
July 2009
Bjarne Anton Foss, ITK
Lars Struen Imsland, Cybernetica AS

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Efficient optimization in Model
Predictive Control

Ruben Køste Ringset

Problem Description
Practical use of optimization, for MPC or parameter estimation, requires a large number of
gradient calculations. These gradients are used to compute search directions, for instance in a
SQP algorithm. Computing gradients is time-consuming and limits the use of for instance MPC to
small and medium-sized systems.
Gradients are usually computed by finite difference methods. Alternatives include forward- and
adjoint-based methods. The latter is efficient for problems with many decision variables and few
outputs. Efficiency may however deteriorate in cases with output constraints which typically are
present in MPC. In this project which continues earlier work the use of adjoints as a means to
increase efficiency of optimization in MPC will be further studied.

Tasks:

1. Present adjoint-based methods and review central literature. The presentation shall focus on
MPC which apply a sequential approach.

2. Study efficient ways to compute the impulse response matrix (including changes in the MPC
formulation), in particular how adjoints can aid this.

3. Output constraints can be detrimental to the efficiency of adjoint-based methods. Hence,
optimization algorithms where explicit output constraints can be removed, as for instance in
barrier methods, is an interesting option to exploit the efficiency of adjoint-based methods.
Propose methods in which the efficiency of adjoints can be exploited.

4. Evaluate the methods above by comparing them with forward methods. This should be done by
identifying suitable examples as well as test scenarios for evaluating the methods.

The thesis report may include a paper to a selected conference with the main results of this work.

Assignment given: 26. January 2009
Supervisor: Bjarne Anton Foss, ITK

Abstract

This thesis is about calculation of derivative information as a means to increase efficiency
of optimization algorithms in nonlinear model predictive control (NMPC). NMPC is briefly
discussed to set up a framework and define notation. Some general optimization techniques
are introduced. The next sections are about computation of derivative information in gen-
eral and include finite difference techniques as well as the forward and the adjoint method.
Next, these techniques are used to obtain derivative information for NMPC. Forward and
adjoint techniques are compared, both theoretically and by applying them to suitable test
examples. The discussion includes both discrete and continuous-discrete system models. It
is well known that the adjoint method is efficient for obtaining sensitivity of a low dimen-
sional function with respect to a large number of parameters. If the optimization problem is
posed by single shooting and there are no constraints on the output variables, adjoints will
be very efficient, as only the objective function gradient is needed. However, in most cases
these constraints cannot be removed. Constraint lumping or optimization algorithms like for
instance penalty and barrier methods, which include these constraints as penalty terms in
the objective function, are interesting alternatives. These approaches allow for very efficient
gradient calculation using adjoints, but comes at the expense of other difficulties.

I

Preface

This master thesis is done as a compulsory part of the study for the degree Master of Science
in Engineering Cybernetics at the Norwegian University of Technology and Science (NTNU).

The thesis continues earlier work from a project thesis. The work has been done in cooperation
with Cybernetica AS, a Norwegian company which provides model based control systems for
the process industry. I would like to thank them for the opportunity to work with them.

I would also like to express my gratitude to both of my supervisors:

Professor Bjarne Anton Foss at the Department of Engineering Cybernetics, NTNU for in-
troducing me to adjoints and for his inspiration and support. During the last months Bjarne
has provided me with the opportunity to take part in several interesting activities and he has
also put me in contact with people from other parts of the world doing research on the same
topics.

Lars Struen Imsland at Cybernetica AS for giving of his time and providing excellent guidance.
During the nice discussions we have had at the office, Lars has always given valuable advice.

Finally, I would also like to thank the most important people in my life, Monica and both my
parents for always being there for me.

Ruben Ringset, July 2009

II

Contents

1 Introduction 1

2 Nonlinear Model Predictive Control 2
2.1 Mathematical formulation of NMPC . 3

3 Optimization algorithms 7
3.1 Formulation of the NMPC optimization problem 7
3.2 Sequential Quadratic Programming (SQP) 8
3.3 Penalty methods . 10
3.4 Augmented Lagrangian . 12
3.5 Barrier and interior point methods . 13

4 Calculating Derivatives 14
4.1 Algebraic differentiation . 14
4.2 Finite differencing . 14
4.3 Automatic differentiation . 16

5 Sensitivity analysis 20
5.1 The forward method . 20
5.2 The adjoint method . 21

6 Calculating derivative information for NMPC optimization 24
6.1 Linearization . 24
6.2 Calculation of objective function gradient . 25
6.3 Calculation of impulse response matrix . 31
6.4 Continuous-discrete model formulation . 40
6.5 Runtime considerations . 46
6.6 Simulation examples . 49
6.7 Concluding remarks . 66

7 Efficiently handling output constraints using adjoint gradient calculation 67
7.1 Interior point methods . 67
7.2 Constraint lumping . 69
7.3 Penalty methods . 71
7.4 Simulation example . 72

8 Summary and final remarks 78

9 Appendix 80

III

Contents

A-1 Continuous time adjoint sensitivity analysis 80
A-2 Hardware and software . 82
A-3 Software . 83

Bibliography 84

IV

List of Algorithms

6.1 Calculate ∇uJ - Finite differences . 27
6.2 Calculate ∇uJ - Forward method . 28
6.3 Calculate ∇uJ - Adjoint method . 31
6.4 Calculate impulse response matrix Ξ - Finite differences 33
6.5 Calculate impulse response matrix Ξ - Forward method 34
6.6 Calculate impulse response matrix Ξ - Adjoint method 38
6.7 Solve sensitivity equations . 42
6.8 Solve sensitivity equations, alternative formulation 44
6.9 Calculate ∇uJ , alternative formulation . 45
6.10 Calculate impulse response matrix Ξ, alternative formulation 45

V

List of Figures

2.1 MPC principle . 2
2.2 MPC principle - Model error . 3

4.1 Computational graph for automatic differentiation 17

5.1 Computational graphs for sensitivity analysis 22

6.1 Computational graph for NMPC . 26
6.2 Illustration of integration intervals . 44
6.3 Simple nonlinear discrete model - Solution 50
6.4 Runtime - Calculate ∇uJ . 51
6.5 Van de Vusse reactor . 52
6.6 Steady state solution of Van de Vusse reactor 54
6.7 Van de Vusse reactor - Solution . 57
6.8 Van de Vusse reactor - State sensitivities 58
6.9 Van de Vusse reactor - Control sensitivities 59
6.10 Runtime - Calculate Ξ . 60
6.11 Runtime - CVODES integration, N, Ts variable, tf constant 61
6.12 Runtime - CVODES integration, tf , Ts variable, N constant 62
6.13 Runtime - CVODES integration, tf , N variable, Ts constant 62
6.14 Heat equation - Solution . 65
6.15 Runtime - CVODES integration . 65

7.1 Barrier functions . 68
7.2 Approximations of max(x, 0) and σ(x) . 71
7.3 NMPC optimization with different penalty weights 76

VI

List of Tables

4.1 Look up table for automatic differentiation 17

6.1 Illustration of steps in algorithm 6.5 . 35
6.2 Illustration of steps in algorithm 6.6 . 39
6.3 Summary of algorithms for calculating ∇uJ for continuous-discrete systems . 48
6.4 Summary of algorithms for calculating Ξ for continuous-discrete systems . . . 49
6.5 Van de Vusse reactor parameters . 52
6.6 Organization of files for simulation of Van de Vusse reactor 55
6.7 Inputs for comparing runtime . 61
6.8 Organization of files for simulation of the heat equation 64

7.1 Organization of files for NMPC optimization using l1 penalty method and
adjoints . 75

9.1 Simulation environment . 83

VII

1 Introduction

Linear model predictive control (MPC) has gained a lot of popularity over the years. Nonlinear
model predictive control (NMPC) has also received more attention in the last years, both
by practitioners and theorists. Unfortunately, NMPC does not enjoy the well established
theory for linear MPC, and this fact sometimes limits its applicability to small and medium-
sized systems. The optimization for NMPC is for instance, much more computationally
demanding which makes it harder to meet the real time requirements, especially for large
scale models. Gradient based optimization techniques require derivative information in each
iteration. Obtaining these gradients can be a very computationally demanding task as they
typically involve a lot of simulations of the system model.

However, by using the adjoint method the number of simulations to obtain the objective
function gradient can be dramatically reduced as this can be done by only 2 simulations - one
in forward time and one in reverse time. Traditional techniques for obtaining the objective
function gradient like finite differencing require L + 1 simulations of the system model where
L is the number of control variables on the prediction horizon. Through this thesis, different
methods for obtaining derivatives will be evaluated and compared. As will be discussed more
later, different optimization techniques require different types of derivative information. The
advantages of choosing the best optimization algorithm and the best method for obtaining
derivatives will often conflict. Through this thesis, some of these issues will be addressed by
evaluating optimization techniques together with algorithms for obtaining derivatives.

The structure of this thesis is as follows: Section 2 introduces MPC, sets up a framework
and defines notation. Section 3 focus on how the NMPC optimization problem is posed
and briefly introduces some optimization techniques like sequential quadratic programming
(SQP), penalty methods, augmented Lagrangian, and interior point methods. Section 4 and
5 are about derivative calculation in general. The forward and reverse methods are compared,
and some simple examples are given. The reader may find it instructive to understand this
theory for more general problems before these techniques are applied to the NMPC problem.
In section 6 the theory from section 4 and 5 is applied to the NMPC problem. The discussion
includes calculation of the objective function gradient and the impulse response matrix which
essentially is the output constraint gradient. Both discrete and continuous-discrete models
are discussed and a number of different algorithms are given. Theoretical bounds for runtime
of these algorithms are compared to actual simulation results using suitable test examples. In
section 7 we look at constraint lumping and optimization techniques like barrier and penalty
methods. These methods reduce the dimension of the functions of which the sensitivity with
respect to the control variables is needed. This makes adjoint gradient calculation efficient,
but comes at the expense of some other difficulties which need to be resolved. Section 8 adds
some final remarks and conclusions.

1

2 Nonlinear Model Predictive Control

In this section a short introduction to model predictive control (MPC) and an outline of
the MPC problem is given. Model predictive control is a methodology or class of advanced
control algorithms which use a dynamic system model of the plant (for example an ODE
or DAE model) to predict and optimize behavior of the plant into the future. Linear MPC
has shown great success in applications, especially in the process industry and is spreading
to other application areas [17]. MPC handles multivariable systems (MIMO), constraints on
inputs and outputs and possibly states in a very transparent manner. One can argue that
a model predictive controller operates in a similar way as an experienced human operator
would operate the process, since also the operator of a plant will use knowledge of the plant
dynamics and couplings to predict and optimize behavior in the future.

MPC algorithms are control algorithms based on solving an online optimization problem. The
optimization algorithm minimizes some objective function which reflects the desired control
performance subject to the model of the system and possibly constraints on inputs, states
and outputs. The solution of the optimization problem is a set of controls into the future
which will be optimal with respect to the specified objective function and the constraints on
the prediction horizon. This principle is illustrated in figure 2.1.

Figure 2.1: MPC principle

Open loop predicted control

Past Prediction horizon

Set point

Closed loop state

Open loop predicted state
Closed loop control

t

For the nominal case where there is no model-plant mismatch, process noise or measurement
noise, we could just optimize one time and then apply the optimized solution in the future.
However this approach will not be robust due to modeling errors and noise. This is shown

2

2 Nonlinear Model Predictive Control

in figure 2.2 which illustrates that after some time Ts, the predicted trajectory may deviate
from the real trajectory.

Figure 2.2: MPC principle - Model error

Deviation from measurements

Past Prediction horizon

Set point

Closed loop state

Closed loop control

t t+Ts

Since this scheme is not robust, feedback must be incorporated into the system. This is
done by applying the control signal to the process until time Ts when the next measurement
becomes available. Then, optimization and prediction is performed again on a receding horizon
taking the new measurements into account.

2.1 Mathematical formulation of NMPC

In this section the NMPC optimization problem is formulated and notation is defined. Some
common choices of objective functions for NMPC are presented. Properties like constraint
handling and nominal stability of the MPC controller are briefly discussed.

Suppose the nonlinear model of the system is on the following form

xk+1 = f(xk, uk), zk = g(xk, uk), x0 = x(t0), xk ∈ RNx , uk ∈ RNu , zk ∈ RNz ,

where xk is the state vector, uk the controlled inputs and zk the controlled outputs. Define
the vectors

x =

x0

x1
...

xN

, u =

u0

u1
...

uN−1

, z =

z0

z1
...

zN−1

.

There are also constraints on the inputs and outputs given by some upper and lower bounds
umin, umax, zmin, zmax and some objective function J we want to optimize. It is also possible
to specify input and output constraints by more complicated functions, but for simplicity, we

3

2 Nonlinear Model Predictive Control

stick to simple box constraints. The objective function J together with these bounds specify
the desired control performance.

Model predictive control is a control strategy that is often used on systems with many inputs
and outputs, and it is very common that the MPC algorithm only controls set points for
conventional controllers further down in the control hierarchy. In these situations objective
functions may for instance be derived directly from economical considerations of the plant
operation. One possibility is to penalize deviation from a precomputed reference trajectory
by some norm which yields the following objective function

J =
Np∑

k=0

‖zk − zr
k‖+

Nc∑

k=0

‖uk − ur
k‖ . (2.1)

Here Np and Nc is the prediction horizon and the control horizon, respectively . The control
horizon is typically chosen shorter than the prediction horizon, i.e. input blocking. In the
following, these horizon lengths are for simplicity assumed equal by setting N = Np = Nu.

One very common objective function for model predictive control is the following quadratic
function

J =
1
2

N−1∑

k=0

[zT
k Qzk + uT

k Ruk] +
1
2
xT

NPxN , Q = QT ≥ 0, R = RT ≥ 0, P = P T > 0,

where it is assumed that we want to regulate the system to the origin. Due to the positive
(semi)definiteness of Q, R, and P , this function is convex. For linear system models and
convex inequality constraints on inputs and outputs, the optimization problem will be a convex
quadratic problem, which of global solutions can be found reliably. For NMPC, the system
model which is posed as an equality constraint is nonlinear, resulting in a non-convex problem
where global solutions can be hard to find.

The terminal cost term 1
2xT

NPxN is often included to penalize deviation from the desired
state at the end of the horizon. For linear MPC this term can be chosen to satisfy

1
2
xT

NPxN =
1
2

∞∑

k=N

[zT
k Qzk + uT

k Ruk]

by solution of a Riccati equation [17]. Given that no output or input constraints are active
for k ≥ N , the solution will yield the linear quadratic regulator (LQR) for k ≥ N , which will
be optimal. We will not elaborate further on this, but we note that it allows the use of an
objective function with infinite horizon by solving a finite dimensional optimization problem.
This separation is often referred to as dual-mode MPC and was one of the keys in proving
stability for linear MPC.

Another possibility for proving stability of linear MPC is to add a dead beat constraint at the
end of the horizon, i.e. xN = 0. This will result in stable closed loop when the optimization
problem has a feasible solution. Applying a dead beat constraint will in fact also provide

4

2 Nonlinear Model Predictive Control

stability for nonlinear MPC [11]. However, adding a dead beat constraint is quite restrictive,
and one might run into feasibility problems for short horizon lengths.

By using the quadratic objective function above, the NMPC optimization problem that must
be solved at each sampling instant can be formulated as

min J =
1
2

N−1∑

k=0

[zT
k Qzk + uT

k Ruk] +
1
2
xT

NPxN , (2.2)

subject to

xk+1 = f(xk, uk), (2.3)
zk = g(xk, uk), (2.4)
x0 = x(t0), (2.5)

umin ≤ uk ≤ umax, (2.6)
zmin ≤ zk ≤ zmax. (2.7)

This will be used as the basic formulation throughout this thesis. The nonlinear program
(NLP) (2.2)-(2.7) can be solved by a number of different techniques. This is discussed in
more detail in the next section. There is however no guarantee that the NLP (2.2)-(2.7) will
have a feasible solution, even though it is crucial that the NMPC algorithm calculates an
input to the system at every sampling instant. When no feasible solution is found, we need
a way to relax the NLP.

One way to relax the problem is to let the optimization algorithm deliberately break some
of the constraints on inputs or outputs. In MPC it is possible to have both hard and soft
constraints on inputs and outputs. Hard constraints should not be violated at any time, e.g. a
valve cannot be more than closed, a tank cannot contain a negative volume of liquid etc. Soft
constraints can for example be related to product quality and such. These should preferably
not be violated, but they can be violated when it is necessary in order for the optimization
problem to have a solution. A typical situation is that input constraints are hard since these
often are related to physical limitations of actuators, while output constraints are soft since
outputs often relate to product quality or other quantities that do not have absolute bounds.

The optimization problem with soft constraints can be formulated by adding extra slack
variables to the objective function. For example, considering all the constraints on the outputs
as soft and adding a quadratic penalty term for violating these constraints will yield the
following optimization problem

min J =
1
2

N−1∑

k=0

[zT
k Qzk + uT

k Ruk] +
1
2
xT

NPxN + µ ‖ε‖22 , (2.8)

5

2 Nonlinear Model Predictive Control

subject to

xk+1 = f(xk, uk), (2.9)
zk = g(xk, uk), (2.10)
x0 = x(t0), (2.11)

umin ≤ uk ≤ umax, (2.12)
[

zk − zmax

−zk + zmin

]
≤

[
εmax

εmin

]
= ε, (2.13)

0 ≤
[

εmax

εmin

]
= ε. (2.14)

The optimizer will have a strong motivation to keep ε zero whenever possible. µ is an extra
design parameter which can be chosen in terms how much we would like to penalize violation
of constraints. µ = 0 yields the unconstrained problem and by choosing µ large, this becomes
the hard constrained problem.

It is also possible to use other penalty functions than the quadratic function above. It is de-
sirable to have an exact penalty function which has the property that under certain conditions
on the penalty parameter µ related to the norm of the Lagrange multipliers, constraints are
not violated unless there is no feasible solution to the hard constrained problem [20]. The
multipliers are however not known a priori. Exact penalty functions in the context of NMPC
will be discussed in more detail later.

6

3 Optimization algorithms

The NMPC optimization problem is a general nonlinear programming problem (NLP) to
which there are many different approaches and algorithms available. A good overview and
classification of efficient numerical optimization algorithms for solution of the NMPC problem
can be found in [8]. It is assumed that the reader is somewhat familiar with the field of
numerical optimization and is referred to [20] for a text on this topic which also parts of the
most relevant basics introduced in the following section are based on. We first discuss different
ways of posing the optimization problem. Then we briefly introduce sequential quadratic
programming (SQP) which is an optimization technique widely used in MPC software. We
also briefly introduce some other techniques like penalty methods, augmented Lagrangian
and interior point methods. Common for these three latter methods is that the constraints
are appended to the objective function as a penalty term. These methods will later prove
themselves as useful formulations as the derivative information required by the optimizer may
be very efficiently evaluated using the adjoint method. These kind of methods will be revisited
in the context of NMPC with output constraints and adjoints in section 7.

3.1 Formulation of the NMPC optimization problem

The optimization problem that is solved at every time instant can be posed in different
ways. Which method that will be suitable becomes a trade-off between the size of the
variable space, structure in the problem and integration or separation between optimization
and system simulation.

Sequential approach

This method is also referred to as ’single shooting’ or ’reduced space’. Consider the nonlinear
program (2.2)-(2.7). If the vector u is fixed, x and z will be uniquely determined. Existence
and uniqueness for discrete time systems is simply guaranteed just by f(xk, uk) being a
function. For continuous time models this is a somewhat more complicated matter depending
on additional conditions [15] which are assumed to hold throughout this thesis. It is therefore
possible to address the optimization problem with just u as free optimization variables by
considering x(u) and z(u) as implicit functions which can be found by simulation. In each step
of the optimization algorithm, system simulation and optimization are performed sequentially.
This approach will have a reduced variable space compared to the full nonlinear program (2.2)-
(2.7). However a disadvantage is that the subproblems will have less structure and the linear
algebra will typically involve dense matrices. Another disadvantage with this approach is that
simulation and optimization are performed sequentially giving the optimization algorithm no
control over the simulation. Thus, highly nonlinear or unstable systems can be challenging.

7

3 Optimization algorithms

Simultaneous approach

This method is also referred to as ’full space’. This approach addresses the full nonlinear
program (2.2)-(2.7) with both u, x and z as free optimization variables. Advantages are that
the optimization has better control over the simulation as both optimization and simulation
are performed simultaneously. The method is therefore better suited for unstable or highly
nonlinear systems. The main disadvantage with this method is that the nonlinear program
is addressed in its full variable space. However the underlying subproblems in this approach
have much more structure and one can make use of linear algebra tools that takes the sparse
banded structure into account [17].

