
ISBN 978-82-326-3764-5 (printed ver.)
ISBN 978-82-326-3765-2 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2019:81

Nico Reissmann

Principles, Techniques, and
Tools for Explicit and Automatic
ParallelizationD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2019:81
N

ico R
eissm

ann

N
TN
U

N
or

w
eg

ia
n

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y

Th
es

is
 fo

r
th

e
D

eg
re

e
of

P
hi

lo
so

ph
ia

e
D

oc
to

r
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

Thesis for the Degree of Philosophiae Doctor

Trondheim, April 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Nico Reissmann

Principles, Techniques, and Tools
for Explicit and Automatic
Parallelization

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

© Nico Reissmann

ISBN 978-82-326-3764-5 (printed ver.)
ISBN 978-82-326-3765-2 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2019:81

Printed by NTNU Grafisk senter

Abstract

The end of Dennard scaling also brought an end to frequency scaling as a
means to improve performance. Chip manufacturers had to abandon fre-
quency and superscalar scaling as processors became increasingly power con-
strained. An architecture’s power budget became the limiting factor to perfor-
mance gains, and computations had to be performed more energy-efficiently.
Designers turned to chip multiprocessors (CMPs) and developers began to
employ specialized architectures, such as Graphics Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), to further improve performance
while meeting the power envelope. The exploitation of parallelism in an energy-
efficient manner became the primary way forward.

Until the end of Dennard scaling, programs experienced transparent perfor-
mance gains with every new processor generation. However, CMPs, GPUs,
and FPGAs rely on the static extraction of parallelism to improve performance,
and programs need to be modified to take advantage of these architectures.
Thus, performance gains are no longer achieved transparently, and develop-
ers and tools are forced to face new, as well as long-neglected challenges in
program parallelization. These challenges include the detection and encod-
ing of potential parallelism in automatic approaches, application portability
issues on GPUs, and performance portability issues on CMPs. It is essential
to address these challenges, as the continuous increase in computer perfor-
mance now solely relies on the exploitation of parallelism.

This thesis consists of three parts, each addressing one of the aforementioned
challenges in program parallelization. The first part addresses the detection
and encoding of potential parallelism in automatic approaches. It presents
the Regionalized Value State Dependence Graph (RVSDG) as an alternative
intermediate representation for optimizing and parallelizing compilers. The
RVSDG exposes the hierarchical structure of programs and explicitly models
the dependencies between computations, permitting the explicit encoding of

i

concurrent operations and program structures, such as conditionals, loops,
and functions. This helps to expose the inherent parallelism in programs and
its structures by employing well-known methods for the extraction of instruc-
tion level parallelism.

The second part addresses application portability issues on GPUs. A GPU’s
specialized architecture is optimized for highly regular data-parallel applica-
tions, but compromises program performance for workloads with irregular
control flow, potentially leading to redundant code execution. We propose
a control flow restructuring method to effectively eliminate repeated code ex-
ecution on GPUs and potentially improve performance.

The third part addresses performance portability on CMPs. This issue arises
as developers overfit their application to a specific architecture, which results
in suboptimal performance for different program inputs or different architec-
tures. We improve performance analysis for OpenMP programs by address-
ing the scalability challenges of the grain graph visualization method. We
present an aggregation method for grain graphs that hierarchically groups re-
lated nodes into a single node. This aggregated graph can then be navigated
by progressively uncovering nodes with performance issues, while hiding un-
related regions of the graph. This enhances productivity by enabling devel-
opers to understand performance problems of highly-parallel OpenMP pro-
grams more easily.

The insights and techniques developed by addressing these three challenges
may result in improved methods and tools for the exploitation of parallelism.
The RVSDG is a promising IR for parallelizing compilers, as it permits the en-
coding of concurrent computations. The grain graph offers a familiar struc-
tural view to developers along with the performance issues of a particular pro-
gram. In the future, it is necessary to cast these ideas into mature tools to make
them applicable in practice and foster further research.

ii

List of Contributions

Thesis Articles

1. RVSDG: An Intermediate Representation for Optimizing Compilers
Nico Reissmann, Jan Christian Meyer, Magnus Själander.
Unpublished Manuscript

2. Perfect Reconstructability of Control Flow from Demand Dependence
Graphs
Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Christian Meyer.
In Transactions on Architecture and Code Optimization (TACO), Volume
11 Issue 4, ACM, 2015

3. Efficient Control Flow Restructuring for GPUs
Nico Reissmann, Thomas L. Falch, Benjamin A. Björnseth, Helge Bah-
mann, Jan Christian Meyer, and Magnus Jahre.
In Proceedings of the International Conference on High Performance Com-
puting & Simulation (HPCS), IEEE, 2016
Winner of Outstanding Paper Award

4. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain
Graphs
Nico Reissmann and Ananya Muddukrishna.
In Proceedings of the International European Conference on Parallel and
Distributed Computing (Euro-Par), Springer, 2018

iii

Other Articles

1. A Study of Energy and Locality Effects using Space-filling Curves
Nico Reissmann, Jan Christian Meyer, Magnus Jahre.
In Proceedings of the 28th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS) and IPDPS Workshops (IPDPSW), 2014.

2. Towards fine-grained dynamic tuning of HPC applications on modern
multi-core architectures
Mohammed Sourouri, Espen Birker Raknes, Nico Reissmann, Johannes
Langguth, Daniel Hackenberg, Robert Schöne, Per Gunnar Kjeldsberg.
In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2017.

3. Aggregating Large Grain Graphs For Improved OpenMP Productivity
Nico Reissmann, Magnus Jahre, Ananya Muddukrishna.
In Fourth International Workshop on Visual Performance Analysis (VPA),
2017.

4. RVSDG: An Intermediate Representation for the Multi-Core Era
Nico Reissmann, Jan Christian Meyer, Magnus Själander.
In 11th Nordic Workshop on Multi-Core Computing (MCC), 2018.

5. Load Balancing Domain Decompositions of a Lattice-Boltzmann Proxy
Application
Jan Christian Meyer, Janusa Ragunathan, Jørgen Valstad, Nico Reissmann.
In 11th Nordic Workshop on Multi-Core Computing (MCC), 2018.

iv

Acknowledgements

First and foremost, my deepest and sincerest thanks to Helge Bahmann and
Jan Christian Meyer, for their invaluable guidance over the last twelve years.
Both have challenged me to explore new and unfamiliar topics, broadened my
perspective, sparked my love for compilers, and helped me to become a better
engineer and researcher. My heartfelt thanks also to Magnus Själander for his
advice and encouragement over the last few years, as well as for his interest in
my work. Sincere thanks also to Gunnar Tufte for his support and the many
insightful conversations. Gratitude is also due to my co-supervisors, Lasse
Natvig and Per Gunnar Kjeldsberg, for their support throughout the years.

Moreover, I am grateful to Anne Berit Dahl, Birgit Sørgård, Berit Hellan, and
Ellen Solberg for finding solutions instead of problems, and trying to reduce
bureaucracy to a minimum. I would also like to thank my colleagues from the
Computing group for making the fourth floor a fun and engaging workplace,
and especially for the innumerable and illuminating discussions during lunch
time and over payday drinks. They have been an indispensable part of my aca-
demic life, and contributed substantially to my social well-being and growth
as a researcher.

A big round of thanks to my friends from Germany, Gothenburg, and Trond-
heim, for helping me to escape from the office and enriching my life. In par-
ticular, I would like to thank my long-term friends Carina Walter, René Kaiser,
Jens Teuscher, Franziska Holzhauer-Pansa, Oliver Holzhauer, Aleksejs Sen-
cenko, Marina Vazhnova, Dragana Laketić, Leif Tore Rusten, Elizabeth and Ja-
cob Sturdy, David Fallon, and John Naliboff.

My deepest gratitude is also due to my parents, Luise and Friedmar Reiss-
mann, to my brother’s family, Mario, Yvonne, and Felix Reissmann, and to my
close family, Birgit and Joachim Reissmann, as well as Urs, Anja, Nadja, and

v

Larissa Weber, for their boundless patience, unwavering support, and endless
encouragement. Thanks for always having my back!

Last, but not least, I am eternally grateful to my better half, Ramona Enache,
for her help throughout in preserving my sanity, providing support in times of
need, and her constant love. You make me a better person!

Nico Reissmann
Trondheim, 4th November 2018

vi

Contents

A. Overview 1

1. Introduction 3

2. Motivation and Scope 7
2.1. Modern Architectures . 10
2.2. Programming Modern Architectures 12
2.3. Parallelization Challenges . 17
2.4. Summary . 25

3. Research Contributions 27
3.1. Thesis Articles . 29
3.2. Frameworks and Tools . 31
3.3. Other Articles . 32

4. Background and Related Work 35
4.1. Compiler Intermediate Representations 35
4.2. Graphics Processing Units . 38
4.3. Grain Graphs . 42

5. Concluding Remarks 47
5.1. Future Work . 48
5.2. Outlook . 55

B. Regionalized Value State Dependence Graph 59

B1. RVSDG: An Intermediate Representation for Optimizing Compilers 61
B1.1. Introduction . 62
B1.2. Motivation . 65
B1.3. The Regionalized Value State Dependence Graph 67

vii

Contents

B1.4. Construction . 76
B1.5. Destruction . 83
B1.6. Optimizations . 84
B1.7. Implementation and Evaluation 90
B1.8. Related Work . 100
B1.9. Conclusion . 102

B2. Perfect Reconstructability of Control Flow from Demand Depen-
dence Graphs 103
B2.1. Introduction . 104
B2.2. Terminology and Definitions 106
B2.3. Extracting Control Flow from the RVSDG 112
B2.4. Transforming CFGs to RVSDGs 119
B2.5. Proof of Correctness and Invertibility 128
B2.6. Empirical Evaluation . 135
B2.7. Related Work . 139
B2.8. Conclusion . 141

C. GPU Divergence 143

C1. Efficient Control Flow Restructuring for GPUs 145
C1.1. Introduction . 146
C1.2. Motivation . 147
C1.3. Terms and Definitions . 150
C1.4. Control Flow Restructuring 152
C1.5. Experimental Evaluation . 160
C1.6. Related Work . 169
C1.7. Conclusion and Future Work 171

D. Grain Graphs 173

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain
Graphs 175
D1.1. Introduction . 175
D1.2.Background on Grain Graphs 177
D1.3.Grain Graph Aggregation Method 179

viii

Contents

D1.4.Prototype Implementation . 185
D1.5.Evaluation . 186
D1.6.Related Work . 191
D1.7.Conclusion . 192

Bibliography 221

ix

Part A.

Overview

1

1. Introduction

The continuous increase in computer performance over the last half-century
catapulted society into the digital age. Computer systems are nowadays om-
nipresent and are a fundamental part of our lives. New advances in health,
product manufacturing, transportation and energy, science and environmen-
tal modeling, and financial analysis, are all dependent on computer systems
and their continuous increase in performance [65].

Figure 1.1 shows the processor performance growth from the end of the 1970s
onwards. From the mid 1980s until around 2003, Moore’s law [182] enabled
processor performance to improve by three orders of magnitude at a rate of
approximately 52% per year, i.e., performance doubled every second year. Al-
most two orders of magnitude of this improvement are due to increased tran-
sistor switching frequency, while one order of magnitude can be attributed to
microarchitectural advances [27].

This trend, however, decelerated from the beginning of 2003. Figure 1.1 shows
a decline of annual performance improvements from 2003 onwards to today’s
3.5%, i.e., performance doubles only every twenty years. The main cause be-
hind this decline is the end of frequency scaling. Transistor switching fre-
quency could no longer be increased without exceeding a chip’s power budget
and the performance return of more advanced microarchitectural features be-
came negligible.

The need to limit a chip’s power dissipation and to improve energy-efficiency
pushed chip designers towards more decentralized and modular architec-
tures. Chip multiprocessors (CMPs) along with more specialized architec-
tures, such as Graphics Processing Units (GPUs) and special-purpose acceler-
ators, emerged as alternatives to centralized and monolithic single-core pro-
cessors. Instead of using transistors to improve single-thread performance

3

1. Introduction

1

5

9
13

18
24

51

80

117
183

280

481
649

993
1,267

1,779
3,016

4,195
6,043

6,681 7,108
11,86514,387 19,484

21,871
24,129

31,999

34,967

39,419

40,967

49,935

49,935

49,870

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

23%/year 12%/year 3.5%/year
IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz
Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

 Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)

 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz
HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz
VAX 8700, 22 MHz

AX-11/780, 5 MHz

Figure 1.1.: 40 years of processor performance growth. Figure taken from [83].

within a single-core, designers use them to provide multiple cores on a chip to
improve multi-thread performance.

This paradigm shift, however, was not transparent to the software. Single-
core processors dynamically exposed and exploited a program’s parallelism
with increasingly complex microarchitectural structures. Programs written
40 years ago experienced performance improvements with every new proces-
sor generation without programmer intervention. For multi-core processors,
however, the responsibility of exposing and exploiting more parallelism to fur-
ther improve performance lies with the programmer or tools.

The static extraction and exploitation of parallelism forces programmers and
tools to face new as well as long-neglected challenges in code paralleliza-
tion [49]. Concurrent programming requires additional reasoning of devel-
opers about the correctness of their programs as new error classes, such as
data races and deadlocks, arise. New performance bottlenecks, such as syn-
chronization overheads and load balancing issues, may occur as developers
port their programs to different architectures. Moreover, automatic code par-
allelization is still stuck in the sequential programming era as tools employ se-
quential representations inadequate for the automatic exposure of concurrent

4

computations. In order to mitigate a new software crisis [66, 6] and progress
on as well as eventually overcome these challenges, novel principles and tech-
niques are needed that eventually equip developers with mature tools.

This thesis addresses some of these challenges and is based on four articles:

Article B1 – RVSDG: An Intermediate Representation for Optimizing Compilers

Article B2 – Perfect Reconstructability of Control Flow from Demand Depen-
dence Graphs

Article C1 – Efficient Control Flow Restructuring for GPUs

Article D1 – Diagnosing Highly-Parallel OpenMP Programs With Aggregated
Grain Graphs

The articles B1 and B2 address the exposure issue by presenting the Region-
alized Value State Dependence Graph (RVSDG) as an alternative IR for op-
timizing and parallelizing compilers. The RVSDG is a single unified IR that
normalizes program representation and exposes the hierarchical structure of
a program. It explicitly encodes the dependencies (and therefore their lack
of) between operations and high-level structures, such as loops, conditionals,
and functions. This helps to expose the inherent parallelism in programs and
its structures, as well as avoids many support data structures necessary for
optimizations.

The articles C1 and D1 address application portability to GPUs and perfor-
mance portability on CMPs, respectively. Concretely, the first article proposes
a control flow restructuring method to avoid repeated code execution on GPUs
due to thread divergence, whereas the second article improves OpenMP per-
formance analysis by addressing scalability challenges of the grain graph vi-
sualization method.

The remainder of this thesis is structured as follows: The four aforementioned
articles are attached in Part B, C, and D. Specifically, Part B contains the ar-
ticles RVSDG: An Intermediate Representation for Optimizing Compilers and
Perfect Reconstructability of Control Flow from Demand Dependence Graphs,
Part C contains the article Efficient Control Flow Restructuring for GPUs, and
Part D contains the article Diagnosing Highly-Parallel OpenMP Programs With
Aggregated Grain Graphs. The remainder of the thesis puts the articles in a

5

1. Introduction

context and provides the necessary background to understand them. In par-
ticular, the rest of Part A discusses the scope of this thesis in Chapter 2, sum-
marizes the research in detail and discusses the concrete research contribu-
tions in Chapter 3, provides necessary background knowledge to understand
the articles in Chapter 4, and concludes and suggests further research direc-
tions, as well as attempts an outlook in Chapter 5.

6

2. Motivation and Scope

Dennard Scaling [55] was the driving force behind the steady growth of pro-
cessor performance between the end of the 1970s until 2003. It posits that
the overall power consumption can be kept constant as transistor dimensions
shrink by lowering both voltage and current accordingly. This meant that
manufacturers could with every new processor generation pack more transis-
tors on a chip and increase the clock frequency without a significant increase
in overall power consumption.

At the same time, computer architects used the ever growing abundance of
transistors to build increasingly complex structures that dynamically expose
and exploit the instruction level parallelism (ILP) inherent in programs. They
incorporated increasingly deeper pipelines, superscalar and out-of-order ex-
ecution, as well as aggressive branch prediction, register renaming, and dy-
namic memory disambiguation to maximize ILP exploitation. The result was
that processor performance doubled approximately every two years for over
40 years. Figure 2.1 shows that from the beginning of the 1980s, transistor
count increased exponentially, and until 2003, chip frequency as well as single-
thread performance increased accordingly.

This trend, however, came to an end in 2003. It was no longer sustainable to
simply increase processor frequency and build ever more complex structures
to dynamically exploit ILP. Figure 2.1 shows that the increase in frequency and
single-thread performance started to decelerate from 2003 onwards. The rea-
son for this decline is due to several factors, known as the ILP, memory, power,
and complexity wall [146]:

1. The ILP Wall: Superscalar architectures dynamically extract ILP from
a single flow of control of a sequential instruction stream. Studies by
Wall [223] and Lam et al. [107] showed that, except for data-parallel ap-
plications with simple control flow, the ILP from a single flow of control

7

2. Motivation and Scope

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Year

Transistors [103]

Single-Thread Performance [SpecINT x 103]
Frequency [MHz]

Typical Power [W]

of Logical Cores

Figure 2.1.: 50 years of microprocessor trend data. Figure taken from [177].

is limited to 4-8 instructions per cycle. This sets an upper bound for su-
perscalar processor scaling beyond which very little performance gains
could be expected.

2. The Memory Wall: Both processor and DRAM clock rates improved ex-
ponentially, but processor rate substantially outpaced DRAM rate. This
meant that main memory access latency grew also exponentially, as the
difference of two diverging exponentials is exponential [230, 128]. The
introduction of caches mitigated this issue by exploiting a program’s
temporal and spatial locality. The caches grew bigger and cache hi-
erarchies deepened as the gap between processor and main memory
widened. Nowadays, processors dedicate as much as 50% of the die area
to caches.

3. The Complexity Wall: The monolithic design of superscalar processors
required ever more complex and broadcast-intensive structures to dy-
namically exploit more ILP, maintain a coherent program state, and pro-
vide precise exceptions. However, such structures scale poorly with the
number of exploited instructions [212, 242]. In addition, the global wires

8

on a chip do not scale with transistor size [86], which reduces the dis-
tance signals can propagate as frequency increases. This means that
fewer structures can be accessed within a single clock cycle, limiting
the exploitable ILP as chips become more communication bound [2].
These factors along with the ILP wall severely diminished overall per-
formance improvements even as design complexity, effort, and costs
soared [18, 151].

4. The Power Wall: For each process generation, Dennard scaling enabled
an increase in transistor performance of ca. 40% and the doubling of
transistors while keeping the overall power consumption constant [27].
However, Dennard scaling does not account for the increased leakage
current as transistor dimensions shrink. This current is negligible for
micrometer technology, but becomes prominent for smaller transistor
sizes and leads to an exponential increase in relative static power dis-
sipation [33]. Dennard scaling does also not account for the increased
complexity of microarchitectures and the poor scaling of wires, both of
which increase overall power dissipation. These factors lead to static
power becoming a major contributor to overall power dissipation [209]
and resulted in projections that chip power density would approach
those of nuclear reactors [173].

The ILP, memory, complexity, and power wall forced chip manufacturers to
abandon frequency and superscalar processor scaling. This was necessary
as processor complexity became unmanageable, while the return on overall
performance compared to the investment became negligible. The end of fre-
quency scaling stopped memory latency from worsening and halted the in-
crease in power dissipation. This trend can be observed in Figure 2.1. Proces-
sor frequency and power dissipation stagnated from 2003 onwards.

However, the end of frequency scaling and the ILP Wall also meant that fur-
ther performance improvements would have to come from the extraction of
coarse-grained parallelism, i.e., data- and task-level parallelism. The exploita-
tion of multiple, independent code regions, achieved without an increase in
architectural complexity, became essential to further improve performance.

9

2. Motivation and Scope

2.1. Modern Architectures

Chip manufacturers turned to multi-core architectures to answer the need for
exploiting coarse-grained parallelism without increasing architectural com-
plexity. Instead of relying on monolithic, complex, and power-hungry unipro-
cessors, manufacturers placed multiple copies of more energy-efficient pro-
cessors on a single die. This addressed the complexity wall by switching to a
modular and decentralized design, while enabling the exploitation of coarse-
grained parallelism in addition to ILP. Moreover, it permits continued perfor-
mance scaling, while keeping power dissipation stagnant, therefore increasing
energy efficiency, i.e., performing more computations for the same amount of
energy. The switch from superscalar to multi-core architectures can be ob-
served in Figure 2.1. Processors with multiple cores, i.e., chip multiprocessors
(CMPs), became mainstream around 2003, which coincides with the stagna-
tion of frequency and power dissipation.

In addition to CMPs, other and more specialized architectures, such as
Graphics Processing Units (GPUs) or Field Programming Gate Arrays (FP-
GAs), emerged to accelerate certain classes of applications more energy-
efficiently. GPUs target applications with abundant data parallelism, while
special-purpose accelerators can be employed to accelerate domain specific
kernels. The remainder of this section takes a closer look at the three architec-
tures and their application domains.

2.1.1. Chip Multiprocessors

Designers addressed the consequences of the increasingly complex unipro-
cessor designs with the introduction of chip multiprocessors, and started to
replicate simpler conventional cores on the same die. Instead of only focus-
ing on exploiting the ILP from a single flow of control with a monolithic and
complex processor, they shifted focus to the exploitation of coarse-grained
parallelism from several independent flows of control. CMPs target applica-
tions that either have abundant task level parallelism, such as web or database
servers, or ample data level parallelism, such as numeric or multimedia appli-
cations. Such applications consist of ample coarse-grained parallelism that is
exploitable with multiple cores [15].

10

2.1. Modern Architectures

Ideally, designers would like to extend the effect of Moore’s law into an ex-
ponential growth of cores. However, CMPs rely on the abundance of coarse-
grained parallelism that is exploited by threads in a shared-memory program-
ming model. This makes them an ideal fit for embarrassingly parallel appli-
cation domains, but limits their use for applications with low task-level paral-
lelism, complex and data-dependent control flow, and irregular memory ac-
cess patterns. Such applications often consist of a significant sequential part
and cannot effectively be parallelized.

2.1.2. Graphics Processing Units

Graphics Processing Units (GPUs) originated as graphics accelerators and be-
came over the years increasingly more programmable [24]. GPUs evolved to
highly parallel architectures suitable for accelerating data parallel applications.
They consist of multiple computational units with each containing several
processing units, and feature a high bandwidth memory system with smaller
and simpler caches as compared to conventional CPUs (see Section 4.2 for
more details).

Nowadays, GPU vendors offer support for general purpose computations by
providing the necessary software tools [51, 148]. This resulted in a wide adop-
tion of GPUs in the scientific and multimedia domain, as applications from
these domains tend to exhibit abundant data parallelism. GPUs have been
used to accelerate linear programming [197], fluid simulations [106, 178], ray
tracing [121], compression [10], and medical image processing [194, 195, 196],
and are employed as accelerators in five of the top ten systems on the June
2018 list of most powerful supercomputers [210].

2.1.3. Special-Purpose Accelerators

Another way to increase performance and/or energy-efficiency is to imple-
ment dedicated hardware in the form of accelerators. Such specialized logic
can offer multiple orders of magnitude greater energy efficiency at a similar or
greater level of performance than general purpose architectures [45, 186, 187].
However, hardware development is tedious and costly, and is therefore mostly

11

2. Motivation and Scope

done for critical kernels of important application domains, such as cryptogra-
phy or multimedia, and for markets where the design costs can be amortized.
Accelerators are already common in more energy sensitive platforms such as
smartphones. For example, modern devices can include dedicated hardware
for image [162] and natural language processing [131], neural networks and
machine learning [104, 211], as well as context awareness [131].

In the future, it may also be possible to leverage the advantages of special-
ized logic outside the embedded systems domain with the integration of Field-
Programmable Gate Arrays (FPGAs) and CPUs, e.g., as announced by Intel [94].
A shift towards specialized hardware can already be experienced in today’s re-
search communities. Researchers propose ample accelerators for important
kernels and different application domains [11], such as neural networks [217,
74], graph analytics [216, 12, 19], or sparse linear algebra [215, 218].

2.2. Programming Modern Architectures

Central to all these systems is the software that runs on them. In the past, pro-
grammers mostly used sequential programming models and relied on Den-
nard Scaling and Moore’s law to gain performance. Every new processor gen-
eration provided speedup transparent to the software due to frequency and
superscalar processor scaling. However, the end of this scaling also brought
an end to transparent performance gains, or as Herb Sutter famously put it:
“the free lunch is over“ [205].

In addition to fine-grained ILP, modern architectures try to exploit coarse-
grained parallelism by exposing hardware structures in the form of replicated
cores, single-instruction multiple-data (SIMD) units, or accelerators. Coarse-
grained parallelism, however, is not extracted dynamically, and programs
must be explicitly modified to take advantage of these structures. Thus, the
paradigm shift from dynamic ILP exploitation to the exploitation of coarse-
grained parallelism is not transparent to the software, and sequential pro-
grams no longer experience automatic performance improvements. Contrar-
ily, sequential programs might even perform worse due to decreased single-
thread performance [27, 206]. This is particularly concerning as most existing
mainstream software is written in sequential programming models.

12

2.2. Programming Modern Architectures

A program’s coarse-grained parallelism can either be encoded explicitly in the
source code by developers, or automatically extracted and encoded by tools.
The remainder of this section discusses explicit and automatic parallelization
methods for CMPs, GPUs, and accelerators. It provides the basis for a discus-
sion of these method’s parallelization challenges in Section 2.3.

2.2.1. Explicit Parallelization

Explicit parallelization is a developer’s task of modifying a sequential program
for parallel execution. It is the programmers responsibility to extract indepen-
dent tasks and manage their communication and synchronization. This sec-
tion summarizes explicit approaches for CMPs and GPUs. It omits a discus-
sion of explicit parallelization approaches for accelerators, as they lie outside
the scope of this thesis.

Chip Multiprocessors

CMPs rely on the exploitation of coarse-grained parallelism by threads in a
shared-memory programming model. Programmers or tools are required to
expose this parallelism by partitioning concurrent code sections into threads,
and manage the communication and synchronization of these threads at run-
time. However, explicitly programming CMPs at this fundamental level is error-
prone and burdensome, as the programmer must manage every explicit detail
of code partitioning, communication, and synchronization [59].

Consequently, a cornucopia of different programming models try to raise the
abstraction level above the simple usage of threads, as well as manual com-
munication and synchronization management. Such models include com-
piler directive-based parallelization, such as OpenMP [54], the incorporation
of parallelization constructs into serial languages, such as Cilk Plus [172], li-
braries with parallel routines, such as Intel MKL [130], concurrent data struc-
tures, such as Intel TBB [103], domain-specific programming models, such
as MapReduce [165], and abstractions for expressing parallelism, such as
Wool [72].

13

2. Motivation and Scope

A common feature of all these models is that they are partially implicit, i.e.,
the methods’ implementation carries the parallelization of the code to various
degrees [59]. For example, in OpenMP it is the programmer’s responsibility to
identify code regions for parallelization, but the implementation’s responsi-
bility to schedule and load balance these threads.

Graphics Processing Units

The two most popular methods for programming GPUs are OpenCL [148] and
CUDA [51]. These methods handle an application’s sequential part on the
CPU, while the data parallel kernels are offloaded to the GPU. The kernels
are executed in parallel by a large number of threads, performing individual
instruction execution in lock-step. Both methods demand from the program-
mer to divide a problem into subproblems that can be solved independently,
while each subproblem is solved cooperatively in parallel.

Other methods emerged as alternatives to the low-level abstractions pro-
vided by CUDA or OpenCL. Directive-based approaches [231], such as Ope-
nACC [147] or HMPP [61], permit programmers to annotate plain C to indicate
the regions that should be offloaded to other devices like GPUs. Similarly to
parallelization approaches for CMPs, these methods try to raise the abstrac-
tion level and hide implementation details from the programmer.

2.2.2. Automatic Parallelization

Automatic parallelization refers to a tool’s task to autonomously extract and
encode parallelism from a sequential program. It is the tool’s sole responsibil-
ity to find enough parallelism, encode it, and produce a (performant) parallel
execution schedule. This section summarizes automatic approaches for CMPs
and accelerators. It omits a discussion of automatic parallelization methods
for GPUs, as they lie outside the scope of this thesis.

14

2.2. Programming Modern Architectures

Chip Multiprocessors

Auto-parallelizing compilers detect parallelizable code regions in sequential
programs and transform them into parallel code. They try to exploit different
types of parallelism, such as loop level, pipeline, or divide and conquer paral-
lelism, from loops and/or functions, and transform these constructs into data-
and/or task-parallel code. Here, we closer examine automatic loop vector-
ization, and the non-speculative extraction of thread-level parallelism (TLP)
from loops.

Vectorization: The introduction of SIMD units in microprocessors lead to the
exploitation of data-level parallelism using vectorization [110]. Many modern
compilers, such as LLVM [42], GCC [140, 143, 175], or ICC [21], incorporate
vectorization passes that transform sequential to vectorized code.

Two methods for code vectorization exist: loop and superword level paral-
lelism (SLP) vectorization. Loop vectorization extracts parallelism across loop
iterations and requires loops in a “vectorizable“ form, preferably with no loop-
carried dependencies. Compilers often need to perform advanced loop trans-
formations, such as loop fission, interchange, skewing, splitting, and peeling,
in order to transform loops to such a form.

SLP vectorization exploits the ILP within a basic block to pack instructions
into vectors and is applicable to loop bodies as well as straight-line code. In
case of loops, the body of the loop only needs to be unrolled to expose the ILP
between instructions before the vectorizer can pack them. In contrast to loop
vectorization, the SLP vectorizer is not dependent on advanced loop trans-
formations to produce vectorizable code, but relies on simple techniques for
exposing ILP that are already present in modern compilers.

Both schemes rely on advanced (inter-procedural) analyses, such as alias, align-
ment, and data analyses to expose independent loop iterations or instruc-
tions, as well as on an accurate profitability analysis to successfully produce
performant vector code.

TLP Extraction: The advent of CMPs puts automatic extraction of TLP into
the limelight, but despite its pressing need, it remains a hard problem with
limited success. ICC offers it as an option, but still fails to produce signifi-
cant speedups [139, 224]. Even though TLP extraction has not been successful

15

2. Motivation and Scope

so far, progress has been made. We therefore closer examine the recent ad-
vances in this field to provide the basis for the discussion of its challenges in
Section 2.3.

In the past, computer scientists tried to produce multi-threaded code from se-
quential programs, but were only successful for specific application domains,
such as scientific and numerical applications. These applications contain
counted loops that manipulate very regular, analyzable structures and con-
tain mostly predictable array accesses. In many cases, these loops have no
data dependences between iterations or are easily transformed into such a
form. Such DOALL parallelism can be easily exploited by implementing each
loop iteration as a separate thread [91].

Challenges arise for loops with dependencies across individual iterations. Sep-
arate threads can still be assigned to the iterations of such DOACROSS loops,
but synchronization is required among these threads to satisfy loop-carried
dependencies. The synchronization overhead might outweigh the paralleliza-
tion benefits, and an accurate profitability analysis is necessary for such paral-
lelization efforts to succeed. Here, we examine two recent approaches, Decou-
pled Software Pipelining (DSWP) [150] and Helix [35], that managed to extract
significant speedup from parallelizing loops of sequential code.

DSWP is an automatic method that statically extracts TLP by exploiting the
pipeline parallelism of loops [150]. The DSWP algorithm generates a loop’s de-
pendence graph, computes the acyclic strongly connected component (SCC)
graph of this dependence graph, and partitions the SCC graph into threads.
DSWP ensures that the loop’s critical path dependence chain, i.e., the longest
path in the SCC graph, is assigned to the same thread. This increases exe-
cution efficiency and provides latency tolerance. While DSWP managed to
achieve significant speedups, it relied on architectural extensions for inter-
thread communication. Moreover, its scalability is limited to the number of
SCCs and recurrences found in the loop body, which are typically smaller than
the number of loop iterations [164]. Raman et al. [163] addresses the last issue
by enhancing DSWP to also exploit DOALL parallelism for SCC graph nodes
that feature no loop-carried dependencies.

Helix [35] is another fully automatic technique that extracts TLP from loop it-
erations by carefully selecting the most profitable loops and distributing its
iterations in round-robin order to different threads. Helix hides the overhead

16

2.3. Parallelization Challenges

of inter-thread communication using profile-guided loop selection based on
a simple heuristic and the exploitation of a modern processors’ simultaneous
multi-threading capabilities. It reduces the inter-core signaling overhead by
employing helper threads to prefetch synchronization signals. Helix manages
to achieve impressive speedups for irregular sequential programs, but limits
parallel execution to one loop at a time. Moreover, performance gains fail to
scale beyond four cores due to communication latency and additional hard-
ware support seems to be required to overcome this limitation [34].

Special-Purpose Accelerators

Special-purpose accelerators have the potential to provide an order of magni-
tude increase in performance for a fraction of a general-purpose processor’s
energy. Their main drawback is the tedious and (prohibitively) expensive de-
sign process. Conventionally, designers use hardware description languages,
such as VHDL [220] or Verilog [207], to describe their hardware designs. These
languages require advanced hardware expertise and only offer a very low ab-
straction level, leading to long development times [142]. This restricts the de-
sign of custom accelerators to markets where the design costs can be amor-
tized, such as for embedded systems.

Another way to realize accelerators is to employ high-level synthesis (HLS).
HLS tools use a high-level language, such as C, C++, or SystemC, as input to
(semi-)automatically output a circuit specification, commonly in a hardware
description language. These tools raise the abstraction level and drastically
reduce hardware design costs, as they relieve developers of the complex and
error prone hardware design and debugging task. In combination with FPGAs,
HLS holds the promise for software developers to harvest the performance
and energy efficiency benefits of specialized hardware without the need to be-
come hardware designers.

2.3. Parallelization Challenges

Performance improvements no longer transparently happen to the software,
and the exploitation of parallelism is essential to higher performance. Modern

17

2. Motivation and Scope

architectures require programs with statically encoded coarse-grained paral-
lelism to exploit exposed hardware structures. This requirement forces de-
velopers and tools to face new as well as long-neglected challenges in code
parallelization [49].

