.50)

is the maximum amount of time the vehicle will spend turning before reaching Vc,
and

dturn , max

{
ub
rmax

,
ub
qmax

}
. (12.51)

upper bounds the distance traveled by the vehicle towards the obstacle when making
a complete 180 ◦ turn. Then, the vehicle is able to reach Vc before the obstacle can
come within the distance dsafe.
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Proof. We consider a worst case scenario with an obstacle of in�nite size, Ro →∞,
moving at maximum speed, uo(t1) = uomax. The half apex angle of the vision
cone angle is then γa = π/2. We assume, without loss of generality, that the
obstacle is ahead of the vehicle along the x-axis of the NED frame, such that
xno (t1)− xnb (t1) = dswitch, while y

n
o (t1) = ynb (t1) and zno (t1) = znb (t1). Furthermore,

we assume that the vehicle and obstacle move straight towards each other at time
t1. The worst case behavior of the obstacle is then to continue moving straight
ahead at maximum speed.

The time taken for a vehicle to make a complete horizontal turn is

thturn ,
π

rmax
, (12.52)

while the time taken for the vehicle to pitch from θmin to θmax or vice versa is

tvturn ,
θmax − θmin

qmax
. (12.53)

Hence, the distance covered by the obstacle towards the vehicle when the vehicle
is turning towards 〈θndca, ψ

n
dca〉 is upper bounded by uomaxtturn, where

tturn , max {thturn, tvturn} . (12.54)

The distance covered by the vehicle towards the obstacle when turning is upper
bounded by

dturn , max

{
ub
rmax

,
ub
qmax

}
. (12.55)

It follows that if the switching distance satis�es

dswitch ≥ uomaxtturn + dturn + dsafe, (12.56)

then there exists a time t2 ≥ t1 when θnb = θndca, ψ
n
b = ψndca and it holds that

dob(t) ≥ dsafe ∀t ∈ [t1, t2]. (12.57)

The proof is illustrated in Figure 12.5

12.4.3 Safe target reaching

Before stating the main theorem, assume that the vehicle is able to start safely,
and that the obstacle does not cover the target:

Assumption 12.6. The initial distance between the vehicle and the obstacle sat-
is�es

dob(t0) > dswitch. (12.58)

Assumption 12.7. The distance dot from the obstacle to the target position pnt
satis�es

dot(t) >
Ro

cos(αo)
−Ro ∀t ≥ t0. (12.59)
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dturn

dsafe

uomax tturn

dswitch

Figure 12.5: Illustration of the minimum required switching distance.

Finally, we assume that distance between any two obstacles is large enough to
allow the vehicle to consider one obstacle at a time:

Assumption 12.8. The distance between any two obstacles are always at least
2dswitch.

Theorem 12.4. Consider a vehicle modeled by (12.1), controlled by the con-
trollers (12.25), guidance laws (12.26) and (12.27), and collision avoidance law
(12.22). Furthermore, let the vehicle operate in the presence of obstacles described
by (12.4). If Assumptions 12.2-12.8 hold, the avoidance angle satis�es

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
,
π

2

)
, (12.60)

the maximum vehicle pitch and yaw rate satisfy

qmax ≥ θ̇ndcasup, (12.61a)

rmax ≥ ψ̇ndcasup, (12.61b)

and the switching distance satis�es

dswitch ≥ uomaxtturn + dturn + dsafe, (12.62)

then vehicle will maneuver among the obstacles while ensuring that

dob(t) ≥ dsafe > 0 ∀t ≥ t0, (12.63)

and
θnb ∈ [θmin, θmax]. (12.64)

Furthermore, if there is just a single obstacle in the scenario, then there exists a
time tf ≥ to at which the distance to the target position pnt satis�es

‖pnb − pnt ‖ ≤ da. (12.65)
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Proof. Let the distance between the vehicle and the obstacle be reduced to dswitch

at time t = t1, and let vndg(t1) ∈ Vc. The switching distance dswitch given in (12.62)
then ensures that the vehicle is able to reach Vc before the obstacle can be within
the safety distance dsafe of the vehicle's turning circle. There is then a time t2 ≥ t1
when dob(t2) >= dsafe, ψ

n
b (t2) = ψndca(t2) and θnb (t2) = θndca(t2). It follows from

Lemmas 12.1 and 12.2 that qmax ≥ |θ̇ndca(t)| ∀t > t1 and rmax ≥ |ψ̇ndca(t)| ∀t > t1.
Hence, the vehicle's velocity vector will point along the surface of Vc for t ∈ [t2, t3],
where t3 is the time when the vehicle will exit collision avoidance mode.

The conditions of Lemma 11.2 are then satis�ed, and it is ensured that

dob(t) ≥ dsafe ∀t ∈ [t1, t3]. (12.66)

Thus, the control objective (12.7) is satis�ed. Since the vehicle moves around the
obstacle, Assumption 12.7 ensures that a time t2 when the line of sight to the
target pnt is outside of Vc exists. In accordance with the switching rule (12.24), the
vehicle will then exit collision avoidance mode and proceed towards the target.

The obstacle may turn so that the line of sight to pnt comes within Vc before
dob > dswitch, making the vehicle enter collision avoidance mode again. However,
since vndca1 and vndca2 are �rst order di�erentiable and 〈θndca, ψ

n
dca〉 is then chosen

to be the closest of vndca1 and vndca2 by (12.19), the vehicle is immediately able to
follow a velocity along Vc to avoid the obstacle again.

Since ub > uomax, the vehicle will eventually be able to escape the obstacle
and reach the target, satisfying control objective (12.6). Finally, since neither the
pitch guidance law (12.27) nor the collision avoidance law will give pitch references
outside of [θmin, θmax], Assumption 12.3 ensures that the vehicle pitch does not
violate its limits, satisfying control objective (12.8).

12.5 Simulations

In this section we will present numerical simulations to validate the analysis in
Section 12.4. We will �rst show the performance of the algorithm when avoiding a
static obstacle, and then extend the simulations to moving obstacles.

12.5.1 Static obstacles

The parameters used in the simulations with a static obstacle are summarized in
Table 12.1.

Table 12.1: Simulation parameters

rmax 0.5 rad/s θmin −0.5 rad
qmax 0.5 rad/s θmax 0.5 rad
ub 2 m/s pnb (t0) [0, 0, 0]T (m)
Ro 10 m pnb (t0) [125, 0, 0]T (m)
dsafe 6 m da 10 m
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The avoidance angle αo was set using (12.60) to 0.9 rad, while the switching
distance was set using (12.62) to dswitch= 10 m. The upper bounds on the required
pitch and heading rate during collision avoidance was calculated using (12.32) and
(12.48) to θ̇ndcasup = 0.16 rad/s and ψ̇ndcasup = 0.33 rad/s.

The obstacle position was set to pno = [70, ynosim, z
n
osim]T (m), where ynosim and

znosim were set to increase incrementally from −15 m to 15 m in steps of 1 m for
each simulation, creating a set of 961 simulations. The results of the simulations
are summarized in Table 12.2, where dobmin denotes the minimum obstacle distance
during a simulation, θnbmin denotes the minimum pitch during a simulation, while
θnbmax denotes the maximum pitch value.

Table 12.2: Simulation results

Min dobmin 6.1 m Min tf − t0 60.0 s
Max dobmin 11.2 m Max tf − t0 65.1 s
Min θnbmin −0.43 rad Min θnbmax 0 rad
Max θnbmin 0 rad Max θnbmax 0.43 rad

Max |θ̇ndca| 0.10 rad Max |ψ̇ndca| 0.21 rad

The results in Table 12.2 verify the results of Theorem 12.4: The vehicle always
reaches the target, the safety distance is never violated, the bounds on θnb are

upheld and the required pitch and yaw rate does not exceed θ̇ndcasup and ψ̇ndcasup.
An example scenario is shown in Figure. 12.6, where ynosim = 4 m and znosim 5 m.

The direction along Ve minimizing the cost function C is then to the upper port
side of the vehicle. The pitch is limited by θmax, and the maneuver is dominated
by horizontal movement. When the line of sight to the target comes outside Ve, the
vehicle leaved collision avoidance mode and continued under nominal guidance.

The distance to the obstacle during the simulation is shown in Figure 12.7,
where it can be seen that the vehicle approached, but did not cross, the safety
distance dsafe during the collision avoidance maneuver. Furthermore, the vehicle
heading θnb remains within [θmin, θmax] as shown in the lower parts of the �gure,
where it can be seen that the vehicle started the maneuver by pitching up, going
above the obstacle, before pitching down again.

The required pitch and yaw rate during the collision avoidance maneuver,
θ̇ndcasup and ψ̇ndcasup, are displayed in Figure 12.8. After an initial increase in mag-
nitude as the vehicle approached the obstacle and turned towards Vc, the rates
remained relatively constant and well within the theoretical limits of Lemmas 12.1
and 12.2.

12.5.2 Moving obstacle

In the next two scenarios the obstacle is moving with a speed of uo = uomax = 1 m/s.
The maximum acceleration and angular velocity are set to aomax = 0 m/s and
ωomax = 0.4 rad/s, respectively. The safety distance was increased to dsafe = 15 m,
which gives an avoidance angle according to (12.60) of αo = 1.16 rad and a switching
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Figure 12.6: A scenario where ynosim = 4 m and znosim = 5 m. The vehicle is the
yellow polyhedron, and the obstacle is the red sphere. The blue line is the vehicle
trajectory, the target is marked by an 'X', and the desired direction from guidance
is shown by a blue arrow.
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Figure 12.8: The required pitch and yaw rate during the collision avoidance ma-
neuver around a static obstacle.

distance according to (12.62) of dswitch = 25.3 m. The resulting bounds on the
required angular rates are θ̇ndcasup = 0.40 rad and ψ̇ndcasup = 0.50 rad. Thus, the
conditions of Theorem 12.4 are satis�ed.

In the �rst scenario, shown in Figure 12.9, the obstacle crosses in front of the
vehicle, passing from the port side. The vehicle chooses to move down and behind
the obstacle, minimizing the cost function C in (12.18), and safely maneuvers
around the obstacle.

As can be seen from Figure 12.10, the obstacle distance is greater than the
minimum safety distance throughout the maneuver, and the vehicle pitch stays
within its limits. Furthermore, the required angular rates on the vehicle during the
avoidance maneuver is well within the theoretical limits, as shown in Figure 12.11.
Thus, the theoretical results of Theorem 12.4 and of Lemmas 12.1 and 12.2 are
veri�ed by this simulation.

In the �nal simulation scenario, shown in Figure 12.12 the vehicle encounters an
obstacle head on. The vehicle moves up and to starboard in order to avoid collision.
The obstacle, however, is set to be in pursuit of the vehicle, with a desired velocity
direction always pointing towards the vehicle. Hence, the obstacle follows the ve-
hicle throughout the maneuver. In spite of the collision-seeking obstacle behavior,
the CAA algorithm makes the vehicle successfully exploit its superior maneuvering
capabilities. Thus, as seen in Figure 12.13, the distance to the obstacle is always
kept above dsafe, and the vehicle pitch remains within [θmin, θmax]. Furthermore,
the required pitch and yaw rate again stays well within the theoretical constraints
of Lemmas 12.1 and 12.2, as seen in Figure 12.14.
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Figure 12.9: A scenario where the obstacle crosses in front of the vehicle. The
direction of obstacle velocity is shown by a black arrow.
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Figure 12.10: The distance dob to the obstacle and the vehicle pitch θnb when the
vehicle avoids a crossing obstacle.
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Figure 12.11: The required pitch and yaw rate during the collision avoidance ma-
neuver around a crossing obstacle.
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Figure 12.12: A scenario where the obstacle is in pursuit of the vehicle in front of
the vehicle.
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Figure 12.13: The distance dob to the obstacle and the vehicle pitch θnb when the
vehicle avoids a pursuing obstacle.
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Figure 12.14: The required pitch and yaw rate during the collision avoidance ma-
neuver around a pursuing obstacle.
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12.6 Conclusions

In this chapter, we have applied the 3D CAA algorithm presented in Chapter 11 to
a kinematically modeled vehicle with nonholonomic constraints in sway and heave,
and with limited pitch and yaw rates. The vehicle has been restricted to keep a
constant forward speed, and to have a safety limitation on the vehicle pitch. Such
pitch bounds are commonly seen in real life scenarios involving, for example, �xed-
wing aircraft or AUVs. We have shown how the optimality criterion used to choose
among the directions along the safe, compensated vision cone ensures that these
pitch limitations are upheld.