Multiple shooting

This method can be viewed as a combination of the sequential and the simultaneous approach.
Multiple shooting divides the horizon into many subhorizons. The sequential approach is then
performed on each of these sub-horizons. Extra equality constraints where the state at the
end of a subhorizon should match the state of the next subhorizon are added. This method
allows combining the sequential and the simultaneous approach in the way that is suitable
for the problem at hand. Compared to the sequential approach, multiple shooting gives more
control over the simulation since the nonlinearities are spread out on smaller subhorizons
rather than simulating the whole prediction horizon before running the optimization.

Throughout this thesis the sequential approach will be used as it allows for very efficient
gradient calculation using adjoint techniques.

3.2 Sequential Quadratic Programming (SQP)

SQP algorithms generate search directions by solving a sequence of quadratic programs (QP)
which can be used both with line search and trust region methods.

Consider the nonlinear program
min f(x), (3.1)

subject to

g(x) = 0, (3.2)
h(x) ≤ 0. (3.3)

Let the current iterate be defined by xk and the next iterate by xk+1 = xk + pk where pk

is the search direction. In unconstrained optimization algorithms the search direction can be
determined by either going the steepest descent of the objective function (xk+1−xk = pk =
−∇xf(xk)), by the Newton direction or maybe a quasi Newton direction in the presence of
inexact Hessians. In contrast, SQP algorithms compute the search direction by solving a local
quadratic program.

8

3 Optimization algorithms

First, introduce the Lagrangian L(x, λ, µ) = f(x) − λT g(x) − ηT h(x). Let mL(pk) be an
approximate quadratic model of L(xk+1) = L(xk + pk) given by the second order Taylor
expansion

mL(pk) = L(xk) +∇xL(xk)T pk +
1
2
pT

k∇2
xxL(xk)pk,

and the linearized constraints be given by the first order Taylor expansion

gi(xk) +∇xgi(xk)T pk = 0,

hj(xk) +∇xhj(xk)T pk ≤ 0. (3.4)

SQP methods iteratively solve the quadratic problem1

min mL(pk),

subject to

gi(xk) +∇xgi(xk)T pk = 0,

hj(xk) +∇xhj(xk)T pk ≤ 0,

until convergence is achieved. This QP can in fact be interpreted as applying Newton’s
method to the Karush–Kuhn–Tucker (KKT) optimality conditions [20] given by

∇xL(x∗, λ∗, η∗) = 0,

g(x∗) = 0,

0 ≥ h(x∗) ⊥ η∗ ≥ 0,

where the notation ⊥ is used to denote perpendicularity. That is, also the complementary
condition h(x∗)T η∗ = 0 should hold.

Inequality based QP (IQP)

This approach makes the decision about which of the inequality constraints that are active
in the quadratic subproblems, and states the QP problems with all the linearized inequality
constraints present.

min f(xk) +∇xf(xk)T pk +
1
2
pT

k∇2
xxL(xk)pk,

subject to

gi(xk) +∇xgi(xk)T pk = 0,

hj(xk) +∇xhj(xk)T pk ≤ 0.

1mL(pk) may be simplified to mL(pk) = f(xk) + ∇xf(xk)T pk + 1
2pT

k∇2
xxL(xk)pk since gi(xk) +

∇xgi(xk)T pk = 0 and ηj(hj(xk) +∇xhj(xk)T pk) = 0.

9

3 Optimization algorithms

Equality based QP (EQP)

This variant makes the decision about which of the inequality constraints that seem to be
active before stating the QP subproblems and maintain these in a working set Wk. The QP
subproblem at each iteration is stated as

min f(xk) +∇xf(xk)T pk +
1
2
pT

k∇2
xxL(xk)pk,

subject to

gi(xk) +∇xgi(xk)T pk = 0,

hj(xk) +∇xhj(xk)T pk = 0 ∀j ∈ Wk.

The working set Wk is updated based on Lagrange multipliers of the QP subproblem and
evaluation of hj(xk+1) ∀j /∈ Wk.

Line Search

The convergence can be improved by using a line search method to determine the distance
αk to go along the search direction. One approach is to use a merit function to decide which
point is better than the other. The l1 merit function is defined as

φ(xk, ν) = f(xk) + ν
∑

i

|gi(xk)| + ν
∑

j

max(hj(xk), 0). (3.5)

The step size αk is chosen such that the merit function φ(xk+αkpk, ν) has sufficient decrease
which will be a trade-off between decreasing the value of f and infeasibility of the current
iterate. A desirable property with the l1 penalty function is that it is exact. A challenge with
the l1 merit function is that it is not differentiable [20].

3.3 Penalty methods

Quadratic penalty function

Consider the NLP (3.1)-(3.3). Penalty methods reformulate the problem to an uncon-
strained formulation by penalizing violation of the constraints in the objective function. In
the quadratic penalty method a sequence of unconstrained problems on the following form
are solved

min Q(x, µ) = f(x) +
µ

2

∑

i

gi(x)2 +
µ

2

∑

j

max(hj(x), 0)2. (3.6)

The objective function Q is minimized for increasing values of µ until convergence is achieved.
The rationale is that the constraints are resolved as they are penalized more by increasing µ,
resulting in the solution of (3.8) approaching the solution of (3.1)-(3.3).

10

3 Optimization algorithms

The problem with this method is that (3.8) becomes ill conditioned as µ gets large. This will
result in the Hessian matrix in quasi Newton methods like Broyden-Fletcher-Goldfarb-Shanno
(BFGS) and even Newton’s method to be ill conditioned. To see this, for simplicity consider
the problem (3.8) with only equality constraints. At the optimum x∗ of (3.1)-(3.2) (only
equality constraints) we have that

∇xL(x, λ) = ∇xf(x)−
∑

i

λi∇xgi(x) = 0.

By comparison with

∇xQ(x, µ) = ∇xf(x) + µ
∑

i

gi(x)∇xgi(x) = 0,

we see that
µgi(x) → −λi, (3.7)

as xk → x∗ and µ →∞ in (3.8). Then consider the Hessian matrix

∇2
xxQ(x, µ) = ∇x

[
∇xf(x) + µ

∑

i

gi(x)∇xgi(x)

]
= ∇2

xxf(x)+µ
∑

i

gi(x)∇2
xxgi(x)+µA(x)T A(x),

where A(x) = [∇xg1(x)∇xg2(x) . . .]T . Now, near the optimum we will have µg(x) ≈ −λ,
and thus

∇2
xxQ(x, µ) ≈ ∇2

xxL(x, λ) + µA(x)T A(x).

The problem here is that the eigenvalues of the matrix A(x)T A(x) will be either zero
(A(x)T A(x) not full rank) or in the same order of magnitude as µ. This makes the Hes-
sian matrix arbitrarily ill conditioned near the optimum x∗, and will cause problems when
computing the Newton direction p by solving

[
∇2

xxQ(x, µ)
]
p = −∇xQ(x, µ).

l1 penalty function

Instead of using a quadratic penalty we may instead formulate the penalty term using an l1
penalty function which gives the following optimization problem

min Pl1(x, µ) = f(x) + µ
∑

i

|gi(x)| + µ
∑

j

max(hj(x), 0). (3.8)

The most desirable property of the l1 penalty function is exactness which in this context
means that the minimizer of (3.8) will coincide with the minimizer of the original NLP (3.1)-
(3.3) as long as µ is chosen large enough. That is, the particular value of µ is not crucial

11

3 Optimization algorithms

for that solving (3.8) will in fact give the solution of the original NLP. The condition on the
penalty parameter is that

µ > ‖λ∗‖∞ , (3.9)

where λ∗ is the vector of Lagrange multipliers of (3.1)-(3.3) at x∗.

Even though this exactness is a nice property, the l1 penalty method has some disadvantages
as well. Due to the absolute value function and the max function in (3.8), the l1 penalty
function is not differentiable at certain points, making it hard to employ derivative based
optimization techniques. In fact, nonsmoothness of the penalty function is a necessity for
exactness of penalty functions [20].

Another obvious challenge with this method is how to choose the penalty parameter to ensure
µ > ‖λ∗‖∞ since the Lagrange multipliers at the optimum are of course not known in advance.
One might consider choosing µ very large and hope that this works for most cases, but this
may lead to a poorly scaled problem which may be hard to solve.

Due to (3.9), estimates of the Lagrange multipliers may provide some information about
choosing µ. This may not work well if the estimates of these multipliers are inexact and even
only for the fact that the estimates of these multipliers far from the solution may not be a
good value for choosing µ.

Another approach may be to start by solving (3.8) for a small value of µ. If the solution is not
feasible, µ is increased and (3.8) is solved again with the solution for the previous problem as
starting point. The algorithm may adaptively update µ depending on the difficulty of solving
the optimization problem in the previous iteration. However, if µ is chosen too small, violation
of constraints may not be penalized enough. This may result in a problem that is unbounded
below and consequently, the iterates may diverge. If this happens, the initial point for the
next iteration should be reset and µ should be increased until the problem is bounded below.
Thus, some monitoring and heuristics may be required.

3.4 Augmented Lagrangian

Consider adding a penalty term to the Lagrangian instead of the objective function as in the
previous section to define the augmented Lagrangian (assume no inequality constraints)

LA(x, λ, µ) = f(x)− λT g(x) +
µ

2
‖g(x)‖22 .

Now, comparing

∇xLA(x, λ, µ) = ∇xf(x)−
∑

j

(λj − µgj(x))∇xgj(x)

to the optimality condition ∇xL(x, λ) = 0 reveals that

λ− µg(x) → λ∗, (3.10)

12

3 Optimization algorithms

and by rearrangement that g(x) → 1
µ(λ − λ∗) as x → x∗. Now, g(x) ≈ 0 can be achieved

even for µ not large provided that λ ≈ λ∗. Augmented Lagrangian methods therefore keep
track of estimates of the Lagrange multipliers λ. A simple iterative formula for estimating λ
can be deduced from (3.10)

λk+1 = λk − µg(xk)

(with slight abuse of notation since k here denotes the iteration index).

3.5 Barrier and interior point methods

(3.1)-(3.3) may be reformulated as

min f(x) +
∑

j

If (hj(x)), (3.11)

subject to
g(x) = 0, (3.12)

where If is the indicator function that specifies the feasible domain and is defined as

If (x) =

{
∞ x > 0
0 x ≤ 0

. (3.13)

The problem (3.11)-(3.12) can be approximated by approximating the indicator function
(3.13) by a a logarithmic barrier

minψ(x, µ) = f(x)− µ
∑

j

ln(−hj(x)), (3.14)

subject to

g(x) = 0. (3.15)

The logarithmic term added to the objective function acts as a barrier that tends to infinity
when its boundary is approached. This barrier is a smooth approximation to the indicator
function (3.13) and will prevent the search algorithm from leaving the interior of the feasible
set. Feasibility of the iterates can be a desirable property in algorithms used for online
optimization since we may stop before reaching the optimum. The approximation of (3.13)
becomes more accurate as µ → 0. Therefore, the optimization problem is solved for decreasing
values of µ until some convergence criterion is satisfied. Very similar to penalty methods
discussed above, the problem will become ill conditioned as µ → 0. Good interior point
methods take elaborate precautions to deal with this ill conditioning. An effective class of
interior point algorithms is the so called primal-dual methods which solve the primal and dual
problems simultaneously [20].

13

4 Calculating Derivatives

Most optimization algorithms used for NMPC are derivative based optimization techniques.
In this section we will look at some general techniques for calculating derivatives.

In some applications one might expect the user to provide the derivatives explicitly. In other
applications one can provide code to calculate the derivatives, either by approximation or
exactly (up to numerical precision). If the functions involved are too complex, the user will
be unable to provide explicit code for the derivatives. A number of different approaches are
available, and different flavors exist. Some methods rely on the user to provide code for
certain parts of the calculation. In this section we will leave NMPC and optimization for a
while and look at some different approaches for computing derivatives in general. In section
5 we will look at these methods in the context of sensitivity analysis of mathematical models.

4.1 Algebraic differentiation

In this approach analytical algebraic expressions are computed by symbolic manipulation either
by hand or in a computer. The functions need to be specified analytically. The problem with
this technique is that the analytical expression for the derivatives of a function can grow to
be very complex. Especially for complex functions and higher order derivatives.

4.2 Finite differencing

The derivative of a function f : R → R at a point x is defined to be

df(x)
dx

= lim
h→0

f(x + h)− f(x)
h

,

and the partial derivative of a function g : Rn → R is defined by

∂g(x1,..., xn)
∂xi

= lim
h→0

g(x1,..., xi + h, ..., xn)− g(x1,..., xn)
h

= lim
h→0

g(x + hei)− g(x)
h

,

where ei denotes the unit vector with all elements zero except from element i which is one.
One approach that then suggests itself is to replace h by a small perturbation ε. Ideally we
would approximate the derivative with infinite precision just by choosing ε small enough, but
we need to keep in mind that this calculation would be implemented in a computer with

14

4 Calculating Derivatives

final precision arithmetic. In this case, the optimal choice for ε will be a trade-off between
arithmetic precision and error made by not choosing ε infinitesimally small.

By using this scheme an approximation of the partial derivative of g is given by

∂g(x)
∂xi

≈ g(x + εei)− g(x)
ε

, (4.1)

and the gradient ∇xg(x) can be calculated by iterating (4.1) over i. The error made by using
this approximation can be estimated from Taylor’s Theorem [20].

Theorem 1. Taylor’s Theorem

Suppose that g : Rn → R is continuously differentiable. Then from the Fundamental Theorem
of Calculus we have

f(x + p) = f(x) +
ˆ p

0
∇xf(x + τ)dτ = f(x) +

ˆ 1

0
∇xf(x + pt)pdt

By the mean value theorem

f(x + p) = f(x) +∇xf(x + pt)T p

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable we have that

∇xf(x + p) = ∇xf(x) +
ˆ 1

0
∇2

xxf(x + pt)pdt

and that
f(x + p) = f(x) +∇xf(x)T p +

1
2
pT∇2

xxf(x + pt)p

for some t ∈ (0, 1).

Throughout this thesis a notation to describe growth of functions is needed.

Definition 2. O notation

O(g(n)) = {f(n) : ∃ c, n0 > 0 such that 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}.

Basically f(n) ∈ O(g(n)) means that the function f(n) can be bounded above by some
function cg(n) for c and n0 large enough. This notation will later be used to describe the
worst-case running time of an algorithm. In this case, the domains of these functions may
consist of only integers.

By using Taylor’s theorem

g(x+εei) = g(x)+∇xg(x)T εei+
1
2
εeT

i ∇2
xxg(x+εeit)εei = g(x)+

∂g(x)
∂xi

ε+
1
2
ε2

∂2g(x + εeit)
∂x2

i

,

15

4 Calculating Derivatives

for some t ∈ (0, 1). Suppose that M is an upper bound on
∣∣∣∂2g(x+εeit)

∂x2
i

∣∣∣ for t ∈ (0, 1). Then,
rearrangement yields

∂g(x)
∂xi

=
g(x + εei)− g(x)

ε
+ R,

where the error term R is bounded by |R| ≤1
2M |ε|. This shows that the error made by

computing derivatives by finite difference ε in (4.1) is of O(ε) [20].

A more accurate result can be obtained by using two sided finite differences defined as

∂g(x)
∂xi

≈ g(x + εei)− g(x− εei)
2ε

.

It can be shown that the error by using two sided finite difference is of O(ε2), but this also
requires 2n+1 function evaluations while the one sided method only requires n+1 evaluations.

4.3 Automatic differentiation

Automatic differentiation is a method to numerically evaluate the derivative of a function.
The website www.autodiff.org - Community Portal for Automatic Differentiation contains
a lot of material and references on this topic. Automatic differentiation is a technique based
on breaking the problem at hand down to a composition of elementary arithmetic operations,
which any one is simple enough to be trivially differentiated by a table look up. Once the
structure of this problem is lined out, the chain rule can be applied. Two different main
approaches are available, namely the forward mode, and the reverse mode of automatic
differentiation. The basic idea of automatic differentiation is simple. Consider the the chain
rule applied to the function f(g(x)).

df

dx
=

df

dg

dg

dx
. (4.2)

Automatic differentiation can be applied in two different ways (and combinations thereof),
namely the forward mode and the reverse mode of automatic differentiation. In the simplest
case one can say that the forward mode calculates (4.2) from left to right, while the reverse
mode calculates (4.2) from right to left. The difference between the forward mode and the
reverse mode is best illustrated by an example.

Example 3. Automatic differentiation

Consider the function f(x1, x2, x3) = x1x2 + x3 cos(x1) + x3. Suppose that we want to
calculate all partial derivatives of f . First we introduce some intermediate variables to break
down the problem in elementary arithmetic operations

x4 = x1x2,

x5 = cos(x1),
x6 = x5x3,

x7 = f(x1, x2, x3) = x4 + x6 + x3.

16

4 Calculating Derivatives

Figure 4.1: Computational graph for automatic differentiation

X
1

X
2

X
3

X
6

X
5

X
4

cos
X

7

*

*

+

+

Forward mode

Reverse mode

The graph in figure 4.1 illustrates the problem broken down in elementary arithmetic oper-
ations. To compute the partial derivatives ∂f

∂xi
= ∂x7

∂xi
, i = {1, 2, 3}, the forward mode of

automatic differentiation traverses the graph in figure 4.1 from left to right, while the reverse
mode of automatic differentiation traverses the graph from right to left. One essential part
of automatic differentiation is that the derivatives of all the intermediate functions are simple
enough to be predefined in a look up table of elementary derivatives.

Table 4.1: Look up table for automatic differentiation
Variables Derivatives
x4 = x1x2

∂x4
∂x1

= x2,
∂x4
∂x2

= x1

x5 = cos(x1) ∂x5
∂x1

= − sin(x1)
x6 = x5x3

∂x6
∂x3

= x5,
∂x6
∂x5

= x3

x7 = x4 + x6 + x3
∂x7
∂x3

= ∂x7
∂x4

= ∂x7
∂x6

= 1

We will now show how this simple example is solved with both the forward and the reverse
mode and outline some of the differences between the methods. Say we want to compute
∇xf(x) at the point x =

[
π 4 3

]T
.

The forward mode of automatic differentiation

The forward mode of automatic differentiation is possibly the most intuitive of the two. As
mentioned above, the forward mode traverses the graph in figure 4.1 from left to right.

17

4 Calculating Derivatives

Start by initializing

∇xx1 = e1,

∇xx2 = e2,

∇xx3 = e3.

Then calculate

∇xx4 =
∂x4

∂x1
∇xx1 +

∂x4

∂x2
∇xx2 =

[
x2 x1 0

]T =
[

4 π 0
]T

,

by using information from its parent node. Now, since ∇xx4 has been computed and node
x4 is the only child of node x2, ∇xx2 is not needed anymore to compute ∇xf(x) and may be
overwritten in memory. In general we can overwrite ∇xxi for node xi when ∇xxj has been
computed for all the children of node xi. Further we compute

∇xx5 =
∂x5

∂x1
∇xx1 = − sin(x1)e1 = 0,

∇xx6 =
∂x6

∂x3
∇xx3 +

∂x6

∂x5
∇xx5 = x5e3 + x30 = cos(π)e3 = −e3,

by traversing the graph from left to right. And we can finally compute

∇xf(x) =
∂x7

∂x4
∇xx4 +

∂x7

∂x6
∇xx6 +

∂x7

∂x3
∇xx3 =

4
π
0

− e3 + e3 =

4
π
0

.

One essential point with the forward mode is that both xi and ∇xxi is evaluated during a
forward sweep of the graph.

The reverse mode of automatic differentiation

The reverse mode of automatic differentiation first traverses the graph in figure 4.1 from left
to right evaluating xi for all the nodes. Then all the derivatives are calculated by a reverse
sweep from right to left. The forward sweep for calculating xi is trivial. During the reverse
sweep we keep track of the value of ∂f

∂xi
for each node. These values are known as the adjoint

variables. For node xi we have

∂f

∂xi
=

∑

xj child of xi

∂f

∂xj

∂xj

∂xi
. (4.3)

18

4 Calculating Derivatives

First we initialize ∂f
∂x7

= ∂x7
∂x7

= 1. Then for all the parent nodes of x7 we can use (4.3).

∂f

∂x4
=

∂f

∂x7

∂x7

∂x4
= 1,

∂f

∂x6
=

∂f

∂x7

∂x7

∂x6
= 1,

∂f

∂x3
=

∂f

∂x7

∂x7

∂x3
+

∂f

∂x6

∂x6

∂x3
= 1 + x5 = 1 + cos(π) = 0.

Once these are known we can compute

∂f

∂x5
=

∂f

∂x6

∂x6

∂x5
= x3 = 3,

∂f

∂x1
=

∂f

∂x4

∂x4

∂x1
+

∂f

∂x5

∂x5

∂x1
= x2 − 3 sin(x1) = 4− 3 sin(π) = 4,

∂f

∂x2
=

∂f

∂x4

∂x4

∂x2
= x1 = π,

∂f

∂x3
=

∂f

∂x6

∂x6

∂x3
+

∂f

∂x7

∂x7

∂x3
= x5 + 1 = cos(π) + 1 = 0,

which of course yields the same result as the forward method. Analogously as for the forward
mode ∂f

∂xi
may be overwritten in memory when all the parents xj of node xi have calculated

∂f
∂xj

.