Conceptually, the task of parallelization can be divided into three major steps,
regardless of whether the programmer explicitly encodes the parallelism or
tools automatically extract it:

1. Detection: The first step is to detect parallelizable program sections.
This can be as simple as identifying a readily parallelizable loop, or as
complex as exchanging an inherently sequential algorithm with a paral-
lel one. Automatic approaches require often advanced analyses to suc-
ceed.

2. Exposure: The second step is to expose the detected parallelism. In the
explicit case, this is done by the developer changing the original source
code, whereas in the automatic case, the tools’ internal program repre-
sentation is modified.

3. Exploitation: The third step is to exploit the exposed parallelism by
mapping it to an architecture. This involves adjusting the problem to
the concrete hardware parameters in order to gain optimal performance.
If done explicitly, this might lead to performance portability issues [153],
whereas the automatic case requires profitability analysis based on ac-
curate cost models of the underlying architecture to succeed.

All three steps are necessary to exploit coarse-grained parallelism on modern
architectures. While explicit parallelization requires the developer to perform
at least the first two steps, and maybe partially the third, automatic paralleliza-
tion techniques must perform all three steps. The remainder of this section
discusses some challenges that arise for the identified architectures with ex-
plicit and automatic parallelization.

2.3.1. Chip Multiprocessor Challenges

The challenges faced by tools and developers on CMPs are different for ex-
plicit and automatic code parallelization. This section identifies some of these

18

2.3. Parallelization Challenges

challenges. It is separated into two sections, one for each of the parallelization
methods.

Explicit Parallelization

Explicit parallel programming puts the burden of code parallelization on the
programmer [93]. At its lowest abstraction level, i.e., using threads and locks,
the challenges are immense. Programmers must not only detect and expose
concurrent program sections and manually partition them into threads, but
also manage their communication and synchronization using locks. This
amount of control enables programmers to precisely map programs to the
underlying architecture, but is (prohibitively) expensive. In addition to chal-
lenges from sequential programming, programmers face new challenges in
terms of correctness and performance portability [206]:

1. Correctness: The shared-memory programming model is inherently
non-deterministic [114], as inadequate thread synchronization can re-
sult in data races [88], deadlocks, and livelocks. These types of errors are
hard to find and understand, as their non-deterministic behavior makes
them difficult to reproduce.

2. Performance Portability: Concurrent programming introduces new po-
tential sources of performance bottlenecks, such as lock contention, syn-
chronization overheads, lock convoys, load balancing issues, and re-
source over/under-subscription [206, 133]. These performance issues
are often difficult to identify and might (re-)appear for different archi-
tectures or program inputs.

As discussed in Section 2.2.1, an abundance of programming models emerged
for different use cases and forms of parallelism that raise the abstraction level
above the simple usage of threads and locks. These models try to hide com-
plexity behind abstraction layers and leave architectural exploitation to com-
pilers or runtime systems. This mitigates the correctness and performance
issues, but does not solve them.

The cost-efficient programming of parallel hardware, however, becomes in-
creasingly important as performance improvements no longer transparently

19

2. Motivation and Scope

happen. The abundant availability of CMPs as a low-cost commodity renders
the writing of parallel software and the parallelization of sequential programs
a significant cost factor in the development of systems [129]. Explicit parallel
programming becomes a productivity challenge as software developers strug-
gle with low abstractions, poor tool support [133, 184], and the restructuring
of programs to extract the necessary parallelism. While automatic code par-
allelization could mitigate this productivity challenge, the next section shows
that the currently employed tools have already problems detecting and en-
coding the necessary parallelism. Some researchers even consider the current
state of tools along with a CMPs’ reliance on statically extracted parallelism
the beginning of a new software crisis [66, 6].

Automatic Parallelization

Automatic code parallelization can be performed by different methods for var-
ious levels of parallelism. This section examines two methods, vectorization
and TLP extraction, and identifies their respective challenges.

Vectorization: In 2011, Maleki et al. [126] analyzed the auto-vectorizers of the
GCC, ICC, and XLC compiler on a set of 151 loops. They found that only a frac-
tion of the loops were vectorized, despite the widespread availability of SIMD
units for over a decade and ample research on improving auto-vectorization
[111, 189, 190, 191, 192]. The three identified main causes are:

1. Inter-procedural Analysis: A lack of or inaccurate inter-procedural anal-
yses to disambiguate pointers and determine array dependencies. These
analyses are necessary to perform transformations that in turn permit
code vectorization.

2. Code Transformations: The inability of compilers to perform trans-
formations that would enable vectorization or make it profitable. The
authors identified memory layout change, code replacement, and data
alignment transformations as the main impediments to code vectoriza-
tion.

3. Profitability Analysis: A profitability analysis based on accurate cost
models is necessary to determine the benefits of vectorization. It is es-
sential that the analysis correctly predicts speedup of vectorized code,

20

2.3. Parallelization Challenges

as mispredictions can lead to missed opportunities, or worse, to perfor-
mance degradation. Studies by Pohl et al. [155, 156], however, showed
no or only a weak correlation between cost predictions and actual per-
formance gains for the profitability analysis of LLVM’s vectorizer. An-
other study performed by Pohl et al. [157] in 2018 showed similar results
for GCC.

This slow progress leads to cases where auto-vectorized code is still signifi-
cantly outperformed by manually vectorized code [39]. Researchers try to fur-
ther mitigate these issues by employing OpenMP directives to improve data
dependency analysis [98], extending vectorization to non-isomorphic instruc-
tion sequences [159], or improving the profitability of vectorization [158].

TLP Extraction: The challenges of TLP extraction are similar to the challenges
of auto-vectorization. Specifically, it relies on:

1. Inter-procedural Analyses: An accurate inter-procedural analyses is es-
sential to the success of TLP extraction as it helps to relax dependencies
and therefore uncover independent operations. For example, the Helix
project relied on a state-of-the-art inter-procedural pointer analysis of
the whole program [77].

2. Code Transformations: Both DSWP and Helix try to exploit loop-level
parallelism by inserting synchronization points to satisfy loop-carried
dependencies and exploit the parallelism in the rest of the code. In order
to minimize these synchronization points and improve performance,
parallelizers rely on optimizations, such as privatization or induction
variable elimination, to remove loop-carried dependencies or arrange
them to a sufficient distance such that no conflicts occur for concurrent
iterations.

3. Profitability Analyses: TLP extraction relies on an accurate profitability
analyses to determine the best loops for parallelization. In addition, an
accurate analysis is required to determine whether the concurrent exe-
cution of iterations outweighs inter-thread communication between it-
erations. For example, Helix [35] uses a heuristic based on the dynamic
loop nesting graph and a speedup model derived from Amdahl’s law [85]
to determine the best loops for parallelization.

21

2. Motivation and Scope

Auto-vectorization and TLP extraction require accurate inter-procedural anal-
yses, enabling code transformations, and accurate cost models to determine
profitability. Both schemes require global information to resolve dependen-
cies between operations within loops, even though they only transform local
loop structures. This global task is overly complicated by the usage of the Con-
trol Flow Graph (CFG) [4] as the dominant intermediate representation (IR) for
analyses and transformations [201].

The CFG is an inherently sequential IR that complicates the exposure of con-
current computations as it lends itself towards sequential languages. It high-
lights the structure of a function’s control flow and is simple to construct as
well as to destruct as it encodes program counter progress of Von-Neumann
architectures. Even though the CFG is widely used in the literature and in
mainstream compilers, such as LLVM or GCC, it is criticized as an IR for op-
timizing and parallelizing compilers [73, 99, 100, 113, 226, 236, 235]. Specifi-
cally, the CFG is criticized for the following deficiencies:

1. It is incapable of representing inter-procedural information. It requires
additional IRs, e.g., the call graph, to represent such information.

2. It provides no structural information about a procedure’s body. Impor-
tant structures, such as loops, and their nesting needs to be constantly
(re-)discovered for optimizations, as well as normalized to make them
amenable for transformations. For example, the first two steps of the
Helix compiler is to detect loops for parallelization and to normalize
them [35].

3. It emphasizes control dependencies, even though many optimizations
are based on the flow of data. This is somewhat mitigated by translating
it to static single assignment (SSA) form [53] or one of its variants, such
as gated SSA [213], thinned gated SSA [82] or future gated SSA [60], but
in turn requires SSA restoration passes [44] to ensure SSA invariants.

4. It is an inherently sequential IR. The operations in a basic block are al-
ways listed in sequential order, even if they are not dependent on each
other. Moreover, this sequentialization also exists for coarse-grained
structures such as loops, as two independent loops can only be encoded
in sequential order. Thus, the CFG is by design incapable of explicitly
encoding independent operations.

22

2.3. Parallelization Challenges

5. It provides no means to encode additional dependencies other than con-
trol and true data dependencies. Other information, such as loop-carried
dependencies or alias information, must be regularly recomputed and/or
memoized in addition to the CFG.

These deficiencies render the CFG inadequate as an IR for analyses and opti-
mizations in a time where the static exploitation of parallelism is paramount
to improve performance. Its inherent sequential nature, the lack of a global
program view and exposure of important structures, as well as the inabil-
ity to encode (the lack of) dependencies between operations and structures
overly complicate code parallelization. The CFG requires ample supporting
data structures, such as call graphs, loop trees, and alias representations, to
provide the necessary information to complex optimizations, such as auto-
vectorization or TLP extraction. This unnecessarily increases the complexity
of these transformations and leads to missed parallelization opportunities.

2.3.2. Graphics Processing Unit Challenges

GPUs evolved to highly parallel architectures that are optimized for accelerat-
ing data-parallel applications. The CUDA and OpenCL programming models
offer interfaces to efficiently program these architectures, but leave the actual
parallelization of the code to developers. It is the developer’s task to identify
suitable data-parallel kernels in a program and parallelize them so that they
execute correctly and efficiently on GPUs. Programmers therefore face the
same challenges for GPUs in terms of correctness [116, 20, 87, 241] and per-
formance portability [123, 122] as for CMPs, and need techniques as well as
tools to address these challenges.

In addition to correctness and performance portability, developers face the
challenge of efficient application portability. The GPU’s specialized architec-
ture is optimized for highly regular data-parallel applications, such as scalar
vector multiplication, but less regular applications must handle the GPU’s ar-
chitectural idiosyncracies to not compromise performance. An example of
such an idiosyncracy is thread divergence [179]. On a GPU, the same instruc-
tion is executed in lock-step on single-instruction and multiple-data (SIMD)

23

2. Motivation and Scope

units for a group of threads1. These threads can diverge in the presence of
control flow and lead to severe performance degradation [112].

2.3.3. High-Level Synthesis Challenges

HLS tools synthesize parallel hardware from sequential programs. In order to
generate efficient hardware, these tools need to discover operations and code
regions that can be executed in parallel. This is the same task that parallelizing
compilers face and consequently the challenges are very similar. Specifically,
HLS tools must cope with:

1. Concurrent Computation Exposure: Modern HLS tools, such as
LegUp [37] or Bambu [154], use a variant of the Control Data Flow Graph
(CDFG) [141] as their main IR. The CDFG tries to mitigate the sequen-
tial nature of the CFG by replacing the sequence of operations in basic
blocks with the Data Flow Graph (DFG) [56]. The DFG is an acyclic graph
that represents the flow of data between individual operations.

While the CDFG relaxes the strict ordering within a basic block, it does
not expose ILP beyond basic block boundaries or between program
constructs. This severely limits the discoverable parallelism [142, 236]
and HLS tools try to mitigate this problem by employing various opti-
mizations, such as loop unrolling, loop flattening [105, 232, 76], loop
pipelining [117], and if-conversion [124, 214] to expose more paral-
lelism. Moreover, HLS tools started to support standard software par-
allelization techniques, such as pthreads [32] and OpenMP, to expose
more coarse-grained parallelism [43].

2. Complex control flow: Sequential input programs often contain com-
plex control flow, such as data-dependent branches, function calls, and
nested loops, that leads to poor synthesis results [236].

3. Input Canonicalization: A lot of the input languages of HLS tools per-
mit designers to express the same algorithm using widely different pro-
gramming constructs and styles. This expressiveness offers develop-
ers freedom of choice for implementing their algorithms, but compli-

1See Section 4.2 and Chapter C1 for more details

24

2.4. Summary

Table 2.1.: Parallelization Challenges

Explicit Parallelization Automatic Parallelization

CMPs

* Inter-procedural analyses
‡ Correctness * Code transformations
‡ Performance Portability † Concurrent Computations

‡ Profitability analysis
‡ Correctness

GPUs ‡ Performance Portability Not discussed
‡ Application Portability

† Concurrent Computations
Accelerators Not discussed † Complex control flow

† Input canonicalization
* Detection † Exposure ‡ Exploitation

cates synthesis and can lead to unpredictable quality of synthesis re-
sults [193].

2.4. Summary

For over two decades, Dennard Scaling enabled software-transparent perfor-
mance gains at an unprecedented rate and catapulted society into the digital
age. As the driving factors behind these gains, frequency and superscalar scal-
ing, ceased to be sustainable, chip manufacturers turned to the exploitation
of coarse-grained parallelism to further improve performance. This paradigm
shift was not transparent to software. Developers and tools could no longer
rely on the processor to dynamically extract parallelism, but must statically
detect, expose, and exploit it to gain performance. This forces developers
and tools to face new as well as long-neglected challenges in code paralleliza-
tion. Table 2.1 summarizes these challenges. It shows a division between ex-
plicit and automatic parallelization. Explicit parallelization faces challenges
in terms of parallelism exploitation, whereas automatic parallelization faces
challenges in terms of parallelism detection and exposure.

25

2. Motivation and Scope

The reason for explicit parallelization to only face challenges in terms of ex-
ploitation is that developers are responsible for parallelism detection and ex-
posure. This manual encoding permits effective exploitation of modern archi-
tectures, but is exorbitantly expensive as concurrent programming is demon-
strably more difficult than sequential programming [206]. It further causes
performance portability issues as developers fit the parallelized program to
the underlying architecture and/or input parameters. These issues render
the parallelization of sequential programs time consuming and error-prone,
resulting in low programmer productivity. Thus, developers require mature
techniques and tools to support them in parallelizing sequential programs.

The alternative to explicit parallelization is automatic parallelization. It holds
the promise to relieve developers of the time consuming and error-prone task
of manually parallelizing code and therefore boost productivity, but currently
fails to accomplish this as it already faces challenges in terms of parallelism
detection and exposure. In particular, modern compilers still employ an in-
herently sequential IR for optimizations and analyses, complicating the ex-
posure of concurrent computations. This was acceptable in an era where
performance improvements happened transparently to software, but hinders
progress in a time when the static exploitation of parallelism is paramount.

This thesis addresses three of the aforementioned challenges. The first ad-
dressed challenge is the exposure of concurrent computations, the second
challenge is application portability to GPUs, and finally, the third challenge
is performance portability on CMPs. The next section describes the detailed
contributions of this thesis, and how these contributions are linked to those
three challenges.

26

3. Research Contributions

The performed research culminated in nine articles, of which four are included
in this thesis1:

Article B1 – RVSDG: An Intermediate Representation for Optimizing Com-
pilers
Nico Reissmann, Jan Christian Meyer, Magnus Själander
Unpublished Manuscript

Article B2 – Perfect Reconstructability of Control Flow from Demand Depen-
dence Graphs
Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Chris-
tian Meyer
In Transactions on Architecture and Code Optimization (TACO),
Volume 11 Issue 4, ACM, 2015

Article C1 – Efficient Control Flow Restructuring for GPUs
Nico Reissmann, Thomas L. Falch, Benjamin A. Björnseth, Helge
Bahmann, Jan Christian Meyer, and Magnus Jahre
In Proceedings of the International Conference on High Performance
Computing & Simulation (HPCS), IEEE, 2016
Winner of Outstanding Paper Award

Article D1 – Diagnosing Highly-Parallel OpenMP Programs With Aggregated
Grain Graphs
Nico Reissmann and Ananya Muddukrishna
In Proceedings of the International European Conference on Paral-
lel and Distributed Computing (Euro-Par), Springer, 2018

1See Section 3.3 for the other five articles

27

3. Research Contributions

D1

C1
Application
Portability

Performance
Portability

B1 B2

Exposure of

Concurrent Computations

Figure 3.1.: Addressed challenges and relationship between articles.

The four articles are categorized into three groups according to the challenges
mentioned in Secion 2.4. The first two articles are both about the RVSDG and
therefore are grouped in the same part of this thesis. The other two articles
have each their own part. Throughout the remainder of this thesis, each article
is identified by its part and number, i.e., B1, B2, C1, and D1, for the sake of
brevity.

Figure 3.1 shows the relationship of the four articles as a simple dependency
tree, categorized according to the challenges they address. Article B1 is the
root of this tree. It presents the RVSDG and parts of its construction and de-
struction, exemplifies its utility by presenting optimizations, and provides an
evaluation of a practical implementation. Article B2 depends on article B1, as
it details the control flow restructuring of RVSDG construction and the control
flow recovery of RVSDG destruction. Together, both articles provide the the-
oretical basis for the RVSDG, its construction, as well as destruction, and the
foundation of a practical RVSDG compiler implementation.

The insights gained from the control flow restructuring in article B2 could be
further applied to other research fields. Article C1 uses control flow restruc-
turing to reduce the impact of control flow divergence on GPUs, and article
D1 uses it to reduce the visual and computational overhead of grain graphs
in order to simplify OpenMP performance analysis. Thus, article C1 and D1
share a common origin in article B2, even though both articles are unrelated
and positioned in different research fields.

The rest of this chapter discusses the detailed research contributions of the
four articles in Section 3.1, provides an overview of the produced tools in Sec-
tion 3.2, and presents the other published articles in Section 3.3.

28

3.1. Thesis Articles

3.1. Thesis Articles

Article B1 – RVSDG: An Intermediate Representation for Optimizing
Compilers

This article presents the RVSDG as an IR for optimizing and parallelizing com-
pilers, as well as its construction, i.e., its generation from the input language,
and destruction, i.e., the generation of the target language. The RVSDG is
a hierarchical acyclic multi-graph where nodes represent computations and
edges the dependencies between these computations. Its nodes can repre-
sent simple operations, such as addition, subtraction, load, and store, but also
complex computations, such as conditionals, loops, and functions. Its edges
serve two purposes: first, they model the flow of data between computations,
and second, they are used to enforce a sequential order for operations with
side-effects. Specifically, the RVSDG has the following properties:

1. It is a single unified IR that is capable of representing an entire transla-
tion unit or program.

2. It normalizes programs by representing them in a canonical represen-
tation, where different input language constructs are mapped to the
same IR constructs.

3. It enforces SSA form and therefore avoids SSA restoration.

4. It exposes the hierarchical structure of programs, e.g., the nesting of
loops.

5. It exposes the parallelism inherent in programs as operations are only
dependent on the necessary edges and complex computations, such as
conditionals or loops, are modeled explicitly.

The article presents two optimizations in detail that exploit these properties,
and evaluates the IR in terms of performance, code size, compilation over-
head, as well as engineering effort using a prototype compiler.

29

3. Research Contributions

Article B2 – Perfect Reconstructability of Control Flow from Demand
Dependence Graphs

This article focuses on the construction and destruction of the RVSDG’s intra-
procedural constructs. Since the RVSDG only supports conditionals and tail-
controlled loops, input languages with more complex control flow require con-
trol flow restructuring to make them amenable to the IR. This article intro-
duces an algorithm that structurally converts any intra-procedural control flow
to a form that permits RVSDG construction.

For RVSDG destruction, the article proposes two novel algorithms for intra-
procedural control flow extraction. The first algorithm only produces intra-
procedural control flow that consists of conditionals and tail-controlled loops,
and therefore mirrors the constructs of the RVSDG. The second algorithm is
capable of extracting any control flow from the RVSDG, but requires the IR to
be in predicate continuation form (PCF). This normal form ensures that there
only exist unique paths from nodes producing control flow predicates to the
conditionals and loops. The article proves termination and correctness of the
algorithms, as well as that the original CFG, from which an RSVSDG was cre-
ated, can be perfectly reconstructed. It further empirically evaluates the per-
formance, the representational overhead at compile time, and the reduction
in branch instructions for the destruction algorithms.

Article C1 – Efficient Control Flow Restructuring for GPUs

This article uses the insights gained from the control flow restructuring step
in the RVSDG construction and applies them to GPUs to reduce the impact of
branch divergence. In GPUs, divergent branches cause performance degra-
dation by under-utilizing the execution pipeline. If also unstructured control
flow is present in addition to these branches, then performance can further
degrade as this results in repeated code execution.

This article extends and applies the control flow restructuring algorithm from
article B2 to GPUs. The proposed algorithms convert unstructured to struc-
tured control flow to effectively eliminate redundant code execution and po-
tentially improve execution time. The algorithms are empirically evaluated in
terms of performance and representational compile-time overhead.

30

3.2. Frameworks and Tools

Article D1 – Diagnosing Highly-Parallel OpenMP Programs with
Aggregated Grain Graphs

This article uses the insights gained from the restructuring algorithm of ar-
ticle B2 to aggregate large grain graphs and simplify OpenMP performance
analysis. The performance of OpenMP programs can vary for different pro-
gram inputs and between different architectures. In order to optimize perfor-
mance, developers need methods that help them to adapt their programs to
these varying parameters. Grain graphs emerged as such a method. Instead of
presenting the programmer with intricate details of the runtime system, grain
graphs mirror the nested structure of OpenMP programs by presenting perfor-
mance issues in a familiar fork-join perspective. However, for highly-parallel
OpenMP programs, grain graphs can easily contain more than 100000 nodes,
rendering viewers irresponsive and overwhelming developers.

This article simplifies performance analysis for such large graphs by propos-
ing an aggregation method. This method matches recurring patterns in the
grain graphs, groups related nodes, and ultimately reduces the graph to a sin-
gle node. The aggregated graph can then be navigated by progressively uncov-
ering problematic groups, while hiding unproblematic nodes from the devel-
oper. The article empirically evaluates the aggregation method using standard
OpenMP programs from SPEC OMP 2012, Barcelona OpenMP Task Suite 2.1.2,
and Parsec 3.0.

3.2. Frameworks and Tools

Aside from the articles, the research created or extended three frameworks
and tools worth mentioning:

Jive: The jive compiler back-end implements the RVSDG intermediate rep-
resentation. It provides the abstractions, data structures, and necessary inter-
faces for tools that want to use the RVSDG for compilation and code optimiza-
tion. The project is a joint development effort with Helge Bahmann.

Repository: https://github.com/phate/jive.git

31

3. Research Contributions

Jlm: The jlm framework is a collection of tools that provide an RVSDG-based
compiler and optimizer for the LLVM IR. It consists of the following compo-
nents:

1. libjlm: The core library that uses the Jive compiler back-end to imple-
ment the RVSDG-based LLVM IR. It provides the implementation for
LLVM’s type system, its operators, as well as the construction and de-
struction methods necessary to convert from and to the original LLVM
IR, respectively.

2. jlm-opt: An optimizer for the LLVM IR that uses the RVSDG for analyses,
optimizations, and transformations.

3. jlm-print: A pretty printer that can emit the program or outputs of the
individual compilation stages in various formats. It can print the RVSDG
IR as XML, which is the input format of the RVSDG viewer.

4. jlc: A C compiler that uses the RVSDG for analyses, optimizations, and
transformations.

The project has so far been a sole development effort.

Repository: https://github.com/phate/jlm.git

RVSDG viewer: The RVSDG graph viewer is a graphical user interface program
that can be used to inspect RVSDGs. Its main use is for debugging RVSDG
optimizations and transformations. The development effort has so far solely
been done by Asbjørn Djupdal.

Repository: https://github.com/phate/rvsdg-viewer.git

3.3. Other Articles

Several other research articles were produced during the course of this PhD.
They are not part of this thesis, as either their extended version is included, or
they lie outside the thesis’ scope:

32

3.3. Other Articles

1. A Study of Energy and Locality Effects using Space-filling Curves
Nico Reissmann, Jan Christian Meyer, Magnus Jahre.
In Proceedings of the 28th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS) and IPDPS Workshops (IPDPSW), 2014.

2. Towards fine-grained dynamic tuning of HPC applications on modern
multi-core architectures
Mohammed Sourouri, Espen Birker Raknes, Nico Reissmann, Johannes
Langguth, Daniel Hackenberg, Robert Schöne, Per Gunnar Kjeldsberg.
In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2017.

3. Aggregating Large Grain Graphs For Improved OpenMP Productivity
Nico Reissmann, Magnus Jahre, Ananya Muddukrishna.
In Fourth International Workshop on Visual Performance Analysis (VPA),
2017.

4. RVSDG: An Intermediate Representation for the Multi-Core Era
Nico Reissmann, Jan Christian Meyer, Magnus Själander.
In 11th Nordic Workshop on Multi-Core Computing (MCC), 2018.

5. Load Balancing Domain Decompositions of a Lattice-Boltzmann Proxy
Application
Jan Christian Meyer, Janusa Ragunathan, Jørgen Valstad, Nico Reissmann.
In 11th Nordic Workshop on Multi-Core Computing (MCC), 2018.

33

4. Background and Related Work

This chapter provides the background and context necessary to understand
the articles of this thesis. It covers compiler intermediate representations,
Graphics Processing Units, and the OpenMP application programming inter-
face.

4.1. Compiler Intermediate Representations

Compilers are language translators that read a program written in one pro-
gramming language, i.e., the source language, and translate it into a program
of another language, i.e., the target language [3]. It is often the case that the
source language is a high-level programming language, such as C, C++, or Java,
and the target language the machine instructions of an instruction set archi-
tecture, such as x86, ARM, or PowerPC. The important tasks of a compiler are
the reporting of errors in the source program, the semantically correct trans-
lation of input to output programs, and the optimization of programs to im-
prove code quality.

The internal structure of a compiler is generally split into stages where each
stage performs a specific task of the compilation process, as exemplified in
Figure 4.1. The input language specific tasks, such as lexical, syntactic, and
semantic analysis, are performed in the front-end, whereas optimizations and
code generation are performed in the back-end. At the heart of a compiler are
intermediate representations, illustrated in Figure 4.1 as little rectangles be-
tween stages. These data structures represent programs in memory through-
out compilation, connect the individual compiler stages, as well as highlight
and expose program properties that are important for a specific stage.

35

4. Background and Related Work

S
e
m
a
n
t
i
c

A
n
a
l
y
z
e
r

S
y
n
t
a
x

A
n
a
l
y
z
e
r

L
e
x
i
c
a
l

A
n
a
l
y
z
e
r

Front-End Back-End

C
o
d
e

G
e
n
e
r
a
t
o
r

O
p
t
i
m
i
z
e
r

s
o
u
r
c
e

p
r
o
g
r
a
m

t
a
r
g
e
t

p
r
o
g
r
a
m

I
R

G
e
n
e
r
a
t
o
r

Figure 4.1.: Simplified view of a compiler.

As program optimizations are an integral part of every modern compiler, a
cornucopia of IRs has been presented in the literature to better expose de-
sirable program properties for optimizations. Section 2.3.1 and 2.3.3 already
highlighted the strengths and weaknesses of the C(D)FG, and we discuss in
the remainder of this section the more prominent alternatives that emerged
over the years.

4.1.1. Program Dependence Graph/Web

The Program Dependence Graph (PDG) [73] combines control and data flow
within a single representation. It features data and control flow edges, as well
as statement, predicate, and region nodes. Statement nodes represent opera-
tions, predicate nodes represent conditional choices, and region nodes group
other nodes with the same control dependency. If a region’s control depen-
dencies are fulfilled, then its children could potentially be executed in parallel.
Horwitz et al. [90] extended the PDG to model inter-procedural dependencies
by incorporating procedures into the graph.

The PDG improves upon the CFG by employing region nodes to relax the overly
restrictive sequence of operations. The relaxed sequence combined with the
unified representation of data and control dependencies simplifies complex
optimizations, such as code vectorization [17] or TLP extraction [150, 180],
but also increases maintenance cost during and after transformations.

36

4.1. Compiler Intermediate Representations

The unified data and control flow representation results in a large number of
edge types, five in Ferrante et al. [73] and four in Horwitz et al. [89], which
need to be maintained to ensure the graph’s invariants. The PDG suffers from
aliasing and side-effect problems, as it supports no clear distinction between
data held in registers and memory. This complicates or can even preclude
construction altogether [100]. Moreover, program structure and SSA form still
need to be discovered and maintained.

The Program Dependence Web (PDW) [149] extends the PDG and gated
SSA [213] to provide a unified representation for the interpretation of pro-
grams using control-, data-, or demand-driven execution models. This sim-
plifies the mapping of programs written in different paradigms, such as the
imperative or functional paradigm, to different architectures, such as Von-
Neumann and dataflow architectures. In addition to the elements of the PDG,
the PDW adds µ nodes to manage initial and loop-carried values, as well as
η nodes to manage loop-exit values. Campbell et al. [36] further refined the
definition of the PDW by replacing µ nodes with β nodes and eliminating η

nodes. As the PDW is based on the PDG, it suffers, however, from the same
aliasing and side-effect problems. Its additional constructs further compli-
cate graph maintenance and the PDW’s construction is elaborate, requiring
three additional passes over a PDG, and limited to programs with reducible
control flow.

4.1.2. Value (State) Dependence Graph

The Value Dependence Graph (VDG) [226] abandons the explicit representa-
tion of control flow and only models the flow of values using ports. Its nodes
represent simple operations, or program constructs, such as conditionals or
functions. Loops are modeled as recursive functions. The VDG is implicitly in
SSA form and abandons the sequential order of operations from the CFG, as
each node is only dependent on its values. However, modeling only data flow
raises a significant problem in terms of preservation of program semantics, as
the "evaluation of the VDG may terminate even if the original program would
not..." [226].

The Value State Dependence Graph (VSDG) [99, 100] addresses the VDG’s ter-
mination problem by introducing state edges. These edges are used to model

37

4. Background and Related Work

the sequential execution of operations with side-effects. In addition to nodes
for representing simple operations and selection, it introduces nodes to ex-
plicitly represent loops. Like the VDG, the VSDG is implicitly in SSA form,
and nodes are solely dependent on required operands, avoiding a sequential
order of operations. However, the VSDG supports no inter-procedural con-
structs, and its selection operator is only capable of selecting between two
values based on a predicate. This complicates destruction, as selection nodes
must be combined to express conditionals. Even worse, the VSDG represents
all nodes as a flat graph, which simplifies optimizations [100], but has a se-
vere effect on evaluation semantics. Operations with side-effects are no longer
guarded by predicates, and care must be taken to avoid duplicated evaluation
of these operations. In fact, for graphs with stateful computations, lazy eval-
uation is the only safe strategy [113]. The restoration of a program with an
eager evaluation semantics complicates destruction immensely, and requires
a detour over the PDG to arrive at a unique CFG [113]. Zaidi et al. [235, 236]
adapted the VSDG to spatial hardware and sidestepped this problem by in-
troducing a predication-based eager/dataflow semantics. The idea is to effec-
tively enforce correct evaluation of operations with side-effects by using pred-
ication. While this seems to circumvent the problem for spatial hardware, it
is unclear what the performance implications would be for conventional pro-
cessors.

The RVSDG solves the VSDG’s eager evaluation problem by introducing re-
gions into the graph. These regions enable the modeling of control flow con-
structs as nested nodes, and the guarding of operations with side-effects. This
avoids any possibility of duplicated evaluation, and in turn simplifies RVSDG
destruction. Moreover, nested nodes permit the explicit enconding of a pro-
gram’s hierarchical structure into the graph, further simplifying optimizations.

4.2. Graphics Processing Units

Graphics Processing Units (GPUs) were originally designed to offload the CPU
from performing graphics computations, but found their way into general-
purpose programming due to the introduction of programming models such
as CUDA or OpenCL. Their single instruction, multiple thread (SIMT) exe-

38

4.2. Graphics Processing Units

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

L2 Cache
D
R
A
M
D
R
A
M
D
R
A
M
D
R
A
M

H
o
s
t

I
n
t
e
r
f
.

G
i
g
a

T
h
r
e
a
d

D
R
A
M

D
R
A
M

Figure 4.2.: Simplified block diagram of a GPU.

cution model combines multi-threading, MIMD, SIMD, and instruction-level
parallelism to accelerate data-parallel kernels [83].

In CUDA, developers must decide upon kernel invocation on the total number
of threads as well as a partition of these threads into thread blocks as follows:

kernel<<<nBlocks, nWarps>>>(...parameters...)

where nBlocks is the number of thread blocks and nWarps the number of
threads, called warps in CUDA terminology, per block. Upon execution, the
thread blocks are assigned by the GPU scheduler to streaming multiprocessors
(SM) and the SIMD instructions from the warps run on individual execution
units in lock-step. A vertical cut of a warp’s instruction stream, corresponding
to a single element executed by a core, is called a CUDA thread.

Figure 4.2 shows a simplified block diagram of a GPU. Green depicts execution
units, blue register, caches, and memory, and orange scheduling and dispatch
units. As shown, a GPU consists of multiple SMs1, a shared L2 cache, as well
as DRAM support and an interface to the host. The Giga Thread scheduler is
responsible for distributing thread blocks to the different SMs.

1The number of SMs varies between different microarchitectures.

39

4. Background and Related Work

Instruction Cache

Warp Scheduler

Register File

Core Core LD/ST SFU

Core Core

Core Core

Core Core

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

Interconnect Netw.

Cache/Local Memory

Interconnect Netw.

Figure 4.3.: Simplified block diagram of an SM.

Dropping down one more level of detail, Figure 4.3 shows a simplified block
diagram of an SM. It consists of data and instruction caches, registers, as well
as a warp scheduler that selects and issues instructions from a ready warp to
the execution units, e.g., cores, load/store (LD/ST), or special function units
(SFUs). Thus, GPUs consist of two levels of hardware schedulers: a thread
block scheduler that assigns thread blocks to SMs, and a warp scheduler within
an SM that schedules instructions from warps. The warp scheduler can pick
any ready instruction from any warp as warps are independent from another.
The scheduler includes a scoreboard of ready instructions, since memory in-
structions have variable latency due to cache or TLB misses. The basic as-
sumption is that enough threads are available and multi-threading can be
used to hide the memory latency of stalled instructions and increase the uti-
lization of SMs.

40

4.2. Graphics Processing Units

if (c) {
 S1;
} else {
 S2;
}
S3;

(a) Code

c

S1 S2

S3

0 1

{T1,T2,T3,T4}

{T1,T2,T3,T4}

{T1,T2} {T3,T4}

(b) Control Flow Graph

T1
T2
T3
T4

c S1

c

c

c

S1

S2

S2

S3

S3

S3

S3

Time

(c) Execution schedule

Figure 4.4.: Control flow divergence.