The main theorem in this chapter states the minimum switching distance re-
quired in order to ensure that the vehicle is able to turn around and reach the safe,
compensated vision cone before the obstacle can get too close. We have also de-
rived upper bounds on the required pitch and yaw rate when following a direction
along this cone. Speci�cally, since the optimality criterion chooses the direction
which minimizes the desired pitch and yaw rate, we can consider the horizontal
and vertical plane separately. Thus, we have been able to build on the results from
the analysis of the 2D CAA algorithm in Part III. In particular, we have used the
results from the unicycle analysis in Chapter 8 in order to prove safe avoidance
also in 3D for a kinematic vehicle with nonholonomic constraints.

In the next chapter, we will extend the vehicle model to a full 5 DOF dynamic
model of a maneuvering underwater vehicle. Such a vehicle has underactuation
both in sway and heave, and we will use the bounds on the required pitch and yaw
rate derived in this chapter in order to limit the induced sway and heave motion
during the maneuver.
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Chapter 13

The CAA algorithm for

underactuated underwater vehicles

Don't panic.

� Douglas Adams, The Hitchhiker's Guide to the Galaxy

While we in the previous chapter applied the 3D CAA algorithm to a kinematically
modeled vehicle with nonholonomic constraints and a constant forward speed, we
will in this chapter extend the vehicle model to include the full 5 DOF dynamics of
an underactuated marine vehicle, such as an AUV steered by rudders, sternplanes
and a propeller. We saw in Chapter 10 that for an underactuated surface vehicle,
a sway movement is induced while the vehicle is turning. In the 5 DOF case, there
is an additional underactuation in heave, and a heave motion towards the obstacle
is induced when the vehicle is pitching away.

We will include the underactuated speeds in sway and heave by steering the
direction of the vehicle's velocity vector rather than the vehicle's orientation. Specif-
ically, we derive a method for converting a desired angular velocity of the vehicle's
linear velocity vector into control inputs to the rudders and sternplanes, using a
novel Flow frame controller. We will show that the sway and heave dynamics re-
main bounded during the maneuver, and that the pitch of the velocity vector can
be limited in order to adhere to safety constraints.

In the previous chapter, we derived upper bounds on the required pitch and yaw
rate during the maneuver. In this chapter, we will include a time-varying vehicle
speed in these expressions, in order to show that the required angular rates of
the vehicle's velocity vector remain well de�ned. Speci�cally, we will include the
underactuated sway and heave components of the vehicle speed. These will make
the vehicle speed tend to increase as the vehicle pitches and turns with a constant
forward speed. We show how these underactuated speed components are inherently
accounted for by the algorithm, and provide conditions under which the avoidance
maneuver is still provably safe.

During the switch from nominal operation to collision avoidance, there is a
discontinuity in the desired angular rates of the vehicle. To ensure that the directly
actuated pitch and yaw rates are always able to follow their references, we include
a linear bump function to remove this discontinuity.

We are, in this work, mainly concerned with the avoidance of sparsely spaced
obstacles, and an analysis of multi-obstacle scenarios is beyond the scope. How-
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13. The CAA algorithm for underactuated underwater vehicles

ever, it is possible to extend the algorithm to include multiple moving hindrances.
We will provide a qualitative description of this process, and will demonstrate its
applicability in numerical simulations.

The algorithm has been implemented into the control system of a Hugin AUV
[43], which is a commercially widespread AUV jointly developed by the Norwegian
Defence Research Establishment and Kongsberg Maritime. Even though access to
the low-level control system was not available, the modular nature of the algorithm
made it straightforward to implement it on top of the existing control system. To
demonstrate the algorithm's capabilities in a controlled manner, the vehicle was
made to avoid moving virtual obstacles in a sequence of several experiments with
time-varying parameters. The vehicle was able to avoid all the obstacles, even in the
presence of sensor noise and unmodeled environmental disturbances, which implies
robustness of the algorithm from a control perspective.

The remainder of this chapter is organized as follows. In Section 13.1 we sum-
marize the vehicle and obstacle model, and state the current control objectives.
A reiteration of the 3D CAA algorithm is provided in Section 13.2, while the un-
derlying control system, including the Flow frame controller and a target reaching
guidance law, is presented in Section 13.3. An analysis of the system is given in
Section 13.4, and the analysis is validated by both simulations in Section 13.5,
and through experiments in Section 13.6. Finally, the chapter is concluded in Sec-
tion 13.7.

The work presented in this chapter is based on Wiig et al. [115], Wiig et al.
[116] and Wiig et al. [118].

13.1 System description

13.1.1 Vehicle model

In this chapter we will model the vehicle using the 5 DOF maneuvering model
described in Chapter 3. The 5 DOF kinematics of the vehicle are described by

η̇nb = J(ηnb )νbb/n, (13.1)

where ηnb , [pnb , θ
n
b , ψ

n
b ]T contains the position and orientation of the vehicle's Body

frame b with respect to the inertial frame n and νbb/n , [vbb/n, qb, rb]
T contains the

body �xed linear velocities vbb/n , [ub, vb, wb]
T , pitch rate qb and yaw rate rb. The

transformation matrix J(ηnb ) is de�ned as

J(ηnb ) ,

[
RRRzy(θnb , ψ

n
b ) 0

0 T nb (θnb )

]
, (13.2)

where T nb (θnb ) , diag{1, 1/ cos(θnb )}, |θnb | 6= π
2 .

The dynamics of the vehicle are obtained in component form as

u̇b = Fu(ub, vb, wb, rb, qb) + τu, (13.3a)

v̇b = Xv(ub)rb + Yv(ub)vb, (13.3b)

ẇb = Xw(ub)qb + Yw(ub)wb + Zw sin(θnb ), (13.3c)
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13.1. System description

q̇b = Fq(θ
n
b , ub, wb, qb) + τq. (13.3d)

ṙb = Fr(ub, vb, rb) + τr. (13.3e)

The functions Fu, Xv, Yv, Xw, Yw, Zw, Fq and Fr contain hydrodynamic param-
eters. These functions are de�ned in Section 3.2.2, and restated in Appendix 13.A
for convenience.

Since the vehicle dynamics in (13.3) are described using a maneuvering model,
we assume that the vehicle operates at maneuvering speed:

Assumption 13.1. The vehicle surge speed ub satis�es ub ≥ ubmin, where ubmin >
0 is a constant parameter.

Even though sway and heave can not be directly controlled, we can still ensure
that these dynamics are nominally stable by making the following assumption:

Assumption 13.2. The functions Yv(ub) and Yw(ub) are negative for all ub ≥
ubmin.

This assumption holds for most AUVs by design.

13.1.2 The Flow frame

The direction of the vehicle's velocity vector is of main interest to us when steer-
ing the vehicle to avoid an obstacle. Thus, we would like to represent the vehicle
kinematics in such a way that we obtain

ṗnb = Rn
f (θnf , ψ

n
f )vff/n, (13.4)

where vff/n , [Ub, 0, 0]T and Ub , ‖vbb/n‖. The frame f is de�ned in Fossen [35]

as the Flow frame, and the rotation from b to f is found using the angle of attack
αb , atan2(wb, ub) and sideslip angle βb , atan2(vb, Uw), where Uw ,

√
u2
b + w2

b :

Rf
b , RRRzy(αb,−βb). (13.5)

The vehicle kinematics can then be written as

ṗnb = RRRzy(θnb , ψ
n
b )RRRzy(αb,−βb)Tvff/n, (13.6)

= RRRzyx(ϕnf , θ
n
f , ψ

n
f )vff/n. (13.7)

To steer the Flow frame, we require expressions for the Euler angles ϕnf , θ
n
f and ψnf ,

as well as the Flow frame angular velocity vector ωωωfn/f , [pf , qf , rf ]T containing

the roll, pitch and yaw rate, respectively. Using the procedure from Fossen [35],
the Euler angles are found as

ϕnf = tan−1 [s(βb)t(γb)] , (13.8)

θnf = sin−1 [c(βb)s(γb)] , (13.9)

ψnf = tan−1

(
c(γb)s(ψ

n
b )c(βb) + c(ψnb )s(βb)

c(γb)s(ψnb )c(βb) + c(ψnb )s(βb)

)
, (13.10)
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13. The CAA algorithm for underactuated underwater vehicles

where γb , θnb − αb. The Euler angle derivatives areϕ̇nfθ̇nf
ψ̇nf

 =

1 s(ϕnf )t(θnf ) c(ϕnf )t(θnf )

0 c(ϕnf ) −s(ϕnf )

0 s(ϕnf )/c(θnf ) c(ϕnf )/c(θnf )

ωωωfn/f . (13.11)

The angular velocity vector ωωωfn/f is found as in Børhaug and Pettersen [12]:

ωωωfn/f = ωωωfn/b +ωωωfb/f = RRRzy(αb,−βb)ωωωfn/b +ωωωfb/f , (13.12)

whereωωωfn/b = [0, qb, rb]
T andωωωfb/f is derived asωωω

f
b/f = [−β̇b sin(αb),−α̇b, β̇b cos(αb)]

T .

To obtain an expression for qf and rf as a function of the pitch and yaw rate

in b, we insert for α̇b and β̇b in (13.12) to obtain[
qf
rf

]
= AAAf

[
qb
rb

]
+BBBf , (13.13)

where

AAAf ,

[
c(βb)− Xwub

U2
w

−s(βb)s(αb)
c(αb)

Xwwbvb
UwU2

b
c(αb)

UwXv+U2
b

U2
b

]
, (13.14)

and

BBBf ,
[
−ub Zws(θ

n
b )+Ywwb
U2
w

vbc(αb)
Zws(θ

n
b )wb+YvU

2
w+Yww

2
b

UwU2
b

]T
. (13.15)

It can be shown that AAAf is nonsingular when the following assumption is met:

Assumption 13.3. The functions Xv(ub) and Xw(ub) satisfy Xv(ub) + ub > 0
and −Xw(ub) + ub > 0 for all ub ≥ ubmin.

This assumption ensures that a change in θnb or ψnb will result in a change in θnf
or ψnf , respectively, and holds for most AUVs operating at maneuvering speed by
design. The expression in (13.13) enables us to control qf and rf , and hence the
direction of the vehicle's velocity vector, by controlling the angular rates qb and rb
of the Body frame.

13.1.3 Analysis model

We would like to remove the qb − rf and rb − qf couplings in (13.13) to simplify
the analysis in Section 13.4. This can be done by assuming that the angle of attack
αb and sideslip angle βb are small, and then make the small angle approximations
c(αb) ≈ 1, c(βb) ≈ 1 and s(αb)s(βb) ≈ 0. The sideslip angle can then be further
simpli�ed as βb ≈ atan2(vb, ub). Equation (13.13) can then be reduced to

qf ≈ qb − α̇b (13.16)

rf ≈ rb + β̇b. (13.17)
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The sway and heave dynamics in (13.3b) and (13.3c) can then be rewritten in terms
of qf and rf as

v̇b ≈
u2
b + v2

b

Xvub + u2
b + v2

b

(Xvrf + Yvvb) , (13.18)

ẇb ≈
U2
w

U2
w −Xwub

(Xwqf + Ywwb + Zw sin(θnb )) . (13.19)

The small angle assumption for αb and βb holds for vehicles where the hydrody-
namic damping and rudder saturation ensures that turning rate is not too large,
which is the case of most AUVs at maneuvering speed.