Computational complexity

Consider a function f : Rn → Rm which of the gradient is to be obtained. Calculating the
gradient with the forward mode will require n forward sweeps of the graph. Calculation by the
reverse mode will require m reverse sweeps of the graph. This suggests that in the general
case, the forward mode is probably best when m > n, and the reverse mode better suited for
the opposite situation.

19

5 Sensitivity analysis

In general terms, sensitivity analysis is the study of change in the output variables of a
mathematical model with respect to perturbations of the input variables. In this section these
sensitivities are calculated both by forward and adjoint methods [21]. In the sections later
it is shown how the results of this section specialize to gradient calculation for the NMPC
optimization problem.

Consider the general nonlinear function

G(x, p) = 0, x ∈ Rn, p ∈ Rm, G : Rn × Rm → Rn. (5.1)

Assume that ∂G
∂x is invertible everywhere. Then by the implicit function theorem it is possible

to write G(x, p) = 0 as a function x(p) explicitly by solving G for x. The basic idea
of sensitivity analysis is to compute dx

dp . That is, compute the sensitivities of the solution
variables x with respect to the input variables p around a given trajectory.

In some applications one is also concerned with a function of the state variables x and the
input variables p, f : Rn × Rm → Rk. In these applications one might be interested in
how perturbations of the input variables p affects the function f . That is, to compute the
sensitivity

df

dp
=

∂f

∂x

dx

dp
+

∂f

∂p
. (5.2)

As we will see later, computing the gradient of the objective function with respect to the
control variables for the NMPC optimization problem will have this structure. G will corre-
spond to the system model (equality condition), and f will correspond to the NMPC objective
function.

As for automatic differentiation, there are two main approaches for obtaining these sensitivi-
ties.

5.1 The forward method

The linearization of (5.1) is
∂G

∂x

dx

dp
+

∂G

∂p
= 0, (5.3)

where ∂G
∂x ∈ Rn×n, dx

dp ∈ Rn×m, ∂G
∂p ∈ Rn×m. We can solve (5.3) for dx

dp since ∂G
∂x is assumed

to be non-singular everywhere. To solve for dx
dp we need to solve a number of m linear systems.

The forward method is therefore efficient when the number of parameters m is small. When
dx
dp has been calculated, we can calculate df

dp from (5.2).

20

5 Sensitivity analysis

5.2 The adjoint method

Say we are interested in df
dp .

From (5.3) we have that
dx

dp
= −

[
∂G

∂x

]−1 ∂G

∂p
. (5.4)

Substituting (5.4) into (5.2) yields

df

dp
= −∂f

∂x

[
∂G

∂x

]−1 ∂G

∂p
+

∂f

∂p
.

Define

λT =
∂f

∂x

[
∂G

∂x

]−1

.

We then first need to solve

[
∂G

∂x

]T

λ =
[
∂f

∂x

]T

,

[
∂G

∂x

]T

∈ Rn×n, λ ∈ Rn×k,

[
∂f

∂x

]T

∈ Rn×k,

for λ, which can be done by solving a number of k linear systems. Then substitute for λ in

df

dp
= −λT ∂G

∂p
+

∂f

∂p
.

The adjoint method is suitable for problems where the number of parameters (m) is large
and the dimension of the function f (k) is small.

One important observation is that both methods require the derivatives ∂G
∂p , ∂f

∂p , ∂G
∂x , ∂f

∂x . These
derivatives may be calculated using any of the methods for derivative calculation discussed
in the previous section. That is, algebraic differentiation either by hand or by automatic
symbolic manipulation, by finite differences or by the reverse or the forward mode of automatic
differentiation.

21

5 Sensitivity analysis

Figure 5.1: Computational graphs for sensitivity analysis

x(p)

p1

p2

p3

f x(p)p

f1

f2

f3

Critical computational step for

the forward sensitivity method

Critical computational step for

the adjoint sensitivity method

With the derivatives ∂G
∂p , ∂f

∂p , ∂G
∂x , ∂f

∂x given, the red edges in the left and the right computa-
tional graph in figure 5.1 illustrate which part of the sensitivity computation that affects the
computation time by the forward and the adjoint method the most, respectively.

The leftmost graph illustrates a scenario with many parameters and only one output variable.
In this case the adjoint method is preferable. The red edges illustrate the computational
costly step for the forward method, which is to compute dx

dp .

For the rightmost graph, the situation is the opposite. This graph represents a problem
with only one input parameter and many output variables. Calculating the sensitivities for
this problem would be best solved by the forward method. The red edges illustrate the
computational costly step for the adjoint method which would be to calculate λ. The reader
may note that this is very similar to the complexity analysis for automatic differentiation.
Roughly speaking, forward calculation is best suited for problems with few input variables
and many output variables, whereas the reverse or adjoint method is better for the opposite
situation.

This section is finished off with a very trivial example to see how the forward and the adjoint
method compare. This following simple example offers another perspective on what is hap-
pening in the adjoint calculation. Namely that λ is chosen such that all the terms multiplying
with dx

du sum to zero. Hence, there is no need to compute dx
du , but instead λ must be found

through the so called adjoint equations.

Example 4. Simple example

Given the functions

f(x, u) =
1
2
(x2 + u2), g(x, u) = x− u3

3
= 0.

Say that we are interested in computing df
du .

22

5 Sensitivity analysis

Forward Method

To compute df
du by the forward method we first calculate

dx

du
=

d

du

(
u3

3

)
= u2.

Then the chain rule is applied straight forward

df

du
=

∂f

∂u
+

∂f

∂x

dx

du
= u + x

dx

du
= u + xu2 = u +

u5

3
.

Adjoint Method

First the augmented function is introduced

L = f + λg =
1
2
(x2 + u2) + λ(x− u3

3
).

Since g(x, u) = 0 we have that

df

du
=

dL

du
=

∂L

∂u
+

∂L

∂x

dx

du
+

∂L

∂λ

dλ

du
= (u− λu2) + (x + λ)

dx

du
+ (x− u3

3
)
dλ

du
.

By letting λ satisfy (x + λ) = 0 we can avoid computing dx
du . From the equality g(x, u) =

x− u3

3 = 0 we also see that there is no need to compute dλ
du . By inserting λ = −x and the

equality constraint x = u3

3 we obtain

df

du
= (u− λu2) = (u + xu2) = (u +

u5

3
).

23

6 Calculating derivative information for
NMPC optimization

So far general methods for calculating derivatives have been presented. In this section these
methods will be used to develop algorithms for obtaining derivatives required for NMPC
optimization. First the nonlinear system model is linearized similar as in section 5.

In the next section finite differencing, the forward and the adjoint method are used to calculate
objective function gradient which is required by derivative based optimization algorithms.

Next, the concern is how to efficiently compute the impulse response matrix of the linearized
system model. This matrix is of interest when there are constraints on the output variables
since it essentially is the constraint gradient needed by optimization algorithms like for instance
SQP.

The algorithms are implemented in Matlab using suitable benchmarking examples. Theoretical
bounds for runtimes of each algorithm are given and compared to actual simulation results.

Recall that it is assumed that the NMPC optimization problem is posed using a single shooting
formulation where the control variables u are regarded as free variables and the state variables
x and the output variables z as implicit functions of u which can be obtained by simulation.

6.1 Linearization

Let (xnom, unom, znom) be a given nominal feasible trajectory. The dynamics around (xnom, unom, znom)
can be approximated by the linearized system model

.xi+1 = Ai.xi + Bi.ui, .xi = xi − xnom
i , .ui = ui − unom

i , (6.1)
.zi = Ci.xi + Di.ui, .zi = zi − znom

i , (6.2)

where

Ai =
∂f

∂xi
(xnom

i , unom
i), Bi =

∂f

∂ui
(xnom

i , unom
i), (6.3)

Ci =
∂g

∂xi
(xnom

i , unom
i), Di =

∂g

∂ui
(xnom

i , unom
i). (6.4)

This system will in general be linear time variant (LTV). Close to (xnom, unom, znom) we will
have that

∂xi+1

∂xi
= Ai,

∂xi+1

∂ui
= Bi,

∂zi

∂xi
= Ci,

∂zi

∂ui
= Di.

24

6 Calculating derivative information for NMPC optimization

For discrete systems, these matrices are probably rather easy to obtain by using any of the
methods described in section 4. That is, either symbolically, by finite differences or by the for-
ward or reverse mode of automatic differentiation. Obtaining these by finite differences could
be done straightforward by applying (4.1), but one might argue that automatic differentiation
is a better approach due to exactness.

If automatic differentiation is applied, we should quantify if the forward or the reverse mode
should be used to minimize the computational complexity.

For calculation of Ai the forward and the reverse mode will probably perform equally as
Ai : RNx → RNx . This results in either Nx forward or reverse sweeps and suggests that the
computational complexity for the forward and adjoint mode would be about the same.

Similarly, calculation of Bi : RNu → RNx can either be done by Nx reverse sweeps or Nu

forward sweeps. Typically, Nx > Nu and suggests that the forward mode in most cases would
be preferable for calculating Bi.

Obtaining Ci : RNx → RNz can be done by Nx forward sweeps or Nz reverse sweeps.
Typically Nz < Nx, suggesting that in this situation, the reverse mode would be best suited.

Di : RNu → RNz is obtained by either Nu forward sweeps or Nz reverse sweeps. Thus, the
forward mode looks better than the reverse mode for a system were Nu < Nz, while the
opposite is true for Nu > Nz.

6.2 Calculation of objective function gradient

The structure of variable dependencies in the objective function is illustrated in figure 6.1.
Observe that there are NNu decision variables where N and Nu is the horizon length and the
dimension of the control vector, respectively. Thus, J : RN × RNu → R and by the analysis
in the previous sections the adjoint method looks very appealing in terms of calculating ∇uJ .

25

6 Calculating derivative information for NMPC optimization

Figure 6.1: Computational graph for NMPC

X
N-1

X
N

X
0

X
1

X
2

U
0

U
1

U
2

U
N-1

J

U
0

U
1

U
2

U
N-1

In the following we analyze how ∇uJ can be computed by finite differences, the forward and
the adjoint method.

Finite differences

The objective function gradient can be obtained by finite differences by in turn perturbing all
the control variables and calculating the objective function value. The size of the perturbation
ε should be decided keeping the calculation in section 4.2 in mind. That is, the optimal choice
of ε is a trade-off between loss of precision due to final precision arithmetic and by not choosing
ε infinitesimally small. For systems where the inputs are in different orders of magnitude, the
size of the perturbation parameter should be scaled accordingly for each control variable.
Choosing the right size for the perturbation parameter is highly problem dependent.

The following algorithm is based on (4.1). Each control variable is in turn perturbed, and
the corresponding objective function value is calculated by simulation of the system model.
In each step causality is exploited such that simulation over the entire horizon is not required
for each iteration. This will result in a total of NNu + 1 simulations.

26

6 Calculating derivative information for NMPC optimization

Algorithm 6.1 Calculate ∇uJ - Finite differences
1: x0 = xinit

2: J0 = 0
3: for k = 0 to N − 1 do
4: xk+1 = f(xk, uk)
5: zk = g(xk, uk)
6: Jk+1 = Jk + zT

k Qzk + uT
k Ruk

7: end for
8: JN+1 = JN + xT

NPxN

9:
10: Choose perturbation value ε
11: for k = 0 to N − 1 do
12: for l = 1 to Nu do
13: J̄kl = Jk

14: ū = u
15: ūk[l] = ūk[l] + εel

16: x̄k = xk

17: for n = k to N − 1 do
18: x̄n+1 = f(x̄n, ūn)
19: z̄n = g(x̄n, ūn)
20: J̄kl = J̄kl + z̄T

n Qz̄n + ūT
nRūn

21: end for
22: J̄kl = J̄kl + x̄T

NPx̄N

23: ∇uJ [kNu + l] = (J̄kl − JN+1)/ε
24: end for
25: end for

Observe that conceptually gradient calculation by finite differences is very similar to the
forward method presented in the next section in the sense that both methods calculate the
sensitivity from all the control variables to all the state and output variables opposed to
the adjoint method that does this the other way around in a reverse manner. Also note that
gradient calculation by finite differences is not exact, whereas the forward and adjoint method
presented in the next sections are (up to numerical precision). This is perhaps not always so
important in practice where there are lot of other uncertainties present.

In the algorithm above, it is easy to see why gradient calculation can be a challenge in real
time applications. With 3 nested for-loops the computation time will grow fast with increasing
time horizon length and dimension of the control vector. In an optimization algorithm like
for instance SQP, these gradients are typically needed many times in each full SQP iteration.

Forward method

With Ak, Bk, Ck and Dk given, ∇uJ =
[

∂J
u0

. . . ∂J
uN−1

]T
can be computed by applying

the chain rule of differentiation

27

6 Calculating derivative information for NMPC optimization

∂J

∂uk
=uT

k R +
N−1∑

i=0

[
zT
i Q

∂zi

∂uk

]
+ xT

NP
∂xN

∂uk
(6.5)

=uT
k R +

N−1∑

i=k

[
zT
i Q

∂zi

∂uk

]
+ xT

NP
∂xN

∂uk

=uT
k R + zT

k Q
∂zk

∂uk
+ zT

k+1Q
∂zk+1

∂xk+1

∂xk+1

∂uk
+ zT

k+2Q
∂zk+2

∂xk+2

∂xk+2

∂xk+1

∂xk+1

∂uk

+ . . . + zT
N−1Q

∂zN−1

∂xN−1

∂xN−1

∂xN−2
. . .

∂xk+2

∂xk+1

∂xk+1

∂uk
+ xT

NP
∂xN

∂xN−1
. . .

∂xk+2

∂xk+1

∂xk+1

∂uk

=uT
k R + zT

k QDk + zT
k+1QCk+1Bk + zT

k+2QCk+2Ak+1Bk

+ . . . + zT
N−1QCN−1AN−2 . . . Ak+1Bk + xT

NPAN−1 . . . Ak+1Bk

=uT
k R + zT

k QDk + zT
k+1QCk+1Bk+

N−1∑

i=k+2

[
zT
i QCiAi−1 . . . Ak+1Bk

]
+ xT

NPAN−1 . . . Ak+1Bk.

The change of lower summation index in the second equality is due to causality. Observe
that calculating ∇uJ will involve a lot of matrix multiplications since the sum in (6.5) must
be computed for every ∂J

∂uk
and can therefore be very expensive. In the algorithm below,

φ and Ψ are placeholders that exploit structure and avoid doing a lot of the same matrix
multiplications more than one time.

Algorithm 6.2 Calculate ∇uJ - Forward method
1: x0 = xinit

2: for k = 0 to N − 1 do
3: xk+1 = f(xk, uk)
4: zk = g(xk, uk)
5: end for
6:
7: for k = 0 to N − 2 do
8: φ = I
9: ψ = 0

10: for i = k + 2 to N − 1 do
11: φ = Ai−1φ
12: ψ = ψ + zT

i QCiφ
13: end for
14: ∇uJ [kNu + 1 : (k + 1)Nu] = Ruk + DT

k Qzk + BT
k CT

k+1Qzk+1 + BT
k ψT +

BT
k φT AT

N−1PxN

15: end for
16: ∇uJ [(N − 1)Nu + 1 : NNu] = RuN−1 + DT

N−1QzN−1 + BT
N−1PxN

28

6 Calculating derivative information for NMPC optimization

Adjoint method

From the discussion earlier, since J : RN × RNu → R, the adjoint method seems very
appealing for calculating the objective function gradient. In this section we will follow the
same idea as in example 4 in section 5, namely to choose the adjoint variables λ such that
all the terms multiplying with dxi

du sum to zero. Since these terms sum to zero, there is no
need to compute dxi

du , i ∈ {1, ..., N − 1} which essentially is the full impulse response matrix
of the linearized system model.

Define the Lagrangian function

L =J −
N−1∑

i=0

[
λT

i+1(xi+1 − f(xi, ui))
]

=
N−1∑

i=0

[
1
2
(zT

i Qzi + uT
i Rui)

]
+

1
2
xT

NPxN −
N−1∑

i=0

[
λT

i+1(xi+1 − f(xi, ui))
]
.

Since xk+1 = f(xk,uk), we have that dJ
du = dL

du . By the chain rule of differentiation.

dJ

du
=

N−1∑

i=0

∂L
∂zi

(
∂zi

∂xi

[
N−1∑

k=0

∂xi

∂uk

duk

du

]
+

∂zi

∂ui

dui

du

)
+

N−1∑

i=0

∂L
∂ui

dui

du
+

∂L
∂xN

[
N−1∑

k=0

∂xN

∂uk

duk

du

]
+

N−1∑

i=0

∂L
∂xi+1

[
N−1∑

k=0

∂xi+1

∂uk

duk

du

]
+

N−1∑

i=0

∂L
∂xi

[
N−1∑

k=0

∂xi

∂uk

duk

du

]
+

N−1∑

i=0

∂L
∂λi+1

[
N−1∑

k=0

∂λi+1

∂uk

duk

du

]

=
N−1∑

i=0

zT
i Q

(
∂zi

∂xi

[
N−1∑

k=0

∂xi

∂uk

duk

du

]
+

∂zi

∂ui

dui

du

)
+

N−1∑

i=0

(
uT

i R + λT
i+1

∂f(xi, ui)
∂ui

)
dui

du
+

xT
NP

[
N−1∑

k=0

∂xN

∂uk

duk

du

]
−

N−1∑

i=0

λT
i+1

[
N−1∑

k=0

∂xi+1

∂uk

duk

du

]
+

N−1∑

i=0

(
λT

i+1
∂f(xi, ui)

∂xi

) [
N−1∑

k=0

∂xi

∂uk

duk

du

]
+

N−1∑

i=0

(xi+1 − f(xi, ui)T

[
N−1∑

k=0

∂λi+1

∂uk

duk

du

]
.

Inspired by [6], where continuous systems are studied and integration of parts is used, we
instead define the following identity for the discrete case, which is easy to verify just by
inspection

N−1∑

i=0

λT
i+1

[
N−1∑

k=0

∂xi+1

∂uk

duk

du

]
=

N−1∑

i=0

λT
i

[
N−1∑

k=0

∂xi

∂uk

duk

du

]
+λT

N

[
N−1∑

k=0

∂xN

∂uk

duk

du

]
−λT

0

[
N−1∑

k=0

∂x0

∂uk

duk

du

]
.

29

6 Calculating derivative information for NMPC optimization

By inserting this identity and noting that
∑N−1

i=0 (xi+1− f(xi, ui)T
[∑N−1

k=0
∂λi+1

∂uk

duk
du

]
= 0 in

order to satisfy the nonlinear model, we obtain

dJ

du
=

N−1∑

i=0

zT
i Q

(
∂zi

∂xi

[
N−1∑

k=0

∂xi

∂uk

duk

du

]
+

∂zi

∂ui

dui

du

)
+

N−1∑

i=0

(
uT

i R + λT
i+1

∂f(xi, ui)
∂ui

)
dui

du
+

xT
NP

[
N−1∑

k=0

∂xN

∂uk

duk

du

]
−

N−1∑

i=0

λT
i

[
N−1∑

k=0

∂xi

∂uk

duk

du

]
− λT

N

[
N−1∑

k=0

∂xN

∂uk

duk

du

]
+

λT
0

[
N−1∑

k=0

∂x0

∂uk

duk

du

]
+

N−1∑

i=0

(
λT

i+1
∂f(xi, ui)

∂xi

) [
N−1∑

k=0

∂xi

∂uk

duk

du

]
.

Rearrangement yields

dJ

du
=

N−1∑

i=0

(
zT
i Q

∂zi

∂xi
− λT

i + λT
i+1

∂f(xi, ui)
∂xi

) [
N−1∑

k=0

∂xi

∂uk

duk

du

]
+

(
xT

NP − λT
N

)
[

N−1∑

k=0

∂xN

∂uk

duk

du

]

+
N−1∑

i=0

(
zT
i Q

∂zi

∂ui
+ uT

i R + λT
i+1

∂f(xi, ui)
∂ui

)
dui

du
+ λT

0

[
N−1∑

k=0

∂x0

∂uk

duk

du

]
.

Note that λT
0

[∑N−1
k=0

∂x0
∂uk

]
= 0 since the initial state is constant not dependent on u. Further,

we can utilize that the dynamics around a nominal trajectory are governed by the linearized
system model (6.1)-(6.4). Substitution of Ai, Bi, Ci, Di for ∂f(xi,ui)

∂xi
, ∂f(xi,ui)

∂ui
, ∂zi

∂xi
, ∂zi

∂ui
yields

dJ

du
=

N−1∑

i=0

(
zT
i QCi − λT

i + λT
i+1Ai

)
[

N−1∑

k=0

∂xi

∂uk

duk

du

]
+

(
xT

NP − λT
N

)
[

N−1∑

k=0

∂xN

∂uk

duk

du

]

+
N−1∑

i=0

(
zT
i QDi + uT

i R + λT
i+1Bi

) dui

du
.