4.2.1. Control Flow Divergence on GPUs

On GPUs, all threads of a warp execute the same instruction in lock-step. Upon
the execution of a conditional branch, however, it could happen that a warp’s
threads diverge and individual threads have to follow different execution paths.
GPUs handle such divergent threads by executing the individual paths se-
quentially, masking out threads that do not take a path. This causes per-
formance degradation as the individual execution units of an SM are under-
utilized.

Figure 4.4 illustrates the problem of control flow divergence for a warp of four
threads. Figure 4.4b shows the CFG of the code in Figure 4.4a. Upon exe-
cution of the conditional branch instruction in basic block c, the threads in
the warp diverge. Thread T 1 and T 2 continue execution at basic block S1,
whereas thread T 3 and T 4 continue execution at basic block S2. The threads
only reconverge before executing basic block S3. Figure 4.4c shows a possible
execution schedule, illustrating the sequentialization of the S1’s and S2’s ex-
ecution. It shows the under-utilization of the execution pipeline, with thread
T 3 and T 4 idling while thread T 1 and T 2 execute, and similarly, thread T 1
and T 2 idling while T 3 and T 4 execute. This under-utilization of the execu-
tion pipeline due to divergent threads is a major performance bottleneck on
GPUs [57, 79, 228, 9].

41

4. Background and Related Work

4.3. Grain Graphs

Grain graphs are an OpenMP performance visualization method that emerged
as an alternative to runtime system or thread oriented visualizations. Instead
of depicting program execution from a runtime system perspective, grain
graphs visualize task and parallel for-loop chunk instances, collectively called
grains, in a fork-join perspective that is familiar to developers. Grains are
annotated with source code locations and are highlighted if they suffer per-
formance issues. The familiar perspective along with the grains’ annotations
simplifies OpenMP performance analysis, as it permits programmers to im-
mediately connect performance issues to program structure.

4.3.1. Structure

Grain graphs are acyclic directed graphs that consist of nodes representing
the creation, synchronization, and computation of task and parallel for-loop
chunk instances, as well as edges representing the dependencies between these
events. Figure 4.5 shows the different nodes and edges for example OpenMP
programs. A grain graph can contain five different node types: fork, join, frag-
ment, book-keeping, and chunk nodes, as well as three different edge types:
creation, synchronization, and continuation. Fork and join nodes represent
the creation and synchronization of tasks, respectively, and fragment nodes
the execution of tasks between these two events. Creation edges connect fork
nodes with a child’s fragment node, synchronization edges connect the frag-
ment node of children with the join node of the parent, and continuation
edges connect fragment nodes to fork or join nodes, and denote the contin-
uation of execution after the spawning of or synchronization with children,
respectively.

Figure 4.5c shows the graph with these nodes and edges for the code in Fig-
ure 4.5a. In the code, the task f oo creates the two tasks bar and baz, performs
computations between their creation, and synchronizes with its child tasks.
The grain graph in Figure 4.5c shows these events and contains three fragment
nodes (grey), i.e., one for each task, one fork node (green) that spawns the two
child tasks bar and baz, as well as one join node (orange) that synchronizes
the parent task f oo with bar and baz.

42

4.3. Grain Graphs

#pragma omp task
{ /* foo */
 #pragma omp task
 { /* bar */ }
 ...
 #pragma omp task
 { /* baz */ }
 ...
 #pragma omp taskwait
}

(a) OpenMP task program.

#pragma parallel for \
schedule(static,4) \
num_threads(2)
for (int i = 1; i <= 20; i++)
{
 ...
}

(b) OpenMP parallel for-loop program.

f
o
o

fork

b
a
r

b
a
z

join

(c) Grain graph for program in Figure 4.5a.

fork

b
o
o
k

b
o
o
k

join

fork fork

1
-
4

1
7
-
2
0

9
-
1
2

5
-
8

1
3
-
1
6

join

join

(d) Grain graph for program in Figure 4.5b

Figure 4.5.: OpenMP programs and corresponding grain graphs. Examples
taken from [137].

43

4. Background and Related Work

In code with parallel-for loops, book-keeping nodes denote the computation
of splitting an iteration space into chunks, and chunk nodes represent the
computation performed by the set of iterations in a chunk. Figure 4.5d shows
the graph with these nodes for the code in Figure 4.5b. In the code, the it-
erations of the for loop are distributed among two threads, where each thread
executes four iterations of the loop at a time. The grain graph in Figure 4.5d re-
flects these events and contains 5 chunk nodes (yellow), i.e., one chunk node
for every four iterations, and two book keeping nodes (blue), i.e., one for each
of the two threads.

4.3.2. Problem Diagnosis

Grain graph nodes are annotated with the source code locations of the events
they represent, as well as with performance metrics measured during profiling
and derived post profiling. Profiled metrics include a grain’s execution time,
cache miss ratio, memory latency, as well as event timings, such as grain cre-
ation and synchronization. These metrics are used to compute derived met-
rics, such as global and local critical paths, work deviation, instantaneous par-
allelism, memory hierarchy utilization, load balance, scatter, and parallel ben-
efit.

Metrics are visually encoded in the graph to ease problem diagnosis. For ex-
ample, the length of a fragment, book-keeping, or chunk node correlates with
the length of its execution time, and its fill color reflects problem severity.

Programmers diagnose problems by switching between different views. Each
view represents a different performance problem, and encodes this problem
in the graph by dimming non-problematic grains and highlighting problem-
atic grains with a fill color that correlates to problem severity. Grains are in-
ferred as problematic if the value of the corresponding metric crosses a sensi-
ble threshold. Figure 4.6 shows the low parallel benefit view of a grain graph,
highlighting grains in red that suffer from parallelization overhead as their ex-
ecution time is too short. These nodes should effectively be executed sequen-
tially to reduce this overhead.

44

4.3. Grain Graphs

fork

join

fork fork fork fork

join join join

join

Figure 4.6.: A grain graph with red nodes that exhibit low parallel benefit.

45

5. Concluding Remarks

The end of Dennard scaling left the extraction and exploitation of parallelism
as the primary way forward to improve performance. Chip designers aban-
doned single-core processor scaling and embraced heterogeneous architec-
tures as viable alternatives. CMPs, GPUs, and special-purpose accelerators
emerged and permitted further performance improvements without exceed-
ing power budgets.

This architectural shift, however, was not transparent to software. Sequen-
tial programs experience no automatic performance gains running on these
systems and must be parallelized to take advantage of the provided struc-
tures. This parallelization must statically detect, expose, and exploit concur-
rent computations inherent in applications, and can either happen explicitly
or automatically, i.e., concurrent computations are extracted by developers
or tools, respectively. The challenges of explicit extraction lie within the ex-
ploitation of parallelism, while automatic extraction already faces challenges
in detecting and exposing parallelization opportunities. Specifically, develop-
ers face challenges in program correctness as well as performance and appli-
cation portability, while tools provide insufficient analyses and miss transfor-
mations to detect the parallelism, as well as employ inherently sequential IRs.
This thesis‘ research addressed three of these challenges.

Its first part addressed the detection and encoding of concurrent computa-
tions in automatic approaches. We presented the Regionalized Value State
Depedence Graph (RVSDG) as a new IR for compilers. The RVSDG is a data-
flow centric IR that elides most of the control flow from the original program.
It is capable of representing an entire translation unit as a hierarchical acyclic
graph, enforces desirable properties, such as SSA, explicitly encodes impor-
tant structures, such as loops, and is capable of exposing a program’s con-
current computations. We further devised RVSDG construction and destruc-
tion algorithms. RVSDG construction enables the generation of RVSDGs from

47

5. Concluding Remarks

programs with any kind of complex control flow, while RVSDG destruction
permits the recovery of arbitrarily complex intra-procedural control flow. To-
gether, these algorithms enabled the creation of jlm, a prototype compiler that
uses the RVSDG for optimizations. Jlm consumes and produces LLVM IR and
can be used as a drop-in replacement for LLVM’s optimization stages. This
opens up the way for further research in terms of parallelism detection and
exploitation.

The second part addressed application portability issues on GPUs by mitigat-
ing the effect of branch divergence. We proposed a control flow restructur-
ing method that converts unstructured to structured control flow by inserting
predicates and early reconvergence points to reduce the impact of divergence.
The method effectively eliminates repeated code execution on GPUs and po-
tentially improves performance.

The third part addressed performance portability on CMPs. We presented an
aggregation method for large grain graphs to simplify the performance anal-
ysis of OpenMP programs. The method hierarchically groups related nodes,
reducing an entire graph to a single node. The aggregated graph can then be
navigated by progressively uncovering nodes with performance issues, while
hiding unrelated graph regions. This enhances productivity by speeding up
the visual analysis of large grain graphs and enabling programmers to under-
stand problems in highly-parallel OpenMP programs with less effort than be-
fore.

The developed techniques and methods of the three addressed challenges
pave the way for further research. The rest of this section discusses some of
this research and attempts an outlook into the future.

5.1. Future Work

This section discusses future research for the individual directions of the four
articles. Specifically, Section 5.1.1 discusses future RVSDG research, Section
5.1.2 the impact of redundant execution on GPUs, and Section 5.1.3 presents
research ideas on OpenMP performance analysis using grain graphs.

48

5.1. Future Work

5.1.1. Regionalized Value State Dependence Graph

The RVSDG is an IR that enables the encoding of concurrent computations,
as its state and value edges explicitly model the dependencies between op-
erations and/or higher-level program structures, such as loops or functions.
This section outlines ideas for the exposure of these computations and the
subsequent exploitation of the exposed parallelism. It further presents other
research challenges that are orthogonal to code parallelization.

Parallelization Detection

The exposure of independent computations is accomplished by relaxing the
overly conservative execution order of the original sequential program. Sim-
ple graph rewriting techniques are used to encode analyses results in the graph
by splitting state edges. This renders unrelated computations independent
from each other and exposes opportunities for automatic parallelization. The
remainder of this section presents ideas to relax the execution schedule of se-
quential input programs.

Separating Unrelated Side-Effects: The current, and naive, implementation
uses a single state to sequentialize all operations with side-effects through-
out construction. This is overly conservative as different computations can
have mutually exclusive side-effects. For example, the side-effect of a non-
terminating loop is unrelated to a load that is not dereferencable. These side-
effects can be modeled by separate states. This would already result in the
exposure of more parallelism after construction as, for example, loops with no
memory operations would become independent from other loops with mem-
ory operations.

Invariant Edge Redirection: The RVSDG’s explicit representation of higher-
level constructs as structural nodes combined with the explicit encoding of
dependencies enables the modeling of the interrelations between condition-
als, loops, and functions. RVSDG construction or optimizations direct edges
into structural nodes to serve as inputs for nested computations, but the val-
ues represented by these edges might not be modified. This renders these
edges invariant with respect to the structural node and the users of the cor-
responding structural node’s output can be diverted. A canonical example is

49

5. Concluding Remarks

typedef struct s{
 unsigned int i;
} s;

unsigned int
f(s * p, s * q)
{
 p->i = 1;
 q->i = 2;
 return p->i + 3;
}

(a) Code

lambda f

+

gep

0

gep

store

0

store

1

load

2

3

(b) RVSDG after construction

lambda f

+

gep

0

gep

store

0

store

1

load

2

3

(c) RVSDG after encoding

Figure 5.1.: Encoding alias information in the RVSDG

two terminating loops that do not modify memory. These loops would be se-
quentialized after construction due to the state edge that is routed through
them. This state edge is invariant and can be redirected to render these loops
independent from each other.

Alias Analysis: Alias analysis divides a program’s memory into disjoint sets of
locations that cannot alias one another. These alias classes can be encoded in
the RVSDG with the help of state edges as shown in Figure 5.1. The RVSDG in
Figure 5.1b shows the code of Figure 5.1a after RVSDG construction. It con-
tains a single state edge (red dotted line) that sequentializes the loads and
stores to preserve the semantics of the original program. This sequentializa-
tion might be too conservative. If alias analysis can determine that pointers
p and q never point to the same storage location, then it is possible to repre-
sent these disjoint locations with two distinct state edges. Figure 5.1c shows
the RVSDG after the encoding of this non-alias information. Function f has
now two states: one for pointer p and q . The respective load and store op-
erations are now sequentialized with the corresponding state edges, which
enables further optimizations. The load now directly follows a store with the
same address value and both states are directly connected without another in-

50

5.1. Future Work

tervening node. This permits to replace the output of the load with the value
of the store, namely one, which in turn permits the constant folding of the add
operation. Thus, the encoding of non-alias information in the RVSDG helps
to expose concurrent computations, and may enable other optimizations.

Parallelization Exploitation

Independent computations are explicitly represented in the RVSDG after anal-
yses and transformations relaxed the original sequential execution order. The
dependencies between operations are encoded as value and state edges, re-
ducing the detection of parallel computations to simple dependency checks
between RVSDG nodes. The remainder of this section discusses some implica-
tions for known parallelization methods and ideas for exploiting the RVSDG’s
properties in other compiler passes.

SLP Vectorization: SLP Vectorization identifies isomorphic scalar operations
in straight-line code and packs them into vector operations. This is accom-
plished by finding seed operations in a basic block and following the data de-
pendence graph from these seed operations to form groups of operations that
are vectorizable [159]. In the RVSDG, SLP vectorization could be performed
by forming layers of isomorphic nodes in a region. The transformation could
be directly performed in the graph as regions are acyclic and all dependencies
between nodes are explicitly expressed using edges. Node layering is a well-
known problem in graph visualization [16] and inspiration could be drawn
from these algorithms.

TLP Extraction: By design, the RVSDG is a concurrent IR as it enables the ex-
plicit representation of concurrent computations. A region’s structural nodes
and function calls can be executed concurrently as long as they do not share
any dependencies. TLP is therefore implicitly ingrained in the RVSDG and
automatically exposed by analyses and graph transformations, such as invari-
ant edge redirection or alias analysis, as they encode their results as edges in
the graph. This TLP parallelism could be explicitly supported by dedicated
RVSDG parallel control constructs similarly to the Tapir compiler IR [183], en-
abling the compiler to optimize across these parallel control constructs.

51

5. Concluding Remarks

Other Challenges

Aside from the challenges in code parallelization, the RVSDG offers other re-
search opportunities that arise from its properties. The remainder of this sec-
tion elaborates on four of these research opportunities.

Register Allocation: Register allocation assigns a large number of program
variables to a small number of registers based on the live ranges of variables.
In the RVSDG, variable live ranges are not yet fixed, as edges specify only a
partial ordering on the nodes within a region. This permits to combine code
motion with register allocation [99]. The nodes of a region can be organized
into layers such that nodes within a layer maximize the number of used reg-
isters, but never exceed them. This would satisfy the register constraints of
instructions within each layer, and the next phase then would try to satisfy the
constraints globally by performing graph coloring and inserting spills. The
effective interleaving of register allocation and code motion mitigates a well-
known phase order problem in compilers. Moreover, as the RVSDG explicitly
represents loops, the register allocator could be made loop-aware and try to
avoid spills in the innermost loops by performing better allocations for these
regions.

Predicate Continuation Form: Article B2 introduces predicate continuation
form (PCF) as an RVSDG normal form. Throughout destruction, PCF en-
ables the extraction of complex intra-procedural control flow even though the
RVSDG supports only two control flow constructs. The article demonstrates
the perfect reconstruction of control flow by using predicate control flow re-
covery (PCFR) to extract a function’s original intra-procedural control flow di-
rectly after RVSDG construction. In this case, PCFR is applicable as construc-
tion generates RVSDGs in PCF and no optimizations are performed between
construction and destruction. However, optimizations may restructure the
graph such that PCF is lost, impeding the application of PCFR. Article B2 only
hints at a method to convert any RVSDG into PCF, but provides no formal al-
gorithm. Such an algorithm needs to be devised before PCFR can be incorpo-
rated into any compiler that uses the RVSDG.

Sequentialization: In contrast to the CFG, the RVSDG enforces only necessary
dependencies between computations, resulting in a partial execution order.

52

5.1. Future Work

Even after instruction selection and register allocation, which restrict execu-
tion order further by introducing more state edges, computations are not in
a total execution order required for code generation. Sequentialization is the
process of generating such a total execution order from a given partial execu-
tion order. The question that arises is whether there exist differences between
total execution orders for different processors (out-of-order vs. in-order) in
terms of performance, or whether the results are the same or very similar for
any topological node order? Moreover, if there are differences between execu-
tion orders, it begs the question whether there is an underlying pattern that
could potentially be exploited by a heuristic?

Abstraction Level Encoding: The RVSDG’s general nature permits it to encode
operations of various abstraction levels. For example, Reissmann et al. [166]
use the RVSDG to encode GHC’s core language, a high-level IR for Haskell,
whereas article B1 uses it to encode LLVM IR, a low-level IR for C-based lan-
guages. This flexibility permits the RVSDG to hopefully be used throughout
the entire compilation process; preferably starting from the abstract syntax
tree to retain as much source language information as possible all the way to
the final assembly code. The compiler back-end could then be implemented
as successive RVSDG transformations, lowering the RVSDG by slowly intro-
ducing more and more architecture details.

5.1.2. GPU Divergence

In May 2017, NVIDIA announced the first GPUs with its new microarchitec-
ture, codenamed Volta, that introduces a new SIMT warp execution model
with independent thread scheduling [221]. This new model enables the con-
current execution of any thread, regardless of warp, by maintaining the ex-
ecution state per thread instead of per warp [144]. Figure 5.2 illustrates this
change. The predecessors of Volta maintain scheduling resources, such as
program counter and call stack, per warp and therefore divergent threads lose
concurrency until they all reconverge. In contrast, the Volta SIMT model main-
tains the execution state per thread and therefore enables the reconvergence
of threads at sub-warp granularity. It is the convergence optimizer’s respon-
sibility to detect active threads from the same warp and group them to max-
imize parallel efficiency. This SIMT execution model change permits Volta

53

5. Concluding Remarks

Convergence
Optimizer

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

P
C
,
S

Volta

Program
Counter (PC)
and Stack (S)

Pre-Volta

32 thread warp with independent scheduling

32 thread warp

Figure 5.2.: Pre-Volta and Volta thread scheduling architecture. Figure taken
from [144].

GPUs to avoid the redundant execution of instructions more efficiently at a
fine-grained level in hardware.

5.1.3. Grain Graphs

Aside from the work that introduced grain graphs [133], research in this area
culminated in work that

1. examines the suitability of the OpenMP Tools API (OMPT) [67] for gen-
erating the necessary profile information [108].

2. proposes extensions to OMPT to fully support the generation of grain
graphs [109].

3. presents an aggregation method to simplify the visual analysis of large
grain graphs [170, 171].

However, all this work is based on a collection of scripts and proof-of-concept
implementations as well as third party graph viewers, such as yEd [234], which

54

5.2. Outlook

were not deliberately developed for OpenMP performance analysis. This com-
plicates further research efforts and the practical usefulness of grain graphs.
Thus, a dedicated graph viewer deliberately developed for OpenMP perfor-
mance analysis using grain graphs is needed. Such a viewer would aid future
research into extending grain graphs for OpenMP 4+ and into classifying and
ranking problems according to their impact on performance. Moreover, the
viewer might be an enabler for the research community in OpenMP perfor-
mance analysis and be commercially viable.

5.2. Outlook

This section attempts a brief outlook into the near future by elaborating on
two challenges: the limits of parallelism inherent in programs and the power
limitations of modern processors. These two challenges will be the driving
force for future research in the field, and it is vital to address them head-on to
enable future increases in system performance.

5.2.1. Parallelism Limits

The end of Dennard scaling also brought an end to frequency scaling as a
means to improve performance. Chip designers turned to multi-core archi-
tectures for exploiting data- and task-level parallelism to further increase per-
formance. While these architectures improve performance for applications
that contain such parallelism abundantly, they provide no benefit for sequen-
tial applications. Ultimately, parallel performance is governed by Amdahl’s
law [7], which asserts the theoretical limits of achievable speedup and scala-
bility for applications with insufficient parallelism.

S(f ,n) = 1

(1− f)+ f
n

(5.1)

Amdahl’s law is shown in equation 5.1, where S is the achievable speedup, n
the number of processors, f the fraction of a program that is parallelizable (ig-
noring scheduling overhead), and consequently 1− f a program’s sequential

55

5. Concluding Remarks

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 50 100 150 200 250

S
p
e
e
d
u
p

Number of Processors

f=0.50
f=0.75
f=0.90
f=0.95

Figure 5.3.: Speedup for various fractions f of Amdahl’s law.

part. Figure 5.3 shows the achievable speedup S for different fractions f , illus-
trating the scalability for applications with various degrees of parallelizable
parts. The figure clearly shows that the scalability of an application is domi-
nated by its sequential part. Even with abundant parallelism, e.g., f = 0.95, the
theoretical achievable speedup with 256 processors is only 18.6 with ever more
diminishing returns for an increasing number of processors. Amdahl’s law as-
sumes a fixed problem size, and according to Gustafson’s law [78], it is possible
to mitigate the dominance of the sequential part by increasing the problem
size. Instead of allocating an increasing number of processors to solve the
same problem in shorter time, the problem size can be increased such that a
larger problem can be solved in the same amount of time. Gustafson’s law as-
sumes a sufficient parallelizable part and exploits the scaling of this part with
increased problem size. However, even Gustafson’s law does not help for ap-
plications that consist of a significant sequential part and can effectively not
be parallelized. For example, a very low degree of parallelism can be observed
in consumer applications, where the number of cores that can be profitably
used is around two to three [22]. For such applications, the continued ex-
ploitation of ILP seems to be the only way foward. This can either be accom-
plished by avoiding the complexity, power, and memory wall, or by exploiting
the ILP from multiple flow of controls.

56

5.2. Outlook

A promising direction to exploit ILP without running into the different walls is
to avoid the dynamic detection of information that is already available at com-
pile time. Hardware structures could be simplified by extending the proces-
sor’s hardware/software interface to convey more information. For example,
it might be possible to reduce the resource intensive and power hungry mem-
ory disambiguation structures by extending the instruction set architecture to
encode the (in-)dependence of memory operations. Another possibility might
be the introduction of instruction slices to enable local forwarding within the
execution pipeline instead of utilizing the global and power intensive register
file.

Another direction is the ILP exploitation from multiple flows of control, as
noted by Lam et al. [107] and Mak et al. [125]. These studies affirmed ILP lim-
itations from a single flow of control, but also recognized that the exploitable
ILP can be increased by an order of magnitude if multiple flows of control
could be leveraged. This, however, would require transforming programs at
higher abstraction levels to permit the parallelization of independent coarse-
grained structures, such as loops or functions. The RVSDG would be a natural
candidate IR for such a task, as it explicitly encodes loops and functions, but
also permits the encoding of various abstraction levels, as mentioned in Sec-
tion 5.1.1. It would simplify the exposure of independent flows of control from
these abstraction levels, and permit the subsequent exploitation by explicitly
encoding their independence in the graph.

Both directions exemplify the importance of compilers for future performance
gains, and regardless of the chosen direction, future systems will increasingly
rely on software solutions and stronger compilers to uncover the required in-
formation for higher performance.

5.2.2. Power Limits

In addition, modern systems are increasingly power constrained, which lim-
its the usable on-chip resources that can be active at any time. The result
is dark silicon [71], i.e., an ever increasing chip area that cannot be used at
any time, and the utilization wall, i.e., an underutilization of chip resources
due to power constraints. A consequence of the utilization wall is that even

57

5. Concluding Remarks

if applications have abundant parallelism, it cannot be exploited without ex-
ceeding the given power budget. Dark silicon and the utilization wall are a
manifestation of performing computations inefficiently, and their emergence
elevated energy-efficiency to an essential requirement for the design of future
systems.

A promising direction to improve energy efficiency is specialization, i.e., the
design of hardware for specific application domains. This approach trades
generality for performance by sacrificing overall performance across applica-
tion domains for improved performance in specific domains. This increases
energy-efficiency for the accelerated domains as more computations can be
performed within the given power budget.

One example of specialization is GPUs. They devote more compute resources
to accelerate data-parallel applications by sacrificing resources that improve
sequential program performance, rendering them more energy-efficient for
data-parallel application domains. Another example are accelerators. These
architectures are designed for a specific problem (domain) and therefore per-
form an even bigger tradeoff in terms of generality vs. performance/energy-
efficiency as compared to GPUs. These two examples illustrate that specializa-
tion can happen at various degrees. While GPUs can still be used for general
compute workloads, accelerators are tailored and limited towards the specific
workloads they were designed for.

The trend of specializing architectures towards specific application domains
will continue as long as power budgets are limited and the demand for per-
formance increases. The future will bear ever more specialized hardware and
the programmability gap will widen further. The need for improved energy-
efficiency and high developer productivity will challenge established abstrac-
tions, assumptions, and methods, and will force us to rethink how we write
and optimize programs and design the underlying systems. Going forward,
this will potentially result in a more holistic approach of combined hardware
and software design, where optimizations are performed over the complete
system stack.

58

Part B.

Regionalized Value State
Dependence Graph

59

B1. RVSDG: An Intermediate
Representation for Optimizing
Compilers

Nico Reissmann, Jan Christian Meyer, and Magnus Själander

Unpublished Manuscript

This article is awaiting publication and is not included in NTNU Open

61

B2. Perfect Reconstructability of Control
Flow from Demand Dependence
Graphs

Helge Bahmmann, Nico Reissmann, Magnus Jahre, and Jan Christian
Meyer

Published in
ACM Transactions on Architecture and Code Optimization (TACO)

Abstract. Demand-based dependence graphs (DDGs), such as the (Region-
alized) Value State Dependence Graph ((R)VSDG), are intermediate represen-
tations (IRs) well suited for a wide range of program transformations. They
explicitly model the flow of data and state, and only implicitly represent a
restricted form of control flow. These features make DDGs especially suit-
able for automatic parallelization and vectorization, but cannot be leveraged
by practical compilers without efficient construction and destruction algo-
rithms. Construction algorithms remodel the arbitrarily complex control flow
of a procedure to make it amenable to DDG representation, whereas destruc-
tion algorithms reestablish control flow for generating efficient object code.
Existing literature presents solutions to both problems, but these impose struc-
tural constraints on the generatable control flow, and omit qualitative evalua-
tion.

The key contribution of this paper is to show that there is no intrinsic struc-
tural limitation in the control flow directly extractable from RVSDGs. This fun-
damental result originates from an interpretation of loop repetition and deci-
sion predicates as computed continuations, leading to the introduction of the
predicate continuation normal form. We provide an algorithm for construct-
ing RVSDGs in predicate continuation form, and propose a novel destruction

103

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

algorithm for RVSDGs in this form. Our destruction algorithm can generate
arbitrarily complex control flow, and we show this by proving that the orig-
inal CFG an RVSDG was derived from can apart from over-specific detail be
reconstructed perfectly. Additionally, we prove termination and correctness
of these algorithms. Furthermore, we empirically evaluate the performance,
the representational overhead at compile time, and the reduction in branch
instructions compared to existing solutions. In contrast to previous work, our
algorithms impose no additional overhead on the control flow of the produced
object code. To our knowledge, this is the first scheme that allows the original
control flow of a procedure to be recovered from a DDG representation.

B2.1. Introduction

The main intermediate representation (IR) for imperative languages in mod-
ern compilers is the Control Flow Graph (CFG) [201]. It explicitly encodes arbi-
trarily complex control flow, admitting unconstrained control flow optimiza-
tions and efficient object code generation. Translation to static single assign-
ment (SSA) form [53] additionally enables efficient data flow optimizations
[225, 174], but the implicit data flow and specific execution order of CFGs re-
strict their utility by complicating these optimizations unnecessarily [113].

Data flow centric IRs have developed from the insight that many classical op-
timizations are based on the flow of data, rather than control. DDGs such
as the (Regionalized) Value State Dependence Graph ((R)VSDG) [100] show
promising code quality improvements and reduced implementation com-
plexity. These IRs implicitly represent control flow in a structured form,
which allows for simpler and more powerful implementations of data flow
optimizations such as common subexpression and dead code elimination
[199, 100, 113]. DDGs require a construction algorithm to translate programs
from languages with extensive control flow support, and a destruction algo-
rithm to extract the control flow necessary for object code generation.

Johnson [100] constructs the VSDG of a C program from its abstract syntax
tree (AST), and excludes goto and switch statements to obtain a reducible sub-
set of the language. Stanier [198] extends VSDG to irreducible control flows,
constructing it from the CFG by structural analysis [185]. Several patterns are

104

B2.1. Introduction

matched in the CFG and converted with per-pattern strategies, before indi-
vidual translations are connected in the VSDG. Irreducible graphs are handled
by node splitting, which can lead to exponential code blowup [38]. Johnson’s
VSDG destruction [100] adds state edges until execution order is determined.
Resulting CFGs follow the control flow structure of their VSDG, potentially
increasing code size and branch instruction count compared to the original
program. Lawrence [113] translates the VSDG to a program dependence graph
(PDG) [73] by encoding a lazy evaluation strategy, transforms the PDG to a re-
stricted, duplication-free form, and converts it to a CFG. Introducing the PDG
to refine a VSDG into exactly one CFG substantially complicates destruction,
but the overhead of the resulting control flow is not quantified. To our knowl-
edge, previous work omits quantitative analysis, or inherently features code
size growth and/or suboptimal control flow recovery. No proposed algorithm
has been analyzed with respect to optimality.

In this paper, we show that the RSVDG representation does not impose any
structural limit on control flows obtainable from it. Interpreting loop repe-
tition and decision predicates as computed continuations, we introduce the
predicate continuation form as a normal form, and propose algorithms for
RSVDG construction and destruction. The construction handles complex con-
trol flow without node splitting, which avoids code blowup. Destruction uses
the predicate continuation form to extract control flow. Multiple CFGs map to
the same RVSDG because they contain inessential detail information (evalu-
ation order of independent operations, variable names; cf. Section B2.3) that
is irretrievably lost during RVSDG construction. This leads to degrees of free-
dom in refining an RVSDG into a specific CFG where “arbitrary” choices lead
to viable results. We show that there are choices under which our destruction
algorithm perfectly reconstructs the original CFG an RVSDG has been gener-
ated from (cf. Theorem B2.5.8). This leads to the insight that our algorithm is
universal in the sense that it can generate arbitrary control flow. We prove ter-
mination and correctness of our algorithms, experimentally evaluate perfor-
mance and representational overhead, and compare the reduction of branch
instructions to previous work. For practical programs, we empirically observe
that processing time and output size linearly correlate with input size. This
suggests that our algorithms are fit for field application. Thus, we demonstrate
that control flow optimizations can be lifted to DDG representations, enabling
the use of a single IR for data and control flow optimizations. This reduces use

105

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

of the CFG to a step in DDG generation for languages with complex control
flow.

The paper is organized as follows: Section B2.2 introduces terminology and
definitions. Section B2.3 describes a destruction algorithm that produces a
CFG from an RVSDG in predicate continuation form. Section B2.4 develops a
construction algorithm that restructures a CFG and translates it to an RVSDG.
Section B2.5 proves algorithm termination and correctness, and that our de-
struction scheme can always recover the original CFG. We empirically evalu-
ate our algorithms using CFGs from SPEC2006 benchmarks in Section B2.6.
Section B2.7 discusses related work, and Section B2.8 concludes our work.

B2.2. Terminology and Definitions

This section provides necessary terminology and definitions. It defines the
CFG and RVSDG, as well as restricted subsets which are used throughout the
paper.

B2.2.1. Control Flow Graph

A control flow graph C is a directed graph consisting of vertices representing
statements, and arcs representing transitions between statements. If a vertex
has multiple outgoing arcs, we assign a unique index to each. Statements take
the following form:

• v1, v2, . . . , vk :=expr designates an assignment statement. The expr must
evaluate to a k-tuple of value and/or states1 which are assigned to the
variables on the left.

• branchexpr designates a branch, where expr evaluates to an integer
that matches an outgoing arc index. Execution resumes at the destina-
tion statement of this arc.

1We allow multiple states to be alive at the same time here and in our later RVSDG definition if
the states are independent. Use cases include e.g. modelling disjoint memory regions after
aliasing analysis.

106

B2.2. Terminology and Definitions

10

return z

z := x - yz := y - x

branch g

g := x > y

z

yxγ

greater

sub

z

yx

sub

z

yx

z

yx

Figure B2.1.: CFG (left) and RVSDG (right) representations of the same func-
tion, computing x − y if x > y and y −x otherwise.

• null designates a null operation. Its operational semantics is to per-
form no operation, we insert it for structural reasons2.

All vertices except for branch statements must have at most one outgoing arc.
Essentially, the CFG represents a single procedure of a program in imperative
form: From a given start vertex, evaluate all statements of a vertex in sequen-
tial order by strictly evaluating the expression of each statement, updating the
variable state on each assignment statement, and follow alternative arcs ac-
cording to branch statements.

Definition 8. A CFG is called closed iff it has a unique entry and exit vertex
with no predecessors and successors, respectively. A CFG is called linear if it is
closed and each vertex has at most one predecessor and one successor.

Definition 9. The dynamic execution trace of a closed CFG for given arguments
is the sequence of traversed vertices and outgoing arcs, starting from the entry
vertex.

Figure B2.1 contains an example CFG. We insert a return statement at the
end of a procedure in a CFG to clarify its result (its operational semantics is
the same as null). Bold capital letters like C denote CFGs. Letters v , a, V , and

2It can be regarded as a “dummy" assignment operation, but we want to distinguish such
structural statements from original program statements.

107

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

A denote vertices, arcs, vertex sets and arc sets, respectively. Without loss of
generality, we assume that all CFGs are in closed form. We also consider CFGs
of a more constrained shape:

Definition 10. A closed CFG is called structured if its shape can be contracted
into a single vertex by repeatedly applying the following steps:

1. If v ′ is unique successor of v, and v is unique predecessor of v ′, then re-
move arc v → v ′ and merge v and v ′.

2. If v has only successors v0, v1, . . . and possibly v ′, v ′ has only predecessors
v0, v1, . . . and possibly v, and each of v0, v1, . . . has only a single predeces-
sor and successor, then remove all arcs v → vi , vi → v ′, v → v ′ and merge
all vertices.

3. If v has an arc pointing to itself and only one other successor, remove the
arc v → v.

Structured CFGs are a subset of reducible CFGs. They correspond to proce-
dures with only structured control flow in the following sense: Within each
structured CFG we can identify subgraphs that are structured CFGs them-
selves3, and replace them with a single vertex4 such that the parent graph ends
up in one of three possible shapes:

1. Linear: A linear chain of vertices (possibly a single vertex).

2. Branch: A symmetric control flow split and join, i.e an “if/then/else"
or “switch/casewithout fall-through" construct where each alternative
path is either a linear chain or a single arc.