13.1.4 Obstacle model

Recall from Section 11.1 that the obstacle is modeled as a moving sphere with
radius Ro:

η̇no = J(ηno )νoo/n, (13.20a)

u̇o = ao, (13.20b)

where ηno , [pno , θ
n
o , ψ

n
o ]T and νoo/n , [uo, 0, 0, qo, ro]

T . The obstacle's angular ve-
locity and acceleration is assumed to be bounded, and in this chapter we also
assume that they are smooth:

Assumption 13.4. The obstacle acceleration ao and angular velocity ωoo/n are
smooth and bounded by

ao ∈ [−aomax, aomax] , (13.21a)

‖ωoo/n‖ ∈ [−ωomax, ωomax] , (13.21b)

where aomax ≥ 0 and ωomax ≥ 0 are constant parameters.

To ensure that the vehicle is able to circumvent the obstacle, we need to assume
that the obstacle speed is less than the desired vehicle surge speed, ubd. The obstacle
speed is further restricted if a large vehicle sway or heave speed is induced towards
the obstacle when the vehicle turns away from it, i.e. if the maneuvering capabilities
of the vehicle are poor. This restriction comes from the mathematical analysis in
Section 13.4.

Assumption 13.5. The obstacle velocity lies in the interval uo ∈ [0, uomax]. The
upper bound should satisfy uomax < min {uomv, uomw}, where

uomv <

{
2
√
−X2

v −Xvubd, −ubd < Xv ≤ −ubd2
ubd, −ubd2 < Xv,

(13.22)

and

uomw <

{
2
√
−X2

w +Xwubd,
ubd
2 < Xw ≤ ubd

ubd, Xw <
ubd
2 .

(13.23)
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13.1.5 Control objectives

In this chapter, the nominal control objective is target reaching. Thus, the goal of
the control system is to make the vehicle safely reach a target position pnt at some
unspeci�ed time tf ≥ t0. We formalize this as

∃tf ∈ [t0,∞) s.t. ||pnbt (tf )|| ≤ da, (13.24)

dob(t) ≥ dsafe > 0 ∀t ∈ [t0, tf ], (13.25)

where pnbt = pnt − pnb is the target position in nb, da > 0 is a user-speci�ed
acceptance distance, dob is the distance to the obstacle and dsafe > 0 is a design
parameter.

Many AUVs have pitch limitations to ensure that they do not move too fast
towards the sea �oor or the surface, and to keep them within the roll stable regime.
For this reason, we require that the control system bounds the pitch of the vehicle
in the Flow frame as:

θnf (t) ∈ [θmin, θmax] ∀t ∈ [t0, tf ], (13.26)

where θmin ∈ (−π/2, 0) and θmax ∈ (0, π/2) are constant design parameters.
The surge speed ub will be controlled by using the feedback linearizing controller

described in Section 13.3.4 to reach a desired surge speed ubd. We set the desired
surge speed to a positive constant:

Assumption 13.6. The desired surge speed is constant and satis�es ubd ≥ ubmin.

For brevity, we introduce the notation Xvd , Xv(ubd), Yvd , Yv(ubd), Xwd ,
Xw(ubd) and Ywd , Yw(ubd).

13.2 The CAA algorithm in 3D

The 3D CAA algorithm is de�ned in Section 11.2 and summarized here for conve-
nience.

The algorithm creates an extended vision cone Ve from the vehicle to the ob-
stacle, where the apex angle of the vision cone is γe , 2(γa + αo), and

γa , sin−1

(
Ro

Ro + dob

)
. (13.27)

The vision cone is transformed to compensate for the obstacle speed uo. For
each ray ρ of Ve, we �nd a frame Fρ which is such that the xFρ -axis points along ρ,
while the obstacle velocity lies in the xFρ -yFρ -plane. We �rst �nd an intermediate
frame A where the xA-axis is coincident with the xFρ -axis:

RRRAnb , Rz(γe)
TRx(φ)TRRRzy (Θ(pnbo ),Ψ(pnbo ))

T
, (13.28)

where the pnbo = pno − pnb and the angle φ ∈ [0, 2π) is a parameter uniquely
identifying each ray of the vision cone.
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Figure 13.1: A plane containing both the ray ρ, the obstacle velocity vector vno/n
and the resulting candidate for desired velocity in collision avoidance mode, vncaρ.

To obtain the frame Fρ, we will rotate the A frame around the xA-axis until v
Fρ
o

lies in the xFρ -yFρ -plane. The required rotation angle can be geometrically found

as φ̂ , atan2
(
vAoz,v

A
oy

)
. Hence, RRR

Fρ
A = Rx(φ̂), and

vFρo = RRRFρnbv
n
o/n = RRR

Fρ
A RRR

A
nb
vno/n. (13.29)

We de�ne a velocity vector v
Fρ
ρ along ρ, and seek a vector

vFρcaρ , v
Fρ
ρ + vFρo , (13.30)

illustrated in Figure 13.1. The total speed of the vehicle is Ub, and we design the
algorithm to compensate for the obstacle speed using Ub as input. Hence, we ensure

that ‖vFρcaρ‖ = Ub, which we do by �nding the compensation angle γca between v
Fρ
ρ

and v
Fρ
caρ as

γca(φ) , sin−1

(
(v
Fρ
o )T ū

Fρ
ρ

Ub

)
, (13.31)

where ū
Fρ
ρ is a unit vector orthogonal to v

Fρ
ρ as shown in Figure 13.1. The vector

v
Fρ
caρ is thus

vFρcaρ , Ub[cos(γca), sin(γca), 0]T , (13.32)

while
vncaρ =

(
RRRFρnb

)T
vFρcaρ. (13.33)

The collection of motion compensated rays compose a compensated vision cone
Vc, shown in Figure 13.2. The velocity direction required to follow a motion com-
pensated ray is

ψnρ (φ) , Ψ(vncaρ(φ)), (13.34a)
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Figure 13.2: The compensated vision cone Vc (green).

θnρ (φ) , Θ(vncaρ(φ)). (13.34b)

To obtain the desired heading and pitch angle in collision avoidance we obtain the
parameter φca as

φca , arg min
φ
C(φ). (13.35)

The cost function C is de�ned as

C ,

{
Center + Cθ t = t1

Cin + Cθ t > t1,
(13.36)

where t1 is the time when the vehicle enters collision avoidance mode. The func-
tion Center will make the vehicle move behind the obstacle as it enters collision
avoidance mode, the function Cθ ensures that the desired pitch from the algorithm
remains within the bounds in (13.26), and the function Cin minimizes the required
Flow frame pitch and yaw rate during the collision avoidance maneuver. These
components of the cost function C are de�ned as

Center ,


−
√(

θno − θnρ
)2

+
(
ψno − ψnρ

)2
, dob = dswitch√(

θnf − θnρ
)2

+
(
ψnf − ψnρ

)2

, dob < dswitch,

(13.37)

Cθ , 2π
(
1 + tanh(λ[θmin − θnρ ])

)
+ 2π

(
1 + tanh(λ[θnρ − θmax])

)
, (13.38)

Cin ,
√

(θndca − θndca1)2 + (ψndca − ψndca1)2, (13.39)

where θndca1 and ψndca1 is the desired pitch and heading during the previous opti-
mization, and λ > 0 is a design parameter used used to set the slope of Cθ.
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Thus, we obtain the desired Flow frame pitch and heading angle in collision
avoidance mode as

〈θndca, ψ
n
dca〉 ,

〈
θnρ (φca), ψnρ (φca)

〉
. (13.40)

The vehicle will enter collision avoidance mode at a time t1 when

vndg(t1) ∈ Ve(t1), (13.41a)

dob(t1) ≤ dswitch > dsafe, (13.41b)

where vndg is the desired velocity vector from the guidance law described in Sec-
tion 13.3.1, and dswitch is a chosen switching distance. The vehicle will leave collision
avoidance mode and enter nominal guidance mode at a time t2 when

vndg(t2) /∈ Ve(t2). (13.42)

13.3 Control system

When no obstacles are at risk of collision with the vehicle, the vehicle will be in
guidance mode and under the control of a target reaching guidance law described in
this section. If there is a risk of collision, the control system will enter into collision
avoidance mode according to a rule in (13.41). The vehicle will then be under the
control of the 3D CAA algorithm, described in Section 13.2.

In this section we also describe the controllers used to steer the Flow frame of
the vehicle, as well as the low-level yaw rate, pitch rate and surge controllers.

13.3.1 Target reaching guidance law

We will employ a pure pursuit guidance law [16] to make the vehicle reach the
target position pnt . The desired heading ψndg is thus set to point towards the target:

ψndg , Ψ(pnbt ), (13.43)

where Ψ is de�ned in (2.5).
The desired pitch θndg in guidance mode is saturated to ensure that control

objective (13.26) is met:

θndg =


θmax Θ(pnbt ) > θmax,

Θ(pnbt ) Θ(pnbt ) ∈ [θmin, θmax],

θmin Θ(pnbt ) < θmin,

(13.44)

where Θ is de�ned in (2.6).
The desired velocity vector in guidance mode, vndg, is then found from the

guidance laws (13.43) and (13.44) as:

vndg , RRRzy(θndg, ψ
n
dg)
[
Ub 0 0

]T
. (13.45)
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13.3.2 Flow frame control

To account for the underactuated dynamics, we will steer the direction of the
vehicle's velocity vector, i.e. we will control θ̇nf and ψ̇nf . To this end, we use (13.13)
to obtain [

q̄bd
r̄bd

]
= AAA−1

f

([
qfd
rfd

]
−BBBf

)
. (13.46)

The desired Flow frame angular rates qfd and rfd are obtained as

qfd = c(ϕnf )θ̇nfc + c(θnf )s(ϕnf )ψ̇nfc, (13.47)

rfd = −s(ϕnf )θ̇nfc + c(θnf )c(ϕnf )ψ̇nfc. (13.48)

The signals θ̇nfc and ψ̇
n
fc are set using a proportional controller in order to obtain

exponential convergence of the Flow frame heading and pitch. To limit the yaw and
pitch rate, and hence the induced sway and heave motions, the proportional e�ect
is saturated:

ψ̇nfc , ψ̇nfd − sat(kψψ̃
n
f , σψ), (13.49a)

θ̇nfc , θ̇nfd − sat(kθ θ̃
n
f , σθ), (13.49b)

where θ̃nf , θnf − θnfd and ψ̃nf , ψnf − ψnfd. We de�ne these error variables to lie
in the interval (−π, π] to ensure that the vehicle makes the shortest turn towards
ψnfd and θnfd. The desired heading and pitch are given in Section 13.3.1 when the
control system is in nominal guidance mode, and in Section 13.2 when the control
system is in collision avoidance mode. The control gains kψ > 0 and kθ > 0 are
positive design variables, while the variables σψ > 0 and σθ > 0 are saturation
parameters used in the saturation function

sat(a, b) ,


b, a > b,

a, a ∈ [−b, b],
−b, a < −b.

(13.50)

In order to ensure that the Flow frame heading saturation acts on an error in the
interval ψ̃nf ∈ (−π, π], we make the following assumption on σψ:

Assumption 13.7.

σψ < kψπ. (13.51)

Similarly, in order to ensure that the Flow frame pitch rate saturation acts on
an error in the interval θ̃nf ∈ (−π/2, π/2) we assume that:

Assumption 13.8.