Now, by letting λk fulfill
zT
k QCk − λT

k + λT
k+1Ak = 0 (6.6)

with the final condition
λN = PxN , (6.7)

we have that

dJ

du
=

N−1∑

i=0

(
zT
i QDi + uT

i R + λT
i+1Bi

) dui

du
. (6.8)

30

6 Calculating derivative information for NMPC optimization

By definition
dJ

du
=

N−1∑

i=k

∂J

∂ui

dui

du
. (6.9)

Hence, by comparison of (6.8) and (6.9)

∂J

∂uk
= zT

k QDk + uT
k R + λT

k+1Bk. (6.10)

Sensitivity computation by the adjoint method can therefore be done by only two simu-
lations. One forward simulation to obtain z and x from u. Then initialize (6.7) and it-
erate (6.6) and (6.10) in reverse time. One unavoidable drawback is that the variables
xk, k ∈ {1, ..., N} need to be stored during the forward solve as they are needed to obtain zk

and (Ak, Bk, Ck, Dk) in (6.6) and (6.10) during the reverse solve. For discrete time systems
this may not be an issue as long as internal memory is not a limitation, but for continuous
time systems this becomes more cumbersome. Especially, if a variable step-size solver is used
it is not clear in which time instants to store the solutions as the step-sizes used during the
reverse solve will probably not coincide with the stored trajectory from the forward solve. In
this case, interpolation techniques can be used to approximate the solution at the desired
time instants. For simplicity one might instead consider freezing adaptive parameters in the
solver like order control and step size.

Algorithm 6.3 Calculate ∇uJ - Adjoint method
1: x0 = xinit

2: for k = 0 to N − 1 do
3: xk+1 = f(xk, uk)
4: zk = g(xk, uk)
5: end for
6:
7: λ = PxN

8: for k = N − 1 to 0 do
9: Obtain LTV model (Ak, Bk, Ck, Dk)

10: ∇uJ [kNu + 1 : (k + 1)Nu] = DT
k Qzk + Ruk + BT

k λ
11: λ = CT

k Qzk + AT
k λ

12: end for

Note that the time index k in for the adjoint variables is omitted, since only the value in the
previous iteration is needed.

6.3 Calculation of impulse response matrix

In this section we will look at different methods for computing the impulse response matrix of
the linearized system model. This matrix is of interest when there are constraints on the output

31

6 Calculating derivative information for NMPC optimization

variables since it essentially is the constraint gradient needed by optimization algorithms like
for instance SQP. Since these constraints typically are enforced at every sample instant on
the horizon they are also referred to as path constraints.

We discuss different approaches for computing this matrix and develop some algorithms. The
discussion includes the forward and the adjoint method and different model structures.

The algorithms developed are presented in pseudo code and also illustrated iteration by iter-
ation where appropriate. These algorithms are later implemented with suitable test examples
to compare efficiency and highlight some of the theoretical considerations made earlier.

The impulse response matrix Ξ of the linearized system model (6.1)-(6.2) is given by

0

BBBBB@

"z0

"z1

"z2

...
"zN−1

1

CCCCCA
=

0

BBBBBBBB@

D0 0 0 . . . 0

C1B0 D1 0
. . .

...

C2A1B0 C2B1 D2

. . . 0
...

...
...

. . . 0
CN−1AN−2 . . . A1B0 CN−1AN−2 . . . A2B1 CN−1AN−2 . . . A3B2 . . . DN−1

1

CCCCCCCCA

| {z }
Ξ

0

BBBBB@

"u0

"u1

"u2

...
"uN−1

1

CCCCCA
.

(6.11)

Close to (xnom, unom, znom) the dynamics of the nonlinear system will be governed by lin-
earized system model. Hence,

∂xi+1

∂xi
= Ai,

∂xi+1

∂ui
= Bi,

∂zi

∂xi
= Ci,

∂zi

∂ui
= Di.

By the chain rule of differentiation

Ξ =

∂z0
∂u0

0 0 . . . 0
∂z1
∂u0

∂z1
∂u1

0
∂z2
∂u0

∂z2
∂u1

∂z2
∂u2

. . . 0
...

...
... . . . 0

∂zN−1

∂u0

∂zN−1

∂u1

∂zN−1

∂u2
. . . ∂zN−1

∂uN−1

. (6.12)

Calculating this matrix can be very expensive since it requires a lot of system simulations. In
the following we will look at different methods for computing the impulse response matrix
and we analyze how the forward and adjoint method can aid different model structures and
properties.

Finite differences

The following algorithm will calculate the impulse response matrix Ξ using finite differences.
This algorithm is quite simple and easy to implement since it does not require the linearized

32

6 Calculating derivative information for NMPC optimization

system model. A total of NNu + 1 simulations of the system model are needed. Note that
this algorithm conceptually is very similar to calculating the objective function gradient by
finite differences. Again, the size of the perturbation parameter should be chosen with care.

Note that calculation of derivative information by finite differences can also be applied to a
continuous time model. The only requirement is that the algorithm must be able to invoke
an ODE solver routine to obtain solutions for each of the perturbed control variables. This
also applies to algorithm 6.1.

Algorithm 6.4 Calculate impulse response matrix Ξ - Finite differences
1: x0 = xinit

2: for k = 0 to N − 1 do
3: xk+1 = f(xk, uk)
4: zk = g(xk, uk)
5: end for
6:
7: Choose perturbation value ε
8: for k = 1 to N do
9: for l = 1 to Nu do

10: ū = u
11: ūk−1[l] = ūk−1[l] + ε
12: x̄k−1 = xk−1

13: for n = k to N do
14: z̄n−1 = g(x̄n−1, ūn−1)
15: Ξ[(n− 1)Nz + 1 : nNz, (k − 1)Nz + l] = (z̄n−1 − zn−1)/ε
16: x̄n = f(x̄n−1, ūn−1)
17: end for
18: end for
19: end for

Forward method

By the chain rule of differentiation

∂zk
∂uk

= Dk, (6.13)
∂zk+1

∂uk
= ∂zk+1

∂xk+1

∂xk+1

∂uk
= Ck+1Bk,

∂zj

∂uk
= ∂zj

∂xj

∂xj

∂xj−1

∂xj−1

∂xj−2
. . . ∂xk+2

∂xk+1

∂xk+1

∂uk
= CjAj−1Aj−2 . . . Ak+1Bk ∀j > k + 1.

When iterating (6.13) over j to obtain all the elements in on column of Ξ in 6.12 we should
exploit that the sequence of matrices Aj−1Aj−2 . . . Ak+1 only differ by one additional matrix
multiplication from left between each iteration. We can make use of this structure by calcu-
lating Ξ column-wise. When computing one column of Ξ, we calculate the sensitivities from
the control variables at one time instant to the output variables at all time instants on the
horizon. We will therefore refer to this as the forward method for computing Ξ. Most of the

33

6 Calculating derivative information for NMPC optimization

matrix multiplications carried out here will be the same as those performed by algorithm 6.2
which calculates the objective function gradient by the forward method.

The role of the placeholder φ ∈ RNx×(N−1)Nu is to exploit the aforementioned column-wise
structure.

Algorithm 6.5 Calculate impulse response matrix Ξ - Forward method
1: x0 = xinit

2: for k = 0 to N − 1 do
3: xk+1 = f(xk, uk)
4: zk = g(xk, uk)
5: end for
6:
7: Obtain D0

8: Ξ[1 : Nz, 1 : Nu] = D0

9: for j = 2 to N do
10: Obtain (Aj−2, Bj−2, Cj−1, Dj−1)
11: for i = 1 to j − 2 do
12: φ[1 : Nx, (i− 1)Nu + 1 : iNu] = Aj−2φ[1 : Nx, (i− 1)Nu + 1 : iNu]
13: end for
14: φ[1 : Nx, (j − 2)Nu + 1 : (j − 1)Nu] = Bj−2

15: for i = 1 to j − 1 do
16: Ξ[(j − 1)Nz + 1 : jNz, (i− 1)Nu + 1 : iNu] = Cj−1φ[1 : Nx, (i− 1)Nu + 1 : iNu]
17: end for
18: Ξ[(j − 1)Nz + 1 : jNz, (j − 1)Nu + 1 : jNu] = Dj−1

19: end for

Table 6.1 illustrates the progression of algorithm 6.5. The same structure could have been
exploited by calculating each of the columns in Ξ one at the time. By instead calculating all
the columns in parallel we have the advantage that (Aj−2, Bj−2, Cj−1, Dj−1) are needed in
iteration j which will allow these matrices to be inserted ’on the-fly’ if they are obtained from
integration of sensitivity equations.

34

6 Calculating derivative information for NMPC optimization

Table 6.1: Illustration of steps in algorithm 6.5
Code φ

`
0 0 0 . . .

´

j = 2 φ(1, 1) = B0
`

B0 0 0 . . .
´

j = 3
φ(1, 1) = A1φ(1, 1)

φ(1, 2) = B1

`
A1B0 B1 0 . . .

´

j = 4
φ(1, 1) = A2φ(1, 1)
φ(1, 2) = A2φ(1, 2)

φ(1, 3) = B2

`
A2A1B0 A2B1 B2 . . .

´

...
...

...

Code Ξ

Ξ(1, 1) = D0

0

BBBBBB@

D0 0 0 0 . . .
0 0 0 0 . . .
0 0 0 0 . . .
0 0 0 0 . . .

...
...

...
...

. . .

1

CCCCCCA

j = 2
Ξ(2, 1) = C1φ(1, 1)

Ξ(2, 2) = D1

0

BBBBBB@

D0 0 0 0 . . .
C1B0 D1 0 0 . . .

0 0 0 0 . . .
0 0 0 0 . . .

...
...

...
...

. . .

1

CCCCCCA

j = 3
Ξ(3, 1) = C2φ(1, 1)
Ξ(3, 2) = C2φ(1, 2)

Ξ(3, 3) = D2

0

BBBBBB@

D0 0 0 0 . . .
C1B0 D1 0 0 . . .

C2A1B0 C2B1 D2 0 . . .
0 0 0 0 . . .

...
...

...
...

. . .

1

CCCCCCA

j = 4

Ξ(4, 1) = C3φ(1, 1)
Ξ(4, 2) = C3φ(1, 2)
Ξ(4, 3) = C3φ(1, 3)

Ξ(4, 4) = D3

0

BBBBBB@

D0 0 0 0 . . .
C1B0 D1 0 0 . . .

C2A1B0 C2B1 D2 0 . . .
C3A2A1B0 C3A2B1 C3B2 D3 . . .

...
...

...
...

. . .

1

CCCCCCA

...
...

...

Adjoint method

In this section it will be shown how the impulse response matrix can be calculated using
adjoints. In the forward method, we exploited that adjacent elements in each column only
differ by one matrix multiplication from left. It will turn out that the following analysis
correspond to instead exploiting that adjacent elements in each row only differ by one matrix
multiplication from right. An algorithm could have been deduced just from this fact, but it
is still interesting to perform the analysis below which derives the adjoint equations.

Define the function

Lj =zj −
j∑

i=0

[
λT

i+1(xi+1 − f(xi, ui))
]
.

Note that λk ∈ RNx×Nz . Since xk+1 = f(xk,uk), we have that dzj

du = dLj

du . By the chain
rule of differentiation

35

6 Calculating derivative information for NMPC optimization

dzj

du
=

∂Lj

∂zj

(
∂zj

∂xj

[
j∑

k=0

∂xj

∂uk

duk

du

]
+

∂zj

∂uj

duj

du

)
+

j∑

i=0

∂Lj

∂ui

dui

du
+

j∑

i=0

∂Lj

∂xi+1

[
j∑

k=0

∂xi+1

∂uk

duk

du

]
+

j∑

i=0

∂Lj

∂xi

[
j∑

k=0

∂xi

∂uk

duk

du

]
+

j∑

i=0

∂Lj

∂λi+1

[
j∑

k=0

∂λi+1

∂uk

duk

du

]

= I

(
∂zj

∂xj

[
j∑

k=0

∂xj

∂uk

duk

du

]
+

∂zj

∂uj

duj

du

)
+

j∑

i=0

(
λT

i+1
∂f(xi, ui)

∂ui

dui

du

)
−

j∑

i=0

λT
i+1

[
j∑

k=0

∂xi+1

∂uk

duk

du

]
+

j∑

i=0

(
λT

i+1
∂f(xi, ui)

∂xi

) [
j∑

k=0

∂xi

∂uk

duk

du

]
+

j∑

i=0

(xi+1 − f(xi, ui))T

[
j∑

k=0

∂λi+1

∂uk

duk

du

]
.

Inspired by [6], where continuous systems are studied and integration of parts is used, we
instead define the following identity for the discrete case, which is easy to verify by inspection

j∑

i=0

λT
i+1

[
j∑

k=0

∂xi+1

∂uk

duk

du

]
=

j∑

i=0

λT
i

[
j∑

k=0

∂xi

∂uk

duk

du

]
+λT

j+1

[
j∑

k=0

∂xj+1

∂uk

duk

du

]
−λT

0

[
j∑

k=0

∂x0

∂uk

duk

du

]
.

By inserting this identity and noting that
∑j

i=0(xi+1 − f(xi, ui))T
[∑j

k=0
∂λi+1

∂uk

duk
du

]
= 0,

we obtain

dzj

du
=

(
∂zj

∂xj

[
j∑

k=0

∂xj

∂uk

duk

du

]
+

∂zj

∂uj

duj

du

)
+

j∑

i=0

(
λT

i+1
∂f(xi, ui)

∂ui

dui

du

)
−

j∑

i=0

λT
i

[
j∑

k=0

∂xi

∂uk

duk

du

]
− λT

j+1

[
j∑

k=0

∂xj+1

∂uk

duk

du

]
+ λT

0

[
j∑

k=0

∂x0

∂uk

duk

du

]

+
j∑

i=0

(
λT

i+1
∂f(xi, ui)

∂xi

) [
j∑

k=0

∂xi

∂uk

duk

du

]
.

Rearrangement yields

dzj

du
=

∂zj

∂xj

[
j∑

k=0

∂xj

∂uk

duk

du

]
+

j∑

i=0

(
λT

i+1
∂f(xi, ui)

∂xi
− λT

i

) [
j∑

k=0

∂xi

∂uk

duk

du

]
−

λT
j+1

[
j∑

k=0

∂xj+1

∂uk

duk

du

]
+ λT

0

[
j∑

k=0

∂x0

∂uk

duk

du

]
+

∂zj

∂uj

duj

du
+

j∑

i=0

(
λT

i+1
∂f(xi, ui)

∂ui

dui

du

)
.

36

6 Calculating derivative information for NMPC optimization

Note that λT
0

[∑j
k=0

∂x0
∂uk

duk
du

]
= 0 since the initial state is constant and not dependent on

u. Further, we can utilize that the dynamics around a nominal trajectory are governed by the
linearized system model. Substitution of Ai, Bi, Ci, Di for ∂f(xi,ui)

∂xi
, ∂f(xi,ui)

∂ui
, ∂zi

∂xi
, ∂zi

∂ui
yields

dzj

du
= Cj

[
j∑

k=0

∂xj

∂uk

duk

du

]
+

j∑

i=0

(
λT

i+1Ai − λT
i

)
[

j∑

k=0

∂xi

∂uk

duk

du

]
−

λT
j+1

[
j∑

k=0

∂xj+1

∂uk

duk

du

]
+ Dj

duj

du
+

j∑

i=0

(
λT

i+1Bi
dui

du

)
. (6.14)

Now, let λk fulfill

λT
j+1 = 0, (6.15)

λT
j = λT

j+1Aj + Cj = Cj ,

λT
k = λT

k+1Ak ∀k < j.

Then (6.14) reduces to

dzj

du
= Dj

duj

du
+

j∑

i=0

(
λT

i+1Bi
dui

du

)
(6.16)

=
(
Dj + λT

j+1Bj
) duj

du
+

j−1∑

i=0

(
λT

i+1Bi
dui

du

)
. (6.17)

By definition the total derivative is given by

dzj

du
=

j∑

i=0

∂zj

∂ui

dui

du
. (6.18)

Comparison of (6.16) and (6.18) yields

∂zj

∂uj
= Dj + λT

j+1Bj = Dj , (6.19)

∂zj

∂uk
= λT

k+1Bk ∀k < j.

Given a nominal control trajectory u, x and z can be obtained by simulating the system
forward in time. Then λk can be found by marching (6.15) in reverse time. Once these
adjoint variables are calculated, the gradient of interest can be obtained from (6.19).

37

6 Calculating derivative information for NMPC optimization

Observe that calculating dzj

du =
∑j

i=0
∂zj

∂ui

dui
du involves all the elements in row j + 1 in the

impulse response matrix in (6.12). Therefore, it is now clear that the adjoint method exploits
structure of the impulse response matrix in a row-wise manner. The following algorithm
calculates the full impulse response matrix by this principle. Similar as for the forward method,
all the rows are calculated i parallel.

Algorithm 6.6 Calculate impulse response matrix Ξ - Adjoint method
1: x0 = xinit

2: for k = 0 to N − 1 do
3: xk+1 = f(xk, uk)
4: zk = g(xk, uk)
5: end for
6:
7: Obtain DN−1

8: Ξ[(N − 1)Nz + 1 : NNz, (N − 1)Nu + 1 : NNu] = DN−1

9: for k = N − 1 to 1 do
10: Obtain (Ak, Bk−1, Ck, Dk−1)
11: λ[(k − 1)Nz + 1 : kNz, 1 : Nx] = Ck

12: for i = k + 1 to N − 1 do
13: λ[(i− 1)Nz + 1 : iNz, 1 : Nx] = λ[(i− 1)Nz + 1 : iNz, 1 : Nx]Ak

14: end for
15: Ξ[(k − 1)Nz + 1 : kNz, (k − 1)Nu + 1 : kNu] = Dk−1

16: for i = k to N − 1 do
17: Ξ[iNz + 1 : (i + 1)Nz, (k − 1)Nu + 1 : kNu] = λ[(i− 1)Nz + 1 : iNz, 1 : Nx]Bk−1

18: end for
19: end for

Table 6.2 illustrates the progression of algorithm 6.6 and shows how the impulse response
matrix is computed in reverse time. By inspecting every iteration it is also easy to see why
the adjoint variable λ ∈ R(N−1)Nz×Nx in algorithm 6.6 plays a similar role as φ in the forward
method. Moreover, the reader should observe how λ in table 6.2 connects with (6.19).

38

6 Calculating derivative information for NMPC optimization

Table 6.2: Illustration of steps in algorithm 6.6
Code λ

0

BBBB@

...
0
0
0

1

CCCCA

k = N − 1 λ(N − 1, 1) = CN−1

0

BBBB@

...
0
0

CN−1

1

CCCCA

k = N − 2
λ(N − 2, 1) = CN−2

λ(N − 1, 1) = λ(N − 1, 1)AN−2

0

BBBB@

...
0

CN−2
CN−1AN−2

1

CCCCA

k = N − 3
λ(N − 3, 1) = CN−3

λ(N − 2, 1) = λ(N − 2, 1)AN−3
λ(N − 1, 1) = λ(N − 1, 1)AN−3

0

BBBB@

...
CN−3

CN−2AN−3
CN−1AN−2AN−3

1

CCCCA

...
...

...

Code Ξ

Ξ(N, N) = DN−1

0

BBBBBB@

. . .
...

...
...

...
. . . 0 0 0 0
. . . 0 0 0 0
. . . 0 0 0 0
. . . 0 0 0 DN−1

1

CCCCCCA

k = N − 1
Ξ(N − 1, N − 1) = DN−2

Ξ(N, N − 1) = λ(N − 1, 1)BN−2

0

BBBBBB@

. . .
...

...
...

...
. . . 0 0 0 0
. . . 0 0 0 0
. . . 0 0 DN−2 0
. . . 0 0 CN−1BN−2 DN−1

1

CCCCCCA

k = N − 2
Ξ(N − 2, N − 2) = DN−3

Ξ(N − 1, N − 2) = λ(N − 2, 1)BN−3
Ξ(N, N − 2) = λ(N − 1, 1)BN−3

0

BBBBBB@

. . .
...

...
...

...
. . . 0 0 0 0
. . . 0 DN−3 0 0
. . . 0 CN−2BN−3 DN−2 0
. . . 0 CN−1AN−2BN−3 CN−1BN−2 DN−1

1

CCCCCCA

k = N − 3

Ξ(N − 3, N − 3) = DN−4
Ξ(N − 2, N − 3) = λ(N − 3, 1)BN−4
Ξ(N − 1, N − 3) = λ(N − 2, 1)BN−4

Ξ(N, N − 3) = λ(N − 1)BN−4

0

BBBBBB@

. . .
...

...
...