3. Loop: A tail-controlled loop, i.e. a “do/while" loop where the loop body
itself is a linear chain or a single arc.

Applying this recursively, we can regard each structured CFG as a tree of such
subgraphs which we call regions. The CFG shown in Figure B2.1 is structured.
We use an overline marker to designate structured CFGs: C.

3ignoring a potential single “repetition" arc from the exit to entry vertex of a subgraph
4 This corresponds to contraction using the rules in Definition 10.

108

B2.2. Terminology and Definitions

Definition 11. The structure multigraph5 of a closed CFG is formed by taking
the original CFG and replacing all vertices with a single predecessor and succes-
sor by a direct arc from the predecessor to successor. The projection of a dynamic
execution trace of a closed CFG is then obtained by omitting all vertices/arcs
with a single predecessor and successor and projecting the remainder. Closed
CFGs C and C′ are structurally equivalent if there is an isomorphism between
the two structure multigraphs such that it maps projected execution traces for
the same input arguments to each other.

Intuitively, structural equivalence means that two CFGs have the same dy-
namic branching structure for all possible arguments.

Definition 12. An arc v1 → v2 dominates a vertex v if either

1. v2 6= v and both v1 and v2 dominate v, or

2. v2 = v and v1 dominates v.

The dominator graph of arc a in C is the subgraph S with vertices V dominated
by a.

Intuitively, the dominator graph of an arc a is the subgraph in C where every
path from the entry vertex to every vertex in this subgraph must pass through
arc a.

B2.2.2. Regionalized Value State Dependence Graph

An RVSDG R is a directed acyclic hierarchical multigraph consisting of nodes
representing computations, and edges6 representing the forwarding of results
of one computation to arguments of other computations. Each node has a
number of typed input ports and output ports corresponding to parameters
and results, respectively. An edge connects an input to exactly one output
of matching type. The types of inputs and outputs may either be values or

5We want to preserve arcs as present in the original graph, but due to the removal of vertices
we may end up with multiple distinguishable arcs between two vertices. The result may not
be a graph, but a multigraph.

6We use the terms arc/vertex in the context of CFGs and edge/node in the context of RVSDG
to assist in telling the different representations apart.

109

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

represent the state of an external entity involved in a computation. The dis-
tinguishing property is that values are always assumed to be copyable. The
types of the input/output tuple of a node are called its signature. We model
arguments and results of an RVSDG as free-standing ports.

The RVSDG supports two different kinds of nodes: simple and complex nodes.
Simple nodes represent primitive operations such as addition, subtraction,
load and store. They map a tuple of input values/states to a tuple of output
values/states, and the node’s arity and signature must therefore correspond
to the represented operator. Complex nodes contain other RVSDGs, such that
we can regard an RVSDG as a tree of such subgraphs which we call regions. We
require two kinds of complex nodes in this paper:

• Gamma nodes represent decision points. Each γ-node contains two or
more RVSDGs with matching result signatures. A γ-node takes as input
a decision predicate that determines which of its regions is to be evalu-
ated. Its other inputs are mapped to arguments of the contained RVS-
DGs, and its outputs are mapped to the results of the evaluated sub-
graph (cf. Figure B2.1).

• Theta nodes represent tail-controlled loops. Each θ-node contains ex-
actly one RVSDG representing the loop body. Matching arguments/in-
puts and results/outputs of this region and the θ-node are used to rep-
resent the evolution of values/states through loop iterations. An addi-
tional loop predicate as result of the loop body determines if the loop
should be repeated (cf. left of Figure B2.2).

The RVSDG represents a single procedure of a program in demand-dependence
form. Arguments and results of the root region map to arguments and results
of the procedure. The semantics of an RVSDG is that evaluation is demand-
driven but strict, i.e. all arguments of a node are evaluated before the node
itself is evaluated according to the following rules:

• Simple nodes: After evaluation of all arguments, apply the operator rep-
resented by the node to their values, and associate the results with the
node outputs.

• Gamma nodes: After evaluation of all arguments (including the decision
predicate), the predicate value dictates which sub region is chosen for

110

B2.2. Terminology and Definitions

evaluation, mapping arguments of the gamma node to arguments of the
sub region. The chosen region is evaluated and its results are associated
with the outputs of the γ−node.

• Theta nodes: After evaluation of all arguments of the theta node, asso-
ciate their values with the arguments of the sub region. Then evaluate
the repetition predicate and all results from the loop body. If the value
of the repetition predicate is non-zero, associate result values from this
loop iteration with argument values for the next loop iteration and re-
peat evaluation. If the value of the repetition predicate is zero, associate
the results of the last repetition with the outputs of the θ−node.7

As explained in Section B2.3, an RVSDG is equivalent to a structured CFG, and
since every CFG can be made into a structured one by the algorithm in Section
B2.4, the topmost region of an RVSDG allows the representation of an entire
procedure. We model the arguments and results of this region as free-standing
ports.

An RVSDG must obey some additional structural restrictions to satisfy the
non-copyability of states. We omit a thorough discussion of how these con-
straints can be formulated and maintained during transformations. Instead,
we only require that it satisfies the following sufficient condition: All states are
used linearly, i.e. in each region, a state output is connected to at most one
state input.

Figure B2.1 illustrates a sample function in CFG and RVSDG representation:
A γ-node selects the computation results from either of two embedded sub-
graphs, depending on its predicate input. By convention, the subgraphs em-
bedded into a γ-node correspond from left to right to predicate values 0,1, . . .
. Predicate input/output ports are identified as filled sockets in diagrams.

We expect a richer type system to allow not just a distinction between values
and states, but between different kind of values and/or states, e.g. different
value types for fixed-point and floating point numbers. For this paper, we only

7Note that this definition requires that the evaluation of the loop body for one iteration is
finished before the next iteration can commence. This avoids several problems such as
“deadlocks” between computation of the loop body and the predicate. It also provides well-
defined behavior for non-terminating loops that keep updating external state.

111

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

assume the existence of a predicate type that allows the enumeration of alter-
natives. We call a node that has at least one predicate output a predicate def
node, and a node with at least one predicate input a predicate use node. This
allows us to define a more strongly normalized form of RVSDGs:

Definition 13. An RVSDG is in predicate continuation form iff

• Any predicate def node has exactly one successor

• Only one predecessor of any node may be a predicate def node

• Any predicate output must be connected to at most one predicate input,
and that in turn must belong to a γ- or θ-node, or to the output of a region

Any RVSDG can easily be converted to this form by a combination of node
splitting/cloning (to satisfy the requirement that any predicate def has at most
one use), merging multiple independent computations into a single node (to
satisfy the requirement that at most one predecessor of a node is a predicate
def node), and possibly inserting nodes to convert back and forth between
predicates and other kinds of values (to satisfy the last requirement). Creating
this normal form is essentially a technicality that we will not discuss in further
detail, since all RVSDGs occurring in this paper are in this form by construc-
tion.

B2.3. Extracting Control Flow from the RVSDG

In this section, we present algorithms for extracting a CFG from an RVSDG.
The dependence information contained within regions serves as basis for con-
trol flow construction: It describes a partial ordering of primitive operations
that any control flow recovery must adhere to in order to yield an evaluation-
equivalent program.

Any γ- and θ-node-free RVSDG can be trivially transformed into a linear CFG.
In the presence of γ- or θ-nodes, the resulting CFG includes branching and/or
looping constructs. We explore two different approaches: Structured control
flow recovery (PCFR) uses the hierarchical structure of regions contained within
γ- and θ-nodes to construct control flow. Predicative control flow recovery
(PCFR) determines control flow by predicate assignments.

112

B2.3. Extracting Control Flow from the RVSDG

Since the RVSDG representation is more normalizing and lacks some detail of
the CFG, we must employ some auxiliary algorithms:

• EVALORDER: The exact evaluation order within an RVSDG region is un-
derspecified. Each topological order of nodes corresponds to a valid
evaluation order, and one particular order must be chosen. We add only
one additional constraint to the topological order: corresponding pred-
icate def and use nodes must be adjacent if the given RVSDG is in pred-
icate continuation form.

• VARNAMES: The RVSDG is implicitly in SSA form. We therefore need to
find names for variables in the CFG representation such that bound-
ary conditions for loops and control merge points are satisfied. This
requires a strategy for computing an interference-free coloring of SSA
variables such that same-colored SSA names can be assigned the same
name in a CFG. Additionally, the insertion of copy operations may be
necessary.

We consider algorithms for these problems mostly outside the scope of this
paper, and assume that they are given. It is trivial to formulate an algorithm
satisfying EVALORDER, e.g. some variant of depth first traversal. We briefly
discuss VARNAMES in Section B2.3.1. Our control flow recovery algorithms
are parameterized over these algorithms, and we discuss how they relate to
perfect CFG recovery in Section B2.5.

B2.3.1. Copy insertion and coloring

We can formulate the conversion from an RVSDG to a CFG as a two step pro-
cess: first insert φ expressions at control join points to obtain a CFG in SSA
form, and then eliminate these φ expressions by inserting copy operations
in the predecessors of φ’s basic block [53]. This process succeeds as long
as no critical arcs8 are present in a CFG [29]. According to our definition of
structured CFGs, only the loop repetition and exit arcs are critical: Structured
“if/then/else" or “switch/case without fall-through" as per Definition 10
cannot produce critical arcs, leaving only those arcs additionally permitted

8An arc from v1 to v2 is critical iff v1 has multiple successors and v2 has multiple predecessors.

113

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

through loop constructs as possibly critical. These in turn are amenable to
simplistic copy insertion: choose a name for each loop variant variable, and
indiscriminately assign to it on the entry, repetition, and exit path of the loop.

In order to simplify the presentation, we lift part of this process to the RVSDG
representation: After determining a topological order of nodes, we insert place-
holder copy operations into the RVSDG. These copy operations permit the al-
gorithms in the following sections to directly convert an RVSDG into an SSA-
free CFG, and are replaced by parallel copy operations during this conver-
sion9. Having made these observations, the following rules insert a sufficient
number of copy operations:

Algorithm COPYINSERTION

• For each γ-node, insert a copy operation copying each result value as the
last operation in each of the alternative subregions.

• For each θ-node, insert a copy operation copying each loop variant value
twice: Once, just before the θ-node (loop entry), and once at the last op-
eration in the subregion (loop exit/repetition).

This algorithm inserts many redundant copy operations. Subsequently, coa-
lescing based on an interference graph as per [26] can eliminate many or even
all of these copy operations.

B2.3.2. Structured Control Flow Recovery

The naive approach to generating control flow is to treat γ- and θ-nodes as
black boxes from the outside, and represent more fine-grained control flow
on the inside. We call this approach structured control flow recovery (SCFR),
and formulate it as follows:

Algorithm STRUCTUREDCONTROLFLOW

Sequentially process all nodes of a given RVSDG. For each node, insert vertices
into the CFG according to the following rules, and add arcs between them for
continuation:

9The evaluation semantics of these copy operations within the RVSDG is that they just pass
through all argument values as results without change.

114

B2.3. Extracting Control Flow from the RVSDG

1 For each simple node (including copy nodes), insert an assignment state-
ment evaluating an expression equivalent to the semantics of the node
into the CFG.

2 For each γ-node, recursively process the subregions into separate CFGs.
Insert a branch statement corresponding to the decision predicate of the
γ-node, and fan out to the entry points of the sub-CFGs. Rejoin control
flow from the exits of the sub-CFGs with the next vertex to be added to the
CFG.

3 For each θ-node, recursively process the subregion into a separate CFG.
Link to the entry of the sub-CFG, and add a branch statement after the
exit. This corresponds to the loop predicate of the θ-region, and either
repeats the sub-CFG, or continues with the next vertex to be added.

If necessary, add a null vertex to rejoin any remaining control splits, or provide
a loop exit point.

Figure B2.2 shows an example RVSDG on the left and the CFG recovered by
this procedure in the center. The resulting CFG is always structured, and is
similar to those produced by Johnson [100]. Compared to the original CFG
from which the RVSDG was constructed, this may result in a substantial over-
head in terms of code size and branch instructions.

Definition 14. Let R be an RVSDG, then denote the control flow graph produced
by algorithm STRUCTUREDCONTROLFLOW as:

SCFR(R, EVALORDER, VARNAMES)

B2.3.3. Predicative Control Flow Recovery

An alternative approach is to interpret the predicate computations inside the
RVSDG to determine control flow: Instead of generating branch vertices for
γ- and θ-constructs themselves, we generate a branch vertex for predicate def
nodes, and follow the predicate use nodes to the eventual destination. This re-
quires an RVSDG in predicate continuation form, as defined in Section 13. The
constraints of this form ensure that there is a topological order such that there
is no node between predicate def/use pairs. The algorithm EVALORDER is as-
sumed to always produce such an order, but note that COPYINSERTION may

115

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

x

yxγ

equals

0

x

yx

copy

x

yx

x

yx

x

yx

yxr

yxγ

equals

0

yxθ

yx

0

yxr

yx

1 copy

mod

yxr

yx

1
0

10

10

return x

x := ybranch r

r := 1

x, y := y, z

z := x mod y

r := 0

branch p

p := 0=y

branch p

p := 0=x

10

10

return x

x := y

null

x, y := y, z

z := x mod y

null

branch 0=y

branch 0=x

Figure B2.2.: Euclid’s algorithm in different representations. Left: Represen-
tation of the algorithm as RVSDG. Center: CFG generated from
RVSDG on the left by SCFR. Right: CFG recovered from RVSDG
on the left by PCFR. The solid arcs are generated in the first pass
by PREDICATIVECONTROLFLOWPREPARE, the dotted arcs are gen-
erated in the second pass by PREDICATIVECONTROLFLOWFINISH.

116

B2.3. Extracting Control Flow from the RVSDG

insert copy nodes afterwards. We introduce predicative control flow recov-
ery (PCFR) as the two-pass process consisting of PREDICATIVECONTROLFLOW-
PREPARE and PREDICATIVECONTROLFLOWFINISH described below. The first
pass generates straight-line basic blocks, the second pass is responsible for
connecting them. The rightmost diagram of Figure B2.2 illustrates the recov-
ery process and the generated CFG.

The first step is quite similar to STRUCTUREDCONTROLFLOW, but produces a
disconnected graph. It lacks all the branch vertices introduced in the other
algorithm:

Algorithm PREDICATIVECONTROLFLOWPREPARE

Sequentially process all nodes of a given RVSDG according to the chosen topo-
logical order. For each node, insert vertices into the CFG according to the follow-
ing rules. Add an arc to each vertex from the previously generated vertex unless
the previous node in the chosen topological order is a predicate def node:

1 For each simple node (including copy nodes), insert an assignment state-
ment evaluating an expression equivalent to the semantics of the node
into the CFG.

2 For each γ-node, recursively process subregions. Add the resulting sub-
CFGs to the parent CFG without adding continuation arcs to the entry
points.

3 For each θ-node, recursively process the subregion. Add the resulting sub-
CFG to the parent CFG without adding any continuation arcs either to the
entry or from the exit.

4 For each simple node that is a predicate definition, enumerate all of its
possible predicate output value combinations. In case there is only one,
keep track of this predicate constant. Add a branch statement with a
predicate identifying the effective predicate output combination depend-
ing on its input values. In case there is only one predicate value combi-
nation, i.e. a predicate constant, create a null statement instead. Keep
track of the destination(s).

Record a mapping of the vertices corresponding to each RVSDG node and re-
gion.

117

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

This leaves a graph with a number of dangling branch statements, which are
then resolved in a secondary pass:

Algorithm PREDICATIVECONTROLFLOWFINISH

Process all predicate-def simple nodes. Identify the vertex created for it in the
CFG already as origin. For each possible predicate value combination, traverse
to the eventual destination: Start with the subsequent node in topological order
(which must be either the corresponding predicate use node or an intervening
copy node) and repeatedly apply the following rules until no predicate value is
used any more:

1 When reaching the origin vertex, add an arc to itself, making it an infinite
loop.

2 If n is a predicate constant, traverse to its eventual destination as if the
process had originally started here.

3 If n is a copy node, insert a vertex with a corresponding assignment state-
ment, and connect to it from the origin vertex. Treat the inserted vertex
as the new origin, and continue tracing from the next node in topological
order.

4 If n is not a predicate use node, terminate search at the corresponding
vertex, and connect to it from the origin vertex.

5 If n is a γ- or θ-node, trace to the first node within the correct subregion
(or the subsequent node in the parent if the subregion is empty).

6 If n is the result of a γ-region, traverse to the subsequent place in the par-
ent region.

7 If n is the result of a θ-region, determine the value of the loop repetition
predicate. If the loop is to be repeated, traverse to the entry of the region.
Otherwise traverse to the subsequent place in the parent region.

Subsequently, prune all vertices that are not reachable from the entry point and
short-circuit all null vertices.

Note that the above tracing process inserts exactly one linear path per
predicate-def node and possible predicate value combination generated by
it. Particularly, if there is no copy node encountered during tracing, then it

118

B2.4. Transforming CFGs to RVSDGs

inserts exactly one arc. Noting that copy nodes are inserted for the purpose of
SSA destruction, we observe that the additionally inserted vertices correspond
to arc splits in other approaches [29].

Definition 15. Let R be an RVSDG, then denote the control flow graph produced
by predicative control flow recovery as:

PCFR(R, EVALORDER, VARNAMES)

B2.4. Transforming CFGs to RVSDGs

We observed that Algorithm STRUCTUREDCONTROLFLOW converts an RVSDG
into a structured CFG. There is a corresponding direct transformation from
any structured CFG to an RVSDG by utilizing the decomposition into regions
following Definition 10: After logically contracting all Branch and Loop subre-
gions into single vertices, we can recursively convert each Linear region into
an RVSDG as follows:

• Set up a symbol table to map each variable name in the CFG to its defi-
nition place in the RVSDG. All initially defined variables will be marked
as parameters.

• Process all vertices in topological order by the following rules:

– For an assignment statement, generate a simple node in the RVSDG
with an operation equivalent to its right hand side. Update the
symbol table.

– If the vertex represents a Branch subregion, take note of the branch
predicate. Recursively process each alternative path. Afterwards
generate a γ-node that uses the predicate and all variables required
in the subregions as input according to the symbol table. Update
the symbol table with all variables assigned to in any of the alter-
nate paths to use the new value/state defined by the γ-node.

– If the vertex represents a Loop subregion, recursively process the
loop body. Take note of the predicate variable controlling repe-
tition within the symbol table used in processing the subregion

119

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

and generate a corresponding θ-node containing the generated
RVSDG. Use the symbol table to determine the initial values/states
of all loop variables as input to the θ-node, and update the symbol
table to reflect the state after exiting the loop.

• Generate the results of the RVSDG using the symbol table.

Essentially, we perform a symbolic execution of the procedure represented by
the CFG. Note, that the algorithm does not assume a CFG in SSA form. This
form is automatically established during construction, due to an RVSDG being
implicitly in it.

Definition 16. For a structured CFG C, let the RVSDG resulting from the algo-
rithm above be designated by: BUILDRVSDG∗(C).

The remainder of this section describes an algorithm that converts an arbi-
trary CFG into a structured one. In contrast to other approaches, it avoids
cloning any existing nodes in the graph. Instead, it introduces fresh auxiliary
predicate variables which we name p, q and r. These are used on the left hand
side of assignment statements and in branch statements. We refer to state-
ments involving one of these variables as auxiliary assignments and auxiliary
branches.

The algorithm consists of two parts: The first identifies and handles loops,
while the second operates on acyclic graphs and only processes branch con-
structs. We use the following notational convention: Original graphs, arcs and
vertices are marked with plain letters such as C, a, v , while transformed graphs
and newly inserted arcs and vertices are denoted as C∗, a∗, v∗.

Definition 17. For any closed CFG C, let the structured CFG resulting from the
algorithm described below be designated by: RESTRUCTURECFG(C). Further-
more, denote by

BUILDRVSDG(C) := BUILDRVSDG∗(RESTRUCTURECFG(C))

the RVSDG built by combining both steps.

120

B2.4. Transforming CFGs to RVSDGs

a
R

1a
R

0

a
X

1a
X

0

a
E

1a
E

0

v
X

1v
X

0

v
E

1v
E

0

1

0

1

0

10

return

P := E(P)P := D(P)

branch c

c := C(P)

P := C(P)

branch b

b := B(P)

P := B(P)

branch a

P, a := A(P)

a
X

1a
X

0

a
E

1a
E

0

v
X

1v
X

0

v
E

1v
E

0

v
X∗

v
T∗

v
E∗

10

1
0

1010

10

10

return

P := E(P)P := D(P)

branch q

branch r

q,r:=0,1q,r:=1,0q,r:=1,1q,r:=0,0

branch c

c := C(P)

P := C(P)

branch b

b := B(P)

P := B(P)

branch q

q := 1q := 0

branch a

P, a := A(P)

Figure B2.3.: Restructuring of loop control flow. Left: Unstructured control
flow graph (loop with two entry and exit paths). The vertices
within the dashed box form a strongly connected component.
Right: Restructuring the left CFG. The subgraph in the dashed
box corresponds to the loop body and is treated as if it were col-
lapsed into a single vertex from the point of view of the outer
graph. The dotted arc is the single repetition arc.

121

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

B2.4.1. Loop Restructuring

Given a closed CFG C, we start by identifying all strongly connected compo-
nents (SCCs) within C using the algorithm described by Tarjan [208]. By ne-
cessity, neither the entry nor the exit vertex of C are part of any SCC. Each SCC
is restructured into a loop with a single head and tail vertex, such that the head
vertex is both the single point of entry and starting point for subsequent itera-
tions and the tail vertex is the single vertex controlling repetition and exit from
the loop.

For each SCC we identify the following sets of arcs and vertices:

• Entry arcs AE = {aE
0 , aE

1 , . . .}: All arcs from a vertex outside the SCC into
the SCC

• Entry vertices vE
0 , vE

1 , . . . , vE
m−1: All vertices which are the target of one or

more entry arcs

• Exit arcs AX = {aX
0 , aX

1 , . . .}: All arcs from a vertex inside the SCC pointing
out of the SCC

• Exit vertices v X
0 , v X

1 , . . . , v X
n−1: All vertices which are the target of one or

more exit arcs

• Repetition arcs AR = {aR
0 , aR

1 , . . .}: All arcs from a vertex inside the SCC to
any entry vertex

The left hand side of Figure B2.3 illustrates the arc and vertex sets under con-
sideration.

Unless the loop already meets our structuring requirements, we restructure it
by possibly introducing a branch statement as single point of entry vE∗ and
single point of exit v X∗. They demultiplex to the original entry vertices or exit
vertices, respectively. Another branch statement is introduced as single con-
trol point vT∗ at the end of the loop. A single repetition arc aR∗ leads from
vT∗ to vE∗, and a single exit arc aX∗ leads from vT∗ to v X∗. Two auxiliary
predicates q and r are added to facilitate demultiplexing and repetition. The
original entry, exit and repetition arcs are all replaced as follows:

122

B2.4. Transforming CFGs to RVSDGs

• For each entry arc, identify the entry vertex vE
k it points to. Replace the

arc with an assignment q :=k that proceeds to vE∗, which in turn eval-
uates k on entry to determine continuation at vE

k .

• For each repetition arc, identify the entry vertex vE
k it points to. Replace

the arc with an assignment q, r :=k, 1 and funnel control flow through
vT∗, which in turn evaluates r to determine whether the loop is to be
repeated and subsequently continued at vE

k .

• For each exit arc, identify the exit vertex v X
k it points to. Replace the

arc with an assignment q, r :=k, 0 and funnel control flow through vT∗,
which in turn evaluates r to leave the loop. Subsequently, control flow
is demultiplexed by v X∗ to reach v X

k .

The result of this process is illustrated on the right hand side of Figure B2.3.
The loop body itself is now contained in a subgraph which we denote as L∗.
It has exactly one entry vertex and one exit arc from/to the remainder of the
whole graph. For all purposes of further processing of L∗, we will treat aR∗ as
absent.

Note that L∗ is not necessarily acyclic: While all repetition arcs AR were re-
moved, there may still be nested loops within the loop body. Since L∗ (minus
aR∗) is a closed CFG, the algorithm can be applied recursively on L∗. This
produces eventually an evaluation equivalent structured graph L, which can
be substituted for L∗ in C. We call the result graph after the substitution of all
SCCs C∗. For further processing of C∗, we treat all L∗ subgraphs as if each were
a single vertex.

Under this interpretation, C∗ is now acyclic and we can apply the algorithm
described in Section B2.4.2 to eventually produce a structured CFG C. Note,
that for the purpose of constructing an RVSDG, there is no need to actually
create C or even C∗. Instead, we can recursively build for each L∗ subordinate
RVSDGs and then wrap them individually into a θ-node.

B2.4.2. Branch Restructuring

Given an acyclic closed CFG C, we partition the graph into a linear head sub-
graph H, multiple branch subgraphs Bk and a tail subgraph T. Iff C is lin-

123

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

v
T

1

v
T

0

a
F

1a
F

0

10

10

T

B1B0

H

return x

x := x * x

x := x - yx := x + y

branch b

b := greater(x, 0)

branch a

a := greater(y, 0)

v
T

1

v
T

0

a
F

1a
F

0

0 1

10

10

v
T∗

T
∗

B
∗

1
B
∗

0

H
∗

return x

x := x * x

branch p

null

p := 1p := 0

x := x - yx := x + y p := 1

branch b

b := greater(x, 0)

branch a

a := greater(y, 0)

x

xγ

xp

yxγ

greater

0

x

yx

mul

x

x

x

x

1

xp

yx

xp

yxγ

greater

0

xp

yx

sub1

xp

yx

add0

xp

yx

Figure B2.4.: Restructuring of branch control flow. Left: Unstructured control
flow graph (inconsistent selection paths). Middle: Restructuring
the left CFG. Right: The RVSDG equivalent to the CFGs to the left.

124

B2.4. Transforming CFGs to RVSDGs

ear, the partitioning results in zero branch subgraphs and an empty subgraph
T. In this case C is already structured and no further steps are necessary.
The branch and tail subgraphs are restructured to closed CFGs, resulting in
branch subgraphs with exactly one entry arc from H and one exit arc to the re-
structured tail subgraph T∗. The algorithm is then applied recursively to each
branch and tail subgraph until we eventually obtain a structured graph C.

During partitioning, we first identify H by searching for the longest linear sub-
graph from the entry vertex. The last vertex of H must be a branch statement
with m outgoing fan-out arcs aF

0 , aF
1 , . . . , aF

m−1. We initially identify the branch
subgraph B j as the dominator graphs of the arc aF

j . As explained later, we
may have to trim the sets of vertices covered by each B j slightly (we denote
the “pure” dominator subgraphs without trimming as B′

j). Note that some
branch subgraphs might also be empty, but we nevertheless keep track of the
defining arc aF

j . The remainder of C forms then the tail subgraph T. The left
diagram of Figure B2.4 illustrates the partitioning.

Let vT
0 , vT

1 , . . . , vT
n−1 be the continuation points in the tail subgraph: These are

the vertices within T with at least one arc from either one of the branch sub-
graphs, or one of the fan-out arcs aF

0 , aF
1 , . . . , aF

m−1 pointing to them. There
must be at least one such continuation point and if there is exactly one, T has
already the desired structure.

If there are multiple continuation points, then restructure T and all B j as fol-
lows:

• Insert a branchp statement as vT∗ into T that demultiplexes to the orig-
inal continuation points vT

0 , vT
1 , . . . , vT

n−1

• Substitute each arc from any B j to every vT
k with an assignment p :=k,

and funnel control flow through vT∗

• If some B j is empty, the fan-out arc aF
j must point to some vT

k . Substi-
tute this arc with a p :=k statement and replace the previously empty
branch subgraph with this single vertex.

• If any branch subgraph has more than one exit arc to the tail subgraph,
funnel all paths through a single null statement.

125

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

If any of the inserted p := . . . statements immediately follows a q := . . . state-
ment, we fuse these two into a single vertex. This results in a new graph
C∗ with subgraphs H∗, B∗

j and T∗ corresponding to the head, branch and
tail subgraphs and H∗ being structurally identical to H. The right diagram
of Figure B2.4 illustrates the result of this process as well as the notation. The
new branch and tail subgraphs are closed, recursively applying the process
to them yields structured graphs B0,B1, . . .Bm−1 and T (in case B∗

i is empty,

set B1 := B∗
i). These subgraphs can then be substituted in C∗ for the original

branch and tail subgraphs, resulting in a structured graph C.

As shown in Section B2.4.1, it is not necessary to build the structured CFG C for
the purpose of RVSDG construction. Instead, the algorithm recursively builds
RVSDGs. The transformed branch subgraphs are contained within a γ-node,
whereas the transformed head and tail subgraphs precede and succeed the
γ-node, respectively. This is illustrated in Figure B2.4.

Trimming of Branch Subgraphs

The algorithm above always yields a graph with the desired structure, but may
interleave the defs and uses of different auxiliary predicates improperly. This
results in an RVSDG that is not in predicate continuation form and we there-
fore need to trim the vertex sets of the branch subgraphs as follows:

• Determine from the set of continuation points the subset of vertices that
are immediate successor of an auxiliary assignment statement.

• For each such continuation point, pull its immediate predecessor from
the branch subgraphs into the tail subgraph unless all immediate pre-
decessors are in the branch subgraphs.

Figure B2.5 shows a CFG where trimming leads to eviction of a vertex from one
of the branch subgraphs and illustrates its effect: It prevents improper inter-
leaving of auxiliary assignments and branches by ensuring that either all defs
of a predicate are at the end of any branch subgraph or none are. The only
possible interaction is an assignment/branch on p nested properly within an

126

B2.4. Transforming CFGs to RVSDGs

T

B1B0

H

a
F

1a
F

0

10

10

null

p := 1

p := 0

branch c

P, c := C(P)

branch a

P:= B(P)

P, a := A(P)

T
∗

B
∗

1
B
∗

0

H
∗

0 1

10

10

null

p := 1p := 1p := 0

null

p := 1

p := 0

branch p

branch c

P, c := C(P)

branch a

P := B(P)

P, a := A(P)

T
∗

B
∗

1
B
∗

0

H
∗

0 1

10

10

null

p := 1p := 1p := 0

null

p := 1 p := 0

branch p

branch c

P, c := C(P)

branch a

P := B(P)

P, a := A(P)

Figure B2.5.: Left: A CFG where the last null statement is successor to aux-
iliary assignment statement p := 0 and p := 1. Only one of these
is dominated by any of the fan-out arcs aF

0 and aF
1 and is there-

fore a critical assignment. The dotted boxes illustrate the sub-
graphs without any trimming, the dashed boxes show the effect
of trimming. The critical assignment is shaded. Middle: Effect of
applying branch restructuring without trimming. The improper
interleaving of operations leads to the critical assignment being
“lost". Right: Applying branch restructuring after trimming. No
vertex is inserted on a path from the critical assignment to the
exit vertex.

127

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

assignment/branch on q . Note that according to the rules above, the assign-
ments are fused into a single vertex and translated as a single predicate defin-
ing node in the RVSDG.

B2.5. Proof of Correctness and Invertibility

In this section, we prove correctness of the presented algorithms and that the
proposed RVSDG construction and destruction algorithms are mutually in-
verse to each other.

B2.5.1. Termination

Definition 18. A CFG is said to be pqr-complete iff: If one predecessor of a
vertex is an auxiliary assignment statement, then all of its predecessors are.

Theorem B2.5.1. For a given acyclic, closed, pqr-complete and non-linear CFG
C, the partitioning step in Section B2.4.2 yields graphs T, B0, B1, . . . , H such that
H, T and at least one Bi is non-empty.

Proof. C is closed, let vE and v X be the entry and exit vertices. By construc-
tion it is evident that vE ∈ H and v X ∈ T, so both are non-empty. The only
remaining proof obligation is to show that one Bi is non-empty. We proceed
with a few auxiliary propositions, then show that some B′

i (dominator graph
before trimming) is non-empty, then show the same for some Bi (dominator
graph after trimming).

Let vB be the uniquely determined last branch vertex of H. For each vertex,
let d(v) be the depth (length of longest path from entry) of vertex v . Since H is
linear with only vB having immediate successors outside of H by construction,
it must hold d(v) < |H| for all v ∈ H, d(v) ≥ |H| for all v 6∈ H and d(v) < d(v X)
for all v 6= v X . Furthermore, if d(v) ≥ |H| for some vertex v , then for any of its
immediate predecessors v ′ it must be that either d(v ′) ≥ |H| or v ′ = vB .

We first show that for any vertex v with d(v) = |H| that v ∈ B′
i for some i : v

cannot be in H, but all of its predecessors must be. Since H is linear with only
the fan-out arcs aF

0 , aF
1 , . . . , aF

m−1 of its last branch vertex pointing to any vertex

128

B2.5. Proof of Correctness and Invertibility

outside of H, this branch vertex must be the single predecessor of v . Since
there can be at most one arc between any two vertices, v must be dominated
by some arc aF

i , hence v ∈ B′
i .

There must be at least one arc vR with d(vR) = |H| because d(v X) > |H|, there-
fore at least one B′

i must be non-empty. Since v X 6∈ B′
j for any j , this in turn

means that there must be a vertex d(vS) = |H|+1.

Let P be the set of immediate predecessors of vS . For each v ∈ P it is either
d(v) = d(vS)−1 = |H| or v = vB , and there must be at least one vP ∈ P such that
d(vP) = |H|. If none of the elements of P are auxiliary assignments, then vP ∈
Bi since it is not subject to trimming, completing our proof. Otherwise by pqr-
completeness all elements of P must be auxiliary assignment vertices. This
means that vB 6∈ P (since vB is a branch statement), and therefore d(v) = |H|
for all v ∈ P . This means that each v ∈ P is also in some dominator subgraph
B′

i . This in turn means that they are not removed by trimming and therefore
vP ∈ Bi for some i as well.

Theorem B2.5.2. The branch restructuring algorithm given in Section B2.4.2
always terminates for a given acyclic, closed and pqr-complete CFG C.

Proof. We prove this by showing that there is a strictly decreasing well-ordered
metric for the arguments of the recursive function calls, and that the argu-
ments to these calls satisfy the preconditions of this theorem.

For any C let b(C) denote the number of branch vertices, and |C| denote the
number of vertices. Define m(C) := (b(C), |C|) with the well-ordering relation

m(C) < m(C′) ↔ b(C) < b(C′)∨ (b(C) = b(C′)∧|C| < |C′|)

and will show that m(T∗) < m(C) and m(B∗
i) < m(C).