σθ < kθ
π
2 . (13.52)

Remark 13.1. If Assumptions 13.7 and 13.8 are not met, the saturation will not
have any e�ect and can be removed.
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13.3. Control system

13.3.3 Yaw and pitch rate bump function

When the control system switches mode, there is a discontinuity in ψnfd and θ
n
fd, and

hence in r̄bd and q̄bd obtained in (13.46). To avoid the discontinuity in the desired
yaw and heading rate, we use the linear bump function bump(tb) introduced in
Chapter 10:

bump(tb) =


1, tb ≥ Tb,
tb
Tb
, 0 < tb < Tb

0, tb ≤ 0,

(13.53)

where the bump time Tb is a positive constant.
As long as the yaw rate signal r̄bd from (13.46) is smooth, rbd = r̄bd. However,

if there is a jump in r̄bd at time t1, we apply the bump function:

rbd(t) = rbd(t1) [1− bump(t− t1)] + r̄bd(t)bump(t− t1). (13.54)

This ensures that when t ≥ t1 + Tb, rbd(t) = r̄bd(t). If, at a time t2 ∈ (t1, t1 +
Tb), rbd(t2) = r̄bd(t2), use of the smoothing function is stopped until the next
discontinuity in r̄bd. The pitch rate signal q̄bd is smoothed in the same way.

13.3.4 Low-level controllers

The surge (13.3a), pitch rate (13.3d) and yaw rate (13.3e) are controlled using
feedback linearizing controllers:

τu = −Fu(θnb , ub, vb, wb, rb, qb) + u̇bd − kuũb, (13.55a)

τq = −Fq(θnb , ub, wb, qb) + q̇bd − kq q̃b, (13.55b)

τr = −Fr(ub, vb, rb) + ṙbd − kr r̃b, (13.55c)

where ku > 0, kq > 0 and kr > 0 are constant control gains, and ũb , ub − ubd,
q̃b , qb − qbd and r̃b , rb − rbd.

Inserting these controllers into (13.3a), (13.3d) and (13.3e) gives the following
error dynamics:

˙̃ub = −kuũb, (13.56a)

˙̃qb = −kq q̃b, (13.56b)

˙̃rb = −kr r̃b. (13.56c)

The error dynamics are linear, and the origin is globally exponentially stable.
Hence, as long as qbd, rbd and ubd are continuous signals, a vehicle described by
(13.3) will be able to follow them as long as the following assumption is met:

Assumption 13.9. At time t0, the system has operated long enough for the surge
speed, yaw rate and pitch rate to converge, i.e. ũb(t0) = 0, q̃b(t0) = 0 and r̃b(t0) = 0.

Remark 13.2. To ful�ll this assumption, the vehicle needs to be properly ini-
tialized before control is handed over to the automatic collision avoidance system,
which is reasonable.
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13. The CAA algorithm for underactuated underwater vehicles

13.4 Analysis

In this section, we provide an analysis of the CAA algorithm described in Sec-
tion 13.2, which we apply to an underactuated marine vehicle modeled as in Sec-
tion 13.1.1. The algorithm will provide heading and pitch references to the Flow
frame controller in Section 13.3.2, which again will provide references to the yaw
and pitch rate controller in Section 13.3.4. When the vehicle is not in collision avoid-
ance mode, it is in nominal guidance mode, employing the pure pursuit guidance
law described in Section 13.3.1 to steer it towards a target position.

From Lemma 11.2 we know that if the avoidance angle αo is chosen such that

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
, π/2

)
, dsafe > 0, (13.57)

and the vehicle is able to maintain a direction lying on the surface of the compen-
sated vision cone Vc, then the obstacle distance is lower bounded by dsafe during
the collision avoidance maneuver.

We will here show how we can bound the sway and heave speed during the
maneuver, and demonstrate how we can use these bounds as design parameters in
order to ensure a maneuver that is feasible, well de�ned and safe. These bounds
are used to �nd a minimum switching distance, ensuring that the vehicle is able
to safely enter collision avoidance mode. Finally, we use these results to derive
conditions under which the vehicle is mathematically guaranteed to reach the target
without collisions.

We assume that the obstacles are sparsely spaced, ensuring that the vehicle will
only have to avoid one obstacle at a time:

Assumption 13.10. The distance between any two obstacles are always at least
2dswitch.

We will also employ the notation Xvd , Xv(ubd), Yvd , Yv(ubd), Xwd ,
Xw(ubd) and Ywd , Yw(ubd) as de�ned in Section 13.1.5.

13.4.1 Limiting sway and heave

In this section we will provide a lower bound on the safety distance dsafe and upper
bounds on the Flow frame control saturation parameters σψ and σθ in order to
ensure that the sway and heave motions are bounded by vsup and wsup, respectively.
The required control e�ort in heading and pitch is maximized if the entire avoidance
maneuver is made in either the horizontal or vertical plane, and if the obstacle
moves in the same plane. Thus, even though the use of the cost function (13.36)
combines a yaw and pitch movement to minimize the control e�ort required in each
degree of freedom, we will examine a pure pitch and a pure yaw maneuver in order
to determine the bounds on the control parameters.

The desired Flow frame angular rates during collision avoidance is dependent
on vb and wb. In the next lemma, we will utilize the analysis model (13.16)-(13.19)
in order to derive a requirement on this dependency which ensures that vb and wb
remain bounded:
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13.4. Analysis

Lemma 13.1. Let the sway and heave velocities be modeled by (13.18) and (13.19).
Suppose that the Flow frame pitch rate qf and yaw rate rf are functions of the sway
and heave motions, respectively, in such a way that:

|qf (wsup)| < |Ywd|
|Xwd|

wsup −
|Zw|
|Xwd|

, (13.58)

|rf (vsup)| < |Yvd|
|Xvd|

vsup, (13.59)

where vsup > 0 and

wsup >
|Zw|
|Ywd|

. (13.60)

Then, if Assumption 13.9 holds, vb(t0) < vsup and wb(t0) < wsup,

vb(t) < vsup ∀t ≥ t0, (13.61)

wb(t) < wsup ∀t ≥ t0. (13.62)

Proof. Consider the Lyapunov function candidate V (wb) = 0.5w2
b of (13.19) with

time derivative

V̇ =
U2
w

U2
w −Xwdub

(
Xwdwbqf (wb) + Ywdw

2
b + Zw sin(θnb )wb

)
, (13.63)

where we recall that Uw =
√
u2
b + w2

b . Using Assumption 13.2 we can upper bound

V̇ as

V̇ ≤ U2
w

U2
w −Xwdub

(
|Xwd||wb||qf (wb)| − |Ywd|w2

b + |Zw||wb|
)
. (13.64)

Inserting for (13.58), we obtain that V̇ ≤ 0 on a set

ΩV , {wb ∈ R | V ≤ 1
2w

2
sup}, (13.65)

which is a level set of V with wb = wsup on the boundary. Hence, the set ΩV is
positively invariant, and any solution of wb starting in ΩV cannot leave it, which
proves the that bound (13.62) holds. The proof for the bound (13.61) on vb is
equivalent.

Remark 13.3. The lower bound on wsup in (13.60) stems from the e�ect of gravity.
Speci�cally, when θnb 6= 0, a pitch moment is induced around CB. The distance
between CB and b makes part of this moment into an acceleration in heave, which
is re�ected in (13.60).

We are now ready to derive bounds on the Flow frame controllers (13.49) and
on the minimum safety distance dsafe which ensures that (13.58) and (13.59) are
satis�ed. We do this in the next two lemmas, which consider a pure vertical and a
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13. The CAA algorithm for underactuated underwater vehicles

pure horizontal maneuver. These results will then be combined in Theorem 13.5.
In the next Lemma, we will use the following term:

Fθ ,
wsup|Ywd| − |Zw|

|Xwd|
−

2w2
sup|Ywd|uomax(

U2
wsup −Xwdub

)√
U2
wsup − u2

omax

− ωomax
uomax

ub

− aomax√
u2
b − u2

omax

,

(13.66)

where Uwsup ,
√
u2
b + w2

sup.

Lemma 13.2. Consider a vehicle and an obstacle moving in the same vertical
plane. Let the vehicle kinematics be modeled by (13.1), the actuated surge, pitch and
yaw dynamics be modeled by (13.3a), (13.3d) and (13.3e), and the underactuated
sway and heave dynamics be modeled by (13.18)-(13.19). Let the vehicle be governed
by the surge controller (13.55a), pitch rate controller (13.55b), and the Flow frame
pitch controller (13.49b). Let the control system enter collision avoidance mode at
time t1, and let the vehicle Flow frame then be steered by the CAA algorithm in
Section 13.2. De�ne a parameter λθ ∈ (0, 1), and assume that the distance between
the vehicle and the obstacle satis�es dob(t) ≥ dsafe ∀t ≥ t0. If Assumptions 13.2-
13.6 and 13.9-13.10 hold, the Flow frame proportional saturation σθ satis�es

σθ ≤ λθFθ, (13.67)

the safety distance dsafe satis�es

dsafe ≥
(Uwsup + uomax)

2

Uwsup

1

(1− λθ)Fθ
, (13.68)

and the heave motion satis�es |wb(t0)| < wsup, where

wsup ≥
|Zw|
|Ywd|

, (13.69)

then
|wb(t)| < wsup ∀t ≥ t0. (13.70)

Proof. The proof of Lemma 13.2 includes the gravity restoration term Zw, but
otherwise follows along the lines of the proof of 10.2. The lemma is proved by
�nding an upper bound on qfd for a given wsup. The upper bound is inserted into
(13.58), which allows us to apply Lemma 13.1. We then obtain (13.67) and (13.68)
by solving for σθ and dsafe.

Without loss of generality, we assume that the maneuver is made by moving
above the obstacle. Furthermore, since there is no horizontal movement or turning,
we allow the pitch angles of the vehicle and the obstacle to lie in the interval
(−π, π]. Thus, the vehicle and the obstacle can move towards each other while

204



13.4. Analysis

z

x

 

γo

αo

 

γa θαo
n

γca

θdca
n

Figure 13.3: Geometry of a collision avoidance maneuver in the vertical plane.

keeping the same heading. The collision avoidance geometry in the x-z-plane is
shown in Figure 13.3. The time derivative of θndca is

θ̇ndca = θ̇nαo + γ̇ca. (13.71)

As shown in Figure 13.3, the angle θnαo can be decomposed into

θnαo = γo + γa + αo. (13.72)

Hence,
θ̇nαo = γ̇o + γ̇a. (13.73)

The angular rate γ̇o can be found geometrically as

γ̇o =
uo sin(θno − γo)− Ub sin(θnf − γo)

Ro + dob
, (13.74)

while γ̇a is found as

γ̇a = −ḋob
Ro

(Ro + dob)
√

(Ro + dob)2 −R2
o

, (13.75)

where
ḋob = uo cos(θno − γo)− Ub cos(θnf − γo). (13.76)

Combining (13.74) - (13.76) gives

θ̇nαo =
Ub sin(γo − θnf )− uo sin(γo − θnf )

Ro + dob
−Ro

Ub cos(γo − θnf )− uo cos(γo − θno )

(Ro + dob)
√
dob (2Ro + dob)

.

(13.77)
When both the vehicle and the obstacle move in the same vertical plane, the

dot product (v
Fρ
o )T ū

Fρ
ρ can be rewritten as uo sin(γvo), where

γvo , π −
(
θno − θnαo

)
, (13.78)
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Figure 13.4: An alternative expression for γca can be found using the sine rule on
this triangle.