...
. . . DN−4 0 0 0
. . . CN−3BN−4 DN−3 0 0
. . . CN−2AN−3BN−4 CN−2BN−3 DN−2 0
. . . CN−1AN−2AN−3BN−4 CN−1AN−2BN−3 CN−1BN−2 DN−1

1

CCCCCCA

...
...

...

The forward and the adjoint method may not be entirely equivalent in terms of efficiency
when employing a SQP type algorithm or any other optimization technique where constraint
gradients are needed. The adjoint method may benefit from not enforcing constraints on the
output variables at all the points on the horizon. By doing this not all of the rows in the
impulse response matrix are needed. Constraints can for example be removed in the beginning
of the horizon to ensure stability and feasibility [18], or when it takes some time before control
moves in the beginning of the horizon to have effect on the output variables. The adjoint
method for calculating Ξ may benefit from this since structure is exploited row-wise, where
one adjoint system is solved for each point on the horizon where output constraints are
enforced. The forward method would need to calculate the full impulse response matrix first,
in order to pick out the rows needed in the constraint gradient, and thus the advantage of
enforcing constraints on only parts of the horizon can not be exploited.

39

6 Calculating derivative information for NMPC optimization

6.4 Continuous-discrete model formulation

Assume that the provided system model is a continuous time model on the following form

ẋ(t) = f(x(t), u(t)), (6.20)
z(t) = g(x(t), u(t)). (6.21)

Moreover, assume that the control signal u(t) is parameterized as piecewise constant over a
sample interval Ts, while the model of the system still runs in continuous time.

u(t) = u(kTs) = uk, kTs ≤ t < [k + 1]Ts.

To be able to handle continuous-discrete system models in our previous discrete time frame-
work for calculating the objective function gradient and the impulse response matrix we need
to discretize the system. That is, to find linear maps Ak : RNx → RNx , Bk : RNu → RNx

by integration of the linearized continuous time system model over a sample interval Ts. The
linearized continuous time system model is given by

∆ẋ(t) = A(t)∆x(t) + B(t)∆u(t),
∆z(t) = C(t)∆x(t) + D(t)∆u(t), (6.22)

where

A(t) =
∂f

∂x
(x(t)nom, u(t)nom), B(t) =

∂f

∂u
(x(t)nom, u(t)nom), (6.23)

C(t) =
∂g

∂x
(x(t)nom, u(t)nom), D(t) =

∂g

∂u
(x(t)nom, u(t)nom). (6.24)

We are interested in

∂xk+1

∂xk
=

∂x([k + 1]Ts)
∂x(kTs)

= Ak,
∂xk+1

∂uk
=

∂x([k + 1]Ts)
∂u(kTs)

= Bk.

Ak is the state transition matrix Φ([k + 1]Ts, kTs). The state transition matrix for a LTV
system satisfies

Φ̇(t, kTs) = A(t)Φ(t, kTs), (6.25)
Φ(kTs, kTs) = I.

Ak can be found by integrating (6.25) from t = kTs to t = [k + 1]Ts. That is, to obtain the
zero input response i.e. .u(kTs) = 0, of (6.22) from t = kTs to t = [k + 1]Ts.

40

6 Calculating derivative information for NMPC optimization

Bk can be found by finding the zero state response i.e. .x(kTs) = 0, of the system (6.22)
from t = kTs to t = [k + 1]Ts which is given by

x([k + 1]Ts) =
ˆ [k+1]Ts

kTs

Φ([k + 1]Ts, τ)B(τ)u(τ)dτ

=

[
ˆ [k+1]Ts

kTs

Φ([k + 1]Ts, τ)B(τ)dτ

]
u(kTs).

This reveals that

Bk =
ˆ [k+1]Ts

kTs

Φ([k + 1]Ts, τ)B(τ)dτ, (6.26)

which also is the solution of the following matrix ODE at time t = [k + 1]Ts.

Ṡ(t) = A(t)S(t) + B(t), (6.27)
S(kTs) = 0. (6.28)

where
S(t) =

∂x(t)
∂uk

.

The matrix ODE (6.27) is derived from applying the chain rule of differentiation to the original
system model (6.20). Since there are no dynamics in the output equations, Ck and Dk can
be obtained as before.

This shows that a continuous-discrete system model introduces some extra calculations in
order to discretize the system and make this formulation fit our previous framework. The solver
CVODES in the Suite of Nonlinear and Differential/Algebraic Equation Solvers (SUNDIALS)
package includes forward and adjoint sensitivity analysis capabilities for finding sensitivity
of the solution with respect to model parameters [13]. By regarding the control variables
as constant parameters over a sampling interval in the system ODE (6.20) which upon the
solution depends, the forward sensitivity capabilities in CVODES can be used to integrate the
sensitivity equations (6.25) and (6.27).

It is also possible to obtain Ak and Bk by finite differences. This approach is perhaps
best suited for systems that are easy to integrate, while integration of the sensitivity matrix
ODEs probably becomes more advantageous when the system is harder to integrate. If finite
differences are used there is however no need to obtain Ak and Bk first since the nonlinear
ODE can be perturbed directly as in algorithm 6.1 and algorithm 6.4.

When using forward sensitivity analysis, the fact that (6.25) and (6.27) share Jacobians with
(6.20) can be exploited by solving them in parallel. Overhead in the solver like step size
and order selection can be then performed for all the systems simultaneously [13]. CVODES
also provides error control for the sensitivity systems. One can choose whether error control
should be performed for the sensitivity systems or just the nonlinear ODE. When obtaining

41

6 Calculating derivative information for NMPC optimization

these matrices by finite differences, choosing the size of the perturbation parameter can be
very delicate matter resulting in that the error can be hard to control.

The following algorithm outlines the most basic steps that need to be performed in order to
obtain the required sensitivities

Algorithm 6.7 Solve sensitivity equations
1: // set initial condition
2: x(0) = xinit

3: for k = 1 to N do
4: // initialize sensitivity equations
5: S((k − 1)Ts) = 0
6: Φ((k − 1)Ts, (k − 1)Ts) = I
7:
8: // integrate from t = [k − 1]Ts to t = kTs

9: ẋ(t) = f(x(t), uk−1)
10: Φ̇(t, (k − 1)Ts) = A(t)Φ(t, (k − 1)Ts)
11: Ṡ(t) = A(t)S(t) + B(t)
12:
13: // store result
14: xk = x(kTs)
15: Ak−1 = Φ(kTs))
16: Bk−1 = S(kTs)
17: end for

Algorithm 6.5 and algorithm 6.2 will have the advantage that the matrices can be inserted in
the impulse response matrix ’on the-fly’ since also algorithm 6.7 provides these in forward time.
Algorithm 6.6 and algorithm 6.3 need these matrices in reverse order. Since the sensitivity
equations are solved by forward analysis, the matrices will need to be obtained and stored in
memory first during the forward solve. They cannot be inserted ’on the-fly’ which may be a
disadvantage for large scale models where internal memory might be a limitation.

One possibility for circumventing storage of all the sensitivity matrices is to first solve the
nonlinear ODE forward in time. Then, the sensitivity systems may be solved starting with the
last sample interval and iterating backwards. Doing it this way, the sensitivities are provided
in the same order as needed by algorithm 6.3 and 6.6 and can therefore be inserted ’on the-
fly’. However, a major drawback is that the solution of the nonlinear ODE must be stored.
If a variable step-size integration method is used it is not clear at which time instants to
store the solution as the solver probably will choose different step-sizes for the solution of the
sensitivity systems than for the nonlinear ODE. In this case a sophisticated storing system
may be needed where interpolation techniques are used to obtain the solution at the time
instants needed when solving the sensitivity ODEs. This makes it harder to integrate this
approach with existing simulator codes. The fact that the nonlinear ODE and the sensitivity
ODEs share Jacobians is not exploited either.

Another approach may be to first integrate the nonlinear ODE forward in time and only store
the solution at the sampling instants which is the initial values needed for solving sensitivity

42

6 Calculating derivative information for NMPC optimization

equations on each sample interval. Then, it would be possible to start with the last sample
interval, but now both the nonlinear ODE and the sensitivity systems must be solved. In this
case one will not need to worry about variable step-size, storing and interpolation since the
nonlinear ODE is solved one more time in parallel with the sensitivity equations. However, a
drawback here will be that the nonlinear model is integrated two times. None of these two
latter methods seems very promising since they involve some extra calculations but they may
be worth considering in applications with large scale models where internal memory size is
the fundamental limitation.

Alternative formulation

Even though the approach discussed in the previous section fits directly into our discrete time
framework, it is possible to discretize the system using what we in the following will refer to
as the alternative formulation for integration of sensitivity equations. The impulse response
matrix can also be written as

Ξ =

0

BBBBBBBBBB@

D0 0 0 . . . 0

C1
∂x1
∂u0

D1 0
. . .

...

C2
∂x2
∂u0

C2
∂x2
∂u1

D2

. . . 0

...
...

...
. . . 0

CN−1
∂xN−1

∂u0
CN−1

∂xN−1
∂u1

CN−1
∂xN−1

∂u2
. . . DN−1

1

CCCCCCCCCCA

. (6.29)

The terms ∂xj

∂uk
can be obtained by again defining S(t) = ∂x(t)

∂uk
, but instead of integrating

just one sample interval as in (6.27) we define the following ODE which again is obtained by
applying the chain rule of differentiation to the nonlinear ODE.

Ṡ(t) =

{
A(t)S(t) + B(t) kTs ≤ t ≤ [k + 1]Ts

A(t)S(t) t ≥ [k + 1] Ts
, S(kTs) = 0. (6.30)

Now, the sensitivities in (6.29) are given by the solution of (6.30) at the end of each sample
interval. That is, ∂xj

∂uk
= S([j + 1]Ts), j > k. When there are many states compared to

inputs, i.e. Nx >> Nu, integrating (6.30) to obtain ∂xj

∂uk
which is inserted in (6.29) might

be advantageous compared to integrating the sensitivities in algorithm 6.7. Only integration
of (6.30) is needed where S ∈ RNx×Nu . Integration of the sensitivity system (6.25) used
in algorithm 6.7 where Φ ∈ RNx×Nx is not needed. Thus, this formulation will reduce the
dimension of the sensitivity ODE from (Nx + Nu)Nx to NxNu. The main drawback with
this method is that the total integration length is more than one time the horizon length.

43

6 Calculating derivative information for NMPC optimization

Algorithm 6.8 Solve sensitivity equations, alternative formulation
1: // set initial condition
2: x0 = xinit

3: for k = 1 to N − 1 do
4: // initialize
5: x((k − 1)Ts) = xk−1

6: S((k − 1)Ts) = 0
7:
8: // integrate from t = [k − 1]Ts to t = kTs

9: ẋ(t) = f(x(t), uk−1)
10: ˙S(t) = A(t)S(t) + B(t)
11:
12: // store result
13: Sk,k = S(kTs)
14: xk = x(kTs)
15:
16: for n = k + 1 to N − 1 do
17: // integrate from t = [n− 1]Ts to t = nTs

18: ẋ(t) = f(x(t), un−1)
19: Ṡ(t) = A(t)S(t)
20:
21: // store result
22: xk = x(kTs)
23: Sn,k = S(nTs)
24: end for
25: end for

An illustration of the integration intervals in each iteration is shown in figure 6.2. Note that
the integration intervals are quite similar to what is done in algorithm 6.1 and 6.4 when using
finite differences in the sense that the intervals decrease in length due to causality.

Figure 6.2: Illustration of integration intervals

k

44

6 Calculating derivative information for NMPC optimization

For the objective function we have that

∂J

∂uk
= uT

k R +
N−1∑

i=0

[
zT
i Q

∂zi

∂uk

]
+ xT

NP
∂xN

∂uk

= uT
k R +

N−1∑

i=k

[
zT
i Q

∂zi

∂uk

]
+ xT

NP
∂xN

∂uk

= uT
k R + zT

k Q
∂zk

∂uk
+ zT

k+1Q
∂zk+1

∂xk+1

∂xk+1

∂uk
+

zT
k+2Q

∂zk+2

∂xk+2

∂xk+2

∂uk
+ . . . + zT

N−1Q
∂zN−1

∂xN−1

∂xN−1

∂uk
+ xT

NP
∂xN

∂uk

= uT
k R + zT

k QDk + zT
k+1QCk+1Sk+1,k+1 + zT

k+2QCk+2Sk+2,k+1 + . . . +

zT
N−1QCN−1SN−1,k+1 + xT

NPSN,k+1

= uT
k R + zT

k QDk +
N−1∑

i=k+1

[
zT
i QCiSi,k+1

]
+ xT

NPSN,k+1,

which is used in the following algorithm that calculates the objective function gradient when
the sensitivities are obtained by the alternative approach in algorithm 6.8.

Algorithm 6.9 Calculate ∇uJ , alternative formulation
1: for k = 0 to N − 2 do
2: ψ = 0
3: for i = k + 1 to N − 1 do
4: ψ = ψ + zT

i QCiSi,k+1

5: end for
6: ∇uJ [kNu + 1 : (k + 1)Nu] = RT uk + DT

k Qzk + ψT + ST
N,k+1PxN

7: end for
8: ∇uJ [(N − 1)Nu + 1 : NNu] = RT uN−1 + DT

N−1QzN−1 + ST
N,NPxN

The sensitivities calculated in algorithm 6.8 can also be used to build the impulse response
matrix in algorithm 6.10. Observe that these two algorithms are quite simple as most of
the work is done in algorithm 6.8. In fact, algorithm 6.9 and 6.10 only calculate how the
sensitivity from the control variables to the state variables propagates through the output
equations and the objective function.

Algorithm 6.10 Calculate impulse response matrix Ξ, alternative formulation
1: for k = 1 to N do
2: Ξ[(k − 1)Nz + 1 : kNz, (k − 1)Nu + 1 : kNu] = Dk−1

3: for n = k + 1 to N do
4: Ξ[(n− 1)Nz + 1 : nNz, (k − 1)Nu + 1 : kNu] = Cn−1Sn−1,k

5: end for
6: end for

45

6 Calculating derivative information for NMPC optimization

6.5 Runtime considerations

In this section, theoretical bounds for runtimes of the different algorithms are developed. The
notation in definition 2 which describes the limiting behavior of functions is used to describe
runtime as function of problem input size. The results from this section will be compared
with actual simulation results on some real world benchmark examples later.

Algorithm 6.1 - Calculate ∇uJ - Finite differences

First, the model is simulated forward in time using the nominal input, involving N itera-
tions of the nonlinear model equations. Then, the algorithm iterates the nonlinear model
Nu

∑N
k=1 k = 1

2NuN(N + 1) times in order to calculate the perturbed objective function
values for all the inputs. This results in runtime O(N2).

If a continuous time model is used the only modification needed is to instead invoke an ODE
solver to obtain the solution at the sampling instants instead of iterating the discrete model
equations. In this case, the runtime for iterating the model one sample interval will also depend
on the length of the sampling intervals Ts and thus, the runtime will be O(N2T 2

s) = O(t2f)
where tf is the end of the horizon.

Algorithm 6.2 - Calculate ∇uJ - Forward method

The model equations are iterated N times during the forward solve. Next, with the two nested
for-loops a number of O(N2) matrix multiplications are required, and thus the runtime will
be O(N2).

Algorithm 6.3 - Calculate ∇uJ - Adjoint method

The model is again simulated forward in time resulting in N iterations of the model equations.
The state variables xk, k ∈ {1, . . . , N} need to be stored for the backward solve, and therefore
the internal memory must be large enough to fit this trajectory. Then ∇uJ can be found
by doing one additional reverse simulation. The runtime will only be O(N) which is a huge
improvement compared to O(N2) for algorithm 6.2 and 6.1.

Algorithm 6.4 - Calculate impulse response matrix Ξ - Finite differences

Similar as for the objective function gradient, N iterations of the model are needed for
the nominal control input, and additional Nu

∑N−1
k=1 k = 1

2Nu(N − 1)N iterations for the
perturbed control inputs, resulting in runtime O(N2).

Again, if a continuous time model is used, the runtime will instead be O(N2T 2
s) = O(t2f)

since the length of each sampling interval will also be of importance for a continuous time
ODE solver.

Algorithm 6.5 - Calculate impulse response matrix Ξ - Forward method

First the model equations are iterated N times. Then, inspection of algorithm 6.5 and table
6.1 reveals that

∑N−1
k=1 k +

∑N
k=1 k = N2 matrix multiplications are needed. The runtime is

O(N2).

Algorithm 6.6 - Calculate impulse response matrix Ξ - Adjoint method

First the model equations are iterated N times. By inspecting algorithm 6.6 and table 6.2
we see that

∑N−1
k=1 k +

∑N
k=1 k = N2 matrix multiplications are needed. Therefore also this

46

6 Calculating derivative information for NMPC optimization

algorithm will have runtime O(N2) if the full impulse response matrix is to be found. If output
constraints are only enforced in a number of Nzc points on the horizon, this algorithm will
have runtime O(NNzc) since only Nzc rows of the impulse response matrix are computed.

Algorithm 6.7 - Solve sensitivity equations

The ODEs are integrated over a interval of length NTs = tf and the runtime will therefore
be O(NTs) = O(tf).

Algorithm 6.8 - Solve sensitivity equations, alternative formulation

The ODEs are integrated over a interval of length
∑N−1

k=1 kTs = 1
2N(N −1)Ts = 1

2(N −1)tf
resulting in runtime O(N2Ts) = O(Ntf).

Algorithm 6.9, Calculate ∇uJ , alternative formulation

This algorithm will also have runtime O(N2). Compared to algorithm 6.2 fewer matrix
multiplications are needed in each iteration as some of these matrix multiplications will already
be incorporated in the integration of the sensitivity equations by the alternative approach.

Algorithm 6.10, Calculate impulse response matrix Ξ, alternative formulation

Again the runtime will be O(N2). Also here, compared to algorithm 6.5 fewer matrix multi-
plications are needed in each iteration since these are incorporated in the integration of the
sensitivity equations by the alternative approach.

Summary

For discrete time systems algorithm 6.1, 6.2 or 6.3 may be used to calculate objective function
gradient∇uJ . Here, the adjoint method (algorithm 6.3) should be preferred since this method
is much faster. This will be demonstrated later. Calculating the impulse response matrix Ξ for
discrete time systems can be done by either algorithm 6.4, 6.5 or 6.6. This matrix is required
by algorithms that use constraint gradient information of output constraints. If constraints
are not enforced on all the points of the horizon, the adjoint method can benefit from this by
only calculating some of the rows in the impulse response matrix. The forward method can
not exploit this since structure of the impulse response matrix is exploited column-wise.

For continuous-discrete systems the algorithms presented earlier can be combined in different
ways to obtain ∇uJ or Ξ. Some properties and runtimes are summarized in the following
tables.

47

6 Calculating derivative information for NMPC optimization

Table 6.3: Summary of algorithms for calculating ∇uJ for continuous-discrete systems
Algorithms Properties

6.1 • Integration length O(t2f) for nonlinear system ODE of dimension Nx.
6.7 and 6.2 • Integration length O(tf) for nonlinear system ODE of dimension Nx and sen-

sitivity ODE of dimension Nx(Nx + Nu).

• O(N2) matrix multiplications.

• Insertion ’on the-fly’ possible.
6.7 and 6.3 • Integration length O(tf) for nonlinear system ODE of dimension Nx and sen-

sitivity ODE of dimension Nx(Nx + Nu).

• O(N) matrix multiplications.

• Insertion ’on the-fly’ not possible. Sensitivity matrices (Ak, Bk) need to be
stored in memory during the forward solve as they are needed in reverse order
during the reverse solve.

6.8 and 6.9 • Integration length O(N2Ts) = O(Ntf) for nonlinear system ODE of dimen-
sion Nx and sensitivity ODE of dimension NxNu.

• O(N2) matrix multiplications.

• Efficient when Nx >> Nu as dimension of sensitivity ODE is reduced.

• Insertion ’on the-fly’ possible.

48

6 Calculating derivative information for NMPC optimization

Table 6.4: Summary of algorithms for calculating Ξ for continuous-discrete systems
Algorithms Properties

6.4 • Integration length O(t2f) for nonlinear system ODE of dimension Nx.
6.7 and 6.5 • Integration length O(tf) for nonlinear system ODE of dimension Nx and sen-

sitivity ODE of dimension Nx(Nx + Nu).

• O(N2) matrix multiplications.

• Insertion ’on the-fly’ possible.
6.7 and 6.6 • Integration length O(tf) for nonlinear system ODE of dimension Nx and sen-

sitivity ODE of dimension Nx(Nx + Nu).

• O(NNzc) matrix multiplications.

• Insertion ’on the-fly’ not possible. Sensitivity matrices (Ak, Bk) need to be
stored in memory during the forward solve as they are needed in reverse order
during the reverse solve.

6.8 and 6.10 • Integration length O(N2Ts) = O(Ntf) for nonlinear system ODE of dimen-
sion Nx and sensitivity ODE of dimension NxNu.