If b(C) = 0, then the graph is linear and will be returned unchanged without
recursion. If b(C) 6= 0 we know by Theorem B2.5.1, that H, T and at least one
Bi contain at least one vertex of C each, and H contains a branch vertex. This
means that |T| ≤ |C| − 2, b(T) ≤ b(C)− 1, since we insert at most one branch

vertex into the tail subgraph, it follows: |T∗| ≤ |C| − 1∧b(T∗) ≤ b(C)− 1. We
only insert assignment and null statements into the branch subgraphs and
therefore b(B∗

j) ≤ b(C)−1.

129

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

The head, tail and branch subgraphs of C are initially pqr-complete. The only
possible insertion into the tail subgraph is one branch vertex and into the
branch subgraphs are auxiliary assignment statements that fan in to a null

statement. All of these insertions preserve the initial pqr-complete property.

Theorem B2.5.3. The loop restructuring algorithm given in Section B2.4.1 ter-
minates for any given closed pqr-complete CFG C.

Proof. As above, we give a well-ordered metric for the arguments of recur-
sive calls. Let s(C) :=∑

S∈SCC(C) |S| be the sum of all vertices in any non-trivial
strongly connected component. By necessity, s(C) ≤ |C| − 2, since the entry
and exit vertex cannot be in any SCC. Furthermore, the total size is also an
upper bound for the size of each SCC individually.

L∗ consists of all vertices of one SCC plus at most two auxiliary vertices. Nei-
ther the newly added auxiliary entry and exit vertices can be part of any SCC,
nor can the original entry vertices as we remove all repetition arcs. Therefore,
s(L∗) ≤ |L∗|−2−1 ≤ s(C)−1.

The introduced auxiliary assignment statements amount to assignments to
q which fan into the entry of the loop, and assignments to q, r which fan to
the tail vertex of the loop. Consequently, all graphs processed either by recur-
sion or branch restructuring share this property. By assumption, the auxiliary
predicates p, q and r are not used anywhere in any original CFG on which re-
structuring operates, concluding the proof that the algorithm terminates.

The theorems above show that the algorithms are structurally recursive and
we can prove properties about them inductively.

B2.5.2. CFG Restructuring Correctness and Evaluation Equivalence

Theorem B2.5.4. For any closed CFG C, the restructuring algorithm of Section
B2.4 yields a structured CFG C.

130

B2.5. Proof of Correctness and Invertibility

Proof. We prove by induction over the recursive call tree, first for branch re-
structuring as per Section B2.4.2: All linear graphs at the call tree leafs are
structured by rule 1 of Definition 10. H∗ is linear, by induction hypothesis all
of Bi and T are either structured or empty. Contracting all of these subgraphs
leaves a graph shaped according to rule 2 which is therefore structured as well.

Loop restructuring as per Section B2.4.1 calls into branch restructuring at its
leafs, and by induction hypothesis we can again presume L to be structured.
Rule 3 allows removing the repetition arc after contracting the loop body. By
applying branch restructuring while treating all loops as indivisible vertices
we therefore arrive at a structured CFG again.

Theorem B2.5.5. For each arc from v1 and v2 in C, there is either a correspond-
ing arc in C or a path from v1 to v2 that consists entirely of matching auxiliary
assignment and auxiliary branch vertices as well as null statements such that
control must flow from v1 to v2.

Proof. Evidently, each individual insertion of auxiliary statements during the
restructuring process already satisfies the proposition. We only need to show
that there is no interaction which disturbs the proper matching of assignment
and branch statements. The only places where auxiliary vertices can be in-
serted improperly is during branch restructuring between subgraphs Bi and
T. Due to pqr-completeness, the trimming step ensures that all insertions oc-
cur in a uniformly nested fashion within other existing auxiliary assignment
and branch statements. Thus, we only need to prove that there is no path
with assignments to p without an intervening branchp statement. We assert
that auxiliary statements only occur in CFGs processed recursively as:

1. branchp as the entry vertex of a graph, or

2. p := . . . as the exit vertex of a graph, or

3. p := . . . as predecessors to a null exit vertex

In the first two cases there is nothing to prove since no vertices are inserted be-
fore entry or after the exit vertex. In the third case, the trimming step ensures
that either all or none of the p := . . . statements is contained in the branch sub-
graphs. In the first case, there is nothing to prove since there are no insertions
between vertices in the tail subgraph. In the second case, pqr-completeness

131

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

ensures that the tail subgraph consists of a single null vertex and that there is
consequently no auxiliary assignment or branch statement inserted.

The last theorem not only proves the evaluation equivalence of the original
and restructured CFG, but also shows that there is a simple mechanical pro-
cedure for recovering the original CFG. The following algorithm is a very re-
stricted form of constant propagation that only considers constant assign-
ments to any of the auxiliary variables:

Algorithm SHORTCIRCUITCFG

Repeatedly apply these transformations:

• Replace every arc to a null vertex with an arc to its successor, and remove
the vertex from the graph.

• Let x1, x2, . . . be names of variables and expr1,expr2, . . . be expressions for
a statement of the form x1, x2, . . . :=expr1,expr2, . . . followed by abranchxi

vertex, then substitute xi for expri in the branch statement and remove
xi and expri from the assignment statement. If no variables and expres-
sions remain, replace every arc to it with an arc to its successor and re-
move the assignment statement from the graph.

• Let c be a constant expression, then replace a branchc statement with
a null statement with an outgoing arc to the destination of the branch
corresponding to c.

Corollary B2.5.1. For any closed CFG C the following is required to hold:

C = SHORTCIRCUITCFG(RESTRUCTURECFG(C))

B2.5.3. CFG Reconstruction by PCFR

Theorem B2.5.6. For any given structured CFG C there are oracles for EVALORDER

and VARNAMES such that

1. VARNAMES succeeds without introducing copy operations, and

132

B2.5. Proof of Correctness and Invertibility

2. the following equation holds:

SCFR(BUILDRVSDG∗(C), EVALORDER, VARNAMES) = C

Proof. Let R := BUILDRVSDG∗(C). The nodes of each region of R were con-
structed by traversing the corresponding part of C in control flow order, and
recording just the value and state dependencies of operations. Therefore, a
topological order of RVSDG nodes corresponding to the original control flow
order exists and can be supplied by an oracle for EVALORDER.

During RVSDG construction, we kept updating a symbol table maintaining
the mapping from variable name in the original CFG and output of a node
in the RVSDG. Inverting this mapping means that we can recover the assign-
ment of def sites in the RVSDG to names in the original CFG. This yields an
interference-free coloring, showing that VARNAMES can succeed without in-
sertion of copy operations and recover the original CFG names.

Together this shows that SCFR perfectly reconstructs C.

Theorem B2.5.7. For an RVSDG R in predicate continuation form and algo-
rithms EVALORDER and VARNAMES such that VARNAMES succeeds without in-
troduction of copy nodes, the following identity is required to hold:

PCFR(R, EVALORDER, VARNAMES)

= SHORTCIRCUITCFG(SCFR(R, EVALORDER, VARNAMES))

Proof. Let C := SCFR(R, EVALORDER, VARNAMES). By assumption, the cho-
sen topological order keeps predicate def and use nodes adjacent, and also
VARNAMES does not insert nodes. This ensures that C in turn has assignments
to predicate variables immediately succeeded by any branch statement(s) us-
ing the value – with possibly some intervening null statements which are
eliminated as the first step of SHORTCIRCUITCFG.

PREDICATIVECONTROLFLOWPREPARE produces the same set of vertices as
SCFR, except that predicate defining RVSDG nodes are translated as
branch/null instead of assignment statements and that no branch vertices
are generated at the head or tail of γ- or θ-constructs, respectively (see Figure
B2.2 for an illustration).

133

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

PREDICATIVECONTROLFLOWFINISH evaluates the same expressions for deter-
mining the continuation points as SHORTCIRCUITCFG does during branch

replacement steps, combined with the structural correspondence this shows
that both arrive at the same CFG.

With these preparations, we can formulate and prove the main theorem of our
paper:

Theorem B2.5.8. For each closed CFG C there exist oracles EVALORDER and
VARNAMES such that:

C = PCFR(BUILDRVSDG(C), EVALORDER, VARNAMES)

.

Proof. Combining the theorems above, we know there exist oracles for
EVALORDER and VARNAMES such that we can rewrite:

C = PCFR(BUILDRVSDG(C), EVALORDER, VARNAMES)

= SHORTCIRCUITCFG(SCFR(BUILDRVSDG∗(RESTRUCTURECFG(C)),

EVALORDER, VARNAMES))

= SHORTCIRCUITCFG(RESTRUCTURECFG(C))

= C

The next theorem shows that the degrees of freedom in undoing SSA has no
material influence on the control flow structure:

Theorem B2.5.9. For each closed CFG C there exists an oracle EVALORDER such
that for any VARNAMES and C′ = PCFR(BUILDRVSDG(C), EVALORDER, VARNAMES)
it holds that C′ and C are structurally equivalent (see definition 11).

Proof. Using the same oracle for EVALORDER as in the previous theorem, we
observe that PCFR processes all RVSDG nodes in the same sequence in both
cases. This leads to the same order of CFG nodes, but C′ may differ from C in
two aspects: It may use different variable names and contain several variable

134

B2.6. Empirical Evaluation

copy operations (cf. Section B2.3.1) that are not present in C. This still leads to
the same structure multigraph and unchanged evaluation semantics, hence
the two CFGs are structurally equivalent.

Exact reconstruction of the original control flow depends on selecting a spe-
cific topological ordering of nodes per region. An RVSDG where topological
ordering is sufficiently constrained will always faithfully reproduce the origi-
nal control flow structure. Otherwise, different orders may result in wildly dif-
ferent CFG shapes. Still, we retain as an invariant that the number of branch-
ing points does not increase which shows that our destruction algorithms
never deteriorates control flow as measured by static branch counts:

Theorem B2.5.10. For each closed CFG C, any EVALORDER, any VARNAMES

and C′ = PCFR(BUILDRVSDG(C), EVALORDER, VARNAMES) it holds that C′ have
the same number of branch statements.

Proof. The number of branches generated by PCFR only depends on the
number of predicate assignments within the RVSDG, and the number of
auxiliary predicate assignments “skipped" by algorithm PREDICATIVECON-
TROLFLOWFINISH. The former is evidently independent of algorithm choices
for EVALORDER and VARNAMES. The independence of the latter is a conse-
quence of EVALORDER keeping predicate defs and uses adjacent.

B2.6. Empirical Evaluation

This section describes the results of applying PCFR and SCFR to CFGs ex-
tracted from the SPEC2006 benchmark suite [84], in order to evaluate practical
implications for the number of generated branches, IR size, and compile-time
overhead.

B2.6.1. CFG Extraction and Representation

CFGs were extracted from all C benchmarks in the SPEC2006 using libclang
10, which resulted in a set of 14321 CFGs. We ensured that all were closed, by

10http://clang.llvm.org/

135

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

b
zi

p
2

ca
ct

u
sA

D
M

ca
lc

u
li

x

gc
c

go
b

m
k

gr
o

m
ac

s

h
26

4r
ef

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
cf

m
ilc

p
er

lb
en

ch

sj
en

g

sp
h

in
x3

w
rf

Linear 25 632 9 1353 1552 334 81 71 2 26 1 78 329 28 60 80

Structured 34 429 534 1362 616 238 184 124 5 17 2 42 517 43 63 180

Reducible 41 288 577 1582 474 626 301 329 12 58 21 115 394 73 190 175

Irreducible 2 - - 2 - - - - - - - - 10 - - -

Total 102 1349 1120 4299 2642 1198 566 524 19 101 24 235 1250 144 313 435

Figure B2.6.: Classification of Extracted CFGs

eliminating statically unreachable basic blocks. All operations were modeled
as having side effects, consuming a single program state, and producing one
for the next operation. This was done to ensure a unique topological order for
reconstructing the exact CFG.

CFGs were classified as Linear per Definition 8, Structured per Definition 10,
Reducible or Irreducible. Structured graphs were identified by structural anal-
ysis [185], and irreducibility was determined by T1/T2 analysis [3]. Figure B2.6
shows distributions of each class per program. The CFGs were converted to
RVSDGs as described in Section B2.4, and restored to CFGs using PCFR and
SCFR. All PCFR results were verified to equal their original CFGs.

B2.6.2. Key Observations

PCFR removes every auxiliary assignment and branch statement introduced
by CFG restructuring, avoiding any code size increases from node splitting or
additional branches to preserve program logic. Figure B2.7 shows its improve-
ment over SCFR, in terms of branch statements. Static branch counts are not
directly proportional to program run time, but we regard them as indicative
of overheads incurred by other methods [97, 219, 200]. We note that graphs
generated by SCFR greatly resemble results produced by Johnson’s algorithm
[100], suggesting that their overheads are comparable.

136

B2.6. Empirical Evaluation

b
zi

p
2

ca
ct

u
sA

D
M

ca
lc

u
li

x

gc
c

go
b

m
k

gr
o

m
ac

s

h
26

4r
ef

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
cf

m
ilc

p
er

lb
en

ch

sj
en

g

sp
h

in
x3

w
rf

SCFR 1440 5802 9373 35827 9679 5486 6136 3766 56 305 190 1160 9374 2236 1543 1284

PCFR 1100 5127 8752 31960 8329 5277 5867 3343 55 280 160 1109 8248 1913 1436 1135

Savings % 30.9 13.2 7.1 12.1 16.2 4.0 4.6 12.7 1.8 8.9 18.8 4.6 13.7 16.9 7.5 13.1

Figure B2.7.: Relative Static Branch Counts of PCFR to SCFR

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

#
N

o
d

e
s
 R

V
S

D
G

#Vertices CFG

Reducible Irreducible Structured Linear

Figure B2.8.: Corresponding CFG and RSVDG Sizes

RVSDG construction as per Section B2.4 can add constructs with no equiv-
alent in the original CFG, depending on the complexity of the original con-
trol flow. Consequently, our RVSDG form carries an expected representational
overhead. This is quantified in Figure B2.8, which relates the number of CFG
vertices to RVSDG nodes for each of our CFGs. There is a clear linear relation-
ship for all of the 14321 cases, suggesting that our construction algorithm is
practically feasible in terms of space requirements.

Construction and destruction were timed for each CFG, to assess how compile-
time overhead grows with graph size. Figure B2.9 shows timings of RVSDG
construction versus input size. For the majority of CFGs a linear dependency
is recognizable, with a few notable deviations from the expected line. Devi-
ations below the line are either structured or nearly structured graphs. For
these graphs, restructuring only discovers hierarchical structure without com-

137

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
 [

s
]

#Vertices CFG

Reducible Irreducible Structured Linear

Figure B2.9.: Execution Times for CFG to RVSDG Conversions

pounding it, resulting in lower processing time. The 7 deviations above the
line are either produced by large if/then/else if statements, or complex
control flow of interacting loops, switch and goto statements, which pro-
duced graphs with hundreds of cascaded equality tests on one side. Through
branch restructuring, such imbalanced graphs lead to mostly empty branch
subgraphs, and one full. The dominator graph is repeatedly recomputed for
the full branch subgraph, and hence, for most vertices in the CFG. This implies
a theoretical worst-case quadratic complexity for such cases.

Figure B2.10 shows timings of RVSDG destruction via PCFR versus input size.
A linear tendency is visible also here, with a few deviations below and above
the line. The deviations below the line are due to graphs with a high degree
of linearity. In comparison to the number of total nodes, few predicate def
nodes need to be traced to their corresponding use nodes, which results in
low processing time. The few points above the line are again due to extremely
unstructured and complex control flow. Considering that PREDICATIVECON-
TROLFLOWFINISH repeatedly traces through nested RVSDG regions for simi-
lar use/def chains starting at different nesting depths, we expect its compu-
tational complexity to be worst-case quadratic in terms of input size. Experi-
ments with different compilers suggest that these also exhibit non-linear pro-
cessing time for similarly complex control flow.

138

B2.7. Related Work

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
 [

s
]

#Vertices CFG

Reducible Irreducible Structured Linear

Figure B2.10.: Execution Times for RVSDG to CFG Conversions

B2.6.3. Summary

The overall conclusion of the empirical study is that PCFR permits CFGs to be
reconstructed from their RVSDG representation without producing any con-
trol flow overhead for actual benchmark programs. In addition, the IR size and
compile-time processing overheads are predominantly linear in terms of in-
put size. We therefore conclude that PCFR enables an RSVDG representation
to precisely capture a CFG structure without substantial disadvantages.

B2.7. Related Work

B2.7.1. Intermediate Representations

Many different IRs emerged for simplifying program analysis and optimiza-
tions [201]. The RVSDG is related to SSA [53], gated SSA [213] and thinned
gated SSA [82]. It shares the same γ function with (thinned) gated SSA and
its θ construct is closely related to their µ and η functions. However, all three
of these SSA variants are bound to the CFG as an underlying representation.
Many optimizations such as constant propagation [225] or value numbering
[174] rely on the SSA form to achieve improved results or an efficient imple-
mentation.

139

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

The Program Dependence Graph (PDG) [73] is a directed graph incorporat-
ing control and data flow in one representation. It has statement, predicate
expression, and region nodes, and edges represent data or control dependen-
cies. Control flow is explicitly represented through a control dependence sub-
graph, resulting in cycles in the presence of loops. The PDG has been used for
generating vectorized code [17] and partition programs for parallel execution
[180].

The Program Dependence Web (PDW) [149] combines gated SSA with the
PDG and is suitable for the development of different architecture back-ends. It
allows a direct interpretation under three different execution models: control-
, data-, or demand-driven. However, its construction requires 5 passes over
the PDG resulting in a time complexity of O(N 3) in the size of the program.

Click’s IR [47] is a PDG variant with a Petri net based model of execution.
Nodes represent operations, and edges divide into control and data depen-
dence subsets. It was designed for simplicity and speed of compilation, and a
modified version is used in the Java HotSpot server compiler [152].

The Value Dependence Graph (VDG) [226] is a directed graph where nodes
represent operations and edges dependencies between them. It uses γ-nodes
to represent selection, but lacks a special construct for loops. Instead they are
expressed as tail-recursive functions with λ-nodes. The significant problem
with the VDG is that it fails to preserve the termination properties of a proce-
dure.

B2.7.2. Control Flow Restructuring

Many control flow restructuring algorithms have been proposed to facilitate
optimizations. Most work focuses on removing goto statements, or irreducible
control flow.

Erosa et al. [70] eliminate goto statements in C programs by applying AST
transformations. The algorithm works on the language-dependent AST, but is
also applicable to other languages [40]. However, it replicates code, and the
simple elimination of gotos is insufficient for RVSDG construction.

140

B2.8. Conclusion

Zhang et al. [240, 239] create single-entry/-exit subgraphs within CFGs. As
with Erosa’s work, the method suffers from code expansion and produces CFGs
not suitable for RVSDG construction.

The algorithm presented by Ammarguellat [8] operates on its own input lan-
guage, but is closest to our approach in terms of produced control flow. The
paper presents an algebraic framework for normalizing control flow to only
three structures: single-entry/-exit loops, conditionals and assignments [25].
The algorithm represents a procedure as a set of continuation equations and
solves this system with a Gaussian elimination-like method. In contrast to
Erosa’s and Zhang’s work, code is only duplicated for irreducible graphs.

Janssen et al. [97] and Unger et al. [219] use controlled node splitting to trans-
form irreducible CFGs to reducible ones. Although irreducible control flow is
extremely rare in practice [200] and their results are encouraging in terms of
code bloat, it is proven that node splitting results in exponential blowup for
particular CFGs [38].

B2.8. Conclusion

In this paper, we presented algorithms for constructing RVSDGs from CFGs
and vice versa. We proved the correctness of these algorithms, and that the
exact, original control flow can be recovered after round-trip conversion. Em-
pirically, we found that our algorithms successfully process CFGs extracted
from selected SPEC2006 benchmarks. Processing time and output size corre-
late linearly with input size, with acceptable deviations for less than 0.01% of
test cases. While pathological inputs may cause worse asymptotic behavior,
we conclude that the algorithms are applicable to practical programs.

Our main result is that our algorithms obtain control flows which are not
limited by any structural properties of the RVSDG. Expressing control flow
transformations as predicate computations permits related optimizations to
be moved entirely into the RVSDG domain. This provides a means to translate
optimizations which depend on established control flow, such as Johnson and
Mycroft’s VSDG-based code motion and register allocation scheme [99], and
may remove the need to perform control flow transformations in any other

141

B2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs

representation. Ultimately, our work enables a compiler to use a demand-
dependence representation up until object code generation, when deciding
on a specific flow of control is inevitable.

142

Part C.

GPU Divergence

143

C1. Efficient Control Flow Restructuring
for GPUs

Nico Reissmann, Thomas L. Falch, Benjamin A. Björnseth, Helge Bahmann,
Jan Christian Meyer, and Magnus Jahre

Published in
Proceedings of the 2016 International Conference on High Performance

Computing & Simulation (HPCS)

Abstract. The CUDA and OpenCL programming models have facilitated the
widespread adoption of general-purpose GPU programming for data-parallel
applications. GPUs accelerate these applications by assigning groups of threads
to SIMD units, which execute the same instruction for all threads in a group.
Individual group threads might diverge and follow different paths of execu-
tion. Divergent branches cause performance degradation by under-utilizing
the execution pipeline, resulting in a major performance bottleneck. The pres-
ence of unstructured control flow in addition to divergent branches causes
further degradation, since it results in repeated execution of instructions.

In this paper, we propose a transformation which converts unstructured to
structured control flow. It only creates tail-controlled loops, and properly nests
all control flow splits and joins by inserting predicates. We implement an addi-
tional pass to NVIDIA’s CUDA compiler to experimentally evaluate our trans-
formation using synthetic unstructured control flow graphs, as well as kernels
in the Rodinia benchmark suite. Our approach effectively eliminates redun-
dant execution and potentially improves execution time for the synthetic un-
structured control flow graphs. For the kernels in the benchmark suite, it only
adds a minor, average overhead of 2.1% to the execution time of already struc-
tured kernels, and reduces execution time for the only unstructured kernel

145

C1. Efficient Control Flow Restructuring for GPUs

by a factor of five. The representational overhead at compile-time is linear in
terms of instructions.

C1.1. Introduction

Programming models such as CUDA [51] and OpenCL [148] allow developers
to port applications to Graphic Processing Units (GPUs) and use their com-
puting power for general purpose processing (GPGPU). GPUs accelerate data-
parallel applications by mapping groups of threads to parallel execution units.
These thread groups run in lock-step, executing the same instruction in Single
Instruction Multiple Data (SIMD) mode. Individual threads in a group can di-
verge by following different paths of execution. Current GPUs handle these di-
vergent branches by executing all paths sequentially, and masking out threads
that do not take a path. Divergent threads reconverge at the immediate post-
dominator (IPDOM)1 of the branch instruction [75].

Branch divergence causes performance degradation by under-utilizing the ex-
ecution pipeline. Moreover, IPDOM is the earliest point of reconvergence for
structured control flow graphs (CFGs), but can result in redundant basic block
execution with unstructured control flow. Branch divergence is therefore a
major performance bottleneck [57, 79, 228, 9], exacerbated by unstructured
control flow. The causes of unstructured control flow are programming lan-
guage constructs such as goto, switch, and break statements, short circuiting
operations, and compiler optimizations such as function inlining. Transform-
ing unstructured control flow eliminates the redundant execution caused by
divergence, mitigating its performance penalty. Moreover, compilers targeting
AMD GPUs represent programs in the AMD IL [1] intermediate representation
(IR). In contrast to NVIDIA’s PTX [161], it only supports structured control flow,
making transformations necessary.

In this paper, we propose a transformation to convert unstructured to struc-
tured control flow. It is based on the work from Bahmann et. al. [13] and con-
sists of two phases: loop restructuring and branch restructuring. Loop restruc-
turing converts all cyclic structures to tail-controlled loops, while branch re-
structuring ensures proper nesting of control flow splits and joins. This trans-

1See Section C1.3 for a definition of IPDOM

146

C1.2. Motivation

formation works by adding predicates and branches to CFGs. We modify the
algorithm to admit head-controlled loops, and separate the implementation
of the loop and branch restructuring phases. This separation is possible be-
cause the insertion order of additional predicates and branches is irrelevant
for GPUs. In contrast to previous solutions [63, 62, 228, 229], the use of predi-
cation instead of node splitting for restructuring CFGs avoids the risk of expo-
nential code inflation [38].

We implement control flow restructuring as an additional pass to NVIDIA’s
CUDA compiler, and evaluate it experimentally using synthetic unstructured
control flow graphs (CFGs), as well as all kernels in the Rodinia benchmark
suite [41]. The synthetic unstructured CFGs demonstrate that our approach
effectively eliminates redundant execution and potentially improves execu-
tion time for unstructured graphs with branch divergence. We use the Ro-
dinia benchmark suite to evaluate transformation cost in terms of execution
time and representational overhead at compile-time. Control flow restructur-
ing adds a minor average overhead of 2.1% to the execution time of already
structured kernels, and reduces execution time for the only unstructured ker-
nel by a factor of five. While the overhead for already structured kernels is
notable, it is significantly lower than previously reported results [63, 62]. The
representational overhead at compile-time is linear in terms of instructions.

The paper is organized as follows: Section C1.2 describes the problem of
branch divergence for unstructured control flow. Section C1.3 introduces ter-
minology and definitions, while Section C1.4 describes our algorithm. We em-
pirically evaluate it using synthetic unstructured CFGs and the Rodinia bench-
mark suite [41] in Section C1.5. Section C1.6 discusses related work, and Sec-
tion C1.7 concludes and suggests further directions for research.

C1.2. Motivation

The IPDOM of a branch is the earliest possible point of reconvergence in struc-
tured CFGs, causing no redundant execution. In unstructured graphs, how-
ever, it is possible to introduce earlier points of reconvergence in order to
avoid multiple executions of basic blocks. The following pseudocode shows
a simple if-then-else statement with a short circuited condition:

147

C1. Efficient Control Flow Restructuring for GPUs

i f (c | | d) {
S1 ;

} e lse {
S2 ;

}
S3 ;

Figure C1.1a depicts the corresponding CFG. The CFG is unstructured due to
splits and joins not being properly nested.

Consider a warp of four threads executing this code segment, with threads
T 1 and T 2 taking execution path (c?,S1,S3), thread T3 execution path
(c?,d?,S1,S3), and thread T 4 execution path (c?,d?,S2,S3) (see Figure C1.1a).
The threads only reconverge before executing basic block S3. Thus, the basic
block S1 would be executed twice, once for threads T 1 and T 2, and once for
thread T 3 as shown in the example schedule in Figure C1.1c.

Figure C1.1b depicts the CFG after control flow restructuring. The basic idea
is to insert predicate assignments (p := 0 and p := 1) and branches (p?) such
that all splits and joins are properly nested, and the resulting CFG is struc-
tured. This results in threads T 3 and T 4 reconverging at NU LL and threads
T 1, T 2, T 3, and T 4 at p?, avoiding the duplicated execution of S1 as shown in
the schedule of Figure C1.1d. The problem of repeated basic block execution
compounds in bigger subgraphs, possibly resulting in more than two execu-
tions of individual nodes.

Structured graphs do not result in redundant code execution on GPUs, be-
cause nested divergent branches always reconverge in the inverse order of
their execution, i.e. the inner branch reconverges before the outer branch.
Our transformation converts kernels to structured graphs which consist only
of tail-controlled loops and properly nested control flow splits and joins. For
tail-controlled loops, divergent branches reconverge at the loop’s epilogue,
while divergent splits reconverge at the corresponding join. Thus, our trans-
formation always produces graphs which preclude redundant code execution.

Developers are aware of the potential disadvantages of unstructured control
flow for GPUs, and therefore try to avoid it. A compiler supporting control
flow restructuring in combination with divergence analysis [48] would allow

148

C1.2. Motivation

T1
T2
T3
T4

c?

c?

c?

c?

d?

d? S2

S1

S3

S1

S1

S3

S3

S3

{T1,T2,T3,T4}

{T3,T4}

{T4}

{T1,T2,T3,T4}

c?

d?

S2S1

S3

01

1 0{T3}
{T1,T2}

c?

d?

S2

S3

S1

{T1,T2,T3,T4}

{T1,T2,T3,T4}

p:=1 p:=0

p?

1 0 {T3,T4}

{T1,T2} {T4}
{T3}

01

1 0
{T4}

{T1,T2,T3}

T1
T2
T3
T4

c?

c?

c?

c?

d?

d? S2

S1

S1

S1

S3

S3

S3

S3

a) b)

c)

d)

Time

NULL

p:=1

Figure C1.1.: Example illustrating the negative effect of unstructured control
flow in the presence of branch divergence. a): CFG for the pseu-
docode in Section C1.2. b): Control flow restructured CFG from
a). c): Possible execution schedule for the CFG in a). d): Possible
execution schedule for the CFG in b).

149

C1. Efficient Control Flow Restructuring for GPUs

a greater class of programs to be automatically translated into efficient GPU
code.

C1.3. Terms and Definitions

A control flow graph is a directed graph consisting of nodes containing state-
ments and edges representing transitions between statements. Outgoing edges
are numbered with unique consecutive indices starting from zero (although
we will omit writing out the index if a node has only one outgoing edge). State-
ments take the following form:

• v := expr designates an assignment statement. The right hand side ex-
pression is evaluated and the result is assigned to the variable named on
the left.

• v? designates a branch statement. The variable is evaluated and exe-
cution resumes at the node reached through the correspondingly num-
bered edge.

• Other kinds of statements corresponding to original program behavior
(observable side-effects) are allowed as well. We omit their discussion,
as they are irrelevant for the control flow behavior discussed in this pa-
per.

Only branch statements may have more than one outgoing edge. Further-
more, we require that each CFG has two designated nodes: The entry node
without a predecessor, and the exit node without a successor. CFGs represent
programs in imperative form: Starting at the entry node, successively evaluate
each statement, until reaching the exit node.

Nodes are generally denoted by n with sub- and superscripts. Edges denoted
by e with sub- and superscripts. An edge from a node n1 to a node n2 is written
as n1 → n2. We call n1 the edge’s source and n2 its target.

Definition 19. A CFG is called single-entry/single-exit (SESE) if its shape can
be contracted into a single node by repeatedly applying the following steps:

150

C1.3. Terms and Definitions

1. If n′ is unique successor of n, and n is unique predecessor of n′, then re-
move edge n → n′ and merge n and n′.

2. If n has only successors n0,n1, . . . and possibly n′, n′ has only predecessors
n0,n1, . . . and possibly n, and each of n0,n1, . . . has only a single predeces-
sor and successor, then remove all arcs n → ni , ni → n′, n → n′ and merge
all vertices.

3. If n has an edge pointing to itself and only one other successor, remove the
edge n → n.

4. If n has an outgoing edge targeting n′ and n′ has only one outgoing edge
targeting n, then remove n → n′, n′, and n′ → n.

Single-entry/single-exit CFGs are a subset of reducible CFGs and can be char-
acterized by allowing only the following constructs:

• Straight line code.

• Properly nested conditionals (“if/then/else” or “switch/case” state-
ments without fall-throughs).

• Tail-controlled loops (“do/while” loops without “break” or “continue”
statements).

• Head-controlled loops (“for” or “while” loops without “break” or
“continue” statements).

Definition 20. A CFG is called tail-structured if its shape can be contracted into
a single node by repeatedly applying rule 1, 2, and 3 from Definition 19.

Tail-structured CFGs are a subset of SESE CFGs and correspond to programs
with only straight line code, properly nested conditionals, and tail-controlled
loops.

Definition 21. A CFG is called linear if every vertex has exactly one incoming
and outgoing edge.

Linear CFGs are a subset of tail-structured CFGs and correspond to programs
with only straight line code.

151

C1. Efficient Control Flow Restructuring for GPUs

Definition 22. A CFG is called minimal if it does not contain any nodes n and
n′ such that n′ is the unique successor of n, and n the unique predecessor of n′.
Thus, a minimal CFG contains no linear subgraphs.

Definition 23. An edge n1 → n2 dominates node n if

1. n2 6= n and both n1 and n2 dominate n, or

2. n2 = n and n1 dominates n.

The dominator graph of edge e is the subgraph of all nodes dominated by e.

Intuitively, the dominator graph of an edge e is the subgraph where every path
from the entry node to every node in this subgraph must pass through edge
e.

Definition 24. A node n′ is said to be the immediate post-dominator (IPDOM)
of another node n iff:

• n′ post-dominates each immediate successor n0,n1, . . . of n, and

• for each other node n′′ which also post-dominates each of n0,n1, . . . it
holds that either n′′ = n′ or that n′′ post-dominates n′.

Intuitively, the immediate post-dominator is the earliest point in a CFG where
all paths starting at some node n necessarily reconverge.

C1.4. Control Flow Restructuring

Regularization of control flow can be facilitated by node cloning, predication
or a combination of both techniques. Here we follow the approach laid out by
Bahmann et al. [13] using predication only. Assume a CFG with a single entry
and exit node. We restructure it using the procedures described below. The
approach consists of two phases:

• Loops are detected and (possibly) transformed into a tail-controlled loop.

• Branches are restructured such that branch and join points are symmet-
ric.

152

C1.4. Control Flow Restructuring

C1.4.1. Loop Restructuring

We start by identifying all strongly connected components (SCCs) and process
each of them according to the procedure below. By necessity, neither entry nor
exit node are part of any SCC. First, identify the following nodes and edges:

• Entry edges eE
0 ,eE

1 , . . .: All edges from a node outside the SCC into the
SCC

• Entry nodes nE
0 ,nE

1 , . . . ,nE
k−1: All nodes that are target of at least one entry

edge

• Exit edges e X
0 ,e X

1 , . . .: All edges from a node inside the SCC out of the SCC

• Exit nodes nX
0 ,nX

1 , . . . ,nX
l−1: All nodes that are target of at least one exit

edge

• Repetition edges eR
0 ,eR

1 , . . .: All edges inside the SCC that have one entry
node as target

See Figure C1.2 for illustration. We denote the set of nodes belonging to SCC
by L. Initially, L induces the SCC subgraph. The following modifies the orig-
inal graph, and we update L as well such that it eventually induces a suitable
structured loop subgraph. When we say “create a node within L” (as opposed
to just “create a node”) in the following, it means: Create the node in the CFG
and update L such that it also has this node as member.

1. Pick two unused variables q and r to identify continuation location and
loop repetition state, respectively.

2. If there are multiple entry nodes:

a) Create a branch node bE within L that evaluates q and continues
at eE

m iff q = m.

b) Replace each entry edge: If the edge originally pointed to eE
m , cre-

ate an assignment statement q := m, divert the original entry edge
to it, and continue control flow to bE from there.

153

C1. Efficient Control Flow Restructuring for GPUs

L

a?

S1 S2

c? d?