The expression (13.31) for γca can then be rewritten as

γca = sin−1

(
uo sin(γvo)

Ub

)
, (13.79)

where we in e�ect have used the sine rule on the triangle shown in Figure 13.4. We
use (13.79) to �nd

γ̇ca =
uo

(
cos(γvo)

(
θ̇nαo − qo

)
+ sin(γvo)

(
ao
uo
− U̇b

Ub

))
√
U2
b − u2

o sin2(γvo)
. (13.80)

The total vehicle acceleration U̇b is found as

U̇b = Ubwb
Xwdqf + Ywdwb + Zw sin(θnb )

U2
b −Xwdub

, (13.81)

where we have used the fact that u̇b = u̇bd by Assumption 13.9, and that u̇bd = 0
by Assumption 13.6.

Note that θ̇ndca depends on qfd, which again depends on θ̇ndca when the control
system is in collision avoidance mode. A closed expression for qfd is found by
inserting (13.71) into the Flow frame pitch control law (13.49b), which gives

qfd(wb) =
Grn(wb)

Grd(wb)
, (13.82)

where

Grn , θ̇nαo − sat(kθ θ̃
n
f )

+
uo cos(γvo)

(
θ̇nαo − qo

)
+ sin(γvo)

(
ao − uowb(Ywdwb+Zw sin(θnb ))

U2
b+Xwdub

)
√
U2
b − u2

o sin2(γvo)
,

(13.83)
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and

Grd , 1 +
uo sin(γvo)wbXwd√

U2
b − u2

o sin2(γvo) (U2
b −Xwdub)

. (13.84)

The expression for (13.84) is ensured to be well de�ned by Assumptions 13.3 and
13.5. However, in order to ensure that qfd in (13.82) is well de�ned, we require that
Grd > 0. We obtain a lower bound on (13.84) by minimizing with respect to γvo
and wb:

Grd > 1− uomax|wb||Xwd|
(U2

b −Xwdub)
√
U2
b − u2

omax

:= Grdinf(wb). (13.85)

Minimizing (13.85) with respect to wb and solving for uomax gives the following
bound on uomax to ensure that Grd > 0 for all uo ∈ [0, uomax]:

uomax <

{
2
√
−X2

wd +Xwdub
ub
2 < Xwd ≤ ub,

ub Xwd <
ub
2 .

(13.86)

Assumption 13.5 ensures that (13.86) is satis�ed.
When dob ≥ dsafe, a bound |Grn| < Grnsup can be found by using Assump-

tions 13.2, 13.5, 13.6 and 13.9:

Grnsup(wsup) ,
uomaxwsup (|Ywd|wsup + |Zw|)(
Xwd + U2

wsup

)√
U2
wsup − u2

omax

+
(Uwsup + uomax)

2

dsafeUwsup

+ ωomax
uomax

ub
+

aomax√
u2
b − u2

omax

+ σθ.

(13.87)

Equations (13.85) and (13.87) are even in wb and wsup, respectively. Hence,

|qfd(±wsup)| < Grnsup(wsup)

Grdinf(wsup)
. (13.88)

Inserting (13.88) into (13.58) bounds dsafe and σθ to:

(Uwsup + uomax)
2

dsafeUwsup
+ σθ ≤ Fθ, (13.89)

where Fθ is given in (13.66). The design parameter λθ can be used to rewrite (13.89)
as

(Uwsup + uomax)
2

dsafeUwsup
+ σθ ≤ λθFθ + (1− λθ)Fθ. (13.90)

Hence, conditions (13.67) and (13.68) ensure that (13.89) is satis�ed. It follows that
Condition (13.58) of Lemma 13.1 then also applies, and hence if |wb(t0)| < wsup,
then |wb(t)| < wsup ∀t ≥ t0.

The sway velocity can be ensured to be bounded in a similar fashion by con-
sidering a pure yaw maneuver. We will do this in the next lemma, where we will
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use the parameter

Fψ ,
vsup|Yvd|
|Xvd|

−
2v2

sup|Yvd|uomax(
U2
vsup +Xvdub

)√
U2
vsup − u2

omax

−ωomax
uomax

ub
− aomax√

u2
b − u2

omax

,

(13.91)

where Uvsup ,
√
u2
b + v2

sup.

Lemma 13.3. Consider a vehicle and an obstacle moving in the same horizontal
plane. Let the vehicle kinematics be modeled by (13.1), the actuated surge, pitch
and yaw dynamics be modeled by (13.3a), (13.3d) and (13.3e), and the underac-
tuated sway and heave dynamics be modeled by (13.18)-(13.19). Let the vehicle be
governed by the surge controller (13.55a), yaw rate controller (13.55c), and the
Flow frame yaw controller (13.49a). Let the control system enter collision avoid-
ance mode at time t1, and let the vehicle Flow frame then be steered by the CAA
algorithm in Section 13.2. De�ne the parameter λψ ∈ (0, 1), and assume that the
distance between the vehicle and the obstacle satis�es dob(t) ≥ dsafe ∀t ≥ t0. If As-
sumptions 13.2-13.6 and 13.9-13.10 hold, the Flow frame proportional saturation
σψ satis�es

σψ ≤ λψFψ, (13.92)

the safety distance dsafe satis�es

dsafe ≥
(Uvsup + uomax)

2

Uvsup

1

(1− λψ)Fψ
, (13.93)

and the sway motion satis�es |vb(t0)| < vsup, then

|vb(t)| < vsup ∀t ≥ t0. (13.94)

The proof of Lemma 13.3 is equivalent to the proof of Lemma 13.2.

13.4.2 Minimum switching distance

In this section we will use the bound on sway and heave speeds from the previous
section in order to derive a minimum safety distance guaranteeing that the vehicle
is able to safely reach the desired heading and pitch from the collision avoidance
algorithm.

Lemma 13.4. Let the vehicle kinematics be modeled by (13.1), the actuated
surge, pitch and yaw dynamics be modeled by (13.3a), (13.3d) and (13.3e), and
the underactuated sway and heave dynamics be modeled by (13.18)-(13.19). Let the
vehicle be controlled by the feedback linearizing controllers (13.55) and the Flow
frame controller (13.46). At a time t1 ≥ t0, let the control system enter collision
avoidance mode according to the switching rule in (13.41), and let the Flow frame
heading and pitch then be set by the collision avoidance law (13.40). Furthermore,
let Assumptions 13.2-13.10 be satis�ed, the vehicle speed satisfy Ub < Ubsup =√
u2
bd + v2

sup + w2
sup, and the switching distance satisfy

dswitch ≥ uomaxtε + dsafe + dturn + dTb
, (13.95)
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dturn

dsafe

uomaxtε

dTb

dswitch

Figure 13.5: Illustration of the minimum required switching distance.

where

tε , max
j

(
Tb +

(
π

σj
− 1

kj

)
− ln(kjε/σj)

kj

)
, j = {ψ, θ}, ε ∈ (0,

π

2
] (13.96)

is the maximum amount of time the Flow frame yaw controller (13.49a) will use
to make the vehicle converge to within ε rad of Vc, and

dturn , max
j

(
Ubsup

min(σj , kj
π
2 )

)
, j = {ψ, θ} (13.97)

upper bounds the distance traveled by the vehicle towards the obstacle when making
a complete 180 ◦ turn. The distance dTb

is

dTb
, UbsupTb. (13.98)

Then, the vehicle is able to converge to within ε rad of Vc before the obstacle can
come within the distance dsafe.

Proof. The main idea behind the proof is to show that the distance traveled by
the obstacle during the convergence time tε is not su�cient to reduce the distance
between the obstacle and the vehicle trajectory to less than dsafe. This is illustrated
in Figure 13.5.

We consider a worst case scenario with an obstacle of in�nite size, Ro →∞. The
half apex angle of the vision cone angle is then γa = π/2. Furthermore, the vehicle
and obstacle move at maximum speed, i.e. Ub(t1) = Ubsup and uo(t1) = uomax.
We assume, without loss of generality, that the obstacle is ahead of the vehicle
along the xn-axis of the NED frame, such that xno (t1) − xnb (t1) = dswitch, while
yno (t1) = ynb (t1) and zno (t1) = znb (t1). Furthermore, we assume that the vehicle and
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obstacle move straight towards each other at time t1. The worst case behavior of
the obstacle is then to continue moving straight ahead at maximum speed.

At time t1, when the control system enters collision avoidance mode, the vehicle
starts to make a turn towards ψndca and θ

n
dca. There will then be a jump in the desired

yaw and pitch rate from the Flow frame controller, and the rate smoothing will
commence. The smoothing is complete at the latest at time t1+Tb. Since ψ̃

n
f and θ̃nf

both lie in the interval (−π, π], the maximum error at time t = t1+Tb is π radians in
each direction. The convergence time from |ψ̃nf | = π to |ψ̃nf | = σψ/kψ is found from
(13.49a) to be π/σψ − 1/kψ, which is ensured to be positive by Assumption 13.7.
From this point, the �ow frame heading error converges exponentially to zero, and

hence the convergence time from |ψ̃nf | = σψ/kψ to |ψ̃nf | < ε is
ln(kψε/σψ)

kψ
. Similar

convergence times can be found for |θ̃nf |.
It follows that the total time from t1 until the vehicle's velocity vector is less

than
√

2ε away from Vc is upper bounded by tε as de�ned in (13.96). During this
time, the obstacle will, at worst, have traversed uomaxtε towards the vehicle.

During the smoothing interval t ∈ (t1, t1 + Tb], the distance covered by the
vehicle towards the obstacle is upper bounded by dTb

. In a worst case scenario,
the vehicle then has to turn completely around. Assumption 13.7 ensures that the
vehicle will move at most dturn towards the obstacle when turning.

Hence, if condition (13.95) holds, then the distance between the obstacle and the
vehicle trajectory will not be reduced to less than dsafe before the vehicle velocity
direction has converged to within ε rad of Vc. It follows that the obstacle is thus
more than dsafe meters from the vehicle, which concludes the proof.

13.4.3 Safe target reaching

We have now proved that a vehicle following the collision avoidance law (13.40) is
sure to keep a minimum distance away from the obstacle (Lemma 11.2), that the
vehicle sway and heave will remain bounded during a maneuver around a moving
obstacle (Lemmas 13.1-13.3), and we have found a minimum distance at which
the vehicle must enter collision avoidance mode in order to ensure that it is able
to turn away in time (Lemma 13.4). In this section, we will use these Lemmas to
prove that the vehicle will safely traverse an environment containing an obstacle
and reach the target position. This is the main theorem of the chapter. Before we
state the theorem, we make the assumptions that the vehicle is able to start safely,
and that the obstacle does not cover the target.

Assumption 13.11.

θnf (t0) ∈ [θmin, θmax]. (13.99)

Assumption 13.12.

dob(t0) > dswitch. (13.100)

Assumption 13.13. The distance dot from the obstacle to the target position pnt
satis�es

dot >
Ro

cos(αo)
−Ro ∀t ≥ t0. (13.101)
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Remark 13.4. Vehicle safety is guaranteed even if this assumption is not met,
but it is then not ensured that the target will be reached.

Due to the smoothing time Tb of the yaw rate reference signal, we also need at
least one of the following assumptions to hold:

Assumption 13.14. The obstacle will not actively turn towards the vehicle when
dob ≤ dswitch.

or

Assumption 13.15. The smoothing time Tb is small enough to be neglected, i.e.

(uomax + Ubsup)Tb � dsafe. (13.102)

Remark 13.5. These assumptions require the obstacle to at least not be actively
seeking a collision with the vehicle if the vehicle dynamics make Tb large. Speci�-
cally, if the vehicle lacks maneuverability, the safety distance dsafe must either be
chosen large enough to account for the limited turning capabilities, or the vehicle
must rely on at least some level of cooperation from the obstacle. Recall the 2D
example in Chapter 10: An oil tanker which use a very long time to initiate a
turn would rely an Assumption 13.14, while a small speed boat can safely employ
Assumption 13.15.