• O(N2) matrix multiplications.

• Efficient when Nx >> Nu as dimension of sensitivity ODE is reduced.

• Insertion ’on the-fly’ possible.

6.6 Simulation examples

In this section efficiency of implementations of the different algorithms will be investigated
and compared to the theoretical considerations above. All the simulations in this thesis are
performed on a laptop computer with software and hardware listed in appendix A-2. All
simulations involving runtime measurement are done several times and averaged to obtain
more accurate results (10 - 100 times, depending on runtime for each algorithm). Runtime
is measured using a stop watch timer measuring CPU time.

Simple nonlinear discrete model

For the discrete time case the runtime for each of the algorithms will depend on how fast the
linear algebra can be done. The following simple discrete time nonlinear system is used to
investigate and compare efficiency of algorithm 6.1, 6.2 and 6.3 for computing the objective
function gradient.

49

6 Calculating derivative information for NMPC optimization

xk+1[1] =
xk[1]

k
+ xk[2]2 + uk[1],

xk+1[2] = xk[2] sin(k)− xk[1]k + uk[2], (6.31)
zk = xk[1] + xk[2] + 0.1uk[1] + 0.2uk[2],

which of the Jacobians are given by

Ak =
[

1
k 2xk[2]
−k sin(k)

]
, Bk =

[
1 0
0 1

]
, Ck =

[
1 1

]
, Dk =

[
0.1 0.2

]
.

This system can be stabilized by using the state feedback linearization control law

u1[k] = −x2[k]2,
u2[k] = x1[k]k.

Gradient calculation of the objective function J =
1
2

N−1∑

k=0

[zT
k Qzk + uT

k Ruk] + 1
2xT

NPxN ,

where Q, R and P set to the identity, is implemented in obj_grad.m.

First the system is simulated with the feedback linearization controller with initial value
x1 =

[
1 1

]T . The input and output trajectories are shown in 6.3.

Figure 6.3: Simple nonlinear discrete model - Solution

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

k

u

u1
u2

(a) Control

1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

k

z

(b) Output

The objective function gradient with time horizon length N = 10 is calculated first by finite
differences in algorithm 6.1. Then the calculation is done by the forward method in algorithm
6.2, and finally by the adjoint method in algorithm 6.3. The gradient found by the adjoint and
the forward method deviate by order of magnitude 10−16 which is about the double precision
in Matlab. The gradient calculated using finite differences is computed using perturbation

50

6 Calculating derivative information for NMPC optimization

size 10−10. The gradient obtained by finite differences deviates slightly from those obtained
by the forward and the adjoint method. This is expected and must be attributed to that
gradient computation by finite differences is not exact in contrast to the forward and the
adjoint method which will be exact up to numerical precision.

Runtime simulations

Gradient calculation for the test system (6.31) was measured using different time horizon
lengths. The runtime of the different methods are compared in figure 6.4. As expected, the
adjoint method becomes more superior as the horizon length is increased. The runtime of
the forward method and calculation by finite differences for this example is clearly O(N2).
Runtime for the adjoint method is shown in more detail in figure 6.4b (same as red line in
figure 6.4a). As we see, the runtime for the adjoint method for this example is O(N). These
results are consistent with the theoretical bounds found earlier.

Figure 6.4: Runtime - Calculate ∇uJ

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N

CP
U

tim
e

[s
]

Finite differences
Forward
Adjoint

(a) Finite differences, forward method and adjoint
method

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10−3

N

CP
U

tim
e

[s
]

(b) Adjoint method (zoomed)

This simple example demonstrates that the adjoint method can be very powerful for gradient
calculation of the NMPC objective function.

Van de Vusse reactor

In this section we will present a model of a Van de Vusse reaction scheme which is to be
used for benchmarking of the continuous-discrete case. This reactor has frequently been used
as a benchmark problem for nonlinear control design. Its highly nonlinear behavior is among
several of the properties which is desirable in terms of offering comparison fairness.

The reaction scheme is comprised by two concentration balances of the reactant cA and the
the wanted product cB. Thus, the main reaction is A → B. In addition the side reactions
2A → D and B → C which both yield unwanted products take place.

51

6 Calculating derivative information for NMPC optimization

The model also contains energy balances for the reactor temperature T and the cooling jacket
temperature Tc. The model and parameters for the reactor are taken from [22].

Figure 6.5: Van de Vusse reactor

A
q, cin, Tin

Q̇

Tc

cB , q, T

A→ B → C

2A→ D

A, B,C, D

Table 6.5: Van de Vusse reactor parameters
Parameter Unit

α = 30.8285 1
h

γ = 100 K
MJ

k10 = (1.287) · 1012 1
h

k20 = (9.042) · 106 m3

mol·h
∆HAB = 4.2 kJ

mol
∆HAD = −41.85 kJ

mol
∆HBC = −11 kJ

mol
cin = 5100 ± 600 mol

m3

β = 86.668 1
h

δ = 3.556 · 10−4 m3K
kJ

Tin = 104.9 K
E1 = 9758.3 dimensionless
E2 = 8560 dimensionless

52

6 Calculating derivative information for NMPC optimization

The nonlinear system model is given by

ċA = −k1(T)cA − k2(T)c2
A + [cin − cA]u1,

ċB = k1(T) [cA − cB]− cBu1,

Ṫ = h(cA, cB, T) + α [Tc − T] + [Tin − T]u1,

Ṫc = β [T − Tc] + γu2, (6.32)

where the reaction enthalpy contribution is modeled by

h(cA, cB, T) = −δ
(
k1(T) [cA∆HAB + cB∆HBC] + k2(T)c2

A∆HAD
)
.

The reaction kinetics are modeled using Arrhenius functions for the temperature

ki(T) = ki0e

“
−Ei

T+273.15

”

, i = 1, 2.

The controlled inputs are

u1 =
q

VR
,

u2 = Q̇.

u1 is the flow rate into the reactor q scaled by the reactor volume VR and is therefore measured
in 1

h . u2 is the the cooling capacity measured in kJ
h . Note that u2 < 0.

To understand the fundamental behavior and properties of the reactor, its steady state solution
has been found in vdv_ss.m where (6.32) is numerically solved for the state variables with
all derivatives set to zero. The solutions for a grid of different values for u1 and u2 are shown
in figure 6.6.

53

6 Calculating derivative information for NMPC optimization

Figure 6.6: Steady state solution of Van de Vusse reactor

−10
−8

−6
−4

−2
0

5
10

15
20

25
30

35
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

u2 [MJ]u1 [1/h]

c A [m
ol

/m
3]

(a) cA

−10
−8

−6
−4

−2
0

5
10

15
20

25
30

35
0

200

400

600

800

1000

1200

u2 [MJ]u1 [1/h]

c B [m
ol

/m
3]

(b) cB

−10
−8

−6
−4

−2
0

5
10

15
20

25
30

35
40

50

60

70

80

90

100

110

120

u2 [MJ]u1 [1/h]

T
[C

]

(c) T

−10
−8

−6
−4

−2
0

5
10

15
20

25
30

35
30

40

50

60

70

80

90

100

110

120

u2 [MJ]u1 [1/h]

T c [C
]

(d) Tc

One would probably like to maximize the concentration of the wanted product cB around the
top shown in the figure above.

The reactor model is implemented and simulated using the solver CVODES. Documentation
for mathematical considerations regarding the solver and user interface for CVODES can be
found in [13].

The following scenario is simulated:

The initial conditions are set to

cA(0) = 0
mol

m3
,

cB(0) = 750
mol

m3
,

T (0) = 85 ◦C,

Tc(0) = 100 ◦C.

54

6 Calculating derivative information for NMPC optimization

The system is simulated for 1 hour, with a sampling interval set to 72 seconds (Ts = 72s,
tf = 1h and N = 50)

The following inputs are used to excite the system dynamics

u1(t) =

{
12 1

h 0 ≤ t ≤ 2/3 h

1 1
h 2/3 ≤ t ≤ 1 h

,

u2(t) =

{
−3000 kJ

h 0 ≤ t ≤ 1/3 1
h

−1000 kJ
h 1/3 ≤ t ≤ 1 1

h

.

Simulation of the reactor model, integration of sensitivity equations using algorithms 6.7 and
6.8, and calculation of the impulse response matrix Ξ using both algorithm 6.5, 6.6 and 6.10
is implemented. Calculation of the impulse response matrix where no structure is exploited
is also implemented in order to compare runtime with the forward and the adjoint method.

The simulation environment is written in Matlab which invokes the CVODES solver via mex
files which were built as an additional interface when compiling CVODES.

Table 6.6: Organization of files for simulation of Van de Vusse reactor
File Purpose

cvodes_vdv.m This is the main script which implements algorithm 6.7 and invokes
the CVODES solver routine to solve the nonlinear ODE and the

sensitivity systems. Then the impulse response matrix is computed
using algorithm 6.5 and algorithm 6.6.

cvodes_vdv_alt.m This is the main script which implements algorithm 6.8 and invokes
the CVODES solver routine to solve the nonlinear ODE and the

sensitivity systems. Then the impulse response matrix is computed
using algorithm 6.10.

cvodes_vdv_f.m Provides the nonlinear model.
cvodes_vdv_J.m Provides Jacobian of the nonlinear model.
cvodes_vdv_fS.m Provides right hand side of the sensitivity systems (6.25) and (6.27).

cvodes_vdv_alt_fS.m Provides right hand side of the sensitivity system (6.30).

The files cvodes_vdv_J.m, cvodes_vdv_fS.m and cvodes_vdv_alt_fS.m provide the Ja-
cobian of the nonlinear ODE and the sensitivity systems. The Jacobians needed in these
equations are

A(t) =

∂ċA
∂cA

∂ċA
∂cB

∂ċA
∂T

∂ċA
∂Tc

∂ċB
∂cA

∂ċB
∂cB

∂ċB
∂T

∂ċB
∂Tc

∂Ṫ
∂cA

∂Ṫ
∂cB

∂Ṫ
∂T

∂Ṫ
∂Tc

∂Ṫc
∂cA

∂Ṫc
∂cB

∂Ṫc
∂T

∂Ṫc
∂Tc

, B(t) =

∂ċA
∂u1

∂ċA
∂u2

∂ċB
∂u1

∂ċB
∂u2

∂Ṫ
∂u1

∂Ṫ
∂u2

∂Ṫc
∂u1

∂Ṫc
∂u2

.

55

6 Calculating derivative information for NMPC optimization

Each of the elements can be obtained from direct differentiation of (6.32) by hand.

∂ċA

∂cA
= −k1(T)− 2k2(T)cA − u1,

∂ċA

∂cB
= 0,

∂ċA

∂T
= −k1(T)

E1

(T + 273.15)2
cA − k2(T)

E2

(T + 273.15)2
c2
A,

∂ċA

∂Tc
= 0,

∂ċB

∂cA
= k1(T),

∂ċB

∂cB
= −k1(T)− u1,

∂ċB

∂T
= k1(T)

E1

(T + 273.15)2
(cA − cB),

∂ċB

∂Tc
= 0,

∂Ṫ

∂cA
= −δ [k1(T)∆HAB + 2k2(T)cA∆HAD] ,

∂Ṫ

∂cB
= −δk1(T)∆HBC ,

∂Ṫ

∂T
= −δ

[
k1(T)

E1

(T + 273.15)2
[cA∆HAB + cB∆HBC] + k2(T)

E2

(T + 273.15)2
c2
A∆HAD

]
− α− u1,

∂Ṫ

∂Tc
= α,

∂Ṫc

∂cA
= 0,

∂Ṫc

∂cB
= 0,

∂Ṫc

∂T
= β,

∂Ṫc

∂Tc
= −β,

56

6 Calculating derivative information for NMPC optimization

with respect to the state variables, and

∂ċA

∂u1
= cin − cA,

∂ċA

∂u2
= 0,

∂ċB

∂u1
= −cB,

∂ċB

∂u2
= 0,

∂Ṫ

∂u1
= Tin − T,

∂Ṫ

∂u2
= 0,

∂Ṫc

∂u1
= 0,

∂Ṫc

∂u2
= γ,

with respect to the control variables.

For more complex systems which may be intractable to differentiate by hand these Jaco-
bians could have been obtained by finite differences or automatic differentiation. The latter
approach should be preferred since it is exact.

The solution of the system ODE at each sample instant is shown in figure 6.7.

Figure 6.7: Van de Vusse reactor - Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

t [h]

Co
nc

en
tra

tio
n

[m
ol

/m
3]

cA
cB

(a) Concentrations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
85

90

95

100

105

110

115

120

t [h]

Te
m

pe
ra

tu
re

 [C
]

T
Tc

(b) Temperatures

The sensitivities found at each sample instant are shown for the state variables in figure
6.8 and for the control variables in figure 6.9. These are the sensitivities obtained from the
implementation of algorithm 6.7 in cvodes_vdv.m.

57

6 Calculating derivative information for NMPC optimization

Figure 6.8: Van de Vusse reactor - State sensitivities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t [h]

Se
ns

itiv
ity

cA
cB
T
Tc

(a) cA sensitivities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t [h]

Se
ns

itiv
ity

cA
cB
T
Tc

(b) cB sensitivities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−25

−20

−15

−10

−5

0

5

10

15

t [h]

Se
ns

itiv
ity

cA
cB
T
Tc

(c) T sensitivities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−5

−4

−3

−2

−1

0

1

2

3

t [h]

Se
ns

itiv
ity

cA
cB
T
Tc

(d) Tc sensitivities

58

6 Calculating derivative information for NMPC optimization

Figure 6.9: Van de Vusse reactor - Control sensitivities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

0

20

40

60

80

100

t [h]

Se
ns

itiv
ity

cA
cB
T
Tc

(a) u1 sensitivities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2
x 10−3

t [h]

Se
ns

itiv
ity

cA
cB
T
Tc

(b) u2 sensitivities

Simulation of the reactor model and calculation of Ξ by using algorithm 6.4 with finite
differences has also been implemented in finite_diff_vdv.m using the Matlab solver ode15s
to verify that this gave the same result.

Even though the implementation of the algorithms was fairly straightforward from the devel-
oped pseudo code, some modifications had to be made to algorithm 6.7 and 6.8 for integrating
sensitivities. When invoking CVODES to integrate the ODEs to a specific time t = kTs it
integrates to a value past t = kTs and then interpolates back and returns the solution at
t = kTs. However, when invoking CVODES again, it continues from its internal time value.
Since the integration continued past t = kTs with control input uk−1, we cannot continue
the integration from this point. Both the nonlinear ODE and the sensitivity ODEs need to
be reinitialized at t = kTs before the integration continues with control input uk to obtain
the solution at the next sampling instant t = [k + 1]Ts. Even though this is quite obvious,
reinitialization of the ODEs at every sampling instant has severe impact on the runtime as the
solver has to start over with small step-sizes each time and essentially a new ODE is solved
for each sample interval.

Runtime simulations

In this part, runtimes of the different algorithms for calculating the impulse response matrix
Ξ will be measured and compared with the runtime considerations made for each algorithm
earlier.

To compare runtimes we would like to run the algorithms with different input sizes. The
number of operations needed to build the impulse response matrix in algorithm 6.5, 6.6 and
6.10 will only depend on the number of sampling instants on the horizon and the speed
at which the linear algebra can be performed as no integration of sensitivities is involved.
Runtimes for different input sizes N for these algorithms are shown in figure 6.10. A method
that does not exploit any structure of the impulse response matrix has also been implemented
to highlight the importance of taking structure into account.

59

6 Calculating derivative information for NMPC optimization

Figure 6.10: Runtime - Calculate Ξ

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N

CP
U

tim
e

[s
]

Forward
Adjoint

(a) Algorithm 6.5, 6.6 - Forward and adjoint method

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

N

CP
U

tim
e

[s
]

(b) Algorithm 6.10 - Alternative approach

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N

CP
U

tim
e

[s
]

(c) Without exploiting any structure

As expected figure 6.10 shows that runtime for the forward and the adjoint method and also
the alternative method is O(N2). Observe the dramatic increase in runtime when no structure
of the impulse response matrix is exploited. The runtime for this method is O(N3) which
is consistent with the figure above. Note that this method is only included for comparison
purpose, and should not be used since the forward or the adjoint method is much faster.

The runtime for algorithm 6.7 where sensitivity ODEs are solved will depend on the length of
integration which is tf = NTs, i.e. the runtime is O(tf) = O(NTs) (under the assumption
that the solver has a predefined minimum step-length). Solution of the sensitivity ODEs
using the alternative approach in algorithm 6.8 will depend both on simulation time tf and
number of sampling instants N since the runtime was found to be O(N2Ts) = O(Ntf).
This leaves 3 different possibilities for simulating runtime with different input sizes. All these
3 combinations are investigated and the values used to compare runtime for the different
scenarios are listed in table 6.7.

60

6 Calculating derivative information for NMPC optimization

Table 6.7: Inputs for comparing runtime
N, Ts variable, tf constant tf , Ts variable, N constant tf , N variable, Ts constant

tf = 1 tf = 1
20 , 2

20 , 3
20 , . . . , 1 tf = 1

20 , 2
20 , 3

20 , . . . , 1
N = 5, 10, 15, . . . , 100 N = 100 N = tf

Ts
= 5, 10, 15, . . . 100

Ts = tf
N = 1

5 , 1
10 , 1

15 , . . . , 1
100 Ts = tf

N = 1
2000 , 2

2000 , 3
2000 , . . . , 1

100 Ts = 1
100

Figure 6.11: Runtime - CVODES integration, N, Ts variable, tf constant

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

N

CP
U

tim
e

[s
]

(a) Algorithm 6.7

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

N

CP
U

tim
e

[s
]

(b) Algorithm 6.8 - Alternative method

Observe that for tf constant, the integration length for algorithm 6.7 is constant, and since
the runtime was found to be O(tf) = O(NTs) one might not expect the result shown in
the figure above. However, as noted earlier, the required reinitialization of both the nonlinear
ODE and the sensitivity systems at each sample instant will cause that the runtime also
will increase by increasing the number of sampling points N on a fixed horizon length tf
since the solver starts over again with small step-sizes after each reinitialization. By not
doing the reinitialization the runtime for algorithm 6.7 was observed to be constant and
not dependent on the length of the sampling interval Ts. Omitting the reinitializations will
of course yield an incorrect algorithm and produce an inexact impulse response matrix but
this shows that the increase in runtime shown for algorithm 6.7 in figure 6.11 should be
attributed to reinitialization of the ODEs. The theoretical runtime for algorithm 6.8 was
earlier found to be O(N2Ts) = O(Ntf) and from this one might expect a linear growth in
runtime with tf kept constant. The same issue also occurs here, namely that reinitialization
of the ODEs also results in the simulated runtime not appearing as O(N). Again, omitting
these reinitializations resulted in the measured runtime to appear as O(N) when tf is kept
constant. Despite that the runtimes for these algorithms does not appear to be equal to the
theoretical bounds, they will satisfy definition 2. Under the assumption that the solver has a
minimum step-size and thus, there exists an upper bound on the amount of time required to
integrate across an interval, these theoretical upper bounds for runtime will still hold.

61

6 Calculating derivative information for NMPC optimization

Figure 6.12: Runtime - CVODES integration, tf , Ts variable, N constant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

tf

CP
U

tim
e

[s
]

(a) Algorithm 6.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

45

50

55

tf

CP
U

tim
e

[s
]

(b) Algorithm 6.8 - Alternative method

Also in figure 6.12 the observed runtime is not entirely as expected from the theoretical
considerations. The runtimes for algorithm 6.7 and 6.8 are both expected to be O(tf) =
O(Ts) when N is kept constant. Also here, the runtime is affected by reinitializations. One
might argue that the reason for the runtime not to appear as linear here is that when tf and
thereby Ts is increased the solver takes longer steps at the end of a sample interval compared
to when Ts is very small. In other words, the effect of reinitializing the ODEs will have more
impact on the runtime for shorter sample intervals.

Figure 6.13: Runtime - CVODES integration, tf , N variable, Ts constant

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

N

CP
U

tim
e

[s
]

(a) Algorithm 6.7

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

N

CP
U

tim
e

[s
]

(b) Algorithm 6.8 - Alternative method

The results shown in figure 6.13 are consistent with considerations made earlier. Runtime for
algorithm 6.7 is O(N) when Ts is kept constant. In this case, the number of reinitializations
also increase by increasing tf and N and since Ts is kept constant the effect discussed above
when N is kept constant will not occur here which is the reason for the runtime still appearing

62

6 Calculating derivative information for NMPC optimization

as linear. The same can be said about algorithm 6.8 whose runtime is O(N2) during which
Ts is kept constant.