S3 S4

S5

nE0 nE1

nX0 nX1

1
0

0
1

0 1

eE0 eE1

eX0 eX1

eR0 eR1

L

a?

q:=0

q?

S1 S2

c? d?

S3 S4

S5

q:=0 q:=1 q:=0 q:=1

bE

bX

nE0 nE1

nX0 nX1

q?
0 1

100 1

0 1

0 1

eR0eR1

eX0 eX1

L

a?

q:=0

q?

S1 S2

c? d?

S3 S4

S5

q:=0 q:=1 q:=0 q:=1

r:=0 r:=1 r:=1 r:=0

nE=bE

bX

nE0 nE1

nX0 nX1

r?

q?

0 1

0 1

100 1

0 1

0 1

nL=bR

Figure C1.2.: Loop restructuring. Left: A CFG with an unstructured loop.
Nodes and subgraphs identified by restructuring algorithm are
marked as per algorithm description. Center: Intermediate state
of loop restructuring after remodeling entry/exit control flow.
Right: Final state after converting the loop to a single repetition
and exit edge. Inserted nodes remodeling the original control
flow are marked in red.

154

C1.4. Control Flow Restructuring

c) Replace each repetition edge: If the edge originally pointed to eE
m ,

create an assignment node q := m within L, divert the original
repetition edge to it, and continue control flow to bE from here.
Record the newly recorded edges as repetition edges in lieu of the
replaced ones.

After this step there is only one entry node: Either the newly created
node bE or the single original entry node. Denote it by nE .

3. If there are multiple exit nodes:

a) Insert a branch node bX that evaluates q and continues at e X
m iff

q = m.

b) Replace each exit edge: If the edge originally pointed to e X
m , create

an assignment node q := m within L, divert the original repetition
edge to it, and continue control flow to bX .

After this step there is only one exit node: Either the newly created node
bX or the single original exit node. Denote it by nX .

4. If there are any two distinct nodes that are origin of either repetition
and/or exit edges2:

a) Create a branch node bR within L evaluating r that continues at
nX if r = 0 and at nE otherwise.

b) Create an assignment node r := 0 within L and an edge from it to
bR . Divert all exit edges to it.

c) Create an assignment node r := 1 within L, create an edge from it
to bR . Divert all repetition edges to it.

Note that the algorithm above does not actually modify the graph if it is al-
ready tail-structured. After this processing is complete, L contains two marked
nodes:

• nE is the unique entry node; all edges from outside L into L will have
this node as target

2Note that this includes the cases of two or more repetition or exit edges

155

C1. Efficient Control Flow Restructuring for GPUs

• nL is the unique last node; there is only one edge leaving L, it originates
in nL

nE has only one predecessor node within L, the node nL . The edge nL → nE

is the unique repetition edge of this loop. Temporarily remove this repetition
edge, keeping track of the two nodes it used to connect. We repeatedly apply
this whole loop transformation algorithm for any other SCC in the graph.

After all SCCs have been transformed as above, the resulting graph is acyclic.
We process this acyclic graph according to the algorithm in the next section,
and then re-insert all repetition edges that were set aside.

C1.4.2. Branch Restructuring

First, construct the “head” subgraph H as follows: Add the entry node to H . If
the last node added has exactly one outgoing edge, add it as well as its target
node to H . There are now two cases to consider:

• H covers the entire original graph.

• H covers only a portion of the original graph. There is a node b that was
added to H last that has at least two outgoing edges.

In the first case the algorithm terminates: The original CFG is linear.

In the second case, record the outgoing edges of b as f0, f1, . . . , fm−1. Compute
the dominator graphs of each fk as Bk : This is the set of nodes and their con-
necting edges reachable from the entry node only through fk . We call these
the “branch” subgraphs. Record the remaining nodes and their connecting
edges as the “tail” subgraph T . Some Bk may be empty, the corresponding
edge fk would in this case go directly to some node in T ; in this case, create a
“dummy” node in Bk and route the path through it. (See left of Figure C1.3 for
illustration.)

We denote by c0,c1, . . . ,cn−1 the continuation points in the tail subgraph: These
are the nodes in T with at least one edge from either branch subgraph. There
must be at least one such continuation point, and if there is exactly one then
this branching construct has already a suitable structure. Otherwise, restruc-
ture T and Bk as follows:

156

C1.4. Control Flow Restructuring

B1B0

T

H

c1

c0

b

f0f1

S2

S1

S3

a?

b?

01

1 0

B1B0

T

H

e

c1

c0

b

f0f1

NULL

NULL S2

S1

S3

p?

a?

b?

p:=1 p:=0p:=1

01

01

1 0

Figure C1.3.: Branch restructuring. Left: A CFG with unstructured branches.
Nodes and subgraphs identified by restructuring algorithm are
marked as per algorithm description. Right: The result of re-
structuring the CFG on the left hand side. Inserted nodes remod-
eling the original control flow through predication are marked in
red. Dummy nodes inserted for structural purposes are marked
in blue.

• Choose an unused auxiliary variable, denote it by p.

• Turn T into a graph with a single entry point e: Set up branches such
that control resumes at ck if p evaluates to k on entry.

• Turn each B j into a graph with a single exit point: Divert edges pointing
to ck into statements that assign k to p, rejoin control flow for this in a
single node that then proceeds to e.

Now, all edges leaving any B j point to e. Finally, if some B j has multiple exit
paths, join all these paths into a single “dummy” node within B j , and create a
single exit edge from this node to e.

Recursively apply the same algorithm to each B j as well as T . The control flow
of the resulting graph is then tail-structured.

In the specification above, we utilized “n-way” branches: a single variable is
used to identify one of n possible branch destination points. A subsequent
pass can introduce additional auxiliary variables to reduce these constructs to

157

C1. Efficient Control Flow Restructuring for GPUs

2-way branches. Additionally, superfluous dummy nodes in straight line code
can be eliminated.

C1.4.3. Loop Restructuring with Copying

The loop restructuring algorithm in Section C1.4.1 transforms all loops into
tail-controlled loops by inserting additional branches and assignments. Only
loops that are already tail-controlled, i.e. do-while loops, are not altered. How-
ever, programmers express loops commonly as head-controlled loops, i.e. for
and while loops. Loop restructuring would restructure these loops and intro-
duce additional overhead. Figure C1.4 shows a simple head-controlled loop
on the left and its equivalent after loop restructuring in the middle. The algo-
rithm transforms an unconditional branch to a conditional one, and inserts
two assignments, one of them being executed every loop iteration. This could
potentially lead to overhead in execution time (see Section C1.5).

In order to mitigate the effect of loop restructuring on head-controlled loops,
we employ loop inversion [132]. Basically, loop inversion transforms a head-
controlled loop to an if-statement that surrounds a tail-controlled loop. Com-
pilers perform this optimization in order to reduce the impact of branches at
the expense of code duplication: a head-controlled loop features two branches,
one conditional and one unconditional, while a tail-controlled loop features
only one conditional branch.

In order to identify head-controlled loops, we inspect the entry, repetition,
and exit nodes/edges of an SCC. We consider an SCC head-controlled, if it
fulfills the following criteria:

• a single entry edge eE
0 , repetition edge eR

0 , and exit edge e X
0

• the target of eE
0 , namely nE

S , is the first node of a linear subgraph S

• the source of e X
0 , namely nX

S , has two outgoing edges, e X
0 and eB , and is

the last node of subgraph S

The left image in Figure C1.4 illustrates the used notation. The linear subgraph
S represents the condition of the loop, with edge eB leading to the loop’s body,
and edge e X

0 exiting it.

158

C1.4. Control Flow Restructuring

...

Body

eE0

eX0

nES

nXS

eB

S

eR0

01 r?

...

Body

eE0

eX0

nES

nXS

eB

S

r:=1

r:=0

eR0

1 0

01

...

Body

eE0

eX0

nES

nXS

eB

S

...

nESc

nXSc

Sc
eR0

1 0

1 0

Figure C1.4.: Loop Restructuring with Copying. Left: A head-controlled loop.
Nodes, edges, and subgraphs are labeled as identified by the al-
gorithm. Center: The result of loop restructuring on a head-
controlled loop. Right: The result of loop restructuring with
copying on a head-controlled loop.

159

C1. Efficient Control Flow Restructuring for GPUs

We restructure such a loop as follows:

• copy linear subgraph S. We further denote to this copy as Sc with its first
node nE

Sc and last node nX
Sc

• divert edge eR
0 to nE

Sc

• insert a new repetition edge from nX
Sc to the target of eB

• insert a new exit edge from nX
Sc to the target of e X

0

Basically, the condition of the head-controlled loop is copied, and represents
together with its body the new tail-controlled loop. The final result is shown
in the right image of Figure C1.4. Note, even though we facilitate copying
throughout this approach, it cannot lead to exponential code bloat [38].

C1.5. Experimental Evaluation

The transformation of unstructured control flow can eliminate redundant ex-
ecution caused by branch divergence and therefore improve performance.
This section describes the results of applying control flow restructuring to
synthetic unstructured CFGs and kernels from the Rodinia benchmark suite
[41]. The synthetic unstructured CFGs are used to demonstrate that our ap-
proach effectively eliminates redundant execution for unstructured graphs
with branch divergence. We evaluate the dynamic overhead of branch re-
structuring and its potential impact on execution time. The benchmark suite
consists mostly of SESE graphs, and we use it to evaluate the overhead of our
transformations on these graphs in terms of execution time and representa-
tional overhead at compile-time.

C1.5.1. Compiler Implementation

We evaluated control flow restructuring by implementing it as an additional
pass to NVIDIA’s CUDA compiler. The pass takes PTX as input, restructures
all CFGs, and produces PTX for further processing as output. We extracted
the grammar for parsing PTX from the Ocelot compiler framework [58] and

160

C1.5. Experimental Evaluation

0 1 2 3

0 1 2 3

0

1

2 3

Figure C1.5.: Left: Basic block with 4 outgoing edges. Center: 4-way branch
resolved in a breadth-first manner. Right: 4-way branch resolved
in a depth-first manner.

create an AST with it. This AST is converted to a CFG, restructured with our
algorithms from Section C1.4, and converted back to PTX.

A necessary constraint of control flow restructuring on a CFG is the support
of n-way branches. These need to be resolved to cascades of 2-way branches
with the help of additional auxiliary variables in order to make a conversion to
PTX possible. Different cascades, such as breadth-first or depth-first as shown
in Figure C1.5, or a mix of both, are possible. For our experiments, we resolve
n-way branches with depth-first cascades of 2-way branches.

C1.5.2. Experimental Platform and Setup

The evaluation is performed on a system with an Intel Core i7-3770K CPU
@ 3.5 GHz, an NVIDIA Tesla K20, and NVIDIA’s driver version 346.46. We use
the CUDA 7.0 toolkit, running on Ubuntu 12.04. We perform our experiments
on a NVIDIA platform, since it allows us to experiment with structured and
unstructured control flow. An AMD platform would have given us only the
possibility to execute structured control flow, and would have made it impos-
sible to quantify the difference between structured and unstructured control
flow.

All programs were compiled with -Xcicc=-O0 and -Xptxas=-O0 to ensure no
interference from other compilation stages. Ideally, control flow restructuring
should be carried out as late in the compilation pipeline as possible in order
to avoid side effects from other compilation stages.

Each benchmark in Section C1.5.4 is run 10 times, and we report the aver-
age kernel execution time of all runs. We measured execution times using

161

C1. Efficient Control Flow Restructuring for GPUs

the CUDA profiler. In case benchmarks consists of multiple kernels, we add
the execution time of all kernels in each run before computing the average.
Benchmark results were verified to equal their results when restructuring is
disabled.

C1.5.3. Synthetic Control Flow Graphs

This section demonstrates that our approach effectively eliminates redundant
basic block executions for unstructured graphs with branch divergence. We
evaluate the dynamic overhead of branch restructuring and its potential im-
pact on execution time.

Experimental Setup

We evaluate the dynamic overhead of control flow restructuring by generating
the incidence matrices for all acyclic CFGs with binary branches for a given di-
mension. We filter out all minimal unstructured CFGs and convert these ma-
trices to CUDA code. All branches were made divergent to ensure redundant
execution of basic blocks. The other basic blocks contained no computation,
in order to ensure accurate dynamic overhead measurements.

We compile the CFGs with and without branch restructuring, and count the
redundant executions of basic blocks for the unstructured case as well as the
number of executed instructions for both cases using the CUDA profiler. We
compute the dynamic instruction overhead for each graph by subtracting the
number of executed instructions of the restructured CFG from the correspond-
ing unstructured CFG.

Key Observations

We produce all synthetic CFGs up to 7 nodes, resulting in 1447 CFGs after fil-
tering. We restrict our experiments to synthetic CFGs of this size, because it
produces a sufficient number of unstructured graphs to demonstrate the ef-
fect of branch restructuring. Figure C1.6 shows the dynamic instruction over-
head for these graphs. We group the CFGs by their number of redundantly

162

C1.5. Experimental Evaluation

-250

-200

-150

-100

-50

 0

 50

 0 2 4 6 8 10 12 14 16

44
9

30
5

30
6

16
1

10
2

52 33 19 11 4 2 2 0 1 0

D
y
n
a
m

ic
 I
n

s
tr

u
c
ti
o
n

 O
v
e

rh
e

a
d

Redundant Executed Basic Blocks

Control Flow Graphs

Figure C1.6.: Dynamic Instruction Overhead for all unstructured CFGs up to
size 7.

163

C1. Efficient Control Flow Restructuring for GPUs

executed basic blocks and count the number of CFGs for each group. For ex-
ample, as shown in Figure C1.6, we count 449 CFGs which execute one ba-
sic block redundantly, and only 2 CFGs which execute 12 basic blocks redun-
dantly. We plot a box and whisker plot for each group. The bottom and top of
the boxes represent the first and third quartile, and the line inside the box the
median. The ends of the whiskers indicate 1.5 times the interquartile range,
and all points not within that range are outliers plotted as small dots.

Unstructured control flow in combination with branch divergence leads to re-
dundant execution of basic blocks. Figure C1.6 shows that 73% of the synthetic
CFGs have up to 3 redundant executions, and that the maximum number of
redundantly executed basic blocks is 14. The maximum dynamic instruction
overhead is 35, indicating that the added dynamic overhead of branch restruc-
turing in the presence of branch divergence is small. Thus, in our experiments
branch restructuring is desirable as long as the combined instruction count
of the redundant executions exceeds 35. Moreover, Figure C1.6 clearly shows
that the dynamic overhead of branch restructuring becomes smaller, the more
redundant executions a graph contains. The dynamic instruction overhead is
always negative for graphs with more than 7 redundant executions, indicating
that fewer instructions are executed in the restructured than the correspond-
ing unstructured graph. For these graphs, the number of redundantly exe-
cuted instructions in the unstructured graphs always exceeds the overhead
inserted by branch restructuring. Thus, branch restructuring is always desir-
able for these graphs even without any computation contained in the basic
blocks.

C1.5.4. Benchmarks

This section describes the results of applying control flow restructuring to ker-
nels from the Rodinia benchmark suite [41]. We evaluate the overhead of our
transformations on these kernels in terms of execution time and representa-
tional overhead at compile-time.

164

C1.5. Experimental Evaluation

acyclic cyclic

Linear 28 -

Tail-structured 56 3

SESE 3 139

Reducible 1 10

Irreducible - -

Total 240

Table C1.1.: Program classification for the Rodinia benchmark suite. Classes
are related as follows: Linear⊂Tail-structured⊂ SESE⊂Reducible

Structural Analysis

In order to obtain an overview of the structural complexity of the benchmarks,
we classified CFGs as Linear per Definition 21, Tail-structured per Definition
20, single-entry/single-exit (SESE) per Definition 19, reducible or irreducible.
Tail-structured and SESE were identified by structural analysis [185], and irre-
ducibility was determined by T1/T2 analysis [3]. A graph’s cyclicity was iden-
tified by determining the presence of SCCs [208].

Table C1.1 shows the distribution of each class. The majority of the CFGs are
single-entry/single-exit, and most acyclic SESE graphs are also tail-structured.
Thus, the majority of programs in the Rodinia benchmark suite are expressed
using simple if-then-else statements and head-controlled loops. Control flow
restructuring introduces no overhead for the acyclic graphs, but transforms
head-controlled loops to tail-controlled ones. We expect therefore an over-
head associated with loop restructuring. Only a minority of the CFGs are in
the reducible class. We inspected the source code for these graphs and found
that the acyclic one is due to a switch statement with return statements in its
cases. It is part of mummergpu. The cyclic graphs are due to loops with multi-
ple exits and are part of hotspot, hybridsort, mummergpu, myocyte, particle-
filter, and pathfinder.

165

C1. Efficient Control Flow Restructuring for GPUs

 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14

backprop
bfs

b+tree
cfd

dw
t2d

gaussian
heartw

all
hotspot
hybridsort
km

eans
lavaM

D
leukocyte
lud

m
yocyte

nn nw particlefilter
pathfinder
srad_v1
srad_v2
stream

cluster

N
o
rm

a
liz

e
d

E
x
e
c
u
ti
o
n
 T

im
e

nvcc
no restructuring
loop restructuring

loop copy restructuring
loop + branch restructuring
loop copy + branch restructuring

m
um

m
ergpu

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure C1.7.: Execution Times for different Control Flow Restructuring
Configurations

Overall, the Rodinia benchmark suite consists mostly of SESE graphs, which
can always be executed efficiently on GPUs. It offers little opportunity for im-
provements through control flow restructuring, considering that the presence
of branch divergence is also required. This is rather unsurprising, since devel-
opers are aware of the potential disadvantages of unstructured control flow
for GPUs and therefore try to avoid it. A compiler supporting control flow
restructuring would be able to remove unstructured control flow altogether.
This would allow programmers to delegate this task to the compiler and spend
their time on tuning other aspects of a program.

Execution Times

Figure C1.7 shows the measured execution times for the Rodinia benchmark
suite. We use six different restructurer configurations:

• nvcc: The benchmarks were compiled with the unmodified nvcc com-
pilation pipeline.

• no restructuring: The PTX files are parsed, converted to CFGs, and im-
mediately reconverted. No restructuring is performed.

• loop restructuring: Loop restructuring as described in Section C1.4.1.

• loop copy restructuring: Loop restructuring with copying as described
in Section C1.4.3.

166

C1.5. Experimental Evaluation

• loop + branch restructuring: Loop and branch restructuring as described
in Section C1.4.2.

• loop copy + branch restructuring: Loop restructuring with copying and
branch restructuring.

The no restructuring configuration serves as baseline, and all other configura-
tions are normalized to it. The reason for using the no restructuring and not
the nvcc configuration as baseline is due to the conversion passes. The CFG
to AST conversion lays out basic blocks differently than they are in the input
PTX file. This results in a different basic block order and therefore a different
number of fall-through branches in the output PTX. The effect alters execu-
tion time by no more than 8%, except in the case of mummergpu, where we
observe a 5 fold increase. We found that the difference is due to an additional
basic block in the layout of nvcc. The basic block contains no instructions and
has one incoming and outgoing edge and could therefore be safely removed
without effecting the computation. However, ptxas produces pbk and br k
instructions for the inner kernel loop when it is present. These instructions
allow an early reconvergence of divergent threads in the loop, making it pos-
sible to avoid redundant executions for loops with multiple exits. Although
these instructions allow to reduce execution time when divergence is present,
nvcc seems not be able to reliably generate them.

Loop restructuring transforms all loops into tail-controlled loops by insert-
ing additional branches and assignments. Only loops that are already tail-
controlled are not altered. However, the majority of the loops in the Ro-
dinia benchmark suite are head-controlled. These loops are converted to tail-
controlled loops by converting one unconditional to a conditional branch,
and inserting two assignments, with one of them being executed every loop
iteration. This results in a noticeable execution time overhead for most bench-
marks. The overhead is particularly pronounced with over 5% for dwt2d,
heartwall, lud, nw, particlefilter, and streamcluster.

The benchmarks dwt2d, lud, nw, particlefilter, and streamcluster consist of
very small kernels with an average execution time of less than 1.5ms per invo-
cation. Loop restructuring adds additional instructions to the kernels of these
benchmarks, and therefore creates an overhead that is a noticeable fraction of
the execution time. For example, the average execution time of streamcluster’s

167

C1. Efficient Control Flow Restructuring for GPUs

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

#
In

s
tr

u
c
ti
o
n
s
 a

ft
e
r

R
e
s
tr

u
c
tu

ri
n
g

#Instructions before Restructuring

Linear Tail-structured SESE Reducible

Figure C1.8.: Representational Overhead for Loop Copy + Branch Restructur-
ing Configuration

kernel is only 750µs, but it is invoked 1611 times. In case of heartwall, the aver-
age kernel execution time is with 195ms significantly longer, but it consists of
48 head-controlled loops which are responsible for the overhead in execution
time.

For most benchmarks, overhead is reduced using loop restructuring with copy-
ing. It transforms head-controlled to tail-controlled loops by employing loop
inversion [132] instead of inserting assignments and branches. Thus, no ad-
ditional assignment is executed every loop iteration. Another positive effect
on execution time can be observed for mummergpu. Loop restructuring im-
proves its performance 5 fold, rendering it equivalent to the code produced by
nvcc. It allows divergent threads to reconvergence early and therefore reduces
redundant execution as the pbk and br k instructions.

Branch restructuring is employed after all loops have been restructured and
ensures proper nesting of splits and joins. Figure C1.7 shows that it has no
significant effect on the execution times, and performs similarly to the corre-
sponding loop restructuring. Most acyclic graphs are already tail-structured
and we suspect a proper nesting of splits and joins in the cyclic ones as well.
It is therefore no surprise that the execution times show no significant change
compared to the corresponding loop restructuring configurations.

Overall, the experiments with the Rodinia benchmark suite indicate that con-
trol flow restructuring adds minor and varying overhead to the execution times
of programs. It varies between not measurable and 12%, with an average of
2.1% among all benchmarks. The reason for this is that the Rodinia bench-

168

C1.6. Related Work

mark suite consists mainly of SESE graphs, and control flow restructuring only
inflicts no overhead to the subset of tail-structured graphs. While this over-
head is not insignificant, it is much lower than the 100 - 150% reported by
Domínguez et al. [63, 62]. On the other hand, when unstructured control
flow and branch divergence is present, control flow restructuring can help to
reduce execution time significantly as demonstrated for mummergpu. This
suggests that it should be applied more selectively, e.g. in combination with
structural analyses [185] to discover unstructured subgraphs, and divergence
analysis [48] for detecting divergent branches. In contrast to other restruc-
turing methods [63, 62, 228, 229], it also does not lead to exponential code
inflation [38].

Compile-Time Overhead

Control flow restructuring can add constructs to a CFG, causing represen-
tational overhead at compile-time. This is quantified in Figure C1.8, which
relates the number of instructions before restructuring to the number of in-
structions after restructuring for the loop copy + branch restructuring configu-
ration. The grey line marks the identity function, representing points with no
overhead.

There is a clear linear relationship for all cases, suggesting that control flow
restructuring is practically feasible in terms of space requirements. All linear
and tail-structured graphs lie exactly on the line, confirming that no represen-
tational overhead is introduced. SESE and reducible graphs lie slightly above
the line, indicating the insertion of additional instructions. The average repre-
sentational overhead for these graphs in terms of instructions is 5.2%. Figure
C1.8 is representative for all the other configurations, which exhibited similar
behavior for their representational overhead.

C1.6. Related Work

Reducing the performance impact of thread divergence is a topic of extensive
and ongoing research. Several works proposed changes to GPU hardware to
ameliorate the problem. ElTantawy et al. [69] replaced the traditional stack

169

C1. Efficient Control Flow Restructuring for GPUs

based thread reconvergence mechanism with a set of tables, potentially al-
lowing warps to reconverge before the branch’s IPDOM. They evaluated their
approach on a set of benchmarks with unstructured control flow and achieved
a harmonic mean speedup of 32% compared to traditional execution. Branch
herding was proposed by Sartori et al. [181]. It forces all threads of a warp to
take the path of the majority. This led to incorrect results, but was acceptable
for error tolerant applications such as visual computing applications. Their
hardware implementation improved performance for a set of benchmarks by
30% on average. Brunie et al. [31] proposed to add additional hardware to
co-issue different instructions to disjoint sets of the same warp, or to a subset
of a different warp. Diamos et al. [57] proposed thread frontiers, a combined
hardware and software approach. In this approach, the compiler finds poten-
tial early reconvergence points, while additional hardware checks whether a
warp can reconverge at these points.

Two software based approaches were proposed by Han et al. [79]. They re-
duce branch divergence through iteration delaying and branch distribution.
Iteration delaying reorders loop iterations with branches so that branches tak-
ing the same direction are executed together. Branch distribution factors out
similar code from branches. Both techniques require manual code rewriting.
Zhang et al. [238] removed divergence through data reordering and job swap-
ping, i.e. changing the mapping between threads, data, and work. This must
be done asynchronously by the CPU at runtime, and therefore requires to
launch a kernel multiple times in a loop. Lee et al. [115] proposed algorithms
that remove all control flow by predicating and linearizing different execu-
tion paths. They implemented their algorithms in the CUDA LLVM compiler
and showed that a predication-only architecture based on their algorithms is
competitive in performance to one with hardware support for tracking diver-
gence.

Finally, like our method, several approaches transform unstructured to struc-
tured control flow to reduce the impact of branch divergence. Anantpur et al.
[9] proposed a technique for transforming unstructured to structured CFGs by
linearizing them with the help of guard variables. They implemented it as PTX
transformations and evaluated it on a set of benchmarks. It increased code
size by up to 10% and execution time by up to 73%. Wu et al. [228, 229] use
adaptions of the transformations of Zhang et al. [239]. They show that sev-
eral Rodinia, Parboil, and Optix benchmarks, as well as CUDA SDK samples

170

C1.7. Conclusion and Future Work

contain unstructured control flow. Applying their transformations increased
static instruction count, and decreased performance by up to 1% due to code
expansion. Dominguez et al. [62, 63] developed a tool for translating PTX to
AMD IL in order to understand the performance differences between struc-
tured and unstructured control flow on GPUs. They also used the transfor-
mations of Zhang et al. [239] to handle unstructured control flow. Their tool
produced code that performed 2.1 times worse on average than a straightfor-
ward manual CUDA to OpenCL translation.

C1.7. Conclusion and Future Work

In this paper, we presented a transformation for converting unstructured to
structured control flow. Our evaluation shows that our approach effectively
eliminates redundant basic block execution and improves execution time for
unstructured graphs with branch divergence. It adds a minor average over-
head of 2.1% to execution time of already structured kernels. While this
overhead is notable, it is significantly lower than the 100-150% reported by
Domínguez et al. [63, 62]. This suggests that our transformations should be
applied more selectively, e.g. in combination with structural analysis [185]
to discover unstructured subgraphs, and divergence analysis [48] for detect-
ing divergent branches. The representational overhead at compile-time is
linear in terms of instructions. In contrast to other restructuring methods
[63, 62, 228, 229], exponential code inflation is impossible [38].

We also showed that the main increase in execution time in structured kernels
is due to restructuring of head-controlled loops. Our main direction for future
work is therefore to extend our algorithm to SESE graphs in order to avoid
the added overhead and therefore the need for structural analysis. Another
direction for future work would be to combine loop restructuring with loop
merging [80]. This optimization merges a divergent loop with one or more of
its surrounding loops in order to overlap the iteration spaces of the inner loop
for threads of different warps.

171

Part D.

Grain Graphs

173

D1. Diagnosing Highly-Parallel OpenMP
Programs With Aggregated Grain
Graphs

Nico Reissmann and Ananya Muddukrishna

Published in
Proceedings of the 2018 European Conference on Parallel and Distributed

Computing (Euro-Par)

Abstract. Grain graphs simplify OpenMP performance analysis by visualiz-
ing performance problems from a fork-join perspective that is familiar to pro-
grammers. However, when programmers decide to expose a high amount
of parallelism by creating thousands of task and parallel for-loop chunk in-
stances, the resulting grain graph becomes large and tedious to understand.
We present an aggregation method that hierarchically groups related nodes
together to reduce grain graphs of any size to one single node. This aggre-
gated graph is then navigated by progressively uncovering groups and follow-
ing visual clues that guide programmers towards problems while hiding non-
problematic regions. Our approach enhances productivity by enabling pro-
grammers to understand problems in highly-parallel OpenMP programs with
less effort than before.

D1.1. Introduction

The grain graph [137] is a recent visualization method that simplifies OpenMP
performance analysis by highlighting problems from a fork-join perspective.
Task and parallel for-loop chunk instances are collectively termed grains in

175

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

the grain graph method. Grains that suffer performance problems such as
work inflation, inadequate parallelism, and low parallelization benefit are pin-
pointed on the grain graph along with precise links to the problematic source
code. This enables programmers to perform optimizations productively with-
out relying on experts or trial-and-error tuning.

Programmers optimize OpenMP programs for large machines with hundreds
of cores by exposing a high amount of parallelism during execution. This is
achieved by adjusting special program inputs called cutoffs and chunk sizes
such that a large number of fine-grained tasks and for-loop chunks are cre-
ated. Scalability problems invariably occur when the runtime system is un-
able to efficiently handle the parallelism exposed [145, 233, 135]. These prob-
lems are pinpointed on the grain graph using metrics that isolate low paral-
lelization benefit, work inflation, and poor memory hierarchy utilization to
specific grains.

However, the large grain graphs resulting from highly-parallel OpenMP ex-
ecution make problem diagnosis tedious (Fig. D1.1). Programmers have to
zoom and pan to different sections while remembering characteristics of vis-
ited sections. Problems that are spread out become difficult to locate. Non-
problematic grains that are shown dimmed to increase focus on problems
combine at lower zoom levels and become pronounced. Programmers can
perceive the dimming effect and spot problematic grains only when zoomed
into higher levels. A powerful workstation with a large screen and copious
amount of memory is required to render large grain graphs responsively. In
light of these demands, programmers prefer to pore over text summaries and
tabular formats of large graphs and reserve the visual approach only for small
graphs.

This paper contributes with a new aggregation method that makes visual anal-
ysis of large grain graphs practical. The aggregation method (Section D1.3)
groups related nodes by matching recurrent patterns in the grain graph, ul-
timately resulting in an aggregated graph with a single group node. Pro-
grammers navigate the aggregated graph by progressively opening and closing
groups. Groups with problems are highlighted and non-problematic sections
are removed from sight for distraction-free diagnosis. Navigation is further
sped up through new group-based metrics that enable programmers to tra-
verse the critical path and compare groups for structural similarity. Using

176

D1.2. Background on Grain Graphs

Figure D1.1.: The grain graph of the task-recursive Sort program from the
Barcelona OpenMP Task Suite (BOTS) for a high-parallelism in-
put (n=20971520, cutoffs={65536,8192,128}) is dense with
11059 grains. Inset (blue box) zooms into a section at magnifica-
tion 40X.

highly-parallel executions of standard OpenMP programs, we demonstrate
(Sections D1.3 and D1.4) that aggregated grain graphs enhance the the state-
of-the-art in OpenMP problem diagnosis.

D1.2. Background on Grain Graphs

The grain graph [137] is a visualization for OpenMP that connects performance
problems to the fork-join program structure at the resolution of grains – task
and parallel for-loop chunk instances created during execution. This sim-
plifies problem diagnosis as programmers can readily identify with the fork-
join program structure. In contrast, existing visualizations based on timeli-
ness and call graphs complicate diagnosis by connecting performance prob-
lems to scheduling events that are unfamiliar and unpredictable to program-
mers [137, 95]. Experts who understand scheduling internals nevertheless find
it tiring to follow timelines and call graphs that depict recursive task-based ex-
ecution – a popular style of using OpenMP.

D1.2.1. Structure

The grain graph is a directed acyclic graph whose nodes denote grains and
runtime system operations, and edges denote control-flow. Parent and child

177

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

1 bool is_graingroup(Node n) {

2 return is_grain(n) || is_forkjoin(n) || is_linear(n)

3 }

4
5 void reduce(Node n) {

6 if (is_graingroup(n) && is_graingroup(succ(n))) {

7 n′ ← reduce_linear(n)

8 reduce(n′)

9 } else if (is_graingroup(n) && is_fork(succ(n))) {

10 reduce(succ(n))

11 n′ ← reduce_linear(n)

12 reduce(n′)

13 } else if (is_fork(n)) {

14 forall s in succ(n)

15 reduce(s)

16 n′ ← reduce_forkjoin(n)

17 reduce(n′)

18 }

19 }

(a) (b)

(c) (d) (e) (f) (g) (h)

(i)
Figure D1.2.: Grain graph of the task-based Sort program from BOTS for small

input (n=512, cutoffs={256,64,16}). (a) Structural view (b)
Problem view highlighting low parallel benefit in red (c) After
two fork-join pattern reductions of the highlighted subgraph (d-
g) Linear pattern reductions leading to a single group node (h)
After normalization (i) Reduction pseudocode

grains are shown in close proximity on the graph using logical-time place-
ment [52, 95] to maintain familiarity with the fork-join perspective (Fig. D1.2a1).
The grain graph is laid out using the Sugiyama layout [203, 68]. This layout
places nodes in layers, removes cycles, and prevents edge crossings. These
features are essential to depict fork-join progression in an uncluttered man-
ner.

D1.2.2. Diagnosing problems

Grains are annotated with unique schedule-independent identifiers, links to
source code locations, as well as performance metrics measured during profil-
ing and derived post profiling. Profiled metrics include execution time, cache
miss ratio, memory latency, and timestamps of control-flow events such as

1Readers should print in color as they are crucial to appreciate grains graphs.

178

D1.3. Grain Graph Aggregation Method

grain creation and synchronization. These metrics are used to compute de-
rived metrics such as critical path, work deviation, instantaneous parallelism,
memory hierarchy utilization, scatter, load balance, and parallel benefit.

Parallel benefit is a custom metric used in several discussions of this paper. It
is computed by dividing a grain’s execution time by its parallelization cost in-
cluding creation time. This metric aids inlining and cutoff decisions as grains
with low parallel benefit should be executed sequentially to reduce overhead.

Commonly sought out metrics are encoded visually for quick identification on
the graph (Fig. D1.2a). The length of a grain is set proportional to its execution
time. Grain colors denote source code locations by default. Edges are colored
by type and highlighted red if they are on the critical path.

Grains with metric values that cross programmer-defined thresholds are in-
ferred as problematic. The thresholds have sensible values by default. Prob-
lematic grains are highlighted with a color that encodes problem severity in a
separate view while non-problematic grains are dimmed (Fig. D1.2b). Addi-
tionally, problems are summarized in a separate text file and highlighted in a
tabular form of the grain graph shown on a separate visualization widget.