Theorem 13.5. Let Assumptions 13.2-13.13 and either 13.14 or 13.15 hold, the
avoidance angle αo satisfy

αo ∈
[
cos−1

(
Ro

Ro + dsafe

)
+
√

2ε,
π

2

)
, (13.103)

where

ε ∈
(

0,
π

2
√

2
− Ro√

2 (Ro + dsafe)

)
, (13.104)

and the switching distance satisfy

dswitch ≥ uomaxtε + dsafe + dturn + dTb
. (13.105)

Moreover, let the safety distance satisfy dsafe ≥ max{dsafeψ, dsafeθ}, where

dsafeψ ≥
(Uvsup + uomax)

2

Uvsup

1

(1− λψ)Fψ
, (13.106)

and

dsafeθ ≥
(Uwsup + uomax)

2

Uwsup

1

(1− λθ)Fθ
. (13.107)

Assume that the saturations in the Flow frame yaw and pitch controllers satisfy

σψ ≤ λψFψ, (13.108)

σθ ≤ λθFθ, (13.109)
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and that the initial sway and heave speeds satisfy

vb(t0) < vsup, (13.110)

wb(t0) < wsup, (13.111)

where vsup > 0 and wsup > |Zw|/|Ywd|.
Furthermore, let the vehicle kinematics be modeled by (13.1), the actuated surge,

pitch and yaw dynamics be modeled by (13.3a), (13.3d) and (13.3e), and the under-
actuated sway and heave dynamics be modeled by (13.18)-(13.19). Finally, let the
vehicle be governed by the surge, yaw and pitch rate controllers (13.55), the Flow
frame controllers (13.49), the guidance laws (13.43) and (13.44), and the collision
avoidance law (13.40). Then, the vehicle will maneuver among obstacles described
by (13.20) while ensuring that

dob(t) ≥ dsafe ∀t ≥ t0, (13.112)

and
θnf (t) ∈ [θmin, θmax] ∀t ≥ t0, (13.113)

meeting the control objectives (13.25) and (13.26). Furthermore, if it is a single-
obstacle scenario, then there exists a time tf ≥ t0 such that

||pnbt (tf )|| ≤ da. (13.114)

Hence, the control objective (13.24) is met.

Proof. Conditions (13.106)-(13.111), Lemma 13.2 and Lemma 13.3 ensure that
Ub < Ubsup ∀t ∈ [t0, tf ]. Consider a time t1 ≥ t0, at which the vehicle enters
collision avoidance mode in accordance with (13.41). The vehicle then chooses a
direction which minimizes the cost function C, and starts turning towards this
direction.

Lemma 13.4 ensures that there is a time t2 ≥ t1 +Tb when the angular distance
between the vehicle's velocity direction and the closest point on the compensated
vision cone will be less than ε radians, while dob(t) > dsafe for t ∈ [t1, t2]. Since the
yaw rate reference signal rbd and the pitch rate reference signal qfd are smooth, the
error dynamics of the Flow frame controllers (13.46) have a locally exponentially
stable equilibrium at the origin. Hence, it is ensured that the angular distance
between ṗnb and Vc remains less than ε radians until a time t3 ≥ t2, at which time
the vehicle exits collision avoidance mode.

In a coordinate frame moving with the obstacle's velocity vector vno/n, the

direction of the vehicle's velocity vector is less than
√

2ε radians from the ex-
tended vision cone Ve. Hence, condition (13.103) and Lemma 11.2 then ensure that
dob(t) ≥ dsafe ∀t ∈ [t2, t3].

The guidance laws in (13.43) and (13.44) steer the vehicle towards the target.
Hence, it is ensured that there exists a �nite time tf when ||pnbt (tf )|| ≤ da, ful�lling
condition (13.114).

While the de�nition of C ensures that θndca ∈ [θmin, θmax], the de�nition of the
pitch guidance law (13.44) ensures that θndg ∈ [θmin, θmax]. Assumption 13.11 and
the pitch control law (13.49b) then ensure that condition (13.113) is ful�lled.
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Table 13.1: Simulation parameters

ub 2.0 m/s θmin −0.5 rad
vsup 2.0 m/s θmax 0.5 rad
wsup 2.0 m/s pnb (t0) [0, 0, 0]T (m)
Ro 20 m uo 1.0 m/s
ωomax 0 rad/s aomax 0 m/s2

dsafe 11 m σθ 0.15 rad/s
αo 0.94 rad σψ 0.15 rad/s
dswitch 61 m pnt (t0) [150, 0, 0]T (m)
ε 0.05 rad Tb 1.0 s
λ 50

13.5 Simulations

This section contains simulations of di�erent collision avoidance scenarios in order
to illustrate the behavior of the algorithm, and to verify the theoretical results in
Theorem 13.5. The simulation parameters are summarized in Table 13.1.

The simulated vehicle is a Hugin AUV [43] of approximately the same kind as
the one used for the experiments in Section 13.6. The hydrodynamic parameters
of the AUV make Fθ = 0.64 and Fψ = 0.70. Hence, the values chosen for σψ, σθ
and dsafe satisfy the conditions of Theorem 13.5 with λθ = λψ = 0.25. Further-
more, it can be veri�ed the obstacle speed satis�es (13.23). The avoidance angle αo
and the switching distance dswitch are set using equations (13.103) and (13.105),
respectively.

The �rst scenario contains a head on situation and is shown in Figure 13.6.
The initial position of the obstacle is pno (t0) = [100, 5, 5]T m, and it moves along
a straight line with ψno = π rad and θno = 0 rad. When the vehicle enters collision
avoidance mode, the obstacle is slightly below and to the starboard side of it. The
vehicle thus makes a port turn and pitches upwards, choosing a safe direction which
minimizes the cost function C (13.36). The vehicle continues the maneuver until the
line of sight to the target becomes safe, at which point it exits collision avoidance
mode according to the switching criterion in (13.41), and proceeds towards the
target.

The sway and heave speeds of the vehicle are shown in Figure 13.7. They are
both well within the limit of 2 m/s, which veri�es Lemmas 13.2 and 13.3. The
magnitude of the di�erence between the Flow frame rates qf and rf obtained from
using the analysis model (13.16)-(13.17) and the more precise model in (13.13)
is shown in the lower part of the �gure. The error remains small throughout the
maneuver, which justi�es the use of the analysis model when deriving the bounds
on the Flow frame controller saturation parameters σθ and σψ, and the safety
distance dsafe.

The distance between the vehicle and the obstacle remains above the safety
distance dsafe throughout the maneuver, which can be seen in Figure 13.8. Fur-
thermore, the Flow frame pitch angle θnf remains within [θmin, θmax]. Thus, the
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Figure 13.6: A scenario where the vehicle and obstacle meet head on head. The
vehicle is the yellow polyhedron, and the obstacle is the red sphere. The blue line
is the vehicle trajectory, the target is marked by an 'X', and the direction of the
vehicle and obstacle velocity are shown by a blue and black arrow, respectively.
The vehicle size is exaggerated for clarity, and the view has been rotated in the
lower two snapshots of the simulation.
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Figure 13.7: The sway vb and heave wb speeds of the vehicle during the �rst scenario
(top), and the error resulting from using the analysis model to �nd qf and rf
(bottom).
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Figure 13.8: The distance dob between the vehicle and the obstacle during the �rst
scenario (top), and the Flow frame pitch angle θnf (bottom).

simulation shows that the vehicle is able to start the collision avoidance maneuver
early enough to safely reach the desired velocity direction during collision avoid-
ance, and that it maneuvers around the obstacle without exceeding the bounds on
vb, wb and θ

n
f . Hence, the simulation veri�es the results of Theorem 13.5.

In the next scenario, displayed in Figure 13.9, the obstacle crosses in front of
the vehicle, moving horizontally. Upon entering collision avoidance, the vehicle thus
chooses a ray of Vc which takes it behind the obstacle, in accordance with (13.36).
Since the vehicle and obstacle both move horizontally when collision avoidance is
initialized, the choice of going above or below the obstacle becomes random. In this
case, the vehicle maneuvers below the obstacle.

As shown in Figures 13.10 and 13.11, the limits on sway, heave and Flow frame
pitch are upheld throughout the maneuver, and the distance to the obstacle is
never less then dsafe. Thus, this scenario also veri�es the results of Theorem 13.5.

Figure 13.12 shows the �nal scenario, where the obstacle crosses in front of the
vehicle from below, moving vertically. The vehicle maneuvers below the obstacle
while keeping it on the port side, until the direction towards the target becomes
safe. The vehicle then exits collision avoidance mode and proceeds with nominal
guidance. As in the previous scenarios, the bounds on the vehicle sway and heave,
and on the Flow frame pitch are upheld, and the vehicle remains at a safe distance
to the obstacle throughout the maneuver.
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Figure 13.9: A scenario where the obstacle crosses horizontally in front of the
vehicle.
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Figure 13.10: The sway vb and heave wb speeds of the vehicle during the second
scenario (top), and the error resulting from using the analysis model to �nd qf and
rf (bottom).
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Figure 13.11: The distance dob between the vehicle and the obstacle during the
second scenario (top), and the Flow frame pitch angle θnf (bottom).
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Figure 13.12: A scenario where the obstacle crosses vertically in front of the vehicle.
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Figure 13.13: The sway vb and heave wb speeds of the vehicle during the third
scenario (top), and the error resulting from using the analysis model to �nd qf and
rf (bottom).
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Figure 13.14: The distance dob between the vehicle and the obstacle during the
third scenario (top), and the Flow frame pitch angle θnf (bottom).
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Figure 13.15: Snapshots from a simulation where the vehicle meets a cluster of �ve
obstacles.

13.5.1 Multiple obstacles

In this section, we present simulations demonstrating the applicability of the CAA
algorithm to multi-obstacle scenarios. For these simulations, the radius of the ob-
stacle is reduced to 10 m, while the avoidance angle αo is increased to 1.15 rad.
Otherwise, the simulation parameters are the same as for the single-obstacle sim-
ulations in the previous section.

The �rst scenario contains a cluster of �ve obstacles approaching the vehicle
head on. Snapshots from the simulation are shown in Figure 13.15, where it can
be seen that the vehicle heads up and to starboard around the the obstacles. The
vehicle successfully maneuvers around the cluster as if it was a single, non-convex
obstacle. When the line of sight to the target comes outside of the vision cones of all
the obstacles, the vehicle exits collision avoidance mode and proceeds towards it.
At no point in the maneuver is the vehicle closer than dsafe to any of the obstacles,
as seen in Figure 13.16.

In the second scenario, illustrated in Figure 13.17, the vehicle �rst encounters
two obstacles crossing in front of it. While the vehicle maneuvers to avoid these
obstacles, it encounters a third obstacle, and adjusts its course and pitch in order
to avoid this obstacle as well. After the last obstacle has been safely avoided, the
vehicle proceeds towards the target. Again, as seen in Figure 13.18, the distance
to each of the obstacles were always above the safety distance.
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Figure 13.16: The distances to each of the obstacles in the �rst multi-obstacle
scenario.
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Figure 13.17: Snapshots from a simulation where the vehicle meets three obstacles,
two crossing in front of it and one moving towards it.
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Figure 13.18: The distances to each of the obstacles in the second multi-obstacle
scenario.

Figure 13.19: The Hugin HUS vehicle.

13.6 Experiments

The CAA algorithm described in Section 13.2, as well as the pure pursuit guidance
law in Section 13.3.1, have been implemented in an experimental setup on the
Hugin HUS AUV, shown in Figure 13.19. This vehicle is owned and operated by
the Norwegian Defence Research Establishment (FFI) and can be operated from
any appropriate vessel of opportunity. For this experiment, the AUV was operated
from the FFI research vessel H.U. Sverdrup II. The algorithms were implemented
using a back seat driver interface enabling third party and prototype software
modules to take control of the vehicle.