Observe that when the alternative formulation in algorithm 6.8 is used for integration of
sensitivities, the runtime becomes very large compared to the other approach in algorithm
6.7. The reactor benchmark example used here has fixed number of states Nx = 4 and
thus it is not favored by algorithm 6.8. The alternative approach would probably prove itself
better for a system with many states compared to inputs. This is to be investigated next
by considering a high dimensional approximation of an infinite dimensional partial differential
equation (PDE). Another lesson learned from implementing these algorithms with the Van
de Vusse reactor model is that runtime for integration of sensitivities is large compared to
runtime for algorithm 6.5, 6.6 or 6.10 which builds the impulse response matrix from these
sensitivities. When structure of the impulse response matrix is not exploited, also observe
that runtime for building Ξ could easily be in the same order of magnitude as the sensitivity
integration. An important note to make here is therefore that this approach should never be
used as it does not exploit the special structure of this matrix and does a lot of the same
matrix multiplications more than one time.

The heat equation

In the previous section algorithm 6.8 did not prove itself very efficient for the Van de Vusse
reactor with Nx = 4. In this section a finite dimensional approximation of the heat equation
is used as a benchmarking example to investigate the effect of having a large number of states
compared to inputs.

Consider the heat equation in one dimension

∂Ψ
∂t

(x, t) =
∂2Ψ
∂x2

(x, t), x ∈ [0, 1] , t ≥ 0.

ψ(x, t) is the temperature distribution in the medium which is assumed to have length 1.
Moreover, assume that the temperature at the end of the medium is fixed to Ψ(1, t) = 0, and
that the temperature on the other end can be directly controlled, i.e. ψ(0, t) = u(t). This
system is infinite dimensional, but it can be approximated by a finite dimensional system of
high dimension by partitioning the medium in finite intervals of length ∆, each of which will
be assigned a state variable.

Define
ψi = Ψ(i∆), ∆ =1 /(Nx + 1), i = 0, . . . , Nx + 1.

Note that ψ0 and ψNx+1 are given by the boundary conditions. The PDE can be discretized
by approximating the term ∂Ψ

∂x2 by a second order central finite difference approximation.
Consider the Taylor series

ψi+1(t) = ψi(t) +
∂Ψ
∂x

(i∆, t)∆ +
∂2Ψ
∂x2

(i∆, t)∆2 +
∂3Ψ
∂x3

(i∆, t)∆3 + . . . , (6.33)

ψi−1(t) = ψi(t)−
∂Ψ
∂x

(i∆, t)∆ +
∂2Ψ
∂x2

(i∆, t)∆2 − ∂3Ψ
∂x3

(i∆, t)∆3 + (6.34)

63

6 Calculating derivative information for NMPC optimization

Adding (6.33) and (6.34) and rearranging yields

∂2Ψ
∂x2

(i∆, t) =
1

∆2
(ψi+1(t)− 2ψi(t) + ψi−1(t)) + O(∆2).

By using this approximation and neglecting higher order terms we can write

ψ̇i(t) ≈
1

∆2
(ψi+1(t)− 2ψi(t) + ψi−1(t)) i = 1, . . . Nx.

This equation can be transformed to state space form (recall that ψ0(t) = u(t) and ψNx+1 =
0)

ψ̇1(t)
ψ̇2(t)
ψ̇3(t)

...
ψ̇Nx(t)

≈ 1

∆2

−2 1 0 . . . 0

1 −2

0 0
... −2 1
0 . . . 0 1 −2

︸ ︷︷ ︸
A

ψ1(t)
ψ2(t)
ψ3(t)

...
ψNx(t)

+

1
∆2

1
0
0
...
0

︸ ︷︷ ︸
B

u(t).

Table 6.8: Organization of files for simulation of the heat equation
File Purpose

cvodes_pde.m This is the main script which implements algorithm 6.7 and invokes
the CVODES solver routine to solve the nonlinear ODE and the

sensitivity systems. Then the impulse response matrix is computed
by algorithm 6.5 and algorithm 6.6.

cvodes_pde_alt.m This is the main script which implements algorithm 6.8 and invokes
the CVODES solver routine to solve the nonlinear ODE and the

sensitivity systems. Then the impulse response matrix is computed
by algorithm 6.10.

cvodes_pde_f.m Provides the nonlinear model.
cvodes_pde_J.m Provides Jacobian of the nonlinear mode.
cvodes_pde_fS.m Provides right hand side of the sensitivity systems (6.25) and (6.27).

cvodes_pde_fS_alt.m Provides right hand side of the sensitivity system (6.30).

The zero input response with a concentrated initial temperature profile in two locations and
the zero state response with sinusoidal input is shown in figure 6.14. The number of states
for these simulations was set to Nx = 50.

64

6 Calculating derivative information for NMPC optimization

Figure 6.14: Heat equation - Solution

0
0.2

0.4
0.6

0.8
1

0

0.005

0.01

0.015

0.02
0

0.2

0.4

0.6

0.8

1

xt

te
m
pe
ra
tu
re

(a) Zero input response

0
0.2

0.4
0.6

0.8
1

0
0.1

0.2
0.3

0.4
0.5
−1

−0.5

0

0.5

1

xt

te
m
pe
ra
tu
re

(b) Zero state response

Runtime simulations

Figure 6.15: Runtime - CVODES integration

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Nx

CP
U

tim
e

[s
]

(a) Algorithm 6.7

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Nx

CP
U

tim
e

[s
]

(b) Algorithm 6.8 - Alternative method

As seen from figure 6.15 where runtimes are shown for different number of state variables Nx,
algorithm 6.8 may outperform algorithm 6.7 when the dimension of the sate vector is large
compared to the dimension of the control vector. The dimension of the sensitivity ODE is
(Nx + Nu)Nx for algorithm 6.7 and NxNu for algorithm 6.8. It is expected that the runtime
will somehow be related to the dimension of the sensitivity ODE which increases quadratically
with Nx for algorithm 6.7 but only linearly with Nx for algorithm 6.8.

Even though this example may be extreme in terms of number of state variables compared
to the number of control variables it proves that algorithm 6.8 may outperform algorithm 6.7
for certain types of systems.

65

6 Calculating derivative information for NMPC optimization

6.7 Concluding remarks

In this section different approaches for calculating the objective function gradient and the
impulse response matrix have been developed. Some theoretical bounds on runtimes were
given for each algorithm. Efficiency of the different algorithms was compared by implementing
suitable benchmark problems.

The results from these simulations are not to be considered as a definite answer to which
algorithm that is best suited. Hopefully some general issues that need to be considered when
choosing an approach for a specific example has been highlighted.

The main concern in the discussion above has been how to minimize computation time and it
is assumed that internal memory is not a limitation. In applications of NMPC the information
may fit well in the internal memory, but this may not be true if these algorithms are to be
used in for example simulations of reservoirs or any other large scale model.

We have demonstrated that calculation of the objective function gradient can be done very
efficiently by the adjoint method. Calculation of the impulse response matrix using adjoints
can can benefit from removing output constraints on parts of the horizon. However much of
the potential of adjoints is lost since one adjoint system must be solved for each point on the
horizon.

We also developed some algorithms for integration of sensitivities for continuous-discrete
models. Simulations demonstrated that the alternative method may in some cases be a
better approach for system models where Nx is large as the dimension of the sensitivity ODE
is reduced significantly. However, this comes at the expense of increasing the total integration
length.

66

7 Efficiently handling output constraints
using adjoint gradient calculation

In the previous section, methods and algorithms for calculating the objective function gradient
and the impulse response matrix have been discussed. As demonstrated, obtaining this matrix
can be very expensive since it involves time-consuming simulations. The impulse response
matrix is the constraint gradient information needed by SQP type optimization algorithms
when constraints on the outputs are present. As already discussed, there are several issues to
consider and choices to make when choosing a method for computing this matrix.

Compared to obtaining the full impulse response matrix calculation of ∇uJ by the adjoint
method will be very efficient since only the sensitivity of a scalar function with respect to a
large number of parameters is of interest. Motivated by this fact, it would be desirable if the
optimization algorithm did not require calculation of the full impulse response matrix, but
only the sensitivity of a scalar function or functional, still with output constraints present.
In this section the main concern will be different approaches for NMPC optimization where
constraint gradient information is not required and thus adjoint gradient calculation will be
extremely efficient compared to the other available approaches. This section continues the
presentation of the more general optimization methods in section 3 in the context of NMPC.

7.1 Interior point methods

Barrier and interior point methods were briefly introduced in section 3.5. These methods
ensure that the inequality constraints are satisfied by adding a logarithmic penalty term
which tends to infinity at the barrier. Stating the NMPC problem this way would lead to an
unconstrained problem provided that the problem is posed by single shooting removing the
system model as equality constraint.

Barrier function methods for MPC and gradient recentered self-concordant barrier functions
are discussed in [23] and [19].

Let the self-concordant barrier function for the outputs B(t) be defined by

B(t) = − ln(tmax − t)− ln(−tmin + t),

and the gradient recentered self-concordant barrier function B̄(t) be defined as

B̄(t) = B(t)−B(0)− [∇tB(0)]T t.

67

7 Efficiently handling output constraints using adjoint gradient calculation

The functions B(t) (dashed red) and µB̄(t) for different values of µ are illustrated in figure
7.1 where tmin = −1 and tmax = 2 together with the exact indicator function (3.13) which
is zero everywhere except from on the boundary.

Figure 7.1: Barrier functions

!! !"#$ " "#$! !#$ %
!!

"

!

%

&

'

$

(

)

*

+

!"

Observe that the minimum of B(t) is located at t = 0.5 while the recentered barrier function
µB̄(t) has its minimum at the origin. This is desirable when the objective function also
achieves its minimum at the origin. Not recentering the barrier functions could lead to a bias
that results in the steady state solution not converging to the origin [23]. It is also possible
to recenter the barrier function around a trajectory, if an objective function is on the form
(2.1) is used.

If the feasible set G is defined by a number of m constraints, each of them defined by Gi so
that the resulting feasible set is the intersection between them G =

⋂m
i=1 Gi, one may define

the barrier function F for G as F =
∑m

i=1 Fi where Fi are the barrier functions for Gi [19].

Using this approach, the original NMPC optimization problem (2.2)-(2.7) may then instead
be posed as

min J =
1
2

N−1∑

k=0

[zT
k Qzk + uT

k Ruk] +
1
2
xT

NPxN (7.1)

+µ
N−1∑

k=0

Nu∑

i=1

B̄(uk[i]) + µ
N−1∑

k=1

Nz∑

i=1

B̄(zk[i]), (7.2)

68

7 Efficiently handling output constraints using adjoint gradient calculation

subject to

xk+1 = f(xk, uk, tk), (7.3)
zk = g(xk, uk, tk), (7.4)
x0 = x(t0). (7.5)

Posing this problem with only uk as the free optimization variables it is an unconstrained
optimization problem where the adjoint method could be employed efficiently for gradient
calculation.

As shown in figure 7.1, the function µB̄(t) approaches the exact indicator function as µ → 0.
However, the optimization problem becomes arbitrarily ill conditioned as µ → 0. The problem
is that the objective becomes extremely nonlinear at the boundary. This is the reason why
interior point methods fell out of favor for decades before again gaining popularity. Modern
interior point methods take precautions to deal with this ill conditioning.

[23] argues that it might not be necessary to let µ tend to zero (thus the importance of
recentering the barrier functions). It has been demonstrated that freezing µ to a value much
greater than zero results in a controller that will be more cautious near the constraint boundary
and will provide a more smooth transition between the active and inactive constraints [23]. It
was also demonstrated that the trajectories away from the boundary are similar to the exact
solution.

Early interior point methods did not use slack variables and states the problem on the form
(3.14)-(3.15) in contrast to more recent methods where the initial point may be infeasible.
A problem on the form (7.1)-(7.5) will require a feasible initial starting point. In NMPC
applications, feedback is incorporated by solving the optimization problem over and over
when new measurements become available. If the plant is subject to large disturbances, these
measurements may deviate from the predicted trajectory as illustrated in figure (2.2). This
deviation can result in a shifting of the predicted initial condition and thereby may result in
that the initial starting point is infeasible.

In NMPC it is also desirable to be able to specify soft constraints by stating the problem as
in (2.8)-(2.13). This formulation includes slack variables ε and will also require constraint
gradients in the optimization.

As mentioned, early interior point methods require a feasible initial starting point and iterates
in the optimization will always be feasible [20]. More recent methods can be provided with an
infeasible starting point, but may be designed such that once a feasible iterate is generated,
all subsequent iterates will be feasible. In online applications with real time requirements,
feasibility of the iterates may be a desirable property as the optimization may be stopped
before the actual optimum is reached.

7.2 Constraint lumping

In section 6, we argued that the adjoint method would benefit from not enforcing constraints
on all the parts of the horizon as this reduces the number of output variables to which the

69

7 Efficiently handling output constraints using adjoint gradient calculation

sensitivity with respect to the control variables is desired. Another way to make use of the
efficiency of adjoints is to reduce the number of constraints by instead of removing them,
lumping them together. If all the output constraints can be specified in a scalar function,
its gradient with respect to the control variables can be obtained in a similar way as for the
objective function.

The idea is that all the path constraints also will be satisfied by instead satisfying the scalar
function

C =
N−1∑

k=1

Nz∑

i=1

[max(0, zk[i]− zmax[i]) + max(0, zmin[i]− zk[i])] ≤ 0. (7.6)

Since C : RN−1 × RNz → R, ∇uC can be calculated efficiently using the adjoint method.
Only one forward simulation and two reverse simulations (one for C and one for J) are needed.

A disadvantage with this method is that the max function is not differentiable, and therefore
it is not desirable to use in gradient based optimization techniques [20, 1].

Note that the max function can also be expressed as

max(x, 0) =
x
ˆ

−∞

σ(τ)dτ, (7.7)

where σ(τ) is the unit step function

σ(x) =

{
1 x > 0
0 x ≤ 0

. (7.8)

By instead using the sigmoid function

s(x, α) =
[
1 + e−αx

]
,−1 (7.9)

as an approximation to the unit step function in (7.7) the following differentiable smooth
approximation of the max function is obtained

max(x, 0) ≈ x +
1
α

ln(1 + e−αx). (7.10)

α is a design parameter to be chosen. One should also probably consider using different
weighting for each of the elements in the output vector. Choosing α large results in a more
exact, but also less smooth approximation. Figure 7.2 shows the exact max function and its
derivative along with approximations for different values of α.

70

7 Efficiently handling output constraints using adjoint gradient calculation

Figure 7.2: Approximations of max(x, 0) and σ(x)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

α = 3
α = 5
α = 10
α = 20
Exact

This lumping scheme comes at the expense of some ill conditioning. In [2] they apply an SQP
algorithm with a combined trust region and line search method to cope with this. Trust region
methods are known to be more robust against ill conditioning, while line search methods are
cheaper since they do not require repeated solution of the quadratic subproblems. In the
combined trust region and line search framework used in [2], the trust region radius is for that
reason adjusted less often. Hopefully this reduces the total number of quadratic subproblems
while still being able to handle the ill conditioning.

7.3 Penalty methods

Strategies to add the inequality constraints to the objective function are discussed in section
3.3 about penalty methods and in section 3.4 where augmented Lagrangian methods are briefly
discussed. By using a l1 penalty function for the output constraints, the NMPC optimization
problem can be posed as

min J =
1
2

N−1∑

k=0

[zT
k Qzk + uT

k Ruk] +
1
2
xT

NPxN

+µ
N∑

k=1

Nz∑

i=1

[max(zmin[i]− zk[i], 0) + max(−zmax[i] + zk[i], 0)], (7.11)

subject to

71

7 Efficiently handling output constraints using adjoint gradient calculation

xk+1 = f(xk, uk), (7.12)
zk = g(xk, uk), (7.13)
x0 = x(t0), (7.14)

umin ≤ uk ≤ umax. (7.15)

This problem is not unconstrained since there are constraints on the control variables, but
these constraints are much easier to handle. As pointed out in section 3.3, the l1 penalty
function is exact provided that µ > ‖λ‖∞. Choosing µ too large would result in an ill
conditioned problem, and choosing µ too small would not satisfy µ > ‖λ‖∞ resulting in that
constraints may be violated. As also pointed out earlier, choosing µ too small could also
result in the problem being unbounded from below. However, this is not an issue here due to
positive (semi)definiteness of P,Q and R. Nevertheless, the iterates may still diverge from
the optimal solution, meaning that they are not useful in the sense of progressing towards the
optimum when µ is chosen too small.

Similar as for constraint lumping an unavoidable drawback with the max function is indif-
ferentiability and ill conditioning of the objective function. Smooth approximations like for
instance (7.10) should also be used here.

Another alternative may be to use a smoother penalty function like for example the quadratic
formulation in section 3.3. The quadratic penalty function will not be exact, resulting in
that constraints may be violated even though there exists a feasible solution to the hard
constrained problem.

7.4 Simulation example

In this section the model of the Van de Vusse reactor presented in section 6.6 will be used
as a test example to investigate if an exact penalty method can be used in the presence of
output constraints, still allowing for efficient gradient computation by the adjoint method.

Consider the following objective functional including a l1 penalty function for constraints on
the output variables

J =
1
2

tf
ˆ

t0

[
(z(t)− zr(t))T Q(z(t)− zr(t)) + (u(t)− ur(t))T R(u(t)− ur(t))

]
dt(7.16)

+µ

Nz∑

i=1

µs[i]

tf
ˆ

t0

[max(zmin[i]− z(t)[i], 0) + max(−zmax[i] + z(t)[i], 0)]dt

 .

µs is a vector intended for scaling.

72

7 Efficiently handling output constraints using adjoint gradient calculation

The adjoint equations for a functional on this form are derived in appendix A-1 using calculus
of variations. These equations are also specialized to the case of zero order hold parame-
terization of the control signal. Refer to the procedure in the end of appendix A-1 which
evaluates J during the forward integration phase and ∇uJ during the reverse integration
phase by integration of quadratures.

By comparison of (7.16) and (9.1)

ϕ(z(t), u(t)) =
1
2

[
(z(t)− zr(t))T Q(z(t)− zr(t)) + (u(t)− ur(t))T R(u(t)− ur(t))

]

+µ

(
Nz∑

i=1

µs[i][max(zmin[i]− z(t)[i], 0) + max(−zmax[i] + z(t)[i], 0)]

)
,

ν(x(tf)) = 0.

The derivatives are given by

∂ϕ(z(t), u(t))
∂z(t)

= (z(t)− zr(t))T Q + µ

(
Nz∑

i=1

µs[i][σ(zmin[i]− z(t)[i], 0) + σ(−zmax[i] + z(t)[i], 0)]

)
,

∂ϕ(z(t), u(t))
∂u(t)

= (u(t)− ur(t))T R.

ϕ(z(t), u(t)) is not differentiable, and for that reason not suitable to use with derivative based
optimization techniques. This is a well known issue for exact penalty methods and instead we
use the smooth approximations (7.9) and (7.10) for σ(x) and the max function, respectively.

The procedure in the end of appendix A-1 was implemented using CVODES as solver routine.
As noted earlier CVODES uses variable step size methods. When asking for the solution at a
sampling instant CVODES will return the solution at that time instant by using interpolation
techniques. The internal time variable has however continued past that particular sampling
instant such that reinitialization will be needed in order to change the control input at the
right time. This approach was implemented in the algorithms earlier where sensitivities were
obtained by forward analysis, and causes no trouble apart from loosing some speed since
essentially a new ODE is solved for every sampling interval.

When using the adjoint sensitivity capabilities in CVODES this matter will cause some more
trouble. The problem is that solver reinitializations are not allowed during the forward in-
tegration phase since the solution obtained here is also needed during the backward solve.
In order to reproduce the sequence of steps used in the forward solve CVODES relies on a
checkpointing algorithm. This is impossible to do if the solver at some time is reinitialized.
Another problem that makes this nontrivial is discontinuities in the right hand side function
due to the zero order hold parameterization of the control signal.

The first problem was handled by not doing the reinitializations, deliberately letting the solver
integrate past a sample instant without altering the control input. To minimize the error, the
maximum step size was set to a small fraction of the length of a sample interval preventing

73

7 Efficiently handling output constraints using adjoint gradient calculation

the integration running to far into the next sampling interval with the control input from the
previous sampling interval. Since setting a maximum step size will slow the algorithm down
and affect runtime severely, a runtime comparison with forward techniques is not attempted
here. Discontinuities due to piecewise constant controls were handled by simply by integrating
over them. Explicitly time dependent discontinuities are known to be easier to handle than
those which are implicitly time dependent through the state vector. In the latter case, a root
finding algorithm would be needed.

The reference trajectory is a ramp transition from set point 1 to set point 2 where cB and T
are the controlled variables.

Set point 1 Set point 2
u1 8.256 1

h 18.037 1
h

u2 −6.239 MJ
h −4.556 MJ

h
cB 740 mol

m3 960 mol
m3

T 87 ◦C 106 ◦C

The constraints

cBmax = 800
mol

m3
,

Tmax = 100 ◦C,

are imposed on the controlled variables resulting in that the optimum will be located outside
the feasible region. Trial and error resulted in the following objective function parameters

Q =
(

0.1 0
0 10

)
, R =

(
10 0
0 10

)
, µs =

[
1 5

]T
.