Grain graphs have multiple conceptual views with colors encoding a single
problem or property per view. Programmers shift between these views to un-
derstand properties or tackle problems. Problematic grains are highlighted
and non-problematic grains are dimmed, and clicking on a grain opens a
separate window that shows the grain’s properties and performance metrics.
Fig. D1.2b-a show the programmer cycling between the low parallel benefit
problem view and the structural view where no problems are highlighted.

D1.3. Grain Graph Aggregation Method

Our aggregation method for grain graphs conceptually consists of four phases:

1. Reduction matches and replaces subgraph patterns with group nodes
to construct an aggregation tree. This tree captures the graph structure
and serves as a basis for further processing. After aggregation is com-
plete, the tree is converted back to an aggregated grain graph with prob-
lematic grains exposed and non-problematic grains hidden.

179

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

2. Normalization transforms the aggregation tree into a canonical form,
simplifying further processing.

3. Propagation propagates grain metrics at the leaves of the tree to upper
levels in a sensible manner.

4. Separation transforms the aggregation tree to separate problematic
nodes. This enables grouping and hiding of non-problematic grains in
the resulting aggregated graph.

The algorithmic complexity of all four phases is linear in the number of graph
nodes plus edges. The rest of this section explains the phases in detail and
discusses the navigation of the resulting aggregated graph at the end.

D1.3.1. Reduction

The reduction phase matches a fork-join and linear pattern, and replaces them
with group nodes to construct an aggregation tree. The fork-join pattern con-
sists of a single fork node connected to child grains or groups, which in turn
are connected to a join node (Fig. D1.2c). The linear pattern has two nodes,
either a grain or a group node, that are connected to each other (Fig. D1.2d).
Both patterns are repeatedly matched, and replaced by a single group node
until the entire grain graph is reduced to a single node (Fig. D1.2d-g).

The pseudocode of the reduction algorithm is shown in (Fig. D1.2i). The key
steps in the psuedocode are explained next:

• Line 6 matches the linear pattern (Fig. D1.2d-g). It uses the helper func-
tion i s_g r ai ng r oup to detect whether a node and its successor is a
grain or a group, and reduces the pattern to a linear group node. Re-
duction continues with the newly-created group node.

• Line 9 matches a grain or group node with a fork node as successor.
The matched fork node is recursively aggregated to a fork-join group
node (Fig. D1.2c). The resulting linear pattern is then reduced to a lin-
ear group node. Reduction continues with the linear group node.

180

D1.3. Grain Graph Aggregation Method

• Line 13 matches a fork node (Fig. D1.2a) and recursively aggregates all
successors of the fork node. The resulting fork-join pattern is then re-
duced to a fork-join group node. Reduction continues with the fork-join
group node.

The grain graph is reduced greedily by the reduction algorithm. It always con-
tinues with the newly-created group node after a pattern match and never tra-
verses past a join node. This ensures that the innermost fork-join in a nesting
is reduced first.

The aggregation tree consisting of group and grain nodes explicitly captures
the grain graph’s nesting and fork-join structure. The leaves of the tree are
grains and its intermediate nodes are the newly-created group nodes. Lin-
ear group nodes have the two matched nodes from the pattern as children,
whereas fork-join group nodes have the children of the matched fork node as
children.

The reduction algorithm is applicable to grain graphs where parents synchro-
nize with all their children before completion. This essential property ensures
that fork-join patterns are properly nested, permitting their reduction in a hi-
erarchy of group nodes. While this property holds for well-behaved OpenMP
3.X programs, the taskgroup construct in OpenMP 4.0 violates this property.
The construct permits parents to synchronize with their children and descen-
dants in one step. This impedes reduction unless the grain graph is restruc-
tured so that all descendants are placed as immediate children of the root par-
ent.

D1.3.2. Normalization

Normalization transforms the aggregation tree into a canonical form by flat-
tening nested linear group nodes. In the reduction phase, linear group nodes
are always created for a pair of grain or group nodes, even if more nodes are
chained together. This constructs nested linear subtrees where linear group
nodes are the children of other linear group nodes as exemplified in Fig. D1.2d-
g. Normalization flattens these subtrees to a single linear group node with all

181

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

non-linear group nodes from the subtree as its children (Fig. D1.2h). In prac-
tice, this phase can be incorporated into the previous phase to speedup aggre-
gation.

D1.3.3. Propagation

The propagation phase propagates leaf node metrics to the enclosing groups
all the way up to the root node. It traverses the aggregation tree in post-order
and attributes group nodes with metrics sensibly-derived from their children.
For example, the work metric of a group node is the sum of the execution times
of its children, while the schedule-independent identifiers of children are con-
catenated with the group node’s depth to derive a schedule-independent iden-
tifier.

Metrics are attributed such that problems propagate to the root group. If a
child is problematic, then its parent is marked as problematic as well. The
minimum of the memory hierarchy utilization, parallel benefit, and instanta-
neous parallelism as well as the maximum of the load balance, work deviation,
and scatter metrics of children are attributed to the parent group. Program-
mers can refine existing propagation metrics and define new ones. Given this
ability, the range of values and other summary statistics of a group can be eas-
ily captured (for example, as string attributes). One useful custom metric that
programmers could define is the percentage of time spent by a group on the
critical path.

D1.3.4. Separation

The separation phase groups non-problematic nodes to separate them from
problematic nodes. This enables programmers to focus on problems and re-
duces graph viewer load. For example, consider a fork-join group that en-
closes a thousand grains among which only a single grain is problematic.
An unseparated graph would require all grains to be rendered, while a sep-
arated graph requires only the rendering of one problematic grain and a non-
problematic group node.

182

D1.3. Grain Graph Aggregation Method

(a) (b) (c) (d) (e)
Figure D1.3.: Separation of problematic from non-problematic nodes. (a-b)

Fork-join node separation. (c-d) Linear node separation. (e) Lo-
cal (blue) and global (red) critical paths

Separation traverses the aggregation tree in post-order and separates sub-
trees rooted at fork-join and linear nodes. In a fork-join separation, all non-
problematic children of a fork-join node are grouped under a newly-created
group node (Fig. D1.3a-b), while in a linear node separation, all consecutive
non-problematic children of a linear group node are grouped under a new
linear group node (Fig. D1.3c-d). After the separation phase, the aggregation
tree is converted back to a grain graph where non-problematic subgraphs are
hidden.

D1.3.5. Navigation

The navigation of an aggregated graph starts at the root and continues by pro-
gressively opening/closing group nodes to understand graph structure and
problems (Fig. D1.4). In contrast to the navigation in unaggregated graphs,
the cognitive load on programmers and the graph viewer’s resources are re-
duced as only a subset of the grains are laid out. Navigation is sped up using
several optimizations:

1. Groups can be opened to show all grains including those inside sub-
groups (full collapse), or drilled down to a specific group or depth level
(Fig. D1.4).

2. Group nodes are drawn as rounded rectangles with no filling to differ-
entiate them from grains. Group metrics are shown in a separate prop-

183

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

(a) (b)

(c)

(d) (e)
Figure D1.4.: Navigating the aggregated grain graph of NQueens program

from BOTS for high-parallelism input (n=14, cutoff=4). The
graph has 21492 grains and 3073 group nodes. Grains with low
parallel benefit are highlighted as problems. (a-d) Drilling down
to sibling groups at a depth of 3 from the root group. (a) Root
group. (b) At depth 1. (c) At depth 2. (d) At depth 3. (e) Drilling
down along the critical path to sibling groups at the lowest depth.

184

D1.4. Prototype Implementation

erty window, similar to grains. Opened groups grow as large as required
to envelop members whereas closed group nodes have a constant size.
The borders of problematic closed groups are colored red to draw pro-
grammer attention, while the borders of non-problematic groups are
colored green for quick identification. Our choices of group colors and
sizes allow programmers already familiar with grain graphs to smoothly
transit to the aggregation feature.

3. Once a group’s structure is known, other similarly structured groups
can be navigated confidently or skipped if problem-free. For example,
twelve groups in Fig. D1.4d have the same structure. Group similarity is
computed on-demand using a Weisfeiler-Lehman graph kernel [188].

4. Groups on the global critical path (gcb) are inspected first since they
are good optimization candidates (Fig. D1.4e). The local critical path
of groups not on the gcb can be computed on-demand and used for
prioritized inspection (Fig. D1.3e). If off-gcb grains are optimized to re-
duce the total amount of work, the resulting slack can be used to execute
grains on the gcb.

D1.4. Prototype Implementation

The grain graph visualization is implemented in a prototype [138] that pro-
duces grain graphs in GRAPHML by processing profiling data from OMPT ex-
tensions [109] or the MIR runtime system [136, 135, 134]. We extended the
prototype to produce aggregated graphs upon programmer request [168]. The
aggregation method was implemented in C++, leveraging support for nested
groups [28] in GRAPHML and using the igraph [50] library for basic graph pro-
cessing.

We used the graph viewer yEd [234] to visualize aggregated grain graphs since
it has sufficiently mature support for GRAPHML files with nested aggrega-
tions. For example, it has features to interactively open and close groups, and
jump to groups at any hierarchy level. Its property editor dialog shows the an-
notations of group nodes. Switching between problem views was achieved by
cycling through tabs that highlighted different problems.

185

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

External programs parameterized by group identifiers were used to compute
local critical path and similarity. These programs do not update the visu-
alization and programmers are required to manually load their output into
yEd. Similarity was computed using a third-party implementation [204] of the
Weisfeiler-Lehman graph kernel.

We recognize that interactions with aggregated graphs in yED have quite some
room for improvement. Our plan is to incorporate improvements in a dedi-
cated grain graph viewer as yEd is closed-source. The dedicated viewer will
also enable programmers to define custom metrics derived from basic grain
and group metrics in a GUI. This improves over the prototype where program-
mers customize metrics by editing source-code in convenient locations.

D1.5. Evaluation

We tested our prototype on C/C++ benchmarks from SPEC OMP 2012 (SPEC-
OMP12), Barcelona OpenMP Task Suite v2.1.2 (BOTS) and Parsec v3.0 (Parsec).
The benchmarks were compiled with MIR-linked GCC v4.4.7 and profiled on
a 48-core machine with 64GB memory and four AMD Opteron 6172 proces-
sors running at 2.1GHz with frequency scaling disabled. We provided input
values that exposed abundant, fine-grained parallelism to standard OpenMP
programs to obtain large grain graphs (Table D1.1).

D1.5.1. Visible node count

We use the metric visible node count (θ) to judge the ability of our aggregation
method to reduce programmer effort in navigating and diagnosing problems.
θ is defined as the minimum number of visible nodes in a grain graph while
diagnosing a problematic grain. If it is small, the cognitive load on program-
mers and the resource requirements of viewers are reduced.

The visible node count for a problematic grain in an aggregated graph is the
number of nodes exposed by opening groups in the path leading to the grain.
In contrast, the visible node count in an unaggregated graph is equal to the

186

D1.5. Evaluation

Table D1.1.: Benefit of aggregation for standard OpenMP benchmarks.

Benchmark Input #Nodes #Grains θmax
c

Savings
(%)

Low Parallel Benefit
#Prbl.
Grains θmax

pb

Savings
(%)

Strassen1 8192, 128, 2000 176480 137258 60 99.97 157 49 99.97
Bodytrack2 B261, 4, 261, 4000, 5, 3, 48, 0 126615 69061 5767 95.45 24627 5757 95.45
Floorplan1 15, 7 117960 82490 149 99.87 31125 148 99.87
376.kdtree3 200000, 10, 2 32808 16400 58 99.82 2055 57 99.83
NQueens1 14, 4 24565 21492 70 99.71 10540 66 99.73
359.botsspar3 64, 64 24161 23905 1154 95.22 2 9 99.96
358.botsalgn3 prot.200.aa 20505 20101 406 98.02 7 17 99.92
Sort1 20971520, 65536, 8192, 128 20293 11509 55 99.73 288 51 99.75
FFT1 16777216, 8192, 2 9240 4592 53 99.43 414 49 99.47
367.imagick3 See caption of Fig. D1.5 3935 3801 405 89.71 649 182 95.37
Blackscholes2 4M 2205 1201 112 94.92 400 112 94.92
Freqmine2 kosarak_990k.dat, 790 2111 2017 389 81.57 66 30 98.58
1 BOTS 2 Parsec 3 SPEC-OMP12

number of nodes in the entire graph irrespective of the position of the prob-
lematic grain, assuming programmers do not pan and zoom to the vicinity of
the problematic grain manually.

Table D1.1 shows the maximum θ for two cases. The first is a conservative case
(θmax

c) that assumes all grains in the graph are problematic, while the second
(θmax

pb) considers graphs with low parallel benefit. For both cases, the reduc-
tion in maximum θ compared to the total size of the graph, i.e., the maximum
θ for the unaggregated graph, is reported as Savings.

For the conservative case, we see a large reduction in θ. The biggest saving
is 99.97% for the Strassen benchmark and the smallest saving is 81.57% for
Freqmine, with an average saving of 95.98%. This shows that aggregation can
significantly reduce θ for any problematic grain in our evaluation setup.

For the second case, we see a further reduction in θ since non-problematic
grains are grouped during the separation phase (Section 3). Benchmarks Fre-
qmine, 367.imagick, 358.botsalgn, 359.botsspar, show large savings from ag-
gregation since they contain a small number of problematic grains. On the
other hand, Bodytrack and Floorplan show barely any improvement over the
conservative case due to a higher concentration of problematic grains that are
clustered as siblings. Problematic siblings are ignored during separation by
design.

187

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

D1.5.2. Reducing distractions

We further illustrate the benefit of aggregation using the 367.imagick bench-
mark from SPEC-OMP12 for an input that SPEC programmers noticed as
poorly scaling. The unaggregated grain graph shows a chain of nine dense
for-loops (Fig. D1.5a). The sixth loop contains several chunks that suffer from
low parallel benefit since several instances of the parallelization-throttling
macro omp_throttle are missing in the source. Diagnosing these problematic
chunks requires programmers to sweep attentively across the graph ignoring
the abundance of non-problematic grains and the frequent non-responsive
rendering of the graph. The aggregated graph enables programmers to di-
agnose problematic chunks group by group (Fig. D1.5b), keeping only those
groups with problematic chunks open, while uninteresting loops and non-
problematic chunks are hidden from sight. This results in a more responsive
graph viewer since fewer nodes need to be rendered.

D1.5.3. Similarity across runs

Grain graphs produced from two independent executions of a given program
can be different in shape due to unpredictable inlining decisions taken by the
runtime system or if the program adapts its behavior sensitive to available ex-
ecution resources. Understanding such changes can provide vital clues for
problem diagnosis. However, detecting the dissimilar sections by manually
inspecting a pair of large grain graphs is extremely tiring and akin to finding
matches between fingerprints using a magnifying lens.

Similarity is a powerful metric that not just helps to skip over structurally simi-
lar groups within the same graph (as demonstrated in Section D1.3.5), but can
also compare groups across runs to detect structural differences. Program-
mers can gradually open two graphs side-by-side and compute the similarity
metric for visible groups using their schedule-independent identifiers. Those
groups that have the same identifier but different similarity metrics are the
sections that have changed between the graphs. We demonstrate this for the
Floorplan program from BOTS in Figure D1.6. Floorplan is a search-based
program whose pruning behavior changes non-deterministically when more
cores are allotted for execution.

188

D1.5. Evaluation

(a)

(b)
Figure D1.5.: Diagnosing problems with grains of 367.imagick from

SPEC-OMP12 for input -shear 31 -resize 1280x960

-negate -edge 14 -implode 1.2 -flop -convolve

1,2,1,4,3,4,1,2,1 -edge 100 ref/input/input1.tga.
(a) Sweeping across the entire unaggregated graph with 3801
grains to spot problems. (b) Aggregated grain graph enables
programmers to diagnose problematic grains group-wise.
Non-problematic grains are separated to promote focus (inset).

189

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

(a)

(b)

L1

M1,N1,O1 P1,Q1 R1

L2

M2,N2,O2 P2,Q2 R2

Figure D1.6.: Finding dissimilar sections in grain graphs from two indepen-
dent executions of the non-deterministic Floorplan program
from BOTS for input cell-file=input.5, cutoff=5. (a) Graph
produced from execution on 4 cores has 7974 grains. (b) Graph
produced from execution on 48 cores has 3190 grains. The simi-
larity metric allows programmers to understand without inspec-
tion that groups L1-2, M1-2, N1-2, and O1-2 have the same struc-
ture but P1-2, Q1-2, and R1-2 do not. Groups R1-2 are opened to
show the dissimilarity. R2 encloses fewer subgroups than R1.

190

D1.6. Related Work

D1.6. Related Work

Aggregation is a standard approach to scale visualizations with increasing
data [96, 222]. Sensible dimensions for aggregation include the program struc-
ture (e.g. tasks), middleware stack (worker threads), physical processing com-
ponents (processors), and the visualization (node-links). However, aggrega-
tion can remove vital diagnosis data when applied aggressively across several
dimensions. Isaacs et al. [96] recognize the balance between aggregation ag-
gressiveness and information preservation as an important challenge. Our
method strives to maintain this balance by reducing the size of the rendered
graph and focusing it on problematic sections, while keeping the expected
fork-join perspective.

For space reasons, we restrict the discussion to abstraction-centric, logical-
time aggregated visualizations similar to grain graphs, and refer readers
for other visualizations to recent surveys [96, 222] and a visualization ex-
plorer [102].

The dominant aggregation scheme in visualizations is statistical rather than
visual, i.e., metrics of selected elements in the main visualization are aggre-
gated statistically and reported separately, typically as a property table [30, 14,
202, 23, 81, 64]. The cognitive load of the main visualization is only reduced
by zooming out to focus on large elements, while support for visual aggre-
gation at the same zoom level is absent. Consequently, such visualizations
suffer similar navigation and diagnosis difficulties as large unaggregated grain
graphs.

The aggregation method for task graphs in DAGViz [92] resembles our work. It
presents programmers with a single aggregated node that can be interactively
opened to reveal subgraphs as well as a dedicated viewer. However, our ap-
proach is tailored to grain graphs and is unique in tracing the critical path and
identifying the similarity of subgraphs. Unaggregated grain graphs are more
effective in pinpointing problems than unaggregated DAGViz graphs due to
more derived metrics. The expansion of DAGViz graphs results also in the
rendering of more nodes as they show a fork-node per grain. Grain graphs
avoid this thanks to fork-node reductions that produce a fork-node per set of

191

D1. Diagnosing Highly-Parallel OpenMP Programs With Aggregated Grain Graphs

siblings. DAGViz combats the scaling problem by using an elegant aggrega-
tion method that reduces subgraphs that executed wholly on a single worker-
thread into a single, non-collapsible node.

ThreadScope [227] visualizes the logical-time structure of task-parallel pro-
grams. Its memory operations nodes can be grouped to improve clarity, but
it is unclear whether programmers can interact with groups to uncover mem-
bers.

The causality graph [237] visualization permits programmers to manually se-
lect and repeatedly aggregate nodes into supernodes, while special care must
be taken to avoid graph cycles on their creation. Supernode metrics include
the local critical path and metrics computed using user-defined combina-
tors. The causality graph presents an unaggregated graph by default, while
we present a fully aggregated graph and use sensible aggregation metrics to
guide programmers.

D1.7. Conclusion

This paper contributes an aggregation method for grain graphs that enables
programmers to easily understand problems in highly-parallel OpenMP pro-
grams. Our method groups nodes arranged in recurring patterns to produce
an aggregated graph that programmers can navigate by progressively opening
and closing groups. Problematic groups are highlighted and non-problematic
sections are cleared from sight, enabling focus without compromising the fork-
join perspective expected by programmers. Using standard OpenMP programs
as examples, we demonstrate a significant reduction of visible nodes through-
out problem diagnosis. For future work, we plan to implement a dedicated
grain graph viewer that smoothly and precisely guides programmers towards
OpenMP problems and hints at solutions.

Acknowledgment

The paper was funded by the TULIPP project (grant number 688403) and the
READEX project (grant number 671657) from the EU Horizon 2020 Research

192

D1.7. Conclusion

and Innovation programme. The authors thank NTNU colleagues Peder Voldnes
Langdal, Magnus Själander, Jan Christian Meyer, and Magnus Jahre for con-
structive comments and KTH Royal Institute of Technology for providing test
machinery.

193

Bibliography

[1] Advanced Micro Devices. ATI Intermediate Language (IL) Specification
v2.4, 2011.

[2] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger.
Clock Rate versus IPC: The End of the Road for Conventional Microar-
chitectures. In Proceedings of the International Symposium on Com-
puter Architecture, pages 248–259. ACM, 2000.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compil-
ers: Principles, Techniques, and Tools. Addison-Wesley, 2006.

[4] Frances E. Allen. Control Flow Analysis. In Proceedings of a Symposium
on Compiler Optimization, pages 1–19. ACM, 1970.

[5] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting Equality of Vari-
ables in Programs. In Proceedings of the ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 1–11. ACM, 1988.

[6] Saman Amarasinghe. The Looming Software Crisis due to the Mul-
ticore Menace. http://groups.csail.mit.edu/commit/papers/06/

MulticoreMenace.pdf, 2006.

[7] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference (AFIPS), pages 483–485. ACM,
1967.

[8] Zahira Ammarguellat. A Control-Flow Normalization Algorithm and Its
Complexity. IEEE Transactions on Software Engineering, 18:237–251,
1992.

195

Bibliography

[9] Jayvant Anantpur and Govindarajan R. Taming Control Divergence in
GPUs through Control Flow Linearization. In Proceedings of the Interna-
tional Conference on Compiler Construction, pages 133–153. Springer,
2014.

[10] A. A. Aqrawi and A. C. Elster. Bandwidth Reduction through Multi-
threaded Compression of Seismic Images. In Proceedings of Interna-
tional Symposium on Parallel and Distributed Processing Workshops
(IPDPSW) and Phd Forum, pages 1730–1739. IEEE, 2011.

[11] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick.
The Landscape of Parallel Computing Research: A View from Berkeley.
Technical report, Technical Report, UC Berkeley, 2006.

[12] O. G. Attia, T. Johnson, K. Townsend, P. Jones, and J. Zambreno. Cy-
Graph: A Reconfigurable Architecture for Parallel Breadth-First Search.
In Proceedings of International Parallel Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 228–235, 2014.

[13] Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Christian
Meyer. Perfect Reconstructability of Control Flow from Demand De-
pendence Graphs. ACM Transactions on Architecture and Code Opti-
mization, 11(4):66:1–66:25, 2015.

[14] Barcelona Supercomputing Center. OmpSs task dependency graph,
2013. http://pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-
instrument-tdg.html. Accessed 10 April 2015.

[15] Luiz André Barroso. The Price of Performance. Queue, 3(7):48–53, 2005.

[16] Oliver Bastert and Christian Matuszewski. Drawing Graphs: Methods
and Models. Springer, 2001.

[17] W. Baxter and H. R. Bauer, III. The Program Dependence Graph and
Vectorization. In Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 1–11. ACM, 1989.

196

Bibliography

[18] Cyrus Bazeghi, Francisco J. Mesa-Martinez, and Jose Renau. uComplex-
ity: Estimating Processor Design Effort. In Proceedings of the ACM/IEEE
International Symposium on Microarchitecture, pages 209–218. IEEE,
2005.

[19] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk. A Reconfigurable Com-
puting Approach for Efficient and Scalable Parallel Graph Exploration.
In Proceedings of the International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pages 8–15, 2012.

[20] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul
Thomson. GPUVerify: A Verifier for GPU Kernels. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Language and
Applications, pages 113–132. ACM, 2012.

[21] Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian. Auto-
matic Intra-Register Vectorization for the Intel Architecture. Interna-
tional Journal of Parallel Programming, 30(2), 2002.

[22] Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge, and Krisztián Flaut-
ner. Evolution of Thread-level Parallelism in Desktop Applications. In
Proceedings of the International Symposium on Computer Architecture,
pages 302–313. ACM, 2010.

[23] Wolfgang Blochinger, Michael Kaufmann, and Martin Siebenhaller. Vi-
sualizing Structural Properties of Irregular Parallel Computations. In
Proceedings of the ACM Symposium on Software Visualization, pages
125–134. ACM, 2005.

[24] D. Blythe. Rise of the Graphics Processor. Proceedings of the IEEE,
96(5):761–778, 2008.

[25] Corrado Böhm and Giuseppe Jacopini. Flow Diagrams, Turing Ma-
chines And Languages With Only Two Formation Rules. Communica-
tions of the ACM, 9(5):366–371, 1966.

[26] Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoît Dupont
de Dinechin, and Christophe Guillon. Revisiting Out-of-SSA Transla-
tion for Correctness, Code Quality and Efficiency. In Proceedings of the
International Symposium on Code Generation and Optimization, pages
114–125. IEEE, 2009.

197

Bibliography

[27] Shekhar Borkar and Andrew A. Chien. The Future of Microprocessors.
Communications of the ACM, 54(5):67–77, 2011.

[28] Ulrik Brandes, Markus Eiglsperger, and Jürgen Lerner. GRAPHML
primer, 2017. http://graphml.graphdrawing.org/primer/

graphml-primer.html. Accessed 27 July 2017.

[29] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simp-
son. Practical Improvements to the Construction and Destruction of
Static Single Assignment Form. Software - Practice and Experience,
28(8):859–881, 1998.

[30] Steffen Brinkmann, José Gracia, and Christoph Niethammer. Task De-
bugging with TEMANEJO. In Tools for High Performance Computing
2012, pages 13–21. Springer, 2013.

[31] Nicolas Brunie, Sylvain Collange, and Gregory Diamos. Simultane-
ous Branch and Warp Interweaving for Sustained GPU Performance.
Proceedings of the International Symposium on Computer Architecture,
40(3):49–60, 2012.

[32] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley,
1997.

[33] J. Adam Butts and Gurindar S. Sohi. A Static Power Model for Architects.
In Proceedings of the ACM/IEEE International Symposium on Microar-
chitecture, pages 191–201. ACM, 2000.

[34] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,
Gu-Yeon Wei, and David Brooks. HELIX-RC: An Architecture-Compiler
Co-Design for Automatic Parallelization of Irregular Programs. In Pro-
ceedings of the International Symposium on Computer Architecture,
pages 217–228. IEEE, 2014.

[35] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks. HELIX: Automatic Paralleliza-
tion of Irregular Programs for Chip Multiprocessing. In Proceedings
of the International Symposium on Code Generation and Optimization,
pages 84–93. ACM, 2012.

198

Bibliography

[36] Philip L Campbell, Ksheerabdhi Krishna, and Robert A Ballance. Re-
fining and Defining the Program Dependence Web. Technical report,
University of New Mexico, 1993.

[37] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-
moona, Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski.
LegUp: High-level Synthesis for FPGA-based Processor/Accelerator
Systems. In Proceedings of the International Symposium on Field Pro-
grammable Gate Arrays (FPGA), pages 33–36. ACM, 2011.

[38] Larry Carter, Jeanne Ferrante, and Clark D. Thomborson. Folklore con-
firmed: Reducible flow graphs are exponentially larger. In Proceedings
of the ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 106–114. ACM, 2003.

[39] Jeronimo Castrillon, Lothar Thiele, Lars Schorr, Weihua Sheng, Ben Ju-
urlink, Mauricio Alvarez-Mesa, Angela Pohl, Ralph Jessenberger, Victor
Reyes, and Rainer Leupers. Multi/many-core programming: Where are
we standing? In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, pages 1708–1717, 2015.

[40] M. Ceccato, P. Tonella, and C. Matteotti. Goto Elimination Strategies in
the Migration of Legacy Code to Java. In Proceedings of the European
Conference on Software Maintenance and Reengineering, pages 53–62,
2008.

[41] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaf-
fer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for
Heterogeneous Computing. In Proceedings of the IEEE International
Workshop on Workload Characterization, pages 44–54. IEEE, 2009.

[42] Kuan-Hsu Chen, Shen Bor-Yeh, and Yang Wuu. An Automatic Super-
word Vectorization in LLVM, 2009.

[43] J. Choi, S. Brown, and J. Anderson. From Software Threads to Parallel
Hardware in High-Level Synthesis for FPGAs. In Proceedings of the In-
ternational Conference on Field-Programmable Technology (FPT), pages
270–277, 2013.

199

Bibliography

[44] Jong-Deok Choi, Vivek Sarkar, and Edith Schonberg. Incremental
Computation of Static Single Assignment Form. In Proceedings of
the International Conference on Compiler Construction, pages 223–237.
Springer, 1996.

[45] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic, FP-
GAs, and GPGPUs? In Proceedings of the ACM/IEEE International Sym-
posium on Microarchitecture, pages 225–236. IEEE, 2010.

[46] Clang. Clang: A C Language Family Frontend for LLVM. https://

clang.llvm.org, 2017. Accessed: 2017-12-13.

[47] Cliff Click and Michael Paleczny. A Simple Graph-based Intermediate
Representation. In Proceedings of the Workshop on Intermediate Repre-
sentations, pages 35–49. ACM, 1995.

[48] B. Coutinho, D. Sampaio, F.M.Q. Pereira, and W. Meira. Divergence Anal-
ysis and Optimizations. In Proceedings of the International Conference
on Parallel Architectural and Compilation Techniques, pages 320–329,
2011.

[49] Mache Creeger. Multicore CPUs for the Masses. Queue, 3(7):64–ff, 2005.

[50] Gabor Csardi and Tamas Nepusz. The igraph software package for
complex network research. InterJournal, Complex Systems, 1695(5):1–
9, 2006.

[51] CUDA C Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide. Accessed: 2015-11-02.

[52] Janice E. Cuny, Alfred A. Hough, and Joydip Kundu. Logical Time in
Visualizations Produced by Parallel Programs. In Proceedings of the IEEE
Conference on Visualization, pages 186–193, 1992.

[53] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An
Efficient Method of Computing Static Single Assignment Form. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 25–35. ACM, 1989.

200

Bibliography

[54] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard
API for Shared-Memory Programming. Computational Science and En-
gineering, 5(1):46–55, 1998.

[55] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Physical
Dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[56] J. B. Dennis. Data Flow Supercomputers. Computer, 13(11):48–56, 1980.

[57] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, An-
drew Kerr, Haicheng Wu, and Sudhakar Yalamanchili. SIMD Re-
Convergence at Thread Frontiers. In Proceedings of the ACM/IEEE Inter-
national Symposium on Microarchitecture, pages 477–488. ACM, 2011.

[58] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili,
and Nathan Clark. Ocelot: A Dynamic Optimization Framework for
Bulk-synchronous Applications in Heterogeneous Systems. In Proceed-
ings of the International Conference on Parallel Architectural and Com-
pilation Techniques, pages 353–364. ACM, 2010.

[59] J. Diaz, C. Muñoz-Caro, and A. Niño. A Survey of Parallel Programming
Models and Tools in the Multi and Many-Core Era. IEEE Transactions
on Parallel and Distributed Systems, 23(8):1369–1386, 2012.

[60] Shuhan Ding, John Earnest, and Soner Önder. Single Assignment Com-
piler, Single Assignment Architecture: Future Gated Single Assignment
Form. In Proceedings of the International Symposium on Code Genera-
tion and Optimization. ACM, 2014.

[61] Romain Dolbeau, Stéphane Bihan, and François Bodin. HMPP: A Hy-
brid Multi-core Parallel Programming Environment. In Proceedings of
the Workshop on General Purpose Processing on Graphs Processing Units,
volume 28, 2007.

[62] R. Dominguez and D.R. Kaeli. Unstructured Control Flow in GPGPU.
In Proceedings of the International Parallel and Distributed Processing
Symposium Workshops, pages 1194–1202, 2013.

201

Bibliography

[63] Rodrigo Domínguez, Dana Schaa, and David Kaeli. Caracal: Dynamic
Translation of Runtime Environments for GPUs. In Proceedings of the
Workshop on General Purpose Processing on Graphs Processing Units,
pages 5:1–5:7. ACM, 2011.

[64] Andi Drebes, Jean-Baptiste Bréjon, Antoniu Pop, Karine Heydemann,
and Albert Cohen. Language-centric performance analysis of openmp
programs with aftermath. In OpenMP: Memory, Devices, and Tasks",
pages 237–250. Springer, 2016.

[65] M. Duranton, D. Black-Schaffer, K. De Boschere, and J. Maebe. The
HiPEAC Vision for Advanced Computing in Horizon 2020, 2013.

[66] Marc Duranton, Koen De Boschere, Albert Cohen, Jonas Maebe, and
Harm Munk. HiPEAC Vision 2015, 2015.

[67] Alexandre E. Eichenberger, John Mellor-Crummey, Martin Schulz,
Michael Wong, Nawal Copty, Robert Dietrich, Xu Liu, Eugene Loh, and
Daniel Lorenz. OMPT: An OpenMP Tools Application Programming In-
terface for Performance Analysis. In Proceedings of the International
Workshop on OpenMP (IWOMP), pages 171–185. Springer, 2013.

[68] Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. An
Efficient Implementation of Sugiyama’s Algorithm for Layered Graph
Drawing. In International Symposium on Graph Drawing, pages 155–
166. Springer, 2004.

[69] A. ElTantawy, J.W. Ma, M. O’Connor, and T.M. Aamodt. A Scalable Multi-
Path Microarchitecture for Efficient GPU Control Flow. In Proceedings of
the International Symposium High-Performance Computer Architecture,
pages 248–259, Feb 2014.

[70] Ana Erosa and Laurie J. Hendren. Taming Control Flow: A Structured
Approach to Eliminating Goto Statements. In Proceedings of the IEEE
International Conference on Computer Languages, pages 229–240. IEEE,
1994.

[71] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark Silicon and the End of Multicore Scal-
ing. In Proceedings of the International Symposium on Computer Archi-
tecture, pages 365–376. ACM, 2011.

202

Bibliography

[72] Karl-Filip Faxén. Wool-A Work Stealing Library. SIGARCH Computer
Architecture News, 36(5):93–100, 2009.

[73] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program
Dependence Graph and Its Use in Optimization. ACM Transactions on
Programming Languages and Systems, 9(3):319–349, 1987.

[74] Nicholas J. Fraser, Yaman Umuroglu, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. Scaling Bina-
rized Neural Networks on Reconfigurable Logic. In Proceedings of the
8th Workshop and 6th Workshop on Parallel Programming and Run-
Time Management Techniques for Many-core Architectures and Design
Tools and Architectures for Multicore Embedded Computing Platforms
(PARMA-DITAM), pages 25–30. ACM, 2017.

[75] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dy-
namic Warp Formation and Scheduling for Efficient GPU Control Flow.
In Proceedings of the ACM/IEEE International Symposium on Microar-
chitecture, pages 407–420. IEEE, 2007.