The exact hydrodynamic model of the vehicle is not available, but it is similar
to the vehicle simulated in the previous section. Furthermore, the implementation
details of the low-level controllers are not available; however, the modular nature
of the collision avoidance algorithm and guidance law made it possible to send
desired pitch and heading to the controllers. The vehicle's forward thrust is set to
a constant value, giving a surge velocity of about 2 m/s.

For the experiments, the cost function used to choose a safe ray was modi�ed
to choose the ray minimizing the maximum heading or pitch error:

Cexp ,

{
|eρ|∞, θnρ ∈ [θmin, θmax],

|eρ|∞ + 2π, θnρ /∈ [θmin, θmax],
(13.115)

where eρ , [ψnf − ψnρ (φ), θnf − θnρ (φ)]T . This cost function will tend to make the
vehicle employ both the sternplanes and the rudders in order to avoid the obstacle.
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Table 13.2: Experiment parameters

αo 0.8 rad ub ∼2 m/s
dsafe 4.4 m uo (Run 1-8) 1.0 m/s
dswitch 50 m uo (Run 9-16) 1.5 m/s
θmin −0.35 rad Ro 10 m
θmax 0.44 rad
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Figure 13.20: The surge speed ub and the total vehicle speed Ub during run 4.

A total of 16 runs were executed. In each of the runs, the vehicle moved towards
a target position and encountered a moving obstacle along the way. In order to
focus on the performance of the algorithm under ideal sensing conditions, and in
order to be able to perform more controlled underwater experiments, the vehicle
encountered only virtual obstacles during the experiments. When the obstacle got
too close to the vehicle, the control system entered collision avoidance mode and
safely executed an avoidance maneuver before proceeding towards the target. When
the target was reached, the run ended and the next run automatically began. The
parameters of the experiments are shown in Table 13.2.

Rather than following a constant surge speed, the vehicle was set to maintain
a constant thrust in the experiments. Thus, the surge speed varied during the
maneuver, as it encountered damping while turning. The surge speed ub and the
total vehicle speed Ub during run 4 are shown in Figure 13.20. Since the CAA
algorithm uses the vehicle speed as an input, the desired Flow frame heading and
pitch during the maneuver readily compensated for the damping in Ub.

A summary of each run is shown in Table 13.3. The column marked 'T' contains
the scenario type of the run, where 'H' denotes a head on scenario and 'C' denotes
a crossing scenario. The vehicle never got closer than dsafe from the obstacle during
any of the maneuvers. However, due to an unmodeled disturbance on the vehicle
and a time delay in the backseat driver system, the Flow frame pitch slightly
exceeded the minimum limit on run 1, 5, 9, 12 and 15.

Figure 13.21 shows the maneuver of run 6, which was a head on scenario. When
the vehicle got closer than 50 m to the obstacle, it entered into collision avoidance
mode and began the avoidance maneuver. The obstacle was on the lower, port
side of the vehicle, and hence it maneuvered up and starboard in accordance with
(13.115). When the obstacle was safely avoided, the vehicle proceeded towards the
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Table 13.3: Experiments summary

Run T min(dob) min(θnf ) max(θnf ) max(|vb|) max(|wb|) zno

1 H 24.5 m −0.37 rad 0.13 rad 0.49 m/s 0.36 m/s 0 m
2 H 20.0 m −0.33 rad 0.35 rad 0.48 m/s 0.32 m/s 10 m
3 C 30.4 m −0.24 rad 0.08 rad 0.48 m/s 0.30 m/s 0 m
4 C 23.7 m −0.19 rad 0.33 rad 0.46 m/s 0.32 m/s 0 m
5 H 26.1 m −0.36 rad 0.13 rad 0.50 m/s 0.35 m/s −10 m
6 H 16.6 m −0.32 rad 0.38 rad 0.52 m/s 0.32 m/s 7 m
7 C 27.2 m −0.35 rad 0.12 rad 0.51 m/s 0.34 m/s 0 m
8 C 18.4 m −0.32 rad 0.35 rad 0.34 m/s 0.31 m/s 5 m
9 H 21.9 m −0.36 rad 0.09 rad 0.50 m/s 0.33 m/s 0 m
10 H 15.2 m −0.20 rad 0.35 rad 0.48 m/s 0.31 m/s 10 m
11 C 35.0 m −0.24 rad 0.08 rad 0.48 m/s 0.21 m/s 0 m
12 C 7.9 m −0.37 rad 0.35 rad 0.45 m/s 0.30 m/s 0 m
13 H 24.9 m −0.33 rad 0.09 rad 0.53 m/s 0.32 m/s −10 m
14 H 13.0 m −0.18 rad 0.38 rad 0.49 m/s 0.32 m/s 7 m
15 C 27.6 m −0.38 rad 0.10 rad 0.50 m/s 0.34 m/s 0 m
16 C 14.4 m −0.31 rad 0.32 rad 0.28 m/s 0.30 m/s 5 m

target position. As shown in Figure 13.22, the distance to the obstacle remained
well above the safety distance, and the Flow frame pitch remained within its limits.
The sideslip βb and angle of attack αb remained small during the maneuver, as seen
in Figure 13.23, justifying the small angle assumption used in the analysis.

Another example is shown in Figure 13.24, which displays the crossing scenario
in run 4. Again, when the obstacle got closer than 50 m, the vehicle entered into
collision avoidance mode. The relative positions of the vehicle and the obstacle
made the algorithm choose to move up and to port in accordance with (13.115).
This made the vehicle maneuver behind the obstacle, which is the same behavior
that would result from using the optimization criterion (13.36). The obstacle dis-
tance remained well above the safety distance, as shown in Figure 13.25, and the
Flow frame pitch angle stayed within its limits. Moreover, the sideslip and angle
of attack, displayed in Figure 13.26, remained small.

13.7 Conclusions

The 3D CAA algorithm proposed in this thesis has in this chapter been imple-
mented on an underactuated underwater vehicle, modeled using both kinematics
and dynamics in 5 DOF. When such a vehicle turns or pitches, a movement in sway
and heave is induced. This movement must be accounted for both during nominal
operation and during collision avoidance. To this end, we have proposed a novel
Flow frame controller, which steers the direction of the vehicle's velocity direction
rather than the vehicle orientation. The performance of the CAA algorithm when
combined with the Flow frame controller has been analyzed, and we have derived
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Figure 13.21: Snapshots from the maneuver during run 6. The vehicle is the yellow
polyhedron, and the obstacle is the red sphere. The blue line is the vehicle tra-
jectory, while the dashed red line marks the obstacle trajectory. The black arrow
denotes the velocity direction of the obstacle, while the blue arrow denotes the
velocity direction of the vehicle. The vehicle size is exaggerated for clarity.
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Figure 13.22: The distance dob between the vehicle and the obstacle during run 6
(top), and Flow frame pitch angle θnf (bottom).
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Figure 13.23: The sideslip βb and angle of attack αb during run 6.
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Figure 13.24: Snapshots from run 4, where the obstacle crosses horizontally in front
of the vehicle.

bounds on the controller parameters and on the minimum safety distance ensuring
that the sway and heave speeds are bounded during the maneuver, and that the
control signals remain well de�ned. Informally, the Flow frame controller must not
be too aggressive, and the safety distance not to small. We have used these results
to obtain a minimum obstacle distance at which the vehicle must start the colli-
sion avoidance maneuver in order to be sure that it turns away in time. Finally,
we were then able to prove that the entire collision avoidance maneuver is safe and
successful.

Underwater vehicles are often subject to limited surge speed envelopes, with an
upper bound due to limited motor power and a lower bound to retain controllability
of the vehicle. The proposed collision avoidance algorithm provides a safe velocity
direction using the current vehicle speed as an input. Thus, it can be used to
accommodate a variety of desired surge speed trajectories, including ones satisfying
limited speed envelopes. We have demonstrated this by implementing the algorithm
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Figure 13.25: The distance dob between the vehicle and the obstacle during run 4
(top), and Flow frame pitch angle θnf (bottom).
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Figure 13.26: The sideslip βb and angle of attack αb during run 4.

on a vehicle where we have put the strict requirement of maintaining a constant
desired surge speed throughout the maneuver.

The theoretical results have been validated through simulations and through
experiments on a survey class autonomous underwater vehicle, the Hugin HUS
AUV. While the simulations illustrate the performance of the system under ideal
conditions, the experiments further strengthen the results by showing the successful
performance on a vehicle where the precise model is not known, the underlying
controllers are unavailable and there is a presence of sensor noise and disturbances.
Furthermore, the vehicle was set to keep a constant forward thrust rather than
maintaining a controlled speed trajectory, showing the applicability of the CAA
algorithm also to vehicles where the surge speed is not explicitly controlled.

The design and analysis of the CAA algorithm, both in 2D and 3D, have mainly
been concerned with sparse obstacle scenarios where the vehicle can avoid a single
obstacle at a time. While this can be argued to be the most common scenario in
an underwater domain, we have also described an extension of the algorithm to
multiple, clustered obstacles. A detailed analysis of such a scene is beyond the scope
of this thesis, but simulations of the proposed approach show promising results.
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13.A Functional expressions

The functions Fu, Xv, Yv, Xw, Yw, Zw, Fq and Fr are de�ned in Section 3.2.2, and
reiterated here for convenience:

Fu ,
1

m11
[(m22vb +m25rb)rb − (m33wb +m34qb)qb − d11ub] (13.116)

Xv ,
m2

25 −m11m55

m22m55 −m2
25

ub +
d55m25 − d25m55

m22m55 −m2
25

, (13.117)

Yv ,
(m22 −m11)m25

m22m55 −m2
25

ub −
d22m55 − d52m25

m22m55 −m2
25

, (13.118)

Xw ,
−m2

34 −m11m44

m33m44 −m2
34

ub +
d44m34 − d34m44

m33m44 −m2
34

, (13.119)

Yw ,
(m11 −m33)m34

m33m44 −m2
34

ub −
d33m44 − d43m34

m33m44 −m2
34

, (13.120)

Zw ,
BGzWm34

m33m44 −m2
34

, (13.121)

Fq , −
BGzWm33

m33m44 −m2
34

sin(θnb ) +
m34d33 −m33(d43 − (m33 −m11)ub)

m33m44 −m2
34

wb

+
m34(d34 −m11ub)−m33(d44 −m34ub)

m33m44 −m2
34

qb,

(13.122)

Fr ,
m25d22 −m22(d52 + (m22 −m11)ub)

m22m55 −m2
25

vb

+
m25(d25 +m11ub)−m22(d55 +m25ub)

m22m55 −m2
25

rb.

(13.123)
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Chapter 14

Conclusions and Future Work

Begin at the beginning, the King said gravely, and go on till you come
to the end: then stop.

� Lewis Carroll, Alice in Wonderland

This thesis has mainly been concerned with the development and analysis of a
collision avoidance algorithm, the constant avoidance angle (CAA) algorithm, in
2D and 3D. We have also investigated a path following algorithm, the integral line of
sight (ILOS) algorithm, and provided some new stability results and modi�cations.
Both of these algorithms have been applied to underactuated marine vehicles. This
is a wide class of vehicles which can be modeled as if they are steered by a propeller,
rudder and, in the 3D case, sternplanes. Thus, there is actuation in surge, yaw and
pitch, but not in sway and heave. Rather, the sway and heave speeds are induced
when the vehicle is turning and pitching.