74

7 Efficiently handling output constraints using adjoint gradient calculation

Table 7.1: Organization of files for NMPC optimization using l1 penalty method and adjoints
File Purpose

nmpc_penalty.m This is the main script which implements adjoint gradient calculation
and NMPC optimization using a l1 penalty method for the output

constraints.
cvodes_vdv_f.m Provides the nonlinear model.
cvodes_vdv_fB.m Provides right hand side of adjoint system.
cvodes_vdv_J.m Provides Jacobian of the nonlinear model.
cvodes_vdv_JB.m Provides Jacobian of adjoint system.
cvodes_vdv_q.m Provides right hand side function for evaluating J using integration

of quadratures.
cvodes_vdv_qB.m Provides right hand side function for evaluating ∇uJ using reverse

integration of quadratures.
sigmoid.m Smooth approximation of max function.
sigmoid_z.m Smooth approximation of step function.
l1_penalty.m l1 penalty function.
l1_penalty_z.m Derivative of l1 penalty function.
plot_fig.m Plot solution and constraints.

75

7 Efficiently handling output constraints using adjoint gradient calculation

Figure 7.3: NMPC optimization with different penalty weights

10 20 30 40 50 60 70 80 90 100
700

750

800

850

900

950

1000

Co
nc

en
tra

tio
n

[m
ol

/m
3]

t [h]

(a) cB , µ = 0

10 20 30 40 50 60 70 80 90 100

86

88

90

92

94

96

98

100

102

104

106

Te
m

pe
ra

tu
re

 [C
]

t [h]

(b) T, µ = 0

10 20 30 40 50 60 70 80 90 100
700

750

800

850

900

950

1000

Co
nc

en
tra

tio
n

[m
ol

/m
3]

t [h]

(c) cB , µ = 10

10 20 30 40 50 60 70 80 90 100

86

88

90

92

94

96

98

100

102

104

106

Te
m

pe
ra

tu
re

 [C
]

t [h]

(d) T, µ = 10

10 20 30 40 50 60 70 80 90 100
700

750

800

850

900

950

1000

Co
nc

en
tra

tio
n

[m
ol

/m
3]

t [h]

(e) cB , µ = 20

10 20 30 40 50 60 70 80 90 100

86

88

90

92

94

96

98

100

102

104

106

Te
m

pe
ra

tu
re

 [C
]

t [h]

(f) T, µ = 20

As seen from figure 7.3, the constraints are finally resolved as they are penalized more by
increasing µ. When increasing µ the optimal solution from the previous value of µ was used

76

7 Efficiently handling output constraints using adjoint gradient calculation

as initial value. By doing this, the constraints are penalized increasingly as the iterates move
towards the optimum, which makes sense intuitively.

Starting with a too large value of µ resulted in the algorithm not being able to produce a
good solution. The high nonlinearities in the model equations introduce nonconvexity in the
problem through implicit nonlinear equality constraints. Intuitively speaking, starting with a
too ambitious value of µ constrains the problem more and limits the number of paths the
iterates are allowed to take when progressing towards the solution.

The results above demonstrate that an exact penalty method can be used to cope with output
constraints using efficient adjoint techniques for gradient calculation. However, the problem
seemed hard to tune and not very robust. Even though the optimization in NMPC typically
has ha hot start from the previous iteration, finding the right value for µ online is not a trivial
issue. The goal here is only to demonstrate feasibility of this method, not to necessarily point
out as better alternative than the other approaches with explicit inequality constraints using
forward or finite difference techniques to obtain derivatives.

As noted earlier, the Van de Vusse reactor is known to be a hard problem which makes
it suitable for comparative evaluation of methods. The exact penalty approach was also
implemented with a much simpler nonlinear discrete time example. This problem was much
easier to handle, and the exact penalty method worked remarkably well for this simple test
case. The interested reader may run nmpc_penalty_disc.m for a demonstration. Calculating
the full impulse response matrix for a discrete system involves the same matrix multiplications
as calculating ∇uJ using the forward method. Due to this fact figure 6.4 is representative in
terms of runtime comparison for one gradient evaluation. While the adjoint method can be
employed very efficiently using a l1 penalty method, the forward method has the advantage of
having the full impulse response matrix available. While evaluation of ∇uJ using the adjoint
method is much faster this method also needs to update the penalty parameter µ wisely in
order to make useful progress. If one can satisfy all constraints and achieve the optimum using
only a couple of iterations adjusting µ, figure 6.4 suggests that the adjoint l1 penalty method
will outperform every other method using forward techniques to obtain gradient information.

For both these examples using a smooth approximations of the max function and its derivative
was a necessity in order for the optimization algorithm to produce useful iterates and for the
algorithm to work.

Another good point to make about penalty and barrier methods is that an objective functional
as for instance (7.16) will have the advantage that constraints can be satisfied exactly for the
whole continuous time output trajectory (not only at the sampling instants).

77

8 Summary and final remarks

Through this thesis, the main focus is how to efficiently compute derivative information for
use in NMPC optimization. This is essential for a fast NMPC algorithm as computation of
derivative information can be very time-consuming.

In the first sections NMPC is briefly introduced and notation is defined. The next section
introduces some general optimization techniques. Section 4 is about general techniques for
derivative calculation. The reader is introduced to the concept of forward and the reverse
mode of automatic differentiation. Section 5 is about sensitivity analysis of mathematical
models, which is very closely related to NMPC. The point to be made in these two sections is
that forward methods are efficient when sensitivity of a high dimensional function with respect
to a few number of parameters is to be found. For the opposite case, when the sensitivity of
a low dimensional function with respect to a large number of parameters is required, adjoint
or reverse techniques are most efficient.

Section 6 discusses calculation of derivatives in the context of NMPC. First, algorithms for
obtaining the objective function gradient ∇uJ are derived. As one might expect from the
discussion in section 4 and 5, in terms of runtime the adjoint method is superior for obtaining
∇uJ . However, most optimization algorithms like for instance SQP also need constraint
gradient information which is given by the impulse response matrix of the linearized system
model. Constraint gradients for the control variables are trivial to obtain. If the problem is
posed by single shooting, obtaining the constraint gradient for the output variables is however
not trivial. Since these constraints typically are enforced on every point on the horizon, they
are sometimes referred to as path constraints. These output variables are coupled through
nonlinear dynamics from the control variables. Hence, the sensitivity of a large number of
output variables with respect to a large number of control variables is needed. In this case
the forward method may be just as efficient as the adjoint method. In addition the adjoint
method requires more memory as the state trajectory from the forward solve is needed in the
reverse solve. Roughly speaking, obtaining the output constraint gradient at one time instant
on the horizon requires one additional reverse simulation when using the adjoint method. For
that reason, not enforcing output constraints at every point on the horizon will result in the
adjoint method being faster than the forward method, but also requiring more memory.

Next, continuous-discrete models are discussed. Integration of sensitivity equations are needed
in order to discretize the system. Two different methods are presented. The first method is
best suited for systems with rather few states. The alternative formulation favors systems
with a large number of states where the dimension of the sensitivity equations are reduced at
the expense that the total integration length is more than one time the horizon length.

All the different methods in section 6 are presented as pseudo code. In the end of this
section these algorithms are implemented with some benchmark examples to demonstrate
and compare theoretical bounds for runtimes with practical experience from simulations.

78

8 Summary and final remarks

As noted earlier, when there are no constraints on the output variables, derivative information
can be obtained very efficiently using the adjoint method. The next question is at which
extent adjoint gradient calculation still can be employed efficiently in the presence of output
constraints. In section 7 some methods presented in the literature are reviewed. The key
element in all these methods is to use an optimization algorithm that does not specify the
output constraints explicitly. Instead they are satisfied by including a penalty term in the
objective function or by lumping the constraints into one equivalent scalar constraint. This
approach will introduce some new challenges like for instance how to update the penalty
parameter or the barrier weighting parameter in penalty and interior point methods. However,
this will allow for very efficient gradient calculation by the adjoint method as only sensitivity of
a low dimensional function is needed. The hope is that the overall performance will increase
despite of the introduction of some additional difficulties to overcome. In the end of this
section NMPC optimization for the Van de Vusse reaction scheme using a l1 penalty method
was implemented. There were some difficulties implementing this example using the adjoint
capabilities in CVODES due to discontinuities in the right hand side function and the fact that
CVODES uses variable step size methods. For that reason a complete comparable evaluation
of forward and adjoint methods was not attempted. Nevertheless, implementing a l1 penalty
function to cope with output constraints still demonstrates the feasibility of the method on
a hard control problem.

The various methods for calculation of derivatives all have advantages and disadvantages.
Choosing the right method will be highly problem dependent. The purpose is not to point
out one method as better than the other, but to highlight some of the issues one might want
to consider when choosing the appropriate method for a specific problem.

Through this thesis we have demonstrated that adjoint methods can be extremely efficient,
but they also introduce some other severe difficulties. The author’s impression is that despite
the efficiency of adjoints for these type of problems, solving sensitivity equations using forward
techniques can in many cases be a much better alternative since structure can be exploited by
solving these in parallel with the nonlinear ODE, minimizing overhead. For the Van de Vusse
reactor example, the time required to build the impulse response matrix from these sensitivities
was almost negligible. However, this may not be true for systems with higher dimension of the
state vector, but in that case, the alternative method for integration of sensitivities may be
a better approach in which these potentially time-consuming matrix multiplications already
will be incorporated in the integration of the sensitivity equations.

Through this thesis we have presented different combinations of optimization algorithms and
methods for calculating derivatives. The final remark to be made is that nothing seems
to come for free as the nice properties of these methods sometimes conflict. The use of
adjoints for NMPC requires both tailor made optimization algorithms and ODE solvers and
will probably be subject for further research.

79

9 Appendix

A-1 Continuous time adjoint sensitivity analysis

In the following, we will derive the adjoint equations for a functional on the form

J =

tf
ˆ

t0

ϕ(z(t), u(t))dt + ν(x(tf)). (9.1)

Then these equations will be specialized to a procedure for evaluating J and ∇uJ when the
control signal is parameterized using zero order hold.

Define the Lagrangian

L =J −
tf
ˆ

t0

[
λT (t)(ẋ(t)− f(x(t), u(t)))

]
dt

=

tf
ˆ

t0

[
ϕ(z(t), u(t))− λT (t)(ẋ(t)− f(x(t), u(t)))

]
dt + ν(x(tf)).

Since ẋ(t) = f(x(t),u(t)), L = J and the first variation of J with respect to u is given by

δJ =

tf
ˆ

t0

∂ϕ(z(t), u(t))
∂z(t)

(
∂z(t)
∂x(t)

δx(t) +
∂z(t)
∂u(t)

δu(t)
)

dt +

tf
ˆ

t0

(
∂ϕ(z(t), u(t))

∂u(t)
+ λT (t)

∂f(x(t), u(t))
∂u(t)

)
δu(t)dt−

tf
ˆ

t0

λT (t)δẋ(t)dt +

tf
ˆ

t0

λT (t)
∂f(x(t), u(t))

∂x(t)
δx(t)dt +

tf
ˆ

t0

(ẋ(t)− f(x(t), u(t)))T δλ(t)dt +
∂ν(x(tf))

∂x(tf)
δx(tf).

By integration by parts

80

9 Appendix

tf
ˆ

t0

λT (t)δẋ(t)dt = λT (tf)δx(tf)− λT (t0)δx(t0)−
tf
ˆ

t0

λ̇T (t)δx(t)dt.

By inserting this relationship and noting that
´ tf
t0

(ẋ(t)− f(x(t), u(t)))T δλ(t)dt = 0 in order
to comply with the model we get

δJ =

tf
ˆ

t0

∂ϕ(z(t), u(t))
∂z(t)

(
∂z(t)
∂x(t)

δx(t) +
∂z(t)
∂u(t)

δu(t)
)

dt +

tf
ˆ

t0

(
∂ϕ(z(t), u(t))

∂u(t)
+ λT (t)

∂f(x(t), u(t))
∂u(t)

)
δu(t)dt− λT (tf)δx(tf) + λT (t0)δx(t0) +

tf
ˆ

t0

λ̇T (t)δx(t)dt +

tf
ˆ

t0

λT (t)
∂f(x(t), u(t))

∂x(t)
δx(t)dt +

∂ν(x(tf))
∂x(tf)

δx(tf).

Note that λT (t0)δx(t0) = 0 since the initial condition is fixed. Rearrangement yields

δJ =

tf
ˆ

t0

(
∂ϕ(z(t), u(t))

∂z(t)
∂z(t)
∂x(t)

+ λ̇T (t) + λT (t)
∂f(x(t), u(t))

∂x(t)

)
δx(t)dt +

(
∂ν(x(tf))

∂x(tf)
− λT (tf)

)
δx(tf)

+

tf
ˆ

t0

(
∂ϕ(z(t), u(t))

∂z(t)
∂z(t)
∂u(t)

+
∂ϕ(z(t), u(t))

∂u(t)
+ λT (t)

∂f(x(t), u(t))
∂u(t)

)
δu(t)dt.

By letting λ(t) fulfill

λ̇T (t) = −∂ϕ(z(t), u(t))
∂z(t)

∂z(t)
∂x(t)

− λT (t)
∂f(x(t), u(t))

∂x(t)
, (9.2)

with the final condition
λT (tf) =

∂ν(x(tf))
∂x(tf)

. (9.3)

the first variation of J with respect to u is nothing but

δJ =

tf
ˆ

t0

(
∂ϕ(z(t), u(t))

∂z(t)
∂z(t)
∂u(t)

+
∂ϕ(z(t), u(t))

∂u(t)
+ λT (t)

∂f(x(t), u(t))
∂u(t)

)
δu(t)dt. (9.4)

81

9 Appendix

Further, if the control signal is parameterized using zero order hold, we can rewrite (9.4) as

δJ =
N−1∑

k=0

tk+1
ˆ

tk

(
∂ϕ(z(t), u(t))

∂z(t)
∂z(t)
∂uk

+
∂ϕ(z(t), u(t))

∂u(t)
+ λT (t)

∂f(x(t), uk)
∂uk

)
dtδuk. (9.5)

By definition

δJ =
N−1∑

k=0

∂J

∂uk
δuk. (9.6)

Then, by comparison of (9.5) and (9.6)

∂J

∂uk
=

tk+1
ˆ

tk

(
∂ϕ(z(t), u(t))

∂z(t)
∂z(t)
∂uk

+
∂ϕ(z(t), u(t))

∂u(t)
+ λT (t)

∂f(x(t), uk)
∂uk

)
dt.

A complete algorithm for evaluating J and calculating ∇uJ using the adjoint method when
the control signal is parameterized as piecewise constant will involve the following steps

1. For each sample interval tk ≤ t < tk+1, k ∈ {0, . . . , N − 1} , solve ẋ(t) = f(x(t), uk)
by forward integration. Evaluate J by integration of quadratures.

2. Initialize λT (tf) = ∂ν(x(tf))
∂x(tf) .

3. For each sample interval tk ≤ t < tk+1, k ∈ {N − 1, . . . , 0}, solve

λ̇T (t) = −∂ϕ(z(t), u(t))
∂z(t)

∂z(t)
∂x(t)

− λT (t)
∂f(x(t), uk)

∂x(t)

by reverse integration and evaluate

∂J

∂uk
=

tk+1
ˆ

tk

(
∂ϕ(z(t), u(t))

∂z(t)
∂z(t)
∂uk

+
∂ϕ(z(t), u(t))

∂u(t)
+ λT (t)

∂f(x(t), uk)
∂uk

)
dt

by reverse integration of quadratures.

A-2 Hardware and software

All the simulations have been performed on a laptop computer. Hardware and software is
listed below.

82

9 Appendix

Table 9.1: Simulation environment
Software Hardware

Operating System: Mac OS X 10.5.7 CPU: Intel Core 2 Duo @ 2.4 GHz
MATLAB R2008a Memory: 4 GB DDR2 SDRAM @ 667 MHz
SUNDIALS 2.3.0 Bus Speed: 800 MHz

A-3 Software

Software Folder Main script
Runtime simulations of algorithms for

calculating ∇uJ
obj_grad obj_grad.m

Runtime simulations of algorithms for
calculating Ξ using integration of sensitivity

equations

cvodes_vdv cvodes_vdv.m

Runtime simulations of algorithms for
calculating Ξ using alternative method for

integration of sensitivities

cvodes_vdv cvodes_vdv_alt.m

NMPC optimization for Van de Vusse reactor
using l1 penalty method to handle output

constraints. ∇uJ is calculated using
continuous time adjoint equations

nmpc_penalty_vdv nmpc_penalty_vdv.m

NMPC optimization for discrete system using
l1 penalty method to handle output
constraints. ∇uJ is calculated using
continuous time adjoint equations

nmpc_penalty_disc nmpc_penalty_disc.m

Computation of Ξ using finite differences and
solver routine ode15s in Matlab

finite_diff_vdv finite_diff_vdv.m

Steady state solution of Van de Vusse reactor vdv_ss vdv_ss.m

83

Bibliography

[1] Pallav Sarma; Wen H. Chen; Louis J. Durlofsky; Khalid Aziz. Production optimiza-
tion with adjoint models under nonlinear control-state path inequality constraints. SPE
Reservoir Evaluation and Engineering, 11(2):326–339, 2006.

[2] K.F. Bloss, L.T. Biegler, and W.E. Schiesser. Dynamic process optimization through
adjoint formulations and constraint aggregation. Industrial and engineering chemistry
research, 38(2):421–432, 1999.

[3] H. G. Bock, M. Diehl, and E. Kostina. Sqp methods with inexact jacobians for inequality
constrained optimization. Technical report, 2005.

[4] H.G. Bock, M. Diehl, E.A. Kostina, and J.P. Schlöder. Constrained optimal feedback
control of systems governed by large differential algebraic equations. In L. Biegler,
O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloemen Waanders, editors, Real-
Time and Online PDE-Constrained Optimization. SIAM, 2006.

[5] Yang Cao, Shengtai Li, and Linda Petzold. Adjoint sensitivity analysis for differential-
algebraic equations: algorithms and software. Journal of computational and applied
mathematics, pages 171–191, 2002.

[6] Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. Adjoint sensitivity analysis
for differential-algebraic equations: The adjoint dae system and its numerical solution.
SIAM Journal on Scientific Computing, 24(3):1076–1089, 2002.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Second Edition. The MIT Press, September 2001.

[8] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient numerical methods
for nonlinear mpc and moving horizon estimation. Int. Workshop on Assessment and
Future Directions of NMPC, 2008.

[9] Moritz Diehl, Andrea Walther, Hans Georg Bock, and Ekaterina Kostina. An adjoint-
based sqp algorithm with quasi-newton jacobian updates for inequality constrained op-
timization. 2005.

[10] Daniel Christopher Doublet. Optimisation of production from an oil-reservoir using
augmented lagrangian methods. PhD Thesis, 2007.

[11] Rolf Findeisen and Frank Allgöwer. An introduction to nonlinear model predictive control.
In 21st Benelux Meeting on Systems and Control, Veidhoven, pages 1–23, 2002.

[12] Matthias Gerdts. Gradient evaluation in dae optimal control problems by sensitivity
equations and adjoint equations. Proceedings in Applied Mathematics and Mechanics,
5(1):43–46, 2005.

84

Bibliography

[13] Alan C. Hindmarsh and Radu Serban. User Documentation for cvodes v2.5.0. Center
for Applied Scientific Computing, Lawrence Livermore National Laboratory, 2006.

[14] J. B. Jørgensen. Adjoint sensitivity results for predictive control, state- and parameter-
estimation with nonlinear models. 2008.

[15] Hassan K. Khalil. nonlinear systems. Prentice Hall, 3 edition, 2001.

[16] Shu-Qin Liu, Jianming Shi, Jichang Dong, and Shouyang Wang. A modified penalty
function method for a modified penalty function method for inequality constraints min-
imization. 2004.

[17] J. M. Maciejowski. Predictive Control With Constraints. Prentice Hall, Essex, England,
2002.

[18] Kenneth R. Muske and James B. Rawlings. Model predictive control with linear models.
1993.

[19] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. SIAM, 1994.

[20] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York,
second edition, 2006.

[21] Linda Petzold, Shengtai Li, Yang Cao, and Radu Serban. Sensitivity analysis of
differential-algebraic equations and partial differential equations. 2006.

[22] T. Utz and B. Mahn V. Hagenmeyer. Comparative evaluation of nonlinear model pre-
dictive and flatness-based two-degree-of-freedom control design in view of industrial
application. Journal of Process Control, 17(129-141), 2007.

[23] Adrian Wills and Will P. Heath. Barrier function based model predictive control. Auto-
matica, pages 1415–1422, 2004.

[24] L. Wirsching, J. Albersmeyer, P. Kuehl, M. Diehl, and H.G. Bock. An adjoint-based
numerical method for fast nonlinear model predictive control. In Proceedings of the
17th IFAC World Congress, Seoul 2008, 2008.

85