[76] Anwar M. Ghuloum and Allan L. Fisher. Flattening and Parallelizing
Irregular, Recurrent Loop Nests. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
58–67. ACM, 1995.

[77] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni,
Easwaran Raman, and David I. August. Practical and Accurate Low-
Level Pointer Analysis. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 291–302. IEEE, 2005.

[78] John L. Gustafson. Reevaluating Amdahl’s Law. Communications of the
ACM (CACM), 31(5):532–533, 1988.

[79] Tianyi David Han and Tarek S. Abdelrahman. Reducing Branch Diver-
gence in GPU Programs. In Proceedings of the Workshop on General Pur-
pose Processing on Graphs Processing Units, pages 3:1–3:8. ACM, 2011.

[80] Tianyi David Han and Tarek S. Abdelrahman. Reducing Divergence in
GPGPU Programs with Loop Merging. In Proceedings of the Workshop
on General Purpose Processing on Graphs Processing Units, pages 12–23.
ACM, 2013.

203

Bibliography

[81] Blake Haugen, Stephen Richmond, Jakub Kurzak, Chad A. Steed, and
Jack Dongarra. Visualizing Execution Traces with Task Dependencies. In
Proceedings of the 2nd Workshop on Visual Performance Analysis, pages
2:1–2:8. ACM, 2015.

[82] Paul Havlak. Construction of Thinned Gated Single-Assignment Form.
In Proceedings of the International Workshop on Languages and Com-
pilers for Parallel Computing, pages 477–499. Springer, 1993.

[83] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 6th edition, 2017.

[84] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Com-
puter Architecture News, 34(4):1–17, 2006.

[85] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era.
Computer, 41(7):33–38, 2008.

[86] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of Wires. Proceedings
of the IEEE, 89(4):490–504, 2001.

[87] Anup Holey, Vineeth Mekkat, and Antonia Zhai. HAccRG: Hardware-
Accelerated Data Race Detection in GPUs. In Proceedings of the Interna-
tional Conference on Parallel Processing (ICPP), pages 60–69. IEEE Com-
puter Society, 2013.

[88] Shin Hong and Moonzoo Kim. A Survey of Race Bug Detection Tech-
niques for Multithreaded Programmes. Software Testing, Verification,
and Reliability, 25(3):191–217, 2015.

[89] S. Horwitz, J. Prins, and T. Reps. On the Adequacy of Program Depen-
dence Graphs for Representing Programs. In Proceedings of the ACM
SIGPLAN Symposium on Principles of Programming Languages, pages
146–157. ACM, 1988.

[90] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using De-
pendence Graphs. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 35–46.
ACM, 1988.

204

Bibliography

[91] Ali R. Hurson, Joford T. Lim, Krishna M. Kavi, and Ben Lee. Paralleliza-
tion of DOALL and DOACROSS Loops - A Survey. Advances in Comput-
ers, 45:53–103, 1997.

[92] An Huynh, Douglas Thain, Miquel Pericàs, and Kenjiro Taura. DAGViz:
A DAG Visualization Tool for Analyzing Task-parallel Program Traces. In
Proceedings of the 2Nd Workshop on Visual Performance Analysis, pages
3:1–3:8. ACM, 2015.

[93] Wen-mei Hwu, Shane Ryoo, Sain-Zee Ueng, John H. Kelm, Isaac Gelado,
Sam S. Stone, Robert E. Kidd, Sara S. Baghsorkhi, Aqeel A. Mah-
esri, Stephanie C. Tsao, Nacho Navarro, Steve S. Lumetta, Matthew I.
Frank, and Sanjay J. Patel. Implicitly Parallel Programming Models for
Thousand-core Microprocessors. In Proceedings of the ACM/IEEE De-
sign Automation Conference, pages 754–759. ACM, 2007.

[94] Intel Processors and FPGAs - Better Together. https://

itpeernetwork.intel.com/intel-processors-fpga-better-

together/. Accessed: 2018-07-23.

[95] Katherine E. Isaacs, Peer-Timo Bremer, Ilir Jusufi, Todd Gamblin, Abhi-
nav Bhatele, Martin Schulz, and Bernd Hamann. Combing the Com-
munication Hairball: Visualizing Large-Scale Parallel Execution Traces
using Logical Time. IEEE Transactions on Visualization and Computer
Graphics, 20(12), 2014.

[96] Katherine E. Isaacs, Alfredo Giménez, Ilir Jusufi, Todd Gamblin, Abhinav
Bhatele, Martin Schulz, Bernd Hamann, and Peer-Timo Bremer. State
of the Art of Performance Visualization. In EuroVis - STARs. The Euro-
graphics Association, 2014.

[97] Johan Janssen and Henk Corporaal. Making graphs reducible with con-
trolled node splitting. ACM Transactions on Programming Languages
and Systems, 19(6):1031–1052, 1997.

[98] Nicklas Bo Jensen and Sven Karlsson. Improving Loop Dependence
Analysis. ACM Transactions on Architecture and Code Optimization,
14(3):22:1–22:24, 2017.

205

Bibliography

[99] Neil Johnson and Alan Mycroft. Combined Code Motion and Register
Allocation Using the Value State Dependence Graph. In Proceedings
of the International Conference on Compiler Construction, pages 1–16.
Springer, 2003.

[100] Neil E. Johnson. Code size optimization for embedded processors.
Technical report, University of Cambridge, 2004.

[101] Richard Johnson, David Pearson, and Keshav Pingali. The Program
Structure Tree: Computing Control Regions in Linear Time. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 171–185. ACM, 1994.

[102] Katherine Isaacs. Performance Visualization: Living digital library of
State of the Art of Performance Visualization, 2017. http://cgi.cs.

arizona.edu/~kisaacs/STAR/. Accessed 31 July 2017.

[103] W. Kim and M. Voss. Multicore Desktop Programming with Intel
Threading Building Blocks. IEEE Software, 28(1):23–31, 2011.

[104] Huawei announces the Kirin 970 - new flagship SoC with AI capa-
bilities. https://www.androidauthority.com/huawei-announces-

kirin-970-797788/. Accessed: 2018-07-23.

[105] Peter M. W. Knijnenburg. Flattening VLIW code generation for imper-
fectly nested loops, 1998.

[106] Øystein E. Krog and Anne C. Elster. Fast GPU-Based Fluid Simulations
Using SPH. In Proceedings of the International Workshop on Applied
Parallel Computing (PARA), pages 98–109. Springer, 2012.

[107] Monica S. Lam and Robert P. Wilson. Limits of Control Flow on Par-
allelism. In Proceedings of the International Symposium on Computer
Architecture, pages 46–57. ACM, 1992.

[108] Peder Voldnes Langdal. Generating Grain Graphs Using the OpenMP
Tools API. Technical report, Norwegian University of Science and Tech-
nology, 2017.

206

Bibliography

[109] Peder Voldnes Langdal, Magnus Jahre, and Ananya Muddukrishna.
Extending OMPT to Support Grain Graphs. In IWOMP 2017: Scal-
ing OpenMP for Exascale Performance and Portability, pages 141–155.
Springer, 2017.

[110] Samuel Larsen and Saman Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 145–156. ACM, 2000.

[111] Samuel Larsen, Emmett Witchel, and Saman P. Amarasinghe. Increasing
and Detecting Memory Address Congruence. In Proceedings of the In-
ternational Conference on Parallel Architectural and Compilation Tech-
niques, pages 18–29. IEEE, 2002.

[112] Ahmad Lashgar and Amirali Baniasadi. Performance in GPU Architec-
tures: Potentials and Distances. In Proceedings of the Workshop on Du-
plicating, Deconstructing and Debunking, 2011.

[113] Alan C. Lawrence. Optimizing compilation with the Value State Depen-
dence Graph. Technical report, University of Cambridge, 2007.

[114] Edward A. Lee. The Problem with Threads. Computer, 39(5):33–42, 2006.

[115] Yunsup Lee, Vinod Grover, Ronny Krashinsky, Mark Stephenson,
Stephen W. Keckler, and Krste Asanović. Exploring the Design Space
of SPMD Divergence Management on Data-Parallel Architectures. In
Proceedings of the ACM/IEEE International Symposium on Microarchi-
tecture, pages 101–113. IEEE, 2014.

[116] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala,
and Sorin Lerner. Verifying GPU Kernels by Test Amplification. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 383–394. ACM, 2012.

[117] J. Liu, J. Wickerson, and G. A. Constantinides. Loop Splitting for Efficient
Pipelining in High-Level Synthesis. In Proceedings of the IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, pages 72–
79, 2016.

207

Bibliography

[118] LLVM. https://bugs.llvm.org/show_bug.cgi?id=31851, 2018. Ac-
cesssed: 2018-05-07.

[119] LLVM. https://bugs.llvm.org/show_bug.cgi?id=37202, 2018. Ac-
cesssed: 2018-05-07.

[120] LLVM. https://bugs.llvm.org/show_bug.cgi?id=31183, 2018. Ac-
cesssed: 2018-05-07.

[121] Holger Ludvigsen and Anne Cathrine Elster. Real-Time Ray Tracing Us-
ing Nvidia OptiX. In Eurographics 2010 - Short Papers. The Eurographics
Association, 2010.

[122] Souley Madougou, Ana Varbanescu, Cees de Laat, and Rob van Nieuw-
poort. The Landscape of GPGPU Performance Modeling Tools. Parallel
Computing, 56(C):18–33, 2016.

[123] Souley Madougou, Ana Lucia Varbanescu, Cees de Laat, and Rob van
Nieuwpoort. An Empirical Evaluation of GPGPU Performance Mod-
els. In Euro-Par 2014: Parallel Processing Workshops, pages 165–176.
Springer, 2014.

[124] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gal-
lagher, and W. . W. Hwu. Characterizing the Impact of Predicated Execu-
tion on Branch Prediction. In Proceedings of the ACM/IEEE International
Symposium on Microarchitecture, pages 217–227, 1994.

[125] Jonathan Mak and Alan Mycroft. Limits of Parallelism Using Dynamic
Dependency Graphs. In Proceedings of the Seventh International Work-
shop on Dynamic Analysis (WODA), pages 42–48. ACM, 2009.

[126] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and
David A. Padua. An Evaluation of Vectorizing Compilers. In Proceedings
of the International Conference on Parallel Architectural and Compila-
tion Techniques, pages 372–382. IEEE, 2011.

[127] Naraig Manjikian and Tarek S Abdelrahman. Fusion of loops for paral-
lelism and locality. IEEE Transactions on Parallel and Distributed Sys-
tems, 8(2):193–209, 1997.

208

Bibliography

[128] Sally A. McKee. Reflections on the Memory Wall. In Proceedings of
the ACM International Conference on Computing Frontiers, pages 162–.
ACM, 2004.

[129] Paul E. McKenney. Is Parallel Programming Hard, And, If So, What Can
You Do About It? 2010.

[130] Intel Math Kernel Library. https://software.intel.com/en-us/mkl.
Accessed: 2018-07-21.

[131] Moto X to feature standalone language processing and context aware-
ness chips, and more rumors. https://www.androidauthority.com/
moto-x-language-processing-chip-238522/. Accessed: 2018-07-
23.

[132] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[133] Ananya Muddukrishna. Improving OpenMP Productivity with Data Lo-
cality Optimizations and High-resolution Performance Analysis. PhD
thesis, KTH Royal Institute of Technology, 2016.

[134] Ananya Muddukrishna, Peter A. Jonsson, and Mats Brorsson. Charac-
terizing Task-Based OpenMP Programs. PLOS ONE, 10(4):1–29, 2015.

[135] Ananya Muddukrishna, Peter A. Jonsson, and Mats Brorsson. Locality-
Aware Task Scheduling and Data Distribution for OpenMP Programs
on NUMA Systems and Manycore Processors. Scientific Programming,
2015:5:5–5:5, 2016.

[136] Ananya Muddukrishna, Peter A. Jonsson, and Peder Langdal.
anamud/mir-dev: MIR v1.0.0, March 2017.

[137] Ananya Muddukrishna, Peter A. Jonsson, Artur Podobas, and Mats
Brorsson. Grain Graphs: OpenMP Performance Analysis Made Easy. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 28:1–28:13. ACM, 2016.

[138] Ananya Muddukrishna and Peder Langdal. anamud/grain-graphs:
Grain Graphs v1.0.0, March 2017.

209

Bibliography

[139] Dheya Mustafa and Rudolf Eigenmann. PETRA: Performance Evalua-
tion Tool for Modern Parallelizing Compilers. International Journal of
Parallel Programming, 43(4):549–571, 2015.

[140] Dorit Naishlos. Autovectorization in GCC. In Proceedings of the 2004
GCC Developers Summit, pages 105–118, 2004.

[141] R. Namballa, N. Ranganathan, and A. Ejnioui. Control and Data Flow
Graph Extraction for High-Level Synthesis. In IEEE Computer Society
Annual Symposium on VLSI, pages 187–192, 2004.

[142] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A Survey and Eval-
uation of FPGA High-Level Synthesis Tools. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(10):1591–
1604, 2016.

[143] Dorit Nuzman and Richard Henderson. Multi-platform Auto-
vectorization. In Proceedings of the International Symposium on Code
Generation and Optimization, pages 281–294. IEEE, 2006.

[144] NVIDIA. NVIDIA Tesla V100 GPU Architecture - The world’s most
advanced data center GPU. http://images.nvidia.com/content/

volta-architecture/pdf/volta-architecture-whitepaper.pdf.
Accessed: 2018-08-23.

[145] Stephen L. Olivier, Bronis R. de Supinski, Martin Schulz, and Jan F. Prins.
Characterizing and Mitigating Work Time Inflation in Task Parallel Pro-
grams. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 65:1–65:12.
IEEE, 2012.

[146] Kunle Olukotun and Lance Hammond. The Future of Microprocessors.
Queue, 3(7):26–29, 2005.

[147] OpenACC. www.openacc.org. Accessed: 2018-08-14.

[148] OpenCL - The open standard for parallel programming of heteroge-
neous systems. https://www.khronos.org/opencl. Accessed: 2015-
11-02.

210

Bibliography

[149] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. The Pro-
gram Dependence Web: A Representation Supporting Control-, Data-,
and Demand-driven Interpretation of Imperative Languages. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 257–271. ACM, 1990.

[150] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Au-
tomatic Thread Extraction with Decoupled Software Pipelining. In Pro-
ceedings of the ACM/IEEE International Symposium on Microarchitec-
ture, pages 105–118. IEEE, 2005.

[151] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-
Effective Superscalar Processors. In Proceedings of the International
Symposium on Computer Architecture, pages 206–218. ACM, 1997.

[152] Michael Paleczny, Christopher Vick, and Cliff Click. The Java
HotSpotTM Server Compiler. In Proceedings of the JavaTM Virtual Ma-
chine Research and Technology Symposium, pages 1–1. USENIX Associ-
ation, 2001.

[153] S.J. Pennycook, J.D. Sewall, and V.W. Lee. Implications of a metric for
performance portability. Future Generation Computer Systems, 2017.

[154] C. Pilato and F. Ferrandi. Bambu: A modular framework for the high
level synthesis of memory-intensive applications. In Proceedings of the
Conference on Field Programmable Logic and Applications, pages 1–4.
IEEE, 2013.

[155] Angela Pohl, Biagio Cosenza, and Ben Juurlink. Correlating Cost with
Performance in LLVM. In Proceedings of the 13th International Summer
School on Advanced Computer Architecture and Compilation for High-
Performance and Embedded Systems (ACACES), 2017.

[156] Angela Pohl, Biagio Cosenza, and Ben Juurlink. Control Flow Vectoriza-
tion for ARM NEON. In Proceedings of the 21st International Workshop
on Software and Compilers for Embedded Systems (SCOPES), pages 66–
75. ACM, 2018.

[157] Angela Pohl, Biagio Cosenza, and Bin Juurlink. Cost Modelling for Vec-
torization on ARM. In Proceedings of International Conference on Clus-
ter Computing (CLUSTER). IEEE, 2018.

211

Bibliography

[158] Vasileios Porpodas and Timothy M. Jones. Throttling Automatic Vector-
ization: When Less is More. In Proceedings of the International Confer-
ence on Parallel Architectural and Compilation Techniques, pages 432–
444. IEEE, 2015.

[159] Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. PSLP:
Padded SLP Automatic Vectorization. In Proceedings of the Interna-
tional Symposium on Code Generation and Optimization, pages 190–
201. IEEE, 2015.

[160] Louis-Noël Pouchet. Polybench/C 4.2. http://web.cse.ohio-state.
edu/~pouchet.2/software/polybench/, 2017. Accessed: 2017-12-13.

[161] Parallel Thread Execution ISA Version 4.3. http://docs.nvidia.com/
cuda/parallel-thread-execution. Accessed: 2015-11-02.

[162] Pixel Visual Core: A closer look at the Pixel 2’s hidden chip. https:

//www.androidauthority.com/pixel-visual-core-808182/. Ac-
cessed: 2018-07-23.

[163] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges,
and David I. August. Parallel-stage Decoupled Software Pipelining. In
Proceedings of the International Symposium on Code Generation and
Optimization, pages 114–123. ACM, 2008.

[164] Ram Rangan, Neil Vachharajani, Guilherme Ottoni, and David I. August.
Performance Scalability of Decoupled Software Pipelining. ACM Trans-
actions on Architecture and Code Optimization, 5(2):8:1–8:25, 2008.

[165] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating MapReduce for Multi-core and Multiprocessor Systems. In
Proceedings of the International Symposium High-Performance Com-
puter Architecture, pages 13–24. IEEE, 2007.

[166] Nico Reissmann. Utilizing the Value State Dependence Graph for
Haskell. Technical report, University of Gothenburg, 2012.

[167] Nico Reissmann. jlm. https://github.com/phate/jlm, 2017. Ac-
cessed: 2017-12-13.

[168] Nico Reissmann. phate/ggraph: Vpa17, July 2017.

212

Bibliography

[169] Nico Reissmann, Thomas L. Falch, Benjamin A. Bjornseth, Helge Bah-
mann, Jan Christian Meyer, and Magnus Jahre. Efficient Control Flow
Restructuring for GPUs. In International Conference on High Perfor-
mance Computing & Simulation (HPCS), pages 48–57, 2016.

[170] Nico Reissmann, Magnus Jahre, and Ananya Muddukrishma. Aggre-
gating Large Grain Graphs For Improved OpenMP Productivity, 2017.
Fourth International Workshop on Visual Performance Analysis (VPA).

[171] Nico Reissmann and Ananya Muddukrishna. Diagnosing Highly-
Parallel OpenMP Programs with Aggregated Grain Graphs. In Proceed-
ings of the International Conference on Parallel and Distributed Com-
puting (Euro-Par), pages 106–119. Springer, 2018.

[172] A. D. Robison. Composable Parallel Patterns with Intel Cilk Plus. Com-
puting in Science and Engineering, 15(2):66–71, 2013.

[173] R. Ronen, A. Mendelson, K. Lai, Shih-Lien Lu, F. Pollack, and J. P. Shen.
Coming Challenges in Microarchitecture and Architecture. Proceedings
of the IEEE, 89(3):325–340, 2001.

[174] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and
Redundant Computations. In Proceedings of the ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, pages 12–27. ACM, 1988.

[175] Ira Rosen, Dorit Nuzman, and Ayal Zaks. Loop-Aware SLP in GCC. In
Proceedings of the GCC Developers Summit, pages 131–142, 2007.

[176] Radu Rugina and Martin C. Rinard. Recursion Unrolling for Divide
and Conquer Programs. In Proceedings of the International Work-
shop on Languages and Compilers for Parallel Computing, pages 34–48.
Springer, 2001.

[177] K. Rupp. 42 years of microprocessor trend data. https:

//www.karlrupp.net/2018/02/42-years-of-microprocessor-

trend-data/. Original data up to the year 2010 collected and plotted
by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond,
and C. Batten, New plot and data collected for 2010-2017 by K. Rupp,
Accessed: 2018-07-18.

213

Bibliography

[178] Ingar Saltvik, Anne C. Elster, and Henrik R. Nagel. Parallel Methods
for Real-Time Visualization of Snow. In Proceedings of the Interna-
tional Workshop on Applied Parallel Computing (PARA), pages 218–227.
Springer, 2007.

[179] Diogo Sampaio, Rafael Martins de Souza, Sylvain Collange, and Fer-
nando Magno Quintão Pereira. Divergence Analysis. ACM Transactions
on Programming Languages and Systems, 35(4):13:1–13:36, 2014.

[180] V. Sarkar. Automatic Partitioning of a Program Dependence Graph into
Parallel Tasks. IBM Journal of Research and Development, 35(5-6):779–
804, 1991.

[181] J. Sartori and R. Kumar. Branch and Data Herding: Reducing Control
and Memory Divergence for Error-Tolerant GPU Applications. IEEE
Transactions on Multimedia, 15(2):279–290, 2013.

[182] Robert R Schaller. Moore’s law: past, present and future. IEEE Spectrum,
34(6):52–59, 1997.

[183] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir:
Embedding Fork-Join Parallelism into LLVM’s Intermediate Represen-
tation. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 249–265. ACM, 2017.

[184] Dirk Schmidl, Christian Terboven, Dieter an Mey, and Matthias S.
Müller. Suitability of Performance Tools for OpenMP Task-Parallel Pro-
grams. In Tools for High Performance Computing 2013, pages 25–37.
Springer, 2014.

[185] M. Sharir. Structural Analysis: A new Approach to Flow Analysis in Op-
timizing Compilers. Computer Languages, 5(3-4):141–153, 1980.

[186] David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin,
Richard H. Larson, John K. Salmon, Cliff Young, Brannon Batson,
Kevin J. Bowers, Jack C. Chao, Michael P. Eastwood, Joseph Gagliardo,
J. P. Grossman, C. Richard Ho, Douglas J. Ierardi, István Kolossváry,
John L. Klepeis, Timothy Layman, Christine McLeavey, Mark A. Moraes,
Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler, Michael
Theobald, Brian Towles, and Stanley C. Wang. Anton, a Special-Purpose

214

Bibliography

Machine for Molecular Dynamics Simulation. In Proceedings of the In-
ternational Symposium on Computer Architecture, pages 1–12. ACM,
2007.

[187] David E. Shaw, J. P. Grossman, Joseph A. Bank, Brannon Batson, J. Adam
Butts, Jack C. Chao, Martin M. Deneroff, Ron O. Dror, Amos Even,
Christopher H. Fenton, Anthony Forte, Joseph Gagliardo, Gennette
Gill, Brian Greskamp, C. Richard Ho, Douglas J. Ierardi, Lev Iserovich,
Jeffrey S. Kuskin, Richard H. Larson, Timothy Layman, Li-Siang Lee,
Adam K. Lerer, Chester Li, Daniel Killebrew, Kenneth M. Mackenzie,
Shark Yeuk-Hai Mok, Mark A. Moraes, Rolf Mueller, Lawrence J. Nociolo,
Jon L. Peticolas, Terry Quan, Daniel Ramot, John K. Salmon, Daniele P.
Scarpazza, U. Ben Schafer, Naseer Siddique, Christopher W. Snyder,
Jochen Spengler, Ping Tak Peter Tang, Michael Theobald, Horia Toma,
Brian Towles, Benjamin Vitale, Stanley C. Wang, and Cliff Young. Anton
2: Raising the Bar for Performance and Programmability in a Special-
purpose Molecular Dynamics Supercomputer. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, pages 41–53. IEEE, 2014.

[188] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt. Weisfeiler-Lehman Graph Ker-
nels. Journal of Machine Learning Research, 12(Sep):2539–2561, 2011.

[189] Jaewook Shin. Introducing Control Flow into Vectorized Code. In Pro-
ceedings of the International Conference on Parallel Architectural and
Compilation Techniques, pages 280–291. IEEE, 2007.

[190] Jaewook Shin, Jacqueline Chame, and Mary W. Hall. Compiler-
Controlled Caching in Superword Register Files for Multimedia Exten-
sion Architectures. In Proceedings of the International Conference on
Parallel Architectural and Compilation Techniques, pages 45–55. IEEE,
2002.

[191] Jaewook Shin, Mary Hall, and Jacqueline Chame. Superword-Level Par-
allelism in the Presence of Control Flow. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization, pages 165–
175. IEEE, 2005.

215

Bibliography

[192] Jaewook Shin, Mary W. Hall, and Jacqueline Chame. Evaluating com-
piler technology for control-flow optimizations for multimedia exten-
sion architectures. Microprocessors and Microsystems, 33(4):235 – 243,
2009.

[193] Gaurav Singh, Sumit Gupta, Sandeep Shukla, Rajesh Gupta, and San
Deigo. High-Level Synthesis: A Code Transformational Approach to
High-Level Synthesis, 2006.

[194] Erik Smistad, Mohammadmehdi Bozorgi, and Frank Lindseth. Fast:
framework for heterogeneous medical image computing and visualiza-
tion. International Journal of Computer Assisted Radiology and Surgery,
10(11):1811–1822, 2015.

[195] Erik Smistad, Anne C. Elster, and Frank Lindseth. Gpu accelerated seg-
mentation and centerline extraction of tubular structures from medi-
cal images. International Journal of Computer Assisted Radiology and
Surgery, 9(4):561–575, 2014.

[196] Erik Smistad, Thomas L. Falch, Mohammadmehdi Bozorgi, Anne C. El-
ster, and Frank Lindseth. Medical image segmentation on GPUs - A
comprehensive review. Medical Image Analysis, 20(1):1–18, 2015.

[197] Daniele G. Spampinato and Anne C. Elster. Linear optimization on
modern GPUs. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, pages 1–8. IEEE, 2009.

[198] James Stanier. Removing and Restoring Control Flow with the Value State
Dependence Graph. PhD thesis, University of Sussex, 2012.

[199] James Stanier and Alan Lawrence. The Value State Dependence Graph
Revisited. In Proceedings of the Workshop on Intermediate Representa-
tions, pages 53–60, 2011.

[200] James Stanier and Des Watson. A study of irreducibility in C programs.
Software: Practice and Expererience, 2011.

[201] James Stanier and Des Watson. Intermediate Representations in Imper-
ative Compilers: A Survey. ACM Computing Surveys (CSUR), 45(3):26:1–
26:27, 2013.

216

Bibliography

[202] Vladimir Subotic, Steffen Brinkmann, Vladimir Marjanovic, Rosa M.
Badia, Jose Gracia, Christoph Niethammer, Eduard Ayguade, Jesus
Labarta, and Mateo Valero. Programmability and portability for exas-
cale: Top down programming methodology and tools with StarSs. Jour-
nal of Computational Science, 4(6):450 – 456, 2013.

[203] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for Vi-
sual Understanding of Hierarchical System Structures. IEEE Transac-
tions on Systems, Man, and Cybernetics, 11(2):109–125, 1981.

[204] Mahito Sugiyama, M. Elisabetta Ghisu, Felipe Llinares-López, and
Karsten Borgwardt. graphkernels: R and python packages for graph
comparison. Bioinformatics, 34(3):530–532, 2018.

[205] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Con-
currency in Software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

[206] Herb Sutter and James Larus. Software and the Concurrency Revolution.
Queue, 3(7):54–62, 2005.

[207] SystemVerilog. IEEE Standard for SystemVerilog–Unified Hardware De-
sign, Specification, and Verification Language. IEEE Std 1800-2017 (Re-
vision of IEEE Std 1800-2012), pages 1–1315, 2018.

[208] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

[209] Scott Thompson, Paul Packan, and Mark Bohr. MOS Scaling: Transistor
Challenges for the 21st Century. Intel Technology Journal, 1998.

[210] TOP500 June 2018 Supercomputer List. https://www.top500.org/

lists/2018/06/. Accessed: 2018-07-19.

[211] Arm’s new chips will bring on-device AI to millions of smart-
phones. https://www.androidauthority.com/arm-unveils-new-

npu-837015/. Accessed: 2018-07-23.

[212] Jessica H. Tseng and Krste Asanović. Banked Multiported Register Files
for High-frequency Superscalar Microprocessors. In Proceedings of the
International Symposium on Computer Architecture, pages 62–71. ACM,
2003.

217

Bibliography

[213] Peng Tu and David Padua. Efficient Building and Placing of Gating
Functions. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 47–55. ACM, 1995.

[214] Gary Tyson and Matthew Farrens. Evaluating the Effects of Predicated
Execution on Branch Prediction. International Journal of Parallel Pro-
gramming, 24(2):159–186, 1996.

[215] Y. Umuroglu and M. Jahre. An Energy Efficient Column-Major Backend
for FPGA SpMV Accelerators. In Proceedings of the IEEE International
Conference Computer Design, pages 432–439, 2014.

[216] Y. Umuroglu, D. Morrison, and M. Jahre. Hybrid Breadth-First Search
on a Single-Chip FPGA-CPU Heterogeneous Platform. In Proceedings
of the Conference on Field Programmable Logic and Applications, pages
1–8, 2015.

[217] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. FINN: A Frame-
work for Fast, Scalable Binarized Neural Network Inference. In Proceed-
ings of the International Symposium on Field-Programmable Gate Ar-
rays (FPGA), pages 65–74. ACM, 2017.

[218] Yaman Umuroglu and Magnus Jahre. A Vector Caching Scheme for
Streaming FPGA SpMV Accelerators. In Proceedings of Applied Recon-
figurable Computing (ARC), pages 15–26. Springer, 2015.

[219] Sebastian Unger and Frank Mueller. Handling Irreducible Loops: Opti-
mized Node Splitting Versus DJ-graphs. ACM Transactions on Program-
ming Languages and Systems, 24(4):299–333, 2002.

[220] VHDL. IEC/IEEE International Standard - Behavioural languages - Part
1-1: VHDL Language Reference Manual. IEC 61691-1-1:2011(E) IEEE Std
1076-2008, pages 1–648, 2011.

[221] NVIDIA Volta Unveiled: GV100 GPU and Tesla V100 Accelerator
Announced. https://www.anandtech.com/show/11367/nvidia-

volta-unveiled-gv100-gpu-and-tesla-v100-accelerator-

announced. Accessed: 2018-08-23.

218

Bibliography

[222] Tatiana Von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn
Kohlhammer, Jarke J van Wijk, J-D Fekete, and Dieter W Fellner. Visual
Analysis of Large Graphs: State-of-the-Art and Future Research Chal-
lenges. In Computer Graphics Forum, pages 1719–1749. John Wiley &
Sons, 2011.

[223] David W. Wall. Limits of Instruction-level Parallelism. In Proceedings
of the Architectural Support for Programming Languages and Operating
Systems, pages 176–188. ACM, 1991.

[224] Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael F. P.
O’Boyle. Integrating Profile-Driven Parallelism Detection and Machine-
Learning-Based Mapping. ACM Transactions on Architecture and Code
Optimization, 11(1):2:1–2:26, 2014.

[225] Mark N. Wegman and F. Kenneth Zadeck. Constant Propagation with
Conditional Branches. ACM Transactions on Programming Languages
and Systems, 13(2):181–210, 1991.

[226] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard.
Value Dependence Graphs: Representation Without Taxation. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 297–310. ACM, 1994.

[227] Kyle B Wheeler and Douglas Thain. Visualizing Massively Multithreaded
Applications with ThreadScope. Concurrency and Computation: Prac-
tice and Experience, 22(1):45–67, 2010.

[228] Haicheng Wu, Gregory Diamos, Si Li, and Sudhakar Yalamanchili. Char-
acterization and Transformation of Unstructured Control Flow in GPU
Applications. In 1st International Workshop on Characterizing Applica-
tions for Heterogeneous Exascale Systems, 2011.

[229] Haicheng Wu, Gregory Diamos, Jin Wang, Si Li, and Sudhakar Yalaman-
chili. Characterization and transformation of unstructured control flow
in bulk synchronous GPU applications. The International Journal of
High Performance Computing Applications, 26(2):170–185, 2012.

[230] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implica-
tions of the Obvious. SIGARCH Computer Architecture News, 23(1):20–
24, 1995.

219

Bibliography

[231] Rengan Xu, Sunita Chandrasekaran, Barbara Chapman, and
Christoph F Eick. Directive-based Programming Models for Scientific
Applications - A Comparison. 2012 SC Companion: High Performance
Computing, Networking, Storage and Analysis (SCC), pages 1–9, 2012.

[232] B. Ylvisaker, C. Ebeling, and S. Hauck. Enhanced Loop Flattening for
Software Pipelining of Arbitrary Loop Nests, 2010.

[233] Richard M. Yoo, Christopher J. Hughes, Changkyu Kim, Yen-Kuang
Chen, and Christos Kozyrakis. Locality-aware Task Management for Un-
structured Parallelism: A Quantitative Limit Study. In Proceedings of the
ACM Symposium on Parallelism in Algorithms and Architectures, pages
315–325. ACM, 2013.

[234] yWorks GmBh. yEd graph editor, 2015. http://www.yworks.com/en/

products_yed_about.html. Accessed 10 April 2015.

[235] Ali Mustafa Zaidi. Accelerating control-flow intensive code in spatial
hardware. Technical report, University of Cambridge, 2015.

[236] Ali Mustafa Zaidi and David Greaves. Value State Flow Graph: A
Dataflow Compiler IR for Accelerating Control-Intensive Code in Spa-
tial Hardware. ACM Transactions on Reconfigurable Technology and Sys-
tems, 9(2):14:1–14:22, 2015.

[237] Dror Zernik, Marc Snir, and Dalia Malki. Using Visualization Tools to
Understand Concurrency. IEEE Software, 9(3):87–92, 1992.

[238] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen.
On-the-fly Elimination of Dynamic Irregularities for GPU Computing.
In Proceedings of the Architectural Support for Programming Languages
and Operating Systems, pages 369–380. ACM, 2011.

[239] F. Zhang and E.H. D’Hollander. Using Hammock Graphs to Structure
Programs. IEEE Transactions on Software Engineering, 30(4):231–245,
2004.

[240] Fubo Zhang and E.H. D’Hollander. Extracting the Parallelism in Pro-
gram with Unstructured Control Statements. In Proceedings of the Inter-
national Conference on Parallel and Distributed Systems, pages 264–270,
1994.

220

Bibliography

[241] Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. GMRace:
Detecting Data Races in GPU Programs via a Low-Overhead Scheme.
IEEE Transactions on Parallel and Distributed Systems, 25(1):104–115,
2014.

[242] V. Zyuban and P. Kogge. The Energy Complexity of Register Files. In
Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED), pages 305–310. ACM, 1998.

221

	101606_Innmat_01_1_PhDCover.greyscaled
	101606_Innmat_03_0_thesis.greyscaled