During path following, the vehicle has in this thesis been tasked with following
straight-line paths. As the vehicle converges to the path, it will cease turning and
pitching, and the analysis have showed that the sway speed will converge to zero
and the heave speed will converge to a constant equilibrium value. During a collision
avoidance maneuver, however, the vehicle will continue to turn and pitch during
the entire maneuver. To compensate for this, we have included the underactuated
dynamics in the control design by using a course controller in 2D, and a Flow frame
controller in 3D, both of which steers the direction of the vehicle's velocity vector
rather than the vehicle's orientation.

The ILOS guidance law for straight-line path following aims the vehicle towards
a point a certain distance, called the lookahead distance, ahead of it on the path.
Thus, when the vehicle is far away from the path, the algorithm will steer the ve-
hicle along a trajectory which is almost perpendicular to the path. However, as the
vehicle gets closer, the desired heading becomes more and more parallel to the path,
providing a smooth turn onto it. The algorithm is designed to reject disturbances,
speci�cally the disturbance resulting from a constant and irrotational ocean cur-
rent. In e�ect, as the integrator builds up, the vehicle is made to aim towards a
path which is parallel to the nominal path, but o�set a distance proportional to
the magnitude of the ocean current. Thus, the vehicle is allowed to move along the
path while pointing away from it, counteracting the current.

Previous works on the ILOS guidance law have been able to prove uniform
UGAS and ULES convergence properties to the path. We have in this thesis ex-
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tended this to the stronger stability result of USGES, which is the strongest sta-
bility result possible for a guidance law for vehicles with bounded speed. To do
this, we have both employed the well-known comparison lemma, as well as recently
developed Lyapunov-su�cient conditions, where the latter serve as an example of a
more convenient way to prove USGES. These results hold when the desired forward
speed of the vehicle is constant, while in the case when the desired forward speed
is time-varying, the integrator is not able to perfectly compensate for the current.
However, we show that the cross-track error will remain ultimately bounded, and
that the vehicle will converge to the bounded set with UGAS convergence. These
results have been shown when the lookahead distance increases with speed. It is,
however, straightforward to extend them to a constant lookahead distance. An in-
teresting future line of research is to investigate if the controller can be modi�ed
in order to ensure that the system still achieves USGES. Possible venues include
the use of ocean current observers, or the use of course control. Both of these ap-
proaches has been used in the literature to achieve convergence to curved paths,
where the cross track e�ect of the current varies along the path, again making the
integrator unable to perfectly compensate for the current.

For the 2D ILOS law, we have investigated the case when the lookahead dis-
tance increases linearly with the vehicle speed. This has in part been motivated
by intuition; both an experienced driver of a car and helmsman of a ship will look
further ahead when the speed is high. It has also been motivated by practical
considerations which arose during implementation of the ILOS guidance law; in
vehicles with constrained actuators and limited convergence rate of the underlying
controllers, oscillations and overshoot may occur when the lookahead distance is
low at high speeds. The guidance law has been shown to provide USGES conver-
gence also with a speed-dependent lookahead distance, and the results have been
veri�ed both in simulations and full-scale experiments on an unmanned surface ve-
hicle. An interesting further development would be to investigate the use of more
complex functions to determine the lookahead distance, both as functions of speed
and distance. By appropriate design of such functions, it may also be possible to
investigate using the lookahead distance as an optimization variable in a motion
planning algorithm, which would reduce the search space signi�cantly.

In the case of 3D path following, we examined the ILOS guidance law applied
to a vehicle which was not neutrally buoyant. While neutral buoyancy is a common
assumption, it is di�cult to achieve in practice. Indeed, the buoyancy of a vehicle
will often change during an operation, as it is dependent on the salinity, temper-
ature and pressure of the water. We provided conditions under which the ILOS
guidance law still achieved USGES, and showed how these conditions were stricter
due to the positive or negative buoyancy of the vehicle. A topic for future work in
3D path following is to exploit the �exibility o�ered by operating in 3D space to
a higher degree, for example by prioritizing between the convergence speed in the
horizontal and the vertical plane.

The third part of the thesis presented the constant avoidance angle algorithm in
2D. This algorithm makes a vehicle avoid a moving obstacle by steering it to either
the port or starboard side of an obstacle, while maintaining a constant avoidance
angle between the vehicle's velocity vector and the vision cone from the vehicle to
the obstacle. Various rules of the road can be implemented by proper design of the
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rule used to choose between a clockwise and counter-clockwise maneuver; we have
in this thesis implemented a conservative approach where the vehicle moves behind
the obstacle. The desired velocity direction is compensated for the obstacle motion,
in such a way that it provides a safe heading or course reference at a given vehicle
speed. Thus, the speed trajectory of the vehicle can be designed independently of
the CAA algorithm, which makes the algorithm suitable for vehicles with a limited
speed envelope. We demonstrated this by both implementing the algorithm on a
unicycle with an imposed, constant speed, and on an underactuated marine vehicle.
The latter keeps a constant forward speed, but has an underactuated component
in the total speed of the vehicle, which is thus time-varying. We have shown how
the algorithm inherently compensates for such a time-varying speed by adjusting
the desired vehicle course accordingly.

In the algorithm analysis, we showed that the vehicle is guaranteed to keep
at least a minimum distance from the obstacle, where the minimum distance is a
function of the avoidance angle and the obstacle curvature; the larger avoidance
angle, the larger minimum distance. Thus, the implementation of the algorithm
is not dependent on estimating the obstacle shape, something which reduces the
computational complexity associated with the CAA algorithm. We furthermore
derived an upper bound on the required yaw rate during the maneuver in the case
when the vehicle keeps a constant speed. Thus, we were able to �nd conditions
on the vehicle's controller, on the avoidance angle, and on the switching distance,
which guarantee that a constant speed unicycle maintains at least a minimum
safety distance to the obstacle. We have furthermore proved that a target-reaching
unicycle will safely maneuver through an environment with an obstacle and reach
the target position.

The analysis is more complicated when the CAA algorithm is applied to an
underactuated marine vehicle, due to the underactuated component in the vehi-
cle's velocity. In addition to making the vehicle speed time-varying and not directly
controlled, the underactuated sway dynamics makes the vehicle glide towards the
obstacle even as it is turning away from it. To compensate for this, we have ap-
plied an underlying course controller, which allows the CAA algorithm to provide
references to the vehicle course rather than the vehicle heading. We have further-
more provided conditions under which it is guaranteed that these references are
well de�ned, and under which the sway velocity is bounded by a desired value.
This result has �nally been used to prove that an underactuated marine vehicle is
able to safely achieve both target reaching and path following when in the presence
of moving obstacles. We have veri�ed these results both in simulations, where we
have employed a model of the Hugin AUV operating in the horizontal plane, and
in full-scale experiments with the research vessel R/V Gunnerus.

The CAA algorithm is extended to 3D in the �nal part of this thesis. In 3D,
the algorithm employs the concept of an extended vision cone. This cone is created
by measuring the directions to the outline of the obstacle as seen from the vehicle,
i.e. the vision cone from the vehicle to the obstacle, and then rotating each ray of
this cone a constant avoidance angle away from the obstacle. Thus, a continuum
of possible safe directions is provided, each keeping the constant avoidance angle
to the obstacle. The extended vision cone is transformed in order to compensate
for the obstacle motion, where the idea behind the motion compensation is the

231



14. Conclusions and Future Work

same as in the 2D case. Thus, again, the vehicle speed is used as an input to the
algorithm, rather than an output, making the algorithm suitable for vehicles with
requirements on the speed, or where speed control is not directly available.

The continuum of safe directions o�ers �exibility, which we have exploited by
implementing an optimization function when choosing among them. Speci�cally,
we have chosen to make the vehicle maximize the di�erence between the chosen
direction and the obstacle's heading and pitch, making the vehicle move behind
the obstacle when starting the collision avoidance maneuver. During the maneuver,
the safe direction is continuously chosen in order to minimize the required control
e�ort. Finally, we ensure that the chosen direction does not violate the vehicle's
pitch limits, a type of safety limit often imposed on vehicles operating in 3D.

The minimization of the required control e�ort enabled us to build the analysis
of the 3D CAA algorithm on the analysis of the 2D algorithm. Speci�cally, we
were able to analyze a horizontal and a vertical maneuver separately. In the case
of a 3D kinematic vehicle with nonholonomic constraints in sway and heave and a
constant forward speed, we obtained an upper bound on both the required pitch
rate and the required yaw rate. Thus, we were able to provide conditions under
which the vehicle was guaranteed to safely traverse an environment with obstacles,
while keeping the pitch within the required envelope, in order to reach a target.
Speci�cally, we provided conditions on the vehicle's maximum yaw and pitch rate,
on the avoidance angle and on the switching distance.

When the 3D CAA algorithm was applied to an underactuated underwater
vehicle, we designed a controller to steer the vehicle's velocity direction rather than
the vehicle's orientation. We derived conditions on the vehicle's maneuverability
under which the Flow frame controller is always feasible, and furthermore derived
conditions on the controller parameters and on the avoidance angle in order to
ensure that the control signals in the systems were always well de�ned, and that
the induced sway and heave speeds remained within a required bound. Finally,
these results were utilized to prove that the vehicle was able to safely maneuver to
a target in the presence of a 3D obstacle, and while upholding bounds on the pitch of
the vehicle's velocity direction. The results were veri�ed both through simulations,
and through full-scale experiments on the Hugin autonomous underwater vehicle.
In the simulations, it was furthermore shown how the algorithm can be extended
to handle multiple, clustered obstacles.

There are several interesting lines of future research and development of the
CAA algorithm which can provide further insight and enhanced results. Exten-
sion of the analysis to multi-obstacle scenarios is a natural next step, as is the
investigation of multi-agent scenarios. In the latter case, the �exibility o�ered in
2D by choosing the turning direction, and in 3D when choosing among the safe
directions, can be utilized to implement rules of the roads, ensuring safety of the
vehicles. However, the use of a constant avoidance angle might be overly conser-
vative when an obstacle or other agent is far away, as the unsafe cone can then
become unnecessarily large. A possible solution to this is to let the avoidance angle
be time-varying. For example, by increasing the avoidance angle with the inverse
of the distance to the obstacle, a higher priority will be given to closer obstacles
than to more distant obstacles. Such a distance-dependent avoidance angle can
also enhance the capabilities of the algorithm to avoid obstacles with a very high
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curvature in the obstacle boundary.
We have focused on keeping the desired vehicle speed independent of the colli-

sion avoidance angle throughout this thesis. However, it can also be interesting to
investigate di�erent speed trajectories. Custom speed trajectories can be used to
implement rules of the roads, or satisfy mission preferences. During path following,
for example, it might be better for the vehicle to slow down and let the obstacle
pass rather than steer away from the path. It is also possible to control the forward
speed so that the total speed of the vehicle remains constant, which might give less
conservative theoretical conditions for vehicle safety.

A major limitation of the algorithm is the assumption that the obstacle moves
slower than the vehicle. In scenarios where we can assume that the obstacle is at
least not actively seeking a collision, it is likely that this assumption can be lifted,
or at least weakened.

A strength of the algorithm is that knowledge of the obstacle shape is not re-
quired for algorithm implementation. This is in contrast to many other algorithms,
where it is required that the obstacle is virtually enlarged in order to guarantee
a minimum distance of separation. However, if the vehicle is equipped with the
sensors and computational power required to estimate the obstacle shape, it will
be interesting to apply the analysis tools developed in this thesis to an algorithm
with no avoidance angle, and where the vehicle points towards the tangent to the
enlarged obstacle. This would, in e�ect, be an implementation of the well known
velocity obstacle approach, although with more rigorous analysis tools at hand
both for unicycles and for underactuated vehicles. Furthermore, the velocity com-
pensation angle developed in this thesis would serve as an analytical method for
choosing a desired forward speed.
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